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ABSTRACT 

 

Heat Transfer of a Multiple Helical Coil Heat Exchanger Using a Microencapsulated Phase 

Change Material Slurry. 

(December 2011) 

Travis John Gaskill, B.S., University of Colorado 

Chair of Advisory Committee: Dr. Jorge L. Alvarado 

 

The present study has focused on the use of coil heat exchangers (CHEs) with microencapsulated 

phase change material (MPCM) slurries to understand if CHEs can yield greater rates of heat 

transfer. An experimental study was conducted using a counterflow CHE consisting of 3 helical 

coils. Two separate tests were conducted, one where water was used as heat transfer fluid (HTF) 

on the coil and shell sides, respectively; while the second one made use of MPCM slurry and 

water on the coil and shell sides, respectively. The NTU-effectiveness relationship of the CHE 

when MPCM fluid is used approaches that of a heat exchanger with a heat capacity ratio of zero. 

The heat transfer results have shown that when using a MPCM slurry, an increase in heat 

transfer rate can be obtained when compared to heat transfer results obtained using straight heat 

transfer sections. It has been concluded that the increased specific heat of the slurry as well as 

the fluid dynamics in helical coil pipes are the main contributors to the increased heat transfer. 

  



iv 
 

 

 

 

 

 

To all of my friends and family who have helped guide me to this apogee, I would not be here 
without you. 

  



v 
 

ACKNOWLEDGEMENTS 

 

I would like to thank Dr. Jorge Alvarado as the chair of my advisory committee. Thank you for 

taking the time out of your extremely busy life to allow me to do my research under your 

guidance. I thoroughly enjoyed the experience working with you. I would like to thank Dr. 

Wilson Terrell Jr. of Trinity University for spending his time and traveling to College Station to 

help Dr. Alvarado and me on this research. I would like to thank Dr. Yassin Hassan and Dr. 

Debjyoti Banerjee for their support and their presence on my advisory committee. I would like to 

thank Dr. Hessam Taherian for his cooperation during this project as well as for the design and 

manufacturing of the present heat exchanger. I would like to thank Kalpana Tumuluri for her 

help in the data reduction of the experiment. 

I would like to thank my mother, Sharon Gaskill, for her unending support and love through my 

childhood and adulthood. Your life guidance is unmatched by any other and I couldn't have 

asked for anyone better. I would like to thank my father, Jack Gaskill, for his guidance in helping 

me make some of the best choices of my life. You have taught me the steps of how to live a 

successful and fulfilling life and I can only hope to continue to achieve them to the extent that 

you have. I love you both so much; this is for you as much as it is for me. I would also like to 

thank Jim and Jennifer Misko. You have both been inspirations and  friends throughout my life 

and helped me persevere to achieve something that was once so far away. I would like to thank 

my cat, Flotsam, for being there with me for the two years of his life. Thank you all so much. 

  



vi 
 

TABLE OF CONTENTS 

 Page 

ABSTRACT .................................................................................................................................. iii 

ACKNOWLEDGEMENTS ........................................................................................................... v 

TABLE OF CONTENTS .............................................................................................................. vi 

LIST OF FIGURES ..................................................................................................................... viii 

LIST OF TABLES ........................................................................................................................ ix 

NOMENCLATURE ....................................................................................................................... x 

1. INTRODUCTION: THESIS OBJECTIVES .......................................................................... 1 

2. LITERATURE REVIEW ....................................................................................................... 2 

2.1 Straight Tube Heat Exchangers .................................................................................... 2 
2.2 Helical Coil Heat Exchangers ...................................................................................... 4 
2.3 Microencapsulated Phase Change Material (MPCM) ................................................ 16 

3. EXPERIMENTAL STUDY ON HELICAL COIL HEAT EXCHANGER ......................... 22 

3.1 Experimental Setup .................................................................................................... 22 
3.1.1 Helical Coil Heat Exchanger ....................................................................... 22 
3.1.2 Pump ............................................................................................................ 24 
3.1.3 Pump Motor ................................................................................................. 25 
3.1.4 Flowmeter .................................................................................................... 25 
3.1.5 Water Chiller ............................................................................................... 26 
3.1.6 Thermocouples ............................................................................................ 27 
3.1.7 Data Acquisition .......................................................................................... 27 

3.2 Data Reduction ........................................................................................................... 28 
3.2.1 Fluid Properties ........................................................................................... 28 
3.2.2 Log Mean Temperature Difference ............................................................. 31 
3.2.3 Heat Transfer Formulation .......................................................................... 33 
3.2.4 Heat Exchanger Effectiveness ..................................................................... 37 

3.3 Results and Discussion ............................................................................................... 38 
3.3.1 Water in Shell and Water in Coils Tests ...................................................... 39 
3.3.2 Water in Shell and MPCM's in Coils Tests ................................................. 44 

4. SUMMARY AND FUTURE STUDY ................................................................................. 52 

REFERENCES ............................................................................................................................. 53 

APPENDIX A .............................................................................................................................. 58 



vii 
 

APPENDIX B ............................................................................................................................... 62 

VITA ............................................................................................................................................ 64 

 

  



viii 
 

LIST OF FIGURES 

 

 Page 

Figure 1: Counterflow heat exchanger and its temperature distribution along its axis ................ 2 

Figure 2: Secondary flow field in helical coiled tubes [4] ............................................................ 6 

Figure 3: Temperature vs. Axial distance for a MPCM slurry under constant heat flux ............ 17 

Figure 4: Helical coil heat exchanger without insulation [31] ................................................... 23 

Figure 5:Cut cross section view of heat exchanger Solidworks model ...................................... 23 

Figure 6: Moyno® 500 series progressive cavity pump [32] ...................................................... 25 

Figure 7: Omega® FMG 400 series flowmeter [33] ................................................................... 26 

Figure 8: Shini USA air-cooled water chiller [34] ..................................................................... 27 

Figure 9: Schematic of the heat transfer experiment .................................................................. 28 

Figure 10: MPCM slurry experimental viscosity data ................................................................ 29 

Figure 11: Resistance network diagram of the CHE .................................................................. 33 

Figure 12: Projected cross section of heat exchanger, blue areas designate flow cross-section 37 

Figure 13: Composite coil Nusselt number versus average coil Dean number .......................... 40 

Figure 14: Shell side calculated Nusselt number versus Reynolds number ............................... 42 

Figure 15: Effectiveness versus NTU for helical coil heat exchanger for water ........................ 42 

Figure 16: Curve fit for shell side Nusselt number correlation .................................................. 43 

Figure 17: Effectiveness versus NTU for helical coil heat exchanger for entire study .............. 46 

Figure 18: Calculated inner Nusselt number versus Dean number for Coil 2 ............................ 48 

Figure 19: Calculated inner Nusselt number versus Dean number for Coil 3 ............................ 48 

Figure 20: Calculated inner Nusselt number versus Dean number for Coil 4 ............................ 49 

Figure 21: Comparison of Predicted versus Experimental Nusselt number for the coil side ..... 49 

 



ix 
 

LIST OF TABLES 

 Page 

Table 1: Design summary of helical coil heat exchanger ........................................................... 24 

Table 2: Parameter comparison between present experiment and correlation experiment ........ 36 

Table 3: Flowrates and temperature data for the case of water in shell with water in the coils . 39 

Table 4: Flowrates and temperature data for the case of water in shell with MPCM slurry in 

the coils ....................................................................................................................... 44 

 

  



x 
 

NOMENCLATURE 

 

A Area, m2 

Ac Cross-sectional area, m2 

b Coil pitch, m 

C Heat capacity, W/°C 

cm Mass fraction of MPCMs 

Cp Specific heat, J/kg·°C 

Cr Heat capacity ratio, Cmin/Cmax 

d Coil tube diameter, m 

D Curvature diameter, m 

Dh Hydraulic diameter, m 

De Dean number 

f Friction factor, Pa·s 

fs Friction factor of straight pipe, Pa·s 

F Volume fraction 

h Convective heat transfer coefficient, W/m2·°C 

He Helical number 

k Thermal conductivity, W/m·°C 

L Length of coil, m 

    Mass flowrate, kg/s 
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n Number of carbon atoms minus one 

NTU Number of transfer units 

Nu Nusselt number 

Pr Prandtl number 

Pw Wetted perimeter, m 

q Total heat load, W 

Ste Stefan number 

T Fluid temperature, °C 

U Overall heat transfer coefficient, W/m2·°C 

V Velocity, m/s 

    Volumetric flowrate, m3/s 

w Heat transfer contribution fraction of each coil 

Greek Letters 

α Thermal diffusivity, m2/s 

γ Dimensionless pitch, b/πD 

δ Curvature ratio, d/D 

ε Effectiveness 

λ Latent heat of fusion, J/kg 

μ Dynamic viscosity, kg/s 

ν Kinematic viscosity, m2/s 

ρ Density, kg/m3 
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Φ Correction factor, Prbulk/Prwall 

Subscripts 

c Cold fluid 

h Hot fluid 

i Inside of coiled tube 

lm Log mean temperature difference 

m Mass 

o Outside of coiled tube 

t Tube 

s Shell 

w Water 

MPCM Microencapsulated Phase Change Material 
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1. INTRODUCTION: THESIS OBJECTIVES 

 

The objective of this thesis is to understand the area of heat transfer research pertaining to coil 

heat exchanger performance when microencapsulated phase change material (MPCM) slurries 

are used a heat transfer fluid (HTF). An in depth survey of the literature pertaining to both coil 

heat exchangers and MPCMs has been conducted in an effort to understand the effect of using 

MPCMs as HTFs in different heat exchangers.  Unfortunately, little has been published in this 

area. This review will cover the basic understanding of heat exchangers under laminar and 

turbulent flow as well as a more in depth review of helical coil heat exchangers and their flow 

and heat transfer characteristics. Previous research in the field of MPCM's is also presented to 

help understand the effects of their thermal properties including density, viscosity, thermal 

conductivity, and specific heat on heat transfer performance. A detailed description of the 

present experimental setup is given and includes physical dimensions as well as operating 

parameters. Steps taken during the data reduction process is shown in order to understand and 

analyze the results. Experimental results for the cases of water in the shell with water in the 

coils, and water in the shell with MPCM slurry in the coils are compared to each other as well as 

to heat transfer correlations from previous studies. Heat exchanger effectiveness calculations and 

results are also presented. Using these analyses, conclusions can be made on the effects of using 

MPCM slurry in helical coil heat exchangers. Finally, future research direction is proposed based 

upon the present results. 

 

 

 

 

 

_____________ 

This thesis follows the style of the Journal of Heat Transfer.  
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2. LITERATURE REVIEW 

 

The present research pertains to both the field of coil heat exchangers (CHE) and MPCMs, and 

as such, a separate review of the past research in both fields is presented. The review covers the 

basics of each field as well as any pertinent past research. A preliminary overview of straight 

tube heat exchangers is conducted to become familiar with the elementary principles. 

 

2.1 Straight Tube Heat Exchangers 

 

There has been a number of research studies conducted on heat exchangers in the past century to 

quantify the parameters affecting their heat transfer characteristics. A heat exchanger uses two 

fluids with a temperature difference to transfer heat from one to another, most commonly 

through a solid interface. Heat exchangers come in a variety of shapes and sizes and are used in 

almost every industry imaginable including automotive, oil, semiconductor, HVAC, and 

alternative energy. One of the most common heat exchangers in use is the concentric tube 

counterflow heat exchanger involving a straight pipe and a straight pipe shell with the inner and 

outer fluids flowing in the opposite direction as seen in Figure 1. 

 
Figure 1: Counterflow heat exchanger and its temperature distribution along its axis 
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The study of concentric tube heat exchanger can be broken down into fluid flow and heat 

transfer characteristics, with flow of one fluid through straight pipe and flow of another fluid 

through an annulus. Straight tube flow has been studied experimentally since the late 19th 

century by Reynolds, Chilton and Colburn, Dittus and Boelter, Petukhov, Sieder and Tate, as 

well as Gnielinski [1].  Dittus-Boelter and Gnielinski have developed well-known heat transfer 

correlations for fully developed turbulent flow in a circular pipe, as seen in Equation (1) and (2) 

respectively [1].   

 

             
 
     

n = 0.4 for heating, 0.3 for cooling 
 

  7 ≤ Pr ≤ 16  
Red ≳ 10,000 

L/d ≳ 10 
 

(1) 

 

    
   8      1      

1  1  7   8           1 
 

 

0.5 < Pr < 2000 
3000 < Red < 5 x 106 

 

(2) 

 

From these correlations, heat transfer through a straight pipe is seen to be a function of Reynolds 

number, Prandtl number, and friction factor as defined below in Equations (3) and (4)[1]. 

     
   

 
 (3) 

 

Pr   
 

 
 
   

 
 (4) 

 

   
   
  

 (5) 
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Such correlations can be used for pipes with non-circular cross sections such as square ducts and 

annular pipes by replacing the inner diameter, d, with hydraulic diameter, Dh, as defined in 

Equation (5), where Ac is the cross-sectional area and PW is the wetted perimeter. 

 

2.2 Helical Coil Heat Exchangers 

 

In an effort to provide the same amount of heat transfer as a straight tube heat exchanger in a 

smaller space, engineers replace the straight inner pipe with a helical coil. This allows for more 

heat transfer surface area in a smaller length shell, but increases the pressure drop across the heat 

exchanger. Helical coil heat exchangers have a more complex flow pattern due to the 

geometrical configuration of helical coils, which also impart additional centrifugal force on the 

inner coil flow and increasing the pressure drop on the shell side. 

To fully understand the variables effecting helical coil heat transfer, the Dean number is often 

used and is defined as seen in Equation (6). The Dean number represents the ratio of the viscous 

force acting on a fluid flowing in a curved pipe to the centrifugal force. The Dean number will 

never be larger than the Reynolds number for the same flow. As the Dean number approaches 

that of the Reynolds number, the effects of centrifugal force dominate the flow. This 

phenomenon and its effects on heat transfer have been studied extensively. 

    
   

 
 
 

 
    

 

 
 (6) 

 

In 1963, Seban and McLaughlin [2] studied heat transfer through a helical coil using two 

different curvature diameter ratios, d/D, of 0.0588 and 0.0096. The curvature diameter ratio is 

defined as the ratio of the inner diameter of the pipe, d, to the curvature diameter of the helix, D. 

The flow was varied from laminar to turbulent for a range of 12 < Re < 65,000. Heat was applied 

to the coil through the use of an AC current along the length of the stainless steel coil. This 

provided for an almost constant heat flux boundary condition and is known as Joule Heating. 

The experimental set up consisted of multiple coils with multiple thermocouples on each coil. It 

was noted that even though circumferential conduction of heat was neglected, due to the nature 
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of the flow in a helical coil, the heat transfer coefficients at the inside and outside halves of the 

pipe were substantially different in the laminar flow regime. Pressure taps were also included on 

each end of the coil bank. The local heat transfer coefficients for laminar flow were found to be 

consistently larger on the outer half (peripherally) than on the inner half. For all cases, a larger 

heat transfer coefficient was seen relative to a straight tube. There was also evidence to support a 

shorter entry length region, resulting in a shorter distance before asymptotic heat transfer values 

were reached. The asymptotic value was shown to be a function of        , and was not 

constant as is seen in straight tube flow. In the laminar region, there was no evidence to support a 

dependency on the curvature diameter ratio, as the heat transfer coefficients for the large and 

small coils were similar. An empirical best fit of the data was given in the form of Equation (7) 

based upon the asymptotic heat transfer coefficients, where A and B are found based upon a 

curve fit.  

              
(7) 

 
 

8
 

  

     
      (8) 

 

 

Due to the similarity of this equation to the Dittus-Boelter correlation, it was assumed that these 

heat transfer coefficients could be related to the friction factor in a way similar to the Chilton-

Colburn analogy as seen in Equation (8). This analogy relates friction factor to Nusselt number 

for fully developed turbulent flow in a smooth circular tube [1]. Seban and McLaughlin 

proposed a Nusselt number correlation in Equation (9), where A is based upon a curve fit. In this 

case, A = 0.13 produced the best fit for both curvature diameter ratios. It was noted that this 

correlation should be applicable to any helical coils under the range of conditions where 12 < Re 

< 5,600, 100 < Pr < 657, and 17 < D/d < 104 under constant heat flux. Under the studied 

turbulent flow range 6000 < Re < 65,600 there was still a visible difference between the heat 

transfer coefficients of the inner and outer halves of the coil but to a lesser extent under turbulent 

flow. In accordance with straight pipe flow, the heat transfer coefficients were plotted versus 

       . The Prandtl number is to the 0.4 power due to the flow undergoing heating. It was 
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shown that the average peripheral heat transfer coefficient deviated by less than 10% from the 

proposed correlation in Equation (10) for the large coil, where the friction factor in this case was 

calculated from an empirical correlation also presented in the study. 

     
 

8
      

   

 (9) 

 

    
 

8
          (10) 

 

In 1971, Dravid [3] conducted a numerical and experimental study on heat transfer through coils. 

The research was restricted to the laminar regime but for De > 100. The numerical results were 

based upon helical coils with small curvature diameter ratios and fully developed velocity fields. 

Based upon previous research, the predicted flow field based upon Dean number can be seen in 

Figure 2. The numerical results showed that due to the complex flow field, large cyclical 

oscillations in axial wall temperature occur with the oscillations being damped at larger axial 

distances.  

 
Figure 2: Secondary flow field in helical coiled tubes [4] 

Their experimental setup consisted of thick copper tubing helically wrapped in a Teflon coated 

Nichrome wire. This was then formed into a helix with a curvature diameter of 137 mm (5.4 in). 
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creating an overall curvature diameter ratio, d/D = 0.0536. It should be noted here that many 

studies refer ambiguously to curvature diameter ratio, and unless otherwise noted, it should be 

thought of as d/D. Water was used as the working fluid. The experimental results matched very 

well with the numerical results, both showing damped oscillatory motion. The short entry length 

region relative to a straight tube was also seen in the experiment. Based upon the asymptotic 

Nusselt numbers found experimentally, the correlation in Equation (11) is proposed for 50 < De 

< 2000 and 5 < Pr < 175 with a standard deviation of 6%. 

       76    6             
(11) 

 

In 1974, Kalb and Seader [5] produced a numerical study on helical coiled tubes for Dean 

numbers up to 1200. The boundary condition was chosen to be constant axial surface 

temperature, as at the time it was the least studied condition, as well as it having more 

applicability to real world scenarios. Based upon their analysis, the fully developed temperature 

field was shown to change markedly with increasing Prandtl number. It was also shown that the 

thermal boundary condition plays a role in fully developed temperature profiles, with a uniform 

wall temperature boundary condition contributing to a wider range of temperatures from the wall 

to the core of the flow field. It was also shown that for middle range Prandtl numbers of 0.7 to 5, 

the boundary condition of uniform wall temperature provides for a Nusselt number with a 

smaller dependence on Prandtl number when compared with uniform axial heat flux boundary 

condition. Kalb and Seader proposed Equation (12) as a helical coil heat transfer correlation, 

valid for 0.7 < Pr < 5, 80 < De < 1200 and 0.01 < d/D < 0.1. 

     8 6           
(12) 

 

In 1978, Janssen and Hoogendoorn [6] produced a numerical and experimental study that was 

focused on Prandtl numbers from 10 to 500. The experimental setup consisted of helically coiled 

stainless steel tubes and Joule Heating was used to produce an axially uniform heat flux 

boundary condition. The experiment also considered a constant surface temperature boundary 

condition by placing the coil in a shell with condensed steam. The numerical results showed the 

same damped cyclical nature of the Nusselt number as seen from Dravid [3]. It was also seen 
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that for De < 20, the asymptotic Nusselt number was correlated with      . The proposed 

correlation as seen in Equation (13) is valid for De < 20 and            1   1  . The 

experimental results showed that for De > 20, the Nusselt number had little dependence on d/D 

and was proportional to      , which is unlike the previous studies. The results also showed 

little difference between the Nusselt numbers from the different boundary conditions, which was 

mostly assumed to be due to the low temperature dependent viscosity of the fluid in the 

experiments. Janssen and Hoogendoorn also proposed the correlation seen in Equation (14), 

valid for 1   1      8     1  . 

   1 7           
(13) 

 

     7                     
(14) 

 

In 1981, Manlapaz and Churchill [7] conducted a review of all of the previous experimental and 

numerical results involving heat transfer in coiled tubes. Their goal was to produce a general 

correlation for all the different regimes covering 0 < De < 2000 and 0 < Pr < 1600. There were 

also efforts to include the effects of finite pitch into the correlation. This was done by replacing 

the Dean number with the Helical number as seen in Equation (15).  

       1              
(15) 

 

It was shown that for values of         less than unity, the effects of pitch, could be neglected. 

General correlations were produced for both constant axial heat flux and constant surface 

temperature boundary conditions. It was noted that the experimental results used to calculate 

these correlations did not go beyond a Helical number of 2000 and that any values predicted past 

this value were purely speculative. The correlations for constant heat flux and constant surface 

temperature boundary conditions are presented in Equations (16) and (17), respectively. 
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 8

11
  

 1 11

 1   
1   
     

 
  

 

  1 816 
  

1  
1 1 
  

 

   

 
 
 
 
   

 
(16) 

 

 
 

    

 
 
 
 

   6 7   
     

 1   
9 7
     

 
  

 

  1 1 8 
  

1  
   77
  

 

   

 
 
 
 
   

 
(17) 

 

 

In 1989, Prasad et al. [8] conducted an experiment on a coiled tube in a shell, which was one of 

the first recent experiments on a helically coiled tube in shell heat exchanger. The experimental 

setup consisted of copper helical coils with diameter ratios D/d of 17.24 and 34.90 for two 

separate tests.  The coils were placed in a large shell. The working fluids used were hot water 

and air for the coil and shell sides, respectively. The experiments measured both pressure drop 

and temperature along the coil and shell. The experiments were conducted throughout the 

laminar and turbulent regime for 1780 < Re < 59,500. The transition from laminar to turbulent 

regime was determined by the critical Reynolds correlation developed by Ito [9] and used by 

Seban and McLaughlin [2], as seen in Equation (18). The correlation proposed for the laminar 

regime is of the same form as Seban and McLaughlin (1963) as seen in Equation (9), but in this 

case A = 0.25 for 200 < De < 500. A new correlation for the turbulent regime was not proposed, 

but rather it is said to correlate well with Equation (10) from Seban and McLaughlin (1963). 

Prasad also proposed shell side correlations similar to the form of the Dittus-Boelter correlation 

for flow in a circular annulus as seen in Equation (19), where C is a function of D/d ratio. The 

variable, C, was found to be 0.057 and 0.110 for D/d = 17.24 and 34.90, respectively. Equation 

(19) is valid for 30,000 < ReDh < 200,000. 

         1   
 

 
 
    

 (18) 

 

          
    

(19) 
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In 1997, Yildiz et al. [10] conducted an experimental study on a helical tube in a shell heat 

exchanger containing inside springs. The springs were placed inside the helical tube as a way to 

passively increase the heat transfer inside the loop. The experimental setup consisted of 5 mm 

helical pipes with a curvature diameter of 75 mm. The shell was well insulated and air and water 

were used as the working fluids in the coil and shell sides, respectively. It was not stated whether 

the air was undergoing heating or cooling but as the data was compared to the Dittus-Boelter 

correlation seen in Equation (20), we can assume it was undergoing heating. The information we 

are interested in for this present research is the results of the experiments without springs. The 

correlation, seen in Equation (21), was presented in the same form as in Equation (20), valid for 

1265 < De < 2850 and Pr = 0.7. As for the results with the introduction of the spring in the coil, 

an increase in heat transfer effectiveness of up to 30% is seen in the heat exchanger while the 

pressure drop also increases up to 10 times that of the empty tube flow. 

                   
(20) 

 

        1             
(21) 

 

In 1998, Guo et al. [11] experimentally studied the effects of pulsatile flow on heat transfer in 

helically coiled tubes. The experiment was conducted using two-phase steam water as the 

working fluid. The experiment had a total of 102 thermocouples on the outside of the tube, 

varied axially as well as peripherally. This provided a very detailed description of the 

temperature field. Part of the experiment was conducted under steady single-phase flow. The 

results for steady flow indicated that for 6000 < Re < 60,000, the Seban MchLaughlin (1963) 

correlation seen in Equation (10) accurately described the system. For larger Reynolds numbers, 

the enhancing effect of the secondary flow due to the helical coil became less significant and 

once again fell towards the predicted values by the Dittus-Boelter correlation seen in Equation 

(1). Guo et al. proposed the correlation as seen in Equation (22) for 6000 < Re < 180,000. It was 

also shown that due to the orientation of the coil, the positions of upward flow relative to gravity 

gave an increase in heat transfer. It was also shown, in congruence to previous experiments, that 

the heat transfer coefficient on the outer half of the coil is consistently larger than the heat 

transfer on the inner half. 
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       8            
(22) 

 

A 2005 study by T. J. Rennie [12] focused on an experimental study of a helical pipe in pipe heat 

exchanger. The idea was to reduce the possible zones of dead or no flow in a coil in shell heat 

exchanger by creating 2 helical pipes, one inside of another. The experimental setup consisted of 

only 1 turn of a coil with zero pitch so the applicability of the results is somewhat questionable. 

A large and a small inner coil were tested with the same outer annulus. Regardless, the only 

measurements taken were of the inlet and outlet temperatures of the inner tube and outer 

annulus. This was done to not affect the flow field. In order to calculate inner and outer heat 

transfer coefficients, the Wilson Plot method was used. This method uses the inlet and outlet 

temperatures and the calculated overall heat transfer coefficient to calculate inner and outer heat 

transfer coefficients. There is also the assumption that by keeping the mass flow rate of the inner 

tube constant, it can be assumed that the inner heat transfer coefficient is constant. This method 

is described in detail by Fernandez-Seara [13]. The results for the inner heat transfer coefficient 

were similar to that of Dravid [3], but due to the increased variability in the results of the smaller 

inner coil, the Wilson Plot method did not work as well. The results also showed that operating 

in parallel or counterflow configuration, the overall heat transfer coefficient did not change 

appreciably. 

A 2006 experimental and numerical study by V. Kumar et al. [14] was conducted on a tube in 

tube helical heat exchanger. Unlike Rennie [12], the setup had 4 coil turns, providing a larger 

length for the flow to develop. Hot and cold water were used as the working fluids for the inner 

coil and outer annulus, respectively. The heat exchanger was operated in the counterflow 

configuration. The inner and outer tube diameters were 25.4 and 50.8 mm, respectively. The 

outer annulus contained baffles to hold up the inner coil as well as induce more turbulence. Like 

Rennie [12], the heat transfer coefficients were calculated using the Wilson Plot method. A 

numerical analysis was also conducted using the same system design and boundary conditions 

using FLUENT 6.1. The inner Nusselt number experimental results were compared with the 

numerical results and were seen to deviate by less than 4%. This provides at least some evidence 

supporting the viability of the Wilson Plot method for future researchers. The values of the inner 

Nusselt number reported are slightly higher than the correlations of Kalb and Seader [5] and 

Manlapaz and Churchill [7] but follow the same trend. The discrepancy was most likely due to 
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the change in boundary conditions. The outer Nusselt number experimental and numerical 

results deviate 8-10% from each other, and are seen to be 2-3 times higher than straight tube 

flow. 

In 2007, Naphon [15] conducted a study on a complex heat exchanger involving two helical coil 

banks with fins attached to the coils, inside of a sectioned shell. The heat exchanger was 

operated in the counter flow configuration. Hot water and cold water were used for the coil and 

shell sides, respectively. Though no results were presented on inner or outer heat transfer 

coefficients, results were given relating the heat exchanger effectiveness versus shell and coil 

flowrates. For low hot water mass flowrates, the heat exchanger effectiveness was seen to 

increase with increasing coil hot water inlet temperature. At higher hot water flowrates, the 

effectiveness converges onto a single value, regardless of hot water inlet temperature. The 

highest effectiveness is seen with the largest shell side flowrate and the lowest coil side flowrate, 

and the lowest effectiveness is seen when the inverse situation occurs.  

A 2008 study by M.R. Salimpour [16] presents the first known analysis of the effects of 

temperature dependent fluid properties on a shell and helical coil heat exchanger. The fluid used 

in the coils was Behran Hararat oil and had temperature dependent properties correlated to 

equations from a previous study to within an accuracy of 1%. The temperatures and pressure 

drops for both the inlet and outlet of the shell and coil were measured and the properties were 

evaluated at their mean and mean caloric temperatures, respectively. The tests were conducted at 

three different oil temperatures in order to study the effect of fluid temperature. The shell side 

heat transfer coefficient was calculated from a correlation developed in a previous study by 

Salimpour [17] and from this and the experimental data, inner heat transfer coefficients were 

calculated. The inner Nusselt numbers presented are higher than and largely deviate from the 

values predicted by Dravid [3]. This could be due to both the different boundary conditions and 

the effect of temperature dependent properties. By testing three different coils, it was shown that 

reducing coil pitch increased the inner heat transfer coefficient due to the increased effect of the 

secondary flow. Salimpour proposes the correlation seen in Equation (23) for the range 35 < De 

< 410, 0.058 < γ < 0.095, 160 < Pr < 325, 0.113 < δ < 0.157, and 0.34 < Φ < 0.60. 

                                     
(23) 
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In 2009, Kharat et al. [18] conducted a numerical and experimental study of a working thermic 

fluid heater. The heat exchanger under study consisted of two helical coil tube banks with pitch 

equal to the coil diameter, making a concentric coil annulus. The study focused on the shell side 

heat transfer, and as to whether shell side heat transfer should be predicted based upon the 

existing formats for tube banks or for flow through a concentric annulus. Results concluded that 

a correlation based upon a tube bank greatly over predicted the shell side Nusselt number. A 

correlation based upon a concentric annulus was shown to under predict the experimental results 

by an average of 29%. The numerical study allowed for certain variables to be looked at 

including coil tube diameter as well as coil annulus gap based upon the outer edge of the coils. A 

correlation was proposed including a new dimensionless variable known as Gap ratio as seen in 

Equation (24). The new correlation proposed is seen in Equation (25), valid for 20,000 < Re < 

150,000 and a coil gap/tube diameter ratio from 0.55 to 2.25. 

                     
(24) 

 

        6                               
(25) 

 

In 2009, M.R. Salimpour [19] conducted an experimental study on a shell and helical coil heat 

exchanger using cold and hot water for the shell and coil sides, respectively. There were three 

different coils tested, varying in pipe diameter and pitch. The tube and shell side flow rates were 

measured as well as the inlet and outlet temperatures for both. The fluid properties were 

evaluated at their mean temperature. The outer heat transfer coefficients were calculated using 

the Wilson Plot method. A total of 75 outer heat transfer coefficients were calculated based upon 

five different shell side flow rates, leading to a total of 15 calculated inner heat transfer 

coefficients. The results indicate a good agreement with [7] when taking into account the 

constant surface temperature boundary condition correlation proposed by Manlapaz and 

Churchhill [7] seen in Equation (17) for De < 3000, while it over predicts for values higher than 

this. It was also seen, as in [16], that the inner Nusselt number increases with decreasing coil 

pitch. The proposed correlation for inner Nusselt number can be seen in Equation (26) and is 

valid for 1000 < De < 5000. The same variables were chosen to represent the shell side heat 
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transfer coefficient except replacing Dean for Reynolds number, with the correlation as seen in 

Equation (27) for 60 < Reo < 500. It should be noted that the shell side hydraulic diameter, Dh, is 

calculated using Equation (28). 

      1    
                   

(26) 
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 (28) 

 

A 2009 experimental study by Mandal and Nigam [20] uses the same exact tube in tube helical 

heat exchanger as used by Kumar [14]. In this case, the experiments were conducted using water 

and compressed air for the annulus and inner coil respectively. The inner coil flow was tested 

between 14,000 < Re < 86,000. The present results for the inner coil Nusselt number were found 

to be larger than predicted values from previous correlations. This is most likely due to the use of 

compressed air as a working fluid or the counterflow heat exchanger boundary condition present 

in the experiment. Regardless, a new empirical correlation was postulated as seen in Equation 

(29). For reference, the outer annular-coiled tube is also seen to outperform previous results and 

correlations. This was possibly due to the use of semicircular baffles in the annular region to 

induce turbulence, thus increasing heat transfer.  

                     
(29) 

 

In 2010, H. Mirgolbabaei et al. [21] conducted an experimental and numerical study on a helical 

coil in an annulus heat exchanger. The experiment consisted of a numerical study with seven test 

coils of different pitch and tube diameter in an annular shell. The numerical data was then 

compared to an experimental result involving one test coil with an outer tube diameter and coil 

pitch of 9.52 and 16.57 mm, respectively. The temperatures and flowrates were measured at the 

inlet and outlet of the shell and coil.  Cold and hot water were used as the shell and coil side 

working fluids, respectively. The study focused on specifically the shell side heat transfer 
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coefficient. It was shown that there are multiple ranges of coil pitch that affect the heat transfer 

coefficient. For a dimensionless coil pitch of 1.8, decreasing or increasing the pitch to 1.5 or 2 

increases the shell side heat transfer coefficient. Increasing the tube diameter was shown to 

decrease the heat transfer coefficient under the same amount of heat flux for the same coil pitch. 

Based upon a dimensional analysis of several different possible variables for characteristic 

length, a normalized length was chosen to provide the strongest correlated data, producing the 

correlation seen in Equation (30), valid for 8.1 x 106 < RaLn < 2.2 x 108 and 40 < ReLn < 205. 

        7  
  
  
 
      

    
         

        
      (30) 

 

A 2010 study by N. Ghorbani et al. [22] focused on the shell side heat transfer of a shell and 

helical coil heat exchanger. The working fluids were cold and hot water for the shell and coil 

sides, respectively. The experiment is studied in the mode of mixed convection, taking into 

account the effects of Raleigh number as well as Reynolds number. The tests were conducted 

using both laminar and turbulent flow inside the coil. Though some of the analysis is 

questionable, Equation (31) was proposed for the shell side Nusselt number for 2.5 x 107 < RaDhx 

< 3.5 x 108 and 150 < ReDhx < 1200. In this case, hydraulic diameter is defined by Equation (32). 

N. Ghorbani et al. [23] presented this same experimental data in another 2010 paper focusing on 

the heat exchanger effectiveness. It was shown that the effectiveness-NTU relationship closest 

resembled that of a counterflow concentric tube heat exchanger and was the suggested 

relationship to use in further ε-NTU calculations, as seen in Equation (33). 

          1      
           

      
    

(31) 

 

    
    

  
 (32) 

 

  
1           1      

1              1      
 (33) 
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2.3 Microencapsulated Phase Change Material (MPCM)  

 

In the past 25 years, engineers and researchers have begun to introduce new materials and fluids 

into heat exchangers in hopes of increasing heat transfer performance. Materials that change 

phases within the operational temperatures of the heat exchangers were studied in order to utilize 

the added heat capacity from the latent heat of melting of the material. When introduced into the 

heat exchanger fluid, the new material is shown to increase heat capacity with the same or less 

temperature difference as before. However, without somehow avoiding the separation or 

precipitation of the phase change material from the working fluid during the solidification 

process, the phase change material tended to agglomerate and create obstructions in heat 

exchangers. To prevent this, microencapsulated phase change materials (MPCMs) were 

introduced. The idea behind this was to prevent agglomeration while still obtaining increased 

specific heat of the working fluid during the phase change process. A considerable number of 

studies have been conducted in the last 15 years in order to better understand the processes by 

which the introduction of MPCMs affects heat transfer. 

In 1999, Y. Yamagishi [24] conducted an in-depth study on the flow and heat transfer 

characteristics of an MPCM slurry under constant heat flux. The phase change material (PCM) 

used was Octadecane, which has a latent heat of 223 kJ/kg. The particles had an average 

diameter of 6.3 μm. It was assumed the average capsule thickness was 0.1 μm. The particles 

were mixed with water at five different varying volume fractions from 0.07 to 0.30. As shown in 

previous study, microencapsulating a PCM causes some degree of supercooling, the difference in 

temperature between the melting and solidification temperature. The solidification temperature 

of MPCM's will be somewhat lower than the melting temperature, and is detrimental to the heat 

transfer process. The amount of supercooling was reduced from 13 K to 5 K by the introduction 

of a dispersing agent into the phase change material before the encapsulisation process. Heat 

transfer tests with MPCM/water were compared to tests with water using a well calibrated heat 

transfer loop. The MPCM slurry was tested in the loop with zero heat flux to provide insight on 

the rheological properties of the fluid. The results show the MPCM slurry acts as a Newtonian 

fluid, with a transition from laminar to turbulent regime around a Reynolds number of 2300, 

which is normal for circular pipe flow. It was also seen the pressure drop for increasing MPCM 

volume fraction increased for the same mean flow velocity due to the increased slurry viscosity. 
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From this information it was found that there is a nonlinear relationship on viscosity versus 

particle volume fraction. In almost all the cases, the temperature of the flow has three distinct 

regions similar to the Figure 3. Regions I and III corresponded to a temperature increase due to 

the sensible heat of the slurry, while Region II begins at the point of MPCM melting 

temperature. This temperature theoretically remains constant until all the particles have melted 

where it once again begins to increase in temperature due to the thermal energy gain from 

sensible heat. With a lower heat flux, Region II becomes larger, not allowing the particles to 

completely melt before the end of the test section. The experimental results slightly deviate from 

the calculated results of Figure 3 due to the supercooling phenomenon as well as the finite 

melting rates of the particles. 

 

Figure 3: Temperature vs. Axial distance for a MPCM slurry under constant heat flux 

When comparing the local heat transfer coefficients of water versus MPCM slurry for the same 

flowrate, at the beginning and the end of the test section the MPCM is seen to have a markedly 

lower heat transfer coefficient being due to the increased slurry viscosity. In Regions I and II 

however, an increase in heat transfer coefficient is seen, with a maximum slightly under the heat 

transfer coefficient of water. The increase in heat transfer coefficient could be caused by the 

melting of the MPCM particles; thus increasing the effective specific heat of the slurry. After the 

particles have melted, a drop is seen in the heat transfer coefficient towards what is predicted by 

heat transfer to a single-phase fluid. The heat transfer coefficient results also showed that for a 

larger input heat flux, a lower maximum heat transfer coefficient was achieved, which is thought 

to be caused by the increasing thickness of the thermal boundary layer, causing the particles in 

the turbulent core to melt before reaching the tube wall [24]. When comparing heat transfer 

coefficients for different particle volume fractions under the same inlet temperatures, heat flux, 



18 
 

and Reynolds numbers, the larger particle volume fraction resulted in a larger maximum heat 

transfer coefficient. However for the same flowrate, a lower volume fraction was seen to have a 

higher local heat transfer coefficient. This was said to be due to the decrease in turbulence (lower 

Reynolds number) from the increase in the slurry viscosity, where the lower turbulence did not 

allow as many particles from the core to travel towards the tube wall. What this means is that 

higher volume particle fractions will not always result in a higher heat transfer coefficient, as 

there are competing effects between higher slurry viscosity and a higher effective specific heat. 

At relatively high mass fractions, a laminarization of the flow was seen to occur, drastically 

decreasing the local heat transfer coefficients. It was postulated that due to the laminar flow, a 

layer of fully melted particles forms along the tube wall while the core region is filled with solid 

particles. It was concluded that for the same particle volume fraction, turbulent flow is more 

effective than laminar flow, even when the slurry undergoes phase change. In light of all the 

presented results, it was seen that for the same flowrate in the turbulent flow regime, the local 

heat transfer coefficient of the MPCM slurry was always lower than that of pure water.  

In 2002, Hu and Zhang [25] produced a numerical study on laminar heat transfer of MPCMs in a 

circular pipe under constant heat flux. The study looked at the thermally developing region as 

well as the fully developed region. Since the variability of specific heat throughout the melting 

temperature range of the MPCM is not well known, 4 different functions were looked at and 

were shown to effect the Nusselt number through the thermal entry region but were shown to 

converge at large axial distances. The fluid was assumed to have a Newtonian behavior up to a 

volumetric concentration of 0.25. A sensitivity analysis was conducted to study the effects of the 

Stefan number, degree of subcooling, melting temperature range, particle diameter, and 

volumetric concentration on the heat transfer enhancement. Since volumetric concentration 

affects both the effective thermal conductivity as well as the mean heat transfer coefficient, it 

was seen to have the largest effect on heat transfer. Based upon the results, a low degree of 

subcooling, a small melting temperature range, and a large particle diameter were seen to benefit 

heat transfer the most, but individually not as much as volumetric concentration. As with any 

other single-phase flow, an increase in Reynolds number was shown to increase the Nusselt 

number. 

In 2007, J. L. Alvarado et al. [26] conducted a study on MPCM heat transfer and pressure drop 

using a set of heat transfer sections under constant heat flux. The study also included analysis of 
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the MPCM construction and efforts to reduce the effect of supercooling. The PCM used was 

Tetradecane with an average size of 2-10 μm. Tetradecanol was used as a nucleating agent to 

reduce supercooling. Viscosity analysis showed behavior reminiscent of a Newtonian fluid up to 

mass concentrations of 17.7%. The pressure drop results did not indicate any significant increase 

in pumping power. The apparent specific heat used in heat transfer analysis was calculated as a 

function of mass fraction. All results were within the Reynolds range of 3900-7500. The same 

three-region temperature distribution was seen as shown in Figure 3. Under the same flow 

conditions, an increase in heat capacity of 40% was seen for 7% mass fraction slurry. Under the 

same conditions, the heat transfer coefficient was seen to vary along the pipe, reaching a 

maximum near the melting point of the MPCM. Regardless, at the same flow velocities, a lower 

heat transfer coefficient was seen for the slurry due to reduced momentum transfer.  

In 2008, B. Chen et al. [27] studied heat transfer of MPCM slurry under laminar flow through a 

circular pipe. The pipe was stainless steel and a constant heat flux boundary condition was 

applied through Joule Heating by using the pipe as a resistance. The PCM used was 1-

bromohexadecane with a melting temperature around 15°C. Density and specific heat of the 

MPCM were calculated based upon the mean of its solid and liquid properties. The thermal 

conductivity of the particle was calculated by estimating its thermal resistance. The slurry 

density and specific heat were calculated based upon the mass fraction. In the region of phase 

change, the specific heat was taken to be a function of the heat of fusion. The slurry thermal 

conductivity was calculated using Maxwell's relation. The viscosity of the slurry was shown to 

be Newtonian for all specimens, up to a 15.8% weight fraction. The effective specific heat of the 

slurry was seen to increase up to 28.1% relative to water during the phase change process. An 

applicable pump power analysis was performed to determine the decrease in consumption 

through using MPCM slurry versus water. Due to the higher heat capacity, a decrease of 67.5% 

in pump work can be seen while removing 750W using the 15.8% weight fraction MPCM slurry. 

In 2009, R. Zeng et al.[28] used this same experimental data and compared it to a numerical 

simulation based upon an enthalpy model. It should be noted that in the phase change region, a 

sine curve was chosen to represent the changing value of specific heat of the slurry. The Nusselt 

number along the pipe is shown to reach a maximum at the onset of the melting region and a 

minimum at the end of the melting region, these values being higher and lower than the 

numerical results for water, respectively. The Stefan number, seen in Equation (34), as well as 

the phase change temperature range were shown to effect the Nusselt number the most, while the 
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effects of particle diameter, Reynolds number, and particle concentration were shown to cause 

smaller effects. 

     
        

 
 (34) 

 

In 2010, Taherian [29] presented model analysis of the effects of using a blend of MPCMs and 

nanofluids in water on heat transfer. The idea behind this is to combine the high effective 

specific heats of MPCM's with the high thermal conductivity of a nanofluid to produce a better 

heat transfer fluid than would be seen using the individual constituents. In a simulated counter 

flow concentric tube heat exchanger, the effects of the percentage of MPCM's that undergo 

phase change as well as the amount of nanofluids present in the blend were analyzed. The 

effective specific heat was shown to be large for a high phase change percentage combined with 

a small mass fraction of nanofluids. At higher nanofluid mass fractions, the effective specific 

heat converges towards a single value, regardless of the percent of phase change.  

In 2010, Nakagawa et al. [30] conducted an experimental study using MPCMs through a circular 

mini pipe. The PCM used was lauric acid with a melting temperature of about 45°C. The average 

size of the particle was 3.27 μm and the particle mass concentration was varied from 0 to 5%.  

Flourinated dielectric fluid was used as the working fluid. The specific heat of the slurry is 

calculated based upon the single-phase properties and the mass fractions of the fluid and 

particles. The effect of latent heat was taken into account when total heat transport rate was 

calculated. The results show that with increase in mass concentration produces a decrease in wall 

temperature rise along the axis. The overall heat transport rate is shown to increase with 

increasing mass concentration and increasing flowrate. The results for Nusselt number show 

good correlation with theory when using the dielectric fluid. When using the slurry, the Nusselt 

number increases towards the end of the test section, with a maximum Nusselt number of around 

35 for a mass concentration of 5%. It was assumed that the high Nusselt number values were 

overestimated due to the assumption of a bulk fluid linear temperature profile along the axis. 

Because of the melting process, the temperature of the slurry will vary along the length of the 

tube, and a linear temperature relationship is not accurate.  
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As the recent studies show, little to nothing has been done in the field of MPCM as HTF in coil 

heat exchangers (CHE).  This study is a first attempt to understand how MCPMs perform in 

CHE. 
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3. EXPERIMENTAL STUDY ON HELICAL COIL HEAT EXCHANGER 

 

In an effort to understand the effect of using a coil heat exchanger on MPCM slurries, an 

experimental setup consisting of a CHE was designed for that purpose. The MPCM slurry 

consisting of microcapsules containing methyl-stereate as the phase change material was tested 

in a heat transfer facility consisting of straight sections for heating, and a CHE for cooling.  The 

straight sections were uniformly axially heated to study the effects of turbulence on the heat 

transfer characteristics of MPCMs. The experimental setup was the basis for the results 

presented by Tumuluri [31].  

 

3.1 Experimental Setup 

 

The present experiment relies on the data collected in a multiple helical coil counterflow heat 

exchanger designed by Dr. Hessam Taherian. The experimental set up consisted of a pump and 

motor for the coil side, a coil side flowmeter, a water chiller with a built in pump for the shell 

side, and a data acquisition unit. 

 

3.1.1 Helical Coil Heat Exchanger 

 

The multiple helical coil heat exchanger (CHE) can be seen in its experimental setting in Figure 

4. The heat exchanger consists of a copper shell, 4 concentric helical coils with a constant pitch 

of 13.5 mm (0.53 in) and a solid copper center rod. A cross section view of the heat exchanger 

SolidWorks model can be seen in Figure 5.  
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Figure 4: Helical coil heat exchanger without insulation [31] 

 
Figure 5:Cut cross section view of heat exchanger Solidworks model 
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The coil tubing used is 9.5 mm (3/8 in) OD copper tubing with a 6.4 mm (1/4 in) nominal inner 

diameter. The coils were bent by hand and soldered into place at the inlet and outlets. The shell 

consisted of a 15.2 cm (6 in) ID copper pipe with a length of 70 cm (24 in). The complete design 

description for the heat exchanger can be seen in Table 1. During manufacturing, Coil 1 was 

cracked or pierced and because of this was unable to be used in the experiment. Because the 

shell caps were brazed on, the coil had to be left inside the heat exchanger, and shut off from the 

outside during all the experiments. The entire shell was covered in thick foam insulation to 

prevent external heat loss. 

Table 1: Design summary of helical coil heat exchanger 

Part Diameter (cm) Length (m) Outer Surface Coil 

Area (cm
2
) 

Inner Surface Coil 

Area (cm
2
) 

Shell 15.2 0.61 - - 

Coil 1 13.0 17.43 52.2 34.8 

Coil 2 10.0 13.53 40.5 27.0 

Coil 3 7.1 9.66 28.9 19.3 

Coil 4 4.2 5.76 17.2 11.5 

Total - - 138.8 92.5 

 

3.1.2 Pump 

 

The pump used in the experiment for the MPCM slurry was the same pump that was used in the 

upstream experiment, as it was one continuous loop. The pump was a Moyno® 500 progressive 

cavity pump, 300 series. The pump is designed in such a way as to minimize the amount of 

shearing action on the MPCM particles throughout the tests, which could cause breakage. The 

style of pump can be seen in Figure 6. The pump is capable of flowrates up to 15 GPM, 

pressures up to 150 PSI, and fluid temperatures up to 210°F [31]. 
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3.1.3 Pump Motor 

 

Since the progressive cavity pump itself does not have a motor, a 0.746 kW (1 HP) motor was 

purchased from Century Motors to operate the pump. It operates at 1200 rpm and has a service 

factor of 1.15. The motor speed was varied by a Grainger adjustable frequency drive using a 1-

phase input power supply with 200-240 V [31]. 

 
Figure 6: Moyno® 500 series progressive cavity pump [32] 

 

3.1.4 Flowmeter 

 

The flowmeter, like the pump, was the same one used in the upstream experiment. To avoid 

direct mechanical contact between the flowmeter and MPCM particles, a non-intrusive 

electromagnetic flowmeter was used. The flowmeter is an Omega® FMG 400 1/2" ID 

electromagnetic flowmeter. The accuracy is ± 0.25% full scale or ±0.5% of rate at <1.0 m/s. It 
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can operate up to temperatures of 120°C and pressures of 2000 kPa (290 PSI). A picture of the 

style of flowmeter can be seen in Figure 7 which was connected to the data acquisition system. 

The flowrate for each test was recorded using a computer. 

 
Figure 7: Omega® FMG 400 series flowmeter [33] 

 

3.1.5 Water Chiller 

 

The shell side water was cooled and pumped by an air-cooled water chiller. The chiller used was 

a Shini USA BWA AC-5. It consists of one 3.7 kW (5 HP) compressor with a nominal capacity 

of 4.8 tons. The water pump is a 0.746 kW (1 HP), centrifugal, multi-stage pump with a nominal 

flowrate of 0.76 l/sec (12 GPM). This style of chiller can be seen in Figure 8. The shell side 

flowrate was recorded for each test off of the readout on the outside of the water chiller. 



27 
 

 
Figure 8: Shini USA air-cooled water chiller [34] 

 

3.1.6 Thermocouples 

 

The thermocouples used were Type-T immersion thermocouples. The thermocouples were 

placed in a PVC Tee housing, in-line with the individual inlet and outlet flows. 

 

3.1.7 Data Acquisition 

 

The temperature data used in this experiment was taken using a data acquisition system. An 

Agilent 34970A Data Acquisition Unit was used with the Agilent Benchlink Data Logger 

software. The data acquisition system can measure up to 11 different input signals including 

temperatures from thermocouples, DC and AC voltages and currents, as well as frequency and 

periods. The unit has a built in digital multi-meter with a six and a half digits of resolution. The 

system is reported as having 0.004% basic DC V accuracy. The unit has USB flash drive data 

logging capability. The system allows for per channel configurability in order to measure 

different ranges on each channel. The Agilent software uses a graphical user interface to display 

and analyze the results in real time. A schematic of the entire experiment can be seen in Figure 9. 
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Figure 9: Schematic of the heat transfer experiment 

3.2 Data Reduction 

 

During the experiments, temperatures for the inlet and outlet of the coil and shell side heat 

exchanger as well as flowrates were acquired. In order to analyze these data in a meaningful 

manner, an extensive amount of data reduction has been generated.  

 

3.2.1 Fluid Properties 

 

The fluid properties on the shell and coil sides were consistently evaluated at the mean 

temperature of their respective inlet and outlet temperatures, as seen in Equation (35). 
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 (35) 

 

 The fluid properties of water were evaluated from the NIST Theromphysical Property Database 

for water at 1 Atmosphere [35]. The MPCMs were made using methyl stearate as the PCM and a 

pulyurea/polyurethane mixture as the encapsulating material. The MPCMs were seen to have 

particle sizes less than 7 μm. For the fluid properties of the MPCM slurry, due to the complex 

nature of the slurry, different methods were used to calculate its properties. The viscosity of the 

slurry was measured using a rotary viscometer at three different shear rates as seen in Figure 10. 

A linear curve fit to the data was used to approximate the viscosity over the whole experimental 

temperature range.  

 
Figure 10: MPCM slurry experimental viscosity data 

The density of the MPCM particles was measured previously by Tumuluri under the guidance of 

Dr. Alvarado and is taken as an average of 868 kg/m3 over the temperature range. The density of 

the MPCM slurry was calculated using Equation (36), based upon mass fraction and density of 

the MPCM. 
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 (36) 

 

In order to account for the large increase in cp during melting, an effective specific heat model, 

seen in Equation (37), was introduced by Mulligan (1996), which takes into account the portion 

of the fluid that underwent phase change. The sensible heat capacity of the MPCM particle was 

calculated using the correlation developed by Bommel et al. [36] as seen in Equation (38). The 

correlation is dependent upon absolute temperature and n, the number of carbon atoms in the 

parent carboxylic acid minus one. In the present case of methyl stearate (CH3(CH2)16COOCH3), 

also known as methyl octadecanoate, the parent acid is stearic acid (CH3(CH2)16COOH), also 

known as octadecanoic acid, which has 18 carbon atoms. For proper unit conversion, the molar 

mass of methyl stearate was calculated to be 298.51 g/mol. 

                  1          
   

  
 (37) 

 

         1   16  16  7       7                       
(38) 

 

The latent heat of fusion of the MPCM was studied previously and measured experimentally. 

Due to the microencapsulation, the onset temperature of melting and solidification while 

undergoing heating or cooling changes. There is also some variation in the latent heat of melting 

and fusion during this process. Experimental differential scanning calorimetry (DSC) data of the 

MPCMs taken previously under the guidance of Dr. Alvarado showed a latent heat of fusion 

while undergoing cooling to be 171.3 kJ/kg. 

The thermal conductivity of the MPCM is calculated using a curve fit based upon previous 

research. The curve fit is valid over the coil side temperature range and is seen in Equation (39). 

The MPCM slurry thermal conductivity was calculated using Maxwell's equation for predicting 

conductivity of two-phase mixtures [37] as seen in Equation (40). 

                         1  
(39) 
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 (40) 

 

 

 

In order to study the effectiveness of using MPCMs in a CHE, we must analyze the raw data 

using the Log Mean Temperature Difference (LMTD) method as well as the Effectiveness 

versus NTU (ε-NTU) method for heat exchangers. 

 

3.2.2 Log Mean Temperature Difference 

 

Due to the non-linear nature of the fluids’ temperature change in a heat exchanger caused by the 

phase change process, the average temperature difference, ΔTm, varies with axial distance. A 

differential element approach was needed to determine the form of ΔTm. In Equation (41) and 

(42), we apply an energy balance to the differential elements of the coil and shell side fluids. In 

the case of the present experiment, the coil side contains the hotter of the two fluids. Ch and Cc in 

this case are the heat capacity rates of the respective fluids. The differential heat transfer can also 

be calculated based upon a differential surface area, dA, using Equation (43) where ΔT is the 

local temperature difference calculated as          . 

                       
(41) 

 

                      
(42) 

 

            
(43) 
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If we substitute Equations (41) and (42) into the local differential temperature difference in 

Equation (44) we obtain Equation (45). Substituting this equation into Equation (43), we arrive 

at Equation (46), which can be integrated over the length of the heat exchanger.  

               
(44) 
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  (45) 
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For a counter-flow heat exchanger: 

              

              

Rearranging (47): 

 

 

    
       

   
   
   

 
 (48) 

 

Evaluating the integral and substituting the non-differential forms of Equations (41) and (42) for 

Ch and Cc we arrive at Equation (47) and its more prevalent form seen in Equation (48). As this 

equation is the non-differential form of Equation (43), we can see the correct temperature 

difference for heat exchanger analysis is the log mean temperature difference (LMTD) as seen in 

Equation (49). This process is covered in detail by Incropera [1].  

    
       

   
   
   

 
 (49) 
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3.2.3 Heat Transfer Formulation 

 

The total amount of heat transfer in the system can be calculated from either the coil side or the 

shell side. Due to all tests having water as the working fluid on the shell side, the shell side heat 

transfer rate was calculated using Equation (50) for further analysis.  The heat transfer rate can 

be used in conjunction with the LMTD method in order to calculate the overall heat transfer 

coefficient, U, as seen in Equation (51) and in its resistance network form in Equation (52). A 

diagram of the resistance network can be seen in Figure 11. In this network, the conduction 

through the coil tube has been neglected. 

 
Figure 11: Resistance network diagram of the CHE 

                     (50) 
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Using the overall heat transfer coefficient calculated from Equation (51), the only unknowns in 

Equation (52) are the shell and coil side heat transfer coefficients. To determine the shell side 

heat transfer coefficient, tests with water flowing through the shell and coil sides were run first. 

An inner heat transfer coefficient for the coil side was calculated from a proven coil heat transfer 

correlation, seen in Equation (26) [19]. Calculation of shell side heat transfer coefficients were 

conducted for different experimental conditions. 

Since each coil had different lengths and all the coils were connected in parallel, the velocity 

through each coil was not assumed to be the same. Under the assumption of incompressible 

flow, the pressure drop across each coil is given by Equation (53) which is used for coils 

connected in parallel. The fluid velocity in each coil varied depending on the total coil mass 

flowrate as predicted by Equation (54). Fluid velocities in coils 2 and 3 can be expressed in 

terms of coil 4's velocity, producing a set of 3 equations and 4 unknowns. To find each fluid 

velocity, initially a guess is given for each friction factor to calculate coil velocities and the 

corresponding Reynolds numbers. These Reynolds numbers are then used to calculate a friction 

factor based upon friction factor correlations of coiled tubes as proposed by White [38] and Ito 

[9] for the laminar and turbulent regimes, respectively. These correlations are presented in 

Equation (55) and (56). Ito [9] proposed Equation (57) as the critical Reynolds number for 

transition from laminar to turbulent flow. The predicted values of the friction factors are then 

used as the new guess in the next iteration. This process was continued until two consecutive 

friction factor values in each coil converged to a single value. Moreover, the Reynolds numbers 

for all tests were seen to be below the critical Reynolds value and were assumed to be in the 

laminar regime for helical tube flow. Thus, White's friction factor correlation was used in all 

calculations. 
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Using Reynolds number and the corresponding Dean number, the Nusselt number correlation 

proposed by Salimpour [19], seen in Equation (26), was chosen based upon its similar design 

and operational parameters including coil to tube diameter ratios, pitch, and Prandtl number. A 

comparison of these parameters can be seen in Table 2. The correlation proposed by Salimpour 

[19] was chosen since it provides the best fit to the present experiments including the use of 

water in the coils, similar heat exchanger boundary condition, as well as its Dean number range 

of 1000-5000. Since the correlation is only valid for individual coils, a composite Nusselt 

number was calculated based upon a parallel resistance network (Figure 11) using the three coils 

as seen in Equation (58). 
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Table 2: Parameter comparison between present experiment and correlation experiment 

Parameter Present Experiment Salimpour (2009) [19] 

d 6.35 mm 9, 12 mm 

D 42, 71, 100 mm 120 mm 

Pitch, b 9.5 mm 17, 21.4, 267. mm 

γ 0.0426 - 0.101 0.0451 - 0.0708 

Tube side flowrate 0.049 - 0.090 kg/s 0.016 - 0.113 kg/s 

De 918 - 3345 1000 - 5000 

Pr 5.5 7 

 

    
   

 
 
                 

      
 (58) 

 

Once inner heat transfer coefficients were calculated, the outer heat transfer coefficient for the 

shell side was determined when water was used as HTF in the coils and shell. A new correlation 

was developed and postulated based upon the present experimental data and the calculated outer 

heat transfer coefficient. This correlation is only valid in the range of shell side flowrates and 

corresponding Reynolds number range used in the experiments. The correlation, shown in 

Equation (59), is based upon the same form as the Dittus-Boelter correlation as was seen in 

Equation (1), using n = 0.4 for heating and a hydraulic diameter based upon a projected cross 

section as seen in Figure 12. 

        61   
         

(59) 
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Figure 12: Projected cross section of heat exchanger, blue areas designate flow cross-

section 

As indicated, the shell side correlation was developed using water as the HTF both in the coils 

and shell sides. Once the shell side correlation was developed, it was used to study the effects of 

using MPCM slurry in the coils for similar flowrates. Moreover, the experimental shell side heat 

transfer correlation was used to calculate coil side heat transfer coefficients when MPCM 

slurries passed through them. The only unknown during the MPCM slurry test that could not be 

determined directly was the inner heat transfer coefficient, which was calculated by solving for it 

using Equation (50). 

 

3.2.4 Heat Exchanger Effectiveness 

 

The effectiveness-NTU method (ε-NTU method) has been widely used in heat exchanger 

analysis. The equation for effectiveness of a heat exchanger can be seen in Equation (60). The 

maximum heat transfer in a counterflow heat exchanger occurs when one of the fluids 
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experiences the maximum possible ΔT. The HTF with the smaller heat capacity rate, C (W/°C), 

defined in Equation (61), will reach this maximum temperature difference first. In the present 

study, the coil side always pertains to the fluid with the minimum heat capacity rate, Cmin. It 

follows that for qmax, the maximum temperature difference for a counterflow heat exchanger is 

         . The calculated effectiveness is often used with the number of transfer units (NTU) of 

a heat exchanger to compare relative effectiveness of different heat exchangers. The NTU is a 

dimensionless number that is calculated using the overall heat transfer coefficient and the 

minimum heat capacity rate as seen in Equation (62) [1]. Different heat exchangers have 

different ε-NTU relationships and are often compared to determine the most effective heat 

exchanger. 
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3.3 Results and Discussion 

 

A helical coil heat exchanger (CHE) was built and tested using water flowing through the shell 

with water flowing through the coils initially. Once enough data was obtained to characterize the 

shell side of the CHE, an appropriate correlation for the shell side was developed and postulated 

as described in detail above. The developed shell side correlation was used to interpret the 

effects of using MPCM slurry in the coils. Inlet and outlet temperatures of the shell and coil side 

were measured as well as flowrates. For each individual run, coil and shell side flowrates and 

inlet and outlet temperatures were measured. In order to fully analyze all of the data, the tests 

using water in both the coils and the shell are covered first. 
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3.3.1 Water in Shell and Water in Coils Tests 

 

For the case of when water in the shell and water in the coils was used, there were a total of 10 

runs with three different coil side flowrates and two different shell side flowrates. The raw data 

for these runs can be seen in Table 3. The total calculated heat load varied from 4.5 - 6.3 kW. 

Proper energy balance calculations were undertaken and only an average of 5.9% discrepancy 

between the shell side and coil side were identified.  In fact, the shell side always showed an 

average 5.9% higher heat loads that the coil side indicating that small heat losses between the 

shell side and the environment were taking place. 

Table 3: Flowrates and temperature data for the case of water in shell with water in the 
coils 

Test 

Number 

Tube Side 

Flowrate 

(L/s) 

Shell Side 

Flowrate 

(L/s) 

T_H_in 

(°C) 

T_H_out 

(°C) 

T_C_in  

°C) 

T_C_out 

(°C) 

1 0.05 0.90 42.60 20.27 18.84 20.14 

2 0.05 1.24 42.28 20.16 18.73 19.68 

3 0.07 0.90 39.53 21.38 18.86 20.29 

4 0.07 0.94 41.81 21.57 18.83 20.37 

5 0.07 1.24 41.22 20.94 18.75 19.96 

6 0.07 1.24 38.93 20.75 18.81 19.89 

7 0.09 0.92 37.61 22.01 18.84 20.39 

8 0.09 0.93 35.70 21.68 18.84 20.24 

9 0.09 1.24 35.13 21.06 18.77 19.88 

10 0.09 1.24 37.04 21.33 18.80 20.01 

 

One of the objectives of the project was to quantify the heat exchanger effectiveness of the 

devised CHE.  For that purpose, inlet and outlet temperatures as well as heat transfer rates were 

measured and calculated to determine effectiveness using the -NTU method.  However, to be 

able to use the -NTU method, the overall heat transfer coefficient for the whole CHE had to be 

determined first when water was flowing through the coil and shell sides. Therefore, the shell 
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side heat transfer coefficient and Nusselt number were calculated as explained above using the 

data shown in Table 2. 

Figure 13 depicts the composite water-based inner Nusselt number for all the coils versus 

average Dean number of the three coils. The three coils have a large Dean number variation but 

it clearly shows that as De number increases, Nusselt number increases as seen in several Dean 

number based correlations including the one proposed by Salimpour in Equation (26) [19]. As 

seen in Figure 13, the three groups of data correspond with the three different coil flowrates 

used. Based upon the individual coil Nusselt numbers and their different surface areas, it can be 

seen that coils 2, 3, and 4 have a percent contribution, w, to the composite Nusselt number by 47, 

33, and 20 percent, respectively giving a wide range of data for a single flowrate on the shell 

side. This large variation is due to the difference in surface area and fluid velocity in each coil.  

Nevertheless, Figure 13 shows that when using more than one coil, greater rates of heat transfer 

can be achieved at higher Dean number making the overall heat transfer process more efficient 

as discussed below. An uncertainty propagation analysis was undertaken for the composite coil 

Nusselt number, heat exchanger effectiveness, and the number of transfer units. These 

uncertainties can be seen in Table A- 2 in APPENDIX A 

 
Figure 13: Composite coil Nusselt number versus average coil Dean number 
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Using the water-based inner Nusselt number data, shell side heat transfer coefficients and outer 

Nusselt numbers were calculated and can be seen in Figure 14. For ease of viewing, data points 

with the same coil side flowrate have the same symbol shape in the legend. As seen in the figure, 

at lower shell side flowrates, there is little discrepancy in Nusselt number regardless of coil side 

flowrate, which is to be expected. Theoretically this should also occur at the higher shell side 

flowrate of 1.24 L/s (19.6 GPM) but it does not. Looking further, it can be seen that for the coil 

side flowrates of 0.07 and 0.09 L/s, the outer Nusselt number increases with increasing shell side 

flowrate, but it does not for the lowest coil side flowrate of 0.05 L/s and in fact is almost the 

same at both shell side flowrates. The main difference in Nusselt number between low and high 

flow rates on the shell side can be attributed to Reynolds number in the laminar regime. At lower 

Reynolds number, there is less fluid separation and fluid mixing on the shell side which results 

in Nusselt number values more or less independent and insensitive of the conditions inside the 

coils; however, at higher Reynolds number in the shell, a greater degree of flow separation and 

fluid mixing are expected to take place which makes the shell side heat transfer coefficient (and 

overall heat transfer coefficient U) more dependent and sensitive on coil flow conditions. This 

discrepancy can also be explained if we look at the effectiveness versus NTU relationship of the 

heat exchanger generated using the data shown in Table 3 as seen in Figure 15. In Figure 15, 

effectiveness increases with increasing NTU, decreasing coil side flowrate, and increasing shell 

side flowrate. For the coil flowrates of 0.07 and 0.09 L/s, effectiveness increases with increasing 

shell side flowrate but does not for 0.05 L/s coil side flowrate. This is due to the effectiveness 

reaching the asymptotic limit of one, or 100% effectiveness at low coil side flowrate (limiting 

case) relative to the shell side flowrate. In other words, the overall heat transfer rate is dominated 

by shell flow conditions and no further increase in heat transfer can be obtained as long as the 

coil flow rate remains low, further indicating that shell side Reynolds number plays a decisive 

role in the overall heat transfer process. Included for reference on Figure 15 is the explicit ε-

NTU relation for all heat exchangers when             as seen in Equation (63) [1]. 

        1     
(63) 

 

 The present data slightly over predicts this relationship due to the as mentioned overestimation 

of the shell side calculated total heat rate compared to the coil side calculated total heat rate. 

Correspondingly, the effectiveness seen for the 0.05 L/s coil side and 1.24 L/s(19.6 GPM) shell 
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side flowrates is 1.06, which is physically impossible, but within 10% of the maximum 

theoretical value. 

 
Figure 14: Shell side calculated Nusselt number versus Reynolds number 

 
Figure 15: Effectiveness versus NTU for helical coil heat exchanger for water 
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In order to calculate an accurate correlation for the shell side heat transfer, we need to look at 

only the data points for which the amount of heat transfer is changing relative to coil and shell 

side flowrates. Because of this, the data point with 0.05 L/s coil side and 1.24 L/s (19.6 GPM) 

shell side flowrates is omitted during the calculation of the shell side heat transfer correlation. 

The shell side heat transfer correlation was calculated based upon a curve fit as seen in Figure 16 

and presented in Equation (64). Though the correlation coefficient is 0.71, the correlation should 

be valid for the present experimental data set in the range of coil and shell side flowrates used. A 

sensitivity analysis was undertaken to see the effect of varying the coil Nusselt number on the 

shell side Nusselt number. This analysis can be seen in Figure A- 1 in APPENDIX A. 

        61   
         

(64) 

 

 
Figure 16: Curve fit for shell side Nusselt number correlation 
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3.3.2 Water in Shell and MPCM's in Coils Tests 

 

The second part of the experimental plan involves using water in the shell and MPCM slurry in 

the coils to assess the effectiveness of the CHE when MPCMs are used. A total of 12 runs were 

conducted including two shell side and four coil side flowrates. The volumetric flowrates were 

similar to that in the first part of the experimental plan. The as-recorded data can be seen in 

Table 4. It can be seen that the inlet and outlet temperatures were very similar to the water-to-

water case. This temperature range was chosen for the hot side to ensure complete solidification 

of the phase change material inside each microcapsule. Previous research under the guidance of 

Dr. Alvarado showed an onset of solidification of methyl stearate at 29.2 °C. As the outlet 

temperature of the MPCM slurry is on average 7 °C colder than this, complete solidification of 

the MPCM particles was always assumed. 

Table 4: Flowrates and temperature data for the case of water in shell with MPCM slurry 
in the coils 

Test 

Number 

Tube Side 

Flowrate 

(L/s) 

Shell Side 

Flowrate 

(L/s) 

T_H_in 

(°C) 

T_H_out 

(°C) 

T_C_in 

(°C) 

T_C_out 

(°C) 

1 0.05 1.00 47.0 21.3 18.7 20.0 

2 0.05 1.00 50.8 21.7 18.9 20.3 

3 0.05 1.24 46.1 20.6 18.5 19.6 

4 0.05 1.25 49.9 21.2 18.8 20.0 

5 0.07 0.98 42.3 21.7 18.7 20.2 

6 0.07 1.24 40.4 21.2 18.8 20.0 

7 0.09 0.98 37.7 22.1 18.8 20.3 

8 0.09 0.97 40.2 22.3 18.8 20.4 

9 0.09 0.97 38.8 22.1 18.8 20.3 

10 0.09 1.25 38.2 21.4 18.8 20.0 

11 0.09 1.24 39.5 21.6 18.8 20.1 

12 0.11 0.98 37.0 22.8 18.8 20.4 
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The total heat rate calculated based upon the shell side data varies between 5.2 and 6.7 kW. The 

total heat rate (Equation (50)) was alternatively calculated using the coil side data along with 

Cp,eff . and was seen to be on average 7.9% larger than the shell side total heat rate calculations. 

As shown earlier, during the tests using water the shell side total heat rate was on average 5.9% 

larger. This discrepancy can get attributed to the unknowns associated when calculating Cp,eff 

(Equation (37)). Equation (37) is calculated using the ΔT over which the MPCM underwent 

phase change. Since the present experiment does not allow for the measurement of temperatures 

along the length of the coils, the total temperature change across the coil is used for ΔT. The 

MPCM is undergoing phase change only during part of the length of the coil, and thus, the ΔT is 

larger than it should be. This introduces an unknown amount of error into Cp,eff and any further 

calculations based upon it.  

The calculated effectiveness versus NTU relationship for all tests conducted during this study is 

depicted in Figure 17. The MPCM slurry data shows a slightly different trend when compared to 

the explicit ε-NTU relationship and the water data shown in the previous section. This can be 

attributed to the uncertainties associated with the calculation of Cp,eff . It is interesting to note that 

the MPCM slurry is shown to have a slightly lower effectiveness and NTU than for the water 

data for similar coil and shell side flowrates. This can be attributed to the MPCM’s higher heat 

transfer coefficient as well as the MPCM slurry having a higher specific heat than water. The 

former of these causes an increase in UA while the latter causes an increase in Cmin. The 

combination of these two causes a decrease in effectiveness as well as NTU. An uncertainty 

propagation analysis was undertaken for the composite coil Nusselt number, heat exchanger 

effectiveness, and the number of transfer units. These uncertainties can be seen in Table A- 3 in 

APPENDIX A. 
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Figure 17: Effectiveness versus NTU for helical coil heat exchanger for entire study 

For the shell side flow rates of interest, it can be assumed that the heat transfer in the shell acts in 

the same manner regardless of what fluid is inside the coils. Therefore, Equation (64) from 

above was used to calculate shell side heat transfer coefficients based upon Reynolds and Prandtl 

number ranges used. The shell side heat transfer coefficient was used in conjunction with the 

overall heat transfer coefficient to calculate coil side heat transfer coefficients as explained 

above. The calculated inner Nusselt number is the composite Nusselt number. This Nusselt 

number can be broken down to individual Nusselt numbers by coil using the calculated percent 

contribution, w, of each coil calculated earlier in the first part of the experiment as seen in 

Equation (65) for the three coils are connected in parallel. 

                              
(65) 

 

The calculated individual coil Nusselt numbers are plotted in Figure 18-20 along with several 

correlations presented earlier in the literature review section. The correlations shown in the 
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equation for thermal conductivity of a binary mixture as explained earlier which takes into 

account the phase change process in a rather macroscopic manner. As seen from the three 

figures, each coil operates in a different range of Dean numbers but with similar range of coil 

Nusselt number. A curve fit to the data in the form of Equation (66) was conducted by 

minimizing the residual sum of squares, also known as SSE, as seen in Equation (67) [19]. The 

exponential constant of Prandtl number was chosen as 0.3 for consistency purposes with the 

other correlations since the MPCM slurry also underwent cooling during all the experiments. 

Equation (68) is the proposed Nusselt number correlation for MPCM slurries in a multiple coil 

system based on common parameters including the fluid’s Dean number. This correlation is also 

plotted in Figure 18-20 classified as 'Predicted'. We can see that the proposed correlation fits the 

experimental well when taking into account the chosen parameters of De, Pr, and γ. However, 

the developed Nusselt number correlation curve is steeper than the other correlations which can 

be attributed to the fact that three coils were used instead of one (most correlations only account 

for one coil). Moreover, MPCM slurries at low Reynolds (or Dean number) could result in a 

rather complicated flow structure due to the presence of microcapsules capable of inducing a 

micro-convective effect not seen in single phase fluids [26]. The same parameters seen in other 

correlations were chosen in order to produce one general correlation that covers the different 

operating conditions of the three coils. 

        
           

(66) 

 

                                                       
 

 

   

 (67) 
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Figure 18: Calculated inner Nusselt number versus Dean number for Coil 2 

 
Figure 19: Calculated inner Nusselt number versus Dean number for Coil 3 
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Figure 20: Calculated inner Nusselt number versus Dean number for Coil 4 

 
Figure 21: Comparison of Predicted versus Experimental Nusselt number for the coil 

side 

To verify the validity of the developed Nusselt number correlation, Figure 21 shows the 

comparison between predicted and experimental Nusselt numbers with an average error of 14% 

and an R2 correlation coefficient of 0.92. It is important to highlight that since the correlation is 

0 

20 

40 

60 

80 

100 

120 

0 1000 2000 3000 4000 

N
u

/P
r0

.3
 

De_4 

Salimpour (2009) 

Dravid (1971) 

Yildiz (1997) 

Manlapaz (1981) 

Janssen (1978) 

Seban (1963) 
Re>6000 
Seban (1963) 
Re<6000 
Predicted 

Coil 4 

0 

50 

100 

150 

200 

250 

300 

0 50 100 150 200 250 300 

P
re

d
ic

te
d

 N
u

ss
e

lt
 N

u
m

b
e

r 

Experimental Nusselt Number 



50 
 

exponential relative to Dean number, it should not be used outside of the range of 540 < De < 

2420.  

As we can see from Figure 18-20, the Nusselt numbers for the MPCM slurry is almost always 

higher than what was seen in previous studies. Because the effect of the latent heat of fusion was 

taken into account during the calculation of the specific heat and consequently the Prandtl 

number, we must look to different mechanisms for this anomalous increase in heat transfer. The 

fluid dynamics in helical coil flow has been studied extensively using single-phase fluids, but as 

there are a percentage of micro particles in the fluid, the dynamics could behave differently as 

suggested above. In a straight pipe, the increased viscosity of MPCM slurry is seen to slow down 

the movement of particles from the core of the flow to the wall. A turbulent flow is needed to 

move the MPCM particles in the core to the wall in order to release its heat under cooling. In 

single-phase helical coil flow, centrifugal forces impart a lateral movement of the inner core to 

the outside edge of the coil possibly resulting in a cyclical process. Because of this possible 

circulating movement that is present even in the laminar regime, it is plausible that much more 

of the MPCM particles are able to interact with the wall and transfer their heat to the shell side 

fluid which wouldn't otherwise occur in straight tube laminar flow. Previous studies have also 

seen markedly different fully developed temperature profiles based upon increasing Prandtl 

numbers which could be another contributing factor [5].  

Analysis of the results should also take into account how the proposed correlation was 

developed. Initially, a single correlation was chosen to represent heat transfer through the 

individual coils. The correlation was based off of a counter-flow heat exchanger with a single 

coil. The heat exchanger used in the present experiment was built quite differently, with multiple 

coils in close proximity to each other, all in one shell. Because of this difference, we can assume 

there are other possible convective heat transfer mechanisms that should be explored by 

conducting a thorough study with single phase fluids first. Moreover, the fact that three coils 

were used with different curvature diameters and different experimental Dean numbers, it 

suggests that plainly relying on single coil correlation provides a limited estimate of the overall 

heat transfer process.  

Other factors that should be considered in the future include the collection of pressure drop data 

per coil to estimate the velocity through each coil more accurately. Currently, there is a certain 

level of uncertainty in the results given the number of variables involved in each experiment.  
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Nevertheless, the study shows that multiple coils connected in parallel provide a good way to 

transfer heat effectively as described above. 

Another assumption made during the analysis was the use of an effective specific heat for 

MPCMs that takes into account the latent heat of fusion. The equation is normally used to 

calculate specific heats while the MPCMs are undergoing phase change. In the present case, the 

MPCM slurry will spend an amount of time as a multiphase fluid over an unknown length of 

coil, while the rest of the time it is assumed to be in the single-phase regime. Because the 

temperature range from the inlet and outlet of the coils covers both regimes and there is no data 

available to pin down when and where the phase change process occurs. Therefore, the total coil 

temperature difference must be used in the calculation of the effective specific heat which makes 

it difficult to assess the effect of phase change during the whole heat transfer process. 

Nevertheless, the data suggests that the devised CHE does improve the rate of heat transfer of 

MPCM slurries when compared to straight heat transfer sections. 
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4. SUMMARY AND FUTURE STUDY 

 

The present experimental study has shown using MPCM slurry results in increased heat transfer 

relative to similar single-phase fluids. An initial set of tests were conducted in a multiple helical 

coil heat exchanger using water in the shell and water in coils in order to calculate a shell side 

heat transfer correlation. This correlation was then used during a second set of tests involving 

MPCM slurry in the coils in order to understand the effects of using MPCM slurry on heat 

transfer in a CHE. Increases in heat transfer seem to be largely affected by many of the 

assumptions required to complete the analysis. Past studies have shown that even with the 

increased specific heat of a MPCM slurry, its heat transfer has been shown to perform worse 

than water in straight tubes. On the other hand, fluids in helical coils have been shown to 

perform better than straight tubes. As this is the first experimental evidence of the combination 

of the two, the increases in heat transfer seen garner enough attention for future study.  

Previous experimental studies on shell and coil heat exchangers have shown good agreement 

with corresponding numerical simulations. In order to more reliably study the effects of the use 

of MPCM slurry in helical heat exchangers, a numerical simulation of the present study is 

recommended. The numerical study itself would not require any of the correlations used in the 

present analysis and could possibly provide a more accurate understanding of the present heat 

exchanger. Though taking into account microparticles in the fluid can be numerically 

cumbersome and time consuming, the effects of phase change can be taken into account using 

well known heat capacity models. After this numerical analysis is complete, the results can be 

easily compared to the present study. Future studies should focus on heat exchangers with less 

complicated geometry. In order to reduce the number of variables, a heat exchanger with just one 

coil would allow for more reliable data. A helical coil with an operating Dean number of around 

1000 to 2000 should produce comparable results. The present study as well as any future studies 

on helical coil heat exchangers involving MPCM slurries will help strengthen the field of fluid 

dynamics and heat transfer in the quest for superior heat transfer methods. 
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APPENDIX A 

 

Uncertainty Analysis 

 

Uncertainty analysis of the experimental measurements was carried out using the Engineering 

Equation Solver (EES) software. The measured data which contained quantifiable uncertainties 

was considered to be: the dimensions of the heat exchanger, the temperature readings of the 

thermocouples, the mass flowrate of the coil side flowmeter, and the volume flowrate of the shell 

side flowmeter. The EES software follows the multivariate propagation of error formula as seen 

in Equation (69) [39].The uncertainties of these measured variables can be seen in Table A- 1. 

The uncertainty of the data acquisition system that was used in the temperature measurements 

was rated at 0.004% dcV and is miniscule in comparison to the magnitude of the instrument 

uncertainty and thus was not included in the uncertainty analysis. 

If                 with uncertainties           , then 

     
  

   
 
 

   
   

  

   
 
 

   
     

  

   
 
 

   
  

(69) 

 

 

Table A- 1: Measured variables and uncertainties 

Parameter Uncertainty 

d  ± 0.01 mm 

D ± 0.01 mm 

L ± 0.01 mm 

T ± 0.5 °C 

       ± 0.5% 

        ± 6.31x10-3 L/s 
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Uncertainties were calculated for the composite coil Nusselt number, effectiveness, and NTU for 

both the tests using water and MPCM slurry as the HTF. The code used in the EES program can 

be seen in APPENDIX B. The calculated data and their uncertainties during the water tests can 

be seen in Table A- 2. Nusselt number, effectiveness, and NTU data and uncertainties during the 

MPCM tests can be seen in Table A- 3. Due to the extensive propagation of error, large 

uncertainties were seen during the MPCM tests. These large uncertainties are directly tied to the 

relatively large uncertainty of the T Type thermocouple that were used to measure bulk 

temperatures. This, in combination with the small ΔT on the shell side bring some measurements 

and their uncertainties to equal or greater magnitudes. 

Table A- 2: Calculated data uncertainties during tests using water as HTF in the coils 
and water in the shell 

Test Number Nui, composite Effectiveness, ε NTU 

1 41.2±0.4 0.99±0.52 2.92±0.48 

2 41.3±0.4 1.00±0.73 2.88±0.48 

3 48.4±0.4 0.90±0.43 2.21±0.26 

4 47.5±0.4 0.90±0.40 2.23±0.24 

5 47.9±0.4 0.96±0.54 2.42±0.30 

6 48.9±0.4 0.95±0.61 2.43±0.34 

7 54.4±0.5 0.85±0.37 1.88±0.21 

8 55.5±0.5 0.86±0.42 1.88±0.23 

9 56.1±0.5 0.94±0.58 2.06±0.29 

10 55.1±0.5 0.92±0.52 2.07±0.26 
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Table A- 3: Calculated data and uncertainties during tests using MPCM slurry as HTF in 
the coils and water in the shell 

Test Number Nui, composite Effectiveness, ε NTU 

1 70.1±41.6 0.87±0.47 2.42±0.60 

2 68.2±36.0 0.85±0.42 2.42±0.55 

3 71.2±46.8 0.94±0.59 2.68±0.80 

4 67.2±38.6 0.93±0.54 2.64±0.72 

5 132.5±108.6 0.83±0.38 2.11±0.46 

6 121.3±105.4 0.92±0.53 2.32±0.65 

7 222.6±303.4 0.79±0.36 1.80±0.40 

8 214.7±249.9 0.74±0.32 1.80±0.36 

9 216±273.6 0.74±0.34 1.79±0.38 

10 178.1±199.6 0.79±0.45 2.00±0.53 

11 178.6±185.4 0.80±0.42 2.01±0.50 

12 297.7±518.5 0.70±0.30 1.53±0.31 

 

Sensitivity Analysis 

 

A sensitivity analysis was conducted to help understand the effect of changing coil Nusselt 

number on the shell-side Nusselt number. This analysis can be seen in Figure A- 1. 
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Figure A- 1: Sensitivity analysis of Nui on Nuo 
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APPENDIX B 

 

EES Uncertainty Analysis Code 

 

The following code was used to perform an uncertainty analysis on the heat transfer data. 

"Constants" 
D_shell = 0.1524 [m] 
OD_tube = 0.009525 [m] 
ID_tube = 0.00635 [m] 
D_rod = 0.015875 [m] 
D_curv_1 = 0.12954 [m] 
D_curv_2 = 0.100584 [m] 
D_curv_3 = 0.07112 [m] 
D_curv_4 = 0.042418 [m] 
L_shell = 0.6096 [m] 
L_coil_1 = 17.43456 [m] 
L_coil_2 = 13.53312 [m] 
L_coil_3 = 9.66216 [m] 
L_coil_4 = 5.76072 [m] 
b = 0.013462 [m] 
"calculated constants" 
Asurfo2 = pi*OD_tube*L_coil_2 
Asurfo3 = pi*OD_tube*L_coil_3 
Asurfo4 = pi*OD_tube*L_coil_4 
Asurfototal = Asurfo2 + Asurfo3 +Asurfo4 
Asurfi2 = pi*ID_tube*L_coil_2 
Asurfi3 = pi*ID_tube*L_coil_3 
Asurfi4 = pi*ID_tube*L_coil_4 
Asurfitotal = Asurfi2 + Asurfi3 +Asurfi4 
Acsshell = pi*D_shell^2/4 
Acscoil1= pi/4*((D_curv_1+OD_tube/2)^2-(D_curv_1-OD_tube/2)^2) 
Acscoil2 = pi/4*((D_curv_2+OD_tube/2)^2-(D_curv_2-OD_tube/2)^2) 
Acscoil3 = pi/4*((D_curv_3+OD_tube/2)^2-(D_curv_3-OD_tube/2)^2) 
Acscoil4 = pi/4*((D_curv_4+OD_tube/2)^2-(D_curv_4-OD_tube/2)^2) 
Acsrod = pi*D_rod^2/4 
Acsnet= Acsshell - Acscoil1 - Acscoil2 - Acscoil3 - Acscoil4 - Acsrod 
Pwetshell = pi*D_shell 
Pwetcoil1 = pi*(D_curv_1+OD_tube/2)+pi*(D_curv_1-OD_tube/2) 
Pwetcoil2 = pi*(D_curv_2+OD_tube/2)+pi*(D_curv_2-OD_tube/2) 
Pwetcoil3 = pi*(D_curv_3+OD_tube/2)+pi*(D_curv_3-OD_tube/2) 
Pwetcoil4 = pi*(D_curv_4+OD_tube/2)+pi*(D_curv_4-OD_tube/2) 
Pwetrod = pi*D_rod 
Pwetnet = Pwetshell +Pwetcoil1 +Pwetcoil2 +Pwetcoil3 +Pwetcoil4 +Pwetrod 
Dh = 4*Acsnet/Pwetnet 
gamma_2 = b/(pi*D_curv_2) 
gamma_3 = b/(pi*D_curv_3) 
gamma_4 = b/(pi*D_curv_4) 
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"Measured Variables" 
"using first water data as an example" 
De2 = Re2*sqrt(ID_tube/D_curv_2) 
De3 =  Re3*sqrt(ID_tube/D_curv_3) 
De4 =  Re4*sqrt(ID_tube/D_curv_4) 
C_c = rho_c*V_dot_shell*convert(l/s,m^3/s)*Cp_c 
C_h = rho_h*V_dot_coils*convert(l/s,m^3/s)*Cp_h 
LMTD = ((Thout - Tcin)-(Thin-Tcout))/(ln((Thout-Tcin)/(Thin-Tcout))) 
Q_dot = rho_c*V_dot_shell*convert(l/s,m^3/s)*Cp_c*(Tcout-Tcin) 
Q_dot_H = rho_h*V_dot_coils*convert(l/s,m^3/s)*Cp_h*(Thin-Thout) 
epsilon = (C_c*(Tcout-Tcin))/(C_h*(Thin-Tcin)) 
u_epsilon = UncertaintyOf(epsilon) 
UA = ((Q_dot_H+Q_dot)/2)/LMTD 
NTU = UA/C_h 
u_NTU = UncertaintyOf(NTU) 
Nui2 = 0.152*De2^0.431*Pr_h^1.06*gamma_2^(-0.277) 
Nui3 = 0.152*De3^0.431*Pr_h^1.06*gamma_3^(-0.277) 
Nui4 = 0.152*De4^0.431*Pr_h^1.06*gamma_4^(-0.277) 
Nuic = (Nui2*Asurfi2 +Nui3*Asurfi3 +Nui4*Asurfi4)/Asurfitotal 
u_Nuic = UncertaintyOf(Nuic) 
hi = Nuic*k_h/ID_tube 
ho = (1/Asurfototal)*((1/UA)-(1/(hi*Asurfitotal)))^(-1) 
Nuo = ho*Dh/k_c 
u_Nuo = UncertaintyOf(Nuo) 
velo = V_dot_shell*convert(l/s,m^3/s)/Acsnet 
Redh = rho_c*velo*Dh/mu_c 
Nuoeq = 0.0461*Redh^0.8*Pr_c^0.4 
hoeq = Nuoeq*k_c/Dh 
himpcm = (1/Asurfitotal)*((1/UA)-(1/(hoeq*Asurfototal)))^(-1) 
Nuimpcm = himpcm*ID_tube/k_h 
u_Nuimpcm = UncertaintyOf(Nuimpcm) 
$Ifnot ParametricTable 
mu_c = 1.0165E-03 [Pa-s] 
Pr_c = 7.12004 
Pr_h = 5.24395 
Thin = 42.6 [C] 
Thout = 20.27 [C] 
Tcin = 18.84 [C] 
Tcout = 20.14 [C] 
V_dot_coils = 0.05 [L/s] 
V_dot_shell = 0.90 [L/s] 
Re2 = 3669 
Re3 = 4164 
Re4 = 5055 
rho_c = 998.3 [kg/m^3] 
rho_h = 995.220 [kg/m^3] 
Cp_c = 4184.4 [j/kg-C] 
Cp_h = 4184.4 [j/kg-C] 
k_c = 0.59739 [W/m-C] 
k_h = 0.61774 [W/m-C] 
$endif  
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