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ABSTRACT 

 

Studying Clouds and Aerosols with Lidar Depolarization Ratio and Backscatter 

Relationships. (December 2011) 

Hyoun Myoung Cho, B.S., Seoul National University, South Korea; 

M.S, Seoul National University, South Korea 

                 Co-Chairs of Advisory Committee: Dr. Ping Yang
                                    Dr. Shaima L. Nasiri

 

 

This dissertation consists of three parts, each devoted to a particular issue of 

significant importance for CALIPSO lidar observation of depolarization ratio (δ) and 

backscatter (γ′) to improve current understanding of the microphysical properties of 

clouds and aerosols. The relationships between depolarization ratio and backscatter 

allow us to retrieve particle thermodynamic phase and shape and/or orientation of 

aerosols and clouds. 

The first part is devoted to the investigation of the relationships between lidar 

backscatter and the corresponding depolarization ratio for different cloud classifications 

and aerosol types. For each cloud and aerosol types, layer-averaged backscatter and 

backscattering depolarization ratio from the CALIPSO measurements are discussed. The 

present results demonstrate the unique capabilities of the CALIPSO lidar instrument for 

determining cloud phase and aerosols subtypes. 

In the second part, we evaluate the MODIS IR cloud phase with the CALIPSO 

cloud products. The three possible misclassifications of MODIS IR cloud phase 
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algorithm, which are studied by Nasiri and Kahn (2008) with radiative transfer 

modeling, are tested by comparing between MODIS IR phase and CALIOP 

observations. The current results support their hypotheses, which is that the MODIS 

phase algorithm may tend to classify thin cirrus clouds as water clouds or mixed phase 

clouds or unknown, and classify midlevel and/or mid-temperature clouds as mixed or 

unknown phase. 

In the third part, we present a comparison of mineral dust aerosol retrievals from 

two instruments, MODIS and CALIPSO lidar. And, we implement and evaluate a new 

mineral dust detection algorithm based on the analysis of thin dust radiative signature. In 

comparison, three commonly used visible and IR mineral dust detection algorithms, 

including BTD procedure, D parameter method, and multi-channel image algorithm, are 

evaluated with CALIPSO aerosol classification. The comparison reveals that those dust 

detection algorithms are not effective for optically thin dust layers, but for thick dust 

storm. The new algorithm using discriminant analysis with CALIPSO observation is 

much better in detecting thin dust layer of optical thickness between 0.1 and 2. 
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1. INTRODUCTION  

 

1.1 Clouds and Aerosols and Their Role in Climate 

Aerosols and clouds play an important role in the planetary radiation energy 

budget. Aerosols and clouds interact with both solar and infrared radiation. Clouds 

reduce the incoming solar energy by reflecting sunlight back to space, which result in 

cooling the earth surface. At the same time, clouds reduce the outgoing thermal radiation 

by absorbing the energy emitted by the earth’s surface, leading to a warming of the 

atmosphere. The net effect of these cooling and warming effects depends on several 

factors, including the cloud fraction, lifetime, the altitude, temperature and transparency 

of the cloud layers, their thermodynamic phases and their multilayer structures (Wielicki 

et al. 1995). Aerosols also scatter sunlight back to space and absorb the radiation directly 

as clouds (Ångström 1962; McCormick and Ludwig 1967). In addition to the direct 

effect, aerosols can affect the earth’s climate indirectly through the modification of cloud 

albedo (Twomey 1974), and the modification of the vertical thickness and horizontal 

extent of clouds, possibly leading to the so-called cloud-lifetime effect (Albrecht 1989; 

Pincus and Baker 1994). Because aerosol particles can act as cloud condensation nuclei 

(CCN), increase in aerosol concentration can increase the number of droplets, so that the 

average size of the droplets decreases. Therefore, the aerosols prevent the cloud from 

raining out and extend its lifetime, because smaller droplets do not fall to the ground. 

However, the estimation of these cloud and aerosol effects on climate is not 
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straightforward. To estimate these effects, the concept of radiative forcing is widely 

used. The radiative forcing of cloud and aerosol is effective parameter in studying the 

interaction between the radiation and cloud/aerosol and in diagnosing model simulations. 

The uncertainty in cloud and aerosol forcing comes from the compatibility between 

observation and theoretical computation. For instance, the cloud radiative forcing in 

theory is supposed to represent the radiative effects of cloud alone, but in reality it is 

influenced by factors other than clouds such as clear sky background conditions 

including aerosols and water vapor. And the accurate determination of aerosol radiative 

effect is also difficult because of complexities in optical and chemical properties of the 

aerosols, and in the transport and cloud modification process. Thus, it is clear that 

accurate measurements of cloud and aerosol are important to quantify radiative forcings. 

 

1.2 Passive Remote Sensing of Cloud Phases and Mineral Dust Aerosols 

Satellite measurements can be used to infer cloud and aerosol properties, 

including feature top height/pressure/temperature, optical thickness, and effective 

particle size globally. However, significant errors in estimating the cloud and aerosol 

radiative forcing can be introduced by uncertainties in the satellite cloud and aerosol 

products. Thus, it is important to evaluate the quality of cloud and aerosol products 

inferred from satellite observations. Passive remote sensing of clouds and aerosols 

currently focuses on multi-spectral approaches. These approaches are based on the 

assumption that scattering or absorption by atmospheric particles can occur dominantly 

in some wavelengths. To retrieve a given cloud or aerosol property, algorithms employ 
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the bands that effectively utilize the information content. For example, combination of 

two bands centered at visible (VIS) and shortwave-infrared (SWIR) wavelengths can be 

used to infer cloud optical thickness and effective particle size (Nakajima and King 

1990). To retrieve cloud top pressure (CTP) for mid to high clouds, bands located within 

the 15µm CO2 absorption region can be used (the CO2 slicing technique), while low-

level cloud top temperature (CTT) can be retrieved by using the IR window band 

(Menzel et al. 2006, 2008; Platnick et al. 2003). Since these cloud and aerosol products 

are inferred from different spectral bands, and sometime different instruments, it is 

necessary to examine the consistency between the retrieved products. 

The cloud thermodynamic phase is critical to infer the accurate optical and 

microphysical properties of clouds, and to determine radiative forcing because the 

radiative properties of clouds vary with their phases. In passive remote sensing, the 

spectral absorption difference between visible (VIS) and shortwave infrared (SWIR) 

wavelengths is widely used to determine the cloud thermodynamic phase (Pilewskie and 

Twomey 1987; Riédi et al. 2000; Knap et al. 2002; Platnick et al. 2003; Pavolonis et al. 

2005; Chylek et al. 2006). The brightness temperature differences between three IR 

window channels centered at 8.5, 11, and 12 µm are also often used for discriminating 

cloud thermodynamic phase (Baum et al. 2000). 

In the climate study of atmospheric aerosols, mineral dust aerosols, composed of 

soil particles lifted into the atmosphere by wind, are important because they contribute 

significantly to the global aerosol loading (Duce et al. 1991). In terms of mass, mineral 

dust aerosol is the largest one of all aerosol types, comparable only to sea salt (Zender et 
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al. 2004). Thus, the climatic effects of mineral dust are potentially large. Mineral dust 

also affects air quality and cloud formation. Recent studies (Dunion and Velden 2004; 

Evan et al. 2006a) showed the dust storm could affect the formation and evolution of 

hurricane. 

Due to the importance of mineral dust aerosols in climate and environment, the 

use of remote sensing is required for providing more information about mineral dust 

aerosols on the both regional and global scale. Various algorithms have been developed 

to separate dust aerosols from clear and cloud pixels in a wide range of wavelengths 

from ultra-violet (UV) to infrared (IR) with various sensors. For example, the index of 

UV-absorbing aerosols (Aerosol Index; AI), provided by Ozone Monitoring Instrument 

(OMI) onboard Aura satellite, can be used to detect dust and smoke (Herman et al. 1997; 

Torres et al. 1998, 2007). Many researchers (Tanré and Legrand 1991; Kaufman et al. 

2000; Miller 2003; and Qu et al. 2006) have used visible (VIS) / near IR (NIR) band 

ratios to detect dust. The brightness temperatures from thermal IR wavelengths can be 

also used (Shenk and Curran 1974; Ackerman 1989, 1997; Legrand et al. 1989, 2001; 

Wald et al. 1998; Darmenov and Sokolik 2005; and Hao and Qu 2007). And more 

complex algorithms using combinations of VIS/NIR and TIR wavelengths are proposed 

by several researchers (Roskovensky and Liou 2005, Hansell et al. 2007; and Zhao et al. 

2010). Martins et al. (2002) pointed out that the spatial variability could be used to 

discriminate homogeneous dust layers from clouds. They found that clouds tend to have 

much complex spatial structure than aerosols due to the complicated dynamic and 

thermodynamic processes in cloud evolution. On the other hands, dust layers apart from 
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its source regions tend to have homogeneous structure except for dense dust storm cases. 

 

1.3 Issues, Challenges and New Opportunities 

As mentioned in the previous subsection, satellite-based remote sensing of clouds 

and aerosols requires good understanding of several different aspects as well as the 

knowledge of radiative transfer process and retrieval methods. Cloud radiative properties 

and cloud life cycle are influenced by the cloud thermodynamic phase (Sun and Shine 

1994; Harrington et al. 1999; Yoshida and Asano 2005; Ehrlich et al. 2008). Because the 

cloud phases and aerosol types are difficult to predict in weather prediction and climate 

models, uncertainty in these parameters may lead to large errors in estimates of 

precipitation and the strength of the circulation (Chylek et al. 2006). For climate studies, 

the monitoring of cloud microphysical and optical properties as well as aerosol-cloud 

interactions is essential. 

Because cloud phase directly impacts the hydrometeor types (rain, snow, hail, 

etc.), the accurate determination of cloud thermodynamic phase is critical in 

precipitation processes in atmospheric model. The cloud thermodynamic phase is also 

important for retrieving the optical and microphysical properties of clouds. In addition to 

cloud phases, the particle shapes in ice clouds are also important to determine cloud 

radiative forcing because the radiative properties of cloud particles vary widely 

according to their shapes (Liou 2002; Yang et al. 2005). For cloud radiative property 

calculation, the cloud particles have been usually categorized into two kinds of shape 

(i.e. spherical and non-spherical shapes; Fu 1996). Several field experimental researches 
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(Stephens et al. 1990; Stackhouse and Stephens 1991) show that the asymmetry factor of 

non-spherical particle is significantly smaller than that of spherical particle. Because of 

large differences in the radiative properties between spherical and non-spherical ice 

particles, inaccurate representation of cloud particle shapes can lead to systematic biases 

in climate model simulation (Senior and Mitchell 1993; Ho et al. 1998). 

In passive satellite remote sensing of cloud-phase, the most widely used one is 

the Moderate Resolution Imaging Spectroradiometer (MODIS) bispectral IR phase 

product (Platnick et al. 2003). However, Nasiri and Kahn (2008) recently discussed 

several limitations of the MODIS IR algorithm by the radiative transfer modeling study. 

They point out the potential misclassification for 1) MODIS to classify optically thin 

cirrus clouds as water clouds, 2) MODIS to classify optically thin cirrus clouds as mixed 

or unknown phase, and 3) opaque ice clouds composed of small particles to be classified 

as water clouds and that it was likely that 4) midlevel (approximately 4–7 km) or mid-

temperature water or ice clouds would be classified as mixed phase or unknown. Here 

the term “mid-temperature” refers to temperatures at which water, ice, or mixed phase 

particles could coexist—roughly between 250 and 265 K. 

In the mineral dust study, the net radiative impact on the climate cycle is still 

uncertain (Seinfeld et al. 2004; House et al. 2006). In fact, it is still not known whether 

mineral dust will have a net warming or cooling effect (Houghton et al. 2001). The 

overall radiative effect of dust depends on not only the single scattering albedo of the 

dust particle but to the underlying surface. For instance, dust over dark surfaces, such as 

oceans, can decrease the absorption of solar radiation, leading to a cooling effect (Tegen 
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et al. 1996), however dust over high reflective regions, such as ice, snow or desert 

surfaces, can have warming effect. Claquin et al. (2003) proposed that the high 

concentration of dust has cooling effect of the tropics. Other researcher (Overpeck et al. 

1996) found that dust accelerates deglaciation. The role of dust particle as condensation 

nuclei in cloud formation is also uncertain, however it is potentially significant 

(Rosenfeld et al. 2001; Levin et al. 1996). Therefore, an ability to quantify the amounts 

of atmospheric dust is essential to assess the magnitude of their regional impacts and 

radiative forcing. 

Studies in aerosol types by passive remote sensing were limited mainly because 

of the difficulty in classifying chemical components from the columnar measurements of 

radiances/reflectances from space (Li et al. 2009). In particular, significant problems in 

detecting mineral dust have been demonstrated in case of the clouds presence (Brennan 

et al. 2005; Darmenov and Sokolik 2005; Evan et al. 2006b). The remote sensing in 

detecting mineral dust is affected by several factors, including the radiative, 

microphysical, and optical properties of the particle, the radiative properties of the 

land/ocean surface, the presence or absence of cloud, and the sensor characteristics and 

radiative transfer model used to detect dust (Baddock et al. 2009). Problems to determine 

dust sources may occur particularly in the presence of cloud and the existence of low 

contrast between dust and land/ocean surface (Gassó and Stein 2007; Bullard et al. 

2008). 

As mentioned in the previous subsection, numerous dust detection methods have 

been developed. These dust detection algorithms were successful with varying degrees 
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depending on the observation conditions (day/night, land/ocean, etc.). In terms of aerosol 

optical thickness (AOT), the over-ocean retrieval algorithms are more accurate than that 

over land due to a little effect of the surface (Kaufman et al. 2000). However, in spite of 

these extensive researches, most of them are focused on optically thick dust storms and 

often fail to detect optically thin dust layers, because the limited vertical information 

from passive remote sensing is available, especially over the oceans. 

Fortunately, with the launch of Cloud-Aerosol Lidar and Infrared Pathfinder 

Satellite Observations (CALIPSO) having an active instrument, we are able to obtain 

better information on the particle shape and vertical profile of clouds and aerosols. The 

CALIPSO mission was developed for observing the global distribution and properties of 

aerosols and clouds (Winker et al. 2009). The CALIPSO satellite is flying in formation 

with the A-train constellation of satellites (Stephens et al. 2002), which are in a 705-km 

sun-synchronous polar orbit with crossing an equator at local time of about 1330. The 

Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP; referred to as “CALIPSO 

lidar” hereafter), a near-nadir viewing two wavelength polarization-sensitive lidar, is the 

primary instrument on CALIPSO satellite. Depolarization ratio and backscatter 

observations from the CALIPSO lidar provide valuable new information that will help to 

further understanding of the microphysical characteristics of aerosols and cloud 

particles. For example, polarized lidar returns allows evaluation of the existing cloud and 

aerosol products including cloud phase and dust detection algorithms as independent 

datasets. 
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The main theme of this research is to improve current understanding of the 

microphysical properties of aerosols and clouds by using newly available global 

observations of lidar depolarization ratio and backscatter relationships. These 

relationships allow us to retrieve particle thermodynamic phase and shape and/or 

orientation of aerosols and clouds. The rest of this dissertation is organized into three 

major sections, each devoted to a particular issue that has been briefly introduced in the 

previous subsection. 

In section 2, we present the relationships between lidar backscatter and the 

corresponding depolarization ratio for different cloud classifications and aerosol types. 

For each cloud and aerosol types, layer-averaged backscatter and backscattering 

depolarization ratio from the CALIPSO measurements are discussed. In section 3, we 

evaluate the MODIS IR cloud phase with the CALIPSO cloud products. The three 

possible misclassifications of MODIS cloud phase mentioned in radiative transfer 

modeling study by Nasiri and Kahn (2008) are tested. In section 4, we investigate the 

radiative signature of mineral dust. Three commonly used visible and IR mineral dust 

detection algorithms are evaluated with the CALIPSO classification of aerosol particle 

from depolarization ratio and backscatter relationship. And, the MODIS radiative 

signatures of optically-thin dust layer over ocean are investigated. Based on the 

investigation of thin dust signature, a new dust detection algorithm using discriminant 

analysis is introduced and evaluated. The final section summarizes the results from the 

previous sections. 
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2. DEPOLARIZATION RATIO AND BACKSCATTER RELATIONSHIPS* 

 

The lidar, which stands for Light Detection And Ranging, is important tool in 

remote sensing of the atmosphere. Through the backscattering lidar technique, lidar can 

provide the information about the composition and structure of clouds, aerosols, and 

minor gases. Since the development of backscattering lidar technique, more advanced 

techniques of lidar have been developed, including differential absorption technique, 

Doppler technique, and depolarization technique. The differential absorption technique, 

which utilizes multiple wavelengths, is used for detecting the composition of minor 

gases (Higdon et al. 1994). The Doppler technique is used for determining the motion of 

particles and air molecules (McGill et al. 1997). The microphysical properties of 

atmospheric particles can be obtained by the depolarization technique (Liou and Lahore 

1974) from the measurements of polarization lidar. This study focuses on this 

polarization lidar observation. 

  

2.1 Polarization Lidar 

A polarization lidar is one of the most powerful remote sensing tools for 

understanding aerosols and clouds. Since the first publication about polarization lidar 

cloud measurements was published by Schotland et al. (1971), several research 

                                                 
*Reprinted with permission from “Depolarization ratio and attenuated backscatter for 
nine cloud types: analyses based on collocated CALIPSO lidar and MODIS 
measurements” by H.-M. Cho, P. Yang, G. W. Kattawar, S. L. Nasiri, Y. Hu, P. Minnis, 
C. Trepte, and D. Winker, 2008. Optics Express, 16(6), 3931−3948, Copyright by the 
Optical Society 
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programs, including the First International Satellite Cloud Climatology Project Regional 

Experiment (FIRE), the Experimental Cloud Lidar Pilot Study (ECLIPS), Atmospheric 

Radiation Measurement (ARM), the Arctic Facility for Atmospheric Remote Sensing 

(AFARS) and the Lidar In-space Technology Experiment (LITE), were conducted to 

demonstrate the use of polarization lidar for atmospheric research. 

The laser backscatter depolarization technique (Sassen 1991, 2000) was one of 

the earliest applications of lidar for cloud and climate study. Polarization lidar 

measurements provide the information about particle shape and orientation for cloud and 

aerosol. The basic principle of depolarization can be explained by ray-tracing theory, as 

shown in Fig. 2.1. Spherical scatters, such as water droplets, backscatter the incident 

rays through a number of possibilities: the edge rays; a central ray that undergoes 

external reflection; and two refractions, none of which change the incident polarization 

state. However, nonspherical particle, such as ice crystals, normally comes out after 

several internal reflections that transform the incident electric vectors, leading to 

depolarization. The ratio of parallel and perpendicular components of backscattered light 

from the linearly polarized source is referred to as the linear backscattering 

depolarization ratio. 

The depolarization principle has been supported by field and laboratory 

measurements (Schotland et al. 1971; Liou and Lahore 1974; Sassen 1976) for various 

types of ice crystals and water droplets. For example, Sassen (1991, 1994) presented that 

the depolarization ratio for water clouds is close to zero and that for ice crystals varies 

from 0.5 to 0.7, depending on their shape and size. This depolarization technique can be  
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Fig. 2.1 Principle of backscattering depolarization from a spherical water droplet, a 

hexagonal plate, and a solid column (From Liou, 2002). 

 

used to study the orientation properties of ice particles. In the case of a vertically 

oriented lidar involving horizontally oriented plates, the depolarization ratio would be 

zero as a result of the symmetry of the two parallel crystal surfaces with respect to the 

laser beam. 

This technique also can be used to identify the type of atmospheric aerosols 

because of its particle shape sensitivity (Sassen 2000). Spherical aerosols (e.g., haze and 

smoke particles) generate little or no change in the incident polarization state, while 

nonspherical particles (e.g., dust) can produce significant depolarization depending on 



 13 

the particle shape (Mishchenko and Sassen 1998). For example, the mineral dust particle 

from Asian dust storm shows a highly irregular shape (Okada et al. 2001) and typically 

have linear depolarization ratios of about 0.2–0.3 (Murayama et al. 2001), which is 

similar to some ice crystal clouds. 

 The depolarization technique is valid only when the signal is dominated by single 

scattering or the lidar field of view (FOV) is narrow, such as ground-based or aircraft-

based lidar. When the FOV is wide enough, such as in the case of the CALIPSO lidar 

which has a 0.13 mrad FOV receiver (90 meter footprint size), even spherical particles 

generate depolarized signal through multiple scattering events because the incident laser 

beam is transferred from the initial reference plane to the plane of scattering within the 

FOV, and therefore, partial depolarization is produced (Hu et al. 2001). Note that this 

multiple scattering effect is small for ice clouds (Reichardt and Reichardt 2003; You et 

al. 2006). 

 

2.2 CALIPSO Lidar 

This research uses polarization lidar onboard the CALIPSO satellite, which was 

launched in April, 2006. The main objective of the CALIPSO mission is to provide a 

global, multi-year data set of cloud and aerosol spatial and optical properties from which 

to assess uncertainties of aerosol direct and indirect effects on climate forcing and cloud-

climate feedback (Winker et al. 2009). To address this objective, CALIPSO satellite 

carries a two-wavelength and polarization-sensitive elastic backscatter lidar (CALIPSO 

lidar), which provides high-resolution vertical profiles of aerosols and clouds. The 



 14 

CALIPSO lidar is a key instrument in the “A-train”, a constellation of five polar-orbiting 

satellites flying in close formation (Stephens et al. 2002) as shown in Fig. 2.2. The 

CALIPSO lidar has three receiver channels. One measures the 1064 nm backscatter 

intensity. Two other channels receive orthogonally polarized components of the 532 nm 

backscattered signal, respectively.  

The CALIPSO cloud and aerosol products used in this study are the CALIPSO 

level-2 layer data. The CALIPSO data product contains information on up to 10 cloud 

layers and 8 aerosol layers within each retrieval footprint. Specifically, we use the layer-

integrated depolarization ratio (δ) and the total layer-integrated attenuated backscatter 

(γʹ′) at 532 nm, which are defined as follows: 

 , (2.1) 

 , (2.2) 

where  and  are the perpendicular and parallel components of the attenuated 

backscatter, respectively.  

The relationship between depolarization ratio and attenuated backscatter from the 

lidar measurements can be used to infer microphysical properties of aerosols and cloud 

layers (Hu et al. 2009). With the depolarization ratio, the measurement of attenuated 

backscatter gives additional information in the interpretation of the cloud layers. Platt 

(1978) and Platt et al. (1987) observed that the high backscatter could be used to  
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Fig. 2.2 The CALIPSO satellite image in ‘A-train’ (Courtesy of NASA CALIPSO web 

page: http://www-calipso.larc.nasa.gov/resources/images/a-train%28arch%29.jpg). 

 

separate the horizontally oriented ice particle from the water cloud layer having a low 

depolarization ratio. 

Hu et al. (2007) derived theoretically the relationships between CALIPSO lidar δ 

and γʹ′ for both ice and water clouds, which are schematically depicted in Fig. 2.3. Water 

clouds consisting of spherical liquid droplets have positive correlation between δ and γʹ′, 

whereas the correlations for ice clouds are negative. It should be pointed out that 

although the single water droplet does not depolarize the backscattered light, multiple 

scattering events within a water cloud do tend to depolarize lidar signals. Therefore, the 

depolarization ratio associated with water clouds increases with increasing backscatter 

and is positively correlated to the optical depth. The curves for water and ice cross each 

other near δ =0.171 and γʹ′ =0.0623. The lower right portion of the ice cloud curve 
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Fig. 2.3 Schematic curves showing the relationships (Hu et al. 2007) between the layer-

integrated depolarization ratio and layer-integrated attenuated backscatter coefficient for 

ice clouds (solid line) and water clouds (dashed line). 

 

(below the intersection with the water curve), corresponding to depolarization ratios 

between 0.3 and 0.5, is associated with ice clouds consisting of randomly oriented ice 

particles. The upper left portion of the ice curve, corresponding to high backscatter and 

small depolarization ratio values, is associated with clouds consisting of horizontally 

oriented ice crystals such as plates, or horizontally oriented ice columns, such as Parry-

oriented columns. From launch to November 2007, the CALIPSO lidar was pointed 

within 0.3º within nadir. At this orientation, the specular reflection caused by two 

horizontally-parallel faces of horizontally-oriented ice plates or Parry-oriented columns 
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leads to large backscatter. The specular reflection in this case, however, does not 

depolarize the backscattered lidar beam because the parallel and perpendicular 

components of the electric vector associated with the lidar beam are indistinguishable 

with respect to a horizontal plane. The presence of horizontally-oriented ice crystals has 

been confirmed using ground-based lidar observations. Additionally, Chepfer et al. 

(1999), using satellite-based observations by the Polarization and Directionality of Earth 

Reflectances (POLDER) instrument, found horizontally oriented ice crystals in 

approximately 40% of ice clouds. 

 

2.3 CALIPSO Lidar δ–γ′ Relations for MODIS-based Cloud Classes 

 

2.3.1 Introduction 

In this subsection, I review the work published in Cho et al. (2008). This paper 

reports on the relationship between lidar backscatter and the corresponding 

depolarization ratio for nine cloud types based on applying the International Satellite 

Cloud Climatology Project (ISCCP) cloud classification scheme to MODIS 

observations. Specifically, MODIS MYD06 cloud optical thickness and cloud top 

pressure are used to classify cloud types. For each cloud type, layer-averaged backscatter 

and backscattering depolarization ratio from the CALIPSO measurements are 

investigated. This work also considers the cloud δ-γʹ′ relation with respect to latitude and 

the cloud phases determined by the MODIS cloud-phase algorithm. 
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The MODIS retrieved cloud properties used in the present study are Collection-5 

MYD06 level-2 cloud products, specifically, optical thickness (τ), cloud top pressure 

(Ptop), cloud top temperature (CTT), and two cloud phase products. The retrieval of τ 

(King et al. 2004) is accomplished using reflectances at 2.1 µm and either 0.65, 0.8, or 

1.2 µm, depending on surface type; the retrieved product resolution is 1 km by 1 km. 

The Ptop retrievals (Menzel et al. 2008) utilize the CO2-slicing method for high and 

midlevel clouds and 11 µm brightness temperature matched to a numerical weather 

prediction model analysis vertical temperature profile for low clouds; the product 

resolution is 5 km by 5 km. The first MODIS cloud-phase product in this study is the 

operational bispectral infrared (IR) cloud phase algorithm. It uses the brightness 

temperatures at two IR channels and classifies clouds as water-, ice-, or mixed- or 

uncertain-phase at 5 km resolution. The second cloud phase product uses a multitude of 

channels and is used in the first step in the retrieval of cloud τ and effective radius. This 

product is at 1 km resolution and is denoted here as the retrieval processing path (RPP) 

phase (Platnick et al., 2003). Because the τ and RPP phase retrievals rely on reflected 

solar radiation, all of our comparisons use only daytime MODIS and CALIPSO 

observations.  

In terms of cloud top pressure and optical thickness, clouds are classified on the 

basis of the ISCCP scheme (Rossow and Schiffer 1999) as shown in Fig. 2.4. 

Specifically, a cloud is first categorized as high (50 hPa < Ptop < 440 hPa), middle (440 

hPa < Ptop < 680 hPa), or low (680 hPa < Ptop < 1000 hPa). Each cloud-top pressure 

category is further categorized into one of three sub-types based on cloud optical 
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thickness (τ). For example, high clouds consist of cirrus clouds (0 < τ < 3.6), cirrostratus 

clouds (3.6 < τ < 23), and deep convective clouds (23 < τ < 379). Similarly, middle 

clouds are categorized as altocumulus, altostratus, and nimbostratus with respect to the 

three optical thickness ranges, whereas low clouds are categorized as cumulus, 

stratocumulus, and stratus. It should be stressed that these cloud classifications are based 

only on retrieved cloud top height and optical thickness, and therefore vary from other 

meteorological uses of the class categories. 

 

 

Fig. 2.4 The ISCCP cloud classification scheme. 
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2.3.2 δ–γ′ relation for different cloud types 

 In this subsection, the data come from 12 months (July 2006 - June 2007) of 

collocated MODIS Level-2 MYD06 cloud products and CALIPSO Level-2 1-km cloud 

layer products. The collocation is based on matching the CALIPSO pixels to the nearest 

MODIS pixels for both 1 km and 5 km MODIS resolutions. For those MODIS variables 

with a resolution of 5 km by 5 km, approximately 5 CALIPSO pixels correspond to the 

same MODIS properties. In each figure, the δ–γ′ relation is plotted for each cloud class 

with color representing the number of occurrences for a Δδ–Δγ′ box with 0.01 (for Δδ) 

by 0.002 sr-1 (for Δγ′) interval. 

The δ–γ′ relation for the uppermost layers over the entire one year dataset is 

shown in Fig. 2.5. In total, 4353 daytime CALIPSO granules are used in this study. At 

daytime, there are 14 to 15 CALIPSO granules per day. A daytime CALIPSO granule 

consists of approximately 21,000 pixels. The clusters of high observation occurrence 

match well to the theoretical water and ice cloud curves shown in Fig. 2.3. Note that the 

δ–γ′ patterns for high clouds (cirrus, cirrostratus, and deep convection), altostratus, and 

nimbostratus are similar to those shown by Hu et al. (2007) for the case where the 

CALIPSO lidar was pointed at 0.3° of nadir. All CALIPSO lidar data used in this study 

are pointed at 0.3° of nadir.  

For the δ–γ′ relationship for high clouds, the feature associated with randomly 

oriented ice crystals (i.e. low backscatter portion of each panel) dominates, particularly 

in the cirrus class. However, the feature associated with horizontally oriented crystals 

(i.e. upper left portion) is prominent for the mid to high optical thickness cases of  
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Fig. 2.5 The CALIPSO lidar δ–γ′ relationships for nine ISCCP cloud types, as classified 

using MODIS data. Observations are over 12 months, from July 2006 to June 2007. The 

color of each pixel represents the frequency of occurrence for a Δδ–Δγ′ box with 0.01 by 

0.002 sr-1 interval. 
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cirrostratus, deep convection, altostratus, nimbostratus and stratocumulus. The layer-

integrated attenuated backscatter values for thick clouds are larger than those for thin 

clouds because γ′ is proportional to cloud thickness. However, the differences between 

the results for cirrostratus clouds and deep convection are smaller than the counterparts 

for cirrus and cirrostratus clouds. This feature is primarily due to the attenuation of 

backscatter within clouds. However, the depolarization ratio in the case of ice clouds 

consisting of randomly oriented ice crystals is not sensitive to optical depth. The 

variation of the depolarization ratio is primarily due to different ice crystal habits. 

Figure 2.5 also shows clusters with the positive slope feature associated with 

water clouds in Fig. 2.3. This feature is dominant in the low cloud classes, implying, as 

expected, that these low clouds tend to be water-phase. However, signatures associated 

with both ice and water clouds are found in the midlevel (altostratus, in particular) and 

high cloud classes. These results are not surprising for the midlevel cloud classes, as in 

situ observations show that midlevel clouds can be composed of super-cooled liquid 

water droplets, ice crystals, or a mixture of both ice and water. The water cloud 

signatures in the high cloud classes may be due to supercooled-water as the temperatures 

at 440 hPa in standard tropical and midlatitude summer atmospheres are between 258 

and 256 K (McClatchey et al. 1972). For the highest cloud classes, though, we also have 

to consider the possibility of cloud height misclassification by MODIS, or horizontal 

inhomogeneities at smaller scales than the MODIS 5x5 km product resolution. If high 

ice clouds and low level water clouds both exist, not necessarily overlapping 

geometrically, within a 5 km x 5 km MODIS footprint, they may be assigned a high 
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cloud height by MODIS, while CALIPSO may see individual water clouds and ice 

clouds. 

Many pixels corresponding to small backscatter values in Fig. 2.5 are likely 

caused by thin cirrus clouds or the uppermost thin clouds in the case of multi-layered 

clouds. MODIS cloud-height retrievals have difficulty in cases of optically thin clouds 

and multi-layered clouds. According to Weisz et al. (2007), there are relatively large 

differences between MODIS and CALIPSO cloud-top height retrievals, particularly for 

thin cirrus clouds. In the MODIS cloud top retrievals, very thin cirrus clouds (low γ′ 

values) that are not detected by MODIS may be incorrectly classified as a cloud type 

associated with a lower layer. To avoid the potential ambiguity caused by mismatching 

cloud top retrievals and overlapping clouds in the cloud phase features shown in the 

CALIPSO δ–γ′ relation, we screened both the MODIS and CALIPSO data to eliminate 

cases in which the CALIPSO lidar detected multi-layered clouds.  

Cloud top heights of the uppermost CALIPSO layers were converted to pressures 

using the National Centers for Environmental Prediction (NCEP) re-analysis profiles 

interpolated to CALIPSO grids. Table 2.1 lists the mean pressure difference (MPD) and 

the standard deviation (SD) of the differences between the cloud top pressures obtained 

from MODIS and CALIPSO during the daytime in August 2006. The quantities MPD 

and SD are defined as: 

 

€ 

MPD =
1
N

Pi,MODIS − Pi,CALIPSO( )
i=0

N

∑ , (2.3) 

and  
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€ 

SD =
1

N −1
Pi,MODIS − Pi,CALIPSO( ) −MPD( )

2

i=0

N

∑ , (2.4) 

respectively. In Eqs. (2.3) and (2.4), N indicates the total number of the pixels. It is 

evident from Table 2.1 that the screened data sets show a smaller MPD and SD values in 

comparison with the unscreened case. 

 

Table 2.1 Statistics of the differences between the MODIS and CALIPSO cloud-top 

pressure retrievals. 

 
Number of 

Pixels 
MPD (hPa) SD (hPa) 

Uppermost 

layers 
5429675 67.2 170.2 

Single-layers 3772072 29.5 155.4 

 

 

Figure 2.6 shows the histograms of the difference between the MODIS and 

CALIPSO cloud height retrievals in terms of cloud-top pressure difference. The left 

panel shows the histogram in terms of number of pixels versus the cloud-top pressure  

difference. Because the unscreened case has more pixels than the screened case (see 

Table 2.1), the histogram curve of the unscreened case is higher than of the screened 

case. The right panel shows the normalized frequency of the distribution of the 

difference between the MODIS and CALIPSO cloud height retrievals. Here the 

normalized frequency is defined as the ratio of the number of pixels in each histogram 
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bin shown in the left panel of Fig. 2.6 to the number of total pixels involved in the 

statistics. The right panel of Fig. 2.6 shows that the peak of the curve is located at 

€ 

PMODIS − PCALIPSO ≈10hPa  in the screened case whereas the peak of the normalized 

frequency in the unscreened case is shifted to 

€ 

PMODIS − PCALIPSO ≈ 30hPa . While, the 

normalized frequencies in the screened and unscreened cases look quite similar, it is 

clear that the MODIS results agree better with the CALIPSO retrievals in the case of 

single-layered clouds than in the unscreened case where multi-layered clouds exist. 

 

 

 

Fig. 2.6 Histogram and normalized frequency of the difference between the MODIS and 

CALIPSO cloud top pressure retrievals during daytime in the August of 2006. 
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As the screened counterpart of Fig. 2.5, Fig. 2.7 shows the δ–γ′ relations for 

global single-layered clouds. Overall, the features shown in the δ–γ′ relations in the 

screened (Fig. 2.7) and unscreened (Fig. 2.5) cases are similar. However, the major 

difference between the results shown in Figs. 2.5 and 2.7 is that small values of 

attenuated backscatter are eliminated for both water and ice features in the screened 

case, particularly for moderate and thick clouds. As already explained, small backscatter 

may be due to the presence of multi-layered clouds containing thin uppermost layers that 

MODIS does not detect. It is evident from Fig. 2.7 that weak features associated with 

thin ice layers (i.e., pixels with low γ′ values) are still observed in cumulus and 

stratocumulus classes. 

To investigate the dependence of the cloud δ–γ′ relationship on geographic 

location, we investigate the δ–γ′ relationship for three latitude regimes: tropics (30°S to 

30°N), midlatitudes (30°N to 60°N and 30°S to 60°S), and high latitudes (60°N to 90°N 

and 60°S to 90°S). The complete dataset, multiple cloud layers have not been screened 

out, is used for the geographic analysis. The results for the tropical region are shown in 

Fig. 2.8. In the tropical region only water phase features are observed for low and middle 

clouds; however, both water and ice features with patterns quite similar to those shown 

in the high cloud classes in Fig. 2.5 are observed in the case of tropical high clouds. 

Horizontally oriented crystals are present only in the cirrostratus cloud class. The 

majority of the tropical high cloud observations show signatures of randomly oriented 

ice crystals with depolarization ratios between 0.3-0.5. In situ observations of tropical 

ice clouds show that the shapes of ice crystals within tropical ice clouds, especially those 
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associated with strong deep convection, can be complicated and irregular. Irregular ice 

crystal shapes would lead to high depolarization ratios and low backscatter values, which 

could explain the absence of an oriented crystal signature in Fig. 2.8 except for the 

cirrostratus class. 

 

 

Fig. 2.7 Same as Fig. 2.5 except for single-layer clouds identified from the CALIPSO 

data. 
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Fig. 2.8 The δ–γ′ relations for nine cloud types in the tropical region from 30°S to 30°N. 

 

The δ–γ′ relations for the midlatitude regime are shown in Fig. 2.9. For the 

midlatitude cases, ice signatures are seen in all the cloud classes except for stratus; water 

signatures are seen in all of the classes. Signatures corresponding to horizontally 

oriented ice crystals are found more often in the midlatitude cases than in the tropics, 

and are strongest in the moderate optical thickness classes. Differing from the tropical  
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Fig. 2.9 The δ–γ′ relation for nine cloud types in the midlatitudes (30°S-60°S and 30°N-

60°N). 

 

cloud systems shown in Fig. 2.8, both water and ice phases are observed in midlatitude 

mid-level clouds. The lack of ice feature in the mid-level tropics may be explained by 

different temperature ranges with respect to latitude bands. A pressure range of mid-
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level (440 to 680 hPa) in the midlatitude will cover lower temperature ranges than in the 

tropics, so the mid-level clouds in the midlatitude regions might contain more ice phase 

crystals. Additionally, the ice-phase feature is also weakly shown in the δ–γ′ relationship 

for the midlatitude nimbostratus and stratocumulus cloud classes. Furthermore, it is 

evident from Fig. 2.9 that horizontally oriented ice crystals are present in midlatitude 

cirrostratus, deep convection, altostratus, nimbostratus, and stratocumulus classes. 

Pristine ice crystals have been observed in the midlatitudes by aircraft or balloon-borne 

instruments. If pristine ice plates or columns are horizontally oriented, the corresponding 

depolarization ratios are low. The existence of ice and water cloud signatures in the 

midlevel cloud classes may point to mixed-phase clouds, which occur frequently in the 

midlatitudes, and/or separate cases of water phase and ice phase clouds. 

The δ–γ′ relations for the polar regions are shown in Fig. 2.10. Overall, the 

patterns shown in Figs. 2.9 and 2.10 are quite similar. However, the high cloud classes, 

especially the deep convection class, occur less frequently in the polar regions than in 

the tropics and midlatitudes. Both water and ice signatures are found in all of the polar 

classes except for the stratus and cumulus classes. The cirrostratus class has the largest 

fraction of ice signature, most of which is randomly oriented. Similar to the midlatitude 

case, all of the moderate optical thickness classes demonstrate the oriented crystal 

feature. It should be pointed out that the polar region MODIS cloud classes may have 

more errors than the tropical and midlatitude classes due to the difficulties in MODIS 

cloud detection and cloud property retrieval over cold, bright surfaces with low solar 

elevation angles. 
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Fig. 2.10 The δ–γ′ relationships for clouds in the polar regions (60°S-90°S and 60°N-

90°N). 

 

We also consider the relationship between cloud thermodynamic phase and cloud 

top temperature in Fig. 2.11. The δ–γ′ relations from CALIPSO are shown for nine 

MODIS cloud top temperature retrieval ranges. As expected, the clouds with cloud-top 
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temperatures above 0°C correspond mainly to the water cloud feature in the δ–γ′ relation, 

whereas the clouds with cloud top temperatures below -45°C correspond primarily to the 

feature associated with randomly oriented ice crystals. However, water features are 

observed for cloud-top temperatures as cold as -45°C and ice features are noticed for 

cloud-top temperatures as warm as -5°C. For cloud top temperatures between -5°C and -

25°C, the observed ice features correspond to horizontally oriented ice crystals, while 

both oriented and non-oriented crystal features are seen between -25° and -40°C. Within 

these temperature ranges, ice crystals and supercooled water drops can occur in single-

phase or mixed-phase clouds. An interesting feature is the apparent increase in 

depolarization ratio with decreasing temperature for randomly oriented ice crystals. The 

differences between MODIS and CALIPSO retrieved cloud height, especially in the case 

of thin clouds, may impact these results, as the MODIS cloud top temperatures are 

inferred from the cloud top pressure retrievals for midlevel and upper level clouds. 

The CALIPSO lidar retrievals are independent sources of information about 

cloud phase that can be compared against the two MODIS-derived cloud phase products 

described in section 2.3.1. The MODIS bispectral IR cloud phase algorithm results are 

shown in Figs. 2.12-14, while those from the RPP phase algorithm are shown in Figs. 

2.15-17. The global δ–γ′ relations for all clouds identified as water phase by the 

operational MODIS bispectral IR algorithm are shown in Fig. 2.12. In this case, high 

frequencies of occurrence are observed for the three low cloud classes, as well as two of 

the middle cloud classes, altostratus and nimbostratus. Comparisons with Fig. 2.5 show 

that the clouds causing the strong water cloud signatures in the upper level clouds in the 
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Fig. 2.11 The δ–γ′ relationships with respect to cloud top temperature obtained by 

MODIS cloud retrievals for single-layer clouds identified from the CALIPSO data. 
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Fig. 2.12 The δ–γ′ relationships for the clouds classified as water-phase by the MODIS 

IR cloud-phase determination algorithm.  

 

entire dataset are not being classified as water by the MODIS IR phase algorithm. There 

is, however, a weak component of the cirrus class exhibiting a randomly oriented crystal 

lidar signature that is classified as water by MODIS. Fig. 2.12 shows that the vast 
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majority of clouds classified as water by the MODIS phase algorithm exhibit δ–γ′ 

signatures associated with water clouds. 

Figure 2.13 shows the global δ–γ′ relations for clouds identified as ice phase by 

the MODIS IR-phase algorithm. The most obvious feature is that the low cloud classes 

are not populated. Strong lidar signatures associated with randomly oriented crystals are 

seen in the high cloud classes, and, to a lesser extent, in the altostratus class. However, 

the typical water-phase δ–γ′ feature is observed in the altocumulus, altostratus, cirrus and 

cirrostratus classes. These water features may mean that MODIS misclassified some 

water clouds as ice. There are other possibilities, including mixed-phase clouds, or 

heterogeneous cloud features (i.e., the co-existence of ice clouds and water clouds) 

within the MODIS phase 5 km x 5 km footprint.  

Figure 2.14 shows the global δ–γ′ relations for those clouds identified as mixed 

and unknown phase by the MODIS IR algorithm. The greatest number of MODIS pixels 

with this classification fall into the cirrostratus, altostratus, stratocumulus, nimbostratus, 

and deep convection classes, and both water and ice features are seen in the δ–γ′ 

relations. This is not surprising as the MODIS IR algorithm assigns mixed or unknown 

phase to clouds with spectral and thermal signatures that do not definitively point to 

either ice or water phase. Comparisons of Fig. 2.14 to Fig. 2.13 show that clouds 

exhibiting features associated with horizontally-oriented ice crystals are likely to be 

classified as mixed or unknown phase by MODIS. This tendency warrants further study. 
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Fig. 2.13 The δ–γ′ relationship for the clouds classified as ice-phase by the MODIS IR 

cloud-phase determination algorithm. 
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Fig. 2.14 The δ–γ′ relationship for clouds classified as mixed- or uncertain-phase by the 

MODIS IR cloud-phase determination algorithm.  

 

The δ–γ′ relations for water, ice, and undetermined phase classifications, based 

on the MODIS cloud property retrieval processing path (RPP) phase algorithm are 

shown in Figs. 2.15-17. The RPP phase algorithm utilizes a number of visible, near- 

infrared, and infrared MODIS channels, but can only be applied to daytime MODIS 
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observations. Fig. 2.15 shows the δ–γ′ relations for those clouds classified as water by 

the RPP. The majority of the clouds classified as water by the RPP demonstrate features 

indicative of water in the lidar relations, although randomly oriented crystal features are 

seen in the cirrus and cirrostratus classes, and weak features associated with horizontally 

oriented particles are seen in the moderate optical thickness classes. This feature is not 

seen in the MODIS IR phase plot, implying that the IR phase algorithm classifies these 

scenes as having mixed or unknown phase. 

The clouds classified as ice by the MODIS RPP are shown in Fig. 2.16. The δ–γ′ 

relations for the upper level clouds look similar to those for the MODIS IR phase plot in 

Fig. 2.13. The midlevel cloud features indicative of water clouds are stronger in the 

MODIS RPP ice case, though, and some low level clouds with water features are 

classified as ice by the MODIS RPP. More detailed case studies are necessary to 

understand these features. An interesting note is that the RPP algorithm classifies a much 

larger fraction of the horizontally-oriented crystal features as ice than does the IR phase 

algorithm, which tends to classify them as mixed or unknown. 

Only a small fraction of the RPP cases are classified as undetermined phase. The 

δ–γ′ relations in Fig. 2.17 show that the midlevel and low level undetermined clouds tend 

to demonstrate strong water features, while the cirrus class shows moderate ice features. 

Several classes, cirrostratus, deep convection, and altocumulus, are basically 

unpopulated. 
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Fig. 2.15 The δ–γ′ relationship for clouds classified as water-phase by the MODIS cloud 

property retrieval processing path (RPP) phase determination algorithm.  
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Fig. 2.16 The δ–γ′ relationship for clouds classified as ice-phase by the MODIS RPP 

phase determination algorithm.  
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Fig. 2.17 The δ–γ′ relationship for clouds classified as undetermined-phase by the 

MODIS RPP phase determination algorithm.  
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Figures 2.18, 2.19 and 2.20 show the δ–γ′ relations for single-layered water, ice, 

and mixed-/uncertain-phase clouds, respectively, which are identified on the basis of the 

MODIS bispectral IR phase algorithm. The unscreened counterparts of Figs. 2.18, 2.19 

and 2.20 are Figs. 2.12, 2.13 and 2.14, respectively. Again, the overall features in the δ–

γ′ relations shown in the screened and unscreened cases are similar; however, low γ′ 

values associated with the uppermost thin clouds are eliminated in the screened results. 

Furthermore, it seems likely, based on comparison of Figs. 2.20 and 2.14, that many 

clouds identified as mixed- or uncertain-phase by the MODIS IR algorithm have more 

than one layer. 

 

2.3.3 Conclusion 

We investigated the relationships between layer-averaged depolarization ratio (δ) 

and layer-averaged attenuated backscatter (γʹ′) measured by the CALIPSO lidar for nine 

ISCCP cloud classes applied to MODIS data. These results were published in Cho et al. 

(2008). To summarize, the CALIPSO lidar contains information on up to 10 cloud layers 

within each 1 km retrieval footprint; however only the uppermost cloud layer is 

considered in this study. The cloud class assignment was made on the basis of the 

MODIS retrievals of cloud-top pressure and cloud optical depth for a period of 12 

months from July 2006 to June 2007. Because the study depends on MODIS optical 

depth retrievals, only daytime observations are included. On a global scale, the 

CALIPSO lidar δ–γ′ relation associated with water clouds is observed for all nine cloud 

types. The δ–γ′ feature associated with horizontally oriented ice crystals is prominent for  
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Fig. 2.18 Same as Fig. 2.12 except for single-layer clouds identified from the CALIPSO 

data. 

 



 44 

 

Fig. 2.19 Same as Fig. 2.13 except for single-layer clouds identified from the CALIPSO 

data. 
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Fig. 2.20 Same as Fig. 2.14 except for single-layer clouds identified from the CALIPSO 

data. 
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 cirrostratus, deep convection, altostratus, and nimbostratus classes. Furthermore, we 

screened both the MODIS and CALIPSO data to eliminate the cases in which two or 

more cloud layers were observed. It is shown that very low γ′ values in the unscreened 

case were largely eliminated in the case of single-layered clouds. These low γ′ values 

correspond to the uppermost thin layers in two- or multi-layered cloud systems. 

The dependence on latitude was also considered. For the tropical region (30ºS-

30ºN), only the water-phase feature is observed in the CALIPSO lidar δ–γ′ relation for 

low and mid-level clouds; however, both water-phase and ice-phase signatures are 

observed for high clouds. In the midlatitude and polar regions, both water-phase and ice-

phase are observed for high and middle clouds. Additionally, the feature associated with 

horizontally oriented ice crystals is prominent for cirrostratus and altostratus clouds. In 

addition to the analysis of the CALIPSO lidar δ–γ′ relation for cloud systems at three 

latitude belts, we also analyzed the lidar δ–γ′ relations for various cloud top 

temperatures. Randomly oriented ice crystal features correspond to colder cloud top 

temperatures than horizontally oriented crystals. Additionally, the depolarization ratio 

associated with randomly oriented ice crystals increases for colder cloud top 

temperatures. 

We investigated the CALIPSO lidar δ–γ′ relationship with respect to the cloud 

phase determined from both the operational MODIS bi-spectral infrared phase algorithm 

and the MODIS cloud optical properties retrieval processing path phase algorithm. It is 

shown that the MODIS bi-spectral IR algorithm is consistent with that indicated by the 

CALIPSO lidar δ–γ′ relationship for water clouds. However, the typical feature 
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associated with water phase in the δ–γ′ relationship is observed for the clouds that are 

identified as ice by the MODIS IR algorithm. Both water and ice signatures are observed 

for those clouds classified as mixed or unknown phase by the MODIS IR algorithm. On 

the other hand, the RPP algorithm misclassifies a lot of ice clouds as water clouds (Figs. 

2.15-16). Although the MODIS IR algorithm is generally more conservative in its phase 

classification for most cloud systems, the RPP algorithm is more effective in detecting 

ice clouds consisting of horizontally oriented ice crystals, as evident from a comparison 

of Figs. 2.13 and 2.16. The present results clearly demonstrate the unique capabilities of 

the CALIPSO lidar instrument for determining cloud phase. 

 

2.4 CALIPSO Lidar δ–γ′ Relations for Different Aerosol Types 

Here, we demonstrate the CALIPSO lidar δ–γ′ relationships for different aerosol 

subtypes. The CALIPSO aerosol sub-typing algorithm uses the integrated attenuated 

backscatter at 532 nm and the particulate depolarization ratio with an aid of surface 

types and layer elevation to identify aerosol type from among one of the six types (i.e. 

Clean Marine, Clean continental, Polluted continental, Dust, Polluted dust, Smoke 

(biomass burning)). For example, aerosol layers having particulate depolarization ratio 

greater than 0.2 are classified as dust except for polar region. More detailed descriptions 

of the algorithm are given in Omar et al. (2009).  

Fig. 2.21 shows the CALIPSO lidar δ–γ′ relationships for six aerosol sub-types 

observed in 2008. The attenuated backscatters and depolarization ratios of aerosols are 

much smaller than that of clouds. Actually, Cloud-Aerosol discrimination (CAD)  
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Fig. 2.21 The CALIPSO lidar δ–γ′ relationships for six aerosol sub-types observed in 

2008. The color of each pixel represents the frequency of occurrence for a Δδ–Δγ′ box 

with 0.01 by 0.002 sr-1 interval. 

 

algorithm (Liu et al. 2009) uses these two parameters to distinguish cloud and aerosol 

based on the statistical differences. The attenuated backscatter of dust is within almost 

same ranges as others except for clean continental types. However, due to its 

nonspherical characteristics, only dust type has larger depolarization ratio rather than 

other aerosol types. Thus, dust aerosol type can be well separated from other aerosol 

types, except for the thick dust, which has similar depolarization ratio of cirrus cloud. 
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Therefore, CALIPSO aerosol products are used to evaluate the MODIS dust detection 

algorithms in section 4. 

 

2.5 Summary 

In this section, we introduce spaceborne polarization lidar, CALIPSO lidar, and 

demonstrate its unique capabilities by presenting the relationships between lidar 

backscatter and the corresponding depolarization ratio for different cloud classifications 

and aerosol subtypes. 
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3. AN EVALUATION OF THE COLLECTION 5 MODIS IR CLOUD PHASE 

RETRIEVAL* 

 

 In this section, I review the work published in Cho et al. (2009). This paper 

evaluates the MODIS IR cloud phase retrieval using the collocated CALIPSO cloud 

products. As mentioned in section 1, the possible misclassifications of MODIS cloud 

phase (Nasiri and Kahn, 2008) are tested. 

 

3.1 Introduction 

 This study, which can be viewed as a follow-up to Nasiri and Kahn (2008), 

henceforth referred to as NK08, mainly focuses on the evaluation of cloud 

thermodynamic phase retrieval based on infrared-channels using independent lidar 

observations. The expansion of the A-train satellite constellation to include the 

CALIPSO satellite provides an opportunity to address the deficiencies of the earlier 

study. With the observations made by CALIPSO lidar, it is feasible to test three of the 

four NK08 hypotheses (numbers 1, 2, and 4). The previous section has already shown 

the usefulness of combining MODIS and CALIOP products for cloud studies. They 

classified clouds using MODIS-retrieved cloud top height and optical thickness and 

looked at the CALIOP layer-integrated backscatter and depolarization ratio 

relationships. The previous section has showed that liquid water, randomly-oriented, and 
                                                 
*Reprinted with permission from “Application of CALIOP measurements to the 
evaluation of cloud phase derived from MODIS infrared channels” by H.-M. Cho, S. L. 
Nasiri, and P. Yang, 2009. J. Appl. Meteorol. Clim., 48(10), 2169-2180, Copyright by 
American Meteorological Society (AMS). 
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horizontally-oriented ice crystal signatures were frequently observed in the MODIS data 

for mid-level and upper-level clouds.  

The rest of this section is organized as follows. In section 3.2, we discuss the 

MODIS instruments and IR phase algorithm. In section 3.3, the CALIPSO cloud layer 

products used in our analysis are presented, and in section 3.4 we present the present 

evaluation of MODIS IR cloud phase. The summary and conclusions are given in 

section 3.5. 

 

3.2 MODIS IR Phase 

MODIS (Barnes et al. 1998) is a 36-channel cross-track scanning radiometer 

with a spectral coverage between 0.4 and 14.5 µm and spatial resolutions between 250 m 

and 1000 m, depending on channel. While there are two MODIS instruments currently in 

orbit, this study focuses on the instrument on the Aqua satellite, launched in May of 

2002. The MODIS instrument scans out to ± 55 degrees off nadir, but here we consider 

only MODIS data collocated with CALIPSO data. The MODIS infrared cloud phase 

product is one of a set of infrared-based cloud products available at 5x5 km resolution 

including cloud-top pressure (Menzel et al. 2008), cloud-top temperature, and cloud 

effective emissivity (Platnick et al. 2003) in the MYD06 cloud product files. Cloud 

retrievals are only performed on those pixels determined to be cloudy by the MODIS 

cloud mask (MYD35, Frey et al. 2008).  

The MODIS Collection 5 infrared phase classification algorithm uses the 

brightness temperature difference (BTD) between channels centered at 8.5 µm and 11.0 
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µm (MODIS channels 29 and 31, respectively), as well as the brightness temperature 

(BT) at 11.0 µm to infer cloud thermodynamic phase (Platnick et al. 2003; Nasiri and 

Kahn 2008). The bi-spectral algorithm is based on the premise that the [8.5 - 11 µm] 

BTD tends to be positive for ice clouds and negative for water clouds. Like many cloud 

phase algorithms, there are a priori assumptions of relationships between cloud 

temperature and cloud phase. In the case of the MODIS algorithm, pixels with very cold 

11-µm brightness temperatures (11 µm BT ≤ 238 K, in the current version) are assumed 

to be ice. This works because the 11-µm BT of a cloudy scene is usually warmer than 

the cloud top temperature due to contributions to the radiance from the surface and the 

atmosphere. Optically thin cirrus clouds, even very cold clouds, may have warm 11-µm 

BTs, and therefore must be classified by the [8.5 - 11 µm] BTD, rather than by the 11-

µm BT. 

The MODIS bi-spectral IR phase algorithm has four possible cloud phase 

classifications: ice, water, mixed, and unknown. NK08 tends to lump the mixed and 

unknown classifications together because of a lack of evidence that the mixed 

classification implied truly mixed-phase clouds, but in the present study we consider the 

classifications separately. NK08 describes the MODIS algorithm as conservative 

because over 20% of pixels in the data from the January 2005 case are classified as 

unknown (14.4%) or mixed (8.5%) phase. 
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3.3 CALIPSO Cloud Layer Product 

In this study, the CALIPSO 5-km cloud layer product (version 2.01) is used. In 

this product, information about up to 10 cloud layers is available at a 5-km spatial 

resolution. We use the cloud layer boundaries, mid-layer cloud temperature, and cloud 

phase classification products in this study. An important note about the 5-km cloud layer 

product cloud layer boundaries is that it is possible for one cloud to be split up into 

multiple vertically contiguous or overlapping layers, based on vertical variations in the 

attenuated backscatter and the complex spatial averaging employed in the feature 

detection algorithm (Vaughan et al. 2009). The mid-layer cloud temperature is 

determined by calculating the atmospheric temperature at the geometric midpoint of the 

layer using temperature from the GEOS-5 data product provided to the CALIPSO 

project by the NASA Global Modeling and Assimilation Office (GMAO) Data 

Assimilation System. 

The CALIOP cloud phase classification is archived in the “Feature Classification 

Flag” scientific data set. The CALIPSO cloud layer product phase retrieval algorithm is 

based on a combination of the relationships between the depolarization ratio and 

attenuated backscatter, the mid-layer cloud temperature, and attenuated backscatter 

thresholds. A more detailed description of the algorithm is given in the CALIPSO Scene 

Classification ATBD (Liu et al. 2005). The cloud phase retrieval is, at the time of this 

writing, still considered to be a beta-version product, and is subject to revisions in later 

versions. Additionally, there is a known bug in the cloud phase classification in which 

certain clouds with mid-layer cloud temperatures greater than 0°C are classified as ice. 
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We have corrected this bug in our analysis by setting the CALIPSO phase of clouds with 

mid-layer temperatures greater than 0°C to be water1. The phase classification currently 

has three categories: water, ice, and unknown. While the scientific data set contains a 

placeholder for mixed-phase classifications, it was not been implemented in the 2.01 

version.  

 

3.4 Comparisons between MODIS and CALIPSO Cloud Phase Products 

This study uses six months of both daytime and nighttime MODIS and 

CALIPSO data between 85° north and south from January through June 2008 when the 

lidar view angle is 3° off nadir. Note that this is a different time period from the analyses 

in section 2 and that because the lidar view angle is now 3° off-nadir, high attenuated 

backscatter from horizontally oriented ice crystals is no longer common. We have made 

three modifications to the output from the 5-km cloud layer product. The first, discussed 

in section 3.3, is the correction of the warm ice cloud bug in the phase product. The 

second modification is the combination of cloud layers that are overlapping or have 

small vertical separations into single layers. Vertically contiguous or overlapping cloud 

layers are an expected result of the CALIPSO iterative feature detection algorithm 

(Vaughan et al. 2009) stemming from its use of progressive scanning at different spatial 

resolution to detect faint features. In the operational CALIPSO 5-km cloud layer 

product, approximately 50% of multi-layer profiles have vertical separations of less than 

200 m, and 47% have separations less than 100 m, as shown in Figure 3.1. Note that the 
                                                 
1 The bug has been corrected in the current version 3 product, but the results shown here 
were published using version 2.01 data. 
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majority of layers have virtually no separation. While this is not unsurprising based on 

the feature detection algorithm, it does mean that clouds that a user of the product 

considers to be single-layer might have two or more layers in the 5-km CALIPSO cloud 

product. For this study, layers with vertical separations of less than 200 m are combined 

and are considered to be a single layer. In the case that the two layers have different 

cloud phases (i.e. water and ice), we describe the layer as mixed-uncertain phase with 

respect to the CALIPSO cloud phase. This mixed-uncertain phase classification, our 

third modification, should not be confused with the unused mixed-phase scientific data 

set in the CALIPSO 5-km cloud layer product. 

 

 

Fig. 3.1 Difference in height between adjacent layers in the CALIPSO 5-km cloud layer 

product from January to June 2008. The left figure shows the distribution layer 

separations while the right figure shows the normalized cumulative distribution. 
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The collocation is based on matching CALIPSO pixels to the nearest MODIS 

pixels for 5 km MODIS resolution by minimizing the root-mean-square latitude and 

longitude difference of the centers of the scenes. In this study, CALIPSO 5 km data are 

used as the “reference” for comparisons with the MODIS products. No cloud-height and 

MODIS zenith angle-based parallax correction is done in this study, thus introducing the 

potential for collocation errors (e.g. Holz et al. 2008). These errors will be small for low 

clouds or high latitude clouds, but could be up to 5 km for high clouds in the tropics. 

The MODIS IR phase retrievals are compared with the CALIPSO products in 

several ways. Results are broken into four categories based on characteristics of the 

CALIPSO data: the top cloud layer of the entire CALIPSO data set, single-layered 

clouds, opaque single-layered clouds, and transparent single-layered clouds. CALIPSO 

cloud detection is considered “truth” in this study; therefore excluding cases for which 

MODIS detects a cloud but CALIPSO does not. Holz et al. (2008) found that those cases 

were only 15% of collocated scenes. Because passive IR observations are more sensitive 

to upper clouds, only the top CALIPSO cloud layer is considered in the comparisons. 

Those CALIPSO retrievals with only one layer after our 200-m separation correction has 

been applied are considered to be single-layered. The single-layered category is further 

split into opaque cloud layers (those for which there is no ground return), and transparent 

cloud layers (those with a ground return). These categories are considered in our 

comparisons of MODIS cloud phase retrievals to CALIPSO cloud products in terms of 

number of pixels classified, cloud top height, cloud top temperature, cloud latitude, and 

CALIPSO cloud phase. 
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Figure 3.2 shows the distribution of MODIS IR phase retrievals for single-layer 

clouds detected by CALIPSO with respect to CALIPSO retrieved cloud top height (a, c, 

and e) and mid-layer cloud temperature (b, d, and f). As discussed above, retrieved 

CALIPSO cloud layers that are separated by less than 200 m vertically have been 

combined into a single layer. To simplify the comparisons, we consider only single-layer 

clouds, which are approximately 54% of the total CALIPSO cloudy scenes. Figure 3.2a 

shows that the majority of single-layer clouds detected by CALIPSO have cloud top 

heights lower than 4 km. Unsurprisingly, the majority of these low clouds are classified 

as water by MODIS, with a sizable number of scenes not detected as cloudy by MODIS. 

The majority of higher clouds are classified as ice by MODIS. 

A further separation of the single-layer clouds into opaque and transparent clouds 

shows that 95% of clouds not detected by MODIS are transparent clouds; most of these 

have tops below 4 km, but are fairly evenly distributed with respect to height above 4 

km. This raises the possibility of aerosol contamination in the low level CALIPSO 

clouds. More transparent high clouds appear to be missed by MODIS than classified as 

any other single phase. The opaque low clouds tend to be classified as water, with some 

as unknown. There is a peak in the MODIS classification of mixed-phase clouds around 

5 km, and the majority of opaque clouds above 8 km are classified as ice. While the 

strength of the water cloud peak masks it somewhat, the comparisons with respect to 

cloud height do support the NK08 interpretation that midlevel clouds are likely to be 

classified as mixed or unknown by MODIS, but it also shows a sizable number of low 

clouds classified as unknown. 
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Fig. 3.2 The cloud top height and mid-layer temperature distribution of MODIS IR cloud 

phase for three layers (i.e. (a) and (b) are for single layers, (c) and (d) are for opaque 

single layers, and (e) and (f) are for transparent single layers) as detected by CALIPSO 

from January to June 2008. 
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The distributions with respect to mid-layer cloud temperature (Fig. 3.2b, d, and f) 

are even more interesting and support the NK08 hypotheses regarding thin cirrus 

misclassifications and classification of mid-temperature clouds as mixed or unknown 

phase. The frequency distributions of the MODIS phase classifications are much broader 

with respect to temperature than they are with respect to cloud height. Further 

consideration of the single-layer cloud case in Figure 3.2b indicates that MODIS tends to 

classify clouds with temperatures below -40°C as ice and those with temperatures above 

0°C as water. The MODIS mixed classification is the dominant classification for clouds 

with temperatures between approximately -28°C and -15°C and classifications for clouds 

with temperatures around -30°C are split nearly equally between ice, mixed, and 

unknown MODIS classifications. A sizable fraction of CALIPSO clouds are classified as 

clear by MODIS for all temperatures, but there are cases in which clouds with 

temperatures below -40° are classified as either water, mixed or unknown by MODIS. 

Less than 3% of opaque CALIPSO clouds are classified as clear by MODIS, but more 

cold transparent clouds are classified as clear than any of the four cloud phases. 

Additionally, similar numbers of transparent clouds with temperatures below -40°C are 

classified as water and mixed phase. 

In addition to comparing MODIS cloud phase to CALIPSO cloud height, mid-

layer temperature, and opacity, we consider the CALIPSO cloud phase retrievals. These 

comparisons should be viewed with some caution due to the beta status of the CALIPSO 

phase retrievals. While the CALIPSO retrievals are not assumed to be “truth”, the 
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differences in retrieval techniques illuminate the complexity in inferring cloud 

thermodynamic phase. 

The cloud phase comparisons are shown in a tabular form in Tables 3.1–3.4. In 

these tables, the columns show MODIS phase classifications, while the rows show 

CALIPSO phase classifications. Recall that the CALIPSO mixed-uncertain category 

comprises those CALIPSO layers that were combined because they vertically 

contiguous, or nearly so, but had different CALIPSO phase classifications. There are 

three numbers in all interior cells: the top is the number of pixels falling into both 

MODIS and CALIPSO categories, the middle (in parentheses) is the percentage of pixels 

with the MODIS classification out of all the pixels in the CALIPSO category, while the 

bottom is the percentage out of the total number of pixels. 

Table 3.1 shows the cloud phase occurrences and co-occurrences for the top layer 

of all the CALIPSO clouds and the corresponding MODIS retrievals. In Table 3.2, only 

the single-layer CALIPSO clouds are included. Between January and June 2008, 15% of 

the clouds in the CALIPSO 5-km product are not detected by MODIS; this fraction 

increases to 19% when only single-layer clouds are considered. When the top layers of 

all of the cloud cases are considered, CALIPSO classifies 57% of them as ice. The 

fraction of ice classifications falls to 37% for single-layer clouds. The percentage of 

CALIPSO water cloud classifications is 38% in the all-cloud cases, and increases to 58% 

for single-layer clouds. A small percentage is classified as mixed-uncertain or unknown 

clouds. Because single-layer cloud scenes are easier to work with, many researchers 
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restrict their studies to single-layer cases. These results show that such a limitation may 

introduce a water cloud bias.  

 

Table 3.1 CALIPSO top layers with layers separated by less than 200 m combined into a 

single layer. Columns are MODIS phase classifications while rows are CALIPSO phase 

classifications. There are three positions in the interior cells. The top position represents 

the number of pixels falling into both MODIS and CALIPSO categories, the middle 

position (in parentheses) is the percentage of pixels in the MODIS class out of all pixels 

in the CALIPSO class, while the bottom position is the percentage out of the total 

number of pixels. 

MODIS IR phase 
 

Clear Water Ice Mixed Uncertain Sum 

Water 
731,361 
(13.0%) 

4.9% 

3,594,820 
(64.0%) 

24.3% 

123,561 
(2.2%) 

0.8% 

172,649 
(3.1%) 

1.2% 

993,704 
(17.7%) 

6.7% 

5,616,095 
 

37.9% 

Ice 
1,353,829 

(16.1%) 
9.1% 

1,460,366 
(17.4%) 

9.9% 

2,917,225 
(34.7%) 

19.7% 

1,137,918 
(13.6%) 

7.7% 

1,527,741 
(18.2%) 

10.3% 

8,397,079 
 

56.7% 

Mixed-
uncertain 

31,860 
(7.8%) 

0.2% 

101,276 
(24.7%) 

0.7% 

93,737 
(22.8%) 

0.6% 

64,815 
(15.8%) 

0.4% 

118,665 
(28.9%) 

0.8% 

410,353 
 

2.8% 

Unknown 
64,221 

(16.1%) 
0.4% 

171,474 
(43.1%) 

1.2% 

67,816 
(17.0%) 

0.5% 

36,719 
(9.2%) 

0.2% 

57,662 
(14.5%) 

0.4% 

397,892 
 

2.7% 

C
A

LI
PS

O
 P

ha
se

 

Sum 2,181,271 
(14.7%) 

5,327,936 
(36.0%) 

3,202,339 
(21.6%) 

1,412,101 
(9.5%) 

2,697,772 
(18.2%) 

14,821,419 
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Table 3.2 Same as Table 3.1 except for CALIPSO single layers. 

MODIS IR phase 
 

Clear Water Ice Mixed Uncertain Sum 

Water 
656,082 
(14.3%) 

8.2% 

2,980,392 
(65.0%) 

37.4% 

73,177 
(1.6%) 

0.9% 

115,237 
(2.5%) 

1.4% 

758,467 
(16.5%) 

9.5% 

4,583,355 
 

57.6% 

Ice 
760,923 
(25.9%) 

9.6% 

335,196 
(11.4%) 

4.2% 

1,198,250 
(40.8%) 

15.1% 

323,028 
(11.0%) 

4.1% 

317,825 
(10.8%) 

4.0% 

2,935,222 
 

36.9% 

Mixed-
uncertain 

17,744 
(9.5%) 

0.2% 

57,959 
(31.0%) 

0.7% 

27,874 
(14.9%) 

0.4% 

24,799 
(13.3%) 

0.3% 

58,636 
(31.4%) 

0.7% 

187,012 
 

2.3% 

Unknown 
49,916 

(19.6%) 
0.6% 

123,947 
(48.7%) 

1.6% 

26,222 
(10.3%) 

0.3% 

18,624 
(7.3%) 

0.2% 

35,638 
(14.0%) 

0.4% 

254,347 
 

3.2% 

C
A

LI
PS

O
 P

ha
se

 

Sum 1,484,665 
(18.7%) 

3,497,494 
(43.9%) 

1,325,523 
(16.7%) 

481,688 
(6.1%) 

1,170,566 
(14.7%) 

7,959,936 
 

 

 

Of the single-layered clouds detected by CALIPSO, MODIS classifies 44% as 

water, 17% as ice, and about 21% as either mixed-phase or uncertain (Table 3.2). The 

fraction of MODIS ice cloud classifications is much smaller than the fraction of 

CALIPSO ice cloud classifications. While the majority (65%) of single-layer clouds 

classified as water by CALIPSO are also classified as water by MODIS, only 41% of the 

single-layer CALIPSO ice clouds are classified as ice by MODIS, and 26% are not 

detected by MODIS. Only 2% of single-layer CALIPSO clouds are mixed-uncertain, but 

45% of them are classified as mixed or uncertain by MODIS. 
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Figure 3.3 shows the zonal frequencies of the CALIPSO phase retrievals (a) and 

the MODIS phase retrievals (b) for single-layer clouds detected by CALIPSO. The 

percentages of single-layer CALIPSO clouds retrieved as water and ice dwarf those 

retrieved as mixed-uncertain and unknown (6%, total). The zonal distribution of MODIS 

phase retrievals for single-layer CALIPSO clouds look similar to those for all MODIS 

clouds, such as those in Fig. 3.2 in NK08. Water clouds dominate the MODIS phase 

retrievals, except in the high latitudes. In the tropics and mid-latitudes, ice is the next 

most frequent cloud phase, and the frequency of the mixed and unknown MODIS 

classification increases poleward of approximate 40°. The frequency of single-layer 

CALIPSO clouds not detected by MODIS is similar to the frequency of MODIS ice 

retrievals. 

In Figures 3.3c and 3.3d, the zonal distributions of MODIS phase retrievals are 

separated into those clouds classified as water by CALIPSO (58%), and those classified 

as ice by CALIPSO (37%). Differences between the phase retrievals for CALIPSO water 

clouds and MODIS increase poleward of 40°, with mixed being increasingly more likely 

as the MODIS classification. The number of CALIPSO water clouds that are not 

detected by MODIS peaks in the tropics. The MODIS phase retrievals for the CALIPSO 

ice clouds are more complicated, with similar number of clouds being classified as ice 

by MODIS as the sum of the mixed, unknown, and water classifications for all latitudes. 

Additionally, the number of CALIPSO ice clouds not detected by MODIS has peaks in 

both the tropics and in the high latitudes. 
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Fig. 3.3 Zonal frequencies of cloud phase are shown for CALIPSO cloud phase in (a), 

MODIS IR cloud phase for all single layer clouds detected by CALIPSO in (b), all 

single-layer clouds classified as water by CALIPSO in (c), and (d) all single-layer clouds 

classified as ice by CALIPSO.  

 

 The distribution of MODIS phase retrievals for each retrieved CALIPSO phase is 

now explored. These comparisons are made with respect to mid-layer cloud temperature 

for single-layer opaque (Fig. 3.4) and single-layer transparent clouds (Fig. 3.5). Figure 

3.4a shows that opaque CALIPSO water clouds have mid-layer cloud temperatures 
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between -40°C and 20°C (our cloud temperature scale is between -80°C and 20°C) and 

these clouds tend to be classified as either water (the warmer clouds) or uncertain (the 

cooler clouds) by MODIS. In Figure 3.4b, the colder CALIPSO ice clouds tend to be 

classified as ice by MODIS, while the warmer ice clouds tend to be classified as mixed.  

 

 

Fig. 3.4 Distributions of MODIS IR phase for opaque single-layer clouds detected by 

CALIPSO are shown with respect to CALIPSO-retrieved mid-layer cloud temperature 

for clouds classified by CALIPSO as water (a), ice (b), mixed-uncertain phases (c), and 

unknown (d). 
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Fig. 3.5 Same as Fig. 3.4, but for transparent single-layer clouds. 

 

The phase co-occurrences for opaque CALIPSO clouds in Table 3.3 show that 

results for opaque unknown and mixed-uncertain CALIPSO clouds should be interpreted 

with caution because they make up less than 4% of the category. However, both the 

opaque mixed-uncertain and unknown CALIPSO clouds span the range of MODIS 

classifications and while the distributions with respect to mid-layer temperature are 
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broad, the peaks progress from ice, to mixed, to uncertain, to water with increasing 

temperature.  

The transparent cloud distributions in Figure 3.5 and co-occurrences in Table 3.4 

differ from the opaque clouds in Figure 3.4 and Table 3.3. There is a larger fraction of 

clouds not detected by MODIS for each of the CALIPSO classifications and there is a 

somewhat larger percentage of CALIPSO mixed-uncertain and unknown cases (7%). 

 

 

Table 3.3 Same as Table 3.1 except for CALIPSO opaque single layers. 

MODIS IR phase 
 

Clear Water Ice Mixed Uncertain Sum 

Water 

50,648 

(2.6%) 

1.6% 

1,293,448 

(66.1%) 

0.8% 

43,135 

(2.2%) 

1.4% 

76,821 

(3.9%) 

2.4% 

492,166 

(25.2%) 

15.5% 

1,956,218 

 

61.8% 

Ice 

21,028 

(1.9%) 

0.7% 

21,322 

(1.9%) 

0.7% 

817,596 

(74.1%) 

25.8% 

195,092 

(17.7%) 

6.2% 

48,276 

(4.4%) 

1.5% 

1,103,314 

 

34.8% 

Mixed-
uncertain 

1,579 

(3.1%) 

0.0% 

13,159 

(26.1%) 

0.4% 

8,837 

(17.5%) 

0.3% 

9,493 

(18.8%) 

0.3% 

17,399 

(34.5%) 

0.5% 

50,467 

 

1.6% 

Unknown 

5,797 

(10.1%) 

0.2% 

26,577 

(46.4%) 

0.8% 

7,507 

(13.1%) 

0.2% 

6,020 

(10.5%) 

0.2% 

11,320 

(19.8%) 

0.4% 

57,221 

 

1.8% 

C
A

LI
PS

O
 P

ha
se

 

Sum 
79,052 

(2.5%) 

1,354,506 

(42.8%) 

877,075 

(27.7%) 

287,426 

(9.1%) 

569,161 

(18.0%) 

3,167,220 
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Table 3.4 Same as Table 3.1 except for CALIPSO transparent single layers. 

MODIS IR phase 
 

Clear Water Ice Mixed Uncertain Sum 

Water 

605,434 

(23.0%) 

12.6% 

1,686,944 

(64.2%) 

35.2% 

30,042 

(1.1%) 

0.6% 

38,416 

(1.5%) 

0.8% 

266,301 

(10.1%) 

5.6% 

2,627,137 

 

54.8% 

Ice 

739,895 

(40.4%) 

15.4% 

313,874 

(17.1%) 

6.5% 

380,654 

(20.8%) 

7.9% 

127,936 

(7.0%) 

2.7% 

269,549 

(14.7%) 

5.6% 

1,831,908 

 

38.2% 

Mixed-
uncertain 

16,165 

(11.8%) 

0.3% 

44,800 

(32.8%) 

0.9% 

19,037 

(13.9%) 

0.4% 

15,306 

(11.2%) 

0.3% 

41,237 

(30.2%) 

0.9% 

136,545 

 

2.8% 

Unknown 

44,119 

(22.4%) 

0.9% 

97,370 

(49.4%) 

2.0% 

18,715 

(9.5%) 

0.4% 

12,604 

(6.4%) 

0.3% 

24,318 

(12.3%) 

0.5% 

197,126 

 

4.1% 

C
A

LI
PS

O
 P

ha
se

 

Sum 
1,405,613 

(29.3%) 

2,142,988 

(44.7%) 

448,448 

(9.4%) 

194,262 

(4.1%) 

601,405 

(12.5%) 

4,792,716 

 

 

 

The transparent CALIPSO ice clouds span the gamut of MODIS phase 

classifications, with a noticeable number of clouds with temperatures less than -40° 

being classified as water by MODIS, supporting the NK08 hypothesis of under-

classification of thin cirrus clouds as ice by MODIS. While both the transparent and 

opaque CALIPSO mixed-uncertain classifications show large percentages of MODIS 

mixed and uncertain cases, we hesitate to claim that this supports the interpretation of 

the MODIS mixed class as signifying mixed-phase clouds for two reasons. The first is 
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relationships between mid-layer cloud temperature and retrieved MODIS phase may be 

stronger than those between CALIPSO cloud phase and MODIS cloud phase. The 

second reason is that it is uncertain how well either the MODIS mixed-phase category or 

our CALIPSO mixed-uncertain class (combining two layers of different CALIPSO 

phases with little or no vertical separation) sample the full regime of true mixed-phase 

clouds. 

 

3.5 Summary and Conclusions 

 In this study, CALIPSO cloud products are compared to the MODIS IR phase 

retrievals for the 6 months from January 2008 - June 2008. The MODIS IR phase 

categories are water, ice, mixed, and unknown, although the ability of the algorithm to 

classify true mixed-phase cloud as mixed is not well known. CALIPSO cloud top height, 

mid-layer cloud temperature, cloud opacity or transparency, as well as CALIPSO cloud 

phase retrievals, are used in the comparison. More than 14 million cloudy comparisons 

are made, but we focus on the 8 million cases described as containing only single-layer 

clouds. One caveat, that affects not just our results but those of all researchers who 

simplify multi-instrument cloud comparisons by focusing on CALIPSO single-layer 

clouds, is that the CALIPSO cloud phase retrievals show that a focus on single-layer 

clouds may introduce a bias towards water clouds. 

 The data show that clouds classified by CALIPSO as being single-layered with a 

top below 4 km are typically classified as water by the MODIS algorithm, with some 

classified as clear (not detected as clouds) or unknown. Opaque clouds (those without 
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CALIPSO ground returns) with tops above 8 km tend to be classify by MODIS as ice, 

with some unknown, while transparent high cloud classification span the range of 

MODIS classes. Opaque clouds with tops between 4 and 8 km are about as likely to be 

classified as mixed or uncertain, with slightly lower likelihood of being classified as 

water or ice. The MODIS phase distributions with respect to CALIPSO mid-layer cloud 

temperature tend to be broad and overlapping, with well-defined peaks for opaque 

clouds. The ice cloud frequency peaks around -43°C, mixed at -27°C, unknown at -15°, 

and water above 0°C. The frequency distributions are even broader for transparent 

clouds, showing that MODIS has detection issues with optically thin clouds, as seen by 

Ackerman et al. (2008), as well as difficulty in assigning a phase to them. 

 These results support several hypotheses presented by Nasiri and Kahn (2008, 

NK08) in their primarily radiative transfer modeling study. Specifically, the MODIS IR 

phase algorithm may tend to 1) classify thin cirrus clouds as water clouds, 2) classify 

thin cirrus clouds as mixed or unknown, and 3) classify midlevel and/or mid-temperature 

clouds as mixed or unknown phase. The comparisons to the CALIPSO mid-layer cloud 

temperature product demonstrates the usefulness of the concept of “mid-temperature” to 

describe temperatures at which water, ice, or mixed-phase clouds could occur. An 

interesting observation is that while the MODIS IR phase algorithm makes a priori 

assumptions about relationships between cloud temperature and cloud phase, the 

assumptions are executed with respect to brightness temperature, rather than cloud 

temperature. For the CALIPSO opaque cloud cases, where brightness temperature is a 

decent proxy for cloud temperature, this assumption holds well, as is seen in the MODIS 
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phase vs. mid-layer cloud temperature distributions discussed above. The NK08 results 

demonstrated that there may not be enough spectral phase information in the 8.5 and 11 

µm MODIS bands to determine the phase of many mid-temperature clouds and that, 

therefore, the MODIS unknown phase classification is most appropriate for these clouds. 

Our current results show that MODIS is classifying the majority of opaque mid-

temperature clouds as unknown or mixed phase. However, the MODIS-assumed 

thermodynamic phase – cloud temperature relationships breaks down for the transparent 

cloud cases. 
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4. DETECTION OF OPTICALLY THIN MINERAL DUST AEROSOL LAYERS 

USING MODIS 

 

4.1 Introduction 

Mineral dust aerosols, one of the major atmospheric aerosol groups, are 

important in climate studies (Sokolik and Toon, 1996; Jaffe et al., 1999; Husar et al., 

2001; and Prospero et al., 2002) through several ways. Mineral dust affects the Earth 

radiation budgets directly through absorbing and reflecting solar radiation and indirectly 

through regulating the formation and maintenance of clouds. Recent studies (Dunion and 

Velden, 2004; and Evan et al., 2006a) showed the possible impact of the dust storm in 

the formation and evolution of hurricane. Despite the climatic importance of dust, its 

effect on the climate via direct or indirect radiative forcing still has large uncertainties in 

climate change studies (IPCC, 2007; and Zhu et al., 2007). Additionally, the amount of 

mineral dust aerosol entering the atmosphere is also uncertain with emission estimates 

from modeling studies ranging from 1000 ~ 2150 Tg per year (Zender et al., 2004). 

These uncertainties primarily come from insufficient measurements on global scale and 

uncertainties of retrievals. 

As mentioned in section 1, several algorithms have been proposed to 

discriminate dust aerosols from clouds and clear scenes in a wide range of wavelengths 

from ultra-violet (UV) to infrared (IR) with various passive sensors. Most of these 

algorithms have focused on optically thick dust plumes, which are transported from 

desert areas. Due to the lack of vertical sensitivity from passive remote sensing, it can be 
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difficult to separate thin mineral dust from cloud and clear scenes. Again, the CALIPSO 

satellite can provide more precise vertical information about and greater sensitivity to 

small amount of dust, which makes it an excellent instrument to evaluate existing 

detection algorithms and help develop new ones. 

The objectives of this section are to present an evaluation of the existing three 

dust detection methods, to describe a new algorithm for dust detection over ocean for the 

MODIS, and then to discuss validation and case study results for our new technique by 

using CALIPSO lidar observation. Therefore, the remainder of this paper is as follows: 

Section 4.2 presents the MODIS and CALIPSO data used in this study. In section 4.3, 

we show the result from the evaluation of the existing dust detection methods. The 

MODIS radiative signatures of the thin dust layers are discussed in section 4.4. Section 

4.5 describes a new multi-spectral algorithm based on discriminant analysis. The case 

study and evaluation of our new algorithm are shown in section 4.6. Finally, the 

summary and conclusions are given in section 4.7. 

 

4.2 Data 

In this study, several mineral dust detection approaches using VIS/IR bands with 

passive sensors are evaluated using active remote sensing observations. Dust detection 

approaches applied to MODIS observations from the Aqua satellite in the “A-train” 

constellation are compared with CALIPSO lidar scene classification. The CALIPSO 

lidar products are used as an independent source of mineral dust information for product 
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evaluation and as reference for training a new dust detection algorithm. This study uses 

one year of 2008 daytime collocated MODIS and CALIPSO data over ocean.  

 

4.2.1 MODIS 

The MODIS is a passive optical multispectral sensor that measures visible and 

infrared radiation in 36 spectral bands ranging from 0.4 µm to 14.4 µm (Kaufman et al., 

2000). MODIS is presently mounted on two satellite platforms: Terra and Aqua. Both 

Terra and Aqua satellites are operated at a sun-synchronous orbit with the altitude of 705 

km, observing the earth at three different nadir spatial resolutions: 250 m, 500 m, and 

l000 m. Major datasets used in this study include the Level 1B (L1B) MODIS 

measurements at 1-km resolution from Aqua satellite. Note that the reflectances in solar 

bands are corrected with solar zenith angle, and the brightness temperatures are 

converted from radiance. In discussion for comparison with detection results, the aerosol 

optical thickness (AOT) at a wavelength of 0.55 µm from the Level 2 aerosol product 

(MYD04) is also used. 

 

4.2.2 CALIPSO cloud and aerosol layer product 

The CALIPSO cloud and aerosol products used in this study are the CALIPSO 5-

km Level-2 (Ver. 3.01) layer data. The CALIPSO Level-2 layer products contain 

information on up to 8 aerosol layers and 10 cloud layers within each 5-km retrieval 

footprint. To describe the CALIPSO cloud/dust categories, we use the number of layers 

provided in CALIPSO cloud and aerosol retrievals as well as aerosol type classification. 



 75 

The number of feature layers (i.e. cloud or aerosol layers) is calculated by the Selective 

Iterated Boundary Location (SIBYL) algorithm (Vaughan et al., 2009) using profiles of 

attenuated backscatter coefficients. After detecting the feature boundaries, the Scene 

Classification Algorithm (SCA) discriminates between cloud and aerosol (Liu et al., 

2009) and then determines the cloud phases (Hu et al., 2009) and the sub-types of 

aerosol layers (Omar et al., 2009). The CALIPSO aerosol sub-typing algorithm uses the 

integrated attenuated backscatter at 532 nm and the particulate depolarization ratio with 

an aid of surface types and layer elevation to identify aerosol type from among one of 

the six types (i.e. Clean Marine, Clean continental, Polluted continental, Dust, Polluted 

dust, Smoke (biomass burning)). For example, aerosol layers having particulate 

depolarization ratio greater than 0.2 are classified as dust except for polar regions. More 

detailed descriptions of the algorithm are given in Omar et al. (2009). 

In this study, we classify the CALIPSO retrievals into four categories: clear, 

cloud, dust, and other. We consider the pixel to be clear if no layers are found in either 

the aerosol or cloud product. If only cloud layers are present, then we classify the pixel 

as cloud. If only dust type aerosol layers are found in the whole column, we consider it 

to be a dust pixel. If the pixel does not fit into either of the above three categories (clear, 

cloud, dust), we classify the pixel as “other”. The other category includes scenes 

containing both cloud and dust, cloud and non-dust aerosols, or just non-dust aerosols. 
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4.3 Initial Evaluation of Existing Dust Detection Methods 

We evaluate three existing dust detection techniques by applying them to 

MODIS daytime radiances/reflectances over the ocean and comparing the results with 

CALIPSO’s operational aerosol and cloud product. Specifically, we compare: (1) simple 

brightness temperature difference (BTD) threshold techniques, (2) Roskovensky and 

Liou’s (2005) D-parameter algorithm and (3) Zhao et al.’s (2010) multi-channel imager 

(MCI) algorithm. We start with the simplest of three techniques: utilizing infrared 

brightness temperature differences (BTDs) to detect dust. Shenk and Curran (1974) 

demonstrated the utility of the 10.5–12.5 µm BTD from the Temperature Humidity 

Infrared Radiometers (THIR) on board the Nimbus 4 satellite for dust storm detection 

over land. BTDs are used to infer the temperature differences between the surface and 

cooler mineral aerosol layer (Darmenov and Sokolik, 2005). Ackerman (1997) used 

simulations of the BTD between the 8.5 and 11 µm (BTD8.5-11µm) and the BTD between 

11 and 12 µm (BTD11-12µm) to investigate the possibility of detecting soil-derived 

aerosols. His research showed, through observation and modeling studies, that BTD11-

12µm of dust is smaller than that of clouds. In this study, we test the use of three different 

thresholds (0, 0.5, and 1 K) in BTD11-12µm in detecting dusty pixels as classified by 

CALIPSO. 

For the D-parameter method, Roskovensky and Liou (2005) expanded upon the 

simple BTD11-12µm test by adding a reflectance ratio. According to measurement and 

modeling studies (Patterson et al., 1977; and Sokolik and Toon, 1999), mineral dust 

aerosol displays a decreasing imaginary part of the complex index of refraction with 
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wavelength in visible spectral range, while clouds scatter more uniformly over this 

spectral range. For example, Miller (2003) uses the reflectance ratio between visible and 

near-infrared channels in MODIS data to enhance dust regions over dark backgrounds 

such as ocean water (apart from areas of sun glint, shallow, or sediment/organic-laden 

waters). In this study, we evaluate the D-parameter, which is defined by Roskovensky 

and Liou (2005) as follows, 

 

€ 

D = exp − rr × a + (BTD11-12µm − b)[ ]{ }, (4.1) 

where rr represents the 0.54 µm/0.86 µm reflectance ratio, a is its scaling factor (0.8) and 

b is an offset to the BTD11-12µm (2.0), respectively. Pixels with D values greater than 1 

are classified as dust. 

The third algorithm we test is multi-channel imager (MCI) algorithm developed 

by Zhao et al. (2010). This algorithm is designed to operationally monitor the outbreak 

and dispersion of dust storms and smoke plumes over both land and ocean for multi-

channel radiometric imagers such as EOS/MODIS, JPSS/VIIRS, and GOES-R/ABI. In 

this study, however, we focus on the dust detection over ocean. As the MCI algorithm’s 

name implies, several spectral tests involving SW reflectances and IR brightness 

temperatures are used. The algorithm introduces an additional level of sophistication 

through application of a spatial variability test using the standard deviation of 0.86-µm 

reflectances. The purpose of the spatial variability test is to exploit the tendency of dust 

to be more uniformly distributed than cloud (Martins et al., 2002). In addition, since dust 

over ocean is less reflective than clouds, a reflectance test (R0.47µm ≤ 0.3) is added to 

BTD tests (BTD3.9-11µm, BTD11-12µm) and reflectance ratio tests (R0.47µm/R0.64µm, modified 
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version of ratio of R0.86µm and R0.64µm). In their initial evaluation, the algorithm can 

capture heavy dust and smoke plumes over land and ocean, however it has difficulty in 

detecting thinner or dispersed dust and smoke plumes due to the relatively weak aerosol 

signal. 

We compare the dust detection methods to a MODIS scene off the northwest 

coast of Africa from April 2, 2008 at 1450 UTC in Fig. 4.1. Panel (a) shows a MODIS 

true color view of the scene along with the CALIPSO track labeled with the CALIPSO 

scene classification. Panel (b) shows the MODIS retrieval of aerosol optical thickness 

(AOT) over ocean. The black strip down the length of the image is where sunglint 

prevented retrieval. Dust plumes can be found near the coastline of Africa in right and 

lower side of Fig. 4.1a and b. Thin dust layers are detected by CALIPSO along the track 

(lower part of center line in Fig. 4.1a), even though it is difficult to identify in MODIS 

RGB image due to the dust being optically thin (Fig. 4.1b). The results of three different 

BTD11-12µm thresholds are shown in panels (c–e). The differences between these show 

the detection sensitivity to small threshold changes. As the threshold increases, detected 

dusty area increases. However, cloudy areas are also classified as dust with a high 

threshold. The D-parameter technique looks effective in identifying dust regions with 

both thin and thick dust layers. The MCI algorithm detects the relatively thick dust near 

the coastline of Africa. These results demonstrate the difficulty of optically thin dust 

detection in scenes with clouds. 

While Figure 4.1 compares dust detection for one MODIS granule, the 

algoirthms have also been applied to a year (2008) of co-located ocean-only MODIS and  
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Fig. 4.1 (a) MODIS RGB image on April 2, 2008 (1450 UTC) along with the CALIPSO 

track (the center line with colors), (b) MODIS aerosol optical thickness (AOT), and dust 

detection results (c, d, and e) for the BTD11-12µm threshold tests, (f) for the D parameter 

methods, and (g) for the MCI algorithm. Pixels classified as dust by each technique are 

shown in orange. 
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Table 4.1 Comparisons between MODIS dust detection techniques and co-located 

CALIPSO scene classification during 2008 daytime over ocean. Rows are MODIS dust 

detection techniques, including three different BTD thresholds, while columns are 

CALIPSO cloud/dust classifications. The percentages in the interior cells represent the 

percentage of dust pixels by MODIS dust detection techniques out of the total number of 

the each CALIPSO classes. Note that CALIPSO dust categories are separated into thin 

and thick layer by a CALIPSO optical thickness (τ) threshold of 1. 

CALIPSO category 

Dust  
Clear Cloud 

τ < 1 τ ≥ 1 
Others 

BTD11-12µm 

< 0K 
4.5% 3.8% 1.2% 8.2% 0.9% 

BTD11-12µm 

< 0.5K 
31.5% 40.6% 23.1% 38.6% 11.1% 

BTD11-12µm 

< 1K 
67.3% 68.0% 66.3% 72.0% 41.8% 

D 

Parameter 
20.5% 36.0% 14.8% 58.9% 14.9% 

MCI 0.09% 0.01% 1.6% 9.9% 0.03% 

Total 427,252 6,091,514 70,985 4,003 4,821,017 
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CALIPSO observations. Table 4.1 compares the three BTD11-12µm thresholds, D-

parameter, and MCI with CALIPSO’s scene classification, as described in section 4.2.2. 

The percentages show the fraction of pixels in each scene category that would be 

classified as dust by the algorithm. Therefore, the clear and cloudy percentages should 

be viewed as false positives, while the others percentage is harder to interpret because 

the scene type is mixed. Note that while ~75,000 co-located pixels are classified as dust 

by CALIPSO, these make up less than 1% of our ~11 million pixel data set. To further 

focus on the detection of optically thin dust, we use the CALIPSO dust optical depth 

threshold of 1 is used to separate thin (τ < 1) and relatively thick (τ ≥ 1) dust.  

Overall, all these dust detection methods are better at finding thick (τ ≥ 1) dust 

than thin (τ < 1), however these techniques do not consistently separate dusty areas from 

areas that are clear, cloudy or others. In general, an algorithm that correctly classifies a 

large percentage of the dust scenes, will incorrectly classify a larger fraction of clear and 

cloudy scenes as dust. For example, the 1-K BTD threshold test is most successful at 

finding thick (τ ≥ 1) dust (72.0% of scenes) and thin (τ < 1) dust (66.3% of scenes), 

however it incorrectly classifies as larger number of clear (67.3%) and cloudy (68.0%) 

scenes as dust than thin dust scenes. In the BTD11-12µm threshold tests, small threshold 

changes have large impacts on detection fraction. The D-parameter technique classifies a 

large percentage of clear and cloudy scenes as dusty. For the MCI algorithm, the 

percentage of dusty area is higher than that of clear or cloudy region, but it is still small 

(1.6% for thin dust and 9.9% for thick dust). These imager techniques may have 

difficulties in separating thin dust layers from both clear and cloudy pixels. Dust scenes 
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may be difficult to distinguish from dust scenes because of similarities between the 

spectral reflectance and radiance of optically thin dust layers and clear scenes. Dust may 

be difficult to distinguish from cloud due to the global use of simple fixed thresholds. 

While not necessarily effective for the sort of optically thin dust scenes at which 

CALIPSO excels in detection, these techniques may be effective for detection of highly 

concentrated or optically thick dust. 

 

4.4 MODIS Radiative Signatures of the Thin Dust Layers 

As shown in the previous subsection, detecting the optically thin dust that can be 

observed by CALIPSO can be difficult for imager-based algorithms. In this subsection, 

we investigate several dust parameters with the goal of developing a MODIS algorithm 

to thin dust layers. Specifically, six MODIS parameters are investigated, including 

brightness temperature differences, and standard deviation and ratios of reflectance, for 

inclusion in a training data set for a the new algorithm. 

As mentioned before, window channel BTDs provide some information about 

dust scenes (e.g. Ackerman, 1997). In this study, we consider the BTDs between 11 µm 

and 12 µm and between 8.5 µm and 11 µm. Since aerosol layers have a more 

homogeneous structure than clouds (Martins et al., 2002), the standard deviation of 

reflectance at 0.55 µm (STD[R0.55µm]) will be used to help to separate dust aerosols from 

clouds. Another parameter used in this study is the normalized difference vegetation 

index (NDVI). Originally, the NDVI was used for the identification of vegetated areas 

(Rouse et al., 1973). However, it can also be used in mineral dust detection due to the 
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different reflectances of dust in the red and near-infrared spectral regions (Evan et al., 

2006b). The NDVI is defined as the modified ratio of reflectances at 0.64 µm and 0.86 

µm,  

 NDVI =

€ 

R0.86µm − R0.64µm

R0.86µm + R0.64µm
. (4.2) 

Qu et al. (2006) proposed a normalized difference dust index (NDDI) for 

distinguishing mineral dust from the clouds due to the spectral characteristic of sand at 

2.13 µm and 0.47 µm. The NDDI is analyzed in this subsection, which is defined as the 

modified ratio of reflectances at these wavelengths, 

 NDDI =

€ 

R2.13µm − R0.47µm

R2.13µm + R0.47µm
. (4.3) 

The last parameter is the simple ratio of 0.47 µm (blue) and 0.645 µm (red) 

reflectances (R0.47µm/R0.64µm). As mentioned in the previous section, mineral dust 

absorptivity increases with decreasing visible wavelength, while clouds scatter more 

uniformly over the visible wavelengths. So, this ratio will help to separate dust from 

cloud. 

We test the usefulness of these MODIS parameters for dust discrimination using 

one year (2008) of collocated daytime MODIS and CALIPSO data. In this study, only 

ocean surface away from ice cover and sun-glint regions are considered. Fig. 4.2 shows 

the distribution of MODIS NDVI (Eqn. 4.2) and standard deviation of reflectance at 0.55 

µm (MODIS band 4) of 3 by 3 pixel blocks (STD3[R0.55µm]) for each of the CALIPSO 

clear, cloud and dust classifications. The MODIS NDVI of CALIPSO cloudy pixels is 

concentrated around zero value and the standard deviation of reflectance of cloud is  
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Fig. 4.2 Distribution of MODIS NDVI (a~c) and 3 by 3 pixel standard deviation of 

MODIS R0.55µm (d~f) for each of the CALIPSO clear, cloud, and dust categories (left 

panel: clear, middle panel: cloud, and right panel: dust pixels) during 2008. 

 

around 10-2, while the NDVI distribution is broader and the reflectivity variability lower 

for dust. This figure verifies the result of Martins et al. (2002) that mineral dust 

reflectivity is more uniform than clouds. Therefore, these parameters will be useful in 

discriminating dust from cloud. However, the clear pixels have two peaks in both the 

NDVI and STD3[R0.55µm]. In Fig. 4.2a, one peak of NDVI is near zero value, and 

another one is around -0.4. This feature is also found in the standard deviation of 

MODIS band 4 as shown in Fig. 4.2d. This may be due to the difference of data 
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resolutions between MODIS and CALIPSO. In this analysis, we collocated the 

CALIPSO 5-km cloud and aerosol layer products with 1-km MODIS resolution. 

Therefore, CALIPSO classification may classify a fraction of clouds having smaller 

horizontal extension than 5 km as clear. 

We have also seen a few examples of the CALIPSO 5 km cloud layer product 

failing to classify scenes containing small marine boundary layer cumulus as cloudy. For 

example, Fig. 4.3 shows the MODIS cloudy pixels corresponding CALIPSO clear sky 

scenes. The CALIPSO retrieval classifies the region in the red circle in Fig. 4.3b as 

clear, although the MODIS image implies that there is marine boundary layer cumulus 

cloud. Because it appears that, at the MODIS scale, there is some cloud contamination in 

CALIPSO’s clear category and it is necessary to try to separate the two peaks before we 

can use the classifications as a training data set. 

In this study, we have applied an additional screening based on the MODIS 

R0.64µm (R1 in some figures) to eliminate cloud contamination in CALIPSO clear 

classification, because this visible wavelength is highly sensitive to cloud optical 

thickness. We assume that CALIPSO clear scenes with MODIS R0.64µm<0.05 are truly 

clear, and the CALIPSO clear pixels with MODIS R0.64µm≥0.05 have some cloud 

contamination. 

Based on this modified CALIPSO scene classification, the six parameters 

mentioned above are analyzed as follows. First, the distributions of standard deviation of 

R0.55µm for six latitude bands (Lat. band 1: 90°~60°; Lat. band 2: 60°~30°; Lat. band 3: 

30°~0°; Lat. band 4: 0°~-30°; Lat. band 5: -30°~-60°; and Lat. band 6: -60°~-90°,  
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Fig. 4.3 (a) MODIS RGB image from January 1, 2008 (0055 UTC) along with 

CALIPSO flight track and (b) the RGB image of the red box area indicated in (a). The 

colorbar shows the CALIPSO scene classification along the CALIPSO track. Note that 

the CALIPSO retrieval classifies the region in the red circle in (b) as clear, although the 

MODIS image implies the presence of cloud. 

 

respectively), and four regimes of CALIPSO optical thickness retrievals are shown in 

Fig. 4.4. The first row shows CALIPSO clear scenes with MODIS R0.64µm<0.05, which 

we consider to be clear. The second row shows CALIPSO clear scenes with MODIS 

R0.64µm≥0.05 which we consider to be cloud contaminated. It will require additional 

screening to separate the two STD3[R0.55µm] peaks in CALIPSO clear classification. The 

standard deviations of clear (R0.64µm<0.05) and dust pixels are much lower than those of 

clouds and show little latitudinal dependence. As expected, the spatial variability of  
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Fig. 4.4 Distribution of 3 by 3 pixel standard deviation of MODIS R0.55µm for the 

modified CALIPSO categories (first row: clear (R0.64µm<0.05), second row: clear 

(R0.64µm≥0.05), third row: cloud, and bottom row: dust) during 2008 with respect to 

different latitude bands (left column), and CALIPSO optical thickness (right column). 
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cloud-contaminated clear category looks similar to that clouds expect for small peak 

around 10-3. To build our training data set, it will be important to have a distinct 

classification for our clear category, therefore the small peak in the cloud-contaminated 

clear class is less important. We also see little dependence on optical thickness for either 

clouds or dust pixels. Overall, STD3[R0.55µm] should be useful to discriminate dust from 

cloud. 

Figure 4.5 shows the distribution of MODIS NDVI for the modified CALIPSO 

scene classification. The CALIPSO cloud category shows a very narrow peak around 0 

because of flat spectral sensitivity of cloud at 0.64 µm and 0.86 µm, while the clear 

(R0.64µm <0.05) and the dust categories have wider ranges of NDVI values near -0.4 

(clear) and -0.2 (dust), respectively. As we expected, the NDVI of clear (R0.64µm≥0.05) 

category looks similar to that of clouds with little peak around -0.3. The NDVI of the 

clear (R0.64µm<0.05) and cloud classes show less latitudinal dependence than that of the 

dust. For the dust, the MODIS NDVI of the latitude band from 0 to 30° (green in Fig. 

4.5d) shows higher frequency than other latitude bands and has a somewhat higher 

NDVI values, which corresponds to an optically thick layer. This is because most large 

desert areas, including the Saharan desert, are located within this latitude band. The 

NDVI of dust increases with optical thickness. So, NDVI will be useful to separate 

optically thin dust layers from clouds. Very optically thin (0<τ<0.1) dust layers look 

similar to clear pixels. 

We see similar characteristics with the MODIS reflectance ratio (R0.47µm/R0.64µm) 

in Fig. 4.6. The R0.47µm/R0.64µm of the cloud category is concentrated around 1. Again,  
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Fig. 4.5 Same as Fig. 4.4 except for normalized difference vegetation index (NDVI) (see 

Eqn. 4.2). 
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Fig. 4.6 Same as Fig. 4.4 except for the ratio of MODIS R0.47µm and R0.64µm. 
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this is due to the similar reflectances of cloud at these wavelengths. For clear 

(R0.64µm<0.05) category, the ratio is high (around 4) with little latitudinal dependence. 

The tropics (green and blue color in first row) in the clear (R0.64µm<0.05) category have 

higher R0.47µm/R0.64µm ratios than the high latitudes (black and purple). The reflectance 

ratio of dust decreases from similar to clear to more similar to cloud with increasing 

optical thickness. 

Fig. 4.7 shows that NDDI shares similar characteristics with the other reflectance 

ratios. The NDDI for the clear (R0.64µm<0.05) class is very narrow near -1.0, while cloud 

and dust categories have broader values through -0.9 to 0 (cloud) and -1.0 to -0.5 (dust) 

with optical thickness dependence. The NDDI values for cloud and dust increase with 

optical thickness. The dust NDDI for the tropics (green color in first row of Fig. 4.7d) 

tends to be much higher than other regions. This is because the optically thick dust 

layers are more frequently observed in this region. Overall, the reflectance ratios (NDVI, 

NDDI, and R0.47µm/R0.64µm) will be helpful in our new algorithm to separate dust layers 

both from cloud and clear scene. 

Figs. 4.8 and 4.9 show the MODIS BTD distributions between 8.5-11 µm (Fig. 

4.8) and 11-12 µm (Fig. 4.9). The BTD8.5-11µm of dust looks similar to that of clear pixels 

(R0.64µm <0.05). The BTD8.5-11µm distribution of cloudy scenes is broader and overlaps 

that of the clear (R0.64µm<0.05) and dust categories. The BTD8.5-11µm of cloud increases 

with optical thickness, as shown in Ackerman (1997). However, the BTD11-12µm of cloud 

in Fig. 4.9 shows much less dependence on optical thickness than BTD8.5-11µm. Alone, 

the BTDs are not sufficient to separate dust from clear or cloudy scenes, but they may  
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Fig. 4.7 Same as Fig. 4.4 except for normalized difference dust index (NDDI). 
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Fig. 4.8 Same as Fig. 4.4 except for BTD8.5-11µm. 
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Fig. 4.9 Same as Fig. 4.4 except for BTD11-12µm. 
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contribute to our algorithm in combination with other parameters. 

 

4.5 A New Multi-spectral MODIS Algorithm using Discriminant Analysis 

We have developed a new multi-spectral MODIS algorithm for the detection of 

optically thin mineral dust layer over the ocean. The algorithm is based on discriminant 

analysis (DA) and uses MODIS visible (R0.47µm, R0.55µm, and R0.64µm), near-infrared 

(R0.86µm, and R2.13µm) and thermal infrared window (BT8.5µm, BT11µm, and BT12µm) 

channels. This algorithm uses a combination of the six parameters introduced in the 

previous section to separate dust from cloud and clear scenes. Discriminant analysis is 

used to determine algorithm thresholds for each of the spectral parameters. 

 

4.5.1 Discriminant analysis 

Discriminant analysis is a statistical method of assigning an object to one of a 

number of possible classes (types or groups) on the basis of a set of features (MODIS 

measurements, in this case). The discriminant analysis finds the dividing function 

between the measurements by finding the maximum conditional probability based on the 

Bayes’ rule. In this study, we have used two discriminant analyses methods: Linear 

(LDA) and Quadratic (QDA) discriminant analysis. Linear and quadratic discriminant 

analyses divide the sample space with linear and quadratic functions, respectively. For 

example, LDA uses straight a line to divide the two areas of a sample space with two 

variables and uses flat surfaces for three variables in the case of two classes. 

If it is assumed that each CALIPSO class has multivariate normal distribution 
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and all classes have different covariance matrixes, the quadratic discriminant analysis 

formula can be used, which is defined as, 

 

€ 

di = ln Ci( ) + x − µi( )TCi
−1 x − µi( ) − 2ln P(i)( ) , (4.4) 

where  is covariance matrix of class i, x is measurement,  is the average of class i, 

and P is prior probability of class i. We can classify the types by assigning object x to 

class i that has minimum . If we add the additional assumption that all classes have 

the same covaiance matrix, the linear discriminat analysis formula can be obtained as 

follows; (see Appendix for the derivation of these formulas) 

 

€ 

f i = µiC
−1xT − 1

2
µiC

−1µi
T + ln P(i)( ) . (4.5) 

Object x will be assigned to class i that has maximum of . James (1985) 

provides more information about discriminant methods. 

 In our application, six parameters for three classes (clear, cloud, and dust) of 

MODIS data collocated with CALIPSO from 2008 are used as a training data set. We 

only use the clear pixels having MODIS 0.64-µm reflectance less than 0.05 for the clear 

category in the training data set. We establish the lookup tables of covariance matrixes, 

means and prior probabilities of each class for six latitude bands (-90 to -60, -60 to -30, -

30 to 0, 0 to 30, 30 to 60, and 60 to 90º) and four seasons. Since this algorithm uses 

reflectances over ocean, we screen out the sun-glint area in the analysis. If a latitude 

band and season pair does not contain a sufficient number of dusty pixels, the algorithm 

classifies the granule as ‘undetermined’. 

 

! 
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4.6 Application of the New Dust Detection Algorithm 

 

4.6.1 Case study 

Fig. 4.10 demonstrates the application of the discriminant analysis dust detection 

algorithms to the April 2, 2008 granule shown in Fig. 4.1. The Saharan desert dust along 

the CALIPSO track has relatively low aerosol optical thickness (AOT) of around 0.5 

according to MODIS (Fig. 4.10b). The results (Fig. 4.10c, and d) of both discriminant 

analysis methods and both appear to detect areas with thin dust. Comparing the two, the 

QDA method classifies more large dusty area, but the pattern is similar to LDA method 

result. However, these methods misclassify the thick dust region near the coastline of 

Africa (right side of each panel) as cloud. This is probably due to similar spectral 

characteristics between clouds and thicker dust in several of our parameters. The lack of 

a large number of thick dust scenes in our CALIPSO-based training data set is also issue. 

Fig. 4.11 shows an example of Asian dust case on April 15, 2008 (0430 UTC). A dust 

layer is seen over the ocean along the CALIPSO track, although it is difficult to see in 

MODIS RGB image (Fig. 4.11a). The MODIS retrievals show low values of aerosol 

optical thickness (Fig. 4.11b). Similar to the Saharan dust case, both methods seem to 

detect thin dust layers. 

 

4.6.2 Evaluation with CALIPSO products 

We also evaluate the new dust detection algorithm with co-located MODIS and 

CALIPSO data from 2009. These data are independent of our 2008 training data set. In  
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Fig. 4.10 (a) MODIS RGB image on April 2, 2008 (1450 UTC) with the CALIPSO 

track, (b) aerosol optical thickness, and (c) dust detection results for the LDA, and (d) 

for the QDA methods. Black, white, and orange colors in (a), (c), and (d) represent clear, 

cloud, and dust pixels, respectively. Blue in (a) refers to the CALIPSO ‘other’ 

classification. Green in (c and d) represents undetermined pixels, typically due to 

sunglint. Blue in (c and d) marks land surfaces. 
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 Fig. 4.11 Same as Fig. 4.10 except for on April 15, 2008 (0430 UTC). 

 

the evaluation, all CALIPSO categories (Clear (R0.64µm<0.05), Cloud, Dust, Clear 

(R0.64µm≥0.05), Others) are employed. The number of pixels for each CALIPSO and new 

algorithm (clear, cloud, and dust) category for the LDA method are shown in Table 4.2, 

while Table 4.3 has the QDA results. The percentages represent the percentage of each 
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LDA or QDA class numbers out of the total number of the CALIPSO class. Note that in 

each discriminant classification, each clear, cloudy and dusty pixel is categorized 

according to the conditional probability (P) of 0.8 to indicate the degree of confidence in 

the selection. The lower probability (P<0.8) indicates lower confidence in the DA 

classification. 

 

 

Table 4.2 The statistics of the new MODIS LDA algorithm over ocean during 2009. 

Note that each LDA classification is broken into two degrees of confidence according to 

the conditional probability (P<0.8 implies lower confidence than P≥ 0.8). Values in bold 

indicate agreement between the MODIS LDA and CALIPSO categories.  

CALIPSO category 

 Clear 

(R1<0.05) 
Cloud Dust 

Clear 

(R1≥0.05) 
Others Sum 

P<0.8 21,800 
(8.7%) 

31,920 
(0.5%) 

5,853 
(9.6%) 

4,851 
(3.2%) 

504,065 
(10.6%) 

568,489 
 

C
le

ar
 

P≥0.8 210,276 
(83.9%) 

69,922 
(1.1%) 

12,928 
(21.2%) 

11,829 
(7.7%) 

1,090,659 
(22.9%) 

1,395,614 
 

P<0.8 4,555 
(1.8%) 

27,792 
(0.5%) 

2,310 
(3.8%) 

2,478 
(1.6%) 

243,918 
(5.1%) 

281,053 
 

C
lo

ud
 

P≥0.8 5,601 
(2.2%) 

5,933,029 
(97.4%) 

9,575 
(15.7%) 

125,501 
(81.8%) 

2,442,861 
(51.4%) 

8,516,567 
 

P<0.8 5,908 
(2.4%) 

16,052 
(0.3%) 

6,634 
(10.9%) 

4,550 
(3.0%) 

254,872 
(5.4%) 

288,016 
 

LD
A

 C
la

ss
ifi

ca
tio

n 
D

us
t 

P≥0.8 2,427 
(1.0%) 

11,625 
(0.2%) 

23,800 
(39.0%) 

4,220 
(2.8%) 

218,345 
(4.6%) 

260,417 
 

Total 250,567 6,090,340 61,100 153,429 4,754,720 11,310,156 
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Table 4.3 Same as Table 2, but for the QDA method.  

CALIPSO category 

 Clear 

(R1<0.05) 
Cloud Dust 

Clear 

(R1≥0.05) 
Others Sum 

P<0.8 10,304 
(4.1%) 

21,653 
(0.4%) 

5,671 
(9.3%) 

3,880 
(2.5%) 

387,239 
(8.1%) 

428,747 
 

C
le

ar
 

P≥0.8 228,406 
(91.2%) 

95,752 
(1.6%) 

16,347 
(26.8%) 

14,937 
(9.7%) 

1,563,337 
(32.9%) 

1,918,779 
 

P<0.8 2,016 
(0.8%) 

25,462 
(0.4%) 

1,727 
(2.8%) 

5,333 
(3.5%) 

221,115 
(4.7%) 

255,653 
 

C
lo

ud
 

P≥0.8 2,192 
(0.9%) 

5,913,430 
(97.1%) 

6,594 
(10.8%) 

117,165 
(76.4%) 

2,063,122 
(43.4%) 

8,102,503 
 

P<0.8 4,226 
(1.7%) 

17,145 
(0.3%) 

6,209 
(10.2%) 

5,124 
(3.3%) 

284,414 
(6.0%) 

317,118 
 

Q
D

A
 C

la
ss

ifi
ca

tio
n 

D
us

t 

P≥0.8 3,423 
(1.4%) 

16,898 
(0.3%) 

24,552 
(40.2%) 

6,990 
(4.6%) 

235,493 
(5.0%) 

287,356 
 

Total 250,567 6,090,340 61,100 153,429 4,754,720 11,310,156 

 

 

Almost half of the CALIPSO dust pixels (P<0.8 and P≥0.8) are detected as dust 

by using the LDA method (Table 4.2). Those scenes misclassified by LDA as dust are 

largely assigned with low confidences. For example, the 2.4% of total CALIPSO clear 

(R0.64µm<0.05) class are classified as low confidence LDA dust class. It is over twice 

number of high confidence LDA dust class. The percentage of false detection in the 

CALIPSO clear (R0.64µm<0.05) and cloud categories is very low. The percentages of 

dusty pixels by discriminant analysis technique over CALIPSO clear and cloud pixels 

are 3.4% and 0.5% by LDA and 5.0% and 1.3% by QDA, which is an improvement 



 102 

compared to the other methods in section 4.2. As expected, most cloud-contaminated 

clear (R0.64µm≥0.05) CALIPSO category are classified as cloud by discriminant analysis. 

Over all, these discriminant analysis methods more effectively separate dust from cloud 

and clear pixels than the methods discussed in section 4.3. Although a significant 

fraction of CALIPSO dust scenes are not detected, the number of clear and cloudy 

scenes misclassified as dust by LDA is much lower compared with the other methods.  

CALIPSO retrievals of dust and cloud optical thickness provide another way to 

evaluate the performance of the discriminant analysis-based algorithms. The CALIPSO 

optical thickness histograms for CALIPSO cloud and dust categories with two 

confidence classes from LDA result are shown in Fig. 4.12 (for cloud) and Fig. 4.13 (for 

dust). For scenes described by CALIPSO as cloud (Fig. 4.12), most with optical 

thickness greater than 0.5 are classified as cloud with high confidence. If the cloud 

optical thickness is less than 0.5, LDA may classify as clear or dust. Fig. 4.13 shows that 

most scenes described by CALIPSO as dust with optical thickness between 0.1 and 2.0 

are classified as dust with high confidence by LDA. The LDA technique is not effective 

at separating clear, cloud, and dust types when the CALIPSO cloud or dust optical 

thickness is very low (less than 0.1). This is likely due to the lack of sensitivity in the 

MODIS reflectances in these cases. The QDA technique shows similar result as the LDA 

(not shown). 
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Fig. 4.12 CALIPSO cloud optical thickness histograms for LDA classifications [Clear (a 

and b), Cloud (c and d), and Dust (e and f)] for the CALIPSO cloud category. Left 

panels show lower confidence classifications, while right panels indicate higher 

confidence ones. 
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Fig. 4.13 Same as Fig. 4.12 except for the CALIPSO dust category. 
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4.7 Summary and Conclusions 

In this section, we evaluate three dust detection methods with CALIPSO 

products and investigate the MODIS radiative signature of the mineral dust detected by 

CALIPSO satellite. Based on this analysis, we implement a new dust detection algorithm 

for MODIS by using discriminant analysis and evaluate this new algorithm. 

The three existing dust detection algorithms including BTD procedure, D parameter 

method, and multi-channel image algorithm are evaluated for the daytime over ocean 

surface with CALIPSO aerosol product. The analysis shows that these techniques may 

be effective for detection of highly concentrated dust, while these algorithms may have 

difficulties in detecting optically thin dust layers. The six parameters including 

reflectance ratios, BTDs, and a standard deviation of reflectance are analyzed for 

radiative signature of the dust, cloud, and clear scenes detected by CALIPSO satellite. 

Reflectance ratios (NDVI, NDDI, and R0.47µm/R0.64µm) and standard deviation of 

reflectance (STD3[R4]) are confirmed to be useful to discriminate dust from clear or 

cloud, while BTDs (BTD8.5-11µm, and BTD11-12µm) didn’t show the significant 

differences between dust and clear/clouds. From this analysis, we implement a new dust 

detection algorithm for MODIS by using discriminant analysis to combine the visible 

and IR measurements observations, including information about spatial variability. The 

CALIPSO cloud and aerosol classification with an aid of MODIS reflectance is used as 

training data set in the development of a new algorithm. The training data set uses data 

from collocated MODIS and CALIOP data from 2008. Results are also evaluated using 

data from 2009. The new algorithm looks effective for dust optical thickness between 
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0.1 and 2.0. In order to discriminate between cloud and optically thick dust, combining 

other method such as BTD method and the D-parameter technique is necessary. 
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5. SUMMARY 

 

In this dissertation, we investigated the microphysical properties of aerosols and 

clouds with newly available global observations of lidar depolarization ratio and 

backscatter relationships, which allow us to retrieve particle thermodynamic phase and 

shape and/or orientation of aerosols and clouds. 

In section 2, spaceborne polarization lidar, CALIPSO lidar, are introduced and its 

unique capabilities are demonstrated by presenting the relationships between lidar 

backscatter and the corresponding depolarization ratio for different cloud classifications 

and aerosol subtypes. Specifically, the operational MODIS cloud optical thickness and 

cloud-top pressure products are used to classify cloud types on the basis of the ISCCP 

cloud classification scheme. While the CALIPSO observations provide information for 

up to 10 cloud layers, in the present study only the uppermost clouds are considered. The 

layer-averaged attenuated backscatter (γʹ′) and layer-averaged depolarization ratio (δ) 

from the CALIPSO measurements show both water- and ice-phase features for global 

cirrus, cirrostratus, and deep convective cloud classes. Furthermore, we screen both the 

MODIS and CALIPSO data to eliminate cases in which CALIPSO detected two- or 

multi-layered clouds. It is shown that low γʹ′ values corresponding to uppermost thin 

clouds are largely eliminated in the CALIPSO δ-γʹ′ relationship for single-layered clouds. 

For mid-latitude and polar regions corresponding, respectively, to latitude belts 30º-60º 

and 60º-90º in both the hemispheres, a mixture of water and ice is also observed in the 

case of the altostratus class. MODIS cloud phase flags are also used to screen ice clouds. 
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The resultant water clouds flagged by the MODIS algorithm show only water phase 

feature in the δ-γʹ′ relation observed by CALIOP; however, in the case of the ice clouds 

flagged by the MODIS algorithm, the co-existence of ice- and water-phase clouds is still 

observed in the CALIPSO δ-γʹ′ relationship. 

In the δ-γʹ′ relation for the aerosol types, the attenuated backscatter of dust type is 

similar to that other aerosol types. However, the depolarization ratio of dust is much 

higher than others due to its nonspherical characteristics. Thus, dust aerosol type can be 

well separated from other aerosol types, and can be used in evaluation of MODIS dust 

detection algorithms.  

In section 3, we evaluate the MODIS IR cloud phase with the CALIPSO cloud 

products. The three possible misclassifications of MODIS cloud phase mentioned in 

radiative transfer modeling study by Nasiri and Kahn (2008) are tested by comparing 

between MODIS IR phase and CALIOP observations for single-layer clouds (54% of the 

cloudy CALIOP scenes) and for the top-layer of the CALIOP scenes. Both CALIOP and 

MODIS retrieve larger fractions of water clouds in the single-layer cases than in the top-

layer cases, demonstrating that focusing on only single-layer clouds may introduce a 

water cloud bias. Of the single-layer clouds, 60% are transparent and 40% are opaque 

(defined by the lack of a CALIOP ground return). MODIS tends to classify single-layer 

clouds with mid-layer temperatures below -40°C as ice, around -30°C nearly equally as 

ice, mixed, and unknown, between -28°C and -15° as mixed, and above 0°C as water. 

95% of the single-layer CALIOP clouds not detected by MODIS are transparent. 

Approximately 1/3 of transparent single-layer clouds with temperatures below -30°C are 
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not detected by MODIS, close to another 1/3 are classified as ice, with the rest as either 

water, mixed, or unknown. CALIOP classes nearly all of these transparent cold clouds as 

ice. 

In section 4, we evaluate three dust detection methods with CALIPSO product. 

The dust detection algorithms including BTD procedure, D parameter method, and 

multi-channel image algorithm may have difficulties in detecting optically thin dust 

layers. These techniques may be effective for detection of highly concentrated dust. We 

also investigate the MODIS radiative signature of the mineral dust detected by 

CALIPSO satellite. Based on this analysis, we implement a new dust detection algorithm 

for MODIS by using discriminant analysis with combining the visible and IR 

measurements as well as the information about spatial variability. The new algorithm is 

effective for dust optical thickness between 0.1 and 2. 
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APPENDIX 

DERIVATION OF DISCRIMINANT ANALYSIS FORMULA 

 

Discriminant analysis is a technique for classifying a set of measurements into 

predefined classes. The main purpose of discriminant analysis is to determine the class 

of an observation based on a set of the input variables (i.e. parameters). Following the 

derivation of discriminant analysis formula is based on James (1985).  

Basically, discriminant analysis uses the Bayes' rule to minimize the total 

classification error by assigning the object to class  which has the highest conditional 

probability, where 

 

€ 

P(i | x) > P( j | x), for ∀ j ≠ i . (A1) 

Since we can obtain 

€ 

P(x | i)  instead of 

€ 

P(i | x)  from the measurements, we use 

Bayes’ theorem to calculate 

€ 

P(i | x)  as follows; 

 

€ 

P(i | x) =
P(x | i)P(i)
P(x | j)P( j)

∀j
∑

. (A2) 

If we assume that the measurement vector x have a multivariate normal 

distribution, 

€ 

P(x | i)  can be expressed as follows; 

 

€ 

P(x | i) =
1

(2π)n 2Ci
1 2

⎛ 

⎝ 
⎜ 
⎜ 

⎞ 

⎠ 
⎟ 
⎟ exp −

1
2
x − µi( )TCi

−1 x − µi( )
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ , (A3) 

where 

€ 

µi  is the vector x mean of class i and 

€ 

Ci is the covariance matrix of class .
 

Thus, the Bayes’ rule becomes:  

Assign the object x to class  if  

! 

i

! 

i

! 

i
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€ 

P(i)
(2π)n 2Ci

1 2 exp −
1
2
x − µi( )TCi

−1 x − µi( )
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ >

P( j)
(2π)n 2C j

1 2 exp −
1
2
x − µ j( )

T
C j

−1 x − µ j( )⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ , for ∀ j ≠ i

. (A4) 

Taking the natural log (ln) and cancelling all of the terms that are common to both sides 

gives:  

 

€ 

−
1
2
ln Ci( ) + ln P(i)( ) − 1

2
x − µi( )TCi

−1 x − µi( ) >

−
1
2
ln C j( ) + ln P( j)( ) − 12 x − µ j( )

T
C j

−1 x − µ j( ), for ∀ j ≠ i
. (A5) 

By multiplying both sides with -2 and rearranging terms, we have:  

 

€ 

ln Ci( ) + x − µi( )TCi
−1 x − µi( ) − 2ln P(i)( ) <

ln C j( ) + x − µ j( )
T
C j

−1 x − µ j( ) − 2ln P( j)( ), for ∀ j ≠ i
. (A6) 

If we let  

 

€ 

di(x) = ln Ci( ) + x − µi( )TCi
−1 x − µi( ) − 2ln P(i)( ) , (A7) 

which is quadratic discriminant function, the rule becomes; 

Assign object with measurement  to class  if  

 

€ 

di(x) < d j (x),∀ i ≠ j , (A8) 

which means that the classification rule assigns the object x to the group i with the 

minimum 

€ 

di(x) . 

If the correlations between the variables are the same within each class, then this 

can be used to simplify the formula further by letting 

€ 

C =Ci =C j . The inequality (A6) 

becomes; 

! 

x

! 

i
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€ 

ln C( ) + x − µi( )TC−1 x − µi( ) − 2ln P(i)( ) <

ln C( ) + x − µ j( )
T
C−1 x − µ j( ) − 2ln P( j)( ), for ∀ j ≠ i

. (A9) 

By expending the term 

€ 

x − µi( )TC−1 x − µi( )  into 

€ 

xC−1xT − 2µiC
−1xT + µiC

−1µi
T  and 

cancelling out common terms, then we have:  

 

€ 

−2µiC
−1xT + µiC

−1µi
T − 2ln P(i)( ) <

− 2µ jC
−1xT + µ jC

−1µ j
T − 2ln P( j)( ), for ∀ j ≠ i . 

(A10) 

For convenience, it is usual to multiply both sides of the inequality by . 

Finally, we get; 

 

€ 

µiC
−1xT − 1

2
µiC

−1µi
T + ln P(i)( ) >

µ jC
−1xT − 1

2
µ jC

−1µ j
T + ln P( j)( ), for ∀ j ≠ i

 (A11) 

Let us define a new function  

 

€ 

f i(x) = µiC
−1xT − 1

2
µiC

−1µi
T + ln P(i)( ) , (A12) 

which is linear discriminant function, then the classification rule becomes; 

Assign object with measurement  to class  if  

 

€ 

f i(x) > f j (x),∀ i ≠ j , (A13) 

which means that the linear discriminant classification rule assigns the object x to the 

group i with the maximum 

€ 

f i(x) . 

! 

"
1
2

! 

x

! 

i
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