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ABSTRACT 

 

Minimizing Water Production from Unconventional Gas Wells Using a Novel 

Environmentally Benign Polymer Gel System. (December 2011) 

Kush Gakhar, B.Tech., University School of Chemical Technology, GGSIPU 

Co-Chairs of Advisory Committee: Dr. Robert Lane 

                   Dr. Jerome Schubert  

                                         

 Excess water production is a major economic and environmental problem for the 

oil and gas industry. The cost of processing excess water runs into billions of dollars. 

Polymer gel technology has been successfully used in controlling water influx without 

damaging hydrocarbon production in conventional naturally fractured or hydraulically 

fractured reservoirs. However, there has been no systematic investigation on 

effectiveness and placement conditions of polymer gels for shutting off water flow from 

fractures with narrow apertures in shale and tight gas reservoirs. The existing polymer 

gels, like those based on Chromium(III) Acetate, as a crosslinker will exert very high 

extrusion pressure to effectively penetrate the narrow aperture fractures present in shale 

and tight gas reservoirs. This gives rise to a need for a new polymer gel system that can 

be used for selectively shutting off water flow from narrow aperture fractures in shale 

and tight gas reservoirs. The new gel system will have a longer gelation time than the 

existing polymer gels; this ensures minimum crosslinking of the gel by the time it 

reaches bottom hole. The gelant solution will be pumped at low pressure so that, it 

penetrates only pre-existing fractures in the formation with ease.   
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This study for the first time focuses on developing an environmentally benign 

polymer gel system based on high molecular weight HPAM, as a base polymer and a 

commercial grade PEI as an organic crosslinker. Gel samples of different concentration 

ratios of the polymer and crosslinker were prepared and classified under Sydansk code 

of gel strength to find optimum concentration ratios that gave good gels. The gel system 

was characterized using Brookfield DV-III Ultra Rheometer and Fann-35 Viscometer.  
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NOMENCLATURE 

 

C Celsius 

Conc. Concentration 

Cr Chromium 

CT  Computed Tomography 

cp Centipoise 

Da Daltons 

F Fahrenheit 

g  Grams 

HPAM Partially Hydrolyzed Polyacrylamide 

ID Internal Diameter 

kj Kilo Joules 

l  Liters 

L – R  Left to Right 

m Meters 

N Normal 

NaCl Sodium Chloride 

NaOH  Sodium Hydroxide 

Pa Pascal 

PAM  Polyacrylamide 

PEI Polyethyleneimine 

ppm  Parts Per Million  
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1. INTRODUCTION AND LITERATURE REVIEW 

1.1 Water Shutoff Using Polymer Gel Technology 

 Excess water production is a major economic and an environmental problem 

faced by oil and gas industry. It can lead to reduction in well productivity, increasing in 

operating costs and premature abandonment of the well. Further, there is an additional 

cost associated with separation, treatment and reinjection of the excess water (Al-

Muntasheri et al., 2006). It can also lead to problems such as scaling, corrosion and 

requirement of an artificial lift. The cost of processing excess water runs into billions of 

dollars. Well testing and various logging technologies can be used for identifying water 

producing zones in the formation. 

Production of unwanted excess water from oil and gas fields can be minimized 

by many mechanical and chemical water control techniques. One of the most widely 

used processes for water shutoff is based on the use of polymer gel technology (Simjoo 

et al., 2009). This technology has proved to be very successful in controlling water 

influx without damaging hydrocarbon production in conventional fractured or faulted 

reservoirs (Lane and Seright, 2000). 

 

 

 

 

____________ 

This thesis follows the style of SPE Journal. 
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Fig. 1 - Fracture Connecting Aquifer to a Production Well (Mennella et al., 1999) 

 

Fig. 1 illustrates a water producing fracture connecting an aquifer to a 

hydrocarbon producing well. The mechanism for selective placement of water shutoff 

polymer gels is similar to selective extrusion of a hydraulic fracturing gel into a created 

fracture. In both cases, extrusion pressure for the gel to enter matrix is greater than the 

formation breakdown pressure. Both the gels loose fluid to matrix forming a dehydrated 

gel cake at the fracture and formation interface. However, the hydraulic fracture gel is 

designed to be fully cosslinked by the time it reaches bottom hole, unlike the fracture 

penetrating water shutoff gel which is only partially crosslinked. The two gel systems 

also differ in the injection pressures, while the hydraulic fracturing gels are placed at 

high pressures enabling them to create new fractures in the formation, the water shutoff 

polymer gels are injected at low pressures so as to penetrate only into the existing 

fractures and form minimal dehydrated gel cake. The water shutoff gels are also 

designed to be stable for months to years at reservoir conditions on the other hand the 

hydraulic fracturing gels are designed to be easily removable with the help of breakers.  
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Polymer gels can be placed into water producing zones by ‘Bullheading’ (Fig. 2) 

or ‘Zonal Isolation’ (Fig. 3) techniques (Jaripatke and Dalrymple, 2010). 

 

 

Fig. 2 - Bullhead Placement (Jaripatke and Dalrymple, 2010) 

 

 

Fig. 3 - Zonal Isolation Placement (Jaripatke and Dalrymple, 2010) 

 

In ‘Bullhead Placement’ which is also known as full-bore placement (Lane and 

Sanders, 1995), water shutoff gel is pumped down hole without isolating the water 

producing zones. It is the most economical means of gel placement, but can sometimes 
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lead to sealing of both water and hydrocarbon producing zones. On the contrary in 

‘Zonal Isolation’ technique, mechanical packers or bridge plugs are used to isolate the 

target zones. Water shutoff gel is then pumped into water producing zone through 

certain section of perforations or openhole sections. This placement technique minimizes 

water production without effecting hydrocarbon production significantly. 

Ideal placement location for a water shutoff gel is far from the wellbore (Fig. 4), 

this allows the fracture to still produce hydrocarbons from the region near the wellbore 

(Seright, 1995). If the excess water is being produced through vertical fractures 

connected to an underlying water source, then gravity forces can be exploited to ideally 

place the gel. Gravity forces the gel into fractures connecting the underlying aquifer to 

well, thereby plugging the water producing zone. 

 

 

Fig. 4 - Ideal Placement Locations for Gels in Fractures (Seright, 1997) 

 

It has been found from previous studies that hydrocarbons, unlike water can 

make their way through the polymer gel placed in water producing fractures (Mennella 
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et al., 1999). This has been explained as a consequence of shrinkage of polymer gels 

which dehydrate on coming in contact with hydrocarbons, making a way for them to 

pass through. Water on other hand, rehydrates the polymer gel causing it to swell back 

leading to blocking its pathway (Fig. 5). This phenomenon of reducing water production 

without significantly effecting hydrocarbon production is also known as 

‘Disproportionate Permeability Reduction’ (DPR). It has also been found that it is much 

more difficult to shutoff gas flow than either liquid hydrocarbon or water flow (Sanders 

et al., 1994). 

 

       

Fig. 5 - Disproportionate Permeability Reduction (Mennella et. al 1999) 

 

1.2 Inorganically Crosslinked Polymer Gels 

 A water shutoff polymer gel is generally composed of a water soluble 

acrylamide based polymer and a crosslinker. The crosslinker used can be organic or 

inorganic. Chromium(III) crossslinked PAM is the most commonly used inorganic water 

shutoff polymer gel. Lower cost and easy availability of acrylamide polymer and 

chromium(III) crosslinker makes this gel system a cost effective solution for water 

shutoff applications. The reaction between the polymer and Chromium(III) crosslinker 



 6 

(Fig. 6) occurs by complexation of Cr(III) oligomers with carboxylate group on PAM 

(Reddy et al., 2003).  According to previous studies (Al-Muntasheri et.al. 2006) 

inorganically crosslinked gels like those based on Chromium(III) crosslinker, result from 

ionic bond formation between positively charged cations like Cr
+3

 and negatively 

charged carboxylate group on the base polymer. 

 

 

Fig. 6 - Complexation of Carboxylate Group by Chromium   Species (Reddy et. al 

2002) 

 

Such inorganically crosslinked polymer gels, because of weak ionic bonding are 

known to be unstable at high temperatures (Al-Muntasheri et.al 2007). However, these 

gels have been successfully investigated at temperatures up to 260 °F and high salinity 

conditions for near wellbore water shutoff treatments (Sydansk, 1988). It has also been 

found (Reddy et al., 2003) that at higher pH crosslinking reaction between 

Chromium(III) and carboxylate group on the base polymer leads to formation of an 

insoluble chromium precipitate. The Chromium(III) crosslinked polymer gels are also 

known to form weak gels at low polymer concentrations and exhibit ‘Syneresis’, which 
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is expulsion of water due to excessive crosslinking at higher crosslinker concentration 

(Sydansk, SPE Advanced Technology Series, Vol. 1, No.1). There are also concerns 

associated with injection of Chromium(III) based polymer gels because of its short 

gelation time. However, this problem is believed to have been solved by the use of low 

molecular weight polyacrylamide as a base polymer (Sydansk, 1988). Other than 

operational limitations, inorganically crosslinked polymer gels like those based on 

Chromium crosslinker, because of their carcinogenic nature are also a health and an 

environmental concern. 

1.3 Organically Crosslinked Polymer Gels 

 Polymer gels based on low to medium molecular weight PAM (Fig. 7), HPAM 

(Fig. 8) or copolymers of PAM and PAtBA as base polymers and research grade PEI, as 

an organic crosslinker have been investigated in previous studies for water shutoff 

application (Tapia et al., 2010). 

 

 

Fig. 7 - PAM (Al-Muntasheri et al., 2007) 

 

 

Fig. 8 - HPAM (Al-Muntasheri et al., 2007) 
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PEI has been found to be a less toxic crosslinker and has been approved by 

USFDA for food contact (Reddy et.al. 2002). According to previous literature the 

crosslinking reaction between PAM and PEI can be explained as a transamidation 

reaction (Fig. 9). It is a nucleophilic substitution reaction in which nucleophilic imine 

nitrogen on PEI replaces the amide group on PAM.  

 

 

Fig. 9 - Transamidation Reaction between PAM and PEI (Reddy et al., 2003) 

 

Reaction between PAM and PEI leads to formation of a covalent bond between 

the two this provides gel system the stability to withstand high temperature conditions 

(Al-Muntasheri et al., 2007). In the previous studies organic polymer gels based on 

PAtBA and PEI have been found to be stable at temperatures around 160 °C (Al-

Muntasheri et al., 2006). Gel based on PAM and PEI has also been investigated at 

temperatures as high as 140 °C (Al-Muntasheri et al., 2006). The PAM and PEI based 

water shutoff gels investigated in previous studies are generally based on low molecular 

weight PAM, with a molecular weight of around 250,000 – 500,000 Da and research 

grade PEI with a molecular weight of around 70,000 Da (Al-Muntasheri et al., 2007).  
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1.4 Laboratory Evaluation of Water Shutoff Polymer Gels 

Water shutoff polymer gels are prepared by adding calculated amount of polymer 

like PAM to water while stirring the solution continuously. Stirring process is continued 

till the polymer is completely hydrated and a clear polymer solution is obtained.  

Appropriate amount of crosslinker is then added in a drop wise manner, while the 

polymer solution is being stirred (Al-Muntasheri et al., 2008). Stirring is carried out for a 

few minutes before the gelant solution is ready to be poured into a storage container. 

Rheological study of organic and inorganic polymer gels has been successfully 

carried out in the past. These studies mainly concentrated on measuring gelation 

kinetics, gel strength and effectiveness of the polymer gels in plugging the artificially 

induced fractures in sandstone and carbonate core samples. Organically crosslinked 

polymer gels have been tested for the effects of polymer and crosslinker concentration, 

salinity and pH on gelation time using steady shear viscometers (Al-Muntasheri et.al. 

2006). Gelation point is identified as the point of inflection or sudden rise in viscosity on 

viscosity versus time curve (Fig. 10). 
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Fig. 10 - Gelation Point Highlighted on Viscosity v/s Time Curve 

 

Such experiments are usually carried out using steady shear viscometers at 

constant shear rate and temperature. Accurate estimation of gelation time is important to 

assess available pumping time for water shutoff treatment. Underestimation of the 

gelation time can lead to pumping of completely crosslinked polymer gels which might 

damage the formation. Overestimation of gelation time can lead to pumping of 

insufficiently crosslinked gels, which might lead to failure of the treatment (Al-

Muntasheri et al., 2008).  

It has been found from the previous studies (Nasr-El-Din et al., 2006) on PAM 

and PEI based gels that, the gelation time decreases with increasing temperature. This 

has been explained on the basis of Arrhenius type equation: 
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In the above equation GT stands for gelation time, M for frequency factor, Ea for 

activation energy, R is universal gas constant, and T is absolute temperature. A similar 

decrease in gelation time is observed with increasing concentration of the polymer like 

PAM and/ or crosslinker like PEI. This can be explained using reaction rate equation: 

                                       

k is the rate constant, A is the concentration of polymer, B is the concentration of 

crosslinker, and α and β are constants.  

 Polymer gels based on PAM and PEI have also been found to be sensitive to pH 

(Nasr-El-Din et al., 2008). Gelation time was found to decrease with increasing pH. 

Increase in pH leads to increased hydrolysis of PAM (Fig. 11), which forms negatively 

charged carboxylate ions (COO
-
). These negatively charged ions repel each other 

leading to extension of polymer chain network. The extended polymer chain provides 

more accessible crosslinking sites on the polymer, leading to faster gelation. 

 

 

Fig. 11 - Hydrolysis of PAM (Zitha et al., 2008) 

 

 Presence of salts like sodium chloride (NaCl) in the gelant solution is known to 

delay the gelation process (Nasr-El-Din et al., 2008). This phenomenon might be caused 

by shielding of negatively charged carboxylate ions formed on hydrolysis of PAM, by 
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positively charged sodium ions (Na
+
). This might lead to shrinkage of the polymer chain 

network leading to increased gelation time. 

 Gel strength of water shutoff polymer gels has also been studied in the past using 

a semi quantitative measurement technique also known as ‘Bottle Testing’ developed by 

R. D. Sydansk (Sydansk, 1988) listed in Table 1 below. It involves, putting the gel 

sample in a bottle such that it occupies half of the volume. The bottle is then inverted 

and on the basis of flow characteristics of the gel sample under gravitational force, it is 

assigned a gel code depicted by a letter. There are gel strength codes for samples that are 

highly flowing to the samples that form rigid ringing gels. This technique is used to 

classify gels in a fast and inexpensive manner. It relies purely on visual observation and 

gives a semi quantitative measurement of gel strength and gelation rate. It is also a 

convenient way to determine gel stability over long periods of time. 
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Table 1 – Sydansk Gel Code (Sydansk, 1993)  

Sydansk Code Description 

A No Detectable Gel Formed 

B Highly Flowing Gel 

C Flowing Gel 

D Moderately Flowing Gel 

E Barely Flowing Gel 

F Highly Deformable Non Flowing Gel 

G Moderately Deformable Non Flowing Gel 

H Slightly Deformable Non Flowing Gel 

I Rigid Gel 

J Ringing Rigid Gel 

 

 

 

 

 

 

  

 

 

 

 

 

 

 



 14 

2. DEVELOPING A NEW HPAM/ PEI POLYMER GEL SYSTEM 

2.1 Need for a New HPAM/ PEI Gel System 

Polymer gel technology has been successfully used for controlling water influx in 

conventional fractured reservoirs. It has been found from previous studies that about 

fifteen percent of gas wells in Barnett Shale produce greater volume water than that has 

been injected during drilling, completion, stimulation or any other treatment (Awoleke 

and Lane, 2010). Excess water production has also been found from horizontal wells 

drilled in locations where there is a barrier between the production interval and the 

underlying Ellenberger aquifer. Hydraulic fractures in shale and tight gas reservoirs that 

are often connected to open natural fractures are of narrower apertures than hydraulic or 

natural fractures in conventional reservoirs. There has been no systematic investigation 

on effectiveness of the polymer gels in shutting off water flow from narrow aperture 

fractures present in shale and tight gas reservoirs. This study for the first time focuses on 

developing an environmentally benign polymer gel system that is capable of extruding 

into the narrow aperture fractures present in shale and tight gas reservoir.  

The new gel system is based on high molecular weight Partially Hydrolyzed 

Polyacrylamide (HPAM) as a base polymer and a low cost, commercial grade 

Polyetheyleneimine (PEI) as an organic crosslinker. Polymer gels based on HPAM and a 

low molecular weight research grade PEI have also been tested in this study.  The new 

gel system has been designed to exert low extrusion pressure while penetrating fractures 

with narrow aperture in unconventional formations. It also has a longer gelation time and 

provides a more rigid final product than the benchmark water shutoff gels  based on low 
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to medium molecular weight HPAM and chromium(III) acetate of comparable 

concentrations. The new system with longer working time offers greater ease of 

placement in narrow aperture fractures. 

2.2 Chemicals and Equipments  

2.2.1 Base Polymers – HPAM and PAM 

Polymers gels that have been investigated in this study are based on high 

molecular weight HPAM. It had a molecular weight of around 2 to 5 million Da. HPAM 

is an organic polymer and is thus biodegradable. It is also actively used as potable water 

clarifier. 

High molecular weight non-ionic PAM, Flopam - FA 920 by SNF Floerger has 

also been evaluated as a base polymer. The PAM used has a bulk density of 0.75 and an 

approximate Brookfield viscosity of 20 cp at a concentration of 2.5 g/ l. Highly pure, 

research grade PAM from Sigma Aldrich sold under the product code 92560 was also 

tested with commercial grade PEI. The research grade PAM was in a powder form with 

a density of 0.750 g/ cm
3
. It had a viscosity of 2 MPas in 0.1 % wt. water solution and 

had a high cost of $ 63/ 10 g.  

2.2.2 Crosslinkers – PEI and Chromium Acetate 

Research grade and commercial grade PEI have been investigated as organic 

crosslinkers in the new water shutoff polymer gel system. Low molecular weight, 

research grade PEI sold under a product code of 408700 by Sigma Aldrich, was used as 

an organic crosslinker. It finds application in detergents, adhesives, water treatment, 
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dyes, cosmetics, printing inks, paper industry, lamination primers, fixative agents, 

flocculants, cationic dispersants, stability enhancers, surface activators, chelating agents 

and scavengers for aldehydes and oxides. Properties of the research grade PEI have been 

listed in the Table 2 below. 

Table 2 – Properties of Research Grade PEI 

Properties of Research Grade PEI 

Physical Form Liquid (Branched Polymer) 

Molecular Weight Average Mw ~ 2000 by LS 

Active Weight Content 50 wt.%  

Density 1.08 g/ ml at 25°C 

pH 12 

Cost $ 51/ 100 ml 

 

The commercial grade PEI sold under the name of Retaminol-2S was provided 

by Kemira. It is a low cost, technical grade commercial product. The product is widely 

used in paper and pulp industry and has been approved by USFDA for food contact.  The 

product has an active weight content of 25 wt. %. It has certain content of proprietary 

material, concentration and composition of which has been kept as a trade secret. 

Properties of the commercial grade PEI are listed in the Table 3 below. 
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Table 3 – Properties of Commercial Grade PEI 

Properties of Commercial Grade PEI 

Physical Form Liquid 

Molecular Weight 500,000 to 120,000 Da 

Color Yellow to Brown 

Odor Slight 

pH 7 - 8 at 50g/ l 

Freezing Point -5 °C 

Boiling Point 100 °C (212 °F) at 1,013 hPa 

Specific Gravity 1.06 

Viscosity, Dynamic 150 - 350 mPa.s at 23°C (73.4 °F) 

Cost $ 2/ lb 

 

Performance of gelant samples based on organic crosslinker like PEI was 

compared to gelant samples based on Chromium(III) Acetate as an inorganic crosslinker. 

Properties of Chromium(III) Acetate used are listed in the Table 4 below. 
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Table 4 – Properties of Chromium(III) Acetate Crosslinker 

Properties of Chromium(III) Acetate 

Physical Form Powder 

Molecular Weight (Da) 603.32 

Density 0.5 mg/ m
3
 

Active Weight Content (%) 100 

Cost ~ $ 40/ 100 g 

 

 Magnetic stirrers were used to stir the polymer and crosslinker solutions. An 

Orion Star LogR pH (Fig. 12) meter was used to measure the pH of gelant solutions. The 

meter is capable of measurement in range of -2 to 19.99 with an accuracy of ± 0.002. It 

can operate at temperatures ranging from 0 °C to 100 °C. 

 

 

Fig. 12 - Orion Star LogR pH Meter (thermoscientific.com) 
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2.3 Experimental Procedure – Preparing the New HPAM/ PEI Gel 

The new environmentally benign polymer gel is prepared using the steps listed 

below. 

Step 1. Calculated amount of base polymer HPAM or PAM (Fig. 13) was added to fresh 

water or saline water (0.1 wt. % NaCl solution). In this study the gel samples based on 

research grade PEI, prepared in both fresh water and saline water have been 

characterized. Gel samples based on commercial grade PEI were prepared only in saline 

water. 

 

 

Fig. 13 - Mettler Toledo PB-3002L Weigh Balance 

 

Polymer was added very carefully to the solution while it was being stirred (Fig. 

14), such that there was no ‘fisheye’ (Lane, 1998) formation. To avoid this, polymer was 

added slowly into the vortex, which was formed while stirring the solution. Stirring 

process was continued till a clear polymer solution was obtained (Fig. 15). The stirring 
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time varied with the concentration of polymer and was usually around 30 to 60 minutes 

for a 100 ml sample. 

 

Fig. 14 - Careful Addition of HPAM to Water 

 

 

Fig. 15 - Clear Polymer Solution 

 

Step 2. Once a clear polymer solution had been prepared, a calculated amount of 

crosslinker, PEI (research or commercial grade) or Chromium(III) Acetate was added in 

a drop wise manner, while the polymer solution was being stirred (Fig. 16). The stirring 
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process was continued for a few minutes after adding the crosslinker to obtain the gelant 

solution. 

 

     

Fig. 16 - Addition of PEI 

 

Step 3. pH of the gelant solution was then measured using Orion Star LogR pH meter 

(Fig. 17).  

 

 

Fig. 17 - pH Measurement 

Commercial 

Grade PEI Research 

Grade PEI 
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Gelant solutions prepared using the research grade PEI were found to have a pH 

of around 10. Perfectly clear gelant solutions (Fig. 18) of different concentrations were 

prepared and were found to be stable at both room temperature and at high temperatures 

of around 200 °F. On the other hand gelant solutions prepared using commercial grade 

PEI, were found to have a pH of around 7. These gelant solutions were cloudy in 

appearance (Fig. 19) and were also found to be unstable on being stored at room 

temperature and at 200 °F.  

 

 

Fig. 18 - HPAM/ PEI (Research Grade) Gelant Solution. Clear in Appearance 
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Fig. 19 - HPAM/ PEI (Commercial Grade) Gelant Solution. Cloudy in Appearance 

 

 

Fig. 20 - HPAM/ PEI (Commercial Grade) Gel Samples – Poor Results at Low pH 

 

After a series of failed experiments (Fig. 20), it was found that the gelant solution 

became perfectly clear when the pH of the HPAM/ PEI (Commercial Grade) gelant 

solution was raised to around 10 using 1 N NaOH solution (Fig. 21).  
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Fig. 21 - HPAM/ PEI Gelant Solution, Clear in Appearance at High pH 

 

 

Step 4. The gelant solutions were then transferred to vials, which were kept in an oven 

maintained at 200 °F, for testing its stability at high temperature (Fig. 22). 

 

 

Fig. 22 - Oven Used to Test Gel Samples at 200 °F 

 

  The HPAM/ PEI (Commercial Grade) gel samples with a pH of 10 or above were 

found to be more stable at room temperature and at 200 °F (Fig. 23), than the samples 

with the original pH of around 7 to 8 when tested over a longer period of time. 
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Fig. 23 - HPAM/ PEI (Commercial Grade) Gel Samples, Good Results at High pH 
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3. OPTIMUM CONCENTRATION DETERMINATION 

3.1 Optimum Concentration Ratio of HPAM and PEI 

A series of experiments were performed using the ‘Bottle Testing’ technique 

developed by R.D. Sydansk, to determine optimum concentration ratios of HPAM and 

PEI that formed good gels. It is an inexpensive and easy to use method for determining 

gelation time and gel strength over a period of time while varying parameters like 

polymer and crosslinker concentration, temperature, pH and salinity. This method has 

been found to be convenient for testing long term stability of the gel samples, as it does 

not require the samples to be removed from the storage container thereby, preventing 

undue exposure to oxygen which might damage the sample.  

 Around thirty five gelant samples were prepared using research grade PEI as the 

crosslinker and HPAM as the base polymer. The concentration of these samples was 

varied from as low as 3000 ppm of HPAM with 2000 ppm of research grade PEI to as 

high as 9000 ppm of HPAM with 10,000 ppm of research grade PEI. Gel samples of 

similar concentrations were also prepared using the commercial grade PEI.  These 

samples were then stored in glass vials with their lids tightly closed to limit exposure of 

gelant to oxygen. The gelant samples were then placed in an oven at 200 °F for a period 

of three weeks allowing them to gel. ‘Bottle Testing’ technique was then used to classify 

these gels on the basis of their strength. Glass vials containing gel samples were inverted 

and on the basis of the flow characteristic of gel sample observed, it was assigned a letter 

code as prescribed by Sydansk gel code. Gel samples with wide ranging flow behaviors 

were prepared, samples that were highly flowing were categorized under the code ‘B’ 
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and those that formed rigid ringing gels were classified under code ‘J’. Each sample was 

classified under Sydansk gel code for each of the twenty one days to examine their 

stability at high temperature over a long period of time. Polymer and crosslinker 

concentration ratio that gave a gel with Sydansk gel code of at least ‘G’ was termed as 

an optimum concentration ratio. Code ‘G’ according to Sydansk gel code stood for a 

‘moderately deformable non flowing gel’. 

Gel strengths of the samples prepared using the benchmark Chromium(III) 

Acetate crosslinker, the concentration of which was as prescribed by ‘Margel’ software 

from Marathon Oil Co. and with similar concentration of HPAM, as in the HPAM/ PEI 

gels was determined. It was found from this study, that the new HPAM/ PEI gel system 

prepared using the commercial grade PEI gave a more stable and stronger gel than those 

based on research grade PEI or Chromium Acetate crosslinker.  It was found from the 

study that a rigid ringing gel which is classified under the code ‘J’ could be obtained for 

a minimum concentration of  7000/ 6000 ppm of HPAM/ PEI (Commercial Grade). Gel 

of same strength with research grade PEI required a minimum concentration of 9000/ 

5000 ppm, HPAM/ PEI (Research Grade); and with Chromium(III) Acetate as a 

crosslinker it was not possible to obtain a rigid ringing gel with similar concentration of 

HPAM. Performance of different gel samples has been summarized in the tables and 

figures below. 
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3.2 Optimum Concentration – HPAM/ PEI (Research Grade) 

Gel samples with different concentration (ppm) ratios of  HPAM and PEI 

(research grade) after being kept in an oven at 200 °F for three weeks appeared to be as 

shown below (Fig. 24 – Fig. 29): 

 

 

Fig. 24 - Gel Samples with 3000 ppm HPAM and Research Grade PEI. (L - R) - 

3000/ 5000, 3000/ 3000, 3000/ 2000 

 

 

Fig. 25 - Gel Samples with 4000 ppm HPAM and Research Grade PEI. (L - R) - 

4000/ 6000, 4000/ 4000, 4000/ 3000, 4000/ 2000, 4000/ 1000 

 

 

Fig. 26 – Gel Samples with 5000 ppm HPAM and Research Grade PEI. (L - R) -

5000/ 7000, 5000/ 6000, 5000/ 5000, 5000/ 4000, 5000/ 3000, 5000/ 2000 
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Fig. 27 Gel Samples with 6000 ppm HPAM and Research Grade PEI. (L - R) -  

6000/ 8000, 6000/ 6000, 6000/ 5000, 6000/ 4000, 6000/ 3000, 6000/ 2000 

 

 

Fig. 28 Gel Samples with 7000 ppm HPAM and Research Grade PEI. (L - R) -  

7000/ 9000, 7000/ 7000, 7000/ 6000, 7000/ 5000, 7000/ 4000, 7000/ 3000, 7000/ 2000 

 

 

Fig. 29 Gel Samples with 9000 ppm HPAM and Research Grade PEI.  (L - R) -  

9000/ 9000, 9000/ 7000, 9000/ 6000, 9000/ 5000, 9000/ 4000, 9000/ 3000, 9000/ 2000 

 

Minimum concentration ratio of HPAM and PEI (Research Grade) required to 

obtain a gel with Sydansk gel code of at least ‘G’, has been highlighted in the Table 5 

below. 
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Table 5 – Results from Bottle Testing HPAM/ PEI (Research Grade) Gels 

HPAM/ PEI (Research Grade) 

HPAM/PEI (ppm) pH Number of Days – Sydansk Gel Code 

1 3 6 9 12 15 18 21 

3000/ 2000 10.52 B D D D D - 

3000/ 3000 10.64 B D D D D - 

3000/ 5000 10.75 B D D G G G G G 

 
4000/ 1000 10.34 B D D D D D D D 

4000/ 2000 10.45 C G G G G G G - 

4000/ 3000 10.59 C G G G G G G G 

4000/ 4000 10.65 D G G G G G G G 

4000/ 6000 10.84 D G G G G G G G 

 
5000/ 2000 10.48 C G G G G G G G 

5000/ 3000 10.58 C G G G G G G G 

5000/ 4000 10.7 D G H H

H 

H H H - 

5000/ 5000 10.61 D H H H H H H - 

5000/ 6000 10.73 D H H H H H H H 

5000/ 7000 10.82 D H H H H H H H 

 
6000/ 2000 10.39 C G G G G G G G 

6000/ 3000 10.39 C H H H H H H H 
6000/ 4000 10.64 D H H H H H H H 

6000/ 5000 10.62 D H H H H H H H 
6000/ 6000 10.69 D H H I I I I I 

6000/ 8000 10.85 D H H I I I I - 
 

7000/ 2000 10.45 H H H H H H H H 
7000/ 3000 10.5 H H H H H H H H 

7000/ 4000 10.6 I I I I I I I I 
7000/ 5000 10.65 I I I I I I I - 

7000/ 6000 10.72 I I I I I I I I 
7000/ 7000 10.79 I I J J J J J J 

7000/ 9000 10.83 I I J J J J J J 
 

9000/ 2000 10.41 H H H H H H H H 
9000/ 3000 10.45 I I I I I I I I 

9000/ 4000 10.56 I I I I I I I I 
9000/ 5000 10.68 I J J J J J J J 

9000/ 6000 10.84 J J J J J J J J 
9000/ 7000 10.76 J J J J J J J J 

9000/ 9000 10.8 J J J J J J J J 
9000/ 10000 10.86 J J J J J J J J 
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3.3 Optimum Concentration - HPAM/ PEI (Commercial Grade) 

Gel samples with different concentration (ppm) ratios of  HPAM and PEI 

(commercial grade) after being kept in an oven at 200 °F for three weeks appeared to be 

as shown below (Fig. 30 – Fig. 35): 

 

 

Fig. 30 Gel Samples with 3000 ppm HPAM and Commercial Grade PEI. (L – R) - 

3000/ 5000, 3000/ 3000, 3000/ 2000 

 

 

Fig. 31 Gel Samples with 4000 ppm HPAM and Commercial Grade PEI. (L - R) -  

4000/ 6000, 4000/ 4000, 4000/ 3000, 4000/ 2000, 4000/ 1000 

 

 

Fig. 32 Gel Samples with 5000 ppm HPAM and Commercial Grade PEI. (L - R) - 

5000/ 7000, 5000/ 6000, 5000/ 5000, 5000/ 4000, 5000/ 3000, 5000/ 2000 
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Fig. 33 Gel Samples with 6000 ppm HPAM and Commercial Grade PEI. (L - R) 

6000/ 8000, 6000/ 6000, 6000/ 5000, 6000/ 4000, 6000/ 3000, 6000/ 2000 

 

 

Fig. 34 Gel Samples with 7000 ppm HPAM and Commercial Grade PEI. (L - R) 

7000/ 9000, 7000/ 7000, 7000/ 6000, 7000/ 5000, 7000/ 4000, 7000/ 3000, 7000/ 2000 

 

 

Fig. 35 Gel Samples with 9000 ppm HPAM and Commercial Grade PEI. (L - R) 

9000/ 10000, 9000/ 9000, 9000/ 7000, 9000/ 6000, 9000/ 5000, 9000/ 4000, 9000/ 3000, 

9000/ 2000 

 

Minimum concentration ratio of HPAM and PEI (Commercial Grade) required to 

obtain a gel of code ‘G’, has been highlighted in the Table 6 below. 
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Table 6 – Results from Bottle Testing HPAM/ PEI (Commercial Grade) Gels 

HPAM/ PEI (Commercial Grade) 

HPAM/PEI (ppm) pH Number of Days – Sydansk Gel Code 

1 3 6 9 12 15 18 21 
3000/ 2000 12.4

8 

E E E E E E G G 
3000/ 3000 12.1

9 

G G G G G G G G 
3000/ 5000 12.2

5 

H H H H H

H 

H H

H 

H 
 

4000/ 1000 12.5

5 

C D D D D D D D 
4000/ 2000 12.4

1 

F G G G G G G G 
4000/ 3000 12.0

3 

G G G G G G G

G

G 

G 
4000/ 4000 12.2

5 

H H H H

H 

H H H H 
4000/ 6000 12.3

3 

H I I I I I I I 
 

5000/ 2000 12.4 G G G G

G 

G

G 

G G G 
5000/ 3000 12.1

8 

H H H H H H H H 
5000/ 4000 11.7

6 

H H H H H H H H 
5000/ 5000 11.5

2 

I I I I I I I I 
5000/ 6000 12.1

8 

I I I I I I I I 
5000/ 7000 11.3

3 

I I I I I I I I 
 

6000/ 2000 12.4

5 

G G G G G G G G 

6000/ 3000 12.4

7 

H H H H H

H 

H

H 

H H 
6000/ 4000 12.1

1 

H H H H H H H H 

6000/ 5000 12.3

4 

H H H H H

H 

H H H 
6000/ 6000 12.3

3 

I I I I I I I I 

6000/ 8000 12.3

3 

I I I I I I I I 
 

7000/ 2000 12.6

2 

H H H H H

H 

H

H 

H H 
7000/ 3000 12.3

6 

H H H H H H H H 

7000/ 4000 12.2

9 

I I I I I I I I 
7000/ 5000 11.5

3 

I I I I I I I I 

7000/ 6000 12.4

5 

I I I I I I I I 
7000/ 7000 12.4

2 

J J J J J J J J 

7000/ 9000 12.2

1 

J J J J J J J J 
 

9000/ 2000 12.6

9 

H H H H H

H 

H

H 

H H 

9000/ 3000 12.4

5 

I I I I I I I I 

9000/ 4000 12.2

4 

I I I I I I I I 
9000/ 5000 11.8

8 

I I I I I I I I 

9000/ 6000 12.4

2 

J J J J J J J J 
9000/ 7000 12.2

2 

J J J J J J J J 

9000/ 9000 11.2

5 

J J J J J J J J 
9000/ 10000 12.1

5 

J J J J J J J J 
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3.4 Comparison with Chromium(III) Acetate Based Gels  

 

 

Fig. 36 HPAM/ Chromium(III) Acetate (g) Gel Samples. (L – R) - 0.9/ 0.2, 0.7/ 0.05, 

0.6/ 0.2, 0.5/ 0.036, 0.4/ 0.036, 0.3/ 0.2 

 

Table 7 - Results from Bottle Testing HPAM/ Chromium(III) Acetate Gels 

HPAM/ Chromium Acetate 

HPAM/ Chromium Acetate (g) 

Number of Days – Sydansk Gel Code 

1 3 6 9 12 15 18 21 

0.3/ .02 B B B B B B B B 

0.4/ 0.036 C C C C C C B B 

0.5/ 0.036 G G G G G D D D 

0.6/ 0.2 G G G G G D D D 

0.7/ 0.05 H H H H H H E E 

0.9/ 0.2 H H H H H E E E 

 

Results from bottle testing of HPAM/ Chromium(III) Acetate gels have been 

summarized in Table 7 above. Fig. 36 illustrates HPAM/ Chromium(III) Acetate gel 

samples of different concentrations after being tested at 200 °F for three weeks. It was 
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found from the study that polymer gels with chromium(III) acetate as a crosslinker 

required a minimum 5000 ppm of HPAM to form a gel of code ‘G’.In contrast gels with 

PEI (research or commercial grade) required a minimum polymer concentration of 3000 

ppm to form a gel of same strength. It was also observed that HPAM/ PEI (Research 

Grade) required a minimum concentration of 9000/ 6000 ppm to form a rigid ringing gel 

of code ‘J’, while HPAM/ PEI (Commercial Grade) gels of same strength could be 

obtained at a concentration of 7000/ 6000 ppm. 

3.5 PAM/ PEI Gel System 

 Gels samples of 4000/ 4000 ppm, PAM/ PEI (Commercial Grade) were prepared 

while using two different types of PAM – commercial grade, high molecular weight 

PAM (Flopam - FA 920) from SNF Floerger and highly purified research grade PAM 

(product code – 92560) from Sigma Aldrich. It was observed that the gel sample 

prepared using the commercial grade PAM was cloudy in appearance and formed a gel 

of code ‘F’. On the other hand gel sample prepared using research grade PAM was 

perfectly clear and had a gel strength code of ‘H’ (Fig. 37). 

 

 

Fig. 37 (L-R) - PAM (Research Grade)/ PEI and PAM (Commercial Grade)/ PEI 
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4. CHARACTERIZING THE HPAM/ PEI GEL SYSTEM 

Rheological characterization of the new HPAM / PEI gel was conducted using a 

Brookfield DV-III Ultra Rheometer and a Fann-35 Viscometer. The characterization 

process involved estimation of gelation time at constant shear rate and temperature using 

the Brookfield DV-III Rheometer. Fann-35 Viscometer was used to study effect of shear 

rate variation on viscosity of the HPAM/ PEI gelant solutions. 

4.1 Brookfield DV-III Ultra Rheometer 

Brookfield DV-III is a rotational viscometer that measures torque required to 

rotate a spindle immeresed in a fluid being tested. The spindle is rotated with the help of 

a motor which is connected to a caliberated spring. The test fluid exerts a viscous drag 

on the rotating spindle which leads to winding of the spring. For a particular spindle 

geometry and rotational speed, the increase in viscosity of test fluid leads to increase in 

deflection of the spring.  

 A stepper driver motor or a synchronus motor is located inside a housing at the 

top of the instrument (Fig. 38). Inside main case of the viscometer is a caliberated 

beryllium copper spring. One end of the spring is connected to a pivot shaft and its other 

end is connected to the dial. The dial is driven by a motor drive shaft, which drives the 

pivot shaft through the caliberated spring. The relative angular position of the pivot shaft 

is detected by a rotational variable displacement transducer and is shown as viscosity 

reading on a digital display. 
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Fig. 38 – Mechanical Subassemblies of Brookfield DV–III Ultra Rheometer 

(Brookfield) 

 

The Brookfield DV-III Rheometer (Fig. 39) is capable of operating at speeds 

ranging from 0.01 to 250 rpm, temperatutres from -100 °C to +300 °C and fluid 

viscosity ranging from 15 to 6,000,000 cp.  It has an accuracy of ± 1% or 1 cp . It comes 

equiped with spindles of different geometries like disk, cylidrical, coaxial, cone/ plate 

and t-bar. These spindles are made of 300 series stainless steel with corrosion resistant 

coating and low maintainance requirements. The best method for selecting a spindle and 

speed  is by trial and error. The combination of spindle type and a speed level that gives 

a torque reading between 10 % and 100 % for a particular fluid, is considered suitable 

for the experiment. If the torque reading is above 100 % a lower speed and/ or smaller 
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spindle is selected and if it is lower than 10% higher speed and/ or larger spindle is 

selected.   

 

 

Fig. 39 - Brookfield DV–III Ultra Rheometer with TC–102 Temperature Bath 

 

For conducting experiments at higher temperatures, a Brookfield TC-102 

Temperature Bath is used along with the rheometer. In such experiments the test fluid is 

stored in a UL-Adapter and a spindle is immersed into it, such that the fluid level is at 

least upto middle of shaft indentation on the spindle. The UL-Adapter is of co-axial 

cylinder geometry with a detachable polyethylene cap fitted at bottom of its outer 

cylinder. It is capable of withstanding temperatures upto 100 °C. The sample placed 

Control 

Keys 

Spindle 

UL-Adapter 

Temperature 

Bath 

Digital 

Display 
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inside the adapter is heated by a heating fluid, which is circulated from the temperature 

bath by a pump through the flow lines connecting the bath with the adapter. Specially 

designed heating fluids can allow the temperature bath to raise temperatures upto 270 

°C. Since, the UL-adapter is capable of operating at a maximum temperatur of 100 °C, a 

mixture of ethylene glycol (50%) and water (50%) was used as the heating fluid in this 

study. This heating fluid could be used to maintain temperature of the UL-Adapter in the 

range of -30 °C to 100 °C.  

4.2 Procedure for Estimating the Gelation Time 

Gelation time was identified as a point of inflection on viscosity versus time 

curves. Experiments for estimating gelation time were conducetd at a constant shear rate 

and temperature, while varying parameters like polymer and crossslinker concentration, 

temperature, pH and salinity using the Brookfield DV-III Ultra Rheometer. The 

experimental process involved follwing steps: 

 Step 1. Around 100 ml of gelant solution was prepared. 

 Step 2. Brookfield DV–III Rheometer was then switched on and stand alone 

mode was selected by pressing key ‘2’. The version of operating firmware and 

model number was displayed on the screen. After a brief pause a message stating 

“ REMOVE SPINDLE, LEVEL RHEOMETER AND PRESS THE MOTOR ON/ 

OFF KEY TO AUTOZERO” was displayed. 

 Step 3. The spindle was then removed and the rheometer was leveled. Correct 

level was identified by using the position of bubble located on top of the head of 

equipment. Motor was then turned on to begin ‘autozero’ process. Once the 
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‘autozero’ process was completed, a message stating “AUTOZERO IS 

COMPLETE REPLACE SPINDLE AND PRESS ANY KEY” was displayed. 

 Step 4. It was found from trial and error that, disk shaped spindle of spindle 

number ‘62’, gave torque reading between 10 % and 100% for different gelant 

samples investigated in this study (Fig. 40). The spindle was then connected to 

the rheometer and spindle number which was 62,  was entered using the 

‘SELECT SPDL’  key.  

 

 

Fig. 40 - Disk Shaped Spindle (Spindle Number 62) 

 

 Step 5. The Brookfield TC-102 temperature bath unit was then switched on. 

Desired temperature of 100 °C was then set using the select/ set knob on the 

device. On switching on the temperature bath heating fluid which was a mixture 

of ethylene glycol and water was immidiately circulated through the UL-Adapter. 

The circulation of heating fluid was continued till the end of experiment. 
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 Step 6. Gelant sample was then placed inside the UL-Adapter which was 

maintained at 100 °C.  

 Step 7. UL-Adapter was then attached to the rheometer through a coupling nut; 

and spindle was introduced inside the gelant sample (Fig. 41). 

 

 

Fig. 41 – Spindle Immersed into the Gelant Sample Inside UL–Adapter 

 

 Step 8. Rotation speed of the spindle was then entered using the control keys and 

‘ENTER’ key was pressed. It was found from trial and error that, with spindle 

number 62, a rotational speed of around 65 rpm gave a torque reading between 

10 % and 100 % for gelant samples investigated in this study. 

 Step 9. Viscosity measurements for the sample at set temperature and shear rate 

were then displayed on the screen (Fig. 42). These readings were recorded from 

the display screen after every 5 minutes.  
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Fig. 42 - Viscosity Reading Displayed on Brookfield DV–III Ultra Rheometer 

 

4.3 Results and Discussions – HPAM/ PEI (Research Grade) Gel System 

4.3.1 Polymer Concentration Variation  

HPAM / PEI (Research Grade) gelant samples were prepared in both fresh water 

and saline water (0.1 wt. % NaCl sloution). Concentration of the base polymer, HPAM 

was varied from 4000 ppm to 6000 ppm, while the concentration of research grade PEI 

was kept constant at 5000 ppm. Gelation time for each of the samples was determined 

through experiments conducted on Brookfield DV–III Ultra Rheometer at 100 °C and 70 

rpm. Viscosity reading for the sample was taken every five minutes and gelation point 

was identified as point of inflection on viscosity versus time. It was found for the 

samples prepared in fresh water that the gelation time decreased from 180 minutes to 

110 minutes as the concentration of HPAM was increased from 4000 ppm to 6000 ppm 

(Fig. 43).  

For the samples prepared in saline water (0.1 wt% NaCl solution), the gelation 

time was longer than for the samples prepared in fresh water. It was also found that as 

the concentration of HPAM was increased from 4000 ppm to 6000 ppm, the gelation 
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time decreased from 280 minutes to 175 minutes (Fig. 44). Points of gelation have been 

highlighted in yellow in the figures below.  

     

 

Fig. 43 – Gelation Time at 100 °C, HPAM/ PEI (Research Grade) in Fresh Water - 

Polymer Conc. Variation 
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Fig. 44 - Gelation Time at 100 °C, HPAM/ PEI (Research Grade) in Saline Water - 

Polymer Conc. Variation 

 

4.3.2 Crosslinker Concentration Variation  

Crosslinker concentration’s effect on gelation time of HPAM/  PEI (Research 

Grade) gelant solutions was studied by increasing the concentration of research grade 

PEI from 2000 ppm to 8000 ppm, while concnetration of HPAM was kept constant at 

4000 ppm. The experiment was conducted at 100 °C and 70 rpm using Brookfield DV-

III Ultra Rheometer. It was found that the gelation time of the sample prepared in fresh 

water decreased from around 145 minutes to 140 minutes (Fig. 45).  

 Similar behavior was observed for the gelant samples prepared in saline water 

(0.1 wt.% NaCl solution). Gelation time decreased from around 230 minutes to around 

220 minutes as the concentration of PEI was increased from 2000 ppm to 8000 ppm 
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(Fig. 46). All the samples prepared in saline water were found to take longer time to gel 

than those prepared in fresh water.  

 

 

Fig. 45 - Gelation Time at 100 °C, HPAM/ PEI (Research Grade) in Fresh Water - 

Crosslinker Conc. Variation 
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Fig. 46 - Gelation Time at 100 °C, HPAM/ PEI (Research Grade) in Saline Water - 

Crosslinker Conc. Variation 

 

4.3.3 Temperature Variation  

 4000/ 4000 ppm, HPAM/ PEI (Research Grade) gelant samples prepared in fresh 

water and saline water (0.1 wt.% NaCl solution), were investigated for gelation time at 

80 °C and 100 °C. Temperature of the gelant sample held inside the UL-Adapter was 

kept constant by using Brookfield TC-102 temperature bath. The temperature bath 

circulated mixture of ethylene glycol and water at set temperature, through the UL-

Adapter causing temperature of the sample to rise to desired value. 

 Gelation time was found to decrease with increasing temperature for the gelant 

samples prepared in both fresh water and saline water. This has been explained in 

literature using Arrhenius type equation (Nasr-El-Din et.al. 2006). It was found that the 

gelation time of the 4000/ 4000 ppm, HPAM/ PEI (Research Grade) gelant sample 
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prepared in fresh water decreased from around 320 minutes to around 150 minutes on 

raising temperature from 80 °C to 100 °C (Fig. 47). 

                 

 

Fig. 47 - Gelation Time, HPAM/ PEI (Research Grade) in Fresh Water - 

Temperature Variation 

 

Gelation time for the samples of same concentration prepared in saline water, 

decreased from around 385 to around 165 minutes on increasing the temperature from 80 

°C to 100 °C (Fig. 48). 
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Fig. 48 - Gelation Time, HPAM/ PEI (Research Grade) in Saline Water – 

Temperature Variation 

 

4.3.4 pH Variation  

 The HPAM/ PEI (Research Grade) gel system was found to be sensitive to pH. It 

was found that the gelation time of 4000/ 4000 ppm, HPAM/ PEI (Research Grade) 

gelant samples prepared in fresh water and in saline water decreased with increasing pH. 

One of the theories in literature (Al-Muntasheri et al., 2009) explains it to be a result of, 

increased hydrolysis at higher pH which leads to increase in concentration of negatively 

charged carboxylate ions. These ions, repel each other causing the polymer chain to 

expand faster, thereby decreasing the gelation time. 

This study was conducted at 100 °C and 65 rpm using the Brookfield DV–III 

Ultra Rheometer. It was found that the gelation time of 4000/ 4000 ppm, HPAM/ PEI 

(Research Grade) gelant samples prepared in fresh water decereased from around 150 
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minutes to around 50 minutes on increasing the pH from around 10 to around 12 (Fig. 

49).  

    

 

Fig. 49 - Gelation Time at 100 °C, HPAM/ PEI (Research Grade) in Fresh Water – 

pH Variation 

 

Gelation time also decreased from around 165 minutes to around 85 minutes, for 

the gel sample of same concentration prepared in saline water (0.1 wt. % NaCl solution) 

on increasing the pH from around 10 to around 12 (Fig. 50). 
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Fig. 50 - Gelation Time at 100 °C, HPAM/ PEI (Research Grade) in Saline Water – 

pH Variation 

 

4.3.5 Salinity Variation  

 It was found from the experiments conducted on 4000/ 4000 ppm, HPAM/ PEI 

(Research Grade) gelant samples at 100 °C and 65 rpm, that the gelation time increased 

with increased salinity. This has been explained in literature (Zitha et al., 2008) to be a 

result of shielding of negatively charged carboxylate ions on the polymer chain by 

positively charged sodium ions.  

It was found that the gelation time of around 150 minutes for the sample 

prepared in fresh water increased to around 220 minutes when the salinity was raised to 

2 wt. % NaCl (Fig. 51). It was also found to increase from around 160 minutes to 235 

minutes on increasing the salinity from 0.1 wt. % NaCl to 2 wt.% NaCl (Fig. 52). 
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Fig. 51 - Gelation Time at 100 °C, HPAM/ PEI (Research Grade) in Fresh Water – 

Salinity Variation 

 

 

Fig. 52 - Gelation Time at 100 °C, HPAM/ PEI (Research Grade) in Saline Water – 

Salinity Variation 
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4.4 Results and Discussions – HPAM/ PEI (Commercial Grade) Gel System 

The new environmentally benign polymer gel system based on HPAM and 

commercial grade PEI, was also characterized using the Brookfield DV–III Ultra 

Rheometer. Effects of varying polymer and crosslinker concentration, temperature, pH 

and salinity on geation time of HPAM/ PEI (commercial grade) gelant samples was 

studied. The new gel system was also also tested for viscosity at variable shear rates 

using Fann – 35 Viscometer. The gelant samples investigated were prepared in 0.1 wt. % 

NaCl solution. All experiments were repeated to confirm accuracy of the results. 

4.4.1 Polymer Concentration Variation 

 HPAM/ PEI (commercial grade PEI) gelant samples were tested for the effect of 

HPAM concentration on gelation time. It was found from the study that like the gelant 

solutions based on research grade PEI,  the gelation time for the HPAM/ PEI 

(commercial grade) gelant samples, decreased with increasing concentration of HPAM.  

The experiment was carried out at 100 °C and 75 rpm using Brookfield DV–III 

Ultra Rheometer. The gelation time was found to decrease from 210 minutes to 35 

minutes on increasing the concentration of HPAM from 4000 ppm to 6000 ppm while 

concentration of the crosslinker was kept constant at 5000 ppm (Fig. 53). The 

experiment was repeated under simillar conditions and for gelant samples with same 

concentration. It was found on reproducing the results, that gelation time decreased from 

around 225 minutes to around 40 minutes on increasing the HPAM concentration from 

4000 ppm to 6000 ppm (Fig. 54). 
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Fig. 53 - Gelation Time at 100 °C,  HPAM/ PEI (Commercial Grade) – Polymer 

Concentration Variation 

 

 

Fig. 54 - Results Reproduced - Gelation Time at 100 °C, HPAM/ PEI (Commercial 

Grade) – Polymer Concentration Variation 
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4.4.2 Crosslinker Concentration Variation 

 Gelation time for HPAM/ PEI (Commercial Grade) gelant samples prepared in 

saline water (0.1 wt. % NaCl solution) was found to decrease with increasing 

concentration of PEI. The experiments were conducted on Brookfield DV–III Ultra 

Rheometer at 100 °C and 70 rpm. It was found that the gelation time decreased from 

around 205 minutes to around 35 minutes as the concentration of PEI was increased 

from 5000 ppm to 8000 ppm, while the concentration of HPAM was kept constant at 

4000 ppm (Fig. 55). However, an anomolous behavior was observed for 4000/ 2000 ppm 

gelant sample. Its gelation time was found to be around 15 minutes, which was less than 

the gelation time of 4000/ 5000 ppm and 4000/ 8000 ppm, HPAM/ PEI (commercial 

grade) gelant samples. 

 Similar results were obtained on repeating the expriment. Gelation time 

decreased from around 225 minutes to around 150 minutes on increased concentration of 

PEI from 5000 ppm to 8000 ppm (Fig. 56). The gelation time of 4000/ 2000 ppm gelant 

sample was found to be around 10 minutes which was again less than that of  gelant 

samples with 5000 ppm and 8000 ppm of commercial grade PEI.  
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Fig. 55 - Gelation Time at 100 °C, HPAM/ PEI (Commercial Grade) – Crosslinker 

Conc. Variation 

 

 

Fig. 56 – Results Reproduced - Gelation Time at 100 °C, HPAM/ PEI (Commercial 

Grade) – Crosslinker Concentration Variation 
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4.4.3 Temperature Variation 

 Gelation time of  4000/ 4000 ppm, HPAM/ PEI (commercial grade) gelant 

sample prepared in saline water (0.1 wt% NaCl solution), was determined at 70 °C and 

100 °C on a Brookfield DV–III Ultra Rheometer at 65 rpm. Gelation time was found to 

decrease with increasing temperature. This has been explained in the literature on the 

basis of Arrhenius type equation (Nasr-El-Din et.al. 2006). 

 It was found that the gelation time of the gelant sample decreased from around 

375 minutes to around 25 minutes on increasing the temperature from 70 °C to 100 °C 

(Fig. 57). The experiment was repeated and a similar behavior was observed, the 

gelation time was found to decreased from around 325 minutes to around 15 minutes on 

increasing the temperature from 70 °C to 100 °C (Fig. 58).  

 

 

Fig. 57 - Gelation Time, HPAM/ PEI (Commercial Grade) – Temperature 

Variation 
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Fig. 58 – Results Reproduced - Gelation Time, HPAM/ PEI (Commercial Grade) – 

Temperature Variation 

 

4.4.4 pH Variation 

 It was found from the experiments conducted on 4000/ 4000 ppm, HPAM/ PEI 

(commercial grade) gelant sample at 100 °C and 65 rpm, that the gelation time decreased 

with increasing pH. This behavior was identical to that observed in gelant samples based 

on research grade PEI. It has been explained in the literature (Zitha et al., 2008) to be  

result of increased repulsion by negatively charged carboxylate ions, formed on 

hydrolysis of PAM. 

 It was found that gelation time decreased from around 90 minutes to around 35 

minutes when the pH was raised from 10.59 to 12.58 (Fig. 59). Similar results were 

obtained on repeating the experiment. It was found that the gelation time decreased from 

around 85 minutes to around 15 minutes when pH was raised from 11.6 to 11.8 (Fig. 

60). 



 58 

 

 

Fig. 59 - Gelation Time at 100 °C, HPAM/ PEI (Commercial Grade) – pH Variation 

 

 

Fig. 60 – Results Reproduced - Gelation Time – HPAM/ PEI (Commercial Grade) – 

pH Variation 



 59 

4.4.5 Salinity Variation 

 4000/ 4000 ppm, HPAM/ PEI (commercial grade) gelant sample was tested for 

the effect of salinity on gelation time at 100 °C and 65 rpm on Brookfield DV–III Ultra 

Rheometer. Gelation time was found to decrease with decreasing salinity. One of the 

reasons for such behaviour has been explained in the literature (Zitha et al., 2009), to be 

a result of shielding of the negatively charged carboxylate ions by positively charge 

sodium ions from repelling each other.  

 It was found that the gelation time of 4000/ 4000 ppm, HPAM/ PEI (Commercial 

Grade) gelant sample decreased from around 170 minutes to around 30 minutes with 

salinity decreasing from 2 wt. % NaCl to 0.1 wt. % NaCl (Fig. 61). On repeating the 

experiment under similar conditions, gelation time was found to decrease from around 

115 minutes to around 25 minutes (Fig. 62). 
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Fig. 61 - Gelation Time at 100 °C, HPAM/ PEI (Commercial Grade) – Salinity 

Variation 

 

 

Fig. 62 – Results Reproduced - Gelation Time at 100 °C, HPAM/ PEI (Commercial 

Grade) – Salinity Variation 
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4.5 Gelation Time of Different Gelant Systems 

 Gelation time of different gel systems with similar concentration of base polymer 

at 100 °C and 65 rpm was investigated. All the gelant samples were prepared in 0.1 wt. 

% NaCl solution. Concentration of base polymers HPAM and PAM  was 4000 ppm. 

Concentration of crosslinkers PEI (Research Grade) and PEI (Commercial Grade) was 

also 4000 ppm. For the gelant sample based on chromium(III) acetate as a crosslinker, 

the concentration of HPAM was 4000 ppm and that of crosslinker was 360 ppm. The 

amount of chromium(III) acetate for the gelant sample was, as prescribed by ‘Margel’ 

software from Marathon Oil Co. Gelation time of different gelant  samples from the 

study are summarized in Table 8 below. 

 

Table 8 – Gelation Time Comparison 

Polymer/ Crosslinker Concentration (ppm) 

Gelation Time 

(minutes) 

HPAM/ Chromium Acetate 4000/ 360 < 5 

HPAM/ PEI (Commercial Grade) 4000/ 4000 30 

PAM/ PEI (Commercial Grade) 4000/ 4000 160 

HPAM/ PEI (Research Grade) 4000/ 4000 165 

 

 It was found from the experiments conducted that, the new 4000/ 4000 ppm - 

HPAM/ PEI (Commercial Grade) gelant sample took around 30 minutes to gel. The 
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gelant system that was tested had a pH of around 11 and was prepared in 0.1 wt.% NaCl 

solution (Fig. 63). On the other hand the chromium(III) acetate based gelant sample took 

less than 5 minutes to gel under similar conditions of temperature, shear, salinity and 

HPAM concentration. This proved that the new gelant system takes longer than the 

existing chromium(III) acetate based system. This implies, a longer pumping time 

available to user for application on field. It was also found that gelant samples with 

similar concentration of PAM and HPAM, as base polymers and commercial grade PEI, 

as a crosslinker took around 160 minutes to gel under similar conditions of temperature 

and shear. 

 

 

Fig. 63 – Gelation Time of Different Gelant Samples. 4000 ppm HPAM, 100 °C and 

65 rpm 
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4.6 Shear Thinning Nature of the New HPAM/ PEI Gel 

 The new HPAM/ PEI (Commercial Grade) gelant samples of different 

concentrations  were tested for the effects of variable shear rates on viscosity of the 

gelant system. The experiments were conducted using a Fann – 35 Viscometer (Fig. 64).  

4.6.1 Fann – 35 Viscometer 

 Fann – 35 Viscometer is a rotational viscometer. The fluid that is being tested is 

contained in annular space between an outer cylinder and a bob. The viscometer is 

capable of operating at six different speeds of 3, 6, 100, 200, 300 and 600 rpm. During 

operation, the outer cylinder rotates at a set velocity, this causes the test fluid to exert 

viscous drag on bob. The bob is connected to a precision spring which measures its 

extent of deflection. The deflection measured is then correlated with instrument’s 

constants to give a viscosity reading of test fluid on the display.  

 

 

Fig. 64 -  Fann – 35 Viscometer (Fann Instrument Company) 
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 Shear rate to which test fluid is subjected, can be set by adjusting rotor and gear 

knobs. Different speed testing combinations for Fann-35 Viscometer have been 

summarized in Table 9 below. 

 

Table 9 - Speed Testing Combinations, Fann – 35 Viscometer 

Six – Speed Testing Combinations – Fann 35 Viscometer 

Speed RPM Viscometer Switch Gear Knob 

600 High Down 

300 Low Down 

200 High Up 

100 Low Up 

6 High Center 

3 Low Center 

 

4.6.2 Experimental Procedure 

 The experimental procedure used to test the new HPAM/ PEI (Commercial 

Grade) gelant system at different shear rates is as follows: 

Step 1. Gelant solution of required concentration was prepared. 

Step 2. Around 300 ml of the test sample was then placed inside the double walled 

circulating cup, such that the sample was at least up to the level of ‘minimum fill line’. 

Step 3. Thermocouple connected to the circulating cup was then set switched on and 

temperature was set at 150 °F. 

Step 4: Temperature of the sample was measured through a temperature probe. After the 

sample had reached the set point temperature, the motor was turned on. Rotor speed was 
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then set by selecting appropriate motor speed and gear knob level combination. Different 

speed and shear rate options for the viscometer are summarized in Table 10 below. 

 

Table 10 - Speed and Shear Rate Options on Fann–35 Viscometer 

Motor Speed 

(rpm) 

Shear Rate 

(sec 
-1

) 
600 1021 

300 511 

200 340 

100 170 

6 10 

3 5.1 

 

Step 5.Shear stress value corresponding to the set shear rate was then noted from the 

viscometer dial. 

Step 6: Shear stress value was then converted to viscosity value by using appropriate 

viscometer constants. 

4.6.3 Results and Discussions 

 HPAM/ PEI gelant samples of different concentrations were subjected to six 

different shear rates at room temperature (80 °F) and at 150 °F using the Fann–35 

Viscometer. It was found from the study that gelant samples based on both research 

grade and commercial grade PEI crosslinkers, exhibited shear thinning or pseudoplastic 

nature. Pseudoplastic or shear thinning fluids (Fig. 65) are known as the fluids that 

exhibit decrease in viscosity with increasing shear rate. Gelant samples of concentration 

3000/ 3000, 5000/ 5000, 7000/ 7000 and 9000/ 9000 ppm - HPAM / PEI (research grade 
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and commercial grade) were investigated at shear rates of 1021, 511, 340, 170, 10 and 

5.1s
-1

. It was found from the study that viscosity of all the gelant samples decreased with 

increasing shear rate (Fig. 66 – Fig. 73). 

 

Fig. 65 – HPAM/ PEI Gel – Pseudoplastic Nature 

 

4.6.3.1 Shear Thinning Nature - HPAM/ PEI (Research Grade) Gels 

 

 

Fig. 66 – 3000/ 3000 ppm – HPAM/ PEI (Research Grade); Shear Thinning Gel 
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Fig. 67 – 5000/ 5000 ppm – HPAM/ PEI (Research Grade); Shear Thinning Gel 

 

 

Fig. 68 – 7000/ 7000 ppm – HPAM/ PEI (Research Grade); Shear Thinning Gel 

 



 68 

 

Fig. 69 – 9000/ 9000 ppm – HPAM/ PEI (Research Grade); Shear Thinning Gel 

 

4.6.3.2 Shear Thinning Nature - HPAM/ PEI (Commercial Grade) Gels 

 

 

Fig. 70 – 3000/ 3000 ppm – HPAM/ PEI (Commercial Grade); Shear Thinning Gel 
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Fig. 71 – 5000/ 5000 ppm – HPAM/ PEI (Commercial Grade); Shear Thinning Gel 

 

 

Fig. 72 – 7000/ 7000 ppm – HPAM/ PEI (Commercial Grade); Shear Thinning Gel 
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Fig. 73 – 9000/ 9000 ppm – HPAM/ PEI (Commercial Grade); Shear Thinning Gel 
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5. CONCLUSIONS 

The objective of this study was to develop  an environmentally benign polymer 

gel system for minimizing water production from shale and tight gas reservoirs by 

plugging narrow aperture fractures connected to a water source. The gel system was 

successfully developed, characterized and tested for its effectiveness in plugging narrow 

aperture fractures. Important findings from this study are concluded as: 

1. An environmentally benign HPAM/ PEI polymer gel system based on a 

commercial grade PEI was succesfully developed. The gel system is based on 

high molecular weight, HPAM with molecular weight of 2 – 5  million Da. as a 

base polymer and commercial grade PEI of molecular weight 500,000 to 120,000 

Da. as  an organic crossliker. 

2. The low cost of  $ 2/ lb for the commercial grade PEI used as a crosslinker, 

makes the  new HPAM/ PEI gel system a commercially viable product. 

3. It was found that pH of the HPAM/ PEI (Commercial Grade) gelant solution had 

to be raised from around 7 to around 10, to obtain visually clear and stable gels. 

4. Rheological characterization of the HPAM/ PEI gelant samples based on both 

research grade and commercial grade PEI was carried out using Brookfield DV–

III Ultra Rheometer.  It was found from the study that the gelation time of both 

types of gelant samples decreased with increasing polymer and crosslinker 

concentration, temperature, pH and decreasing salinity.  

5. Gelation time of the new 4000/ 4000 ppm, HPAM/ PEI (Commercial Grade) 

gelant sample was also compared to the gelation time of other types of water 
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shutoff polymer gels of comparable concentrations like HPAM/ PEI (Research 

Grade), PAM/ PEI (Commercial Grade), HPAM/ Chromium(III) Acetate. The 

experiments were conducted under simillar temperature and shear conditions 

using the Brookfield DV–III Ultra Rheometer. It was found from the study that 

the new HPAM/ PEI (Commercial Grade) gelant samples took less time to gel 

than the  HPAM/ PEI (Research Grade) and PAM/ PEI (Research Grade) gelant 

samples. However, it took substantially more time than HPAM/ Chromium(III) 

Acetate based gelants, which are used as standard water shutoff polymer gels in 

conventional formations. 

6. Optimum concentartion ratios of the base polymer, HPAM and the crosslinker, 

PEI (Research/ Commercial Grade) were determined for preparing good gels. 

Around thirty five gelants samples each, based on research grade PEI and 

commercial grade PEI with concentration ranging from as low as 3000/ 2000 

ppm to as high as 9000/ 10,000 ppm, HPAM/ PEI were prepared and stored at 

200 °F for a period of three weeks. All of the seventy samples were assigned a 

Sydansk gel code on the basis of their appearance and flow characteristics for 

each of the twenty one days using the ‘Bottle Testing’ technique. The new 

HPAM/ PEI (Commercial Grade) gels were found to have a higher gel strength 

code than the existing chromium(III) acetate based gels. The new gel system was 

also found to be more stable at high temperature for long period of time than the 

existing gels. 
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7. Longer gelation time, higher gel strength at lower HPAM concentration and 

lower viscosity of the new HPAM/ PEI (Commercial Grade) gel system in 

comparison to the benchmark chromium(III) acetate based gels, make it better 

suited for application in shale and tight gas reservoirs which have fractures with 

narrower apertures. The longer gelation time will provide a longer pumping time 

to the user, making its field application much more easier. The longer gelation 

time also means that the new gel system will be  partially crosslinked by the time 

it reaches target zone and thus will be able to penetrate the narrow aperture 

fractures with ease. Unlike the chromium(III) actetate based gels which would be 

completely crosslinked and would exert very high extrusion pressure to 

effectively penetrate the narrow aperture fractures in shale and tight gas 

reservoirs. 

8. HPAM/ PEI gelant samples based on both research and commercial grade PEI 

were also tested for viscosity variation under variable shear rate at room 

temperature and at 150 °F using a Fann–35 Viscometer. It was found from the 

study that viscosity of all the gelant samples decreased with increased shear rate, 

both at room temperature and at 150 °F. This behavior confirmed the 

pseudoplastic or shear thinning nature of HPAM/ PEI (Research/ Commercial 

Grade) gels. 
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