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ABSTRACT

Optimization and Simulation for Designing the Supply Chain of the Cellulosic Biofuel Industry.
(December 2011)
Heungjo An, B.S.M.S., Hanyang University
Co-Chairs of Advisory Committee, Dr. Wilbert E. Wilhelm
Dr. Stephen W. Searcy

The purpose of this dissertation is to provide an effective approach to design the supply
chain (SC) of the cellulosic biofuel industry in order that it will support and accelerate the
successful commercialization of the cellulosic biofuel industry. The methods of approach to this
problem are (1) to assess the state-of-the-art biofuel SC studies, (2) to provide a decision support
tool based on a mixed integer programming (MIP) model for the cellulosic biofuel supply chain
design problem (BSCP), (3) to devise an exact solution method to solve large-scale instances of
BSCP, (4) to evaluate a biomass logistics system based on biomass modules, by using new
simulation elements for new machines, and (5) to compare several biomass logistics systems
based on biomass module, bale, and silage, using simulation models.

The first part of this dissertation broadly reviews the literature on biofuel SCs, analyzing
the state-of-the-art biofuel and petroleum-based fuel SC studies as well as relating generic SC
models (An et al., 2010a). The second part of this dissertation formulates BSCP as a MIP model,
which is a time-staged, multi-commodity flow, network design problem with an objective of
maximizing profit (An et al., 2010b), providing a case study to demonstrate managerial use in
application to a region in Central Texas.

The third part of this dissertation provides an exact solution method to solve BSCP. An

embedded structure can be transformed to a generalized minimum cost flow problem, which is



used as a sub-problem in a CG approach. This gtuaboses a dynamic programming algorithm
to solve the sub-problem @(m), generating improving path-flows. To acceleratenioh-and-
bound (B&B) search, it develops an inequality, @dlthepartial objective constrain{fPOC),
which is based on the portion of the objective fimmcassociated with binary variables.

The fourth part of this dissertation evaluates antaiss module system, which is a
conceptual logistics system based on large packafgdsopped biomass with sufficient size and
density to provide maximized legal highway loadd gaick load/unload times. The last part of
this dissertation evaluates economic benefits @bibbmass module system, comparing it to bale

and silage systems.
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CHAPTER |

INTRODUCTION

Biofuel is one of the most important renewablergias. It can be distributed easily in
the current technology and can be readily transdorOther renewable energies (e.g. solar,
wind, hydropower, ocean, and geothermal) primgrilgduce electricity, which cannot readily
power transportation vehicles using current teabgies. During the last decade, countries
around the world, especially in the U.S. and Eurtyaee tried to accelerate commercialization
of biofuel to provide environmentally friendly, r@mwable energy.

The U.S. government passed Renewable Fuel StaijR&9) 1 as part of the Energy
Independence and Security Act in 2007 and amertdad2D10 (i.e., RFS2). RFS2 requires the
U.S. to use 36 billion gallons per year (BGY) ohuestic renewable fuel, including 16 BGY of
cellulosic biofuel, starting in 2022, (see Figure (U.S. Environmental Protection Agency,
2010). Based on RFS2, an obligated party (i.eineef and importers of gasoline) must produce
or supply biofuels in proportion to the total ambahgasoline each supplies to the U.S. market.

First-generation biofuels have been commonly pcedufrom animal fats and edible
crops (e.g., corn). However, they have led to aceonthat they could cause food prices to rise,
leading to a crisis. This concern has stimulategelbgment of second-generation biofuels (e.qg.
cellulosic ethanol (ETOH)), which are produced fraellulosic biomass, the residual, non-
edible parts of food crops (e.g., stems, leaveshais#ts) as well as other non-food crops (e.qg.,
forest wood, switch grass, jatropha, cereals tleatr fittle grain, and industrial waste such as

wood chips, skins and pulp from fruit pressing)c8ese it has a high oil content and is highly

This dissertation follows the style and formatl&f Transactions



productive on a per-unit-area basis, algae hasitlgdeeen highlighted as a feedstock for third-
generation biofuel and is under development inaxetelabs. However, since it will take some
time to develop algae that can produce biofuel ocommercial-scale and RFS2 mandates
production of substantial amounts of cellulosicfbéd, second generation biofuels will be the

focus of commercial endeavors in the near future.

40
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35 | ®WAdvanced Biofuel: Biomass-based disel r
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Figure 1 Renewable fuel requirements mandated [82RE010)

Second-generation biofuels are under developnmeatiumber of research labs and a
few pilot refineries. However, second-generatiordiock has quite low energy density, is
geographically distributed, and is degradable. Moee, some feedstocks can be harvested only
in specific seasons. Designing an economicallylgi&C to provide biofuel on a year around
basis is a challenging problem.

The DOE reports that biomass logistics, which ideki harvesting/collecting, storing, and pre-

processing, constitutes as much as 20% of the rduenest of supplying cellulosic ETOH (U.S.



Department of Agriculture (USDA) and DOE, 2008).ush reducing the logistics cost of
cellulosic biomass is a key factor in successfahie@rcialization. The DOE recently announced
a goal for the biomass multi-year program plan:e€Téedstock logistics goal is to reduce the dry
herbaceous feedstock logistics cost to $0.39 pergéh0.103 per litey of ETOH (equivalent to
approximately $35 per dry tdi$38.59/dry Mg]in 2007 $) by 2012, with further reduction to
$0.33 per gallon®0.087 per litey of ETOH by 2017” (DOE, 2010).

Moreover, the biofuel industry must cope with utamties (e.g. harvest yield due to
weather and the market price of fuel). The moistetent of biomass fluctuates with weather
conditions and is also uncertain. In addition, b&fmust compete with petroleum-based fuels,
the price of which is highly variable due to comptelationships between supply, demand, fuel
trading futures, and inventories. However, duRES2, the effect of price variation on biofuel
production quantity will be relatively low, but ieffect on the profit of biofuel suppliers may be
significant. To make it possible for second genemabiofuels to be competitive with first
generation biofuels and petroleum-based fuels, @sssential that the feedstock logistics system
as well as the SC be designed optimally. Developinguulti-period deterministic model for
biofuel SC design is necessary to identify dynafaatures in the biofuel industry and can lead
to insights into system operations and interactidsreover, it is required to address details of
several unique features of cellulosic feedstocks.,(digh moisture content, dry matter loss in
storage facilities, and single destination for f#gedk supply) so that a model reflects the actual
features that characterize the industry.

In addition, since reducing the cost of supplyiegdstock is of primary importance, a
computer model that estimates important measures, (eost, energy used, g@mission,
biomass yield) by simulating detailed logistics i@i®ns is needed. A simulation model can

consider operations in detail and accurately eséncasts that can be input to the proposed



optimization model.

Based on this background, section 1.1 introduessarch objectives. Sections 1.2 and
1.3 give a problem statement and an overview ofmathod of approach for each research
objective, respectively. The last section descrthesorganization of the dissertation.
1.1 Research objectives

The long term goal of this study is to provide efifective approach to design the
cellulosic biofuel SC that will support and accaterthe successful commercialization of the
biofuel industry. Specific research objectives are:

(1) Assessing the state-of-the-art biofuel SC studies;

(2) Providing a mathematical-based decision suppoit tmaesign the economically
viable cellulosic biofuel SC, in which the oversjistem including location, capacity
and technology of each facility is structured ie thost profitable way and biomass
are supplied to meet a year-round biofuel demand;

(3) Evaluating biofuel economics in the test regionQentral Texas under several
scenarios;

(4) Solving effectively large-scale instances of the deled biofuel SC within
reasonable run time;

(5) Developing new IBSAL simulation elements to modehew biomass logistics
system based on large packages of chopped biomasgss module system; and

(6) Evaluating the performance of alternative biomaggstics systems, including bale,
silage and module systems.

1.2 Problem statement
Figure 2 depicts the five-echelon biofuel SC, uwdhg feedstock production,

preprocessing, conversion in refineries, distrimutiand consumption by customers. The term



upstreamis commonly used to refer to the portion of the f8@n feedstock production to
conversion plants; artbwnstreamfrom conversion plants, which are included inhbgpstream
and downstream, to customer zones. Even thoughiiportant to improve technologies and
efficiencies in each echelon, integrating technigle@nd coordinating echelons is necessary for

the system to be most profitable.
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Figure 2 Schematic of facility alternatives of a@sic biofuel SC system in time period t

The optimization problem is to prescribe stratdgiel decisions (i.e., locations where



facilities should be opened, and capacities anthiglogy types of opened facilities) as well as a
strategic plan for material flow, including singtestination transfers in the upstream; and
guantities transported, inventoried, and producehile using a mix of different types of
biomass as feedstocks and their changes from feddstto preprocessed products, and
subsequently to biofuels. The objective is to mazarafter tax profit of the total system from
feedstock suppliers to customer zones. The modelbeaused to prescribe specific material
flows in the tactical level at which the SC desigas been fixed and accurate forecasts of
demands, weather conditions, and other featuresa@adable to plan specific processing,
transporting, and storage quantities over a planhorizon of intermediate duration.

Several assumptions will be invoked to structune system: available feedstock
supplies are given; the demand for biofuel in eagstomer zone and in each time period is
known; preprocessors, refineries, distributors atmrate perfectly throughout the SC to
maximize total system profit; preprocessing inckideiomass drying and size-reduction
operations, the main purposes of which are to redeedstock logistics cost (by transporting
less water and denser biomass) and to promote oreprocess efficiently; and the generated
biofuel could be ETOH or drop-in-fuel. We assumat tbne of the most promising conversion
technologies currently being developed is emplagetie SC.

For the perspective of the operational level, &tion models evaluate the performance
of several biomass logistics systems, includingldale system, which is one most commonly
used for herbaceous (i.e., non-woody cellulosicojriass; the silage system; and the module
system, which is currently being developed at TeX&M University. A biomass logistics
system integrates several processing steps be@oneersion, including harvesting, collection,
transportation, storage, and preprocessing. Favem get of input values (e.g., farm land area,

biomass yield, weather conditions, moisture contamd harvesting schedule), several measures



(e.g., cost, energy, and g@®missions) for each operation can be estimateelddbais a discrete
event simulation model that reflects actual phenmange.g., operation delay due to weather
conditions, physical and chemical dry matter lasmisture content variation, and biomass
density change).

1.3 Method of approach

This section describes the approach to achieaarels objectives. Each of subsections
corresponds with each of objectives that we intcedn section 1.1.

1.3.1 Research objective 1

Since the biofuel industry is just being initiatediterature review of relevant SC issues
has not yet been published. The biofuel industaresh features with the petroleum-based fuel
industry in terms of market, but it also has somiue characteristics, especially related to the
feedstock supply. More generally, certain prior kvon generic SCs may be adapted to the
biofuel SC.

Therefore, this literature review will analyze thmte-of-the-art fuel SC research and
compare biofuel and petroleum-based fuel SC studiE®, it will relate research on generic
SCs to the biofuel SC. Based on the perspectiveedafrom the review, fertile avenues for
future research will be recommended.

1.3.2 Research objective 2

The flow of biofuels in the downstream and of savd&inds of biomass feedstocks in
the upstream can be described as multi-commodity With commodity-type changes. Before
preprocessing operations in the upstream, each oditynrepresents a combination of a
biomass type and a moisture content; after a pcegsing operation, the commodity type is
changed to preprocessed biomass (i.e., size-redguakdried). In the downstream, commodities

are biofuels, which are converted in refineriesnfrqpreprocessed biomass. The multi-



commodities in the system must be processed, staneldtransported, based on prescribed
capacities of the processing and storage faciliiesare opened, and on the available capacities
of selected transportation routes. To deal witls¢heatures, two types of decision variables will
be incorporated in the model: binary variables gribe the opening of facilities and the single
destination (i.e., facility) to which each facility the upstream ships; and continuous variables,
the capacities of facilities opened and the quastitf material flows (i.e., in processing, storage
and transportation).

This paper formulates MIP model which is a timaegsid, multi-commodity flow,
network design problem with an objective of maximigprofit. The model invokes five types of
constraints. First, each facility must employ omlye technology type from among several
alternatives. Second, the capacity of each opeslity will be restricted to or be less than the
capacity limit associated with the correspondingatmn. Third, in order to facilitate
management in the upstream, a constraint will bel@yed to assure that each field storage
facility supplies a single open preprocessing fgcilwhich, in turn, supplies a single open
refinery. Fourth, the amount of materials flowing@ach arc will be restricted by the capacity of
that arc. Finally, flow balance equations will bengoyed to represent operations in each
echelon: moisture content reduction in each preggsiag facility; chemical dry matter loss in
each biomass storage facility; conversion from laisgnto biofuel in each refinery; and material
flow balance at each biofuel storage facility.

1.3.3 Research objective 3

This research will present a case study to demaeshow managers can use the
proposed models. According to the analysis of Mitat (2005) (see Figure 3), the northern,
central and eastern regions of Texas have som&ablabiomass that can be used to generate

biofuel. The central region is selected as a tedtl®cause it represents an example that does not



provide a sufficient amount of crop residue to nieebwn biofuel needs so that some energy
crops must be planted to meet demand. Moreovere sire central region has no first-generation
biofuel refinery yet, a sensitivity analysis to @stigate the significance of economic factors will
be more focused than in the case that also invawe® first generation refineries. For instance,
a few first generation biorefineries are alreadgraging in northern panhandle area of Texas.

A sensitivity analysis will be conducted relatitee the selected region by evaluating
relevant economic factors: feedstock price vs. usbfprice and feedstock supply vs. biofuel
demand. Through the sensitivity analysis, we wdl dble to identify which factors are most

economically significant to the biofuel SC system.

Thousand
Tonnes/Year

l > 500

250 - 500
150 - 250
100- 150
50 - 100
< 50

Figure 3 Available biomass distribution in Texas

1.3.4 Research objective 4
Through preliminary computational work, instantese been found to be very large,
mainly due to the number of flow variables. Thistee describes a solution approach to deal

efficiently with instances of large size.
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(1) Reformulation. In the upstream, a commoditydefined by a combination of
biomass type and moisture content. Since moistorgeat can vary according to biomass
source, location and time period, considering gdarea or many time periods would generate a
huge number of commodity types. Therefore, if comityotype can be redefined by modeling a
commodity that does not depend on moisture contkeatformulation would be improved. To
resolve this issue, this study provides a way tefiee the commodity type.

In addition, to simplify the model further, anothechnique, a node-arc split with respect to
biomass types, has been employed. This technigunefarms multi-commodity flow into single
commodity flow on each split arc. A single commgdin each split arc can be considered
simply as energy flow on it.

(2) Decomposition. Based on the reformulation, éhdedded flow problem, which is
an embedded generalized flow problem (GFP), camldmomposed into a subproblem. This
study deals with the uncapacitated, embedded GBS®@P under a CG-based decomposition
approach, which solves the linear relaxation of BS& the root node. To solve UEGFP
effectively, this study develops a new dynamic paogming algorithm, which is called
backward reaching algorithm (BRA), generating inyimg path-flows (i.e., columns) effectively
in O(m). The master problem prescribes optimal, profiteflde quantities, considering side
constraints.

(3) POC. This idea starts from the observation tiva optimal solution opens facilities
only if the system is profitable; and, accordindhe fixed cost related to opened facilities could
be restricted by available profit. Since the binaayiable that prescribes the opening of each
facility alternative is associated with its fixedst, the relationship between fixed costs of
opening facilities and profit would induce anothetationship between binary variables and

profit. And, possibly, the induced relationship kbbe used as an inequality to restrict binary
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variables. This study develops a POC that is based on a portion of the objective function in MIP
and may restrict the B&B search tree so that it can accelerate B&B procedure.
1.3.5 Research objective 5

As a precursor to the design and fabrication of the biofuel processes, evaluating the
significance of several factors and their interactions in the biomass logistics system will help to
optimize the SC design. The IBSAL simulation framework developed by the DOE is an efficient
tool to evaluate biomass logistics operations. It calculates several performance measures for each
operation (e.g., biomass vyield, dry matter loss, costs, energy use@n@i€dions, and working
hours). In addition, it provides several elements, each of which represents a unit operation, so
that composing a new logistics model based on IBSAL is straightforward.

However, since the biomass module system involves some new types of processes that
are not yet available commercially, IBSAL does not provide elements to represent them. Thus,
this research develops IBSAL elements to simulate the operation and cost of processes that can
form and handle biomass modules. Then, a simulation model is used to identify factors that are
critical in achieving high performance and low cost of the biomass module system.

1.3.6 Research objective 6

To compare performances of alternative biomass logistics systems, including bale, silage
and biomass module, simulation models for those systems are developed. This research
investigates advantages/disadvantages of each biomass logistics system under various
environments (e.g., crop yield and transportation distance).

1.4 Organization of the dissertation

This dissertation is organized in seven chapters. Chidptriews literature associated

with the first objective, specifically about biofuel SC studies, comparing those to petroleum-

based fuel SC studies. Chapiidrformulates a MIP model that is a time-staged, multi-commodity
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flow, network design problem and gives a case study in a region of Central Texas, addressing the
second and third objectiveShapter 1Vdescribesa solution methoddevised,which includes
reformulation, CG for an uncapacitated, embedded GFP, and POC to deal with large size
instances, and provides computational results, addressing the fourth objective. Chapter V
addresses the fifth objective by developing new IBSAL simulation elements for the biomass
module logisticssystem.ChapteNM| comparegperformancemeasuredetweenseverabiomass
logistics systems by using IBSAL simulation models addressing the sixth objective. Finally,

Chapter Vllpresents conclusions and some recommendations for future research.
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CHAPTER Il

LITERATURE REVIEW

This chapter reviews the literature related to $€Cs&iomass for liquid fuels and for
cofiring in power plants, as well as petroleum-lobfseel. The objectives of this review are (1) an
analysis of the state-of-the-art fuel SC resedi@ha comparison of biofuel and petroleum-based
fuel SC studies, (3) a comparison of the charasttesi of the biofuel SC and the generic SC, and
(4) a perspective from which we suggest fertilenanes for future research that would expedite
biofuel commercialization.

The body of this chapter is organized in five smwti Sections 1 through 5 discuss SC
studies related to biofuel and petroleum-based dgebrding to the upstream, midstream, and
downstream categorization. In particular, sectioeviews operational-level studies, and section
2 reviews tactical-level studies of supply chainnagement (SCM) related to fuels. Section 3
reviews models that integrate strategic and tdotdieaisions in fuel SCM; and section 4 relates
models capable of integrating strategic, tactiaalj operational decisions in fuel SCM. Section
5 discusses other review papers that have dedittlhwét management of the generic SC. Section
6 analyzes fuel SCM.

2.1 Operational level studies in fuel SCM

Operational-level SC studies deal with decisiorat #ifect the short term (e.g., hourly,
daily, or weekly). Related biofuel SC studies halealt with costs of operations, harvest
scheduling, and upstream transportation. Studi¢seopetroleum-based fuel SC have dealt with
refining operations in midstream.

2.1.1 Biofuel

Early studies of the operational level of biofue&lsSanalyzed economic factors, for
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example, estimating the cost of each operation ffarm to conversion plant. The primary
objective of most early studies was to assessdbromic feasibility of the biofuel industry by
estimating the cost of biomass logistics. Jenkinale(1984) estimated costs for alternative
processes in biomass logistics, including collectend transportation of several types of
biomass (e.g., rice, wheat, and barley straws; aoih sorghum stover; cotton stalks; orchard
pruning; and forest slash). Gemtos and Tsiricod299) and Tatsiopoulos and Tolis (2003)
provided a similar analysis, based on cotton sthlki dealt with an electricity-generating plant
in Greece. Petrou and Mihiotis (2007) reportedudysfor cotton-stalk biomass as a feedstock of
biofuel, using another example in Greece.

Hamelinck et al. (2007) addressed internationa¢téogy logistics. They reported that,
in Sweden and the Netherlands, several green-engrgglucers already import biomass,
requiring the supply of long-distance biomass tpanstion. They analyzed SCs of Europe,
including transportation of biomass from Latin Amgan to conversion plants in Europe. They
estimated the cost for each possible operatiomah &n international biomass SC. Gronalt and
Rauch (2007) proposed a method to evaluate thédosa of supplying woody biomass from
forest to conversion plants for a state within Alastcomparing central and local chipping
alternatives. The system cost they calculated deduthe costs of transportation from forest to
terminals and from terminals to conversion plantg af operating terminals, but does not
include harvesting costs.

Simulation models have been based on economic sewlyo estimate important
measures, including cost, energy consumption, ambdoa emission. Mantovani and Gibson
(1992) introduced a simulation model to analyzeraies harvesting and transportation costs by
using SLAM simulation language. They consideree@é¢hkinds of biomass: maize, low-quality

hay, and wood chips. Gallis (1996) provided a satiah model also based in SLAM to estimate
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logistics cost of forest biomass for several sdesan Greece. De Mol et al. (1997) proposed
both simulation and optimization models. Their dizion model analyzes all operations and
calculates annual costs, energy consumption, amdlatv of biomass from farm to conversion
plant within a given network of facilities. Theytiesated dry matter and moisture losses. They
classified the costs associated with biofuel ire¢hcategories: feedstock, logistics, and power
plant. The main purpose of this simulation mode$ w@ assess the economic feasibility of the
biofuel industry, but the paper does not provideumerical example or a detailed mathematical
formula for each simulation module.

Sokhansanj et al. (2006a) reported a similar, nategl biomass supply analysis and
logistics (IBSAL) model. Their ExtendSim simulatiomodel is similar to that of De Mol et al.
(1997), but it calculates the carbon emissions istlt from processing and transportation, and
includes formulae that give good estimates of malsphenomena and logistics operations,
including biomass availability, moisture contenteather factors affecting field operations,
equipment performance, dry matter loss, and cddtey analyzed a numerical example that
applied their model to corn stover collection amtbsequent transportation in bales. In 2007,
Kumar and Sokhansanj (2007) employed IBSAL to stemitch grass logistics and compared
several options for collection and transportatidhey noted that the simulation approach is
limited because it uses a given network structwréch specifies facilities and their capacities as
well as transportation distances, which dependhoitity locations.

Ravula et al. (2008) used a simulation model talysttransportation in the cotton
logistics network as a possible model for the bissnsystem. Typically, cotton is collected and
then compressed in long blocks, known as cottonutesd for transportation. Then, cotton
modules built by several farmers are transportea gin for processing. To consider continuous

cotton module supply in a biomass transportatictesy, they proposed a knapsack optimization
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model with binary decision variables that presctitbek schedules and module pickups. They
used their simulation model to study a transpamasystem, investigating greedy strategies,
such as “shortest first” or “longest first, shottescond,” to schedule transportation operations
using a limited number of equipments that are spieeid for harvesting cotton.

Two other important issues in biomass are maimntgiai sustainable supply and assuring
reduced environmental impact. Forests are a primanyce of cellulosic biomass and related
studies have been focused on harvest sustainadiitite the 1980s. Those studies are applicable
but, since they focus on forest products rathen thiafuel, this paper simply outlines recent
trends in forest harvesting research. Major cors@ssociated with scheduling forest harvests
include producing greatest benefits, achieving isbaist and stable harvest yields, and reducing
the environmental impact of required treatment afi@ns. Murray (1999) reviewed two basic
harvest-scheduling models: the unit restriction elodJRM) and the area restriction model
(ARM). These two models differ in just one consttaivhich involves spatial restrictions. URM
does not allow harvesting in an area that is adfaoeanother one that has been harvested, while
ARM limits the extent of contiguous harvesting @rea each cluster of areas. Most recent
studies have focused on different solving methagie® to overcome the computational
challenges of the ARM. Martins et al. (2005) posedolumn-generation approach that solved
sub-problems using heuristics. Gunn and Richar@85Rformulated a mixed integer program
(MIP), including strengthening and lifting constres, to improve the basic ARM formulation.
Goycoolea et al. (2005) proposed a MIP based omalae packing problem. They devised an
exact-optimizing algorithm that uses strong vatidqualities, which form clique representations
of a projected constraint. Constantino et al. (2@®8sented a new MIP model, which comprises

polynomial numbers of variables and constraintd, @ed branch and bound to solve it.
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Since first-generation biomass (e.g., edible crepsh as corn and sugar cane) has been
used to produce ETOH, we also consider SC reseavritte agri-food area. A few papers have
dealt with the sugarcane SC. Higgins (1999, 20@2jnfilated a MIP to improve yield by
scheduling sugarcane harvests and solved it usveyal heuristics. Higgins and Postma (2004)
addressed a scheduling problem to optimize thesniogt of harvesting groups into sugarcane
rail and road sidings to reduce transportation laadesting costs. They used a tabu search to
solve their MIP, which uses a weighted, multi-okijex function, including transportation
capacity, the total amount of movement across g#jiand a measure of adherence to a schedule
that reflects perfect equity between farmers. Isejar al. (2008) used the MAGI simulation
package to plan sugarcane harvesting. Its mainogergvas also to improve yield and, thus,
profit.

2.1.2 Petroleum-based fuel

The first studies of the operational level of tletrpleum-based fuel SC were reported in
the 1960s. Aronofsky and Williams (1962) developadulti-period, linear programming model
to prescribe oil well production. They developedtmodels: one schedules production rates
from either single or multi-well systems; the othdnilling and rig operations. Decision variables
in the first model set of production rates forweélls and those in the second model prescribe the
number of wells completely drilled, the number w@fsrpurchased, and the number of rigs in
operation.

Most operational-level studies of the petroleumeldaBiel SC deal with the midstream
(i.e., operations at refineries). Pinto and Mor@Q@) developed a modeling framework for
planning and scheduling refinery operations. Caraidj the market demand for oil derivatives
typically supplied by a refinery in Brazil (e.g.etropolitan diesel, characterized by low sulfur

levels for environment; regular diesel, used inaareiith no special concern for atmospheric
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pollution; and low-valued maritime diesel, featunsidh high flashing point for safety), their
non-linear optimization model prescribes the amaimach oil derivative to be produced, while
satisfying all process constraints. Neiro and P{@@04) extended this earlier work, providing a
general modeling framework for the operational plag of sub-facilities within a refinery (e.g.,
processing units that modify the material physycall chemically, tanks for mixture and storage
of the different feed streams, and pipelines fansportation of crude oil and products). Decision
variables prescribe material flow through each esscstep. They incorporated detailed
operational constraints to represent practicalufeat associated with the refining process.
Because they defined each outlet flow as the ptoofuthe associated feed flow rate and certain
properties of the input, the resulting multi-perimddel is a large-scale mixed integer non-linear
program (MINLP). Even though they proposed a deasitipn scheme to solve the MINLP,
they gave no further details or computational rssul

Research has also addressed operational-level iptariar downstream operations.
Ronen (1995) addressed a scheduling problem assoorath the distribution of petroleum
products, considering the two basic types of plaefineries and lube plants. Refineries produce
light products (e.g. gasoline, kerosene, dieselavilation fuel) as well as heavy products (e.g.
base stock for lubes, and residual oil). Lube glananufacture lube oils, greases, and waxes.
Ronen explained four different types of operatiog@ironments encountered in practice: light
products transported in bulk from refineries toktaarminals and industrial customers; light
products, from tank terminals to retail outlets;lkblubes, from lube plants to industrial
customers; and packaged lubes, from lube plantsttil outlets and industrial customers. He
proposed two scheduling formulations: set partitigrfor minimizing cost and set packing for

maximizing profit.
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2.2 Tactical level studies in fuel SCM

Tactical level studies deal with planning decisitmat focus on a somewhat longer time
period (e.g., monthly) than addressed by operdtitael studies. Generally, those decisions
prescribe inventory policy and material flow.
2.2.1 Biofuel

Apparently, no study has dealt with the tacticakleof the biomass SC. We surmise this
is because generic SC studies that predated ewmniyabs SC research contributed strategic,
tactical, and operational models as well as modadd integrate the various levels. Some
representative generic SC studies are introduceddtion 6. In addition, the biofuel industry has
been in a state of flux as it investigates sevigyas of biomass and several possible processes
to convert biomass to biofuel (e.g. chemical ortiechemical processes). Tactical-level studies
will doubtlessly be undertaken once the converpratess is fully developed.
2.2.2 Petroleum-based fuel

In contrast, research in the petroleum-based hgklstry has studied tactical planning of
inventory management and product flow. Catchpof#62) proposed a linear program to plan
the flow of crude oil from wells to refineries, atite flow of oil products from refineries to
distribution centers. In addition, he analyzed ¢bavexity and non-linearity of his model. For
example, the use of lead to improve octane for mgssoline has a decreasing effect as
concentration increases, so that the objectivetiom@nd constraints are non-linear. Capital and
operating costs are concave non-linear functiomsaddition, he noted that costs and demand
must be considered as stochastic factors. He sothied problem using Dantzig-Wolfe
decomposition. Klingman et al. (1987) formulategraduction and inventory planning model
for refineries. Their model, named the SDM (Supplgtribution Marketing) system, has been

used by the Citgo Petroleum Corporation. Decisianables prescribe production amounts, spot
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purchase amounts, oil product exchange with otbempanies, inventory, and distribution. This
multi-period network flow planning model requirés thetwork structure to be input.

Sear (1993) addressed the problem of distributioiié downstream segment of the oil
SC. He dealt with three product classes: motoritspjpetrol), which have a low flashpoint;
middle distillates (diesel fuel, oil for heatingcg, which have high flashpoints; and fuel oils
(black oils), which often require heated storages tdodel prescribes flows of the various oil
products, given a network structure. He also deriae equation to estimate delivery cost based
on the assumption that delivery involves vehiclatirg.

Escudero et al. (1999) formulated a model, name®CQGo prescribe crude oil supply,
transformation in refineries, and distribution tesstomers for a given facility network structure,
while considering demand and spot price uncertsntiThey formulated a scenario-based
stochastic programming model for which decisionialdes prescribe the supply volume of
crude oil, the volume transformed at the refinghg transported volume, the spot volumes
supplied by other companies, the spot volumes &oldther companies at the depot, and the
volumes of excess and deficit at the depot. Demgstal. (2000) applied the CORO model and
extended it to the multi-stage case. Through soumenical examples, they concluded that the
multistage model is more robust in the face of wadaty than the two-stage model; it requires
significantly less memory, and provides more réalisost estimates. In one of their examples,
the deterministic equivalent to the multistage nadenprised about 50% fewer constraints than
the two-stage model.

Chenga and Duran (2004) developed a simulation hfod@lanning worldwide crude
oil transportation and a Markov decision model foe stochastic optimal control of the
inventory/transportation system. They solved theodel using an approximation algorithm

based on problem decomposition and function appratton to deal with the large state-space
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involved. Lababidi et al. (2004) formulated a protilon planning model for a petrochemical

company. For a given facility network, they deaithwaw material procurement and production
costs, as well as lost demand, backlogging, tratesjan, and storage penalties. Their model
includes operational level constraints related efinery processing and uses a two-stage
stochastic program to deal with uncertain demamakstket prices, raw material costs, and
production yields. MirHassani (2008) also formutate scenario-based stochastic program to
plan the distribution of petroleum-based oil pradua the face of uncertain demand. Decision
variables prescribe the volumes transported by é@stsportation mode and the volumes of
shortage and excess of each product.

A study by Levary and Dean (1980) proposed a SCeinfmdt another form of energy
(natural gas) and it may be applicable to bioflibkir multi-period, multi-objective model deals
with demand uncertainty caused by weather vartgbilihe duration of each time period varied
according to the variance of demand. Their modebriporates lead time from supply to
destination, both through constraints and decisammables, which prescribe the amount of gas
flow. Within one period (at least one month in dima), some equations are based on minor
(daily) time periods to incorporate the daily rafdlow and the maximum possible rate of flow.
This device allowed the authors to integrate timmggu mismatches to model different
operations.

2.3 Models for integrating strategic and tactical écisions in fuel SCM

Models that integrate strategic and tactical densitypically deal with both types of
decisions and relate to a monthly or yearly tingarfe. The production and distribution problem
is one example of such an integrated model.

2.3.1 Biofuel

Most biofuel SC models deal simultaneously with steategic and tactical levels of
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upstream operations (i.e., from farms to the refineSeveral studies have built upon a classical
production/distribution MIP model. De Mol et al.9a7) introduced a MIP that prescribes plant
openings as well as annual flows of biomass. Tlegpared advantages and disadvantages of
simulation and optimization models. In 20@3unnarsson et al. (2004) extended the classical
production/distribution model to the forest-fueldustry. They considered preprocessing
alternatives and limited the used of less attrachiomass in order to produce forest fuels of
desired quality. A multi-period MIP for forestry quction and logistics formulated by
Troncosoa and Garrido (2005) prescribes discrefmaty decisions for forest processing
facilities (e.g., sawmills, board plants, and remanufacturetglaas well as material flow
decisions, considering harvesting and forest-aneiations.

Huang et al. (2010) developed a multistage modelsfoategic biofuel SCM from
biowaste feestock fields to end users to deternimmations and sizes of new refineries,
additional capacities, and quantity of materialvoon a yearly basis. Whereas, several studies
have dealt with a one-year planning horizon, caraid loss of dry mass over time. giiglu et
al. (2009) proposed a SC design model that usesacat corn stover biomass to produce ETOH.
Their multi-period MIP prescribes the network desigs well as material flows from the
upstream to the downstream. In 2010si&iu et al. (2010) extended their study by considgrin
modes of transportation. Zhu et al. (2010) formadaa MIP to prescribe locations of biomass
storage and conversion facilities, modes of trartgfion from farms to refineries, and flows of
biomass in the upstream.

Several studies have dealt with uncertainty in biefuel SC. Cundiff et al. (1997)
developed a two-stage stochastic program to mapeggRiction uncertainty caused by weather
over multiple time periods. Their model prescribggtimal storage capacities, including

installation of new, or expansion of existing, faigis. Even though they considered some
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strategic design aspects, the main decisions, wdeahwith uncertainty, are associated with the
tactical level.

Gigler et al. (2002) applied an agri-product SCdgtto the biofuel SC, considering
biomass as a specific type of agri-product. Thginashic programming model for the agri-
product SC deals with the characteristic changquality and appearance over time. Moisture
content is used as a measure of quality and padizé represents appearance. Before arriving at
a refinery, biomass should be in an appropriatée si8 measured by moisture content and
particle size. They gave a numerical example thadtiates the delivery of willow biomass to
energy plants. They modeled processing steps framvekting to conversion plant, calculating
quality, appearance, and costs to prescribe amapprocessing path.

Dunnett et al. (2007) addressed a modeling frame@rthe upstream SC of biomass
used for combustion plant, discussing system compsrihat must be represented appropriately
(e.g., SC structure, storage strategy, and taskdsiddy). They formulated a MIP, which is based
on a state-task network, to prescribe the selectigtructural components, the number of units
installed on components, and assignment of taskits. Through a numerical example of a 20
megawatt (MW) peak output heat plant with Miscasttas a feedstock, they showed that
optimization solutions result in 5-25% cost redoictcompared to a simple heuristic strategy.
2.3.2 Petroleum-based fuel

The first model that integrated strategic and tattplanning for the petroleum-based
fuel SC appeared in the early 2000s. Brimberg e(28103) formulated a model to design oil
pipelines running from onshore wells to a port. Bien variables prescribe, for a single time
period, strategic decisions (which pipeline segntentpen and the capacity of each segment)
and tactical decisions (the amount of flow in eaegment). They solved their model based on a

decomposition scheme, using an interactive B&B edoce, which incorporates several
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techniques at each branching node, including applgiugmented valid inequalities and either
tabu search or variable neighborhood search. Thpled their approach to an example based
on a south Gabon oil field.

Most studies of downstream operations have deétt dgsigning the network (strategic)
and prescribing material flows (tactical). Al-Qamtand Elkamel (2008) formulated a model to
design processes and integrate production capexfignsions in a multiple refinery complex
using different feedstocks, each with a unique ébahtomposition. Each refinery consists of
different production units that can operate ineatiéint operating modes (i.e., processes), which
depend on targeted production quantities. Theplsiperiod MIP deals with strategic capacity
expansion, transshipments between refineries, actital flows of crude oils and intermediate
materials between refineries (e.g., heavy naplghiensported to a catalytic reformer; and light
naphtha, to a light naphtha pool or an isomerimatimit), considering practical features
associated with refining processes. Their numedgample deals with three complex refineries
in one industrial area, a common configuration, ahdwed that the integrated planning of
refineries in an area is economically attractivecamparison with decentralized management.
Khor et al. (2008) formulated a petroleum refinptgnning model that addresses uncertainties
associated with demand, price and yield. They fétated four models to hedge against
uncertainty: (1) Markowitz's mean-variance (MV) nebdwhich minimizes variance; (2) two-
stage stochastic program to deal with randomneseonstraint coefficients; (3) mean-risk
model, which incorporates the MV model within thenmework developed in (2); and (4) a
reformulation of the mean-risk model in (3) thabpid the mean-absolute deviation (MAD) as
the measure of operational risk imposed by recowsss. Decision variables prescribe
production capacities, which can vary over time;terial flows; and inventories for each

processing operation. They used three scenariashumerical example and analyzed solutions
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prescribed by the four models. Kim et al. (2008)nfolated a model to integrate strategic
supply-network design and tactical production plagrfor several products (e.g., gasoline and
diesel) at the downstream level. Their distributimtwork model combines a network design
model and a production planning model for multesiéfineries. They coupled their MIP with
the non-linear production planning model of Li &t(@005), which deals with operations at a
crude distillation unit and a blender. Importantlyjough several examples, they showed that a
model that integrates strategic and tactical deicgscan improve profit in comparison with using
separate models at individual refineries.
2.4 Models for integrating strategic, tactical, andoperational decisions in fuel SCM

To our knowledge, no available models integratéualoand petroleum-based fuel SCs
in all decision levels. However, Fiedler et al. @2p provided a conceptual study. Using a
strategic model based on a geographic informatystem (GIS) to design cost-efficient supply
logistics for the industrialized use of biomassyttanalyzed options available to managers,
including choice of sources of biomass (e.g. owsrecbntracted supplier) and types of biomass,
assessment of necessary logistics processes [feegprocessing, storage, and transportation
mode), and design of the transportation network.
2.5 Trends in generic SCM

A rather extensive literature has addressed SC geament over last two decades. Since
the biofuel SC is a specific type of SC, much @& wWork on generic SCs may apply. Here, we
discuss several recent review papers to identdfgarch trends related to SCM.

Over the last two decades, information technolddy bas been improved and has
become a major driving force for SC innovationsnMnd Zhou (2002) reviewed SC models,
using four major categories: deterministic, stotba$ybrid, and IT-driven models. IT-driven

models aim to integrate and coordinate various ghad SC planning on a real-time basis,
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including models of warehouse management systeragsgortation management systems,
collaborative planning and forecasting replenishineraterial requirement planning, enterprise
resource planning, and GIS. Bilgen and Ozkarah@®4R reviewed strategic, tactical, and
operational models for production and distributidrhey classified papers in terms of the
solution methodology used: optimization-based, m&tastic, IT-driven, and hybrid models.

They suggested that future research should addne#ifple conflicting objectives, stochastic

factors, and other issues, including bill of matksi fuzzy constraints, logical constraints,
operational decisions, and reverse SCs. Many WNedrimodels (e.g., real time planning and
management based on information systems) are apf#ito the biofuel SC. In particular, GIS is
very useful in dealing with dispersed biomass syjpptations. Graham et al. (2000) employed
GIS to calculate exact transportation distancescasts for supplying switchgrass in eleven US
states.

Another important trend relates to sustainable S@\stainable products provide
environmental, social, and economic benefits, whiitdecting public health and welfare, and the
environment over their life cycles. Seuring and Igiu(2008) offered a review of the literature
on sustainable SCM from 1994 to 2007. They desdritigtinctive features of sustainable SCM,
which must consider the SC in a long-term perspectisk management; and a wider set of
performance objectives, including economical, esvinental and social benefits. Sustainable
SCM entails a need for companies to collaborateyTproposed that future research should
identify shortcomings of existing models since aumtble development is primarily one-
dimensional, focusing on environmental issues. spective that integrates social issues (e.qg.,
partnership issues related to human rights and imgréonditions between a company and its
suppliers) is required. Most papers report emgdinieaearch, so that theoretical developments

are needed. Biofuel is a potentially sustainabledpct, so generic sustainable SCM studies
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could be specialized to deal with the sustaingbgibhd environmental friendliness of biofuel
SCM. The impact of using land for energy producti@ther than food) is affecting government
policy toward biofuels, and studies of sustain&M may be able to address related concerns.

Due to issues related to public health, agri-fo@s$ 8ave been the focus of a significant
amount of recent research (Wilson, 1996; Ahumada ¥itlalobos, 2009). Ahumada and
Villalobos (2009) reviewed the literature relatem dgri-food supply chains (ASCs). They
compared SC studies that deal with both perishabid non-perishable agri-products,
considering their objectives, planning scopes,siegivariables, and modeling approaches. They
concluded that the state-of-the-art planning modetsASCs lags that in other industries,
including electronics and automotive. They recomdeeithat future research should address the
perishability of products and formulated operatlon@odels that integrate production and
distribution decisions. Perishability is commondgri-products in general and to biomass in
particular, and it is very important aspect of SGMoblems that involve perishable inventories,
one important part of SCM, have been studied foers# decades. Goyal and Giri (2001)
reviewed deteriorating inventory models proposeacesithe early 1990s. They classified
perishable inventory models depending upon the ftifiee of the product: fixed, random
(exponential decay), and decay corresponding tgtbhportion of inventory decrease per unit
time. Thus, some aspects of agri-product SCM magggicable to biofuel SCM. In addition,
other generic agricultural studies, such as farenmhg (1987) and agri-product production
planning (1998), also may be directly related mnfass productivity.

Facility location is a classical problem that is@mponent in the strategic planning of
SCs. Klose and Drexl (2005) reviewed facility looat models. They provided basic
formulations for representative models, includingc@ntinuous location model, a network

location model, uncapacitated/capacitated singl#ittayer models, a dynamic model, and a
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probabilistic model. Melo et al. (2009) provided@nprehensive review of the facility location
problem. They concluded that capacity, inventony @roduction decisions are important in
addition to location-allocation decisions. Even ubb procurement, transportation-mode
selection, and routing are important, not many papave considered them. They also observed
the recent trend to incorporate risk managemerihéndesign of SCs. Relatively few studies
have been able to address uncertainty (Birge anddaux, 1997) related to generic (Santoso et
al., 2005), petroleum-based fuel (Escudero etl8b9), or biofuel supply chains (Cundiff et al.,
1997). Melo et al. (2009) concluded that theretils & lack of research that addresses multi-
period, multi-layer, stochastic models, noting thaist papers deal with a single-period and
assume a deterministic environment. Since biomass \rery low energy density and is
geographically dispersed, the structure of thelifpanetwork must be optimized so that the
biomass SC can contribute to the economic viabditythe industry. It may be possible to
ameliorate the computational challenges posed bynthlti-level structure of the biofuel SC
through applying results obtained by generic facihication studies.

With a trend towards globalization, internationasues have been major topics of
concern. Goetschalckx et al. (2002) reviewed tterdiure on modeling and designing global
logistics systems, focusing on the savings potegéaaerated by integrating the strategic design
of global SC networks with tactical production-distition decisions. They analyzed the
international features represented in strategicstimy models (e.g. stochastic features, taxation,
transfer prices, and trade barriers) and formulatedodel to prescribe transfer prices in global
logistics systems. Meixell and Gargeya (2005) piedlia comprehensive review of global SC
design since 1980. They analyzed the literaturedas four dimensions: decision variables,
performance measures, SC integration, and globiaizaonsiderations. They concluded that

several industries (i.e., food and medication) havebeen explored in the context of global SC
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models, while others (e.g. electronics manufactyrapparel, fiber and textile, and automotive)
have been studied extensively. In addition, theygssted that future research should focus on
multi-tier SCs with both internal production sitesd external suppliers. While most countries
are requiring more extensive use of biofuel, nbtcalintries around the world have land and
environment capable of producing necessary questitif feedstock for biofuel, so that an
international market is likely to develop for biefuMoreover, even though the energy density
of biomass is too low to offset the energy neededrdansport it over a long-distance, some
countries in Europe (e.g. Netherlands and Swedappit biomass (e.g., wood pellets) from
South America because the European Union has retgsring member countries to generate
20% of their electricity from renewable sources 2§20. Their demands have led some
companies in the U.S. to export pellets to Eurapg.( Green Circle Bio Energy Inc., Dixie
Pellet LLC, Phoenix Renewable Energy LLC) (The Waileet Journal, 2009Db).

Due to numerous efforts in SCM research, severblaseas have evolved in SCM.
Kouvelis et al. (2006) provided a comprehensiveeng\of all topics addressed in SCM studies,
including SC design, uncertainty, the bullwhip effecontracts and SC coordination, capacity,
sourcing decisions, applications, and the pradite teaching of SCM. If the biofuel industry
matures and needed interactions between entitigs, (®upplier, manufacturer, buyer, and
transporter) evolve, these topics will have to beestigated to deal with these complicated
phenomena as they relate to biofuel.

2.6 Discussions

We categorize each paper examined according todimensions (i.e., SC level and
decision level) as shown by Figure 4 for biofuall &igure 5 for petroleum-based fuel. Figures 4
and 5 show the number of papers we review in eathgory and Tables 1 and 2 give

taxonomies of these papers.
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It is noteworthy that biofuel studies predominantblate to upstream processes (i.e,
from biomass suppliers to conversion plants) egfigat operational and integrated levels. The
reason is that prior research has focused on dirajuaarious types of feedstock and improving
the efficiency of feedstock logistics. A secondatation is that no study optimizes conversion
operations in midstream because several technslogie still being developed and tested.
Virtually, no study has dealt with the downstreand aecently only a few studies have dealt
with all echelons from the upstream to the dowmsirdikely because downstream processes for
biofuel may be similar to those for petroleum fuel.practice, some biofuels (i.e., so called
drop-in fuels) can be distributed within the exigtiinfrastructure for petroleum-based fuels,
while other biofuels (e.g., ETOH) must be handlegasately from petroleum-based fuels.

In contrast, studies of petroleum-based fuel hasldressed upstream, midstream,
downstream, and mid/downstream at operationaljctdctand integrated levels. Studies that
have focused on planning at the operational lewelehaddressed upstream, midstream and
downstream levels of the SC. The most frequentldisti combination has dealt with the
mid/downstream (i.e., refining and distribution)dathe tactical level of production planning.
Integrated planning models have been formulatedufmstream (pipeline layout design and
material flow, refinery facility location or cap#&giexpansion), midstream (intermediate product
flow decision between sub-facilities within a redig, sub-facility network design, and refinery
production planning) or mid/downstream (refiningdadistribution decisions). More aspects of
the petroleum-based fuel SC have been addressedfthiae biofuel SC, apparently because the

later is a developing industry that has only relgdméen promoted by government policies.
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Table 1 Taxonomy of biofuel SCM papers
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SCM planning level Layer in SC Year Researchers
1984 | Jenkins et al.
1992 | Mantovani and Gibson
1996 | Gallis
1997 | De Mol et al.
1999 | Gemtos and Tsiricoglo
1999 | Murray
2002 | Higgins
2003 | Tatsiopoulos and Tolis
2004 | Higgins and Postma
. Upstream 2005 | Goycoolea et al.

Operational 2005 | Gunn and Richards
2005 | Hamelinck et al.
2005 | Martins et al.
2006 | Sokhansanj et al.
2007 | Gronalt and Rauch Peter
2007 | Kumar and Sokhansanj
2007 | Petrou and Mihiotis
2008 | Constantino et al.
2008 | Lejars etal.
2008 | Ravula et al.

Up/Midstream 1999 | Higgins
1997 | Cundiff et al.
2002 | Gigler et al.
2004 | Gunnarsson et al.
Upstream

2005 | Troncosoa and Garrido

Integrated 2007 | Dunnett et al.
2010 | Zhu et al.
2009 | Ekioglu et al.

All 2010 | Ekioglu et al.

2010 | Huang et al.




Table 2 Taxonomy of petroleum-based fuel SCM papers
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SCM planning level Layer in SC Year Researchers
Upstream 1962| Aronofsky and Williams
Operational Midstream 2000 | Pinto and Moro
2004 | Neiro and Pinto
Downstream 1995 Ronen
Upstream 2004| Chenga and Duran
1962 | Catchpole
1980 | Levary and Dean
1987 | Klingman et al.
Tactical Mid/Downstream 1993 | Sear
1999 | Escudero et al.
2000 | Dempster
2004 | Lababidi et al.
2008 | MirHassani
Upstream 2003| Brimberg et al.
2005 | Lietal.
Integrated Midstream 2008 | Al-Qahtani and Elkamel
2008 | Khor et al.
Mid/Downstream 2008| Kim et al.
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CHAPTER 1lI

MIP MODEL AND A CASE STUDY ON A REGION IN CENTRAL T EXAS

This chapter formulates a model to maximize thefipiof a cellulosic biofuel SC
ranging from feedstock suppliers to biofuel custsn@he model deals with a time-staged,
multi-commodity flow, production/distribution syste prescribing facility locations and
capacities, technologies, and material flows. Aecsisidy based on a region in Central Texas
demonstrates application of the proposed modeksigd the most profitable biofuel SC under
each of several scenarios. A sensitivity analysieniifies that ETOH price is the most
significant factor in the economic viability of altulosic biofuel SC.

This study holds two primary research objectivedie Tfirst is to formulate a
mathematical model to prescribe an optimal biof8€l that allows use of various types of
cellulosic biomass and deals with upstream and dowam material flows. The second is to
apply the model in a case study to demonstratgsisin providing decision support for industry
managers and government officials.

The body of this chapter comprises three sectiBestion 1 describes the system and
section 2 presents our mathematical model. Se8tjrovides a case study based on a region in
Central Texas. Section 4 analyzes impacts of skeemomic factors based on computational
results and gives recommendation of future rese&iolally, Section 5 gives conclusions.

3.1 System description

The biofuel SC system considered comprises fiveeleds: feedstock production,
preprocessing, production in conversion plantdridigion, and consumption by customers, and
including possible storage locations. Each faciéiy use one of several technology alternatives.

For example, biomass can be stored using outdomywemed, outdoor-covered, indoor-aerobic,
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or indoor-anaerobic technologies. Preprocessingntdogy could include size reduction, drying

moisture content, or both. Moreover, conversiorhtetogy may involve a biochemical, a

thermochemical, or a bio-thermochemical proces&nEthough improving technologies and

efficiencies in each echelon is important, intéggatechnologies and coordinating echelons is
necessary for the system to be most successfubguoally.

Materials flowing in the SC must be stored beforein processed either at
preprocessing or conversion facilities, and agaoresl as they wait to be transported after
processing. While it is being stored at upstreacations, biomass degrades over time, losing
some portion of its mass due to chemical reacti@g., fermentation and breakdown of
carbohydrates) (Sokhansanj et al., 2006b). Theafatiey matter loss in storage depends on the
type of biomass, moisture content, and storageitonsl.

Some feedstocks contain high moisture content amstnbe dried on the field
immediately after harvesting and/or in a prepracgstacility to reduce the cost of transporting
it and to meet requirements of the conversion teldyy selected. Since cellulosic biomass
typically has low energy density, it is importaatreduce moisture content so that energy is not
expended in transporting it. In particular, tramsgiion routes must be carefully prescribed so
that the system is able to achieve a net produafoenergy while managing green house gas
emissions. Preprocessing facilities may also invavsize reduction operation to reduce the
transportation cost by increasing density and ¢difate the conversion process.

In the upstream, the various types of feedstocksstmshare the capacities of
transportation vehicles and processing facilitieghe downstream, some biofuels (e.g., ETOH)
must be transported and/or stored separately fretroleum-based fuels, while other biofuels
(i.e. so called drop-in fuels) are compatible wigtroleum-based fuels and can be handled easily

within the existing infrastructure.
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The variability of several important factors ovand (e.g., the seasonality of biomass
availability, biomass moisture content, and the aethand price of fuel) could significantly
affect the SC design so that a time-staged modeljgired. A strategic model, which deals with
a long-range forecast of demand can capture sucanags using a time period of one quarter
(i.e., 3 months) duration.

We invoke several assumptions to structure theesysavailable feedstock supplies are
known; the demand for biofuel in each customer zZaneach period is known; preprocessors,
refineries, and distributors collaborate perfeatiyall operations from field storage to customer
zones to maximize total profit; preprocessing idelsidrying and size-reduction operations. We
model the types of preprocessing technologiesdppear to be the most attractive among the
ones currently under development. Since the engeggity of biomass is relatively meager, it
cannot be transported over long distances if thesSIG result in a net production of energy.
Further, transport over longer distances incregsesn house gas emissions. We invoke the
single destination assumption to reflect the n¢edssult in net energy production and manage
green house gas emissions as well as to promotagearent efficiency.

3.2 Mathematical model

We use a multi-commodity flow model to represemiesal kinds of biomass feedstocks
in the upstream and of biofuels in the downstrdarthe upstream, each commodity represents a
combination of a feedstock type and a range of tm@scontent. Commodities must be
processed, stored and transported, based on jesccapacities of processing plants and
storage facilities, and on the available capacit&dransportation routes. The capacity of a
storage facility is the maximum amount of biomasbiofuel it can store; that of a preprocessing
(conversion) facility is the maximum amount of biass (biofuel) that it can process in a year.

Our model prescribes two types of decisions vaesbbinary variables select facilities
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to open and arcs representing routes; and continuatables prescribe the capacities of open
facilities and the quantity of material flow on &aarc. Table 3 shows notations used in the

formulation.

Table 3 Notation
Sets

A: Directed arcs= A}, U A7%Y
A}frt (Arr¢): Directed arcs in periotthat start or end at nodie

A}’;’t’ . Arc that represents inventory held at facifityf typer from periodt to periodt+1
F; : Candidate locations for facilities in echelbror feedstock supply siteFg,, Fr,) Or
customer
zonek;;),l €L
Fyp : Upstream facilities= Frq U Fpy U Fpy U Fpy U Fpg U Fpy
Fpown : Downstream facilities= Fry U Frz U Fpe U Fey
F : All facilities : = Fyp U Fpown
Fyuo - Warehouses where biomass is held before pregsge = Fp, U Fp,
Fyy1 - Warehouses where biomass is hetdFy, ;0 U Fp3 U Fgq
Fyuo - Warehouses where biofuel is hetd Frs U Fp
Fyyy: Warehouses= Fyy51 U Fyypo
Fpgr : Process facilities (preprocessing, refinery)Fp, U Fx,
Fyp : Operating facilities= F\(Fg; U F¢z)
K;: Feedstock commodities {£f,t,p)},f € F,t €T,p € P
K,: Biofuel commodities :fe},e € E
K: Commodities :¥; U K,
L : Echelons{F1,F2,P1,P2,P3,R1,R2,R3,DC,CZ} (F1. farm, F2: field storage,P1-3
preprocessing facilitiefR1-3 conversion facilitiesDC: distribution center, an@Z customer
zone)
Pr . Feedstock(biomass) types raised or gathergcaky,
Rs . Types of technologies at facilityf € F;
T : Time Periods (monthly)
Indices
ararc,a€A
e: biofuel typee € E
f: facility, f € F
k : commodity typek € K
| :layer,l € L
p : biomass typep € P
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Table 3 Continued
r : technology typer; € R

t:time,t €T

Parameters

¢l : Fixed cost associated with a¢fixed transportation cost on a transportation arc
fixed holding cost on an inventory arc)l(@g

Cfor : Fixed cost of opening facilityof typer (dollar)

C, : Cost of commoditk, k => feedstoclp from farmf in periodt (dollar)

Dys: - Demand of end produktin customer zongéin periodt, k := e (liter)

Pz - Price of biofuel type k in customer zahi@ periodt (dollar)

V.l : Variable cost for a unit of flow on aa(variable transportation cost on transportation
arc, variable holding cost on inventory)ddollar)

Vg » Variable cost per unit of capacity of openingility f of typer (dollar)

QT : Flow capacity of ara (Mg/single period)

Q}’f : Capacity of facilityf (biomass storage (Mg), preprocessing (Mg), refingditer), or

biofuel storage (liter))

Qf : Supply capacity of commodityat farmf during period for feedstock type (Mg)

&y . Moisture content of commodity(decimal fraction)

Ak, k,rr - Amount of biofuek, produced from one unit of pre-processed feedstpei

conversion plartusing technology (decimal fraction)

Yk - Chemical dry mass loss rate (fraction) of féeclsk held at warehouskof storage

typer

Decision Variables

qsr - Capacity of facilityf of typer, f € Fop,7 € R¢

xsr - 1 if facility f of typer is open, O otherwis¢, € Fyp, 7 € Ry

y,. 1 if arcais used, O otherwise, € A

Ziq . Flow amount of commoditikon arca, k € K,a € A

Model P describes the formulation:

P:7" = Max Yxek, Xferc, Dter Yaeds,, r=0 PkrtZka = Xerop ZTERf(CfOrxfT +
Vfrqfr) — Yaea C;ya — YkeK Laea VaTZka — Ykek ZfEFpl Dter ZaeA;rt,rzo CxZka (3.1)

S.t.
Zrefofr <1 f € FOP (3-2)

qrr — QFxpr <0 f € Fop,7 €ERy (3.3)
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Yaeat, Ya =1 fEFp UFg,TEREtET  (3.4)
Ykek Zka — QaYa <0 fE€FreR,teT,a€Af, (3.59)
Zrek Zgaeaipy ~ Arr < 0 f €Fyyr €R,LET (3.5b)
Ykek Laeat, Zka — dfr <0 f E€Fpp,T ER;LET (3.5¢)
Yaeat Zka < Ok k€K,fE€Fp,r€R,tET  (3.6)
Yaeat, Zka ~ Yaeaz, (1 = 8)7ka = 0 k €Ky, f €Fpyr €R,,tET  (3.6b)

ZaEA?rr Zka + Zka,aEA}';'g - ZaEA;rt Zka —
k €Ky, f € Fyy1, T ERpit € (3.60)
T

ZaeA;rt Zkpa — ZkEKlzaeAf” Ak, kyfrZk,a = 0 ky, € Ky, f € Frp,7 ER, t €T (3.6d)

keK,f€EF ,Fy ERe, t € 3.6e
Z Zka+Zka,aeA}';’g_ 2 Zka — Z v »f WH2 f ( )

(1 - yp1f1')Zka,aEA?;'g_1 =0

ka,a€Afy]_
a€Af,, a€Az,, T
=0

ZaeAI:rt Zka < Dyye k €K, fE€Fr€R,tET (3.6f)
x¢r € {0,1} f € Fop,7 € Ry (3.7a)
v, € {0,1}, a€A (3.7b)
qrr 20 f € Fop, T €ERy (3.7¢)
Zra =0 keK,a€A (3.7d)

Objective (3.1): Maximize the present worth of tadgstem profit, defined as the discounted
revenue earned from selling biofuels in the customehelon minus all discounted costs,
including the fixed cost of capital for each fagilopened and variable costs associated with
operating facilities, purchasing feedstocks, cagyinventory, and transporting biomass and
biofuel

Constraint (3.2): At most, one technology type barselected for each facility

Constraint (3.3): If facilityf is opened, the amount of flow out of it is reg&Cby its capacity;

otherwise, the facility can sustain no flow
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Constraint (3.4): Each field storage (preprocegsiagility must use a transport link to a single
destination preprocessing (refinery) facility

Constraint (3.5.a): If ar@a is selected, the flow amount is restricted by #re capacity;
otherwise, the flow amount on the arc must be zero

Constraint (3.5b): The capacity of storage facilffye Fy,, restricts the amount of inventory
that it can hold

Constraint (3.5c): The capacity of processing figcif € Fpp restricts the amount that it
produces

Constraint (3.6a): The capacity at farffie Fp; (i.e., supply limit) restricts the amount of
biomass it can supply

Constraint (3.6b): Flow balance at preprocessiciitia f € Fp,

Constraint (3.6¢): Flow balance at biomass stofagéty f € F, 41, including dry mass loss

Constraint (3.6d): Flow balance at conversion figcfl € Fp,

Constraint (3.6e): Flow balance at biofuel storegdity f € Fyy o

Constraint (3.6f): Flow balance at customer zfreF., (the inflow of biofuel must be less
than or equal to demand)

Constraint (3.7a): Binary restrictions on decisianiablesx,..

Constraint (3.7b): Binary on decision variabjgs

Constraint (3.7c): Non-negativity restrictions cgctiion variablegy,.

Constraint (3.7d): Non-negativity restrictions acision variables,,, .

3.3 Case study

We now present a case study to demonstrate the tfnalysis our model will support.
We select nine counties in Central Texas as abedtbecause this region has relatively high

biomass availability (Milbrandt, 2005) and it ioresentative of regions that cannot provide a



41

sufficient amount of crop residues to meet its diofuel needs, so they must be supplemented
with energy crops to meet demand. Even though tbggon has relatively high biomass
availability, our analysis found that most cropidass must be left in the fields after harvest to
maintain soil fertility (see section 3.3.3). Thirsstead of crop residues, we employ switchgrass
as a feedstock to meet demand under the assuntpaoit will be grown on some of the land
currently used to grow food crops as well as sofmth® land set aside by the Conservation
Reserve Program (CRP), which is a voluntary corsem program administrated by USDA to
assist agricultural producers in enhancing enviremaly sensitive lands.

We assume that a single biofuel (i.e., ETOH) isdpoed from several types of
cellulosic feedstocks (i.e., switchgrass, mill desis, and urban wood wastes). We use a one-
year planning horizon in which each period represamuarter (i.e., three months).

We study the effect of four factors on SC desigwitthgrass cost, ETOH price,
switchgrass yield, and ETOH demand) under 18 s@mndhnat evaluate switchgrass cost vs.
ETOH price and three other scenarios that assggdysus. demand (see Table 4). We analyze
several measures of the prescribed SC performange rofit, revenue, cost, material flow
pattern, ratio of supply to demand, and land assallufor each scenario. We base ETOH price
on the trend forecasted by the U.S. Energy Infaonafdministration for the price of regular-
grade gasoline, including taxes. Even though ceardire in the same region, each may offer
different soil, terrain, and weather conditionsfeefing the price of biomass. Furthermore,
contracts with growers may differ. While our modsn accommodate county-dependant
parameter values, our case study assumes the séues Yor all counties due to the lack of more
specific data.

The following sub-sections describe the data wéeagad to formulate our case study.

Most data are available from papers, reports atalstavices provided by the U.S. government.
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Table 4 Scenarios of sensitivity analysis for agegn Central Texas

. .| Switchgrass ETOH Switchgrass
Scenario | Scenario Cost Price Yield ETOH
Group No $/Mg $/gal $/L | Mglacre| Mg/ha Demand
1 50 2.50 0.66 10.00 24.71 E10 for local area
2 50 2.60 0.69 10.00 24.71 E10 for local area
3 50 2.70 0.71 10.00 24.71 E10 for local area
4 50 2.80 0.74 10.00 24.71 E10 for local area
5 50 2.90 0.77 10.00 24.71 E10 for local area
6 50 3.00 0.79 10.00 24.71 E10 for local area
7 60 2.50 0.66 10.00 24.71 E10 for local area
A. 8 60 2.60 0.69 10.00 24.71 E10 for local area
Cost 9 60 2.70 0.71 10.00 24.71 E10 for local area
VS. 10 60 2.80 0.74 10.00 24.71 E10 for local area
Price 11 60 2.90 0.77 10.00 24.71 E10 for local area
12 60 3.00 0.79 10.00 24.71 E10 for local area
13 70 2.50 0.66 10.00 24.71 E10 for local ar¢a
14 70 2.60 0.69 10.00 24.71 E10 for local ar¢a
15 70 2.70 0.71 10.00 24.71 E10 for local ar¢a
16 70 2.80 0.74 10.00 24.71 E10 for local area
17 70 2.90 0.77 10.00 24.71 E10 for local area
18 70 3.00 0.79 10.00 24.71 E10 for local ar¢a
B. 19 60 2.90 0.77 7.00 17.30 E10 for local area
Supply 20 60 2.90 0.77 13.00 32.12 E10 for local area
VS 21 60 2.90 0.77 10.00 24.71 E20 for local ar¢a
Demand

3.3.1 Cost estimates and technical factors

Table 5 presents a list of cost estimates arfthteal factors used in the case study. We
have consulted a number of publically availablersesi to gather data with the goal of making
the case study as realistic as possible.

We employ a one-year planning horizon and anmitie cost of capital for opening a
facility over a 20-year lifetime at a 10% discouate. However, since the biofuel industry is in

an early stage of development, not much recentidaeailable. Therefore, a case study
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Parameters Value Reference Remark
. . Nguyen and Prince
Fixed opening cost $4,511,168 (1996)
Refinery |Variable opening cost ~ $0.0071/L Nguyiggagrg; Prince
Va”ab'fogfera““g $0.032/L Aden et al. (2002)
. . Sokhansanj et al.,
Fixed opening cost $60,000 (2006a) Using a Tub
Preprocesag . . L Sokhansanj et al., |Grinder
facility Variable opening cost $1.00/Mg (2006a) and a biomass
Variable operating Sokhansanj et al., |dryer
cost $18.14/Mg (2006a)
. Anderson and Noye$
Indoor Fixed cost $15,153 (2010)
Biomass |Anaerobi¢ Variable Anderson and Noyes
storage cost $151.46/ (2010)
facility Outdoor F\|/xeq glost $1,515 Assumption 10% of
uncovered acrcljast € $15.15/m Assumption Outdoor uncovere,
Biofuel Fixed cost $1,000 Assumption
storage . . Referred to eBay
facility Variable cost $0.063/L Assumption and Northern Too
Based on bale
- $6.81/Mg + ystem.
Transportatio Biomass $0.08/Mg-km Glassner et al. (1998 ame for all
cost biomass
$1.00/Mg + .
ETOH $0.08/Mg-km Assumption
Single Management cost $100/month Assumption
destination
Biomass Switchgrass $50, $60 and $70/MgPerrin et al., (2008)
purchase Mill residues $4/Mg Fehrs (1999)
cost Urban wastes $12/Mg Fehrs (1999)
0
Conversion| From biomass to Zr?e/cl))rg;ig;j Assumption Hamelinck et al.
factor ETOH . P (2005)
estimate
. Shinnersand Binversig
0,
OutdoorSwnchgrass 2%/month (2004)
uncoverel Wood 2%/month Kofman (2006)
Dry matter wastes
loss . Shinners and Binvers
0,
Indoor Switchgrass  0.3%/month (2004)
anaerobi¢  Wood 0.5%/month Kofman (2006)
wastes
Moisture Switchgrass Uniform(20%, 50%)Kumar ?ggoigkhansa
content Wood wastes Uniform(10%, 20%) Fehrs (1999)
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solution might over- or under-estimate the actuglug a bit because data that describe the
change of cost parameters over time is not yetablai

It was not possible to find sources for some p&tars, so we estimate them based on
values associated with similar processes. We asshameost for an outdoor-uncovered storage
facility is 10% of the cost of an indoor anaero$licrage facility, and that of transporting ETOH
involves a fixed cost of $1.00/Mg plus a variabtestcof $0.08/Mg km. We estimate the cost of
biofuel storage based on the cost of oil storagikstgposted on some commercial online
shopping malls [eBay.com], augmented with the figedt of capital for land ($1,000) and the
variable operating cost ($0.01/liter). We assunag the cost for the single-destination limitation
relates to administration and is about $100/moAttvide range of efficiencies of characterizing
the technologies that convert cellulosic biomas&T@H has been reported (e.g., 35 to 68%
(Hamelinck et al., 2005)). We assume a 70% of camwe efficiency for each type of biomass,
based on their theoretical estimates. The theatei€ OH yield of biomass estimated based on
Theoretical Ethanol Yield Calculator by DOE are #9iter/Mg for switchgrass, 381.6 liter/Mg
for secondary mill residues, and 439.1 liter/Mgddban wood waste.
3.3.2 Demand

This sub-section describes how we estimate biafesiand in the Central Texas region.
We assume that the demand for ETOH is 10% of theadd for gasoline, because E10 (a
mixture of 10% ETOH and 90% gasoline) can be disted easily in the current infrastructure
for petroleum-based fuel.

Table 6 gives the population of each county in tegion, the average annual
consumption of gasoline from 1998 to 2007 in Texad an estimate of the demand for ETOH
(10% of gasoline consumption based on the populatfoeach county). The overall average

demand for ETOH is 1,425 liters/year/person (Natidriorities Project Database).
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3.3.3 Biomass supply

We now describe our analysis procedure and estirbaimass availability in the
selected region. We estimate the amount of availatdp residue based on farmed land area and
crop yield in each county as provided by USDA-Na#io Agricultural Statistics Service.
Wilhelm et al. (2004) reported that some residwoeiated with certain crops should be left in
the field to maintain soil quality: more than 6.@Mectare/year for corn residue; and more than
3.0 Mg /hectare/year for wheat residue. Based e #stimates, most crop residues available in
the Central Texas region should be left in thedfidlhus, we have not considered crop residues
as possible feedstocks.

To supply an amount of biomass sufficient to meshand, we assume that switchgrass
will be grown on some farm lands instead of theenirfood crops and on some CRP land areas
as well. Table 6 gives an estimated amount of sgrtess that could be made available in each
county. In addition to using switchgrass as a foads we include other cellulosic biomass (i.e.,
mill residues and urban wood wastes) as feedstbaked on the data provided by Milbrandt
(2005) so that we consider three types of biomass faedstock. We assume that switchgrass is
harvested only in Summer and Fall and other bionfiass mill residues and wood wastes) is
supplied uniformly in all seasons.

3.3.4 Transportation cost

We estimate transportation distance based on tiggHeof the straight line between the
center points of each pair of counties. We invoke aissumptions to estimate transportation
distances within each county: preprocessing, bimeef, and distribution center facilities are at
the same location so that the cost of transportdteiween each relevant pair of echelons is very
small; farms and customer zones are uniformly itisted within a county so that the

transportation distance between each pair of 8@dage and preprocessing facilities, and



Table 6 Estimated biofuel demand and switchgraasadility

Williamso

Mg/halyear

County Hill McLennan  Falls Bell N Travis Hays Comal Bexar
Population (20085a) 35,637 230,213 16,900 285,084 394,193 998,543 149,476 109,635 1,622,899
Demand |Gas Consumptioﬁb) (KL/year) 50,769 327,962 24,076 406,131 561,568 1,422,526 212,944 156,186 2,311,985
Demand for ETOH(KL/year) 5,077, 32,796 2,408/ 40,613 56,157 142,253 21,294 15,619 231,198
Farm Land Area(2009) (ha) | 72,843 60,662 56,535 53,580 57,749 9,105 1,012 6,111 11,250
CRP land Area (2009) (ha) 1,912 69 140 349 379 0 0 0 0
Total Area (ha) 74,755 60,732 56,675 53,929 58,128 9,105 1,012 6,111 11,250
Supply Yield: 7

) 523,285 425,121 396,725 377,503 406,893 63,738 7,082 42,775 78,752

Switchgrass | Mg/halyear
Production | Yield: 10 1 2,7 550 607,31 566,750 539,289 581,276 91,054 10,117 61,108 112,503

Amount Mg/halyear
(Mglyear) vield: 13 971,815 789,511 736,775 701,079 755,659 118,371 13,152 79,440 146,253

(a) The U.S. Census Bureau, 2008

(b) 1,425 L/year/person (National Priorities Projpatabase)

14
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between each pair comprising a distribution ceatet a customer zone is about 19 km, because
the size of most counties is approximately 50 byk&0 and the average distance from any
location in a county to the center point is abd@itkin. The transportation mode considered in
this case study is a truck. We assume that thedyatem is used to transport biomass.
3.4 Results

This section analyzes the results of our computatiexperiments for 21 scenarios (See
Table 1). The number of binary and continuous Wem are 2,034 and 96,030, respectively.
IBM ILOG CPLEX 12.1 solved each instance within dmaur in a personal computer with
Core(TM)2 Duo CPU 3.16GHz and 4G RAM, prescribingoatimal solution for each scenario.
3.4.1 Basic results

This section describes results prescribed byohtmization model for scenario 11,
which we consider to be a basic (i.e., bench mgjkscenario because it has the smallest ETOH
price (i.e., $0.77/Liter) while meeting all custanz®ne demands for biofuel using the median
cost of switchgrass (i.e., $60/Mg).
3.4.1.1 Facility location, technology, and capacity

Table 7 describes results about the strategiel lelecisions. While preprocessing
facilities are opened at three counties (i.e.,, 4 9), refineries are only opened at counties 2
and 5. Note that we consider only single technofogyreprocessing facility and refinery in this
case study. Alternative technology is considered tloe selection of storage types in
preprocessing facility (i.e., outdoor-uncovered andoor-anaerobic). However, only field
storage facilities, the type of which is an outdoocovered, are opened mainly due to high
fixed cost of other storages in echelons of pregssing facility and refinery. Relatively large

field storages are prescribed at counties 1, 8n8,6.
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Table 7 Facility location, capacity, and technolbgye for scenario 11

Echelon No Lcc):c;aglri; Name Capacity Technology Type
1 Hill 575,722 Mg outdoor-uncovered
2 McLennan 4,950 Mg outdoor-uncovered
3 Falls 403,626 Mg outdoor-uncovered
4 Bell 9,950 Mg outdoor-uncovered
Field Storage | 5 Williamson 583,141 Mg outdoor-uncovered
6 Travis 114,813 Mg outdoor-uncovered
7 Hays 8,759 Mg outdoor-uncovered
8 Comal 63,341 Mg outdoor-uncovered
9 Bexar 16,001 Mg outdoor-uncovered
2 McLennan 1,299,048 Mglyear grinding & drying
Preprocessing| 5 Williamson 938,998 Mglyear grinding & drying
9 Bexar 64,192 Mglyear grinding & drying
L 2 Bell 205,920 KLl/year 70% conversion efficiency
Biorefinery — - —
5 Williamson 222,569 KL/year 70% conversion effigiy
DC layer - - - -

3.4.1.2 Material flow pattern

We analyze the material flow pattern in each tiragqal under the scenario 11. Figure 6
depicts the material flow pattern in each seasachEstraight arc represents the aggregated flow
of all types of biomass in the upstream and ETOkhendownstream. Rectangular icons in the
field storage echelon represent inventory carry®®erm one period to the next. Using facilities
opened (See Table 7), materials flow through tpreprocessing facilities (in counties 2, 5, and
9), and two refineries (in counties 2 and 5).

Since we assumed that switchgrass is harvestediorijummer and Fall, significant
amounts of biomass inventory are carried overalufstorage to meet year-round demand. Even
though some portion of biomass is degraded in Be&bdage due to chemical dry matter loss, our
model prescribes inventory carryover only in tredistorage echelon, because the capital cost

of storage in other echelons (i.e., preprocessnilitiy and refinery) is relatively high compared
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to the potential cost of dry matter loss. The an®wrf dry matter loss in storages are 198,256
Mg of switchgrass, 821 Mg of mill residues, and0B 81g of wood wastes, respectively.

A quarter-by-quarter plan for material flow is e#ts& to support strategic decisions and
can give useful information to Energy companiesupport for tactical-level decisions, (e.g., in
planning manpower and equipment needs in eachd)erditowever, to support tactical-level
plans most effectively, the duration of a time pdrshould be defined as a month, if not an even
shorter time. In fact, time periods need not béhef same duration. Shorter time periods could
be used to model the dynamics of harvesting angeloones could be used to plan inventories

and material flows at other times of the year.
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3.4.2 Sensitivity Analysis

This section discusses results from several sanhand analyzes factors that are
significant to the biofuel SC.
3.4.2.1 Impact of the combination of feedstock coand ETOH price

We compare performance measures (i.e., profit, mave and cost) that result in
scenarios 1 - 18 to identify the impact of the comabion of feedstock cost and ETOH price.
Figure 7 shows that profit increases faster assteedd cost reduces than as ETOH price
increases. This reinforces the expectation thatlsteek cost is a significant factor in
determining profit. When the price of ETOH at thamp is less than $0.66/L (i.e., scenarios 7
and 13), the biofuel SC is not economically vialwer model opens no facilities and prescribes

no material flow.

80,000,000

70,000,000 /"‘
60,000,000
50,000,000 / /'. Switchgrass

4 i Cost ($/Mg)
€ 40,000,000 T ——50
& 30,000,000 B0
20,000,000
74
10,000,000
a
0.66 0.69 2.71 2.74 077 0.79

ETOH price (5/liter)

Figure 7 Relationship of profit to combinationsfeédstock cost and ETOH price

Table 8 details results for scenarios 1 - 21 (ETgpstuction; profit; revenue; total cost;

cost breakdown on detail processes; the percemtfalgand area used to grow switchgrass; and
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the ratio of supply to demand). The refinery repres the most significant cost component in
the SC. The cost to both purchase and collect feekis is also a significant component. These
results suggest that the components of the bi&@Gethat offer the most leverage to improve the
economic viability of the biofuel industry are tbests of refining and of feedstocks.

In terms of material flows, as ETOH price increased feedstock cost reduces, the total
amount of ETOH supplied increases so that the rtevencreases. Our model prescribes the
same amount of material flows for a set of scesafi@., for those with a cost of switchgrass
that is either $50/Mg ($60/Mg) with a price of ETQkht is above $0.74/L ($0.77/L)) because
all demands are met in these instances and therasnofl processing materials are same. In
addition, this also describes the reason why tted tmsts of scenarios 4, 5, and 6 are same and
those of scenarios 11 and 12 are same.

Energy companies would be able to use a sensitiglysis to evaluate the economic
feasibility of generating biofuels in a selectedioa. Moreover, applying our model and method
of analysis to a region or the entire country woptdvide useful information for government
policy makers, for example, in estimating the sdp$evels required to induce investment in the
bioenergy industry.
3.4.2.2 Impact of the combination of feedstock suppand ETOH demand

We now analyze the significance of combinationsfeddstock supply and ETOH
demand, studying scenarios based on scenario lithwteets all customer-zone demands for
biofuel. Scenarios 19, 20 and 21 are the sameesms0 11, except 19 tests a switchgrass yield
of 17.30 Mg/ha (7.00 Mg/acre); 20 tests a switchgrgield of 32.12 Mg/ha (13.00 Mg/acre);
and 21 assumes that E20 can be used, doubling Ed&dtand in comparison to scenario 11,

which assumes that E10 is used.
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Table 8 compares results for scenarios 19, 20 dndith those of scenario 11. As
switchgrass yield decreases (i.e., scenario 18)athount of ETOH produced, profit and land-
area used decrease. Even though the amount of &soisaot sufficient to meet demand, some
portion of land area is not used, because using itot profitable. On the other hand, as
switchgrass yield increases (i.e., scenario 2@)athount of ETOH produced and profit increase
and the land area used decreases. As demand eer@as, scenario 21), the land area used
increases slightly so that profit and the amourE BOH produced also increase.

Energy companies can analyze land areas requirenemtetermine which farms they
should contract to supply feedstocks in the mosfitable way. For example, even though
feedstock supply is not sufficient to meet demandeu scenarios 19 and 21, some portion of
land area in county 9 is not used because of pitdlgliransportation cost.

3.5 Discussions

Our mathematical model, which deals with a multipemmodity flows, represents
specific characteristics of several types of celid biomass as well as the changes biomass
undergoes in storage and processing in the vaeclslons of the SC. To our knowledge, this is
the first model to deal with all echelons of theofbel SC, including both upstream and
downstream; the selection of technology and looafo each opened facility; biomass moisture
content; dry matter loss in storage; and singléimgson in the upstream of the biofuel SC.

Our case study demonstrates the use of our modedasision support tool based on a
set of data we have been able to gather from psblicces to represent the biofuel industry in
Central Texas. Our case study indicates that #g#n would be able to meet all local demand
for ETOH only under certain scenarios that utilZ&0. In particular, case studies provide
informative results, identifying relationships tHave not been investigated previously. Even

though other factors (i.e., feedstock cost, feastgield, and ETOH demand) affect the



Table 8 Comparison of scenarios to analyze combimabf feedstock cost and ETOH price

0 Used
Scenario Prlcf;—li;on Profit Revenue Total Cost Cost breakdown 0¢) /Given /s(::gz d
No $) $) ($) FS9 | FT® | PR® | RF® ET@ | Area
(KL) o | @
1 129,116 57,829 115,710,527 115,652,698 16.45 7.96 8.93 66.25 0.39 34.6 24.5
2 253,46( 7,764,851 236,229,115 228,464,264 18.56 8.07] 8.96) 63.93 0.48 63.2 48.1
3 427,976 19,542,158 414,222,801 394,680,649 20.60Q 7.77 8.79 61.70 1.13 96.6) 81.2
4 527,157 38,188,889 529,117,456 490,928,558 21.41 6.68 8.76) 61.81 1.34 98.6 100.0
5 527,157 57,085,950 548,014,508 490,928,558 21.41 6.68 8.76) 61.81 1.34 98.6 100.Q
6 527,157 75,983,002 566,911,560 490,928,558 21.41 6.68 8.76) 61.81 1.34 98.6) 100.0
700 B ; i N ; ; N i i N ;
8 57,433 1,431,448 53,528,573 52,097,125 12.50 8.40 8.61 70.23 0.24 7.8 10.9
9 248,363 8,862,751 240,381,774 231,519,024 21.29 7.73 8.66) 61.86 0.45 61.3 47.1
10 362,200 19,290,228 363,544,748 344,254,519 22.99 7.48 8.52 60.07 0.94 78.3 68.7
11@ 527,157 36,558,390 548,014,508 511,456,118 24.56 6.41 8.41 59.33 1.29 98.6) 100.0
12 527,157 55,455,442 566,911,560 511,456,118 24.56 6.41 8.41 59.33 1.29 98.6 100.0
139 - - - - - - R - - : -
14 41,369 1,221,47¢ 38,556,930 37,335,453 8.18 9.09 8.49 73.97 0.24 1.0 7.8
15 54,609 2,816,18% 52,854,063 50,037,878 12.90 8.38 8.50 69.97 0.24 6.6 10.4
16 246,584 9,973,884 247,499,534 237,525,650 23.80 7.51 8.38 59.88 0.44 60.4] 46.8
17 362,200 19,495,985 376,528,484 357,032,498 25.74 7.21 8.22 57.92 0.90 78.3 68.7
18 527,157 34,952,361 565,901,332 530,948,971 27.22 7.34] 8.05 56.20 1.19 98.6 100.Q
19 380,859 28,144,334 395,926,768 367,782,438 23.85 7.72 8.39 59.06 0.97] 96.6) 72.2
20 527,157 41,958,47¢ 548,014,508 506,056,032 23.99 6.40 8.47 59.96 1.18 94.8 100.Q
21 529,498 39,925,524 550,439,343 510,513,818 24.72 6.48 8.46) 59.69 0.65 98.8 50.2

(a): a basic scenario to compare other scenarmst anpply/demand changes; (b): non-profitable; K&-Feedstock;

(d): FT-Feedstock Transportation; (e): PR-Preprsiogs (f): RF-Refinery; and (g):ET-ETOH Transpoidat

€g
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economic viability of the SC, ETOH price appeardéothe most significant factor to economic
viability; moreover, based on profits, the ovef@ structure prescribed could be much different
from one based on minimizing cost.

Biofuel manufacturers can use our mathematical intmdplan the most profitable SC
design and estimate the profit that a particulgrare might generate. In addition, government
policy makers can employ our model to identify pigls most likely to support a viable biofuel
industry, for example, through a combination of yidong subsidies and attracting private

investment.
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CHAPTER IV

A SOLUTION METHOD FOR BSCP MIP MODEL

This chapter describes a solution method to solve large instances of BSCP MIP model
formulated in Chapter Ill. Section 1 describes a formulation of BSCP, an alternative to the
embedded multi-commodity flow problem proposed by Chapter lll. Section 2 explains our CG
approach, which incorporates our new DP algorithm to generate flow-paths in the uncapacitated,
embedded GFP subproblem. Section 3 describes the logic underlying POC. Section 4 evaluates
the performance of our solution approach through computational tests.

4.1. Formulation

Our prior formulation of BSCP in Chapter Il deals with material flows based on a
multi-commodity viewpoint, defining each commodity in the upstream as the combination of
biomass type and moisture content, which depends on location and time period. Since the
number of flow variables is proportional to the number of commodities, reducing the latter
would reduce the number of flow variables. In comparison, the alternative formulation we
present in thigpaper reducethe numberof commodities downsizingthe modelin Chapterl|
and, therefore, enhancing solvability. This section describes a two-step procedure to define each
commodity and the network that represents flows.

4.1.1 Commaodity definition

We consider moisture content implicitly by invoking certain assumptions and defining
transportation costs appropriately. The assumptions are that the moisture content of feedstock
held in field storage facilities changes according to the weather conditions in each time period
and that moisture content becomes negligible after drying during preprocessing. We adjust the

cost of transporting each unit on each arc in each echelon before preprocessing to reflect the
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moisture content of biomass in each time period.example, 10 Mg biomass with a wet-basis
moisture content of 10% is 9 Mg of dry biomass &ndg of water. If feedstock is transported at
a unit cost of $9.90 per Mg, the cost to transpug 10 Mg is $99.00. In contrast, if we define
unit transportation cost to be $11.00 (=9.9*10/8)y Mg instead of $9.90, we can calculate
transportation cost by considering only the drynfass being transported; that is, 9 Mg*$11.00
per Mg = $99.00. Thus, by defining unit transpaéotatcosts based on the moisture content in
each time period, we can deal with only the dryteradf biomass, so that a single commodity
can be defined based only on biomass type.
4.1.2 Network definition

Even after defining commodities, several biomapgsycan be transported on the same
route in the upstream. Our modeling alternativenfoithe underlying network by duplicating
nodes and arcs in the upstream with respect to dgentypes (e.g., switchgrass and wood
wastes), so that only a single commodity flows ache(duplicate) arc. Figure 8 depicts an

example of duplicating nodes and arcs with resfgebiomass typé&.

(k=1) (k=2)

arc a=(ij)
Zka

hka ﬂ\:f:)

arc s1=(i;j;) arc s2=(1,j-)
Zs2

he>

51
h;

(a) (b)
Figure 8 Network transformation by duplicating nedend arcs: (a) original network, and (b)

duplicate network
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In Figure (8a), two biomass types flow on drg)( We duplicate nodesandj, creating
i1, I2 andjy, o, respectively, and all other arcs incident to rsadendj as well. For example, arc
(i, j) is duplicated to formi{, j;) and {,, j»), one for each type of biomass. The flow varidble
the original networkz,,, can be represented as$ andz,, in the duplicate network, whesd
ands2 are arcs in the duplicate netwqjkigure (8b)) andh is an arc in the original network
(Figure (8a)).

Flow is reduced on some arcs because dry materdocurs over time in storage and
the conversion efficiency of a refinery is lessnth#0%. For example, a flow of 100 Mg of
biofuel, produced at a conversion efficiency of 70&duces a flow of 142.86 (=100/0.7) Mg of
biomass into the refinery. This requires the floin1d45.77 (=142.86/0.98) Mg of biomass into
the storage facility, in which biomass is subjec% dry matter loss in a month. Such a flow
problem can be modeled as a GFP.

This modeling alternative results in a single cardity, biomass, flowing in the
upstream, but conversion introduces another commagpe, biofuel, in the downstream, we
must deal with such a commaodity type change. Flalarce constraints related to supply (i.e.,
farms) and demand (i.e., customers) nodes mayeseatisfied at equality because of flow gains
and losses associated with biomass storage andersion. Moreover, whereas an exact
formulation of GFP requires an equality condition &ll constraints that represent flow balance,
our prior formulation of BSCP involved some inediyatonstraints associated with supply and
demand nodes to prescribe only profitable flow djtias. Therefore, to transform the embedded
flow problem to the exact form of an embedded Gdlitional manipulation of the network is
required, as we now describe. Figure 9 shows ampgbeaof the final form of a duplicate

network, which is acyclic.
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Figure 9 Eﬁgémple of a duplicate network

First, we convert each unit of flow to the sameringge.g., a measure of energy) and
revise related parameters (e.g., costs, prices,nauntipliers) to correspond. Second, dummy
start and end nodes (i.g,,andi;, respectively, wherg = n + 1) are augmented, along with
new directed arcs that connect nagleo each supply node and each demand nodg fbhe
cost associated with each new arc emanating fgaand pointing to a supply node is minus one
times the cost of biomass at the supply pointioiger bound is zero and its upper bound is the

capacity of the supply node to produce biomass.il&iy the cost of each new arc from a
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demand node ti; is the biofuel selling price; its lower bound &ra; and its upper bound is the
demand of the demand node.

Lastly, two special arcs, one fragito i, and one froni; toi;, are added to allow a
feasible flow balance &§ andiz; i.e., the flow amount on aré,(i,) (arc 7, iz)) must equal
the amount of flow-out (flow-in) of nodg (i;) (Ahuja et al., 1993). Then, the modified
network, in which supplies and demands of all nodes zero, represents a generalized
minimum-cost circulation problem (Wayne, 2002). #itwof flow on arc {,j) will be h;; at node
juif hj; <1, the arc idossy and ifh;; > 1, the arc igjainy.

4.1.3. Mathematical model

Table 9 defines the notation we use in our formota model 1 ((4.1)-(4.7)).

Table 9 Notation

Indices

a:arc a€A

b : biomass type b€eB

e biofuel type e€EE

f : facility fEF

i : duplicate node i€eN?

k : commodity kekK

| : layer (echelon) lel

r : technology type T € Ry

s: duplicate arc s € A4

t:time teT

Sets

A : Directed arcs := Al UAf,
A% : Duplicate directed arcs = ARt VAL,
A%: Arcs that are duplicate from original arc a

A}frt (Arr¢): Directed arcs in periotthat start or end at nodie

A}rt : Arc for which flow represents inventory held fatility f of typer from periodt to
periodt+1

At (Af7,¢): Duplicate arcs in periotthat start (end) at duplicate nadet
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Table 9 Continued

A‘,\f}rt : Duplicate arc that represents inventory helihaeitity f of typer from periodt to period

t+1

Ar . Directed arcs associated with transportati@nA}'rt, f € Fpy UFp3 UFps UFp, 1T E

Rrt €T

B : Feedstock(biomass) types supplied by facilgyg( farm)f € Fg;

F; . Candidate locations for facilities in echelpfeedstock supply sitd,, Fr,), Or customer
zonek:;),l €L

Fyuo - Warehouses where biomass is held before pregsge = Fp, U Fp,

Fyy : Warehouses where biomass is held i = Fyypo U Fps U Fpq

Fyuo - Warehouses (i.e., storage tanks) where biofule€ld := Fz3 U Fp¢

Fy . Warehouses i= Fyy1 U Fypo

Fpgr : Process facilities (preprocessing, refinery) 1= Fpy U Fgy

Fyp : Facilities := F\(Fp1 UF¢z)

Fyp : Upstream facilities t=Fp UFpy, U Fpy UFpy U Fpg U
Frq

Fpown . Downstream facilities i=Fpo U Fprg UFpe U Fpy

F : All facilities := Fyp U Fpown

K;: Feedstock types (i.e., commodities) ={(f,t,b)},f €EF,teT,be
B

K,: Biofuel commodity = {e}l,e €E

K: Commaodities =K, UK,

L : Echelons{F1,F2,P1,P2,P3,R1,R2,R3,DC,CZ} (F1:. farm, F2: field storage,P1-3
preprocessing facilitiesR1-3 conversion facilities,DC: distribution center, andCZ
customer zone)

N? : Duplicate nodes

Rr . Types of technologies at facilityf € F;

T : Time Periods

Parameters

CI : Fixed cost of selecting asc

Cfor : Fixed cost of opening facilitiyof technology type

C, : Revenue (>0) or cost (<0) for a unit flow on arc

D, : Upper bound on flow on ag; associated with demand of the starting rkfdeof arcs

h : Multiplier associated with arc s

Q~: Upper bound on flow on aec

Q}f : Capacity limit of facilityf (biomass storage, preprocessing, refinery, oubiaftorage)

Q, : Upper bound on flow on ais; which is associated with supply capacity of the eode

kfrt of arcs

Vs, » Variable cost per unit of capacity of openingility f of technology type
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Table 9 Continued

VT : Variable cost for a unit of flow on as¢variable transportation cost on transportation
arc, variable holding cost on inventory arc)
Decision Variables

q5r - Capacity of facilityf of technology type, f € Fop,7 € Ry
xgr - 1if facility f of typer is opened, O otherwise, f € Fypp,7 € Ry
y,. 1 if arcais used, O otherwise, a€EA
z¢ : Flow amount on duplicate arc s s € A%

We now present model 1:

Model 1:Z* = Max — ZfEFOP ZreRf ngrxfr - ZfEFOP ZrERf Verfr — Yaea nga +

(4.2)
Ysead CsZs
s.t. Yrerp Xpr <1 f € Fop (4.2)
—Qfxpr +qpr <0 f € Fop, T €ERy (4.3)
Yaeat, Ya <1 f E€Fp UFpy,r €ER;EET (4.4)
—QaYa + Xseqa2s < 0 a €Ay (4.5a)
~Arr t XiXgeagt Zs =0 feFRyyreRtET (4.5b)
—qr + 2k ZseAg;ﬂ zs<0  feFppreRLET (4.5¢)
zs < Qs S €AYk €K\, f €EFp, T ER;,tET  (4.6Q)
Zs < Dy s €AYtk €K, f €EFcp,r €ER,tET  (4.6b)
Yse(ij)Zs — Lse(iyhszs =0 i€ N? (4.6c)
xpr € {0,1} f € Fop,T € Ry (4.7a)
v, € {0,1} a€Ap (4.7b)
qfr =0 f € Fop, T €ERf (4.7¢)
z; =0 s € A%, (4.7d)

Objective (4.1) is to maximize the present worthtathl system profit: the first term gives the
fixed cost of opening all facilities; the seconatat variable cost associated with the capacity of

facilities opened; the third, total fixed cost agated with selection of single destination; anel th
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last, total net profit from supplying biofuel. Carant (4.2) is that each facilitf € F,p can
employ, at most, one technology type R;. Constraint (4.3) restricts the capacity of fagili
f € Fyp by its capacity IimiQ)f, if it is opened; otherwise, it allows no flow frofacility f.
Constraint (4.4) requires that each field storageegrocessing) facility € Fg,(Fp3) use a
transport link to a single destination (i.e., pom@ssing (refinery)) facility € Fp,(Fg1) tO
facilitate flow management in the upstream. Coissa(4.5) impose flow capacity? for arc
a €A (45.a),qs for storage facilities (4.5.b), angl,. for processing facilities (4.5.c).
Constraints (4.6) correspond to an embedded GE®ajdmposes the capaciiy (i.e., supply
limit) of arc s associated with farrfi € Fp; andr € Ry in periodt € T to restricts biomass flow;
constraint (4.6.b) restricts the inflow of biofustcording to the demarid, of arcs associated
with customer zon¢ € F¢; and typer € Ry in periodt € T; and constraint (4.6.c) balances
flow at each (duplicate) nodiein the (duplicate) network, whefg marks gains, losses or
unchanged flow across as¢ which is incident from. Constraints (4.7.a) and (4.7.b) invoke
binary restrictions on decision variabbgs andy,, respectively. Constraints (4.7.c) and (4.7.d)
restrict decision variableg,. andz,, respectively, to be non-negative.
4.2. CG for an embedded GFP

Figure 10 depicts the structure of the constraiatrix of model 1. Constraints (6),
which represent an embedded GFP on the networklvewa large number of continuous flow
variables. Since GFP can be solved effectively figcilized algorithms (e.g., Vaidya, 1989;
Murray, 1992; Kamath and Palmon, 1995; Wayne, 2@0%] Goldfarb and Lin, 2002), an
embedded GFP can be used effectively as a subgmnoll a CG approach in this and many
other applications. This paper devises a CG approzreating the embedded GFP as a

subproblem, to solve the linear relaxation of mddel
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(2)
3)
(4
(5.2)
(53.b.0)

Single-commodity EGFP on duplicate network (6)

Figure 10 Structure of the constraint matrix

4.2.1 Tree- vs. path-flows in CG

If the flow upper bound of each arc is not consde a feasible solution to the
embedded GFP can be viewed as a path-flow; orprisidered, a tree flow, which can be
represented as an aggregation of a set of pattsfldanes et al. (1993) analyzed the impact of
the number of sub-problem extreme points on theopaance of CG in a multi-commodity flow
problem. They reported that using path-flow solign multi-commodity flow subproblems is
computationally superior to using tree flows, bessaa network admits fewer paths than trees, so
that using path-flow solutions can result in subsély fewer master-problem iterations.

Following the earlier findings of Jones et al. (239ve generate columns based on path-
flows, imposing the upper bound constraint on eactlow in the master problem rather than in
the subproblem. Note that, since such an uncapedjtambedded GFP is a linear program, the
master problem of our decomposition scheme providessame bound at each B&B node as
does the linear relaxation of the original model 1.
4.2.2 Path-based formulation

This subsection presents our path-based formulatnodel 2. Table 10 gives additional

notation used in model 2.
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Indices

p:path, pePpP

Sets

P : Paths fromu to g that satisfy flow balances (6.c)

A},S : Duplicate arcs from to the one immediately preceding aren pathp
/Tfn- : Duplicate arcs from to nodei on pathp

pr : Duplicate arcs on path

IVp : Duplicate nodes on path p

Parameters

C, : Variable cost of a unit flow on path  := Zsegp HPC,,p €P
HY = lje a, hj, p €Pifs €4, 0otherwise

Decision Variables

Ap - Flow amounton path, p €P

To implement CG, generating columns from an uncisgied, embedded GFP, we now

transform the arc-based form of model 1 to the jpaited form of model 2, the linear relaxation

of which is the master problem in our CG decomjpasit

Model 2: Z* = Max — ZfEFOP ZreRf C]gﬂxfr - ZfEFop ErERf Vfr‘lfr — Yaea nga +

Yper Cpp
s.t. (4.2), (4.3), (4.4), and (4.7a-c)
_nga + ZpEP(ZseAg Hf)lp <0 a€Ar

_qu + ZpEP (ZkEKZSeAg}”HE)Ap S 0 f € FWH,T‘ € R,t eET

—qfr + Xpep (ZkesteAg;ﬂ Hf)ﬂp SO0 feFupr€eRtET

Yper(HE )Ap < Qs s € AT
Yper(HY )2, < Dy s € AF”
Ap = 0. p EP

(4.8)

(4.9a)
(4.9b)

(4.9¢)

(4.10a)
(4.10b)
(4.11)

Objective (4.8) is the same as objective (4.1) pit®e fourth term which is re-expressed based

on pathp instead of arcs. Similarly, constraints (4.9a-c) and (4.10a, b)yrespond with
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constraints (4.5a-c) and (4.6a, b), respectivelylacing flow variable, and relevant coefficient
by using variablez, and coefficient based on paph flow z; on arcs can be represented by
Zg = Ypep Hflp. Constraints (4.11) restrict decision variablggo be non-negative. Note that
all path-flows on patly € P in model 2 satisfy constraints (4.6¢) in modeT e coefficient of
Ap (i.e.,HY) implies that each unit flow comprisirg induces flowH? on arcs in pathp. The
linear relaxation of model 2 is the so-called mapteblem of a type Il CG (Wilhelm, 2001) that
uses an uncapacitated, embedded GFP price-outofléipr, to identify improving columns.

Model 2 can be transformed to form a type Il €&ing Dantzig-Wolfe Decomposition,
by adjusting the coefficient df, on each ars € Ap from H? to HY n?, wheren? is an extreme
flow amount on patip, and by incorporating convexity constrafif,ep 4, = 1. However, our
preliminary computational tests have shown thatgisype Il CG gives better results for BSCP,
so this paper reports its use. Our strategy ist@eshe subproblem to determine an optimal unit
path-flow fromi, to iz, generating a column that enters the restrictestengroblem (RMP),
which induces a set of path-flows to determinerogtj profitable flow quantities for the linear
relaxation of model 2.
4.2.3 Subproblem to generate paths

Table 11 defines additional notation that we usdormulate the subproblem. Path-
based model 2 involves a flow variablg, X for each of many paths. The simplex optimality
criterion indicates that entering paitas a column in the master problem basis will inaprthe
current solution i{wa, — C,) < 0 and that, iflwa, — C,) > 0 for all paths € P, the current

master problem solution is optimal, where is a dual vector of model 2g, ,

O, s Soeag HO, s Cer Socags, HD, ...,(ZkEKZseAﬁ;”Hf),...,(Hg’))T, is a column

vector associated with variablg; andC, is the objective function coefficient associatedhw
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variablel,, whereC, = Ye s, HPC,.

Table 11 Notation for sub-problem
Indices

u:row, ue€elU
Sets
A’; : Arcs in pathp with non-zero entries in rowof the constraint matrix of model 1

R, : Rows with non-zero entries in the column assediavith arcs of the constraint matrix of
model 1

U : Rows of the constraint matrix of models 1 and 2
Parameters

a, : Column vector of coefficient associated withighle 4, in the constraint matrix qof
model 2, pe P

w,, : Dual variable associated with rawn model 2, u € U
Decision Variables

X, : 1if pathpis used, O otherwise, p € P

Each non-zero element of, can be interpreted as sum of cert#fi values
corresponding to arcs in pgbhwith non-zero entries in row u of the constrairgtrix of model
1. Thus, by usindi%, which denotes a set of arcs in pptWith non-zero entries in row of the
constraint matrix of model 1, each non-zero elenwént, can be expressed as a generalized

form, Qe A HD). So,a,can be re-expressed:

_ b n\T
ap = (0,...,ZseA15HS ,...,Zsempw Hs) (4.12)
LetX := {X, € {0,1}: ¥,cp X, = 1,p € P}. For a given vector of dual variable values,
wk, each associated with a row in the RMP, at iterdtiin our CG procedure,
SUB:  Zg,p(w*) = min{(w¥a, — C,)X,: X, € X}

. T
= mm{[(w{"-, W) (0, s Dse Al HY, ...,Zse%m Hf) — Ysea, HS Cs| Xp: Xy, € X3

= min{|Lsea, HY (Tuer, Wi — Cs)| Xp: X, € X}
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= min {(Lsea, €7 ) Xp: X, € X}, (4.13)
whereCy == ¥,cp Wit — Cs; andCy := H¢ C;. The final form of the subproblem is similar teth
shortest path problem with ca&f on arcs. However, since arc co§f’ depends on the paghin
which arc s is included, and each arc may havéferelnt cost in association with each possible
path, solving subproblem (4.13) is not trivial. Téfere, we propose a new DP algorithm in the
following section.

4.2.4 BRA to solve the sub-problem

This section presents a definition of the shoriestince from each node to end noge
based on arc cos&’, and describes BRA to solve the sub-problem.
4.2.4.1 Problem structure

Given that the series afp) nodes on pathisiy — iy — i3 ... = ipp)-1 — iz, ModelSUB
can be re-expressed:

Zeup(WF) =min {(C0, +CP, +-+CP  )Xp:X, € XY (4.14)

inp)-1in

By expanding cost paramete€?,, using the definitiort? = ¢ [1je Ab, h;, we obtain

Zoup(WH) = min{(C[;, + hiyi, Cii, + =+ ([Lje 22 h)Cl, i) Xp: Xp € X} (4.15)

ioiy B nipyt

Then, we can rearrange coefficients of this objedunction based on arc multipliers:

Zop(W*) = min {[C] ; + hy; {C/;, + -+ Rirpy—singpy-1 Cinpyoin) -+ J] Xp: Xp € X}, (4.16)
To establish the dynamic programming recursiary [lg] := 0;

flingy-1] = Cirpysims

f[in(p)—z] = Ci’n(p)—zin(p)—l + hin(p)—zin(p)—lCi’n(p)—lir_l = Ci’n(p)—zin(p)—l +

hin(p)—z in(p)—1f [in(p)—l] ;

in generalf[i] = Cl; . + hii;, flij+a], s thatf [ig] = Ciy, + higy, flia].
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We can now simplify Equation (4.16):
Zeup(W*) = min{[C{;, + higi, (Cl,i, ++ + iy iyt U liny-1]} -+ 3] Xp: Xp € X3
= min{f[iy]X,: X, € X}. (4.17)
By using Equation (4.17), we can define the shodetance from each nogldo the end node
in
Definition 4.1. The shortest distance from nogléo end nodey, f[i;], is defined recursively by

0

if i; =iy
fly] = . , o (4.18)
(ij’i}':lll)TéA¢+ {Cijij+1 + hljlj+1f[l]+1]} lf l] € N\{lﬁ},
4
whereCi’]_i]_Jr1 = Zueﬁijij+1 Wy = Ciji,, -
A related property is stated by Property 2.
Property 4.2. If P[ij] =1ij —ij41 — " — iz IS the shortest path from nodeto iz, sub-path

Plij41] = ij+1 — - — iz is the shortest path from nogjg; to i.
Proof. This property follows from the recursion and thenayic programming principle of
optimality. m
4.2.4.2 Computing algorithm

Based on Definition 4.1 and Property 4.2, we nesctibe BRA to find the shortest path
from each node to end node First, we note prior work on the conventional rsbst-path
problems. Ahuja et al. (1993) described two growbssolution algorithms: label-setting
algorithms, which designate one label as permaatntach iteration, and label-correcting
algorithms, which mark all labels as temporary Iuhg final iteration. A few fundamental label-
setting algorithms are the reaching algorithm orycke networks with the worst-case
complexity ofO(m), and Dijkstra’s algorithm on cyclic networks witlonnegative arc lengths,

with O(rf). Several label-correcting algorithms (e.g., FIF&bdl-correcting algorithm with
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worst-case complexit(nm) (Bellman, 1958)) have been developed for solvimg shortest
path problem on networks with arbitrary costs aritraary topology.

Zhu and Wilhelm (2012) reviewed the literaturey(eDesrochers and Soumis, 1988; and
Dumitrescu and Boland, 2003) related to the ressuoonstrained shortest path problem and
proposed a three-stage approach for solving it asulaproblem in CG. However, the
conventional shortest path problem is differentrfrours, in which the distance from each node
to end nodeé; is defined based on arc coéfs

LetG = (N4, A%) be the duplicate network of the embedded GFPyewié is the set of
nodes andi is the set of directed arcs. Note tfats acyclic. For a give® = (N%, A4), order
nodes topologically (Step 1), initializdi;] = 0 (Step 2) angf[i] = M for eachi € N¢ (Step 3)
whereM is a big nhumber, and update distance label of g@metlecessor of nodg (Step 4).
Then, process nodg in decreasing topological order by updating distatabel of each
predecessdrof nodej (Step 5). For each noglescan incoming arcs. For each @ig) € A]‘-l‘, if
flil > Cj; + hijf U], setf[i] = C;; + hy;f[j]. Figure 11 gives a formal description of our BRA.

Next, we prove the correctness of BRA by provingt twhenever it processes ngde
step 5, the optimal distance label of ngdws already been determined so that BRA is a-label
setting algorithm.

Proof. Suppose that BRA has processed naglds, ..., i, and their distance labels are optimal.
Next, BRA processes hodg_,. Let the shortest path from noije ; to the node; be i,_; —

ip — - — iz Wherei, > i,_;. By property 4.2, the path — --- — iz must be the shortest path
from nodei, toi;. Since BRA processes nodes in decreasing topealogider andiy,_4,i,) €
A?h‘, nodeiy, is included in{ig, ..., iz} and the distance label of noge f[i,], is equal to the

shortest distance of the path from nagléo i; by hypothesis. While processing nage arc
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(ix—1,ip) Mmust be scanned and the distance label of hadef[i;_,], set equal tafi’k_l,ih +

h, i, flin]; that is, the shortest distance from nédg toi; (i.e., pathiy_; —ip — - —iz).
Therefore, when BRA processes ndge;, its distance label is already optimal. Even if
alternative optima exist, the optimal distance lafenodei,_,, f[ir_1], is not affected because

the shortest distance associated with each alieerstiortest path is the samefgi,_,]. m

Line No. Step Operation
1 1. Determine the topological ordering of node&in
2 2. fliz] « 0 andsuccliz] < @
3 3. fli] « M and succ[i] « @ foreachi € N%\{iz}
4 4 For each arc incident to nodg (i, i;) € A%
S) flil < Ci'_iﬁ andsuccli] « iy
6 End for
7 5. For each nodg € N%\{i;} in the decreasing topological ordering
8 For each incoming ar@, j) € Af~
9 temp « Cy; + hyf[j]
10 If f[i] > temp
11 Then f[i] « temp andsuccli] « j
12 End for
13 j < next node
14 End while

Figure 11 BRA

Now, we analyze the worst case complexity of BRA.
Proposition 4.3.The worst case complexity of BRAG{m), wheremis the number of arcs.
Proof. Stepl, ordering nodes topologically can be dor@(m) (Ahuja et al., 1993). Step 2 runs
in O(1). Steps 3 and 4 run @(n) andO(m), respectively, whera is the number of nodes. Step
5 examines each arc just once (lines 7 and 8) acll e within step 5 runs i@(1) (lines 9-11
and 13) so that total runtime of step 85@n) Sincem > n according to the network structure

of the embedded GFP, the worst-case complexityRA B O(m). =
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Based on the shortest path solution found by BRu, can construct a column

representing flow on path p, which starts as a flowt as it emanates from nodg flows as

HP = [1je Ab, h; units on each ars in pathp, and ends af;c 2 h; units at nodé;. The
coefficient associated with variablg in each row of model 2 represents this flow amduat,

HY) on each arsin pathp.
4.2.5 Acceleration techniques

We employ two techniques to accelerate CG convergenhe first is to incorporate
extra dual cuts. Liang and Wilhelm (2007) geneedlizxtra dual cuts, describing that inserting a
polynomial number of extra dual cuts into RMP upaoitialization restricts the dual space,
potentially accelerating CG convergence. Alvelod ®falerio de Carvalho (2007) incorporated
cycle paths as extra dual cuts to generate seadditional, feasible flow paths by forming a
linear combination of the cycle and flow paths gatexl by the subproblem.

Similarly, this study uses two portions of the &&@work to generate cycle paths as extra
dual cuts: the first group of cycle paths is getestdbased on the upstream along cydles;
farm in periodt (i; € Fr,) — field storage facility ofi; in periodt (i, € Fg,) - ... - field
storage of; in periodt+ (i;,, € Fr;) - farm in the same location asin periodt+j (i;43 €
Fr1) = i, wheret € T and1 < j < |T| —t; and the second, based on the downstream along
cycles, iz — customer zondi, € F.;) — distribution center(i, € Fy-) — biofuel storage
facility in a biorefinery(i; € Fr3) — distribution center in a location different tp (i, €
Fpc) — customer zone in a location differentiid(is € F.;) — iz. Figure 2 depicts examples of
such cycle paths.

The second technique is based on the conjectateirtborporating multiple columns
found to be improving at each of CG iteration megd to faster CG convergence. After solving

the subproblem once, we incorporate several patdw) with positive reduced cost, rather than
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incorporating only the best column. However, duatiables from RMP might not provide a
good primal (master problem) solution (i.e., faomfran optimal solution) in initial stages of the
CG search, so that, if several paths were incotpdrdome may never be entered into the RMP
basis and would only increase runtime because teyld have to be priced out at each
iteration.

Therefore, we incorporate only a small portiorpaths that have positive reduced cost
in initial iterations. We control the number of pathat are made available to RMP, based on the
ratio of their reduced costs to the most favorabtiticed cost. For example, if the criterion for
this ratio is set to 1%, only those improving pailose reduced costs are within 1% of the most
favorable reduced cost are incorporated. As thebeurof CG iterations increases, our algorithm
increases this criterion linearly from 1% up to #0with the expectation that dual variable
values will provide more useful information as Hearch approaches the optimal RMP solution.
We determine the iteration number at which theeddh becomes 100%, through preliminary
experiments for each instance (see Section 4.4.2).

4.3. Partial objective constraint

This section introduces POC, an inequality basethe portion of objective function (1)
associated with binary variables. Subsections desthe definition of POC, its properties, and a
method to obtain right-hand-side values for POC.

4.3.1 Definition of POC

LetH = {(f,7): f € Fop,7 € R}, I, € H, andl,, € A. Binary variables, the indices of
which are inl, orl,, are employed to construct POC. Then, objectiveetian (1) can be re-
expressed:

Z* = Max {R — B}, (4.19)

whereR = — E(f,r)EH\Ix Cforxfr - E(f,r)eH Vfr‘lfr - ZaeAD\Iy nga + ZseAd Cszs, and
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B = ¥ (s rer, Corxpr + Laer, CaYa-
At the optimal solution of model 1g*, x*, y*, z*), the optimal objective function value
Z* can be represented as
Z* =R*—B*, (4.20)
where R* = = Xt memv, Cr¥fr = Xirmen Virdsr — Zacav, CaVa + Loead Cszs @nd
B* = ¥ (frel, Cforxf*r + Yaer, Caya.
Letting Z;,. denote the objective function value of the incumbsolution of mixed integer
program found during the B&B proceduRs,— B* = Z* > Z;,., So that
B* < R* — Zy,. < UB_POC. (4.21)
By using this relationship in (21) between a partad the optimal objective function valug’,
andUB_POC we define POC based énin (19) andUB_POCin (21):
B = ¥ (srer, Corxpr + Yaer, CaYa < UB_POC, (4.22)
Note that different POCs can be defined based @définitions of subsefg and,,.
4.3.2 POC properties
Here, we describe several properties of POC.
Property 4. POC may cut off some portion of the B&B tree bat the optimal integral solution.
Proof. If the value ofUB_POCwere greater thaB* and it be decreased, POC will tighten the
restriction on binary variables in sétsandl,, so that some feasible integral solutions of model
1 can be infeasible to POC and can be cut off b€ PTd prove the second part of Property 4,
we show that, incorporating POC, re-optimizing nobet the optimal solution prescribes the
same optimal solution as that of model 1. (¢t x*, y*, z*) be the optimal solution of model 1.
Then, the optimal objective function value of modeisR* — B* = R* — (X (s rer, C}’rxf*r +

Zae,y clyr). Since POC does not involve any variables assmtiafthR*, incorporating POC
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into model 1 does not affegt. Also, POC restricty s yer, Cforxfr + Zae,y cly, by using the
upper bound oF(f)er, C}’rxf*r +Zae,y Cclyz, UB_POC. Thus, the optimal solution of binary

variables in set$, andl,, (i.e.,xq., (f,7) €Ic;and yga €1,) is still feasible to POC.

Therefore, POC of Equation (4.22) does not cuthefoptimal integral solutiom

Property 5. POC may tighten the bound provided by the linetaxation of model 1.

Proof. This is trivial. LetZ;, be the optimal objective function value of theshn relaxation of

model 1 and/;p poc be that of the linear relaxation of model 1 afterorporating POC. Since

POC can cut off the optimal solution of the lineglaxation of model 17/ poc < Z;p. m
However, even though POC offers these favorabiggities, an appropriate value of

UB_POCmust be determined to be effective in tighteningrds without cutting off the optimal

integral solution. The following section presentsethod to determine an appropriate value of

UB_POC

4.3.3 A method to obtainUB_POC

We consider an upper boutid_R* = R*:
Y rryet, Corxer + Yaer, CaYa < R* = Zine SUB_R" = Zip, (4.23)
Upper bound/B_R* can be calculated by solving probl@gyy, which is the same as
model 1, except the objective function is changethinax {R — B} tomax {R}.
Pus: Zjp = max {R | s.t. (4.1) — (4.7)} (4.24)
Proposition 6.R(;o) < Zjp, WhereR,,, defined under Equation (4.20), is a portion o th
optimal objective function value of model 1 afyf}; is the optimal objective function value of
Pus.
Proof. By way of contradiction, suppose that there egjgimal solutionat* of modelP,;z and

v* of model 1, respectively, such tigho) (V") = R(z0y > Zyp = R(z4)(U"), WhereR ;) (v*) is
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the portion (defined aB,,)) of the objective solution value of model 1 asateml with its
optimal solutionw”, andR,4)(u") is the objective function value of mode|s evaluated at its
optimal solutionu™. Since the constraints of model 1 constitute m&gdg| v* is also a feasible
solution with respect to mod#,z. So, this implies thaR ;o) = R20)(V") = R(z4y(¥") <
Reay(w*) = Zjp, WhereR;4)(v") is the objective function value df,p associated with
feasible solution*. The inequality follows from the fact that is a feasible solution to model
Py5, @ maximizing problem, ana® is its optimal solution. This contradicts the amption that
Riz0y > Zyp-m

LetZ;p ,, be the optimal objective function value of theelin relaxatiorPy g 4, of Pyp.
Then,Zjp 1, = Zyp. To determine the value @f;z, problemPyg, a mixed-integer program,
must be solved. Therefore, even thodgh ,,, > Zj;, it is attractive to usgyp ;,, as an upper

bound onR*, because we can obtain it easily by solving aalingrogramming problem as

described in Figure 12.

(1) Solve the linear relaxation of model 1 at thetmode of the B&B tree.

(2) Set the objective coefficients of binary vateshin selected sets andl,, to zero, creating a
instance of problemyg ;.

(3) Solve problenPy ;,,, using the Dual Simplex method, starting with tpimal root-node
solution as the initial feasible solution.

=

Figure 12 Procedure to calculafgg 4,

We now re-express POC:

Z(f,T)EIx Cforxfr + Zaely C;ya < Z;B_lp ~ Zinc- (4.25)
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Zine = 0in model 1 because a solution in which all decisiariables are zero is feasible. In
addition, whenever a new integral incumbent sotuidfound during the B&B procedure, the
right-hand side of inequality (4.25) can be redutigthtening POC.

4.3.4 Selection of,, and I,

This paper generate two types of POCs, each msadarticular selection of subsgts
andl,,.

POCLY, (s ryen Chrxpr + Yaea Cayq < UB_POC,,
includes all binary variables (with = H andl,, = A4); and

POC2:Y fryen Cirxpr < UB_POC,,
includes only binary variables,. (with I, = H andl,, = @), which are associated with facility
locations and technology types and have large tbgefunction coefficients in comparison with
those of binary variables, .
4.4. Computational tests

The objectives of our computational tests are tallate the efficacy of our solution
approach and benchmark against a state-of-thesarnnercial solver. We employ CPLEX 12.1
and C++ with Callable Library under the Windows 4-tit operating system with an Intel(R)
Core(TM)2 Quad CPU Q9650 @ 3.00 GHz and a RAM oB8G

Our experiment is based on a case study reporte&hbst al. (2011b), which involves
nine counties in the Central Texas Region. Thisoregs representative of many others for
which cellulosic biomass must be supplemented efitergy crops to its meet fuel demand. An
et al. (2011b) conducted a sensitivity analysissieveral economic factors, including cost and
supply of feedstock (e.g., switchgrass, whose mmastontent ranges generally from 20 to

60%), and price and demand of ETOH. All parametdues used in our computational tests are

from Chapter IlI.
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Table 12 shows 15 test instances, which we gerkbatged on two factors: the numbers
of farms and time periods (e.g., quarters, bi-mgmmonths). Our tests involve five levels (9, 12,
15, 25 and 34) of the number-of-farms factor, ameke levels (4, 6 and 12) - representing

guarters, bi-months and months- of the numberroétperiods factor.

Table 12 Test instances

Embedded GFP

4 4 Variables Network
No| Name #FarmSPeriods Rows | Binary |Binary | Binary
Continuous| # Nodes| # Arcs

X y Total
1| F9T4 9 4 2,813 81 648 729 5,150 902 5,061
2| F9T6 9 6 4,208 81 972 1,053 7,760 1,352 7,671
3| F9T12 9 12 8,381 81 1,944 2,025 15,590 2,702 15,507
4| F12T4 12 4 4,178 108 1,152 1,26( 8,594 1,202 8,484
5| F12T6 12 6 6,248 108 1,728 1,836 12,938 1,802 12,824
6 |F12T12 12 12 | 12,458 108 3,456 3,564 25,97( 3,602 25,860
7 | F15T4 15 4 5,760 135 1,800 1,935 12,902 1,502 12,765
8 | F15T6 15 6 8,615 135 2,700 2,835 19,417 2,252 19,274
9 |F15T12 15 12 | 17,183 135 5,400 5,535 38,9472 4,502 38,801
10| F25T4| 25 4 | 12,589 225 5,000 5,225 33,502 2,502 33,274
11| F25T6| 25 6 | 18,845 225 7,500 7,725 50,352 3,752 50,124
12|F25T12] 25 12 | 37,613 225 15,00( 15,229 100,902 7,502 100,674
13| F34T4| 34 4 | 20,788 306 9,248 9,554 60,25( 3,402 59,947
14| F34T6| 34 6 | 31,13 306 13,872 14,174 90,51(¢ 5,102 90,207
15|F34T12] 34 12 | 62,156 306 27,744 28,0560 181,290 10,202 180,982

The following subsections describe the designusfexperiments, report the runtime to
solve the linear relaxation of model 2 at the nootle of the B&B search tree, and present our
overall evaluation based on the 15 test instanessribed in Table 12.

4.4.1. Test procedure

Our approach uses a CG approach to solve ther Ineésxation of model 2 but not to
prescribe bounds at nodes in the B&B search treealse our preliminary tests showed that
using CG to prescribe bounds at all nodes is ndasisas CPLEX B&B. We conjecture that

CPLEX is faster - at least in part - because itleggpan early termination criterion that allows
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the dual simplex algorithm to stop before reactdngoptimal solution. In contrast, CG must use
the primal simplex algorithm, which must be solwedil finding at least a near-optimal solution.
CPLEX also enjoys the advantages of having beerddyy professional programmers and
having been refined over a long period of time.

We believe that our experience is not unique: rstgdies since the mid 2000s have not
compared their branch-and-price algorithms with w©@rcial solvers. Rather, their
computational tests compared different branch-ammepalgorithms (e.g., Senne et al., 2005;
Villa and Hoffman, 2006; Grgnhaug et al., 2010; i€&u¢z-Jarpa et al., 2010; Irnich, 2010; and
Brunner et al., 2011). Some papers that have cadplaranch-and-price performance with a
commercial solver (Brunner et al.,, 2011; and Medtyal., 2011) reported only the gaps
provided by two codes within a given runtime limit/e speculate that the capabilities of
commercial solvers may have been improved duriisg decade to the point at which only
branch-and-price codes written by professional ©mgners can be competitive; otherwise, they
cannot be competitive, even though they may o#éerain theoretical advantages.

Therefore, rather than using CG to prescribe bsutids paper presents an approach,
which solves BSCP faster than state-of-the-artesdGPLEX 12.1, using our BRA in CG at the
root node of the search tree and CPLEX defaults R@C during the B&B search.

Figure 13 structures our solution procedure, etdmef which are discussed in sections
3 and 4. In step 1, CG solves the linear relaxatiomodel 2 using CPLEX to solve RMP and

RBA to solve the sub-problem at each CG iterat®tep 2 calculate ,, for POC(s) by
solving Py 4, as described in section 4. Step 3 generates PY@ 4 ;,, from Step 2. Steps
2 and 3 are iterated for selected subsgtndl,,. By incorporating POC1 or POC2, step 4

modifies model 1, forming model 1’. Step 5 uses ERIB&B logic to solve model 1’ at nodes

after than the root node so that CPLEX defaultgrobthe branching process. Note that CPLEX
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does not allow a right-hand-side constant to begbd after its branching logic starts. Thus, our
computational tests do not upddig, to strengthetdB_POCwhen a new incumbent solution is
found; rather, we maintaifi,,. = 0 or the incumbent solution value solved by usind-ER

heuristics in Step 2-1.

Stepl. Solve the linear relaxation of model 2 using CG.
Step2 Modify objective function coefficients and sol\& j, using CG, starting with the
optimal root node solution as the initial feasibtdution to obtain th&JB_POC
(Step2-1. Solve model 1 by using CPLEX heuristestrengthen UB_POC using incumbent
solution.)

Step3 Generate POC usingB_POC lIterate steps 2 and 3 for selected subgetdl,,,
generating associated POC(s).

Step4 Incorporate POC(s) into the model 1 only at thet node, forming model 1'.

Steph Solve the augmented model 1’ by using CPLEX B&Bi¢.

Figure 13 Solution procedure

4.4.2 Solving the linear relaxation of model 2 us;nCG

Table 13 compares runtimes required to solve ttealirelaxation of model 2 using both
CPLEX and our CG approach. The first column givesrtames of test instances and the second
column presents the optimal objective function eadfi the linear relaxation of model 2, which
is the same value as that of model 1, for eaclatest Columns 3 and 4 (5 and 6) give CPLEX
(CG) results (i.e., runtime and number of simplexations). Time Reduction (columns 7 and 8)
gives two measures to compare runtimes of CPLEXGRd'A-B’ is the CPLEX runtime minus
that of CG; and ‘100*B/A’ gives the percentage oPLEX runtime required by our CG
approach. The last two columns give CG iteratiomipers: CG iteration number for 100%
criterion (columns 9), after which 100% improvingumns found are incorporated into RMP as
described in section 3.5; and one for the total memof CG iterations (columns 10) to obtain the

optimal solution.
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Table 13 Comparison of CPLEX and CG for the limedaxation of model 2

CPLEX CG Time Reduction| CC 'teration
Name | OPtimal m 10(r)1;mber
value Time [# Simplex|Time Simolex A-B 100*B/Acriterioon Total
(sec)| lter. (sec) Ite? (sec) (%)

FO9T4 | 1.719960E+07 0.22 2,000 0.16 2,410 0.06 71.4% 3 23
FO9T6 | 1.844870E+07 1.03 7,861 0.55 5249 0.48 53.0% 3 37
FOT12 | 1.173080E+0Y7 4.29 22,25¢ 2.48 19,333 1.81 57.8% 1 49
F12T4 | 2.344030E+0Y 0.90 7,130 0.44 4,513 0.46 48.4% 3 26
F12T6 | 2.462720E+07 2.43 13,923 1.23 8,379 1.20 50.7% 9 48
F12T12| 9.964422E+0b 8.53 30,950 5.49 6,377 3.04 64.4% 1 90
F15T4 | 1.143080E+07 1.12 7,519 0.28 2,846 0.84 25.0% 3 22
F15T6 | 1.240550E+0}Y 3.09 14,874 1.00 4,959 2.09 32.3% 1 44
F15T12| 3.520170E+0} 28.55 69,378 22.33 87,803 6.23 78.2% 21 113
F25T4 | 1.248940E+0}7 4.04 13,784 0.69 4,411 3.35 17.0% 3 30
F25T6 | 1.362290E+0¥ 14.24 32,384 3.32 15,249 10.92 23.3% 3 55
F25T12| 1.477820E+0{124.38 60,417 32.01 86,287 92.371 25.7% 1 95
F34T4 | 1.007000E+0Y 10.73 21,208 1.21 6,537 952 11.3% 2 23
F34T6 | 3.541140E+0Y 64.6Q 72,608 15.67 49,947 48.99 24.2% 3 56
F34T12| 1.624580E+0[B28.28 187,25] 66.74 13,734 261.54 20.3% 1 111

Our CG approach solves all test instances ofitieaut relaxation of model 2 faster than
CPLEX. As the instance size increases, the rat@®fruntime to that of CPLEX decreases; that
is, the runtime advantage of CG increases withaimest size in these tests. Note that the CG
iteration number of 100% criterion, which was detered by preliminary computational tests to
manage the number of improving columns incorporatedenerally less than 20% of the total
CG iteration number.

4.4.3 Solving BSCP using CG and POC(s)

Table 14 presents several solution values to gemd?OC(s). The first column again
notes the instance. The first three columns giviar@b solution values of (linear relaxation)
model 1 and their gaps. Columns 5 and 6 give tfiehénd-side values of POC1 and POC2 at
the optimal solution of model 1. Columns 7 and 8spnt the optimal solution value of model

Pypwith respect to POC1 and POC2. By using the valmelumns 7 and 8, and the trivial



81

incumbent solutior¥;,,. = 0, we determine the right-hand-side values of PO@d BOC2
(columns 9 and 10). Columns 11-13 give the incurismtution value solved by CPLEX
heuristics, their gaps, and their runtimes. Finallumns 14 and 15 present the right-hand-side
values of POC1’ and POC2’ strengthened by the im&mhsolution value in columns 11 and 12.

The gaps between p (column 2)andZe (column 3) range from 41% to 453%. Since
POC1 and POC2 use the trivial incumbent soludign = 0, each of their right-hand-side
values is the same as the optimal solution valtiesodlel P;z. The gaps betweéed) (column 3)
and the incumbent solution values solved by CPLEXristics (column 12) range from 38% to
100%. For instances F15T4 and F34T4, CPLEX hecsidibund only the trivial incumbent
solution (i.e.Z;,. = 0).

Table 15 compares the runtimes of CG with POGgs)rest the benchmarking CPLEX
B&B. The first column gives the names of test ins&s. A group of seven columns, CPLEX,
POC1, POC2, POC1&2 (i.e., both POC1 and POC2), POEC2’, and POC1'&2’, gives
runtimes for each of the two methods we testedhaut using CPLEX cuts and with using
CPLEX cuts. Note that the runtimes associated R@GIC(s) involve the runtimes of CG.

In the first group of columns in Table 15 (i.e.ithwut CPLEX cuts), our solution
approach based on POC is faster than CPLEX witlweaelkceptions: two instances (F12T12 and
F34T6) for POCL1; four instances (F9T4, F9T6, F24mt F34T6) for POC2; and three
instances (F9T4, F15T6 and F25T4) for POC1&2. Fgl4 graphs the ratio of runtime of
POC1, POC2, and POC1&2 to CPLEX runtime on eadhrstance without using CPLEX cuts.

A ratio less than 1.0 indicates a method thatstefahan CPLEX. POCL1 is less effective than



Table 14 Solution values to generate POC1 (POG2starngthened POC1’ (POC2)

Time
Name| Z Zp  |GAP® (;HPS(; ?1 (;HPS(; ?2 R’(24)_19|R"(24)_2° R;'gsccl’f R;'gscgf Zine HO [GAP_H®)| for Egif,f Egi;f
Zine H
FOT4 | 1.71996E+79.78245E+6 76% |4.70541E+(.69581E+61.87632E+711.87628E+71.87632E+71.87628E+75.20740E+6 47% 1.4 | 1.35558E+71.35554E+7
FOT6 | 1.84487E+79.52801E+4 94% | 4.78806E-+61.78006E+41.98643E+71.98641E+11.08643E+11. 98641E+75.87931E+6  38% | 52 | 1.39850E471.39848E+7
F9T12 | 1.17308E+75.14870E+6 128% | 4.70211E+@.69581E+61.30093E+71.30092E+71.30093E+71.30092E+72.13364E+6 59% 36.2 | 1.08757E+71.08756E+7|
F12T4 | 2.34403E+71.42319E+7 65% | 4.96325E+(.94855E+62.51494E+72.51490E+72.51494E+72.51490E+74.95891E+6 65% 2.4 | 2.01905E+72.01901E+7|
F12T6 | 2.46272E+1145254E+7 70% | 4.79046E+.78006E+62.62423E+72.62420E+]2.62423E+72.62420E+17.08008E+§  51% | 8.6 | 1.91622E471.91619E+7
F12T129.964422E+64.01397E+ 148% |4.70321E+64.69581E+41.07575E+71.07575E+11.07575E+T1.07575E+7L.09415E+5  97% | 59.2 | 1.06481E47L.06481E+7
F15T4 | 1.14308E+74.30164E+6 166% | 4.70961E+@.69581E+61.19664E+71.19663E+71.19664E+71.19663E+70.00000E+() 100% 2.1 | 1.19664E+71.19663E+7
F15T6 | 1.240550E+b.67554E+6 119% | 4.70801E+@.69581E+61.31053E+71.31052E+71.31053E+71.31052E+73.50819E+% 94% 17.1| 1.27545E+71.27544E+7
F15T12|1.477820E+77.62659E+§ 94% | 4.62327E+61.61157E+41.57969E+71.57968E+11,57969E+T1. 57968E+71.23092E+7 510 | 436.0{2.51008E+7 2.51006E+7
F25T4 | 1.24894E+74.79253E+6 161% | 4.71591E+@.69581E+61.30858E+71.30857E+71.30858E+711.30857E+14.03922E+6 16% 10.3| 9.04658E+B3.04648E+6
F25T6 | 1.36229E+76.33165E+6 115% | 4.71381E+@}.69581E+61.43774E+(1.43773E+71.43774E+71.43773E+73.74868E+% 94% 44.1 | 1.40025E+71.40024E+7|
F25T12] 3.74989E+7/2.66001E+7 41% | 9.32388E-+D.30938E-+43.98100E+73.98107E+13.98100E+13.98107E+72.11335E+6  72% | 1658.91.36836E+7 1.36835E+7
F34T4 | 1.00700E+7181969F +4 453% | 4.63587E+81.61157E+61.05612E+71.05610E+]1 05612E+71.05610E+70.00000E+Q 100% | 21.1| 1.05612E47.05610E+7
F34T6 | 3.54114E+72.27045E+7 56% | 9.32758E+®.30938E+(3.74207E+1|3.74204E+73.74207E+73.74204E+76.98688E+6 69% 557.0/3.04338E+7 3.04335E+7
F34T12|1.624580E+78.36782E+§ 94% | 4.62697E-+61.61157E+44.62607E+64.61157E+44.62607E+04.61157E+61 88006E+6  77% | 458.6(1.54430E+] 1.54429E+7

(@) GAP =100 *Zp -Zp ) Zp
(b) LHS of POC1 (POC2): LHS of POC1 (POC2) at optimal Sotu
(c) R(24)_1 (_2): R(24) for POC1 (POC2)
(d) Incumbent solution value by using CPLEX heiosst
(e) GAP_H =100 *Zp - Zinc_H)/ Zip

c8



Table 15 Comparison of runtimes

Without CPLEX cuts (sec) With CPLEX cuts (sec)
Hame CPLEX |POC1|POC2 POC1&2|POC1'|POC2' POC1'&2' CPLEX|POC1/POC2POC1&2POC1'|POC2' POC1'&2'
FoT4 4.1 4.0 4.2 4.2 4.0 3.9 4.0 39/7 11.0 25.3 318.10.84| 25.2 18.3
FIT6 10.5 8.9 10.7 9.2 9.1 10.0 8.5 625 3.8 71250 |32.59 71.0 44.5
FOT12 | 46.6 375 25.9 26.8 398 22/6 23.7 22[7.2 72PBI5.1| 184.7 |222.56161.0| 184.2
F12T4 | 60.8 28.9| 30.6 34.4 289 29|19 33.9 118.8 311m83.8| 116.3 | 119.7 133.9| 1155
F12T6 | 47.7 29.9| 45.8 32.3 30.7 442 30.8 1638.9 BZEBB.2| 252.6 | 328.5 360.8| 222.6
F12T12| 205.0 | 337.3] 106.9 91.2/ 337|6 103.8 914 850.9 68%Q.8| 943.4 | 683.0 673.6| 945.0
F15T4 | 14.9 12.2| 12.1 10.1 12p 12)1 10.1 229.0 11@4173.5| 192.2 | 147.4 173.5| 192.2
F15T6 | 37.4 39.7| 25.6 38.6 38.0 24{1 40.8 373.2 6MB9.9| 393.6 | 543.1 490.8| 397.3
F15T12| 724.2 | 716.1) 7143 4643 7163 7182 4655 391765.53744. 4845.3 | 4528.63696.1 2605.7
F25T4 | 142.9| 98.3| 263.0 1624 96/6 2284 2398 D58646.22290.3 3273.1|1993.2719.21 3121.4
F25T6 | 651.7| 478.1 580.p 553.8 473.7 580.2 5551 740672005724.6 3262.2 | >72006732.7] >7200
F25T12| 2199.7 | 1189.02129.4| 1176.7 | 1277.42138.3| 1141.0 | >7200 >7206-7200| >7200 | >7200>7200| >7200
F34T4 | 1184.1| 526.2 6423 581.1 526.2 581.1 526.2 2067>7200>7200, >7200 | >7200>7200| >7200
F34T6 | 2589.8| 4907.8397.1 2164.0 | 4936.25893.0f 2891.9 | >7200 >7206-7200, >7200 | >7200>7200| >7200
F34T12|>7200% | >7200|>7200| >7200 | >7200 >7200| >7200 | >7200 >7200>7200 >7200 | >7200>7200| >7200

(a) >7200.0: optimal solution was not found wittie time limit of 7200 sec

€8
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POC2 and POC1&2 in our tests. It is interestingdte that the runtime of POC1&2 is between

or better than those of POC1 and POC2, with thegti@ns of F12T4. Average ratios of runtime

of our

methods to that of CPLEX are 90% for POC1%9for POC2, 76% for POC1&2,

respectively, implying that POC1&2 outperforms,amerage, CPLEX, POC1, and POC2.

The strengthened POC?2’ is faster than POC2 fort inesances, with the exception of

F15T12 and F34T6. In contrast, the strengthened P@@d both POC1'&2’ do not reduce

runtimes in our tests. From the results in the séa@roup of columns in Table 15, solving with

CPLEX cuts is slower than solving without CPLEX sdior all instances. Especially, for four

instances (F25T12, F34T4, F34T6, and F34T12)ditndit find the optimal solution within 7200

seconds.

Runtime/Runtime of CPLEX

Figure 14 Comparison of four solution methods

To investigate the impact of the right-hand-siaéue of POC1, we solved the instance

FO9T6 by using strengthened right-hand-side valuésP@C1l. Table 16 compares the

performance of POC1 with various right-hand-sidéues. The first column gives the test
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number and the second, the name of POC. Colummsl 3 @resent the right-hand-side values
and their gaps. Columns 5-7 provide performancesmes (i.e., runtime, simplex iterations and
nodes examined).

Row 1 gives the result using CPLEX without POCawR is associated with POC1 and
row 3, with POC1’, which has a strengthened rigintdhside value by using CPLEX heuristics.
From row 4 to 6, we strengthened the right-hand-salue of POC1. Row 7 gives the result by
using the optimal right-hand-side value of POC1. the right-hand-side value of POC1
decreases up to the optimal solution, the runtigimplex iterations, and nodes examined
decrease as well. This result implies that theqgoardance of POC(s) depends on the quality of

the right-hand-side value and such inequalities b&alelpful in accelerating B&B.

Table 16 Comparison of various strengthened rigimgkside values of POC1 for instance F9T6

No POC RHS of POC1 GAP_RHS | Runtime (sec) Iteration Nodes
1 - - - 10.50 62935 1781
2 POC1 19864300 315% 8.9 55641 1126
3 POC1 HP 13984993 192% 8.9 55641 1126
4 POC1 a 10000000 109% 7.5 49333 1018
5 POC1 b 8000000 67% 6.3 40349 884
6 POC1 c 6000000 25% 6.3 40349 884
7 | poc1 ® 4788056 0% 6.2 39839 725

(a) By using CPLEX Heuristics

(b) Optimal

4.4.4 Analysis of the performance of POC(s)

This section analyzes and compares the performasfcB©C1, POC2, and POC 1&2
based on a few typical test instances (i.e., FAH®T6, and F12T12). Each following
subsections compare the detail performances oetholition methods, without using CPLEX
cuts, for several cases: the performance of POG4&2tter than those of POC1 and POC2; that

of POC1&2, between those; and that of POC1&2, witaa those.
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4.4.4.1 The performance of POC1&2 is better than thse of POC1 and POC2 (F12T12)

Figure 15 compares best bound, best integer,ldumber of iterations based on four
solution methods for instance F12T12 over the erB&B procedure. In terms of runtime,
POC1&2 is best among all methods; POC2 is secoREX, third; and POCL1, the worst. The
best bound of CPLEX decreases slower than othershengap of CPLEX decreases slower than
others. Note that, by default, CPLEX has a relalil® gap of 10 (0.01%) and an absolute MIP
gap of 1, and the number of simplex iterations in this pag@es not include the iterations

caused by CPLEX strong branching.
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Figure 15 Comparison of Best Bound, Best Integed, #lterations based on four solution

methods (Instance: F12T12, Scope: the entire B&Bckg

One interesting observation is that all methodswslvery small gaps between best
bound and best integer after about f5@@de. In the initial stage of the B&B search, byna
variables associated with opening facility (i), which have relatively large objective

coefficients,might be selected as a branching variable becaB&&X branching rule may tend
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to branch first on a variable which has a largeaotpn the objective function value. Followed
by those binary variables, binary variabjgsassociated with selecting arc, which have small
objective coefficient (e.g., 300) compared tg. (e.g., 4,511,168 and 60,000), may be selected
as a branching variable. Even though fixingo zero may make some impact on material flows,
the impact of fixing it to one on the solution athe objective function values may be very
small. In addition, the number of binary variabjgge.qg., 3,564 for F12T12) is much larger than
that ofxs, (e.g., 108 for F12T12). Thus, in some unforturatse, while fixingy, variables, it
could take long time to reach the relative optityadiap less than 0.01%.

Figure 16 enlarges Figure 15 for the range betwiSeand 1008 node in the B&B
search. POC1&2 shows the smallest best bound imitie stage (up to 10bnode) of the B&B
search. Even though the best integer of POCl1&2ases slower than other methods, the gap
between best bound and best integer decreases tfamteothers (see the result on Bd@de in
Figure 3). This earlier convergence of POC1&2 th#rers might result in earlier termination.
However, even though the gap of POC1 between lmsicband best integer decreases faster
than CPLEX, POC1 searched larger number of no@ssiting in larger runtime and simplex
iterations than CPLEX. This might be associatechwait unlucky B&B search path as well as

large B&B search space according to the large numibe, variables.
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Figure 16 Comparison of Best Bound, Best Integad,#Alterations based on four solution

methods (Instance: F12T12, Scope: betwékant 1008 node in the B&B search)

4.4.4.2 The performance of POC1&2 is between thos¢ POC1 and POC2 (F12T6)

Figure 17 compares best bound, best integer,lFdumber of iterations based on four
solution methods for instance F12T6 over the eri&B procedure. Overall convergence
pattern is similar to that of F12T12. POCL1 is tlestbamong all methods; POC1&2 is second,
POC2, third; and CPLEX, the worst. The gap of CPLd&Xverges slower than others.

Even though the number of nodes searched of POG&ater than that of CPLEX, the
number of simplex iterations of CPLEX is greatarthhat of POC2, resulting in that runtime of
CPLEX is greater than that of POC2. This may beabse the nodes in B&B search path of

CPLEX require more simplex iterations than thosthenB&B search path of POC2.
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Figure 18 enlarges Figure 17 for the range betwiSeand 1008 node in the B&B

search. POC1&2 shows the smallest best bound anthtbest best integer in the initial stage
(up to 108" node) of the B&B search. Even though the gap betveest bound and best integer

of POC1&2 decreases faster than others, the gap®6fL, POC2, and POC1&2 become similar

on 400" node. After about 5bnode, POC1 shows the smallest gap. This fastarecgance of

POC1 than others may result in earlier terminatiOne interesting observation is that the

number of iterations of CPLEX is smallest amongadithods in the initial stage of B&B search

before 308 node, but becomes largest after 256de.
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4.4.4.3 The performance of POC1&2 is worse than tise of POC1 and POC2 (F12T4)

Figure 19 compares best bound, best integer,lFdumber of iterations based on four

solution methods for instance F12T4 over the e procedure. POCL1 is best among all

methods; POC2 is second; POC1&2, third; and CPUBEX worst. Even though CPLEX shows

the smallest gap in the initial stage of B&B seattie number of nodes searched of CPLEX is

greater than others, resulting in that runtime BLEX is the largest among all methods: i.e., it

took longer time for CPLEX to reach the relativdimplity gap less than 0.01%. This might be

due to the unlucky path of CPLEX B&B search.
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search. Even though POC1&2 shows the smallestbmestd and the largest best integer in the
initial stage (up to 100node) of the B&B search, the gap between bestdamd best integer
of POC1&2 decreases slower than others aftef" @file: i.e., the initial advantage was not
helpful to acquire faster convergence. This mayltda the larger runtime of POC1&2 than
POC1 and POC2.
4.4.4.4 Discussions on the performance of POC

Since the analysis showed that the performancPQC€ is associated with CPLEX
strong branching, here, this paper briefly reviestsdies for B&B. Benichou et al. (1971)
proposed the concept gfseudo-costremarking that “though the results are unstabie,
comparison show the interest of such a strategspeed up ... ”. Linderoth and Savelsbergh
(1999) conducted a computational study of B&B skatrategies, noting that “there is no one
search strategy that will work best on all probiestances”. Fischetti and Lodi (2003) presented
local branching reporting that their method improved the perfanoein 23 out of 29 cases.
Achterberg et al. (2005) describedliability branching noting that “we did not base our
conclusions on performances of single instancesdisulss those in detail. We rather rely on
average numbers of over all instances”. GlankwanasheeLinderoth (2006) studiddokahead
branching noting that “the intuition behind our study is\teew strong branching as a greedy
heuristic for selecting the branching rule”. Aclikerg and Berthold (2009) proposésibrid
branching comparing the performances of several rules bagpet the geometric means of
runtime and the number of nodes examined. Ostroveskal. (2011) introducedrbital
branching comparing the performance of branching rules daggon the number of best
runtimes. Karamanov and Cornuejos (2011) considdmaehiching on general disjunctions,
showing that their method outperforms on average libnchmarking method, with several

extreme cases in which their method is worse. Bagedn this limited literature review, it
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seems that studies for B&B have not focuses ormlétails about exceptional cases, but reported
the average performance.

Linderoth and Savelsbergh (1999) noted that thktyabf the selection of a suitable
subset of variables on which to perform a numbeduafl simplex iterations impacts greatly on
the effectiveness of strong branching. Thus, we mdect that using POC1&2 may be better
than using a single POC (i.e., POC1 or POC?2). fackf on average, POC1&2 outperforms
others. However, from Glankwamdee and LinderottD@® perspective that considers strong
branching as a greedy heuristic, it may not be ajuaed that providing better information to

strong branching always outperform providing wardermation.
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CHAPTER V

SIMULATION MODEL: PART1. BIOMASS MODULE LOGISTICS S YSTEM

This chapter introduces a simulation model for@ri@ss module logistics system which
uses large biomass packages (i.e., modules) dtienff size and density to provide maximized
legal highway loads and quick load/unload timeshSa system was being tested conceptually
at Texas A&M University, but modeling was used tedict system performance prior to
constructing prototypes.

Section 1 presents a background of biomass logististems. Section 2 describes the
conceptual biomass module system. Sections 3 agigdeddetails of IBSAL modeling and a
simulation model, respectively. Section 5 givesudation results and analyzes the sensitivity of
each performance factor to the system.

5.1 Background

The conceptual logistics system described heresinaitarities with the cotton logistics
system, which uses large packages commonly cakgtbrc modules. Cotton is normally
harvested and collected in a dump basket on theesr. A dump trailer transports collected
material to a module builder located at the edge 6&ld. The module builder compresses the
cotton into large modules (e.g., 2.4 m wide * 2.4igh * 9.8 m long) (Ravula et al. 2008). The
cotton modules, protected from weather with a mlagiver, wait on a field to be transported to
gins by module haulers. A recent development itonoharvesters that form smaller modules
on-board the harvester, eliminating the need ferdomp trailer, the module builder and the
associated labor (Taylor, 2007). Ravula et al. 3iggested that it may be possible to apply
operational strategies from a cotton logisticseaysto a biomass logistics system, describing the

similarities between those systems.
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In many industries, logistics systems use largkk@ges to deliver materials efficiently.
Shipping companies use large containers to fa@litaaterial handling and to protect shipping
products. Even though its adoption required hugestment and negotiated standards, cost
savings from improved material handling efficieryceeds those investment costs. As a result,
factories are located far from customers and lost-goducts are shipped around the globe
(Levinson, 2008). A disadvantage of the contagi@pping system is the accumulation of empty
containers at the customer locations and the regdd return loads or ship empty containers.

Chapter Il provides a review about operationaklestudies of biofuel SC, most of
which estimated performance of biomass logisticdesys. In particular, since a bale system has
been commonly used to transport hay, several eatlielies (Jenkins et al., 1984; Sokhansan] et
al., 2006; Petrou and Mihiotis, 2007; Kumar and&oisanj, 2007; Morey et al., 2010; Suh and
Suh, 2010) employed a bale system to estimate ta@mpomeasures (e.g., cost and energy)
associated with delivering biomass. Table 17 dbesrhighlights of those studies.

Jenkins et al. (1984) estimated logistics costsewkral types of biomass (e.g., corn and
sorghum stover, wheat and barley straw, and ricew¥tin California of the U.S.A. They
developed a cost equation that includes a variabkt of transportation, a fixed cost of
transportation, and collection and processing cbse collection and processing costs were
$28.02/Mg for corn and sorghum stover, $29.58/Mgwbeat and barley straw, and $35.35/Mg
rice straw, respectively. For the straw, the fixeghsportation cost was $6.14/Mg and the
variable transportation cost was $0.061/Mg-km; dhd,fixed and variable transportation costs

of the corn and sorghum stover were $9.78/Mg an@d7B8IMg-km, respectively.



Table 17 Estimates of biomass logistics cost inrsiudies

Cost
Collection :
C(z)arteg Authors |Year| Biomass Process & Traég/sl\aoﬁ(a;qlon Total Remark
y Processing or $?M ) ($/Mg)
($Mg) J
- - - *|
Rice straw Zm?éh rec bale-transport-staied 4150 0.061 $/Mg-km41'5+d0'061
Wheat o|swath-rec bale-transport-staid 35.72+0.06]d: d|§tance from farm g
. X 35.72 0.061 $/Mg-km a refinery
Jenkins et al. | 198tbarley straw |grind *d Include storing
Corn o] \ ;
Sorghum swath.-roll bale-transport-store- 3780 0.078 $/Mg—km37'8+0'078 operation
tub grind d
stover
cut-collect(by 3rd party)- .
. transport-drying & baling-store- - - 58.5% .
Tatsmpoulos 2003 |Cotton stalks |transport Includg storing
IP, Tolis AJ operation
cut-collect(by farmers)-transport- ) 33,69
drying & baling-store-transport '
. . Distance winding
Sokhansanj ety 6| o stover [COMPINE-shred-bale-stack- | 44 op 13.76 $/Mg 53.57 [factor: 1.4
al. load-transport-unload-stack-grind 32160 km
Bale
P?‘T‘“% and 2007 |Cotton stalks| cut-bale-transport-store-transport  .518 0.2 $/Mg-km 62.53 Include payment to
Mihiotis contractors
swath-rake-bale(squar_e)-stack- 36.69 i 41-45
tarp-transport-stack-grind
swath-rake-bale(square)-stack- i i
Kumar and : tarp-grind-transport 33.70 41-55 Transporting distance:
. 12007 |Switchgrass
Sokhansanj swath-rake-bale(round)-stack- 3-77 km
; 35.21 - 39-48
tarp-transport-stack-grind
swath-_rake-bale(round)-stack- 32292 i 39-54
tarp-grind-transport
Sokhansanj el 4| corm stover |2rVest-bale(square)-stack- 38.01 9.98 $/Mg 48.35 | Distance: 70 km
al. transport
. Include storing
Morey et al. | 201QCorn stover shred-rake-bale-transport-grind 5 g 6.40 $/Mg 48.48 |operation

roll press-transport

Distance: 42 km
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Table 17 Continued

Cost
Collection Transportation
Category] Authors |Year| Biomass Process & $ /I\F/JI Kkm Total Remark
Processing or $?Mg) ($/Mg)
($/Mg)
Refinery Capacity:
Suh and Suh| 201CQorn stover | bale-transport-grind - - 12-42|0-2500 million
liters/year
Bale bale-grind-pellet- i i i
transport(truck)-grind 18-33
bale-grind-pellet-transport(rail)- ) ) 27.30
grind
Turhollow et 1996 Herbaceous chop-truck in field-transport 7.2 8.37-13.98 15.57-21.28
al. crops $/Mg
Silage chop with wagon-transport 7.3 8'9337/";:'98 15.58-21.29
Kumar and 2007|Switchgrass | chop-ensile-transport 27.18 - 38-5 yransporting distance
Sokhansanj 9 P P ' )3-77 km

(a): converted from euro to U.S. dollar by using ¢éixchange rate of 1.3 for U.S. dollar per 1 euro

L6
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The logistics system for cotton stalks investigaby Tatsiopoulos and Tolis (2003)
comprises chopping, transporting to an intermediaieshouse, biomass treatment (i.e., drying
only, drying-baling, and drying-pelletizing) andoshg in an intermediate warehouse, and
transporting to a power plant. They compared co$tseveral logistics systems considering
several technologies of biomass treatments in sarmediate warehouse and the type of the
ownerships of transportation vehicles (i.e., thiaty companies and farmers). In the case of
drying-baling, the estimated logistics costs wes8.%/Mg when using third party machines and
$33.8/Mg when using farmers’ machines. Petrou aifddis (2007) evaluated the commercial
price of biomass delivered by several collectiorihods of cotton stalks: uprooting and baling;
cutting and baling; and cutting and transfer inkbdlhe first and second methods resulted in
similar prices and the third one was worse thaersth

Corn stover has been studied as feedstock basedhate system. Sokhansanj et al.
(2006) developed the IBSAL simulation framework awvéluated a bale system for corn stover
feedstock. Their model comprises combine, shreddiating, stacking, truck travel, stacking,
and grinding. The estimated cost was $53.57/MgJluding the transportation cost of
$13.76/Mg.

Morey et al. (2010) estimated the logistics cdstan stover based on a bale system in
Minnesota. The logistics system investigated comsiEshredding, raking, baling, transportation
to storage site, tub-grinding, compacting, anddpantation to conversion plant by a semi-truck.
The total cost for delivering bulk corn stover tmgersion plants is estimated at $48.48/Mg.

Suh and Suh (2010) in Minnesota developed a stinulamodel to compare five
logistics options for delivering corn stover basedthe combination of a process type and a

transportation method (see Table 1). Their mode&lsdaot include harvesting and collecting
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operations. The costs were estimated at $12-56fdghow that using pellet operation is better
than other options.

Logistics systems to deliver switchgrass also h&éeen evaluated. Kumar and
Sokhansanj (2007) employed IBSAL to evaluate sévexistics system for switchgrass as
described in Table 1. The most economic logisticstesn was a loafing system, the cost of
which was $30-45/Mg over several biorefinery capesi Loafing is a form of large biomass
package formed directly from a windrow of materialhe loafing system was estimated to
deliver biomass at lower cost than baling ($40-5gyM

In 1996, Turhollow et al. investigated the costddilage system for herbaceous crops.
They estimated in-field cost at about $3-12/Mg &mel transportation cost at about $8-14/Mg,
assuming that the silage density on the truck w89 or 416.48 kg/in(15.6 or 26.0 Ib/f).
Kumar and Sokhansanj (2007) also evaluated a s8ggem for switchgrass. The estimated
total cost was $38-59/Mg including processing cd$27.18/Mg.

As these studies have shown, the cost to delidyateous biomass varies by feedstock
type, location and technologies used for packadhey biomass. The cost estimates were
determined using economic modeling and simulatibhe USDA and DOE (2008) reported that
biomass logistics, which includes harvesting/coitey;; storing and pre-processing, constitutes
as much as 20% of the current cost of supplyintulosic ETOH. Reducing the logistics cost
will be a key factor in successful commercializataf the cellulosic bioenergy industry.

5.2 Description of the conceptual biomass module sgm

The biomass module system investigated consistssesferal unique machines.
Subsection 1 describes the overall system. Subssc2, 3 and 4 give details about the
individual machines required in the system. Thedul® system was not intended for any

specific biomass crop or growing region. The fundatal features of the system (high density
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and rapid handling) are applicable to all biomasgstics systems. However, one feature of
system (gas tight packaging) was intended to atlmevhandling and storage of high moist
biomass. This feature is especially needed fon kiglding biomass crops that are difficult
field dry to safe sta@ge moisture (< 20%) and high rainfall regio
Other machines were required to make up the eloiyistics system, but are not described |
because they are commercial machines implementdBSAL simulation elements. Tho
additional machines ingtled a mower/conditioner and a tractor/s«trailer combinatior
5.2.1 Overall system

The conceptuaimodule-based logistics system compidsa series of unit operatior
including cuttingand conditioning for field dryir, chopping, forming modes, moing modules
from a local fieldlocation and loading them onto trail, highwaytransport to ebio-refinery,
and unloading/transpowithin the bio-refinery. Figure 21 depicts these wperations in th
biomass module systenThe shaded blocks represemachines that require developm

(module former and hauler) or modification (fordgevester

TN P o FIELD
HARVEST /o \ CHOP MODULE o
, L { Fleld \ _ o TRANSPORT
BIOMASS :Forage % :Module —» F—
" Dry :Module
:Mow/Conditioner Harvester Former
Hauler
UNLOAD ROAD
CONVERSION
:Module [« TRANSPORT |«
PLANT . .
Hauler :Semi-Trailer

Figure 21Schematic of the biomass module sys: shaded blocks represent unit operations
are not currently available in t IBSAL simulation tool, and were developed in thisdy
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Biomass chopped by a self-propelled forage haevéStPFH) is collected in the module
former, which is towed by the forage harvester. Tiedule former compresses the collected
biomass and generates biomass modules, which alesed in a plastic oxygen barrier. The
biomass module produced is a large package thabeadransported effectively by the module
hauler and semi-trailer. A module hauler transpontsdules for a relatively short distance
(expected to be less than one mile) from the fielthe local field storage or loading site. For
long distance transport to a refinery, a semigrag used. Within the refinery, module haulers
would be used again to unload and transport modules
5.2.2 Modified forage harvester

The SPFH will pull a module former, so it will nge more power than a conventional
forage harvester of the same capacity. Commerciaifyjlable forage harvesters are designed to
pull a silage wagon, but the mass of the formertardon-board biomass will cause the draft to
exceed significantly that of the silage wagon. Elfiene, changes in the operational parameters
of the SPFH when used in the biomass module systere required. These included the
additional power to handle the module former andraponal factors (e.g., speed and setup
time) associated with efficiency.

In a conventional forage chopping system, somé&geoof chopped biomass can be lost
when the stream of chopped material is not retainethe haul trailers (overflow on filled
trailers, poor stream direction by operator, etd.he modified forage harvester was expected to
reduce such biomass losses incurred by directhploay the material transfer between the
forage harvester and the towed module former.

5.2.3 Module former
Since no such machine exists currently, the mofitwtaing operations were anticipated.

While the forage harvester is operating, choppexmhbss is blown into the towed module
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former. The module former continuously compressesass into a constrained package. When
the quantity of biomass reaches its predefined amoti 13.6 Mg wet weight (15 tons), the
package would be closed and the next one staffld. formed module length would vary with
the moisture content of the biomass, but maximumgtte would be 7.3 m (24 ft.). The module
former has the capacity to haul up to one and fafbidlength modules. The finished modules
would be unloaded when the machine reaches the adipe field or a turn-row. The module
will wait at the field edge until transported bynadule hauler. While unloading the formed
module, the forage harvester is required to spjieration so that unloading operation would
decrease the system field efficiency.

Since a module former is not commercially avagabteveral assumptions were
employed to define its properties: power — 298.4 {&W0 hp), maximum volume - 47.6°m
(1,680 ff), module dry matter density target — 240.3 Kg(i® Ib/ff’); $450,000 purchase cost
and plastic cost of $50/module. Module former prtps (e.g., purchase cost, power, loading
preparation time, unloading time, and module dghsihay be strongly related to its
performance. A range of these values was invdstigrough a sensitivity analysis (see section
5.4.2).

5.2.4 Module hauler

The module hauler was patterned after a similachim@ used in Australian to load
cotton modules (which are 25% longer than US stahdedules) onto flat-bed trailers (Figure
22). That machine can load and unload the moduléklyg (2-3 minutes), and transports the
cotton modules from the fields to the loading sShieis machine straddles the trailers and uses its
tilting, live bed to unload the module onto theiltna To work with biomass modules, this
concept must be modified to handle the greater raadsto lift two biomass modules at one

time. Unloading is a reverse operation of loading.
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Since a module haulewas also commercially unavailablgidgments were made
define its properties; power 335.7 kW (450 hp)ability to load two maximum size modu;
purchase cost$375,000; and average travel sp- 11.3 km/hr (7 mph)Theseproperties were

also investigated with sensitivity analysi(see section 2.4.2).

LI [ 1 TP

Figure 22Australian module hauler loading a cotton moduberfthe fielc

5.3. IBSAL modeling

This section presents detailssociated with the IBSAL simulation models develc.
The IBSAL modeling tool is described, followed bysdriptions o new IBSAL elemers
developed to represent tleenceptual machines of the biomimodule systel, properties of
thosemachines considered in a sensitivity ana, and the model of the entireodule syster
5.3.1 Overview of IBSAL

IBSAL is a collection of simulation eleme programmed in ExtendSim, a simulat
package (Imagine That, Inc.,10). This study used a version of IBSAbtained in 2010 al

compatible withExtendSimversions 7.0 and 8.0. The authors haedaborated with ORNI
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personnel to verify and improve IBSAL, and haveesscto a version of IBSAL not yet released
to the public. Some elements have been updated (eaisture content variation logic, dry
matter loss logic and etc.) from the version usegrievious studies (i.e., Sokhansanj et al.,
2006; Kumar and Sokhansanj, 2007; Sokhansan;., &C48).

Inputs are spatial information such as farm syeld, and transportation distances,
harvesting schedule in a weekly basis, daily weatla¢ga, and machine data. Outputs are cost,
energy input, carbon emission, quantities of biarast and delivered, and operation time.

In IBSAL, simulation items are generated basetherharvesting schedule (i.e., discrete
event simulation). Each simulation item representgiantity of biomass calculated based on a
unit land size and specified crop yield. Thus, dhgount of biomass in each simulation item is
set by the user. For example, if the input valudes unit land size and a crop yield are 50 ha and
5 Mg/ha respectively, each simulation item represé&tb0 Mg of biomass. The generated
simulation item passes through all simulation eletsién the model, in which several attributes
(e.g., moisture content) are updated and some ne=oe.g., cost and energy) used to process
the biomass are calculated.

The simulation model checks the input weather tmmdto determine how conditions
affect processes (change in moisture content) ®rsaitable for machine operations (rainfall
prevents operation). If machine resources aresnfiicient to process the simulation items
arrived, the simulation items wait in the queueeath simulation elements until the weather
condition become better or a machine resource @ladle. In particular, some collecting
machines (e.g., forage harvester and baler) inclagie for a field-drying operation. If the
moisture content of a simulation item is greatentthe target value (e.g., 20%), the simulation
item will wait in the queue up to some predefineakimum waiting time.

IBSAL simulation models calculate several perfonoce measures (e.g., cost, required
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energy, a quantity of COemissions, and the tonnage of processed biomasskiated with
supplying biomass to a refinery. The cost includagital, maintenance, tax, interest, and labor
costs. The required energy is calculated basedempaower of each machine and its working
time. The quantity of C@emissions is assumed to be proportional to theggnesed. The mass
of biomass is that portion remaining after considgthe dry matter loss in each operation.

The IBSAL libraries provide several simulatioremkents that represent machines or
processes. These are categorized as harvestatsrdraransporters, loaders, processors, and
storages. Simulation elements in each group hawiasistructure, so a new or modified element
can utilize much of the existing structure and atgm. An additional functionality added at
Texas A&M was the ability to capture and use hisarweather from the NOAA National
Climatic Data Center, rather than the TMY2 weatieta used by the original IBSAL package.
5.3.2 New IBSAL elements

Three new IBSAL elements were developed; a fofeg@ester working with a towed
module former, the module former, and a moduledrautach are described individually.
5.3.2.1 Modified forage harvester

In the conceptual logistics system analyzed is shildy, operations of a forage harvester
and a module former are strongly coupled: i.e.s¢htwvo machines must work together. In the
ORNL version of IBSAL, some elements can have anstrrelationship, for example between a
tractor and a trailer, each unit operation elenretBSAL deals only with one machine and has
no logic to relate with a strongly coupled machife.consider such strong relationship in detail,
the forage harvester element required informatitomfthe module former (e.g., maximum load
and loading/unloading time) and vice versa (e.gerating time). These two elements were

developed separately, although mechanisms weraldadgmss the necessary information.
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To create the SPFH compatible with the module &rrthe existing IBSAL element for
a commercial forage harvester was modified. Thiw senulation element was developed to
incorporate several additional aspects:

(1) The simulation item was changed from a bulk of iembased on a unit land area to a
module, the size of which was calculated based hen maximum volume and the
maximum weight limitations defined by the modulenfier,

(2) operations can proceed only when both a forageelter and a module former are
available, and

(3) the total processing time was the sum of the setog of a machine, the operating time
of chopping, and the unloading time of modules.

To specify the property of the modified SPFH, &rusan set several parameters, for
example, power, purchase cost, dry matter losgiafty, speed, daily working hours, and the
maximum moisture content for operation to beginpadmticular, several parameters (i.e., power,
purchase cost, dry matter loss and efficiency) bawgffected by the required modification of a
commercially available SPFH so that this paper idemed those in the sensitivity analysis (see
Section 5.4.2).
5.3.2.2 Module former

The simulation element of a module former wastbtdim other transporter elements in
IBSAL. The module former element uses the samegssing time as the forage harvester. It
contains logic for calculating system performanceasures based on the processing time. It
also contains logic that utilizes the moisture eantattribute of the biomass in each simulation
unit to determine the dimensions and mass of thduhedformed and the frequency of unloading
finished modules.

A module former in a simulation model can be dafirby setting several parameter
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values of its simulation element such as purchast, ower, efficiency, preparation time,

unloading time, module density, the maximum volwha module. This paper examined several
values of purchase cost, power, efficiency, prdpardime, unloading time and module density
through a sensitivity analysis (see Section 5.4.2).

5.3.2.3 Module hauler

The module hauler element was developed basedhenIBSAL element of a
commercially available truck. The modificationdagic are that it can deal with two modules at
once, and that it can load and unload two moduieme operation by itself without using other
loading/unloading machines.

Similar to existing transporter IBSAL elementsyesal parameters (e.g., purchase cost,
power, speed, loading/unloading time, the numberopérators and machines, min/max
transportation distances, and weather conditioresused to define a module hauler that is used
in a simulation model. The sensitivity analysis sidered several parameters including purchase
cost, power, speed, and loading/unloading time $&=tion 5.4.2).

5.4 Simulation model
5.4.1 Simulation scenario

The simulation consisted of a conceptual serieseglential operations that generated
the simulation units and proceeded through deliterg conversion plant. Grass-type biomass
was available from some farm land area. Crops weateby mower/conditioners based on a
predefined harvest-schedule. The cut biomass wasved to field dry until the required
moisture content was acquired or the maximum waitiime reached. A forage harvester
chopped the biomass and a module former generatesmbés modules. The generated modules
were laid down on the field and were transporte@ loyodule hauler to a local field-storage site.

Modules stored in a local field-storage site weemgported to a refinery by semi-trailer. The
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semi-trailer transportetivo modules at once. After arriving to a refineeysecond module
hauler was used tonload ancmove the module within a refinery.oNadditionalpreprocessing
operations were includeid the simulatior Figure 23shows the simulation model develof

with existing and modifie¢tBSAL elements.
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Figure 23 Modulésased biomass simulation model: the OutPutExeshehts record tr
process data into a spreadsheet.

Out Put Excel

Daily weather datéor 1992 in College Station, Twas obtained froational Climatic

Data Center provided bhe U.S. National Oceanic and Atmospheric Administra. The data
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for 1992 was selected because the total precimitati 1992 of 606 mm is about the median of
the total precipitations in College Station, whiginge from 250 mm in 2010 to 1141 mm in

1994. The dry matter yield of biomass was evaluatetl.2 or 22.4 Mg/ha (5 or 10 ton/ac). The

farm area was 20,250 ha (50,000 ac) for the yiéld102 Mg/ha (5 ton/ac), and 10,125 ha

(25,000 ac) for 22.4 Mg/ha (10 ton/ac). Thus, theual biomass supply was the same to both
yield cases (i.e., 250,000 Mg).

5.4.2 Sensitivity analysis

Since the required machines in the module-basgidtios system are not available
commercially, several values critical to the estingacost and capacity are not known and must
be considered for their ultimate impact on the glesif such machines. Several factors related to
the system performance were identified and testi¢d avrange of values through a sensitivity
analysis. For each property, a median value (sees a most likely value based on the
experience of the authors), an optimistic and @ipestic value were selected. Table 18 gives
the properties and values considered in the seitgiginalysis.

While a commercially available forage harvestecassidered to have 10% dry matter
loss (Sokhansanj et al., 2008), the dry matter Ye&s judged to be improved as a result of the
close coupling of the forage harvester and the teodlormer (6% for median or 2% for
optimistic). The impact on field efficiency for ttewed SPFH/module former combination
compared to a conventional forage harvester (85%s @onsidered to be zero in the optimistic
scenario, 10% in the median case and a reducti@»%f in the pessimistic situation. While the
basic forage harvester modeled in IBSAL has a p@f#8i76.7 kW (505 hp), additional power of
37.3, 59.7, and 74.6 kW (50, 80, and 100 hp) wemasidered. Since the modified forage

harvester may require additional cost, three amlthii costs (i.e., +30,000, +60,000, and
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+90,000) were considered based on the purchase ofodie basic forage harvester (i.e.,

$161,200).

Table 18 Machine properties and values used taiat@athe biomass module system

No | Machine Property Values Unit
1 Purchase cost 191,200, 221,200, 251,200 $
2 Forage Dry matter loss 0.02, 0.06, 0.10 Decimal fractipn
3 g Efficiency 0.60, 0.75, 0.85 Decimal fraction

Harvester
4 Power 376.7 + 37.3,59.7, 74.6 | kW

(505 + 50, 80, 100) (hp)

5 Purchase cost 350,000, 450,000, 550,000 $
6 Power 223.8, 298.4, 373.0 kw

Module (300, 400, 500) (hp)
7 Preparation time 10, 30, 60 sec

Former - e -
8 Unloading time 05,2,4 minute

_ 192.2, 240.3, 288.4 kg/n’
9 Module density (12, 15, 18) (Ib/f®
10 Purchase cost 250,000, 375,000, 500,000 $
11 Power 261.1, 335.7, 410.3 kw
(350, 450, 550) (hp)

Module

12 | Hauler Average travel speed 48,113,161 km/hour
g Peet (3,7, 10) (miles/hour)

13 Loading time 1,2,3 minute
14 Unloading time 1,23 minute

Purchase cost of a module former ($350,000 - ®8),and the required power (223.8 -

373.0 kW {300 - 500 hp}) were estimated based omlarity to the function and complexity of

the John Deere round module cotton picker. Sincéeo280 modules may be generated from a

unit of the plastic cover material, and time is uiegd to refill the consumable plastic

periodically, the required preparation time wasggd to range from 10 to 60 seconds/a module.

The time required to unload a formed module wasrasd to be from 0.5 to 4 minutes. Module

density produced was judged to be from 192.2 to2B§/nT (12 to 18 Ib/fl).
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A module hauler would be more costly than the rreghused to handle and load cotton
modules in Australia because of the greater weigittg handled. Assumptions representing a
module hauler included the following: the purchasst would be from $250,000 to $500,000;
the power was from 261.1 to 410.3kW (350 to 55Q tE average travel speed was from 4.83
to 16.09 km/hr (3 to 10 miles/hr); and the loadimdpading times were from1 to 3 minutes.

5.5 Results
5.5.1 Sensitivity analysis procedure

The simulation included sufficient numbers of eawhchine to harvest, collect and
deliver all biomass within a harvesting time per{od., from August 1 to December 31) so that
no biomass remains in the system after finishirggdimulation run. The machine numbers for
each type in Table 19 were determined manually witlitiple simulation runs to select the
appropriate number.

Three scenarios were considered to investigaterdlationship between performance
factors, transportation distance and crop yield240n (25 miles) and 11.2 dry Mg/ha (5 dry
ton/ac) for scenario |; 80.47 km (50 miles) and21dry Mg/ha (5 dry ton/ac) for scenario II; and
40.23 km (25 miles) and 22.4 dry Mg/ha (10 dry &aifor scenario Ill. The change in the costs,
energy consumption and productivity between theiamednd best or worst property values was
examined to determine which factors resulted ingiteatest improvement or degradation as the
property was changed. For each scenario, 29 chsieda setup were simulated (i.e., the median
case for all factors, and 28 cases varying indaiigueach of the fourteen factors to the best and
worst values). The total number of test cases 8&sEach case was named by using the
combination of scenario number, best/worst, andedopmance factor number (coded as in
Table 2). For example, the case of ‘I-B-1' mearat thcenario was | and the value of factor 1

(forage harvester dry matter loss) was at the \adse. Best value was interpreted as giving the



lowest cost/energy consumption. Median cases namreed as ‘I/1l/111-M-0’.

Table 19 The number of machines used in each ¢aseoario |
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5.5.2 Simulation results
This section shows the simulation results for lthsic scenario, followed by scenarios
with varying transportation distance and biomasddyiln all cases, comparisons were made

between the simulated results for the scenario migdian property values and the changing of



single properties. Because the study focus wasttermine the influence of machine operational
factors, no attempt was made to vary multiple prioge simultaneously. All cost results were

reported based in year 2007 US dollars for makimgestimates comparable to the goals of the

DOE, which were estimated in year 2007 US dollarg/all.

5.5.2.1 Basic scenario

Scenario | was considered to be the base scefafites 20 and 21 give the estimates of

the performance measures for best and worst caspgctively.

11

Table 20 Estimates of the performance measurasemasio | median case and best values

3

: Cost ($/Mg) Change Change Changeof
Cases Collection Transport of Cost Energy of Energy €O, CoO,
& adon | T | @mg) (MM mamgy | “IMD| gimg)
Processing
I-M-0 19.02 9.60 28.62 - 478.74 - 32.83 -
I-B-1 18.61 9.60 28.21 -0.41| 478.74 0.00 32.83 0.go
I-B-2 18.61 9.59 28.20 -0.41| 47172 -7.02 32.85 480.
I-B-3 17.71 9.65 27.36 -1.25| 455.84 -22.90 31.p6 .571
I-B-4 18.88 9.60 28.471 -0.14| 47264 -6.10 32.41 420.
I-B-5 18.16 9.60 27.76 -0.86| 478.74 0.00 32.83 0.go
I-B-6 18.89 9.60 28.49 -0.13] 456.33 -22.41 319 .541
I-B-7 18.84 9.60 28.44 -0.18| 475.54  -3.20 32.61 220.
I-B-8 18.22 9.61 27.83 -0.79| 46440 -14.34 3184 .980
I-B-9 | 18.15 8.16 | 26.32 -2.80] 440.75| -37.99 | 30.22 | -2.609
I-B-10 | 19.02 9.48 28.5( -0.12| 478.74 0.00 32.83 0.g0
I-B-11| 19.02 9.41 28.43 -0.19| 470.65 -8.1D 32.27 -0.56
I-B-12 | 19.02 9.40 28.42 -0.20| 473.88 -4.86 32.49 -0.33
I-B-13 | 19.02 9.50 28.52 -0.09| 47648 -2.26 32.67 -0.15
I-B-14 | 19.02 9.50 28.52 -0.09| 47648 -2.26 32.67 -0.15

(a) the property with the greatest change in pleatormance factor.

The total cost to capture and deliver biomass $2826/Mg for the median case (I-M-

0) and ranges from $26.36 to $32.33/Mg. The rarfgenergy consumed was from 440.75 to
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540.10 MJ/Mg with a median case of 478.74 MJ/Mge Thedian case of G@mission was

32.83 kg/Mg and varies from 30.22 to 37.83 kg/MgeThumbers of each machine were selected
to process all available biomass during the sinanaime, so biomass tonnages were the same
in all cases except the cases, I-B-2 and |-W-2ckwltionsidered the change in dry matter loss.

Thus, estimates of the biomass tonnage are noitegpo

Table 21 Estimates of the performance measuragsemasio | median case and worst values

: Cost ($/Mg) Change E Change co Changeof
Cases| Collection Transport of Cost (Mrgltlal\r/lgy) of Energy K /MZ) CO,
& | ation | To@ | ($/Mg) Y mamg) |"IMY | (kgimg)
Processing
I-M-0 | 19.02 9.60 28.62 - 478.74 - 32.83 -
I-W-1 | 19.43 9.60 29.03 0.41| 478.74  0.00 32.83 0.00
I-W-2 | 19.50 9.66 29.17 0.55| 488.01 9.27 33.46 0.64
I-W-3 | 21.84 9.55 31.39 2.78| 529.28 50.54  36.p9 3.47
I-W-4 | 19.16 9.60 28.76§ 0.14| 48484  6.10 33.p4 0.42
I-\W-5 | 19.88 9.60 20.484 0.86| 478.74  0.00 32.83 0.90
I-\W-6 | 19.15 9.60 28.79 0.13| 501.15 2241 34.86 1.4
I-W-7 | 19.29 9.59 28.84 0.27| 483.57 4.83 33.16 0.33
I-\W-8 | 20.09 9.58 29.68 1.06| 498.03 19.28  34.15 1.32
I-\W-9 | 20.42 1191 | 3233 3.2 | 540.10| 61.39 | 37.03 | 4.29
I-W-10| 19.02 9.71 28.73  0.12| 478.714  0.0( 32.83 0.00
l-W-11| 19.02 9.78 28.80 0.19| 486.84  8.1( 33.88 0.56
I-W-12| 19.02 10.49 | 29.51 0.89| 500.36 21.62 3471 1.48
I-W-13| 19.02 9.69 28.71 0.09| 481.00 2.26 32.98 0.15
I-W-14| 19.02 9.69 28.71 0.09| 481.00 2.26 32.98 0.15

(a) the property with the greatest change in teatopmance factor.

In general, all fourteen factors were consistenhaving similarly ranked changes in
both the best and worst scenarios. Increasingnibdule DM density achieved by the module
former (factor 9) from 240.3 to 288.3 kg/rfl5 to 18 Ib.fl) had the largest impact on cost,

energy, and C®emissions for both the best and worst comparisdh® module density
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affected the transportation, collection and proogssosts. The efficiency of the forage
harvester (factor 3) was the second most impoftator in both best and worst cases. In the
best case, reducing the time to unload a moduha firee module former (2.0 to 0.5 min) gave
the third best improvement in cost, but for the st@ase, reducing travel speed from 11.3 to 4.8
km/hr resulted in the third greatest increase ist.coFor all three machines, the power
requirements did not have a great influence orctist, but did on the energy consumption and
CO, emissions.

5.5.2.2 Impact of variations of a transportation détance and a biomass yield

Since the sensitivity of the performance factavald be changed in different biomass
supply system environments, variations of trangpiom distance and biomass yield were
considered. Scenario Il considered the increagheofransportation distance from 40.2 to 80.5
km (25 to 50 miles). Scenario Il dealt with ther@ase of the biomass yield from 11.2 to 22.4
Mg/ha (5 to 10 Mg/ac). In scenario lll, the totabinass amount was kept the same as in
scenario |, so the harvested area decreased by 50%.

Table 22 shows estimates of the performance mesguarseveral scenarios. As the
transportation distance increased (from scenatio ll), the cost, energy, and G@mission
increase. On the other hand, as the biomass yielg¢ases (from scenario | to Ill), the cost,
energy, and C@emission decrease.

In terms of collection and processing cost, thsulte of scenario | and Il were same.
This was because an identical amount of biomassoléected, and the increased transportation
distance did not affect the collection and processiost. However, since the influence of field
efficiency increases in the higher yield of scemdii, the collection and processing cost
decreased significantly. For the transportationt,db® results of scenario Il were much larger

than the results of scenario | and Ill. Even thotigh transportation costs of scenario Ill are
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slightly less than those of the scenario |, tho$kerénces are not meaningful, because those
differences could occur due to the slight changthefnumber of generated modules associated
with different predicted biomass moisture contdite simulation results show that the increase
of transportation distance affects only the transion cost, and the increase of biomass yield

influences the costs associated with collection@odessing.

Table 22 Estimates of the performance measuresveral scenarios

Scenarios Scenatrio | Scenario Il Scenario Il
Value Case Value Cas¢g Value Case
Collection min | 17.71| 1-B-3 | 17.71] 1-B-3| 1152 1I-B-9
& Processing | max | 21.84| 1-w-9 | 21.84] 1-w-9] 13.79 1I-w-g
Transportation min 8.16 | 1-B-9 | 14.28| 1-B-9| 8.13| 1I-B-9
Cost P max | 11.91| 1-w-9 | 20.84| 1-w-9| 11.89 1I-W-9
($/Mg) min 26.36 | I-B-9 | 32.43| 1I-B-9| 19.65 1I-B-9
Total max | 32.33| I-W-9 | 41.26| 1-w-9| 25.69 II-W-9
median| ,g 6o | M0 | 3581 1-M-0| 21.97 11-M-0
case
min | 440.75| 1-B-9 |586.63| 1I-B-9 [327.61] 1I-B-9
Energy Total max | 540.10| I-W-9 | 753.04| 1I-W-9 |427.25] 1I-W-9
MJ/M :
( 9 mfss'ae” 478.74| I-M-0 | 650.27| 11-M-0 |365.80| 1I-M-0
min | 3022 | I1-B-9 | 40.22] 1-B-9]| 22.46 1I-B-9
CO2 Total max | 37.03| 1-W-9 | 51.63| 1-W-9] 29.30 1I-W-9
kg/M :
(ka/Mg) mf;;i” 32.83| I-M-0 | 4459 1-M-0| 25.08 11-M-0

Figure 24 and 25 depict the impact of the trarspion distance and the biomass yield
on the sensitivity of the performance factors sashcost and energy, respectively. Each bar
represents the change of the estimate of the peafize measure from the median case to the
best (or worst) case of each of all factors (1 ¥ Bb, the length of the bar represents the
measure of the significance of each factor to ffstesn performance. Since the £€mission is

calculated based on the used energy, that chaot iscluded.
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When the transportation distance increases (rem |-B/W to 1I-B/W), only the
significance of a module density (factor 9) incemasThis result implies that module density is
the critical factor to improve the system perforean

For the cases under scenario Ill in which a biemasld increases, the significance of
several factors decrease. While the changes dfigimficance of factors 10, 11, and 12 related
to a module hauler were very small, the signifieaotfactors associated with a forage harvester
(1, 2, 3, and 4) and a module former (5, 6, 7, @ndecrease considerably. This is because the
increase in biomass yield may affect operationsaated with harvesting and collecting in a
field, and the transportation distance was equatenarios | and III.

For the most significant factors, the reductiorcast and energy between the median
and best values was of lesser absolute magnitaerdsulted from including the worst values.
Those factors having small impact on the cost amtgy consumption had nearly equal change
when varied between the best and worst values.selbbservations indicate that the selected
median values were reasonable for the operatidimeofonceptual system.

5.6 Discussion

The analysis of the overall system performanca amction of the considered factors
provides important guidance in the establishinglegign specifications for the three machines
critical to the conceptual system considered. dilyematter density of the biomass modules was
shown to be the factor most affecting cost of aelivg the biomass. The worst case value for
density (192 kg/r) is roughly equivalent to the densities achieveddmmercial balers. For the
biomass module system to achieve lower costs,ghsity will need to be near to 240 kd/m

The cost to supply a unit Mg of herbaceous biontass conversion plant ranged from
$19.65 to $41.26/Mg with a median cost of $28.62/Mgis cost range is very competitive with

other biomass logistics systems estimated in temture. This result indicated that development
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of the biomass module system would be justified] provided design specifications to be met.
Such a feedstock supply system could overcome $@meers for successful commercialization
of the cellulosic biofuel industry.

In general, field efficiency impacts significantign accomplishing an economical
agricultural system. Since a forage harvesteraantdule former were strongly coupled in the
module system, the turning, preparation time antbaging would result in lower field
efficiency. Moreover, techniques used to form timmass modules will have a large effect on
influence on field efficiency. For example, the dém of a plastic on a roll that must be
periodically loaded will affect the preparation &mand field size, shape and biomass moisture
content will affect the number of modules produ@ed the locations where they must be
unloaded. The design of the coupled forage hamamdttowed module former must incorporate
mechanisms that allow for high field efficiencies.

Other factors can provide additional value and tmins included in the design
considerations. However, the potential gains ameenfimited, and design compromises can be
made on those factors.

The IBSAL simulation tool proved useful in condagtthe sensitivity analysis for the
operational factors of the conceptual system. B®AL framework is modularized very well
so that developing new elements did not affecttiexjslements. Moreover, IBSAL elements in
each machine category have similar structures, (eagvester and transporter). Therefore, the
development of new elements on IBSAL framework welatively straightforward. However,
since a simulation item in IBSAL is defined basedtioe biomass amount per a unit land area, it
was required to split those simulation units intoltiple units of a module size to consider the
detail operations in a module system. This meaattdl subsequent elements in the operational

sequence had to be compatible with those smaitarlation units.
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CHAPTER VI
SIMULATION MODEL: PART2. EVALUATION OF ALTERNATIVE

BIOMASS LOGISTICS SYSTEMS

This chapter evaluates economic benefits of a bssnmaodule system, comparing it to
bale and silage systems. Section 1 presents a toaridjof IBSAL studies for biomass logistics
systems. Section 2 describes several biomassitmgsststem including biomass module, silage,
and bale systems. Section 3 provides simulationetsotdased on IBSAL. Section 4 gives
simulation results and compares several performaneasures of several biomass logistics
systems.

6.1. Background

Several studies based on IBSAL have reported giegecosts of various logistics
systems. The first study was Sokhansanj et al.qR0@t estimated a bale system for corn stover
by using IBSAL. They developed an IBSAL simulationodel that comprises combine,
shredding, baling, stacking, truck travel, stackimmd grinding. Their model resulted in
$53.57/Mg for the operations in their bale systarhich consists of the CP cost at $39.81/Mg
and the transportation cost at $13.76/Mg.

In 2007, Kumar and Sokhansanj employed IBSAL tal@ate and compare several
biomass logistics systems (i.e., bale, silage, laafl systems), considering switchgrass as a
feedstock. Their study invoked several assumptitias the yield of switchgrass is 11 dry
Mg/ha; a given farm land area supplies switchgtass refinery which is located at the center
point of the land considered; the utilization rafethe land for growing switchgrass is about
10%; and a road winding factor is 1.4. From thewmleation results (see Table 23), a loafing

system was the best system in terms of both CPtemgportation costs. They estimated



transportation costs based on the maximum traregntdistance with the assumption that the
minimum transportation distance is 3 km, noting tnéransportation distance is proportional to
a refinery capacity. Even though the silage systerdied by Kumar and Sokhansanj (2007) has
relatively small CP costs for several scenarioandportation costs were higher than other

logistics systems. This implies that the silagetespsmay not be an appropriate method for a

large-capacity refinery.
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Table 23 Predicted logistics costs for switchglastBSAL (Kumar and Sokhansanj, 2007)

Transportation
Cost Machine
System Process Collection Transportation Total Biomass
& .| Speed| Cost
Processing (oMY ($Mg)+ | Density |, bl g/h)
($/Mg/km) ($/Mg/km) | (kg/m®)
($/Mg)
swath-rake-
bale(square)-stack- | 55 45 | 3054011148 | 36.26+0.111*d 128 | 24 | 50.46
tarp-transport-stack-
grind
swath-rake-
bale(square)-stack- 32.76 1.18+0.173*d| 33.94+0.1737d 64-96 24 | 51.68
Bale tarp-grind-transport
swath-rake-
bale(round)-stack- | 31 o5 | 30540.111%d| 34.78+0.1111d 128 | 24 | 50.46
tarp-transport-stack-
grind
swath-rake-
bale(round)-stack- 31.28 1.18+0.173*d] 32.46+0.1737d 64-96 24 | 51.68
tarp-grind-transport
chop-ensile-transport 27.18 5.66+0.258*d| 32.84+0.2587d 64-96 24 | 51.68
Silage th-rake—ch
swalh-rake-chop- 1481 | 5.66+0.258*d 20.47+0.2581d64-96 | 24 | 51.68
pile-transport
Loaf |SWath-rake-loaf- 2233 | 118+0.173'd 2351+0173164-96 | 24 | 516
grind-transport

(a)dis a maximum transportation distance

exactly the same and they dealt with different l@esicrops as well as different transportation

However, since the detail processes of the lagistiystems in prior studies are not

distances, comparing their results directly maynia@propriate.
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Based on the previous cost estimates which arertexp by previous studies, the
currently available logistics systems may not bieable for delivering herbaceous biomass crops
to refineries due to high logistics cost incurrgdldw density of biomass materials as well as
high moisture content. The USDA and the DOE (20@®prted that biomass logistics, which
includes harvesting/collecting, storing and preepssing, constitutes as much as 20% of the
current cost of supplying cellulosic ETOH.

6.2. Description of biomass logistics systems

Figure 26 depicts the detail processes of the tiogisystems considered in this chapter:
i.e., biomass module, silage, and bale systems.opkeations involved in the logistics systems
are classified into three categories (i.e., indfi@peration, road-transportation, and in-plant
operation) to reveal distinction between each othere clearly. The in-field operation includes
several operations from harvesting to field-tramsgimn for delivering crops to local storage
sites.

The road-transportation covers a few operationscgs®d with transportation on roads
such as loading and unloading as well as actual-tr@msportation. Only the bale system
involves a process that is classified as the imtptgeration (i.e., grinding). The CP includes
operations both in the fields and in a refinery.

Most herbaceous biomass has high moisture corgamnt 0 — 60%) so that decreasing
moisture content before transportation may be rebddeimprove transportation efficiency.
Therefore, it is assumed that field-drying operadi@fter windrowing will be conducted in all
systems. Another assumption invoked is that biomakkde stored on the fields without using
any facilities so that the storage cost could bgligible. Moreover, the materials chopped by a
forage harvester are assumed to be used in a cimweplant without any additional size-

reduction process in both the biomass module amdithge systems.
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Figure 26 Process diagram for each of biomasstlogisystems: (a) biomass module

system, (b) silage system, and (c) bale system

After windrowing, crops conditioned are dried oe firelds under the atmosphere until
the required moisture content (e.g., less than 20%5 been acquired or the maximum
managerial waiting time has been reached. Theretbestime for field-drying operation may
vary according to weather conditions. The followisgbsections describe details of each
biomass logistics system.

6.2.1 Biomass module system

The biomass module system is a conceptual syssarg several conventional machines
as well as specially designed new machines, agideddn Chapter V. It begins from cutting
and drying operations. After a SPFH chops crops, dhopped materials are collected in a

module former which is pulled by a SPFH. Stronghypled operations between a SPFH and a
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module former may decrease the loss of biomassewutaihsferring the chopped materials into a
module former. However, to represent such a feamm@mmercially available SPFH may be
needed to be modified because pulling a module donmay require more power and energy.
Moreover, the field efficiency of the modified SPRhay be decreased due to the strongly
coupled operations with a module former. For exanpthen a module former unloads a
biomass module, a modified SPFH must stop its dioera

A module former is a new machine that compredsesotllected biomass for increasing
density and generates large biomass modules. Tiesed density will be about 240 kn¥/(15
Ib/it®). The size of each module is determined basedhenmaximum weight load and the
maximum volume of a transportation machine. Fomgda, when a biomass module has high
moisture content, the module size may be limited tbg maximum weight load of a
transportation machine so that it could be smalian the maximum volume of a transportation
machine. To facilitate biomass handling and keepmbiss from being affected by the
atmosphere, biomass modules are covered in a@lzestkage, which requires additional cost
(e.g., $50/module).

Biomass modules are handled and transported ezfflgi by a module hauler in the
fields and by a semi-trailer on the roads. A mochaeler is a new machine that is specially
designed for handling modules in a field area. diditon, it is designed to load (unload)
modules to (from) a semi-trailer quickly. A semaiter is used for long-distance transportation
from a field storage location to a conversion plakita conversion plant, a module hauler is
required to unload modules from a semi-trailer gmohove them within it.

6.2.2 Silage system
The initial stage of the silage system considéegimilar to the biomass module system

as shown in Figure 26: i.e., after cutting and doning, biomass materials are dried on the
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fields. Then, a SPFH chops biomass, collecting tiwm a wagon moving alongside of the
SPFH. In the fields, wagons transport the choppechd&ss. Then, for road-transportation, trucks
are used. The density of biomass transported isstime as that of biomass after they are
chopped by a SPFH, typically 80 kg/(® Ib/ft).
6.2.3 Bale system

Different to the module and the silage systems, llale system does not contain
chopping operation after field-drying. Instead,adeb collects biomass materials on the ground
and generates bales, increasing density, in gengrao 128 km/rh (8 Ib/ft®). Then, a stinger
collects bales in the fields and transport to fisldrage sites. A semi-trailer is used for road-
transportation. A bale loader loads bales to detrand unloads them from it. After delivering
biomass bales to a conversion plant, bales nebé ground for reducing their sizes enough to
be processed in a conversion plant.
6.3. IBSAL modeling

This section explains IBSAL simulation models t@leate biomass logistics systems.
Each of subsections describes a basic scenarieanchon factors for simulation models, and
presents simulation models for the biomass modthe, silage, and the bale systems,
respectively.
6.3.1 Simulation scenario

This subsection describes the scenario that wasl uis the simulation models
developed. Grass-type biomass is supplied to aszsion plant from a farm land area located at
College Station, Texas state of the U.S. Total ahmass supply is 250,000 dry Mg/year. Two
cases of average biomass yield have been considecadas 11.2 and 22.4 Mg/ha (5 and 10 dry
ton/ac) so that total crop supply area is 20,23458000 ac) for 11.2 Mg/ha and 10,117 ha

(25,000 ac) for 22.4 Mg/ha.
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National Climatic Data Center operated by the Bl&ional Oceanic and Atmospheric
Administration provides historical weather data saveral locations in the U.S. and several
other counties. Since the precipitation of 606 mMm1P92 is approximately the median of
historical data for the total year-precipitationsGollege Station, which range from 250 mm in
2010 to 1141 mm in 1994, the daily weather dataHeryear 1992 were selected to be used in
the simulation models.

The in-field transportation distance was assumdakt0.16-0.48 km. To investigate the
impact of transportation distance, several trartgtion distances between the fields and a
conversion plant (i.e., 16, 40, 80, and 161 km)eh&een considered. Enough number of
machines was used to each operation to proceB®alhss within a harvesting time period (i.e.,
from August 1 to December 31) so that no biomassanes in the system after finishing the
simulation run.

Simulation items are generated based on the hargeschedule. Each simulation item
represents some amount of biomass (e.g., 250 Mighwvib calculated based on a unit land area
and a crop yield. A generated simulation item pagkeough all simulation elements in the
model, in which several attributes (e.g., moistemtent) are updated and some relevant
measures (e.g., cost and energy) are calculageth &mulation model follows the operation
procedure illustrated in Figure 26.

6.3.2 Biomass module system

The simulation model of the biomass module sysiesctribed in Chapter V was used
again (see Figure 23 in section 5.4.1). The modehprises existing IBSAL elements (i.e.,
windrower and semi-trailer) and several new IBSA¢én&nts (i.e., a modified SPFH, a module
former, and a module hauler). After mowing and dbiowing by the windrower element,

simulation items will stay in the queue of the SR#leiment to meet the requirement for the safe
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level of moisture content or the maximum waitingndéi Then, as long as machines in the
subsequent simulation elements are available, atonol items will pass through them,
calculating relevant measures (e.g., cost, enesgyl @and dry matter loss). Table 23 provides
detail specifications of machines used in the satimh models. Note that the parameter values
for the new IBSAL elements have been selected ¢otlus median values provided in Table 18
(see section 5.4.2), which were selected as a like$g value based on the experience of the
authors.
6.3.3 Silage system

The simulation model of the silage system consibteries of a unit operation element
provided by IBSAL (see Figure 27). All parametelues are provided by the database of
IBSAL for commercially available machines. Notetthlae SPFH used in this model has less
power, (i.e., 376.7 kW) and more dry matter loss.(i0.25) compared to the modified SPFH
used in the biomass module model (i.e., 436.4 kW @06, respectively), and the density of
biomass transported is 80.09 kdAvhich is less than that of the biomass moduleesys240.28

kg/m?® (see Table 24).
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Figure27 Simulation model for the silage system



Table 24 Specification of machines used in eachilsition model

. Dry | Max | Max
System| No. Machine FEI?VV\\;? V\Elr?];h (Skfne/ﬁ;j Efficiency (g/ﬁ; Matter [Volume| Load L%?:é"‘zm?:;d Etc
Loss | (m3) | (Mg)
1 Windrower | 89.52| 4.6] 12.9 0.8 106.8@.05 - - -
. SPFH Particle Size
2 | with Module | 436.4 | 4.3 9.7 0.75 228.400.06 - - - i
Former . 2.54 cm
Module| 3 | Module Former 208.4 | - - - | 15070 0 | 47.57| 15 | 0.5/2.0(modulg}, 07" (lege/rrm%ny
Tyransport 2 modules
4 |Module Haulerl 335.7 - 11.8 - 122.40 0 47.57 15 | 1.0/1.0(/module istanF::e: 0.16-0.48 km
5 Semi-trailer | 410.3 - 80.5 - 23.93 0 95.14 30 MN@/module)Transport 2 modules
6 |Module Hauler2335.7 | - | 11.3] - | 1224p 0 | 47.57| 15| 1.0/1.0¢modulfy2nSport 2 modules
istance: 0.48 km
1 Windrower 89.5| 46| 124 0.80 106.8@.05 - - -
2 SPFH 376.7 43| 97  085| 238p0.25| - - - Particle Size
. 2.54 cm
Silage Biomass Density
3 Wagon 119.4 - 16.1 - 21.86 0.0p83.98| 25 3.0/5.0 [ 80.09 (kg/m)
Distance: 0.16-0.48 km
4 Truck 410.3 - 88.5 - 29.43 0.00572.49| 40 5.0/10.0
1 Windrower 89.5| 46| 124 0.80 106.8@.05 - - -
Biomass Density
2 Baler 2611 31| 129 065| 6047 025 A . [128.14 (kg/m)
Bale Size:
- 0.9%1.2*2.4 (2.72 1)
Bale | 3 Stinger 2611 - | 241 - 85.85 0.0p5 - 20 | 0.1/0.05(/bale gg&snpcoerf g_fg_'gim -
4 Loaderl 223.8 - - - 131.0M.005 - - 0.25/0.2(/bale)
5 Semi-trailer | 410.3 - 80.5 - 23.93 0.0p5 - 30 | 0.25/0.2(/bale) Transport 34 bales
6 Loader2 223.8 - - - 131.0®.005 - - 0.25/0.2(/bale)
7| orinder | 2887 -| -| 080| 2759001 | - | - . Particle Size
- 1.27 cm

6ZT
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6.3.4 Bale system

Figure 28 describes the simulation model of thie lsggstem. The initial stage of the
bale system model up to the windrower element fisesto other simulation models. Then, the
density of simulation items is set to be 128.14Rg(8 Ib/ft’) through the baler element. The
size of a rectangular bale that the model consitisr.9 m*1.2 m*2.4 m (2.72 ¥ The stinger
element estimates measures associated in-fieldpoatation of bales. The bale loader elements
are used before and after the semi-trailer elemdmnth can transport 34 bales at once. Only the
bale simulation model has an in-plant operatiom,(grinding) for reducing the size of biomass
materials. Similar to the silage simulation mod#ie bale simulation model comprises
simulation elements existing in the current verobiBSAL.
6.4. Simulation results

This section describes the performance measureshvéne estimated by simulation

models, and the number of machines assigned fér &=enario, and presents their estimates for
several scenarios.
6.4.1. Performance measures

Simulation models estimate several performancesarea (e.g., cost, required energy,
a quantity of CQ emissions, and the net biomass yield) to supptynbss from farms to a
conversion plant. The cost includes capital, mamtee, tax, interest, and labor costs. The
required energy is calculated based on the poweaoh machine and the working time. The
guantity of CQ emissions is calculated based upon that of theggngsed. The net biomass
yield is the amount of biomass after consideringsidal dry matter loss occurred through all

operations in each system.
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6.4.2. The number of machines

Each simulation element used enough number of mesMho process all biomass within
a simulation time horizon (i.e., harvesting periad) that simulation models did not hold any
simulation items after the simulation run finish&d. decide the appropriate number of machines
to be assigned, preliminary simulation runs weradoated. Table 25 gives the number of
machines assigned to each simulation element uséeeral scenarios. The transportation
distance affects the required number of machinescisted with transportation (e.g., a semi-

trailer and a truck).

Table 25 The number of machines used in each mnacimder several scenarios
Transportation Distance (km
System No. Machine 16 40 80 161
Y11@ [ v22® | v11 | v22 | v11| Y22| Y11| Y22
1 Windrower 3 2 3 2 3 2 3 2
SPFH
with Module
Former
Module Former
Module Haulerl
Semi-trailer
Module Hauler2
Windrower
SPFH
Wagon
Truck
Windrower
Baler
Stinger
Loader
Semi-trailer
Loader
Grinder
(a): Crop yield of 11.2 Mg/ha (5 ton/ac)
(b): Crop vyield of 22.4 Mg/ha (10 ton/ac)
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As transportation distance increases, the requitedber of transportation machines
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increased as well, while other machines were ndééctdd. Similarly, several machines
associated with in-field operations were affectgdhe crop-yield variation (e.g., a windrower, a
SPFH and a module former).

6.4.3. Estimates of performance measures

This section provides the simulation result ofreBiomass logistics system. Comparison
with the results of several scenarios describesittact of variations of a transportation
distance and a biomass yield on the performaneadi biomass logistics system.
6.4.3.1 Total cost

Figure 29 depicts estimates of the logistics cotis respect to transportation distances
(i.e., 16, 40, 80, and 161 km) as well as cropdg€|11.2 and 22.4 dry Mg/ha). For a short
transportation distance less than about 5 km,ithgessystem has lower cost than other systems.
In contrast, the biomass module and the bale sgsi@m better in all scenarios, in which
transportation distance is greater than 5km, becdls silage system appeared to be more
sensitive (i.e., larger slope) to transportatiostatice than others. The biomass module system
has the lowest logistics cost compared to othaerys Moreover, the sensitivity of the biomass
module system to the transportation distance igéamong all systems.

As crop yield increases from 11.2 to 22.4 dry Mg/the total cost decreases in all
systems. This is primarily due to the decreasehef@P costs (see Table 4). In particular, the
change of the crop yield affects significantly themass module system: i.e., the reduction of
the CP cost of the biomass module system rangas 3ibto 39% with respect to the crop-yield
change from 11.2 to 22.4 dry Mg/ha; that of thagsl system, from 13 to 27%; and that of the
bale system, from 14 to 27%, respectively. The bgtem showed the least impact on the CP
cost from the crop-yield change because the grindjperation, which is a major component for

the cost of the bale system, is not affected byop gield.
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Figure 29 Total cost of several logistics systemden several scenarios

Based on the target that DOE set in the biomads-year program plan in 2010, the
economic feasibility of the logistics systems canspeculated. For example, if the logistics cost
per a unit biomass is under $38.59/Mg, which isIM@E goal by 2012, the biomass logistics
system can be considered to be economically feasiie results in Table 25 indicate that only
a few cases of the logistics systems satisfy theri: that is, for the biomass module system,
the cases of the distance 16-80 km for both crepdyiof 11.2 and 22.4 Mg/ha satisfy this
criterion; and for the bale system, only one cdsth® distance 16 km for a crop yield of 22.4

does.



Table 26 Estimates of performance measures of l@aatass logistics systems regarding transportatistances and crop yield

D-Ii-:;ri:e C;)rl(l)eccetls(;?nﬁ Transportation | Logistics Cost Energy CO, Net Biomass Yield Man Hour
System (km ($IMg) ($/Mg) ($/Mg) (MJ/Mq) (kgCO-/MQ) (Mg) (Hour)
(mile)) | Y11® [y22®] v11 | v22 | vi1 | Y22 | vi1| v22| vyii] Y22 vi1 Y22 Y11 Y22
Module | 16 (10) 19.19 12.59 5.03 5.03 24.22| 17.62| 376 263 26 18| 197,534 197,53 19,527 14,420
40 (25) 18.80 12.24 9.73 9.73 28.53| 21.97| 479 366 33 25| 197,534 197,536 26,541 21,416
80 (50) 18.20 11.62| 17.52 17.52 35.72| 29.14| 650/ 537 45 37| 197,534 197,536 38,229 33,078
161 (100)| 17.00 10.38 33.11 33.11 50.10, 43.49 993 879 68 60| 197,534 197,53 61,607 56,400
Silage | 16 (10) 15.83 11.59 35.79 35.7§ 51.57] 47.34] 1,073 1,001 74 69| 170,380 170,363 73,192 68,426
40 (25) 19.72 15,52 66.41 66.41 86.13 81.93 1,867| 1,795 128 123| 170,380 170,363 119,864 115,162
80 (50) 23.52 19.40| 120.16 120.16 143.68 139.56 3,191 3,120f 219 214| 170,380 170,363 197,585 193,016
161 (100) 31.25 27.12| 227.66 227.66 258.91 254.78 5,839 5,769 400 396| 170,380 170,363 353,285 348,64(Q
Bale 16 (10) 36.74 26.66 8.08 8.08 44.82 34.73| 536| 417 39 31| 157,317 157,317 73,148 66,061
40 (25) 32.30 27.39] 14.43 14.43 46.73 41.82] 706/ 586 51 42| 157,317 157,317 82,217 75,229
80 (50) 33.50 28.59] 25.05 25.05 58.55 53.64] 988 868 70 62| 157,317 157,317 97,521 90,526
161 (100)] 35.90 31.00, 46.29 46.29 82.19 77.29 1,552 1,432 109 100| 157,317 157,317 128,128 121,157

(a): Crop yield of 11.2 Mg/ha (5 ton/ac)
(b): Crop yield of 22.4 Mg/ha (10 ton/ac)

*: meet the 2012 goal of DOE in the biomass mudiisyprogram plan

GET
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6.4.3.2 Transportation cost

Figure 30 shows estimates of transportation costefach logistics system. Since
transportation cost does not increase as crop iietdases (see Table 26), Figure 30 has no data
plot associated with the crop-yield change. Thadrkne equations are provided to estimate
transportation cost for other transportation distsnbetween the simulation data points. The
slope and the intercept of the trend line equatian be considered as the variable and fixed

costs of transportation, respectively.
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Figure 30 Transportation cost of several logissigstems regarding transportation distance

For all systems, each linear trend line strongiyresponds with its simulation data (i.e.,
R?>0.9997). The biomass module system has the Icsk@®t and intercept, implying that it has
the least impact from the transportation distancd may be appropriate for long-distance

transportation compared to other systems.
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6.4.3.3 Other performance measures

Table 25 gives all detail estimates for severaffgpmance measures. Estimates of
energy used and G@missions are proportional to the total costs. Bibenass module system
was estimated to deliver the largest amount of h&s1io a conversion plant among all logistics
systems (i.e., the smallest dry matter loss). Ttay be mainly because it uses a plastic package
to cover each module so that physical dry mattses lie very low (i.e., close to zero) while
transporting modules. On the other hand, the bates shows the smallest net biomass yield
supplied (i.e., the largest dry matter loss) begatisas more operations than others so that more
physical dry matter loss can occur in such addiiooperations. For man-hour results, the
biomass module system shows the best resultsis petly because it has simplified operations
and delivers highly densified biomass.
6.4.3.4 Total expected profit

To our knowledge, any previous studies for biomagistics system have not addressed
a measure which deals with both perspectives of aod net biomass yield simultaneously.
Thus, This subsection presents total expectedtptadt deals with both perspectives of those
simultaneously.

Simulation models estimated logistics cost based anit amount of biomass ($/Mg), a
unit logistics costand a net biomass yield as reported in TableeeRue from a unit biomass,
unit revenuemay not be affected directly by the selectiorogiistics systems because revenue
is based on the selling price of the final prod{geey., ETOH). In general, profit from a unit
biomass,unit profit, can be calculated from unit revenue minus ungt eehich includes unit
logistics cost and unit cost of all other processgsept logistics (e.g., cost of conversion
process). Since total expected profit for a givenmfland area can be estimated from unit profit

times net biomass yield, it involves both perspestiof logistics cost and net biomass yield.
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Even though various net biomass yields might indififerent unit cost of all other
processes except logistics due to economy of sadmalyze the effects of logistics cost and net
biomass yield on profit more clearly, this studyngiified a procedure to estimate total expected
profit. First, this study invoked an assumptionttiait costs of all other processes except
logistics are the same for various net biomasslgiebecond, tax was not considered in the
analysis. The following steps describe the proocedarestimate total expected profit by using
logistics cost and net biomass yield:

1. In general, unit profit = unit revenue — unisto

2. By decomposing unit cost into unit logisticstcasd unit cost of other processes,

unit profit = unit revenue — unit logistics costirit cost of other processes.
3. Let UR_UCdenote unit revenue — unit cost of other procesBasn, unit profit can
be re-expressed:

unit profit = UR_UC — unit logistics cost.

4. By using net biomass yield and unit profit, t@epected profit is:

total expected profit = net biomass yield * urmibfg

net biomass yield * (UR_UC — unit logisticsstio

net biomass yield * UR_UC — net biomass yfelohit logistics cost.
Note that the UR_UC is associated with some exagerariables including, for example, end
product price, government subsidy, and cost of emsion technology.

Based on this relationship, Table 27 presents temsa of total expected profit for
several scenarios in each logistics system. Torgangositive total profit from a given farm
land area, UR_UC must be greater than unit logistist. Since net biomass yield is the gradient
of total expected profit (i.e., the slope of theuatipn), it affects significantly total expected

profit. Unit logistics cost affects the y-axis intept of the equation (i.e., — net biomass vyield *
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unit logistics cost).

Table 27 Estimates of total expected profit basedeat biomass yield and unit logistics cost

Trans. Total Expected Profit ($)
System| Distance
(km) Y11 Y22
16 197534*UR_UC- 197534*24.22 197534*UR_UC - 19793462
Module 40 197534*UR_UC - 197534*28.53 197534*UR_UC - 19453 .97
80 197534*UR_UC - 197534*35.72 197534*UR_UC - 197%3.14
161 197534*UR_UC - 197534*50.10 197534*UR_UC - 199%3.49
16 170380*UR_UC - 170380*51.57 170380*UR_UC - 171039.34
Silage 40 170380*UR_UC - 170380*86.13 170380*UR_UC - 171033.93
80 170380*UR_UC - 170380*143.68 170380*UR_UC - 170380*139.56
161 170380*UR_UC - 170380*258.91 170380*UR_UC - 170380*254.78
16 157317*UR_UC - 157667*44.82 157317*UR_UC - 15/733.73
Bale 40 157317*UR_UC - 157317*46.73 157317*UR_UC - 15/7311.82
80 157317*UR_UC - 157317*58.55 157317*UR_UC - 15/7%B.64
161 157317*UR_UC - 157317*82.19 157317*UR_UC - 16#37.29

To illustrate the use of equations in Table 2ppaise that switchgrass is harvested and
supplied to a biofuel refinery. Mandil and Shihddi& (2010) reported that refining cost for
switchgrass is about $0.39/liter ($1.46/gallon) &TOH yield could be up to 300 liters/Mg by
using current biochemical conversion process. i@l shows estimates of the total expected
profit of each biomass logistics system for switetsg under the condition of transportation
distance of 16 km and crop yield of 11.2 Mg/ha. Kkkexis value, UR_UC, can be determined
by using ETOH vyield, ETOH price, and refining co&k) if ETOH price is at $0.66/liter
($2.5/gallon), UR_UC is $81.13/Mg (=300liters/Mg ($0.66/liter - $0.39/liter)); (b) at
$0.79/liter ($3.0/gallon), $120.75/Mg; and (c) at%®/liter ($3.5/gallon), $160.38, respectively.

The biomass module system shows higher profit @andider profitable range with
respect to UR_UC than other systems. The bale raystebetter than the silage system, if

UR_UC is less than $132.86/Mg (e.g., (a) and (h)g; silage system is better than the bale, if
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not (e.g., (c)). This shows an example that a tmgisystem with lower logistics cost may |
always be better than another system with highgrsfizs cost, implying that it may |
necessary and valuable to consider both perspectivelegi$tics cost and net biomass yi

simultaneously for evaluating biomass logisticdesysmoreappropriately.
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CHAPTER VII

CONCLUSIONS AND FUTURE RESEARCH

This dissertation provides an effective approachdésign the SC of the cellulosic
biofuel industry. It achieves its purpose in fivated parts: literature review of the biofuel SC
studies; formulation of BSCP with a case study argion in Central Texas; an exact solution
approach to solve large-scale instances of BSCRelalement of new IBSAL simulation
elements to model the biomass module system; aaldiaion of alternative biomass logistics
systems.

7.1 Conclusion and future research on the literatue review of the biofuel SC studies

The first part of this dissertation reviews resbasn SCs for the biofuel and petroleum-
based fuel industries as well as the literatureebevant, generic supply-chain models that have
been published over the last decade. This papentifiégs trends in generic SCM:
internationalizing facility location, increasingeausf IT, improving sustainability, and managing
product perishability. It presents taxonomies gimy-chain studies that deal with biofuel and
petroleum-based fuels, categorizing papers acaprdin decision level (strategic, tactical,
operational, and integrated) as well as procesd ([epstream, midstream, and downstream). By
reviewing quantitative models available for petumtebased fuels and generic SCM studies, this
paper identifies gaps in biofuel research.

The biofuel industry is on the verge of growingplasively due to environmental
regulations and renewable, sustainable energy n€edently, the industry is relying upon pilot
plants to develop efficient processes to produdtilosic biofuel and verify its economic
viability. Operations Research can play a pivotd in providing decision support to optimize

the biofuel SC and to predict how relevant paramesffect system performance and economic



142

viability. The ultimate transition from pilot plambd a large-scale, commercial system will give
rise to new issues that Operations Research medalsiddress to enhance economic viability.
Therefore, studies of the biofuel SC are indisgdasind future research, as recommended by
this paper, will contribute to the growth and vidhiof the biofuel industry.

Based on the perspectives that this paper provides now recommend fertile
opportunities for research to contribute to biofa€M.
(1) Strategic level.ln the near future, the U.S. government may begiregulate the release of
GHG from power plants, cars, and factories with steted goal of reducing global warming.
Even though studies have dealt with network desigejuding locations for feedstock,
preprocessing facilities, and bio-refineries, nodgt has considered the impact of GHG
emissions on design. To enable the biofuel industrype more environmentally friendly,
network design must deal with GHG emissions. Besalesnand for biofuel can be expected to
grow dramatically in the future as government suppwreases and crude oil prices rise and
because technologies are in a state of flux, fgcibcation and capacity planning are very
important topics. In particular, it may be possitdeadapt capacity planning models that have
been proposed for generic SCs. However, the nausdl facility network design problem is
computationally challenging because of its largdescThus, appropriate solution methodologies
are needed.
(2) Tactical level.One characteristic aspect of the biofuel SC is teatistock (i.e., biomass)
deteriorates over time. Inventory models are neddeguantify tradeoffs between the cost of
biomass loss in storage and the cost of preproggssipacity. Larger capacities would allow
preprocessing facilities to process biomass moreklyy so that less storage capacity would be
required. However, capacity is expensive and it b@ynore economical to build plants of lesser

capacities and incur the costs of providing storfagéities and of biomass degradation. Another
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characteristic of biofuel SC is that some importégdstocks (e.g., herbaceous crops) are
harvested seasonally. Because feedstock avaiaislitimited during some part of the year,
storage or/and alternative biomass sources aréeeqd his topic offers a fertile opportunity for
researchers to optimize the SC appropriately. Réirej inventory-control models that have
been formulated for crude oil and oil products, meadels are needed to prescribe inventory
policies for biomass and biofuel based on marketef®.

(3) Operational level Several types of biomass can be used for feddstoost are subject to
restrictions such as seasonal harvesting and sabthiy requirements. Since sufficient supplies
of biomass must be developed to meet demand, @ntignharvesting operations to improve
productivity is an important issue. We note that planning models address the biofuel
conversion processes, but several studies addregdanning of petroleum-refinery operations
and it may be possible to adapt them for biofugdliaptions. We expect that ongoing studies
will identify efficient conversion processes in thear future, so that such planning models will
soon be required.

(4) Integration of strategic, tactical, and operatn levels.Integration of strategic-, tactical-,
and operational-level decisions is an ongoing iselaive to the generic SC. In comparison,
integrating the three levels is more importanttfe biofuel industry: biomass has low energy
content so that any possible losses in the SC baustinimized to enable the economic viability
of the industry. Accordingly, optimization approashthat are capable of solving large-scale
instances effectively will play a key role in thebeaomic vitality of the biofuel industry.

(5) Risk management.The biofuel industry is more vulnerable to risk nthenany other
industries because feedstock yield depends on #a¢her and could be negatively affected by
pests and diseases. In addition, biofuel must etenwith petroleum-based fuels, the price of

which is highly variable due to complex relatioqpshibetween supply, demand, fuel trading
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futures, and limited reserves. For example, theefrelunter Energy biodiesel refinery in
Houston, which had been the largest in the U.8enily was offered for sale at an undisclosed
price after the owner shut down the $70 millionilfgcin the face of low demand. Such setbacks
have resulted from the dramatic fall in petroleuasdd fuel prices during the 2008-09 global
recession (The Wall Street Journal, 2009a). Thipes&nce highlights the need for risk
management in the biofuel industry.

(6) Impact on the petroleum industry.Since anticipated, new regulations on GHGs wiklljk
increase the use of biofuel, demand will likely @& more predictable, regardless of the price
of petroleum-based fuel. Amounts of fuel produced petroleum refineries will be
correspondingly reduced; in fact, some facilitielt be shut down. We expect that opportunities
may evolve to allow biofuel distribution to be igtated with the existing downstream system
for petroleum-based fuel. The compatibility of thel types must be considered in assessing the
economics of such an integration.

(7) Adopting generic SCM researchThe biofuel SC is directly related to the sustaie€@CM

in general and to the agri-food SCM in particulBinerefore, the biofuel industry can benefit
from the transfer of technologies from these relaiesas. In particular, these areas may lend
guantitative methods to enhance sustainability| dé# perishability, and plan harvesting. In
addition, biofuel SCM may require new models faiemational operations, perhaps adapting
features from available generic international SCNlhe proximity of North American Free
Trade Agreement- and Central America Free Tradeedmgent-member countries and the
favorable climates they offer to produce biomasslma expected to stimulate growth of biofuel
supply chains in those countries. While few quatitie papers have addressed supply chains in
these particular areas, some models (e.g., Willetlad., 2005; and Robinson and Bookbinder,

2007) are available to serve as a starting poamhfwhich to formulate models to design biofuel
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supply chains. To implement IT-driven SCM, thefb@ industry must be able to prescribe
plans on a real-time basis. For example, real-iimi@mation about biomass inventory could
help to manage harvesting and to make decisionst &lmmass transportation. Finally, because
feedstock-supplier locations are dispersed, GEsriscessary tool for planning the biofuel SC.
(8) Geographical area.The amount of biofuel needed to contribute meawihgfto energy
independence is prodigious, so that feedstock ssuneust be found widely across the U.S.
Thus, interest in, and need for, biofuel is ubigu# and, even though each geographical area
may emphasize certain features (farm size, disganckmate, length of growing season,
availability of water) giving advantage (or disadtage) to certain types of biomass, all share
central features in common. This paper cites rebeaonducted in a number of states, including
Texas (Boske and Woodward, 2009), Oklahoma (OklahBioenergy Center, 2007), Louisiana
(Sharma et al., 2010), Mississippi glu et al., 2009; and Eloglu et al., 2010), Tennessee
(Zhu et al., 2010), Virginia (Cundiff et al., 19978nd California (Huang et al., 2010). The
Midwest has emphasized corn for ethanol (Haddadl.et2010); and the northwest, forest
products (Clark et al., 2010). Cities may proviée gther types of biomass (Fehrs, 2011). Each
of these studies has dealt with biomass typesatieabest suited to the features that are prevalent
in a region; but, in each case, the resulting moejglesents these features parametrically so that
input data can tailor it for application in a vayief geographical areas.
7.2 Conclusion and future research on formulation bPBSCP with a case study

The model to design a cellulosic biomass/biofu€l &esign considers strategic- and
tactical-level decisions in both upstream and daéseasn echelons over multiple periods. In
addition, our model deals with the unique featwiethe biofuel industry. Through a case study
that represents the Central Texas region, we iigesgiveral important applications of our model

and provide insights into the significance of sgsmponents and interactions among them.
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Future research can extend this study in sevemiswFirst, specialized solution
algorithms must be developed to solve large-scattances, which could cover a larger
geographical area and prescribe detailed, tadéwal- decisions that must deal with more time
periods in the planning horizon. Second, the retethip between storage capacity and
replenishment policy in the multi-echelon systemstnbe determined so that both can be
prescribed more accurately. Third, considering sshadternative transportation modes (e.g., rail
and truck) may allow costs to be reduced sinceelangantities of biomass must be transported.
Fourth, dealing explicitly with uncertainty by ugirstochastic programming models can be
expected to lead to robust SC designs. Lastly, leodeuld be formulated to represent the
interests of specific stake holders (e.g., bionsagxpliers, refineries, distribution centers) sd tha
ways in which they could co-operate to improveagidficy and profitability can be identified.

7.3 Conclusion and future research on an exact sdlan approach

This paper presents a new solution approach f&EMSNVe deal with material flows
based on the viewpoint of single-commodity, geneedl flows, an alternative to the multi-
commodity flow model of An et al. (2011b). We us€@ approach to solve the linear relaxation
of model 2 at the root node. In this CG contexty ®@RA solves the subproblem, an
uncapacitated, embedded generalized minimum cozilaiion problem, generating improving
flow-paths (i.e., columns) effectively @(m)

We devise POCs, inequalities based on a portigheobbjective function and augment
them to the linear relaxation of BSCP to cut ofingoportion of the B&B search tree, facilitating
solution. Average ratios of runtime of our methooghat of CPLEX are 90% for POC1, 91%
for POC2, 76% for POC1&2, respectively, implyingathPOC1&2 outperforms, on average,
CPLEX, POC1, and POC2. POC1&2 improved best bouartthe initial stage of B&B search.

POC1&2 might be helpful to find integral solutioarker than others, so that it may contribute
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to faster convergence than POC1l and POC2. Howdker,initial better bound does not
guarantee less runtime, but, on average, perfoatterb

Several studies associated with B&B did not deiéh wach instance in detail for their
analysis, but considered, in general, average peéioce. Providing better information to strong
branching may not guarantee better solution becawese&an consider strong branching as a
greedy heuristic.

Our CG approach solves the linear relaxation o€BSat the root node of the B&B
search tree faster than CPLEX. For one instancdT#3 its runtime is just 11.3% of that of
CPLEX. Our approach can be applied to many othegontant problems that involve an
embedded GFP.

CPLEX cuts do not reduce runtimes to solve outCBSinstances. Our solution
approach, which involves use of CG at the root nadd CPLEX B&B supplemented with
POC(s), solves most of our BSCP instances fasser @PLEX. Even though we had to maintain
Zinec = 0 or the incumbent solution from CPLEX heuristiccdnese CPLEX does not allow a
right-hand-side constant to be changed after biagdbegins, using POC(s) gives good results,
implying that such inequalities may be helpful acelerating B&B.

Finally, we suggest several fertile topics forufat research. First, in addition to the
embedded GFP sub-problem, it would be helpful findea second type of sub-problem that is
an integer problem to allow bounds at B&B nodebédightened to facilitate solution. Second,
since our CG approach is not guaranteed to genaltatiernative optimal shortest paths, it will
be interesting to study the impact of making ortgraative optimal shortest paths available to
the master problem. Third, our approach incorpsragxeral path-flows (columns) with positive
reduced cost after solving the subproblem once aath eCG iteration to accelerate CG

convergence. However, future research could ingaiavenues to improve our methods, better
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managing the number of paths generated to enhahai#oa capability. Fourth, POC appears to
offer promise and could be used to other mixedg@etgrograms that involve a similar objective
function structure to ours. Finally, our solutioppaoach offers promise in application to other
problems that involve an embedded generalized [fimlem.
7.4 Conclusion and future research on new IBSAL eteents for the biomass module system

Several IBSAL elements were developed to evalaatenceptual logistics system based
on biomass modules. Those elements described ti@pated operation of a self-propelled
forage harvester coupled to a module former andoduhe hauler capable of loading and
unloading two modules to and from flat-bed semild¢ra. Simulation models based on the new
and existing elements in IBSAL suggested the bienagistics cost to range between $19.65
and $41.26/Mg with varying yield levels and transplistances. A sensitivity analysis indicated
the factors with greatest influence on cost to loelule density, forage harvester field efficiency
and module hauler transport speed.
7.5 Conclusion and future research on evaluation @lternative biomass logistics systems

This study developed simulation models based ddAIBto address several biomass
logistics systems, including biomass module, silaged bale systems. The biomass module
system shows the best estimates for cost, enel@®, &nissions and man-hour among biomass
logistics systems considered. In particular, taegportation cost of the biomass module system
was least affected by transportation distance comtb@o other systems. In addition, the
doubling of crop yield reduced the CP cost sigatfity, ranging from 14 to 34%. The biomass
module system was expected to generate the bakeiqtected profit.

This paper suggests several future studies to weptbhe biomass logistics system
further. The first is considering several weatbanditions to investigate the impact of weather

condition. The second is applying this study toeotlocations and various crops to obtain more
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robust evaluation result. The third is devisingethnd to optimize the number of machines used
in the simulation model to consider the restrictadravailable machines in the region studied.
Finally, even though this study has not used aosage elements from IBSAL, it will be needed

to improve the logic for storage in IBSAL to coreidnore realistic aspects of storage operation
because current logic invokes some unrealisticrapBans that biomass materials will be stored

steadily and the number of turnover is a constahter
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