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ABSTRACT 

 

The Effect of Glucose Utilization and Feed Efficiency on Beef Cattle Production. 

(December 2011) 

Brook Lyn Bradbury, B.S., Kansas State University 

Co-Chairs of Advisory Committee: Dr. Ronald D. Randel 

  Dr. Thomas H. Welsh, Jr. 

 

Feed efficiency and metabolism affect profitability of the various components of 

the beef industry by modulating distribution and use of nutrients within cattle.  Separate 

studies were conducted to determine the 1) repeatability of feed efficiency measurements 

over time as beef heifers mature into cows, and 2) whether the production and regulation 

of glucose in heifers is affected by temperament. 

The influence of temperament on glucoregulatory hormones was studied in 

Angus crossbred heifers and Brahman heifers whose temperament was determined at 

weaning. The 6 most calm and 6 most temperamental heifers of each breed were fitted 

with jugular cannulas. Blood was collected at cannulation and then via the cannula 

during a 90-min rest period.  Following 90 min, dextrose was infused (0.5 mg/kg BW) 

and blood samples were collected at specific intervals for 3 h total.  In the crossbred 

heifers cortisol (P = 0.0560) and glucose (P = 0.0485) concentrations during the 

challenge were higher in temperamental relative to calm crossbred heifers.  Insulin 

concentrations tended (P = 0.0737) to be higher in temperamental crossbred heifers.  

Cortisol (P = 0.0282) and glucose (P = 0.0011) concentrations were significantly higher 
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in temperamental Brahman heifers.  Insulin concentrations tended (P = 0.0793) to be 

greater for calm Brahman heifers.  Temperamental cattle had a greater HPA axis 

response, which led to greater concentrations of cortisol and glucose, possibly because 

the glucose was being utilized differently by the temperamental cattle.  

Mature Brahman cow feed efficiency data was collected over two years, on two 

different cohorts of cows that had previous residual feed intake data as post-weaning 

heifers.  In 2009 and 2010, 37 and 41 cows, respectively, in their first trimester of 

gestation were evaluated for RFI via the Calan gate system. Cows were fed 2.6% BW for 

70 d with BW recorded weekly. Cows were classified according to their RFI values as 

either efficient or inefficient. Heifer RFI was not correlated to mature cow RFI based on 

assessment of the Pearson‟s correlation coefficient (r = -0.06, P = 0.57).  This study 

indicates that establishment of RFI in heifers may not accurately predict their feed 

efficiency as mature cows. 
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CHAPTER I 

INTRODUCTION AND LITERATURE REVIEW 

 

Introduction 

 In the beef cattle industry, efficient production is imperative.  Cattle production is 

a multifaceted industry composed of many crucial elements that must be optimized in 

order to have an effective, successful business.  Some factors that beef producers have no 

control over are weather, market, and government control; however, producers can play 

an active role in cattle health, nutrition, and breeding.  When inputs exceed outputs, and 

human population growth increases as land availability decreases, the average farmer 

comes closer to business failure.  In 2009, 30% of the family farms with beef cattle 

operations grossed negative farm incomes and in turn had to resort to off farm 

alternatives to supplement their income (USDA ERS, 2011a).  On a much larger scale, 

United States beef production in 2009 added $73 billion dollars and cow/calf production 

added another $31.8 billion dollars to the economy (USDA ERS, 2011a).  With an 

impact this large, the industry is recognized as noteworthy and well worth the time put 

into improvement and advancement of beef cattle production and improved profitability 

for beef producers. 

 One way to make a significant difference in efficiency and profitability is to 

reduce feed costs.  Feed costs generally represent the largest segment of expenses 

accounting for 68% to 71% of the total costs associated with beef cattle production from  

This thesis follows the format of the Journal of Animal Science. 
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2008 to 2010 (USDA ERS, 2011b).  Recently feed costs have increased due to 

widespread drought and reallocation of crops formerly available for use as cattle feed to 

ethanol production.  With increased feed costs, it is essential to identify cattle that will 

utilize feed efficiently.  Typically, feed to gain ratio has been the standard measure of 

feed efficiency, which was introduced by  Brody (1945), because of its ease of 

calculation.  However, F:G has been found to have deep-seated errors that lead to 

undesirable traits.  This led to the introduction of residual feed intake by Koch et al. 

(1963) as an alternative method. 

 RFI experiments have generally targeted weaned calves that would typically be 

back grounded or finished in a feedlot (Herd and Bishop, 2000; Basarab et al., 2003; 

Nkrumah et al., 2004, 2007).  While important, these experiments offer little guidance 

for cow/calf producers retaining heifers or even for producers looking to preserve 

genetics in breeding lines.  If RFI does not give a producer insight into how the next 

generation will perform then the question becomes: Is it really worth the time and money 

to determine their RFI?  

 Many aspects of beef production such as reproduction, feed efficiency, immune 

function, and carcass traits may be altered by high stress responsiveness or poor 

temperament.  Cattle exhibiting excitable temperament have been reported to have lower 

ADG (Voisinet et al., 1997a; Fell et al., 1999), higher occurrence of dark cutters 

(Voisinet et al., 1997b), lower dressing percentages and body condition scores (Petherick 

et al., 2002), and reduced immunity (Fell et al., 1999).  Temperament has been described 

as a fear or avoidance in response to human interactions (Fordyce et al., 1988b; Murphy 
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et al., 1994).  Certain interactions with humans can produce a stress response in cattle.  

Stress response increases the rate of metabolism, caused by the activation of the 

hypothalamic-pituitary-adrenal axis or stress axis.    

 Temperamental animals have been found to have higher circulating 

concentrations of cortisol (Curley et al., 2006; 2008).  Cortisol is a glucocorticoid and 

plays a major role in metabolism due to its ability to influence glucose synthesis and use.  

Glucose tolerance tests, originally developed for humans, assess response of insulin to an 

infusion of an exogenous source of glucose.  This test could be exploited to help 

understand the utilization of glucose in temperamental versus calm cattle, giving 

important insight into the allocation of energy, and possibly partially explaining why 

temperamental animals do not perform as well as calm animals.    

Areas such as feed efficiency and temperament play vital roles in the close knit 

network that regulates performance of beef cattle.  These experiments examine different 

components separately, but with the same goal of gaining a more complete 

understanding of factors affecting beef production.  Improvements in efficiency of beef 

production will ultimately lead to advantages for both consumers and producers.   

 

Temperament 

Characterizing Animal Temperament 

Temperament in cattle is generally defined as the response of an animal to being 

handled by a human (Fordyce et al., 1988a).  From conception to slaughter, cattle are 

exposed to many forms of human handling.   Livestock handling has generally been 
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found to induce a fear response, great or small, to being handled by humans (Hemsworth 

and Coleman, 1998).   However, Petherick et al. (2009) reported that fear can be reduced 

with proper human handling and association with positive events.  The question then 

becomes: if fear is lessened does temperament change? In the same study by Petherick et 

al. (2009) temperament scores were reevaluated over a 12-month period (starting at 4 to 

6 months) and no change was found.  Studies have shown that animals handled at early 

ages for long periods of time have no difference in temperament, only some 

improvement in their ability to adapt to their surroundings (Boivin et al., 1992).  Thus, 

animals are going to have a fear response to new surroundings or animals, sudden 

stimuli, and social interactions; it is not specific to just human interactions.  The term 

“temperament” is used in science to distinguish an animal‟s response to humans, but in 

reality it represents the ease of excitability of an animal.   

 

Evaluating for Temperament 

Multiple methods have been developed and tested to measure temperament.  

These tests range from complex behavioral tests to simple, more subjective measures and 

assess cattle behavior in both restrained and non-restrained conditions.  Restrained tests 

focus on animal response to a squeeze chute which is a staple tool used in cattle 

management.  The objective of a restrained test is to subjectively evaluate the animals‟ 

response when confined in a squeeze chute or in some countries, what is referred to as a 

crush.  Examples of restrained tests include crush score (Grandin, 1997), temperament 

test (Hearnshaw et al., 1979), and bail test (Fordyce et al., 1982).  Non-restrained testing 
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is aimed at assessing the amount of movement and haste in reaction to a variety of 

stressors.  Flight speed (Burrow et al., 1988) and open field tests (Kilgour, 1975), are 

both examples of temperament testing that do not require restraining the animal. By 

combining a restrained and non-restrained test it may more closely relate to the animals 

“fight or flight” reaction. To successfully test for temperament the test should be easy, 

reliable, and relatively simple to incorporate into a beef cattle management system. 

In Australia, the crush score (Tulloh, 1961) is used extensively in the beef cattle 

industry to select for calmer cattle.  The crush score evaluates the degree of agitation an 

animal demonstrates while being confined and restrained in a crush (Tulloh, 1961).  It is 

valued for its subjective assessment and ease of application.  Crush scores are set on a 

scale of 1-6 with a calmer animal having a low crush score as compared to a high crush 

score for a temperamental animal.  This is similar to the chute score as adapted by 

Grandin, (1993).  Chute score is different in that the animal is in the squeeze chute, but 

not restrained and only assessed on a scale from 1-5 with lower numbers indicating 

calmer animals.   

Two common methods used in our research are flight speed (Burrow et al., 1988) 

and pen score (Hammond et al., 1996).  Flight speed, otherwise termed, exit velocity is 

the rate (m/s) at which the animal transverses 1.83 m after being released from a working 

chute (Curley et al., 2006).  As the animal is released from the chute it crosses an 

infrared beam that starts the timer.  After the animal has transversed 1.83 m the second 

plane of the infrared beam is broken and the timer stops.  Exit velocity can be measured 

at any age, but has been found to be most accurate when observed at weaning (Burdick et 
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al., 2009; 2011).  Temperamental animals are those with higher exit velocities, while 

their calm counterparts will be slower coming out of the chute.  Faster exit velocity has 

been found to be correlated with higher concentrations of serum cortisol in cattle (Fell et 

al., 1999; Curley et al., 2006).  Cattle with slower measurements of flight speed (exit 

velocity) gain weight faster than those with faster flight speeds (Burrow and Dillon, 

1997; Müller and von Keyserlingk, 2006).  Pen score (Table 1.1.) is a subjective 

measurement using a scale of 1 to 5 to rank the animal‟s responsiveness to a human 

observer (Hammond et al., 1996).  Low values of pen score indicate animals with calmer 

or more docile temperaments, while higher values indicate aggressive and unpredictable 

animals. 

 

 

Table 1.1. Observations associated with the individual categories of pen scores (Hammond 

et al., 1996). 

 

 

Pen Score 

 

Description 

1 Walks slowly, can be approached slowly, not excited by humans  

2 
Runs along fences, stands in corner if humans stay away  

3 Runs along fences, head up and will run if humans come closer, 

stops before hitting gates and fences, avoids humans  

4 Runs, stays in back of group, head high and very aware of 

humans, may run into fences and gates  

5 
Excited, runs into fences, runs over anything in its path  
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Those two scores (exit velocity and pen score) can then be averaged together to 

form a temperament score that has been used to assign animals to calm, intermediate, or 

temperamental categories (Curley et al., 2006, 2008; King et al., 2006).  Temperament 

score is an average of an objective and subjective measurement of temperament.  It has 

been observed that objective measurements are stronger alone than subjective 

observation, but a temperament score using both exit velocity and pen score provides 

information on more than one facet of cattle behavior making it a more inclusive 

assessment (Vann et al., 2011).   

 Temperament is predominantly innate and found to be heritable in Bos taurus 

cattle breeds; for example: German Angus (0.61) and Simmental (0.53) (Gauly et al., 

2001).   Loyd et al. (2011) has recently reported that pen score, exit velocity, and 

temperament score are moderately to highly heritable, 0.44, 0.28, and 0.41, respectively, 

in Brahman cattle.  Hoppe et al. (2010) observed heritability differences for flight speed 

(exit velocity) between breeds of German Angus (0.20), Charolais (0.25), Hereford 

(0.36), Limousine (0.11), and German Simmental (0.28).  These studies suggest that 

temperament can be included effectively as a selection tool for beef cattle producers.   
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Temperament and Beef Production 

Temperamental animals pose a threat to themselves, other animals, facilities, and 

their handlers.  The impact that temperamental animals may have goes beyond 

immediate destruction and injury as it also affects production efficiency.  Producers and 

researchers have considered cattle temperament an important trait for years.  Early work 

found that nervousness could be related to elevated energy requirements (Hafez and 

Lindsay, 1965) and decreased conception rates (Pounden and Firebaugh, 1956).   

Recent findings indicate that excitable cattle have decreased average daily gains 

(ADG) (Voisinet et al., 1997b; Petherick et al., 2002) and body condition scores relative 

to calmer cattle (Petherick et al., 2003).  Café et al. (2011) observed significant decreases 

in time spent eating, feed intake, and feedlot and back-grounding performance.  Sires that 

are more excitable tend to have progeny with lower yearling body weights (Burrow and 

Dillion, 1997) and excitable dams have inhibited milk production (Drugociu et al., 1977; 

Breuer et al., 2000).   Temperament has also been linked to decreases in immune 

function (Fell et al., 1999; Oliphint, 2006), allowing cattle to be more susceptible to 

disease-causing pathogens (Oliphint, 2006).   

The effects of poor performance have also been found to alter meat quality.  

Cattle that are more excitable have less fat (Café et al., 2011),  lighter carcass weights, 

and less tender meat (King et al., 2006); more specifically they have been found to have 

a higher Warner-Bratzler shear force value (as indication of tenderness) than calm 

animals (del Campo et al., 2010).   Excitable temperament in cattle also leads to a greater 

bruise score (Fordyce et al., 1985; Fordyce et al., 1988b), darker meat (Voisinet et al., 
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1997a), increase carcass pH and abnormal meat flavor (Fordyce et al., 1988b; King et al., 

2006).  As concluded by Vann et al.  2008, temperamental cattle have higher treatment 

costs and lower net profits than their calm counterparts, due to the fact that temperament 

not only affects ease of handling, but also feedlot performance and carcass quality 

(Busby, 2005).  The big picture is that temperamental cattle cost producers more inputs, 

provide less output, and have a greater chance of harming themselves, other animals, 

facilities, and the producers. 

 

Temperament and the Hypothalamic-Pituitary-Adrenal Axis 

Stress 

 Stress has many facets, is widely studied, and has been found to profoundly affect 

the health and productivity of all living animals.  Stress can be categorized as physical, 

psychological, or interoceptive, but generally contains a combination of the three 

categories (von Borell, 2011).  The concept of stress was first recognized by Walter 

Cannon (1914).  Cannon (1914) detected the short- term stress response known as the 

fight or flight syndrome, in which the adrenal medulla serves as an emergency function 

to quickly trigger the release of epinephrine.  Selye (1936) observed that when rats 

underwent a non-specific, acute potentially harmful event, a syndrome would appear that 

causes swelling of adrenal glands and shrinkage of the thymus, lymph nodes, spleen, and 

liver.  These symptoms are labeled the “alarm stage”, and if the stress continues will lead 

to a resistance stage, and then exhaustion stage (death).  This syndrome now known as 

General Adaptation Syndrome (Selye, 1973) is how the body copes with stress.  The 
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amount of damage that the organism sustains will depend on its ability to adapt to the 

stress.  Further research demonstrates that the majority of the stress response is mediated 

by the hypothalamus, anterior pituitary, and adrenal glands working in synchrony to 

elicit a response in reaction to a multitude of events.   

 To the general public stress has a negative connotation.  Stress to most people 

implies worry, fear, anxiety or mental strain.  Outside of the scientific world, stress has 

become a broadly used term and can be confusing to the general population when 

actually talking about stress biology.  Stress can be characterized as good stress 

(eustress), bad stress (distress) (Selye, 1975) and even further categorized as acute or 

chronic stress.  Eustress is termed a good stress, with the idea that it results in a 

beneficial adaption reaction.  The outcome of distress would be an unsuccessful 

adaptation reaction (Selye, 1975).   The degree of the stress affects the severity and 

duration of effects on homeostasis.  The longer the stress reaction, the more detrimental 

effects it can have.  It is important to realize that all stress is not bad and that events that 

trigger stress vary by species. 
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Role of HPA in Stress Response 

 The HPA axis (Figure 1.1) is involved in the reaction to stress and its role is to 

adapt the organism to the physical, biological, and psychosocial environment.  This role 

is actually quite large, as the HPA axis must facilitate adaption of the organism in its 

entirety to everyday life, and also individually affect single responses of the body   

(tissues, organs, cells) and as well as more complex systems (immune and brain).  As  

stress levels build a cascade of reactions in the HPA axis occur.  The medial 

parvocellular and magnocellular divisions of the lateral paraventricular nucleus (PVN) of 

the hypothalamus will be triggered to synthesize corticotrophin-releasing- hormone 

(CRH) (Vale et al., 1981) and vasopressin (VP) (Martini and Morpurgo, 1955) and store 

them to the median eminence (Guillemin and Rosenburg, 1955; Saffran et al., 1955).  

CRH and VP are then secreted from the axon terminal and act upon the corticotropic 

cells to stimulate the secretion of adrenocorticotrophic hormone (ACTH) from the 

corticotropic cells of the anterior pituitary (Liu et al., 1983).  This release of ACTH 

triggers the secretion of glucocorticoids from the adrenal cortex.    
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Figure 1.1. Regulation of glucocorticoid secretion (modified from Axelrod and Reisine, 

1984). ACTH = Adrenocorticotrophic hormone; CRH = corticotrophin-releasing 

hormone; SRIF = somatotropin releasing inhibitor factor (somatostatin); VP = 

vasopressin.  
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Relationship of Temperament and Glucoregulatory Mechanisms 

Relationship of Glucose and Insulin 

 Glucose is a carbohydrate used by cells for energy and is the most important 

cellular energy source.  It is vital to life as it is the primary source of metabolic energy 

for the central nervous system because there is no oxidation of ketones in the brain.  

Glucose is also required for the turnover and synthesis of fat, as a precursor of muscle 

glycogen and as an essential metabolite for lactating and gestating ruminants (McDowell, 

1983).  Ruminants are far more efficient in digesting complex carbohydrates than 

monogastrics.   This is possible because the rumen contains microorganisms that assist in 

the breakdown of fibrous material such as cellulose and hemicelluloses (Hocquette and 

Abe, 2000).  The fermentation of carbohydrates produces volatile fatty acids, mainly 

acetate, propionate, and butyrate.  Volatile fatty acids derived from rumen fermentation 

provide up to 70 % of the energy requirements of a ruminant (Bergman, 1973).  Low 

levels of glucose are absorbed from the diet in ruminants and therefore glucose must be 

synthesized from the liver.  Eighty five to ninety percent of glucose production occurs in 

the liver and the rest is produced in the kidney (Bergman, 1973, Lindsay, 1978).   

Propionate accounts for the largest amount of glucose synthesis, accounting for up to 

76% of liver glucose synthesis (Reynolds et al., 1994).  Almost all of the propionate 

absorbed into the portal vein is removed by the liver and used for glucose synthesis.  

Other precursors for glucose synthesis include glycogenic amino acids, lactate, glycerol, 

i-butyrate and n-valerate (Leng, 1970).  When animals are fasted, glycerol and amino 

acids from adipose and muscle tissue, respectively, are precursors to glucose synthesis, 
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as a result of propionate quantities being greatly reduced (Bergman, 1973).  Intake is 

important to provide the substrate to support glucose synthesis and provide enough 

glucose available for the animal. If glucose concentrations become too high then insulin 

will be secreted to decrease glucose concentrations.   

Insulin, a metabolic hormone that is synthesized and secreted from the beta cells 

of the islets of Langerhans of the pancreas, primarily regulates the concentration of 

glucose in the blood by lowering the concentration (Banting et al., 1923).  Insulin is in 

control of intermediary metabolism, organizing what fuels are stored or oxidized.  The 

rising and falling of insulin is regulated by the amount of glucose present (Porte and 

Puppo, 1969).  When blood concentrations of glucose are elevated, insulin is secreted 

and serves to affect the liver and peripheral tissues to return the blood concentrations to 

homeostatic levels (Meglasson and Matschinsky, 1986).  This insulin release inhibits 

gluconeogenesis and glycogenolysis and promotes glucose uptake by the liver as well as 

fat and muscle tissue (Hocquette and Abe, 2000).    

As insulin begins to bind to its‟ receptors, the receptors will fuse to the plasma 

membrane and insert glucose transporters (GLUT 1-4).  These transporters allow glucose 

to enter the tissue (muscle, liver, adipose, central nervous system, etc).  GLUT 2 

specifically works in the gut, liver, and pancreatic cells, while GLUT 4 is present in 

insulin-sensitive tissue, skeletal tissue, adipose tissue, and the heart.  These transporters 

facilitate diffusion of the glucose into beta cells, which elevates the glucose 

concentration in the extracellular fluid.  This allows high concentrations of glucose to 

enter the cell and subsequently depolarize the membrane, which stimulates the influx of 
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calcium (Hocquette and Abe, 2000).  The influx of calcium is thought to activate the 

exocytosis of insulin containing secretory granules.  Humans tend to be less sensitive to 

insulin than cattle.  Humans need a concentration of 30 uIU/mL of insulin to reduce 

glucose production (Rizza et al., 1982), where cattle need 50-60 uIU/mL to reduce 

glucose production by 50% (Brockman, 1983).  As blood concentrations of insulin 

decline the receptors will no longer be bound and the transporters will be recycled back 

into the cytoplasm.  Some tissues, such as the brain and liver are not insulin dependent in 

their regulation of glucose uptake.  The second important effect of insulin is to stimulate 

the liver to store glucose as glycogen.  When blood glucose concentrations are too high, 

hepatocytes will immediately uptake the glucose absorbed from the circulation and store 

it as glycogen.   As glucose concentrations become too low, insulin will signal release of 

glucagon (Samols et al., 1972), which will in turn stimulate the breakdown of glycogen 

into glucose.  Insulin recognizes the concentration of glucose present (low or high) and 

works to store or utilize glucose in an effort to maintain homeostasis.   

 

Glucocorticoids and Glucoregulatory Mechanisms 

Cortisol is the predominate glucocorticoid in cattle and is an influential 

component in adjusting blood glucose concentrations.  Glucose homeostasis is 

imperative during a stress response since additional energy will be needed. As a result of 

altered blood glucose concentrations during a stress response, exaggerated insulin 

concentrations may be released (Munck et al., 1984).  The first to respond are the 

catecholamines and glucagon by inhibiting insulin-mediated glucose uptake as well as 
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increasing substrates for gluconeogenesis. Within minutes glucagon can increase glucose 

production by activating gluconeogenesis or glycogenolysis (Unger et al., 1962). 

Epinephrine‟s roll is more intricate as it can stimulate glucose production and limit its 

utilization.  Actions of epinephrine are mediated by alpha and beta adrenergic 

mechanisms and act in minutes (Rizza et al, 1980).  If stress is drawn out then 

glucocorticoids will assist the first responders in the regulation of other glucose 

mechanisms (Sapolsky et al., 2000).   Since insulin is the primary facilitator of cellular 

uptake of glucose, glucocorticoids reduce the number of insulin receptors in an effort to 

counteract the role of insulin.  It is thought this reduction in the uptake of glucose into 

adipose, lymphoid, and skin tissues, caused by the glucocorticoids, leads to catabolism in 

those tissues (Munck, 1971).  Increases in blood concentrations would therefore result 

from glucocorticoid induced gluconeogenesis. 

Glucocorticoids have two roles: activate enzymes needed to induce 

gluconeogenesis (Pilkis and Granner, 1992) and to increase availability of the substrates 

needed for gluconeogenesis through lipolysis and proteolysis (Exton, 1987).  With the 

assistance of glucocorticoids, catecholamines can induce triglyceride hydrolysis, 

increasing the concentrations of nonesterified fatty acids (Dallman et al., 1993).  

Glucocorticoids have also been discovered to increase utilization of amino acids for 

carbohydrate production, causing increased urea production (Long et al., 1940). 

As an outcome of these actions a stressed animal is likely to not perform as well 

due to compromised growth.  When an animal is subjected to stress, maintenance for 

survival becomes a priority, outweighing the need for growth or development.  By 
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blocking the absorption of glucose into certain cell types it ensures that energy is 

available and not being used for lower priority processes.  The length of the stress period 

dictates how much trauma the animal will sustain.  Significant losses of lipid and protein 

stores can occur during long periods of distress (Sapolsky et al., 2000). This can be 

detrimental to growth, in addition to the fact that the mechanisms of growth will be 

inhibited during periods of stress.  Periods of stress are not favorable to maintain growth, 

reproduction, lactation, or development, as a result of the lack of energy and 

physiological mechanisms necessary to maintain homeostasis. 

 

Glucose Tolerance Test 

 Glucose tolerance tests are designed to monitor the insulin response after 

administration of exogenous glucose.  An increase in insulin secretion should cause an 

influx of glucose into the animal‟s tissues (Abdelmannan et al., 2010).  Insulin secretion 

rate is a sigmoidal function of glucose in plasma (Lemosquet and Faverdin, 2001).  To 

conduct a glucose tolerance test, glucose is infused and blood samples are taken at 

distinct time points over a specific period of time.  The results of the test will determine 

the relationships between glucose and insulin that are produced and the time that insulin 

takes to clear glucose from the system.  Glucose and insulin concentrations make it 

possible to calculate glucose half life, the time to glucose half life, the peak insulin 

concentration, and time to peak insulin.  This information proves valuable for 

understanding the differences in insulin sensitivity through metabolic pathways.  In order 
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to observe the ratio of insulin to glucose at a given time point, a baseline sample must be 

taken after 12 hours of fasting and prior to the glucose tolerance test.   

 Glucose tolerance testing is most commonly used in humans to detect type-2 

diabetes, but has also made its way into the dairy cattle industy.  Insulin has a direct 

effect on the partitioning of nutrients that are vital for the synthesis of milk constituents 

between the mammary glands and other tissues.  Therefore, understanding the 

differences that nutrion and physiological states can play in altering milk quality and 

production are imperative to the industry (Lemosquet and Faverdin, 2001).  Having a test 

of glucoregulatory mechanisms has led dairy scientists to a better understanding of the 

role of glucose in many other areas as well, such as illness, dietary changes, medication, 

and exercise.   More specifically glucose tolerance testing has led to discoveries of 

metabolic disorders (Bossaert et al., 2008) during early lactation (Terao et al., 2010), and 

a better understanding of nutritional effects on milk production (Lohrenz et al., 2010).  

As of today there are no studies using glucose tolerance tests to examine the direct link 

between temperament and glucose tolerance.  Temperamental animals have greater 

concentrations of basal cortisol, which remain greater than calmer cattle when stressed 

(Café et al., 2011).  With this in mind it would be expected that more excitable cattle 

experience a higher peak in insulin concentration as cortisol rises.  Cortisol is a 

glucocorticoid and therefore blocks the absorption of glucose into tissues such as adipose 

and muscle, increasing the amount of glucose to be cleared from the circulation.  From 

this we hypothesize that temperamental cattle will have greater concentrations of insulin 

in response to infusion of an exogenous glucose source.  If true, this may lead to insight 
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into how feed is utilized in the calm or temperamental animal and explain why 

temperamental cattle have lower average daily gains.   

 

Insulinogenic Index 

Glucose tolerance testing was developed to test humans for risk of type-two 

diabetes.  The test however is useless without a quantitative way to assess the results.  

Therefore, the insulin and glucose concentrations collected throughout the glucose 

tolerance test are typically subjected to a ratio or index in order to determine the insulin 

sensitivity of the patient being tested.  There are multiple ratios and indexes that could be 

utilized, but the focus for this thesis will be on insulinogenic index.   

In 2001, Guerrero–Romero and Rodriguez-Moran tested the fasting insulin to 

glucose ratio to determine whether it was correlated with impaired glucose tolerance.  

This study was completed over a three yr time period utilizing adult humans.  Humans 

were fasted over night and then administered 75 grams of glucose orally, with blood 

samples collected at time 30 min and 130 min post ingestion.  For this study IIND was 

simply the ratio of insulin to glucose concentration present at the time of sample, 

numbers were not adjusted for baseline concentrations.  From this index we can 

determine the insulin sensitivity of the sampled patient.  This study demonstrated that 

high fasting insulin to glucose ratio is highly correlated to impaired glucose tolerance, 

which may lead to decreased glucose metabolism or type-2 diabetes (Guerrero-Romero 

and Rodriguez-Moran, 2001).   
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The other approach to insulinogenic index, as demonstrated by Abdelmannan et 

al. (2010) would be to use the insulin to glucose ratio at each sampling point, but only 

after removing the baseline concentrations of insulin and glucose.  Utilizing fasted, adult 

humans, a baseline sample was collected and then 75 grams of glucose was administered 

orally. Blood samples were then collected at 30, 60, 90, and 120 min post ingestion.  The 

baseline sample is taken prior to the glucose tolerance test and represents the basal 

concentrations for the specific patient.  The goal of this study was to determine the 

proper dosing and timing of dexamethasome as a stress test to indicate possible 

development of type-2 diabetes.  Due to small numbers and lack of testing within 

patients actually prone to type-2 diabetes further testing is needed (Abdelmannan et al., 

2010).   

The insulinogenic index is utilized to determine the sensitivity of insulin to an 

influx of glucose.  From this index you can characterize how likely a patient may be to 

the development of glucose metabolism disorders.  For the work in this thesis we decided 

to utilize the IIND that does not remove baseline concentrations.  This index will capture 

the whole response profile and take into account the differences between the cattle 

temperaments.   By removing baseline concentrations the IIND would have only showed 

the specific response of the animals and not accounted for basal differences.   

 

Feed:Gain Ratio  

 Traditionally, efficiency has been evaluated using the feed to gain ratio as 

presented by Brody (1945), which represents the amount of feed consumed relative to the 
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body weight gained.  An animal with a high F:G ratio requires more feed to put on a unit 

of weight as compared to an animal with a low F:G ratio.  It has been preferred over 

other methods because of its simplicity and minimal costs.  Over the years it has been 

used as a selection tool to improve feed efficiency, but further research has found that 

F:G ratio has flaws that could have a profound impact on beef cattle production.  

Animals with different intake and of different sizes can have the same F: G ratio and one 

animal may have several different F:G ratios depending on its stage of growth (Sainz and 

Paulino, 2004).  Composition of gain, growth rate and body size in growing cattle have 

all been found to be negatively correlated with F:G (Mrode et al., 1990; Koots et al., 

1994; Herd and Bishop, 2000; and Arthur et al., 2001b).  Over time F:G ratio has 

resulted in selecting for high growth rate and larger body size (Arthur et al., 2001a).  

This inevitably leads to larger framed cattle at maturity (Herd and Bishop, 2000).   Large 

framed cattle are undesirable in beef production systems, as they are far less efficient, 

requiring greater amounts of nutrients and increased energy maintenance requirements 

(Barlow, 1984).   

 

Residual Feed Intake  

 Residual feed intake, introduced by Koch et al. (1963), has been proposed as an 

alternative to F:G ratio.  To calculate RFI, linear regression is used to estimate feed 

intake from BW and average daily gain (Koch et al., 1963).  The predicted daily feed 

intake value is obtained by regressing daily dry matter intake on ADG and mid-test-

metabolic body weight.  RFI is then calculated as the difference in the actual feed intake 
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for an individual animal, compared to the predicted feed intake (may be above or below), 

which is based on the animal‟s size and growth rate (Archer et al., 1999).  Unlike F:G 

ratio, RFI is phenotypically independent of growth rate and body weight (Kennedy et al., 

1993; Herd and Bishop, 2000; Arthur and Herd, 2005), leading to less alterations in 

mature body size and feed consumption (Koch et al., 1963; Nkrumah, 2004; Arthur, 

2001b, 2004).  Animals that eat more than predicted will have a positive RFI and are said 

to be more inefficient than other animals in their cohort.  Animals that eat less than 

predicted are identified as more efficient animals, with a negative RFI value.   Lancaster 

et al. (2005) observed that high RFI calves consumed 15 % more feed than their low RFI 

counterparts when calves were separated by ± 0.5 standard deviation from the mean.  

Similarly, Bingham et al. (2009) reported that high RFI heifers (Brangus) consumed 

22.5% more feed than the lower RFI heifers when separated based on ± 1 standard 

deviation from the mean.  RFI is not a direct measurement of feed efficiency.  It does 

imply that it is a function of feed consumed, body weight gain, and average weight 

within a cohort, throughout the course of a trial.   

There are a number of reasons why RFI has become favored over F:G.  One 

major point is that selecting for negative RFI (efficient animals) will increase feed 

efficiency in successive progeny without an impact on mature body size or feed 

consumption (Koch et al., 1963).  RFI has a strong phenotypic and genotypic genetic 

correlations at 0.40 and 0.98, respectively (Archer et al., 2002).  Other research has 

shown that heritability estimates RFI range from 0.16 (Herd and Bishop, 2000) to 0.47 

(Lancaster et al., 2009).  This means producers may be able to reduce feed intake and 
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sustain the same body size, while still improving the efficiency of a herd by selecting for 

negative RFI (Herd et al., 2003).  The key to RFI becoming a selection tool lies in 

determining whether it is heritable and repeatable.  If neither of these is true than there 

will be little genetic progress and RFI will not be a tool to predict feed efficiency.  As of 

now RFI is not widely used in cattle production due to the large cost and time needed to 

complete the feeding period.   

 

Evaluating Cattle for RFI  

Breedtypes, Sex, Age 

 The concept of residual feed intake has been in existence for almost 60 years now 

but as of yet there is not a standard calculation (Knott et al., 2008).  There has been 

progress in determining the proper variables to consider when forming a cohort of 

animals for determining RFI.   In cattle varying in sex, age, and breed type there will be 

differing total energy requirements for maintenance (NRC, 2000).  Significant 

differences in RFI for divergent breedtypes were reported (Schenkel et al., 2004; Riley et 

al., 2007) demonstrating that comparing across breeds is not appropriate.  Bos indicus 

and Bos indicus x Bos taurus breeds will have 10% and 5%, respectively, lower 

maintenance requirements than British breeds (Carstens et al., 1989).  Brahman 

influenced cattle that were compared to Angus influenced cattle in a sub-tropical 

environment had a tendency to be more efficient than the Angus influenced cattle (Elzo 

et al., 2009). 
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 Multiple studies conducted over many years established that cattle of different 

gender will perform unequally (Brinks et al., 1961; Bogart et al., 1963; Wilson et al., 

1969).  As concluded by NRC (2000), bulls will typically have maintenance 

requirements that are 15% greater than those steers or heifers that are of the same 

genotype.  Elzo et al. (2009) detected that heifers are less efficient than steers and that 

steers are less efficient than bulls (Nkrumah et al., 2004).   

 When comparing animals of different ages it is evident that maturity patterns may 

produce variation between animals.  Carstens et al. (1989) reported that cattle from age 9 

– 20 months of age had an 8% decrease in required metabolizable energy required for 

maintenance.  Calves studied in the same cohorts, at two different ages had only 

moderate correlations (r = 0.55) (Crews et al., 2003) and (r = 0.59) (Johnston, 2007) from 

post-weaning to feedlot.  Originally it was thought that the incorporation of metabolic 

BW in the RFI model would account for differences in age and breedtypes (Arthur, 

2001b), but after further analysis multiple studies have proved the theory wrong.  In 

order to collect the most precise RFI value, cattle of the same breedtype, age, and sex 

should be used when evaluating RFI (Herd and Arthur, 2009). 

 

Physiological Status and Production and Production Level 

 As beef cattle physiological status changes, then also their energy requirements 

should change due to the energy constraints at that time.  Maturing cattle go through 

multiple states such as: growth, maintenance, gestation, lactation.  In order to be 

productive at all of these stages it is crucial to have positive energy maintenance. 
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 Lactating cows have maintenance requirements that are 20 % greater than a non-

lactating, mature cow (NRC, 2000).   Crossbred beef cattle of the same body size and 

growth rate were categorized into low, medium, and high milk production levels, those 

cattle characterized as low required 12 % less energy per unit of metabolic weight than 

the other cattle to maintain their weight through gestation and lactation (Montano- 

Bermudez and Nielsen, 1990).  Additionally, they found that milk production differences 

accounted for 23 % of the variation in maintenance requirements and on average an 18% 

increase in maintenance requirements from gestation to lactation.  It is apparent that even 

in beef cattle, lactation status can play a large role in the maintenance requirements of a 

mature female.   

 For cattle transitioning between feeding phases, the net energy required for an 

animal to gain weight is conditional to the proportion of protein and fat deposited within 

the tissue.  Lean protein and adipose tissue deposition comes at different energy costs 

due to their diverse chemical composition (NRC, 2000).  Phases such as growing and 

finishing differ in protein and fat deposition and so the energy requirements therefore 

differ between the two phases. 

 

Diet 

 A concern with using RFI evaluation is the lack of a standard protocol, 

particularly lack of a standard diet.  Prior research demonstrated that the type and amount 

of feed may impact the results of an RFI test.  Cattle can either have ad libitum 

availability to feed, which allows them to express appetite or be limit-fed, basically 
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eradicating the influence of appetite.  The majority of RFI studies conducted allow ad 

libitum access to the diet; however, the amount fed should coincide with the production 

goals of the animals being fed.  It seems appropriate to put animals in a feedlot setting on 

ad libitum feed availability, but this does not reflect the true feed efficiency of heifers 

being retained as breeding females.  The argument has been made that RFI determined in 

a feedlot setting should be relevant to a cowherd (Arthur et al., 2001a; Arthur and Herd, 

2005); but minimal studies have tested this theory.   Herd et al. (1998) and Meyer et al. 

(2008) found similar results when comparing females evaluated for RFI on a high 

concentrate diet and then evaluated again as cows on pasture.  In both studies no 

difference was found between the dry matter intake of cows previously determined 

efficient or inefficient.   

When testing the effect of type of feed, Fan et al. (1995) observed a significant 

difference in RFI values calculated for bulls on two differing diets (concentrate vs. 

roughage).  Angus and Hereford bulls that were fed a high roughage diet had a negative 

RFI relative to bulls fed a high concentrate diet (-1.67 ± 0.12 vs. 0.36 ± 0.12 kg/d).  

Conversely, Goonewardene et al. (2004) concluded in crossbred steers that as the 

proportion of roughage increased RFI became more positive and as the proportion of 

grain was increased, RFI decreased.  Durunna et al. (2011) used crossbred steers to study 

the effect of diet type.  Treatment group one was only fed a finishing diet, treatment two 

only a growing diet and treatment three was fed the growing diet followed by the 

finishing diet.  The only calves to maintain their RFI were the calves on the finishing 

diet.  The other two treatment groups did not maintain the same RFI with calves on the 
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diet changing treatment having the greatest number of calves switching RFI (efficient or 

inefficient).  These results suggest that animals may perform differently depending on 

the diet provided. 

 

Estimated Feed Intake 

 There are currently two methods used to estimate feed intake in cattle.  The 

original method as described by Koch et al.  (1963) which uses linear regression of actual 

feed intake on growth rate and mid-test BW.  Later, this model was modified to use 

metabolic BW instead of actual BW (Arthur et al., 1996; Knott et al, 2008).  This 

modification accounts for the wide discrepancy of maintenance requirements that have 

been reported between animals, even when they are at similar production levels 

(Montano-Bermudez and Nielsen, 1990).  

 The second method of determining expected feed intake for RFI utilizes 

equations to calculate expected feed intake rather than using the actual data.  BW and 

growth rate using NRC requirements are utilized to estimate the net energy requirements 

for maintenance and growth (Fan et al., 1995).  Nutrient content of the feed provided is 

used to determine the expected feed intake for each individual animal.  After further 

scrutiny, Fan et al. (1995) observed correlations between RFI and ADG of (r = -0.58) in 

Angus bulls and (r = -0.50) in Hereford bulls.  In the same study, negative correlations 

were found between RFI and yearling weight of Angus (r = -0.53) and Hereford (r = -

0.44) bulls.  After examining this model, Knott et al. (2008) concluded that this model 

overestimated feed consumption in 6 month old sheep and underestimated intake in 13 
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month old sheep.  From these conclusions it appears to be more appropriate to use the 

linear regression model to estimate feed intake for RFI determination.   

 

Test Duration 

 In order to determine RFI, animals must be fed for a period of days.   This 

feeding period requires a large expense for feed and as a result would be most ideal if the 

duration was as short as possible.  Initially, it was suggested that a 168 day feeding trial 

was needed to accurately assess RFI in cattle (Koch et al., 1963).  From there the feeding 

period was reduced to 140 days (McPeake et al., 1986) and then 112 days (Kemp, 1990; 

Brown et al., 1991).  In order to find the optimal number of days to feed, Archer et al.   

(1997) did extensive testing in Angus, Hereford, and Shorthorn heifers and bulls.  The 

number of days was gradually increased in each feeding trial from 7 to 119 days.  At the 

conclusion of the trial it was determined that the variation between RFI was minute after 

day 70.  For that reason, a 70 day feeding period was deemed an adequate amount of 

time to accurately assess RFI.  The downfall to this study is that only British breeds were 

incorporated and Robinson et al. (1997) documented that Bos indicus and Bos taurus 

cattle managed in the same feedlot setting had diverse feeding behaviors.  This 

influenced Archer and Bergh, (2000) to examine what are sufficient days on feed for 

Angus, Hereford, Simmental, Afrikaner, and Bonsmara young bulls.  It was concluded 

that a 70 day feeding period was also ample for breeds of cattle other than British.  These 

studies suggest that a 70 day feeding trial is the shortest and most accurate duration to 

determine RFI. 
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Season 

 There have been few studies investigating the effect of seasonality on feed 

efficiency in beef cattle.  Mujibi et al. (2010) examined the differences in performance 

and feed efficiency in crossbred steers tested in either fall and winter or winter and spring 

for three consecutive years.  Correlations between feed intake and air temperature, 

relative humidity, solar radiation, and wind speed observed in the fall/winter were: -0.26, 

0.23, 0.30, -0.14 and 0.31, 0.04, 0.14, and 0.16 for the winter/ spring, respectively 

(Mujibi et al., 2010).  The nature and magnitude of seasonality were significantly (P < 

0.05) different.  The authors still suggested that season possibly affects feed intake and 

feed efficiency and noted that more data was needed to make a conclusion. 

 As season and temperature changes, beef cattle will have altered performance and 

energy expenditures (NRC, 2000).  When cattle begin to reach critical thresholds they 

will no longer maintain their thermoneutral zone and both feed intake and production 

will decline with the upper threshold or increase when the upper threshold is met.  

Animals exposed to extreme heat will have to work harder to dissipate heat and animals 

at critically low temperatures will increase metabolism to increase body temperature, in 

either case maintenance energy requirements will increase (NRC, 2000).  Therefore it 

seems reasonable that the season in which cattle are tested could alter feed efficiency 

results.    
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Sources of Variation of RFI  

 In order for RFI to be used economically as a tool to determine feed efficiency an 

indirect marker is needed that will eliminate the need for costly and lengthy trials.  By 

understanding the biological mechanisms that influence feed efficiency, it may be 

possible to decipher why feed consumption differs among cattle, accounting for 

maintenance and production requirements.  Discovering the traits that are responsible for 

phenotypic expression of feed efficiency could lead to the identification of indirect 

markers of feed efficiency.  Historically, study of other feed efficiency traits has 

suggested that there is not a single mechanism controlling the phenotypic feed efficiency 

(Oddy, 1999).  This has led many scientists to investigate numerous biological 

mechanisms for their role in the expression of feed efficiency.   

 

Composition of Gain 

As cattle mature the amount of fat deposition increases, while long bone growth 

and protein accrual decrease.  This means that slower maturing cattle will deposit less fat 

by a given age than the faster maturing animals.  In the long run those faster maturing 

cattle will require more energy to deposit fat (Trenkle and Willham, 1977) and will have 

decreased efficiency as they fatten due to the higher energetic costs of depositing adipose 

tissue (Gregory et al., 1962).  RFI has been positively correlated with gain in 12
th

 rib 

back fat thickness (r = 0.30); P < 0.05) and final 12
th

 rib back fat thickness (r = 0.20; P < 

0.05; Lancaster et al., 2009) and gain in empty body fat (r = 0.22; P < 0.01; Basarab et 

al., 2003).  Moderate, negative correlations between RFI and lean carcass content (r = -
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0.22; P < 0.05) and lean growth rate (r = -0.33; P < 0.05) suggests that efficient (low 

RFI) cattle have a larger percentage of lean muscle than their inefficient counterparts 

(Herd and Bishop, 2000).  Low RFI steers have more bone and protein and less fat 

content than the high RFI steers, this could imply a difference in maturity patterns of 

cattle with divergent RFI (Richardson et al., 2001).  Despite these observations body 

compositions has only been estimated to account for 5 (Richardson and Herd, 2004) to 9 

(Lancaster et al., 2009) percent of the total variation in RFI. 

 

Feeding Behavior 

 Animals in a healthy state generally maintain the same feeding behavior 

(Nkrumah et al., 2007), however the behavior of cattle fed in the same environment has 

been shown to be extremely inconsistent (Robinson et al., 1997; Gibb et al., 1998).  For 

that reason it is assumed that the deviation in feeding behavior between animals may 

potentially be a source of variation in observed RFI.  Animals that are more inefficient 

have been reported to have more frequent eating bouts per day (Golden et al., 2008), 

head-down time, feed duration, and increased daily pedometer counts (Richardson et al., 

2001; Nkrumah et al., 2007; Lancaster et al., 2009). Growing and finishing steers (with 

the same ADG) that had low RFI consumed 19-22% less feed than growing and finishing 

steers with high RFI (Brown, 2005).  Hafla (2011) found that heifers with low RFI had 

lower DMI (9.00 vs. 11.6 ± 0.54 kg/d; P < 0.01) when compared to heifers with high 

RFI; however, initial BW and ADG were similar during the trial.  This would suggest 

that high RFI cattle likely spend more time eating and more time walking to and from the 
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bunk.  The increased physical activities in high RFI cattle require an energetic cost and 

therefore may partially explain reduced efficiency.  Cohorts should be given the same 

basic feeding conditions in order to reduce energy loss due to fighting for bunk space or 

locomotion.   This could also be a major factor in ad libitum feeding versus limit-fed 

diets.  With limit-fed diets animals are more likely to eat in one setting, decreasing the 

effect of eating behavior on energy expenditure.   

 

Feed Digestibility 

 Not all animals have the same abilities to digest and absorb nutrients efficiently, a 

large impetus for the establishment of RFI to select for those that are more efficient.  

Multiple studies have reported that high RFI cattle have increased daily feed intake, as 

compared to low RFI cattle.  Increased daily feed consumption, increases ruminal 

passage rate, and decreases the amount of time feed remains in the rumen for digestion 

(Grovum and Hecker, 1973).  This led researchers to believe that the increased feed 

intake of high RFI cattle may actually be result in reduced digestion and nutrient 

absorption.  High RFI steers recovered 10% less metabolizable energy than low RFI 

steers and were also found to have a negative correlation with metabolizable energy (r = 

-0.44; P < 0.05; Nkrumah et al., 2006).  Low RFI heifers had a higher dry matter (731 vs. 

705 ± 12 g/kg dry matter; P < 0.05) and crude protein (691 vs.  657 ± 13 g/kg dry matter 

digestibility than high RFI heifers.  This coincides with the trend (P < 0.10) that high RFI 

cattle have decreased digestibility compared to low RFI cattle (Richardson et al., 1996).  

The study only reported a 1% difference in digestibility between RFI classes, but the 
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authors thought that this small difference could account for as much as 14% of the 

detected differences in feed efficiency. 

 

Indirect Measures of RFI 

 The testing process associated with RFI is extremely costly and time consuming 

due to the fact that measuring individual feed intake is necessary to calculate RFI 

accurately.  This testing process is estimated to cost between $150 and $450 per head on 

a 70-d test period.  Multiple groups have tried to group-feed cattle and derive pen 

estimates of feed efficiency (Guiroy et al., 2001; Tedeschi et al., 2006; Williams et al., 

2006).  These estimates are then subjected to a mathematical model that weakens the 

inherent differences in intake between the pen mates (Moore et al., 2009).  As a result 

researchers have refocused on trying to find an indirect measure of RFI that would 

reduce the costs associated with RFI assessment.   

 

Insulin Like Growth Factor-1 

 Insulin like growth factor-I, is a peptide hormone related to growth and 

development that is produced by the liver in response to growth hormone released from 

the anterior pituitary.  Its primary role is to travel to various tissues and stimulate glucose 

metabolism, protein synthesis and growth (Baxter, 1986).  IGF-I is also produced in the 

lungs, kidneys, heart, stomach, gonads, muscle, and bone (Daftary and Gore, 2005).  

Circulating concentrations of IGF-I are easily quantifiable and heritable (Herd et al., 

1995), as well as correlated with growth traits in cattle (Bishop et al., 1989; Davis and 



 

 

34 

Simmen, 1997).  Due to its role in growth and development and ease of measuring, it has 

been proposed that IGF-I could possibly be an indirect measure of feed efficiency in 

cattle. 

 IGF-I concentrations in Bos taurus cattle were found to be positively correlated 

with RFI (Johnston et al., 2002).  In growing young animals, plasma IGF-I 

concentrations were reported to be phenotypically positively correlated and positively 

genetically correlated (r = 0.56) (Moore et al., 2005).  However, further work in Brangus 

heifers, found no correlation between RFI and IGF-I (Lancaster, 2007).  Similarly, Kelly 

et al. (2010) found no correlation between RFI and plasma IGF-I in yearling beef heifers.  

From this study they hypothesized that the inconsistency may be due to the differences in 

age and diets between the studies.  Younger animals may have a greater rate of lean 

tissue gain and reduced carcass fattening, hindering the IGF-I concentrations in 

circulation.  Caldwell (2009) also reported no correlation between IGF-I and RFI in 

various purebred and crossbred cattle.  From these studies there is no apparent 

correlation between IGF-I and RFI.  Circulating concentrations of IGF-I are not 

consistent enough between ages and breeds to warrant their use in feed efficiency 

detection.   

 

Genetic Markers 

 Genetic indicators have been found that are correlated between RFI and feed 

efficiency traits.  In a whole-genome study of feedlot cattle of varying breedtypes and 

RFI values it was discovered that 161 single nucleotide polymorphisms are significantly 
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related to RFI (Barendse et al., 2007).  It may be possible that genetic markers are more 

accurate than circulating analytes; 20 of the most significant SNPs accounted for 76% of 

the genetic variation in RFI (Moore et al., 2009).  IGENITY® (Merial Limited, Duluth, 

GA) and GeneSTAR® (Pfizer Animal Genetics, 2009), are genetic tests that are now 

available to identify feed efficiency in individual animals.  According to their reports 

genetic correlations between the markers and RFI existed, but only 15% of the variation 

in feed intake is accounted for by these tests.   An outside party (National Beef Cattle 

Evaluation Consortium, 2009) tested GeneSTAR® and only found a phenotypic RFI 

correlation of (r = 0.40; P = 0.02) in Bos taurus cattle and no correlation (P = 0.55) in 

Bos indicus cattle.  With these varying results, caution should be exercised when 

deciding how to utilize these tests and results.   

  

Estimated Breeding Values 

 Estimated breeding values are statistical predictions of the relative genetic value 

of a particular animal of a specific trait.  EBVs are used by producers to more accurately 

select animals for their breeding herds.  For nearly ten years, EBVs have been published 

for RFI.  They were developed based on within and across herd comparisons from 

individual RFI feeding trials (Sherman et al., 2009). The accuracy of these tests looks 

promising as Richardson et al. (2004) reported that Angus steers had a positive 

correlation with their respective sire‟s RFI EBV (r = 0.35; P < 0.05).  More work is 

needed and producers should be sure to always make breeding decisions based on a 

multiple trait selection index, never a single trait selection (Crews et al., 2005).  
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Repeatability of RFI from Post-Weaning Heifer to Mature Cows 

 Despite the fact that there are substantial costs with cow maintenance related to 

overall costs of the production system (Montano-Bermudez and Nielsen, 1990), few 

studies have assessed the repeatability of RFI from the post weaning heifer to mature 

cow.   An essential issue is whether RFI measured early in an animal‟s life represents the 

same RFI as the animal matures.  The answer to this question could alter the significance 

of RFI and its‟ power to determine feed efficiency accurately in cattle.   

 Of the minimal studies focusing on RFI repeatability, most have been focused on 

younger animals, at two different feeding periods.  Durunna et al. (2011) used three 

groups of steers to examine repeatability over age and diet type.  The calves were fed in 

two 70 day trials with RFI calculated at the completion of each trial.  The first treatment 

group was fed only a finisher diet, the second only a grower diet, and the third was fed 

the grower diet first and then the finisher diet.  Calves on the finisher diet were the only 

group that maintained their RFI; the other two treatments did not maintain the same RFI 

classifications, with the calves on two different diets having the greatest number of 

calves changing efficiency classifications (Durunna et al., 2011).   Crossbred heifers with 

RFI determined post-weaning were reevaluated as mature cows and had a moderate 

correlation (r = 0.53) of RFI phenotypes between evaluations, although no correlation of 

the RFI values from the two evaluations was detected (Minton, 2010).  A very recent 

study by Loyd, (2011) found similar conclusions between heifers of divergent breeds, 

with RFI values recorded post-weaning, and then re-evaluated as lactating cows.  Second 

parity cow/calf pairs were moved into a Growsafe system and fed ad libitum for 70 d for 
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RFI evaluation.   The cow RFI values were then compared to their heifer RFI values and 

ranks (low, medium, high).  The relationship between RFI of the heifer and as a lactating 

cow was very lowly correlated (r = 0.19) and there was also no relationship between 

heifer RFI rank and cow RFI rank (r = 0.02).  There was minimal correlation between 

heifer RFI rank and cow RFI (r = 0.23) and a low correlation between heifer RFI and 

cow RFI rank (r = 0.15).  From these observations it was concluded that selecting for the 

most feed efficient heifers, may not result in the same level of efficiency when they 

become lactating females.  This follows Archer et al. (1998) who stated that cattle 

efficiency during post-weaning may be altered later in maturity due to physiological 

states, such as gestation and lactation that would require more energy.   

Alternatively, Herd et al. (1998) noted that it was possible to have a phenotypic 

connection between RFI determined in confinement as post-weaned heifers and their 

performance on pasture as mature Bos taurus cows.  Pre-pubertal crossbred heifers re-

evaluated post-pubertally were found to have correlation between measurements (r = 

0.48) with 32.5 % of the heifers changing their RFI phenotype (Loyd, 2009).  Crews et 

al. (2003) reported that one cohort of steers had a correlation (r = 0.55) between RFI 

determinations during growing and finishing phases.  A similar correlation (r = 0.59) was 

found between post-weaning RFI and feedlot RFI in a single group of calves (Johnston, 

2007).   More recently, heifers evaluated first during a growing phase and then during a 

finishing phase were found to have a greater association of RFI than F:G between phases 

(Kelly et al., 2010).   Just over half (54%) of the heifer‟s RFI values re-ranked varied by 

0.5 a standard deviation and just 24% changed by a full standard deviation (Kelly et al., 
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2010).  From these conclusions we proposed to examine the repeatability of RFI from 

post-weaning heifers to mature cows, in an effort to determine if RFI can remain 

unchanged throughout the process of maturation. 
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CHAPTER II 

EFFECT OF TEMPERAMENT ON RESPONSE TO CANNULATION AND 

GLUCOSE CHALLENGE IN CROSSBRED BEEF HEIFERS 

 

Introduction 

 The term “temperament” is used to characterize an animal‟s response to being 

handled by a human (Burrow, 1997).  Cattle that demonstrate more excitable 

temperaments have been found to have a lower ADG (Voisinet et al., 1997a; Fell et al., 

1999), lower dressing percentage, body condition scores (Petherick et al., 2002), and a 

higher incidence of dark cutters (Voisinet et al., 1997b).  The lower performance of these 

animals is complex, but the role of cortisol in energy metabolism may give insight into 

differences between temperamental and calm animals.    

 Human-animal interaction can produce fear and as a result the animal becomes 

stressed.  This stress will in turn activate the HPA axis triggering a cascade of endocrine 

mediated events that will eventually lead to the release of a glucocorticoid.  In humans 

and domestic livestock, the glucocorticoid released in response to stress is cortisol.  As a 

glucocorticoid, cortisol plays a key part in metabolism due to its ability to influence 

glucose synthesis and use.  HPA axis functional characteristics are different between 

cattle of diverse temperaments (Curley et al., 2008).  Cattle that are more excitable have 

greater concentrations of stress hormones (such as cortisol and epinephrine) which are 

correlated with temperament (King et al., 2006; Curley et al., 2006; 2008, Burdick et al., 

2010).  Through the use of glucose tolerance testing it is possible to assess response of 
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insulin to an infusion of an exogenous source of glucose.  This test could be exploited to 

help understand the utilization of glucose in temperamental versus calm cattle, giving 

insight into the allocation of energy, and may partially explain why temperamental 

animals do not perform as well as calm animals.  The objective of this study was to 

determine the affect of temperament on blood glucose and insulin following a stressor 

and a subsequent glucose challenge. 

 

Materials and Methods 

Animals and Experimental Design 

Angus crossbred heifers (n = 37) at the Brown Loam Experiment Station in 

Raymond, MS were weighed (mean weight = 244.33 kg), pen scored, and exit velocity 

recorded at weaning (mean age = 10 mo), June 8, 2010.   All processes required to 

complete this project were approved by the Texas A&M University IACUC. Pen scores 

were assessed by an experienced observer.  Three to five animals were placed in a pen 

and assigned pen scores from 1 to 5 according to their reaction to the observer.  Exit 

velocity was obtained as they were released from the chute.  Exit velocity is the rate 

(m/s) that the calf travels 1.83 m (Burrow et al., 1988).  Infrared beams and timers were 

utilized to record the time to travel this distance.  The exit velocity and pen score were 

then averaged for each animal to generate their temperament score.  The 6 most 

temperamental and 6 most calm of the weaning group were utilized for the glucose 

tolerance test.  The mean temperament score of the 6 most calm and 6 most 

temperamental were (1.77 ± 0.17) (4.37 ± 0.17; P < 0.0001) (Table 2.1), respectively.   
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In order to incorporate all heifers (n = 12) the glucose challenge took place over 

the span of two days, July 28 & 29, 2010, with six animals each day.  Animals were 

randomly assigned to a day, with three calm and three temperamental calves on each of 

the two days.  Each night the calves to be glucose tolerance tested the next morning had 

access to water, but were fasted for 12 h prior to cannulation.   

 

Glucose Tolerance Testing 

Day one, July 28, 2010, (n = 6) heifers were fitted with jugular cannulas to allow 

for blood collection.  At each sampling one 10 mL EDTA coated Vacutainer® tube 

(366643, BD Biosciences; Franklin Lakes, NJ) and one 10 mL no additive Vacutainer® 

tube (366430, BD Biosciences; Franklin Lakes, NJ) for serum was collected for each 

animal.  Pre-challenge blood samples that were taken: initial (as soon as they were 

caught in the chute), jugular (when the jugular was punctured), and test (as the cannula 

Table 2.1. Weaning characteristics of crossbred heifers (n = 12) utilized for GTT. 

Variable                     Temperament       P- Value 

    Calm Temperamental   

Weaning Weight (kg) 263.84 ± 12.14 248.57 ± 12.14 0.3946 

Exit Velocity (m/s) 1.36 ± 0.25 4.56 ± 0.25 <0.0001 

Pen Score 2.17 ± 0.17 4.17 ± 0.17 <0.0001 

Temperament Score 1.77 ± 0.17 4.37 ± 0.17 <0.0001 
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was checked for functionality).  The average time elapsed from the initial sample to the 

test sample was approximately 10 minutes.  To insert the cannula for blood collection an 

area over the jugular vein was clipped and prepped.  All cannula materials were sterilized 

prior to use by gas sterilization.  After donning sterile gloves, a sterile 14-gauge needle 

was inserted into the jugular vein.  Approximately 15 to 20 cm of a 1.0 m length of tygon 

tubing (0.10 cm i.d., 0.18 cm o.d.) was passed through the needle and into the jugular 

vein.   The spare tubing was secured to the heifer‟s neck using glue, adhesive tape, and 

vet wrap.  An 18-gauge needle with a 10 mL syringe was used to plug the end of the 

tubing.   Prior to capping, the line was flushed with a heparin solution (1 IU/mL) to 

maintain patency of the cannula.  After cannulation each animal was placed in an 

individual stall.  At the completion of the 6
th

 calf, the heifers were allowed a 1.5 h rest 

period.  Blood samples were collected at 30, 60, 90 min relative to the completion of 

cannulation.  After the rest period of 2 h, a blood sample was collected at -5 and 0 min 

relative to glucose infusion.  After the sample was collected at time 0 min, a 50% 

dextrose solution was infused at 0.5 mL/kg BW via the jugular cannula.  Time 0 was 

used as a baseline concentration of cortisol, glucose, and insulin.  Following infusion 

blood samples were collected at 10, 15, 20, 30, 40, 60, 80, 100, 120, 140, 160 and 180 

min relative to glucose infusion.  Following collection at each time point an equivalent 

volume (10 mL) of sterile saline was replaced via the cannula, followed by heparinized 

saline (5 mL) to keep the cannula patent.  At completion of the glucose challenge 

cannulas were removed and heifers were returned to their original pens.  The next day, 
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July 29, 2010, the remaining six heifers were cannulated, rested, challenged, and sampled 

following the same protocol as the day before.   

 

Blood Samples and Analysis 

 Blood samples were centrifuged at 2000 X g for 25 min at 4º C to harvest plasma 

or serum. Tubes coated with EDTA were centrifuged within 30 min of collection to yield 

plasma and serum tubes were allowed to clot @ 4º C overnight before centrifugation.   

Plasma and serum samples were aliquoted into 12 X 75 mm plastic culture tubes and 

stored at -20º C.   Plasma samples were removed from storage and assayed for 

concentrations of glucose and insulin.  Serum samples were removed from storage and 

assayed for concentrations of cortisol. 

 

Cortisol RIA 

Concentrations of cortisol were determined by radioimmunoassay Coat-A-Count 

kit which is commercially available (Siemens Healthcare Diagnostic, Los Angeles, 

California).   Unknown concentrations of cortisol were calculated using Assay Zap 

software (Biosoft, Cambridge, UK) using counts per minute obtained from a Cobra II 

auto-gamma-counter (Perkin Elmer, Waltham, MA).  All cortisol samples were analyzed 

in a single assay and the inter-assay and intra-assay CV was 13.11% and 6.44%, 

respectively. 
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Glucose Colorimetric Assay 

 Concentrations of glucose were determined by the manual protocol of the 

commercially available Autokit Glucose (Wako Chemical USA, Inc., Richmond, VA).  

All glucose samples were analyzed using a single assay and the intra-assay CV was 

 3.00 %.   

 

Insulin RIA  

Concentrations of insulin were determined by radioimmunoassay Coat-A-Count 

kit that is commercially available (Siemens Healthcare Diagnostic, Los Angeles, 

California).   Unknown concentrations of insulin were calculated using Assay Zap 

software (Biosoft, Cambridge, UK) using counts per minute obtained from a Cobra II 

auto-gamma-counter (Perkin Elmer, Waltham, MA).  Inter-assay and intra-assay CV 

were 8.68% and 8.49%, respectively.   

 

Statistical Analysis 

Repeated measures ANOVA were conducted using the MIXED procedures of 

SAS (2002) for analysis of cortisol, insulin, and glucose concentrations.   Fixed effects of 

interest were temperament group, time, and their interaction.  Animal was the random 

effect.  Insulinogenic index was calculated by dividing the concentration of insulin by the 

concentration of glucose at each time point a sample was collected.   Insulinogenic index 
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was analyzed as repeated measures using the MIXED procedure of SAS (2002) using the 

same fixed and random effects.  Time to peak concentration of insulin, peak 

concentration of insulin, half-life concentration, and time to glucose half-life 

concentration were evaluated using the GLM procedures of SAS (2002). 

 

Results 

Pre-Challenge Period 

Initial cortisol samples were higher in temperamental heifers than calm heifers 

52.44 ± 7.42 versus 41.67 ± 8.13, respectively.  During the pre-challenge (cannulation) 

period temperamental heifers had numerically higher concentrations of cortisol, which 

remained elevated over the course of the cannulation period (Figure 2.1).  

Temperamental heifers had greater (P = 0.0496) concentrations of insulin (Figure 2.2) 

and a strong tendency to have greater concentrations of glucose (P = 0.0517) (Figure 

2.3).  Time of sample was significant for cortisol (P < 0.0001), glucose (P = 0.0001), and 

insulin (P = 0.0123).  There was no significant time by temperament interaction for 

cortisol or insulin, but there was for glucose (P = 0.0324) during the pre-challenge 

period. 
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Figure 2.1.  Cortisol concentrations over the course of the pre-challenge period 

(cannulation) in calm (grey) or temperamental (black) crossbred heifers.  Temperament 

effect (P = 0.1675), time effect (P < 0.0001), and temperament x time effect (P = 

0.2112).  Mean SEM (calm) = 7.691; (temperamental) = 7.02.   

 

 

 

 



 

 

47 

 

Figure 2.2.  Insulin concentrations over the course of the pre-challenge period 

(cannulation) in calm (grey) or temperamental (black) crossbred heifers.  Temperament 

effect (P = 0.0496), time effect (P = 0.0123), temperament by time effect (P = 0.2153).  

Mean SEM (calm) = 1.790; (temperamental) = 1.64. 
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Figure 2.3.  Glucose concentration over the course of the pre-challenge period 

(cannulation) in calm (grey) or temperamental (black) crossbred heifers.  Temperament 

effect (P = 0.0517), time effect (P < 0.0001), temperament x time effect (P = 0.0324).  

Mean SEM (calm) = 16.915; (temperamental) = 15.94. 
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Challenge Period 

Heifers that were more temperamental tended to have higher concentrations of 

cortisol (P = 0.0560) throughout the glucose challenge (Figure 2.4).  There was no 

difference in glucose concentrations between temperaments (Figure 2.5); however, 

temperamental heifers had greater (P = 0.0485) glucose half-life concentrations.  

Glucose half-life concentrations (mg/dL) for calm and temperamental heifers were 

108.09 ± 5.29 and 124.91 ± 5.29, respectively (Table 2.2).  Calm heifers (88.17 ± 13.07) 

reached glucose half-life sooner (min) than temperamental heifers (93.50 ± 13.07) (Table 

2.2).  Insulin concentrations had a tendency (P = 0.0737) to be greater in temperamental 

heifers (Figure 2.6).  Time was significant for cortisol (P < 0.0001), glucose (P < 

0.0001), and insulin (P = 0.0001) concentrations.  There was a significant time by 

temperament interaction for glucose (P = 0.004) and insulin (P = 0.0112), but not 

cortisol during the glucose challenge.  Peak insulin concentrations had a tendency to be 

greater in temperamental heifers (P = 0.0851), but there was no difference in the time 

(min) to peak insulin concentration between temperamental (30.00 ± 5.82) and calm 

(23.33 ± 5.82) heifers (Table 2.2).  Peak insulin concentrations (uIU/mL) for the calm 

and temperamental heifers were 27.52 ± 12.96 and 62.54 ± 12.96, respectively (Table 

2.2).  There was no statistical difference in insulinogenic index between temperaments, 

although, numerically, temperamental heifers had a higher insulinogenic index as shown 

in Figure 2.7.  Time was significant for insulinogenic index (P < 0.0001), but there was 

no significant time by temperament interactions throughout the glucose challenge.  
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Figure 2.4.  Cortisol concentrations for the duration of the glucose challenge (3 h) in 

calm (grey) or temperamental (black) crossbred heifers.  Temperament effect (P = 

0.0560), time effect (P < 0.0001), temperament x time effect (P = 0.2595).  Mean SEM = 

6.37. 
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Figure 2.5.  Glucose concentrations for the duration of the glucose challenge (3 h) in 

calm (grey) or temperamental (black) crossbred heifers.  Exogenous glucose (0.5 mL/kg 

BW) infused at 0 min.  Temperament effect (P = 0.1229), time effect (P < 0.0001), 

temperament x time effect (P = 0.0004).  Mean SEM = 12.17. 

 

 

 

 

 

 

 

 

Table 2.2 Crossbred heifer peak insulin and glucose half-life concentrations.   

Variable                           Temperament   P -Value 

    Calm Temperamental   

Insulin Peak Concentration 

(uIU/mL) 27.52 ± 13 62.54 ± 13 0.0851 

Insulin Peak Time (min) 23.33 ± 5.80 30.0 ± 5.80 0.4369 

Glucose Half Life Concentration 

(mg/dL) 108.09 ± 5.30 124.91 ± 5.30 <0.0001 

Glucose Half Life Time (min) 88.17 ± 13.10 93.5 ± 13.10 <0.0001 
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Figure 2.6.  Insulin concentrations for the duration of the glucose challenge (3h) in calm 

(grey) or temperamental (black) crossbred heifers.  Temperament effect (P = 0.0737), 

time effect (P < 0.0001), temperament x time effect (P = 0.112).  Mean SEM = 6.16. 
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Figure 2.7.  Insulinogenic index values for calm (grey) and temperamental (black) 

crossbred heifers.  Temperament effect (P = 0.1169), time effect (P < 0.0001), 

temperament x time effect (P = 0.0620).  Mean SEM = 0.04.    
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Discussion 

Pre-Challenge 

By exposing the heifers in this study to an acute stressor (cannulation period), it 

elicited a stress response and allowed their reaction to be observed.  The cannulation 

period served as a profile and verification that the cattle of each temperament responded 

to stress with elevated concentrations of cortisol as observed by King et al., (2006), 

Curley et al., (2006, 2008), Burdick et al., (2010).  The temperamental heifers began the 

study with greater concentrations of cortisol, which remained elevated throughout the 

study.  As for the calm heifers, they did have an increase in cortisol when exposed to 

stress but dropped to normal concentrations during the rest period.  This correlation 

between temperament and cortisol concentration has been observed in previous studies 

(Curley et al., 2006, 2008; Café et al., 2011). 

Glucose and insulin concentrations for the calm heifers remained at a steady state 

throughout the pre-challenge period.  The temperamental heifers remained steady 

throughout cannulation, but had increased glucose and insulin concentrations during the 

rest period.  The heifers were all fasted 12 h prior to the study to remove the interference 

of postprandial glucose concentrations (Evans et al., 1975).  Therefore, the increase in 

glucose concentrations in temperamental heifers may be due to the stimulation of 

gluconeogenesis.  Café et al. (2011) found similar results of increased cortisol and 

glucose during their pre-challenge period for steers that were more temperamental.  As 

the temperamental animals continued to stay excited, gluconeogenesis may have 

occurred to supply the body with needed energy.  From the pre-challenge period we can 
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conclude that temperamental heifers had greater concentrations of cortisol that remained 

higher than the calm heifers during the pre-challenge period.   

 

Challenge Period 

 Very little glucose tolerance testing has been used in animal work.  The test was 

developed for humans to assist with type-2 diabetes testing.   Glucose tolerance testing is 

utilized most in the dairy industry to characterize metabolic physiology in various facets 

of milk production and disease (Lohrenz et al., 2010, Teroa et al., 2010).   For this study 

the goal was to determine if differing cortisol concentrations in animals of divergent 

temperaments could be playing a role in glucose utilization.  Therefore, we utilized the 

glucose tolerance test to observe the response of glucose and insulin to an infusion of 

exogenous glucose in calm and temperamental heifers.   

 Temperamental heifers started the glucose challenge with greater concentrations 

of cortisol, which remained elevated over the calm heifers throughout the course of the 

glucose challenge.  Baseline samples for the calm heifers are slightly elevated and tend to 

decrease as the glucose challenge continues.  Cortisol concentrations for the 

temperamental heifers seem to remain highest until 60 minutes into the challenge, where 

there appears to be some decrease in concentrations.   Even if an animal is producing less 

cortisol, it will take around 30 minutes to see any difference in the collected samples.  On 

average about 30 minutes into the glucose challenge temperamental animals started 

releasing less cortisol. 
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 At 0 min glucose was infused through the cannula and a spike in glucose is 

observed at the 10 min sample, representing the exogenous source.  Heifers that are 

temperamental have greater concentrations of glucose than the calm heifers out to the 60 

min sample.  As the glucose challenge continues out past 60 minutes, the heifer‟s glucose 

concentrations steadily drop and come closer together.  Cortisol concentrations also 

begin to drop at the 60 min time sample, decreasing the inhibitory effect on glucose and 

possibly allowing for similar glucose concentrations to be achieved to the calm heifers.  

Glucose half-life is achieved about five minutes sooner in the calm heifers than the 

temperamental heifers.  However, temperamental heifers had significantly greater 

concentrations of glucose at half-life.   Glucose was infused by body weight, and 

therefore greater concentrations of glucose should be due to greater concentrations of 

glucose prior to infusion.  This appears to be the case as temperamental heifers had 

greater glucose concentrations prior to glucose infusion and continued to have higher 

concentrations of glucose after the exogenous source was infused.   

As for insulin, temperamental heifers had a large insulin response, especially 

from 20 to 60 min.  It may be assumed that the large increase in insulin was to help lower 

blood glucose concentrations, by signaling glucose to be taken up by adipose and muscle 

tissue (Hocquette and Abe, 2000).  Calm heifers had a much smaller increase in insulin 

concentrations.  Peak insulin concentration was reached about 7 minutes sooner in the 

calm heifers than the temperamental, but temperamental heifers had almost 2.5 times the 

peak insulin concentration than the calm heifers.  Glucose half-life was reached at about 

the same time; therefore glucose appeared to be removed from circulation at about the 
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same rate between temperaments.  Therefore, it took greater concentrations of insulin to 

remove the greater concentrations of glucose that were circulating in the temperamental 

heifers.   

The IIND, as used in human studies, represents the sensitivity of insulin to the 

concentration of glucose present.  It is calculated by dividing the concentration of insulin 

by the concentration of glucose at a certain time point (Guerrero-Romero and Rodriguez-

Moran and, 2001; Abdelmannan et al., 2010).  Statistically there was no difference 

between index values between temperaments. There was a tendency for an interaction 

between temperament and time (P = 0.0625).   Numerically, the temperamental heifers 

had higher IIND values that peaked 30 to 40 min after glucose infusion.  A higher index 

value for the temperamental heifers implies that they had a greater response of insulin to 

the influx of glucose than the calm heifers.  Temperamental heifers were releasing a 

greater concentration of insulin to clear the greater concentration of glucose from 

circulation.  Utilizing the GTT and IIND it was possible to capture the response of 

insulin to an influx of glucose and determined that female crossbred heifers that are 

temperamental need greater concentrations of insulin to clear glucose from circulation.   

 

Conclusion  

Temperamental heifers in this study had greater concentrations of cortisol 

throughout cannulation and the challenge.  This in turn led to greater concentrations of 

glucose, which stimulated greater concentrations of insulin to help clear glucose from 

circulation to return to homeostasis.  Therefore, throughout this stressful period less 
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glucose is being stored and more is being utilized by the body for immediate energy.  In 

conclusion, this may suggest that temperamental cattle do not utilize glucose as 

efficiently as calm animals and this may partially explain the lower performance of 

temperamental cattle.  As with most systems of the body, metabolism is complex, and 

further research should be done to discover the other possibilities effecting performance 

of temperamental cattle.   
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CHAPTER III 

EFFECT OF TEMPERAMENT ON RESPONSE TO CANNULATION AND 

GLUCOSE CHALLENGE IN BRAHMAN HEIFERS 

 

Introduction 

Cattle that exhibit more excitable behavior are more complicated to work with 

and create a safety hazard for the handlers, themselves, facilities, and other animals.  

Temperament has not only been found to be hazardous, but also has an impact on 

production, efficiency, and performance in cattle.  Cattle that have more excitable 

temperaments have been found to have a lower ADG (Voisinet et al., 1997a; Fell et al., 

1999), lower dressing percentages, body condition scores (Petherick et al., 2002), a 

higher incidence of dark cutters (Voisinet et al., 1997b) and decreased meat tenderness 

(del Campo et al., 2010) when compared to their calmer counterparts.  However, how 

temperament biologically alters performance is not well understood.    

Fear elicited by human interaction, a sudden stimulus in nature, or unfamiliar 

species, may stimulate a stress response in cattle.  The stress response will then activate 

the HPA axis triggering a cascade of endocrine mediated events that will lead to the 

release of cortisol in cattle.  Cortisol is a glucocorticoid, and as a result, plays a role in 

mediating metabolism by influencing the synthesis and use of glucose.  Concentrations 

of cortisol and epinephrine, which are correlated to temperament, have been found to be 

greater in temperamental cattle when compared to less excitable cattle (King et al., 2006; 

Curley et al., 2006; 2008, Burdick et al., 2010).  Elevated concentrations of cortisol in 
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temperamental cattle have been shown to increase losses due to dark cutters (Lacourt and 

Tarrant, 1985), decreased carcass lean tissue content (Trenkle and Topel, 1978), and 

reduced growth rates (Obst, 1974; Purchas et al., 1980). 

It is apparent that cortisol and temperament have a substantial effect on 

performance; however, it is crucial to know why calm and temperamental cattle perform 

differently.  Therefore, our objective was to determine the effects of temperament on 

blood glucose and insulin following a stressor and a subsequent glucose challenge.  The 

utilization of glucose tolerance testing allowed us to assess the response of insulin to an 

infusion of an exogenous glucose source to test differences in utilization of glucose 

between temperamental and calm cattle.  This could give insight into the allocation of 

energy, and partially explain why temperamental animals do not perform as well as calm 

animals. 

 

Materials and Methods 

Animals and Experimental Design 

Brahman heifers (n = 36) at the Texas Agrilife Research Center in Overton, TX 

were weighed (mean weight = 180.30 kg), pen scored, and recorded for exit velocity at 

weaning (mean age = 7.1 mo).  All processes required to complete this project were 

approved by the Texas A&M University IACUC.  Pen scores were assessed by an 

experienced observer.  Three to five animals were placed in a pen and assigned pen 

scores from 1 to 5 according to their reaction to the observer.  Exit velocity was obtained 

as they were released from the chute.  Exit velocity is the rate (m/s) that it takes the calf 
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to travel 1.83 m (Burrow et al., 1998).  Infrared beams and timers were utilized to record 

the time as they left the chute.  The exit velocity and pen score were then added and 

averaged for each animal to generate their temperament score.  From these observations 

a temperament score was assigned and the 6 most temperamental and the 6 most calm of 

the weaning group were utilized for the glucose tolerance test.  The mean temperament 

score of the 6 most calm and 6 most temperamental were (1.59 ± 13.33) and (4.21 ± 

13.33; P < 0.0001), respectively (Table 3.1).    

In order to incorporate all heifers (n = 12) the glucose challenge took place over 

the span of two days November 3 & 4, 2010, with six animals each day.  Animals were 

randomly assigned to a day, with three calm and three temperamental calves on each of 

the two days.  Each night the calves to be glucose tolerance tested the next morning had 

access to water, but were fasted for 12 h prior to cannulation.    

 

 

 

 

 

Table 3.1.  Weaning characteristics of Brahman heifers (n = 12) utilized for GTT.   

Variable                           Temperament   P - Value 

    Calm Temperamental   

Weaning Weight (kg) 195.30 ± 13.33 188.11 ± 13.33 0.7106 

Exit Velocity (m/s) 1.51 ± 0.17 3.59 ± 0.17 <0.0001 

Pen Score 1.67 ± 0.19 4.83 ± 0.19 <0.0001 

Temperament Score 1.59 ± 0.09 4.21 ± 0.09 <0.0001 
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Glucose Tolerance Testing 

Day one, November 3, 2010, (n = 6) heifers were fitted with jugular cannulas to 

allow for blood collection.  At each sampling one 10 mL EDTA coated Vacutainer® tube 

(366643, BD Biosciences; Franklin Lakes, NJ) and one 10 mL no additive Vacutainer® 

tube (366430, BD Biosciences; Franklin Lakes, NJ) for serum was collected for each 

animal.  Pre-challenge blood samples that were taken:  initial (as soon as they were 

caught in the chute), jugular (when the jugular was punctured), and test (as the cannula 

was checked for functionality). The average time elapsed from the initial sample to the 

test sample was approximately 10 minutes.  To insert the cannula for blood collection, an 

area over the jugular vein was clipped and prepped.  All cannula materials were sterilized 

prior to use by gas sterilization.  After donning sterile gloves, a sterile 14-gauge needle 

was inserted into the jugular vein.  Approximately 15 to 20 cm of a 1.0 m length of tygon 

tubing (0.10 cm i.d., 0.18 cm o.d.) was passed through the needle and into the jugular 

vein.   The spare tubing was secured to the heifer‟s neck using glue, adhesive tape, and 

vet wrap.  An 18-gauge needle with a 10 mL syringe was used to plug the end of the 

tubing.   Prior to capping, the line was flushed with a heparin solution (1 IU/mL) to 

maintain patency of the cannula.  After cannulation each animal was placed in an 

individual stall and a sample was collected (chute).  At the completion of the 6
th

 calf, the 

heifers were allowed a 1.5 h rest period.  Blood samples were collected at 30, 60, 90 min 

relative to the completion of cannulation.  After the rest period of 2 h, a blood sample 

was collected at -5 and 0 min relative to glucose infusion.  After the sample was 

collected at 0 min, a 50% dextrose solution was infused at 0.5 mL/kg BW via the jugular 
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cannula.  Time 0 was used as a baseline concentration for cortisol, glucose, and insulin.  

Following infusion blood samples were collected at 10, 15, 20, 30, 40, 60, 80, 100, 120, 

140, 160 and 180 min relative to glucose infusion.  Following collection at each time 

point an equivalent volume (10 mL) of sterile saline was replaced via the cannula, 

followed by heparinized saline (5 mL) to keep the cannula patent.  At completion of the 

glucose challenge, cannulas were removed and heifers were returned to their original 

pens.  The next day, November 4, 2010, the remaining six heifers were cannulated, 

rested, challenged, and sampled following the same protocol.   

 

Blood Samples and Analysis 

 Blood samples were centrifuged at 2000 X g for 25 min at 4º C to harvest plasma 

and serum. EDTA coated tubes were centrifuged within 30 min of collection to yield 

plasma and serum tubes were allowed to clot over night at 4º C before centrifugation.   

After centrifugation plasma and serum samples were aliquoted into 12 X 75 mm plastic 

culture tubes and stored at -20º C.   Plasma samples were removed from storage and 

assayed for concentrations of glucose and insulin.  Serum samples were removed from 

storage and assayed for concentrations of cortisol.   

 

Cortisol RIA 

Concentrations of cortisol were determined by radioimmunoassay Coat-A-Count 

kit which is commercially available (Siemens Healthcare Diagnostic, Los Angeles, 
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California).   Unknown concentrations of cortisol were calculated using Assay Zap 

software (Biosoft, Cambridge, UK) using counts per minute obtained from a Cobra II 

auto-gamma-counter (Perkin Elmer, Waltham, MA).  All cortisol samples were analyzed 

in a single assay and the inter-assay and intra-assay CV was 13.11% and 6.35%, 

respectively.  

 

Insulin RIA 

Concentrations of insulin were determined by radioimmunoassay Coat-A-Count 

kit that is commercially available (Siemens Healthcare Diagnostic, Los Angeles, 

California).   Unknown concentrations of insulin were calculated using Assay Zap 

software (Biosoft, Cambridge, UK) using counts per minute obtained from a Cobra II 

auto-gamma-counter (Perkin Elmer, Waltham, MA).  Intra- and inter-assay CV were 

9.80% and 9.66%, respectively. 

 

Glucose Colorimetric Assay  

Concentrations of glucose were determined by the manual protocol of the 

commercially available Autokit Glucose (Wako Chemical USA, Inc., Richmond, VA).   

All glucose samples were analyzed using a single assay and the intra-assay CV was  

3.00 %. 
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Statistical Analysis 

Repeated measures ANOVA were conducted using the MIXED procedures of 

SAS (SAS Inst., Inc., Cary, NC) for analysis of cortisol, insulin, and glucose 

concentrations.   Fixed effects of interest were temperament group, time, and their 

interaction.  Animal was the random effect.  Insulinogenic index was calculated by 

dividing the concentration of insulin by the concentration of glucose at each time point a 

sample was collected.   Insulinogenic index was analyzed as repeated measures using the 

MIXED procedure of SAS (2002) using the same fixed and random effects.  Time to 

peak concentration of insulin, peak concentration of insulin, half-life concentration, and 

time to glucose half-life concentration were evaluated using the GLM procedures of SAS 

(2002). 

 

Results 

Pre-Challenge Period  

Initially during the pre-challenge period temperamental heifers had greater 

cortisol concentrations (ng/mL) 54.2 ± 8.6 than the calm heifers 19.9 ± 8.6.  During the 

cannulation period the serum concentration of cortisol was greater (P = 0.0238) in the 

temperamental heifers relative to that of the calm heifers, and remained elevated over the 

course of the pre-challenge period (Figure 3.1).  There was a significant difference by 

time (P < 0.0001), but not a significant time by temperament interaction (P > 0.05).  

Temperamental heifers had greater (P = 0.0005) concentrations of glucose throughout 

the cannulation period (Figure 3.2).  Differences by time and the time by temperament 



 

 

66 

interaction for glucose were not significant.  There was no significant (P > 0.05) 

difference in insulin concentration between temperaments or by time, but there was a 

significant (P = 0.0078) time by temperament interaction (Figure 3.3).   

 

 

 

 

Figure 3.1.  Cortisol concentrations over the course of the pre-challenge period 

(cannulation) in calm (grey) or temperamental (black) Brahman heifers.  Temperament 

effect (P = 0.0238), time effect (P < 0.0001), temperament by time effect (P = 0.1886).  

Mean SEM = 8.48. 
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Figure 3.2.  Glucose concentration over the course of the pre-challenge period 

(cannulation) in calm (grey) or temperamental (black) Brahman heifers.  Temperament 

effect (P = 0.0005), time effect (P = 0.0555), temperament by time effect (P = 0.0821).  

Mean SEM = 17.94. 
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Figure 3.3.  Insulin concentrations over the course of the pre-challenge period 

(cannulation) in calm (grey) or temperamental (black) Brahman heifers.  Temperament 

effect (P = 0.1560), time effect (P = 0.4715), temperament by time effect (P = 0.0078).  

Mean SEM = 2.15. 
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Challenge Period 

Heifers that were more temperamental had greater concentrations of cortisol (P = 

0.0282) throughout the glucose challenge (Figure 3.4) than their calm counterparts.  

There was a difference in time (P = 0.0026) and the time by temperament (P = 0.0007) 

interaction.  Glucose concentrations were significantly greater (P = 0.0011) for 

temperamental heifers (Figure 3.5).  There was also a significant time (P < 0.0001) and 

time by temperament (P = 0.0006) interaction for glucose concentrations.   

Temperamental heifers had greater (P = 0.0092) concentrations of glucose at half-life 

and took longer (P = 0.0001) to reach half-life than calm heifers.  Calm heifers had a 

glucose half-life concentration (mg/dL) of 113.39 ± 8.16 at 75.65 ± 7.94 min after 

glucose infusion, while temperamental heifers reached a glucose half-life concentration 

(mg/dL) of 153.35 ± 8.94 at 151.39 ± 8.70 min after glucose infusion (Table 3.2).  

Insulin concentrations had a tendency (P = 0.0793) to be greater in calm heifers (Figure 

3.6), with significant differences over time (P < 0.0001) and an interaction of time by 

temperament (P < 0.0001).  Calm heifers reached greater (P = 0.0350) peak insulin 

concentrations (53.49 ± 7.64 uIU/mL) than temperamental heifers (27.16 ± 7.46 

uIU/mL).  Time to peak insulin concentration (min) was faster (P = 0.0007) for calm 

heifers (12.50 ± 15.58) than temperamental heifers (118.33 ± 15.58) (Table 3.2).  

Insulinogenic index (Figure 3.7) was significantly different by temperament (P = 

0.0173), time (P < 0.0001), and the interaction of time and temperament (P < 0.0001).   
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Figure 3.4.  Cortisol concentrations for the duration of the glucose challenge (3 h) in 

calm (grey) or temperamental (black) Brahman heifers.  Temperament effect (P = 

0.0282), time effect (P = 0.0026), temperament by time effect (P = 0.0007).  Mean SEM 

= 6.93. 
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Figure 3.5.  Glucose concentrations for the duration of the glucose challenge (3 h) in 

calm (grey) or temperamental (black) Brahman heifers.  Exogenous glucose (0.5 mL/kg 

BW) infused at time 0. Temperament effect (P = 0.0011), time effect (P < 0.0001), 

temperament by time effect (P = 0.0006).  Mean SEM = 14.64. 

 

 

 

 

 

 

Table 3.2 Brahman heifer peak insulin and glucose half-life concentrations.   

Variable   

                        

Temperament   P -Value 

    Calm Temperamental   

Insulin Peak Concentration 

(uIU/mL) 53.49 ± 7.64  27.16 ± 7.64 0.0350 

Insulin Peak Time (min)    12.50 ± 15.58      118.33 ± 15.58 0.0007 

Glucose Half Life Concentration 

(mg/dL) 113.39 ± 8.16 153.35 ± 8.94 0.0092 

Glucose Half Life Time (min) 74.65 ± 7.94 151.39 ± 8.70 0.0001 
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Figure 3.6.  Insulin concentrations for the duration of the glucose challenge (3h) in calm 

(grey) or temperamental (black) Brahman heifers.  Temperament effect (P = 0.0793), 

time effect (P < 0.0001), temperament by time effect (P < 0.0001).  Mean SEM = 4.82. 
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Figure 3.7.  Insulinogenic index values for calm (grey) and temperamental (black) 

Brahman heifers.  Temperament effect (P = 0.0173), time effect (P < 0.0001), 

temperament by time effect (P < 0.0001).  Mean SEM = 0.03. 
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Discussion 

Pre-Challenge Period 

The initial cannulation stressor generated an observable stress response in the 

heifers, as planned.  This allowed the endocrine reactions to be contrasted between the 

temperamental and calm heifers.  Temperamental heifers had greater basal 

concentrations of cortisol, which were elevated and remained elevated above the 

concentration of cortisol in the calm heifers throughout the cannulation stressor.  Many 

studies have also found that more excitable cattle have greater concentrations of cortisol 

(King et al., 2006, Curley et al., 2006; 2008, Burdick et al., 2010).  Cortisol 

concentrations for calm heifers did increase during the cannulation, but decreased to 

normal concentrations during the rest period.  This coincides with the results of previous 

studies that cortisol concentrations are correlated with temperament (Curley et al., 2006; 

2008; Café et al., 2011). 

Glucose concentrations remained relatively the same throughout the pre-

challenge period for both temperaments.  However, the temperamental heifers had 

greater concentrations of glucose than the calm heifers.  There was no significant 

difference in insulin concentrations between temperaments, but calm heifers had 

numerically greater concentrations of insulin throughout much of the pre-challenge 

period.  Temperamental heifers had lower concentrations of insulin through the pre-

challenge period, until one hour into the rest period.  The heifers were all fasted 12-hr 

prior to the study to remove the interference of postprandial glucose concentrations 

(Evans et al., 1975).  Therefore, the increase in glucose concentrations in temperamental 
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heifers may be due to the stimulation of gluconeogenesis.  Café et al. (2011) found 

similar results of increased cortisol and glucose during their pre-challenge period for 

steers that were more temperamental.  As the temperamental animals continued to stay 

stressed, gluconeogenesis may have occurred to supply the body with required energy.  

Increased concentrations of glucose and decreased concentrations of insulin in the 

temperamental heifers may be due to insulin resistance.  From the pre-challenge period 

we can conclude that temperamental heifers had greater concentrations of cortisol that 

remained higher than the calm heifers during the pre-challenge period. 

 

Challenge Period 

Glucose tolerance testing was originally developed to help diagnose type-2 

diabetes in humans.   Minimal glucose tolerance testing has been used in beef cattle 

research, but GTT has been heavily utilized in the dairy industry.  From the exploitation 

of the GTT, the dairy industry has gained insight into metabolic disorders (Bossaert et 

al., 2008), issues with transition dairy cows (Teroa et al., 2010), and to understand 

nutritional effects on lactation (Lohrenz et al., 2010).   The goal of this trial was to use 

GTT to determine if there is a difference in glucose utilization between Brahman heifers 

of differing temperaments, based on the prior knowledge of varying cortisol 

concentrations in calm versus temperamental cattle.   

The temperamental heifers had greater concentrations of cortisol than the calm 

heifers throughout the glucose challenge period.  Calm heifers had minimal fluctuation in 

their cortisol concentrations, and had baseline concentrations that were much lower 
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(approximately 75%) than the temperamental heifers.  This would imply that the calm 

heifers were not as stressed during the glucose challenge as they were during the pre-

challenge period.   As for the temperamental heifers, they seemed to have remained at a 

steady state throughout the glucose challenge.    

The spike in glucose concentrations at 10 min is a result of the exogenous glucose 

that was infused through the cannula at 0 min.  Temperamental heifers have greater 

concentrations of glucose than the calm heifers during the glucose challenge.  The 

temperamental heifers had greater concentrations of glucose that steadily dropped over 

the course of the challenge.  Calm heifers followed the same pattern, but had much lower 

concentrations of glucose present.  Calm heifers reached glucose half-life in half the time 

it took the temperamental heifers to reach glucose half-life, with a glucose half-life 

concentration difference of 40 mg/dL less than the temperamental heifers.  Overall, the 

calm heifers were able to clear the glucose much quicker than the temperamental heifers.  

Glucose infusion rate was based on body weight and therefore any differences after 0 

min should be due to concentration differences before infusion.  Temperamental heifers 

had greater concentrations of glucose before infusion and therefore had greater 

concentrations after infusion.   

Contrary to the crossbred heifers described in Chapter II of this thesis, insulin 

concentrations were greater in the calm Brahman heifers.  Baseline insulin 

concentrations were similar between temperament groups, but at 10 min relative to 

glucose infusion insulin concentrations were much greater in calm heifers.  At 80 min the 

insulin concentrations were the same between temperaments and by 100 min 
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temperamental heifers had greater insulin concentrations, which remained greater 

throughout the remainder of the glucose challenge.  It would be assumed that the large 

increase of insulin in the calm heifers was to help lower blood glucose concentrations by 

causing glucose to be taken up by adipose and muscle tissue (Hocquette and Abe, 2000).  

Calm heifers reached peak insulin concentrations almost 10 times faster than the 

temperamental heifers and had a peak insulin concentration that was almost double the 

peak insulin concentration of the temperamental heifers.  By the end of the challenge 

both temperaments were back to relatively their baseline glucose concentration, however 

temperamental Brahman heifers ended with greater concentrations of glucose at the end 

of the challenge. The temperamental heifer‟s final concentrations of glucose were double 

the final glucose concentration for the calm heifers, even though they had both returned 

to concentrations similar to basal.  It appears that the temperamental heifers are more 

resistant to insulin, and as a result, do not clear as much glucose from circulation.   This 

inconsistency between Chapter II and III follows the results of Shafer, (2011) that 

observed varying conclusions of insulin‟s response to glucose between cattle breeds.   

The idea behind the IIND was to provide a quantitative scale to represent the 

sensitivity of insulin to the concentration of glucose present.  First developed for use in 

humans studies, the IIND is calculated by dividing the concentrations of insulin by the 

concentration of glucose at a certain time point (Guerrer-Romero and Rodriguez-Moran, 

2001; Abdelmannan et al., 2010).   IIND was greater in calm heifers from 10- 80 min, for 

the rest of the sample periods there were little to no difference between temperaments.  

From this we can conclude that the calm heifers were more sensitive to the 
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concentrations of glucose present from 10-80 min.  After this point the concentration of 

insulin for the calm heifers becomes low, which means the index becomes low.  The 

temperamental heifers maintained a considerably lower index value throughout the 

glucose challenge as a result of the low insulin response to glucose concentrations.  

Utilizing the GTT and IIND it was possible to capture the response of insulin to an influx 

of glucose and determined that Brahman heifers that are temperamental may exhibit 

insulin resistance due to greater cortisol concentrations, which causes them to store less 

glucose and have greater circulating concentrations of glucose.   

 

Conclusion 

 Temperamental Brahman heifers had greater blood concentrations of cortisol, 

which led to greater concentrations of glucose.   We hypothesized that the temperamental 

Brahman heifers would in turn need greater concentrations of insulin to remove the 

glucose as we found in the crossbred heifers.   It seems that in the case of the 

temperamental heifers that insulin didn‟t respond as well, possibly due to the greater 

concentrations of cortisol that may have generated insulin resistance.  This in turn causes 

less glucose to be stored and more glucose to be utilized by the body for an immediate 

energy source.  The insulin response of this trial is opposite to that of the crossbred 

heifers.   It seems the calm heifers were more sensitive to the concentration of glucose 

present.  However, the insulin resistance in the temperamental cattle may suggest that 

temperamental cattle do not utilize glucose as well as calm cattle and may partially 

explain the lower performance of temperamental cattle.   
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CHAPTER IV 

COMPARISON OF BRAHMAN FEMALES EVALUATED FOR RFI AS 

HEIFERS AND RE-EVALUATED FOR RFI AS GESTATING COWS 

 

Introduction 

 One way to make a positive difference in profitability is to reduce feed costs.  

Feed costs generally represent the largest segment of expenses, accounting for 68 % to 

71 % of the total costs associated with beef cattle production from 2008 to 2010 (USDA 

ERS, 2011b).  Selecting for efficient cattle, which consume less feed per unit of gain, 

may possibly be a way to decrease feed costs.  Traditionally, feed to gain ratio was used 

to assess feed efficiency.  However, after further investigation it was found to have 

unfavorable underlying flaws.  Feed:gain ratio has a negative correlation with body 

weight and  growth rate (Mrode et al., 1990; Koots et al., 1994; Arthur et al., 2001a), 

which leads to selection of cattle that are larger at maturity (Herd and Bishop, 2000).  

Residual feed intake was introduced in 1963 as an alternative method to determine feed 

efficiency (Koch et al., 1963).  RFI has generally been applied to experiments targeting 

weaned calves, that would typically be back grounded or finished in a feedlot (Herd and 

Bishop, 2000; Basarab et al., 2003; Nkrumah et al., 2004, 2007).  While important, this is 

not as helpful for cow/calf producers retaining heifers for use in their cow herd as dams 

of future progeny.  Herd et al. (1998) documented that there is a possibility of a 

phenotypic association between RFI determined in confinement as post-weaned heifers 

and their performance on pasture as mature Bos taurus cows.  Others have found a 
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moderate correlation between animals evaluated during specific growing and finishing 

phases of their lives, but not from youth to maturity (Crews et al., 2003; Johnston, 2007; 

Kelly et al., 2010).  Conversely, Loyd (2011) found that there was no correlation 

between post-weaning and mature cow RFI values in various breeds and Minton, (2010) 

found a low (r = 0.07) correlation between post-weaning and mature cow RFI categories.  

As there are relatively few published studies on this topic and lack of consensus among 

the published works, the objective of this study was to assess the relationship between 

post-weaning RFI and mature RFI in the same Brahman (Bos indicus) females.   

 

Materials and Methods 

Animals and Experimental Design 

Heifers 

 Post-weaning heifer data utilized in this trial were recorded using the Calan Gate 

system at the Texas Agrilife Research Center in Overton, TX.  All heifers were originally 

evaluated in large cohorts, in their respective year and season.  Their RFI values 

calculated in their respective years were not used, given that we only wanted to compare 

the animals that had been re-evaluated as mature cows.  RFI is highly dependent on the 

cohort that is being analyzed, so recalculating post-weaning RFI for the 78 animals 

utilized increased the accuracy of our results.  Heifers were fed twice daily (0800 h and 

1600 h) for 70 d with body weight recorded weekly.  Heifers were fed a balanced ration 

at a designated percent of their body weight, which differed according to year and 

season.  Orts, if any, were collected and recorded weekly.  Details of number of head 
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utilized from each year, year fed, and percent of body weight fed are included in Table 

(4.1).  Diet formulations were not the same between years, they are referenced as 

following: heifers fed 2004 and 2005 (Table 4.2), 2006 (Table 4.3), and 2007 and 2009 

(Table 4.4). 

 

 

Table 4.1.  Feeding details for heifers fed 2004 to 2009 

Year fed Season N = Percent of BW fed 

2004 Fall 7 2.5% 

2005 Winter 7 2.5% 

2005 Fall 6 2.5% 

2006 Winter 7 2.5% 

2006 Fall 10 2.5% 

2007 Winter 29 2.65% 

2009 Winter 12 2.65% 
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Table 4.2.  Diet formulation for heifers fed 2004 and 2005 

Ingredients (as fed basis): % 

Cottonseed hulls 37.5 

Corn, ground 6.37 

Alfalfa dehydrated (20%) 12.5 

Wheat middling 5.53 

Rice bran  8.5 

Cottonseed meal (41%) 4.3 

Soybean meal  4.75 

Corn gluten feed 5 

Corn, cracked 5 

Nutrients (dry matter basis): % 

CP 13.4 

TDN 60.45 
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Table 4.3.  Diet formulation for heifers fed 2006 

Ingredients (as fed basis): % 

Cottonseed hulls 25 

Soy hulls 20 

Corn, ground 10 

Alfalfa dehydrated (20%) 8.73 

Wheat middling 7.35 

Rice bran  6.25 

Cottonseed meal (41%) 6.01 

Soybean meal  0.58 

Corn gluten feed 5 

Corn, cracked 5 

Nutrients (dry matter basis): % 

CP 13.4 

TDN 69.04 
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Cows-year 1 

 Year one of this study was designed to determine the correlation between RFI in 

Bos indicus females post weaning and as mature cows.  Brahman cows from the Texas 

Agrilife Research Center at Overton, TX with previous RFI data (post-weaning) were 

palpated and confirmed to be in their first trimester of pregnancy.  Of those cows, 37 

Brahman cows (age 3 to 7) were ultimately chosen to be weighed, assigned to pens, and 

retrained to eat from the same Calan Gate system that they ate from as heifers.  Cows 

were fed twice daily (0800 h and 1600 h) at 2.2 % of their individual BW for 70 d 

Table 4.4.  Diet formulation for heifers fed 2007 and 2009  

Ingredients (as fed basis): % 

Cottonseed hulls 25 

Soy hulls 7 

Corn, crimped 2 

Alfalfa dehydrated (20%) 15 

Salt  0.83 

Rice bran 9 

Soybean meal (48%) 10 

Cottonseed hull pellet 30 

Premix 0.0275 

Nutrients (dry matter basis): % 

CP 12 

TDN 55 
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starting on October 5, 2009.  Body condition score and body weights were recorded 

weekly.  Cows were fed a balanced ration high in cotton seed hulls (Table 4.5).   Orts, if 

any, were collected and recorded weekly.  At the conclusion of feeding, cows were 

classified as either positive RFI = inefficient or negative RFI= efficient, according to 

their RFI values.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4.5.  Experiment Year 1 Summary of dietary and 

chemical composition of diets fed during trial 

Dietary composition (as fed)    %   

Corn Gluten Feed 21 

Cottonseed Hull Pellets 56.8 

Cottonseed Hulls 8.8 

Chemical composition (DM basis)  

CP% 9.1 

TDN% 57.7 

Crude Fat 2.5 
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Cows-year 2 

This trial was a repeat of the previous year‟s trial and used a new cohort of cows.  

Brahman cows from the Texas A&M Agrilife Research Center-Overton station with 

previous RFI data (post-weaning) were palpated to confirm that they were in their first 

trimester of pregnancy.  Of those cows, 41 Brahman cows (age 2 to 3) were ultimately 

picked to be weighed, assigned to pens, and retrained to eat from the same Calan Gate 

system they ate from as heifers.  Cows were fed twice daily (0800 h and 1600 h) at 2.6 % 

of their individual BW for 70 d starting on October 4, 2010.  Body weight was recorded 

weekly.  Cows were fed a balanced ration high in cotton seed hull pellets (Table 4.6).  

Orts, if any, were collected and weighed weekly.  Body condition scores were collected 

at d 0 and d 70.  At the conclusion of feeding, females were classified with a negative 

RFI = efficient and a positive RFI = inefficient according to their RFI data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4.6.  Experiment Year 2 Summary of dietary and 

chemical composition of diet fed during trial 

Dietary composition (as fed)                                           % 

Corn Gluten Feed 25 

Cottonseed Hull Pellet 66.2 

Premix 8.8 

Chemical composition (DM basis)  

CP% 11.7 

TDN% 55 

Crude Fat 1.9 



 

 

87 

Statistical Analysis 

 Data were analyzed considering heifers and cows (n = 78) as distinct groups.  

Initial BW and average daily gain (ADG) were computed using linear regression of BW 

on test day using the REG procedure of SAS (2002).  Mid-test body weight (MBWT) 

was estimated using the initial BW and ADG and then adjusted for 3% shrink.  Mid-test 

metabolic body weight (MBWT
0.75

) was computed as MBWT
0.75

.  Average daily feed 

intake (ADFI) residuals were produced for each animal for each period by subtracting the 

animal‟s expected feed intake (estimated from MIXED model, SAS, 2002) from its 

actual feed intake.  Both heifer and cow models included ADG and MBWT
0.75 

as 

covariates (Table 4.7and Table 4.8) and sire as a random effect (Table 4.9 and Table 

4.10).  Fixed effects for heifers were ADG, and MBWT
0.75

.  The heifer model also 

included the fixed effect of group, which categorized the season (fall or winter) in which 

heifers were fed (Table 4.11).  The cow model also included year of record 

(corresponding to mature cow feeding trials), cow age (2 to7 yrs), lactation status prior to 

evaluation (weaned a calf or not; “prior” because the evaluation occurred after weaning 

in a given year), and pen (n = 11), within year (Table 4.12).  All variables included in the 

model were significant (P < 0.05) (Table 4.11 and Table 4.12), except for calf weaned or 

not prior to study, which was actually approaching significance (P = 0.0694) (Table 

4.12).  As this was a strong tendency it was kept in the model.  Residuals were submitted 

to CORR procedures of SAS (2002) to determine the correlation between post-weaning 

and mature RFI.  
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Table 4.7.  Regression coefficients for heifer model 

Effect Estimate with standard error P  -value 

MBWT 0.11 ± 0.004 < 0.0001 

ADG 0.12 ± 0.20 0.5583 

Table 4.8.  Regression coefficients for cow model 

Effect Estimate with standard error P- value 

MBWT 0.09 ± 0.02 < 0.0001 

ADG 0.76 ± 0.28 0.0117 

 

Table 4.9.  Random effect for heifer model 

Effect Estimate with standard error P -value 

Sire  0.04 ± 0.02  0.0494 
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Table 4.10.  Random effect for cow model 

Effect Estimate with standard error P –value 

Sire 0.27 ± 0.23 0.1172 

 

 

Table 4.11.  ANOVA table for heifer model 

Effect Degrees of freedom F value P value 

ADG 1 0.35 0.5583 

MBWT 1 730.18 < 0.0001 

Group 1 29.80 < 0.0001 
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Results 

 Using the residuals from data analysis, heifers and cows were ranked within their 

respective cohorts.  Rank (1-4) was used to categorize efficiency.  Ranks were 

determined by calculating the mean and standard deviation and then 0.5 standard 

deviation of each cohort.  A rank of 1 would have a residual value less than 0.5 standard 

deviation subtracted from the mean and represents the most efficient animals in the 

cohort.  A rank of 2 is within 0.5 standard deviation subtracted from below the mean and 

is an efficient animal.  A rank of 3 is within 0.5 standard deviation above the mean and is 

an inefficient animal.  A rank of 4 is greater than 0.5 standard deviation added to the 

mean and represents the most inefficient animals (Table 4.13.).  When comparing the 

post-weaning rankings (Figure 4.1.) to the mature cow rankings 21 cows did not change 

rank, 26 changed one rank, 20 changed two ranks, and 11 changed three ranks.  In terms 

 

Table 4.12.  ANOVA table for cow model 

Effect Degrees of freedom F value P- value 

Age (year) 5 7.98 < 0.0001 

Year evaluated 1 3.36 < 0.0001 

Calf weaned or not prior to study 

(year) 
1 3.51 0.0694 

Pen (year) 18 4.58 < 0.0001 

Days pregnant when entered 

Calan gates 
1 8.40 0.0650 

MBWT 1 39.41 <0.0001 

ADG 1 7.1 0.0117 
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of changing efficiency as categorized as efficient (negative residual value) or inefficient 

(positive residual value), 36 cows did not change rank from post-weaning to maturity, 

while 19 changed from efficient to inefficient and 23 changed from inefficient to 

efficient (Figure 4.2.).  Nearly 54 % of the cows evaluated had reversed feed efficiency 

rankings from post-weaning to maturity.  The low magnitude of the observed Pearson‟s 

correlation coefficient (r = -0.06, P = 0.57) indicates that heifer RFI may not be an 

accurate predictor of mature cow RFI in Brahman females. 

 

 

 

 

 

 

 

 

 

 

 

Table 4.13.  Equations depicting how rank was computed 

 

Rank 

 

Equation 

 

Efficiency 

1 RFI < µ- 0.5 SD Most efficient 

2 RFI ≥ µ - 0.5 SD Efficient 

3 RFI ≤ µ + 0.5 SD Inefficient 

4 RFI > µ + 0.5 SD Most inefficient 
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Figure 4.1.  Change in rank from post-weaning heifer to mature cow. 
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Figure 4.2.  Change in RFI from post-weaning heifer to mature cow 
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Discussion 

 When choosing our cow model we found it imperative to include variables that 

could have a significant effect on the outcome.  The cows utilized in this study were only 

chosen if early in their first trimester of gestation in hope of minimizing any changes in 

feed intake or weight change due to the growth of the fetus.  Therefore, we found it 

essential to include the effects of age, the lactation status prior to evaluation, pen, year 

evaluated, and days pregnant when entering the gates.   It seemed relevant that all of 

these factors could possibly influence MBWT, ADFI, ADG, and consequently impact 

feed efficiency. 

 The results of our study suggest that post-weaning RFI in heifers does not 

accurately predict mature cows RFI during gestation.  Of the work done on repeatability 

of RFI it is mostly focused on young cattle.  Pre-pubertal crossbred heifers re-evaluated 

post-pubertal were found to be correlated (r = 0.48) with 32.5 % of the heifers changing 

their RFI phenotype (Loyd, 2009).  In a study by Kelly et al. (2010) just over half (54 %) 

of the heifer‟s RFI values re-ranked varied by 0.5 standard deviation and just 24 % 

changed by a full standard deviation.  Crews et al. (2003) reported that one cohort of 

steers had a correlation (r = 0.55) between RFI determinations during finishing and 

growing phases.  A comparable correlation (r = 0.59) was found between post-weaning 

RFI and feedlot RFI in a single group of calves (Johnston et al., 2007).   There seems to 

be sufficient evidence that calves re-evaluated at a young age can to some extent 

maintain feed efficiency.  This seems likely as none of the calves in these studies have 
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reached maturity and have yet to enter a different production setting such as: gestating or 

lactating which may alter their feed efficiency. 

 Studies that do encompass the change from youth to maturity have opposing 

outcomes.  Non-pregnant, non-lactating cows with previous RFI data were re-evaluated 

10 days after weaning their second calf.  The cows were fed the same ad libitum diet as 

they received as heifers.  Phenotypic correlation was (r = 0.40) and genetic correlation 

was (r = 0.98) when comparing RFI post-weaning to mature Bos taurus cows (Archer et 

al., 2002).  The Archer study (2002), while different from our study, indicates that it is 

the production cycle (breeding, gestating, and lactating) that alters feed efficiency.   

Since the cows were able to maintain their RFI values from post-weaning to mature cow 

(non-lactating or gestating), it suggests that the animals may partially maintain the same 

efficiency, but efficiency may be altered during different periods of production.   

 Nearly 54 % of the heifers re-evaluated as cows in the present study reversed 

their efficiency classification.  This is supported by the low correlation (r = -0.06; P = 

0.57), suggesting that there was practically no correlation between the Brahman post-

weaning heifer RFI and mature gestating cow RFI.  Loyd (2011) found very similar 

conclusions between heifers of divergent breeds, with RFI values recorded post-weaning, 

and then re-evaluated as lactating cows.  Second parity cow/calf pairs were moved into a 

Growsafe system and fed ad libitum for 70d to assess RFI.   They were then compared to 

their heifer RFI values and ranks (low, medium, high).  The relationship between RFI of 

the heifer and lactating cows was very lowly correlated (r = 0.19; P = 0.12), there was 

also no relationship between heifer RFI rank and cow RFI rank (r = 0.0175; P = 0.148).  
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There was minimal correlation between heifer RFI rank and cow RFI (r = 0.227; P = 

0.0585) and a low correlation between heifer RFI and cow RFI rank (r = 0.151; P = 

0.213).  From these observations it was also concluded that selecting for the most 

efficient heifers may not result in the same level of efficiency when they become 

lactating females.  Work done by Minton (2010) also found results that suggested RFI 

may not be repeatable in mature cows.  In Minton (2010) crossbred cows with prior RFI 

values were re-evaluated for RFI as mature lactating cows.  Cows were fed with their 

calves for 70d in a Growsafe system, ad libitum.  Pearson‟s correlations between heifer 

and cow RFI were not significant with a low correlation (r = 0.17; P > 0.10) and also for 

heifer and cow categories (low, medium, high) (r = 0.18; P > 0.10).  They did however 

find a moderate correlation between heifer and cow phenotype (r = 0.54; P < 0.0001).  

Cattle efficiency during post-weaning may be altered later in maturity due to 

physiological states such as gestation and lactation that would require more energy 

(Archer et al., 1998).  When cattle were subjected to gestation or lactation, RFI values 

did not remain similar, whereas in the cattle evaluated while not in a physiological state 

of energy consumption, tended to maintain the same feed efficiency.   

 There are many differences in the way that the cited studies were conducted.  

Multiple studies have examined repeatability at young ages, but deliver no information 

as to how the animals efficiency may change as they mature.  Another study actually 

looked into the change over time from post-weaning to maturity, but tested the cows in a 

non-lactating, non-pregnant state.  This seems unrealistic as a productive, fertile cow will 

spend the majority of its life as a pregnant or lactating cow.  Surprisingly, only a few 
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studies have actually examined whether feed efficiency of a heifer varies from post-

weaning to maturity as a cow in a production setting (lactating or gestating).  Although 

the studies were similar, they all were unique in their experimental design and statistical 

analysis.  There was a lack of uniformity among studies with respect to cattle breed, age, 

production status, feeds, how they were fed, etc.  For this reason, is seems that more 

research is needed to understand the relationship between growing calves and mature 

cows before using RFI as a tool to select replacement females.   

 

Conclusion 

 Inconsistency in RFI results to date may be due to the absence of a standard set of 

rules or regulations for evaluation or analysis of feed efficiency of mature cows from an 

RFI standpoint.  Residual feed intake is very cohort driven.  Recent research has proven 

that comparisons are legitimate only when comparison is within a cohort group, not 

between groups of cohorts.  When forming a cohort they should be within the same sex, 

breed type, age and fed the same diet to ensure the most accurate results.  Our findings 

suggest that RFI evaluated as a heifer is not an accurate predictor of mature cow RFI.  

The model clearly demonstrated the need to include more variables in statistical analysis, 

once the animal has reached maturity.  A mature female goes through stages of 

production: breeding, gestating, lactating, and weaning, that may affect her feed 

efficiency.  As we hypothesized, it seems very unlikely that an animal, especially a 

female, could maintain the same feed efficiency from post-weaning to maturity.  

Therefore, RFI may be repeatable at an early age, in a feedlot setting, but post-weaning 
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RFI probably should not be used as an indicator for feed efficiency in retained females 

that will be used in a breeding program.   Further research is warranted to examine the 

repeatability between post-weaning RFI and mature cow RFI before being implemented 

into production practices. 
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CHAPTER V 

CONCLUSION 

 

 Temperament and feed efficiency have both been found to play key roles in beef 

cattle production.  Rising inputs and falling availability of resources for producers has 

catapulted them into a time where raising efficient beef cattle is more important than 

ever.  Temperamental cattle are more harmful to producers and facilities and there are a 

substantial number of studies suggesting that they do not perform as well as calmer 

cattle.  One suggestion as to the difference in performance is the contrasting reactions to 

stress.   Temperamental cattle have greater HPA axis responses, which lead to greater 

concentrations of cortisol and epinephrine released when stressed.  As a glucocorticoid, 

cortisol has a role in metabolism and with elevated concentrations inhibits the uptake of 

glucose into adipose and muscle tissue.  In these studies temperamental cattle had 

increased concentrations of cortisol that led to greater concentrations of glucose.  This 

suggests that the temperamental animals do not utilize glucose in the same way as calmer 

counterparts and this difference may account for observed reductions in performance of 

temperamental cattle.  By choosing cattle that are less temperamental, it may help 

increase performance and feed efficiency in a herd. 

The obvious variable to adjust in an effort to improve feed efficiency would be 

feed intake, as nearly 68%-71% of the costs of raising cattle is in feed (USDA,ERS, 

2011b).  Initially F:G ratio was used to categorize efficiency in cattle, but a short time 

later it was found to be detrimentally flawed and counteracting the goals of producers.  
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Residual feed intake was then proposed as an alternative calculation to F:G.  The lack of 

correlation between RFI and BW and growth rate deemed it a more appropriate 

measurement of feed efficiency, which may, more closely follow the goals of beef cattle 

producers.  RFI has also been found to be moderately heritable and is beginning to be 

used as a selection tool for herd sires that have been evaluated for RFI.  However, 

producers should take caution when selecting for RFI as there is a paucity of research 

done comparing RFI to other economic traits and performance in cattle retained in 

breeding herds. 

 When evaluating for RFI careful consideration should be taken when choosing a 

cohort. RFI is a cohort driven calculation and multiple research studies have published 

work on the inappropriateness of comparing cattle of divergent sex, age, breed, and also 

in differences between environment, feed type, physiological state, etc.  Studies suggest 

that animals will have differing maintenance energy requirements at different stages of 

production. This follows suit to the results found in this study that RFI was not correlated 

between post-weaning and mature cows.  The study suggests that RFI cannot overcome 

the differences in maintenance energy requirements between physiological ages and 

states and therefore may not be an accurate predictor of feed efficiency in mature cattle.   

Other studies have found RFI repeatable in young cattle; however, this does not 

accurately depict the feed efficiency of cattle that will be retained for breeding herds.  

More research is warranted to know if RFI can be used as a selection tool for feed 

efficiency. 
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  As for RFI, contradicting results between studies coupled with the large time 

commitment and cost associated with testing cattle leaves more work to be done.  It can 

be concluded that the effect that temperament plays on glucose utilization is part of a 

more intricate system.  Further research is needed to discover other pathways that could 

be affecting the performance of temperamental cattle.  Further research is needed to build 

a better understanding of feed efficiency and to detect possible markers of feed efficiency 

in an effort to decrease the cost and time required for testing.  
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APPENDIX A 

 

INSULIN RADIOIMMUNOASSAY PROCEDURES 

(Siemens, TKIN2) 

 

Materials Supplied In the Kit: 

1. Insulin Ab-Coated Tubes (Protect from moisture by resealing storage bags after use, 

store at 4º C.) 

2. 
125

I Insulin (Stable at 4º C for 30 days after iodination- check date on vial) 

3. Insulin Standards 

 Processed in nonhuman serum. Seven vials, labeled A through G, of lyophilized 

processed in nonhuman serum. At least 30 minutes before use, reconstitute the 

zero calibrator A with 6.0 mL of distilled or deionized water, and each of the 

remaining calibrators B through G with 3.0 mL of distilled or deionized water. 

Stable at -20º C for 30 days after opening. Can extend stability by freezing. 

Aliquot to avoid freeze/thaw. 

4. Use bovine serum pool for quality control.  

 

Materials Required But Supplied By Kit: 

1. Gamma counter: Compatible with standard 12x75 mm tubes 

2. Vortex mixer 

3. 12 x75 mm assay tubes 

4. Micropipettes and compatible disposable tips: Rainin P200 and P1000 

5. Water bath that can hold constant 37º C 

6. Foam decanting racks and reservoir and radioactive work space 

7. Distilled or deionized water 

8. Graduated cylinder: 100 mL 

9. Volumetric pipets: 3.0 mL and 6.0 mL 

 

Radioimmunoassay Procedure: 

1. Allow all components to warm to room temperature.  

2. Label four uncoated 12 x 75 mm polypropylene tubes as follows: NSB (nonspecific 

binding) and T (total counts) in duplicate.  

3. Label fourteen Insulin Ab-Coated Tubes as A (maximum binding) and B through G in 

  duplicate for standards.  
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Standard   

Approximate μIU/mL 

1st IRP [66/304] 

 A (MB) 

 

0 

 B* 

 

5 

       C 

 

15 

 D 

 

50 

 E 

 

100 

 F 

 

200 

 G   350 

  

4.  Preparation of extra standards: 

 0.125 ug/dL:  Add 50 ul of 0 ug/dL standard to 50 ul of 0.25 ug/dL standard. 

 0.25 ug/dL:  Add 50 ul of 0 ug/dL standard to 50 ul of 0.5 ug/dL standard. 

0.5 ug/dL:  Add 50 ul of 0 ug/dL standard to 50 ul of 1 ug/dL standard.  

 2. 5 ug/dL:  Add 50 ul of 0 ug/dL standard to 50 ul of 5 ug/dL standard. 

5.  Label pooled control and unknown sample Ab-coated tubes in duplicate. 

6. Pipette 200 μL of the 0 ug/dL standard into the NSB and A tubes. Pipette 200 μL of 

each remaining standard, pooled control or unknown sample into the labeled tubes. 

PIPETTE DIRECTLY TO BOTTOM OF TUBE.  
7. Add 1.0 mL of 

125
I Insulin to every tube and vortex.  

(Addition of samples and tracer should be completed with minimal delay, with no 

more than 40 minutes elapsing between the addition of the first sample and the 

completion of the tracer addition.) 

8. Incubate for 18-24 hours at room temperature 

9. Decant thoroughly. Remove all visible moisture by patting inverted tubes.  

10. Count for 1min on gamma counter.   

11. Use Assay Zap (Biosoft, Cambridge, UK) to calculate unknown concentrations 

against standard curve.  
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APPENDIX B 

 

CORTISOL RADIOIMMUNOASSAY PROCEDURES 

(Siemens, TKCO2) 

 

Materials Supplied 

1. Cortisol Ab-Coated Tubes (Protect from moisture by resealing storage bags after use, 

store at 4º C.) 

2. 
125

I Cortisol (Stable at 4º C for 30 days after ionization- check date on vial) 

3. Cortisol Standards 

 Processed in human serum. Stable for 30 days after opening. Can extend stability 

by freezing. Aliquot to avoid freeze/thaw.  

4. Pooled bovine serum pool for quality control sample.  

 

Materials Required But Not Supplied 

1. Gamma counter compatible with 12 x 75 mm tubes 

2. Vortex 

3. 12 x 75mm assay tubes 

4. Micropipettes and compatible disposable tips: Rainin P200 and P1000 

5. Water bath that can hold constant 37º C 

6. Foam decanting racks and reservoir and radioactive work space 

 

Radioimmunoassay Procedure 

1. Allow all components to warm to room temperature.  

2. Label four uncoated 12 X 75 mm polypropylene tubes as follows: NSB (nonspecific 

binding) and T (total counts) in duplicate.  

3. Label 12 Ab-coated tubes as A-H (2 extra standards) in duplicate for standards. 

5. Preparation of extra standards: 

 0.125 ug/dL:  Add 50 ul of 0 ug/dL standard to 50 ul of 0.25 ug/dL standard. 

 0.25 ug/dL:  Add 50 ul of 0 ug/dL standard to 50 ul of 0.5 ug/dL standard. 

0.5 ug/dL:  Add 50 ul of 0 ug/dL standard to 50 ul of 1 ug/dL standard.  

 2. 5 ug/dL:  Add 50 ul of 0 ug/dL standard to 50 ul of 5 ug/dL standard. 

6. Label pooled control and unknown sample Ab-coated tubes in duplicate. 

 7.  Pipette 25 ul of the 0 ug/dL standard into the NSB and A tubes. Pipette 25 ul of each 

remaining standard, pooled control or unknown sample into the labeled tubes. 

PIPETTE DIRECTLY TO BOTTOM OF TUBE.  

8.  Add 1mL of 
125

I Cortisol to every tube and vortex.  

9.  Cover tubes with foil and incubate for 45min at 37º C.  

10. Decant thoroughly. Remove all visible moisture by patting inverted tubes.  

11. Count for 1 min on gamma counter.   

12. Use Assay Zap (Biosoft, Cambridge, UK) to calculate unknown concentrations 

against standard curve.  
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APPENDIX C 

 

GLUCOSE COLORIMETRY PROCEDURES 

(WAKO Autokit Glucose, 439-90901)  

 

Materials Supplied: 

1. Buffer Solution         2 x 

150 mL 

60 mmol/L Phosphate buffer (pH 7.1) containg 5.3 mmol/L Phenol. 

Store at 2-10ºC 

2. Color Reagent (When reconstituted)             2 x for 

150 mL  

Contain 0.13 U/mL Mutarotase, 9.0 U/mL Glucose oxidase, 0.65 U/mL Peroxidase, 

0.50 mmol/L 4-Aminoantipyrine, 2.7 Ascorbate oxidase. 

Store at 2-10ºC 

3. Standard Solution I           1 x 10 mL 

Containing 200 mg/dL Glucose. 

Store at 2-10ºC 

4. Standard Solution II           1 x 

10 mL 

Containing 500 mg/dL Glucose. 

Store at 2-10ºC 

 

Working Solution: 

Dissolve the entire contents of one bottle (for 150 mL) of Color Reagent in one bottle 

150 mL of Buffer Solution. This solution is stable for one month at 2-10º C. 

 

Materials Required But Not Supplied: 

1. Pippettes 

2. Water bath that can hold constant 37º C 

3. Spectrophotometer 

 

Test Procedure: 
 

Wavelength: 505*
1  

Light path: 1 cm 

Temperature: 37º C 
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      Sample (S) Standard (Std) Blank (BL)   

Pipette into a cuvette         

Sample 

 

(uL) 6.7 -- *2 

 Standard 1 or 2 (mL) -- 0.02 -- 

 Working Solution (mL) 3 3 3   

Mix well, incubate for 5 minutes and measure the absorbance of S (As) 

and Std (Astd) against Bl (Abl) at 505 nm 

 

1.Accurately pipette 0.02 mL of sample or standard into the1.0 mL cuvettes (test 

tubes) 

2.Add 3.0 mL of working solution. 

3.Mix, incubate for 5 minutes and measure the absorbance of Sample (As) and 

Standard (Astd) against Blank (Abl) at 505 nm. 

*1 When measure with two wavelengths λ1/ λ2 = 505/600 nm 

*2 The omission of 0.2 mL of water does not significantly affect the absorbance 

measured.  

 

Results: 

Concentrations are determined using the following equation as supplied by the kit 

protocol: 

 

Glucose (mg/dL) = AS/AStd x CStd 

AS = Absorbance of sample 

AStd = Absorbance of Standard I or II 

CStd = Concentration of Standard I or II in mg/dL 
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