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ABSTRACT 

 

Optimization and Simulation for Designing the Supply Chain of the Cellulosic Biofuel Industry. 

(December 2011) 

Heungjo An, B.S.; M.S., Hanyang University 

Co-Chairs of Advisory Committee, Dr. Wilbert E. Wilhelm 
        Dr. Stephen W. Searcy 

 

The purpose of this dissertation is to provide an effective approach to design the supply 

chain (SC) of the cellulosic biofuel industry in order that it will support and accelerate the 

successful commercialization of the cellulosic biofuel industry. The methods of approach to this 

problem are (1) to assess the state-of-the-art biofuel SC studies, (2) to provide a decision support 

tool based on a mixed integer programming (MIP) model for the cellulosic biofuel supply chain 

design problem (BSCP), (3) to devise an exact solution method to solve large-scale instances of 

BSCP, (4) to evaluate a biomass logistics system based on biomass modules, by using new 

simulation elements for new machines, and (5) to compare several biomass logistics systems 

based on biomass module, bale, and silage, using simulation models. 

The first part of this dissertation broadly reviews the literature on biofuel SCs, analyzing 

the state-of-the-art biofuel and petroleum-based fuel SC studies as well as relating generic SC 

models (An et al., 2010a). The second part of this dissertation formulates BSCP as a MIP model, 

which is a time-staged, multi-commodity flow, network design problem with an objective of 

maximizing profit (An et al., 2010b), providing a case study to demonstrate managerial use in 

application to a region in Central Texas.  

The third part of this dissertation provides an exact solution method to solve BSCP. An 

embedded structure can be transformed to a generalized minimum cost flow problem, which is 
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used as a sub-problem in a CG approach. This study proposes a dynamic programming algorithm 

to solve the sub-problem in O(m), generating improving path-flows. To accelerate branch-and-

bound (B&B) search, it develops an inequality, called the partial objective constraint (POC), 

which is based on the portion of the objective function associated with binary variables. 

The fourth part of this dissertation evaluates a biomass module system, which is a 

conceptual logistics system based on large packages of chopped biomass with sufficient size and 

density to provide maximized legal highway loads and quick load/unload times. The last part of 

this dissertation evaluates economic benefits of the biomass module system, comparing it to bale 

and silage systems.  
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CHAPTER I 

INTRODUCTION 

1 

 Biofuel is one of the most important renewable energies. It can be distributed easily in 

the current technology and can be readily transported. Other renewable energies (e.g. solar, 

wind, hydropower, ocean, and geothermal) primarily produce electricity, which cannot readily 

power transportation vehicles using current technologies. During the last decade, countries 

around the world, especially in the U.S. and Europe, have tried to accelerate commercialization 

of biofuel to provide environmentally friendly, renewable energy.  

 The U.S. government passed Renewable Fuel Standard (RFS) 1 as part of the Energy 

Independence and Security Act in 2007 and amended it in 2010 (i.e., RFS2). RFS2 requires the 

U.S. to use 36 billion gallons per year (BGY) of domestic renewable fuel, including 16 BGY of 

cellulosic biofuel, starting in 2022, (see Figure 1) (U.S. Environmental Protection Agency, 

2010). Based on RFS2, an obligated party (i.e., refiners and importers of gasoline) must produce 

or supply biofuels in proportion to the total amount of gasoline each supplies to the U.S. market.  

 First-generation biofuels have been commonly produced from animal fats and edible 

crops (e.g., corn). However, they have led to a concern that they could cause food prices to rise, 

leading to a crisis. This concern has stimulated development of second-generation biofuels (e.g. 

cellulosic ethanol (ETOH)), which are produced from cellulosic  biomass, the residual, non-

edible parts of food crops (e.g., stems, leaves and husks) as well as other non-food crops (e.g., 

forest wood, switch grass, jatropha, cereals that bear little grain, and industrial waste such as 

wood chips, skins and pulp from fruit pressing). Because it has a high oil content and is highly 
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productive on a per-unit-area basis, algae has recently been highlighted as a feedstock for third-

generation biofuel and is under development in research labs. However, since it will take some 

time to develop algae that can produce biofuel on a commercial-scale and RFS2 mandates 

production of substantial amounts of cellulosic biofuel, second generation biofuels will be the 

focus of commercial endeavors in the near future. 

 

 

Figure 1 Renewable fuel requirements mandated by RFS2 (2010) 

 

 Second-generation biofuels are under development in a number of research labs and a 

few pilot refineries. However, second-generation feedstock has quite low energy density, is 

geographically distributed, and is degradable. Moreover, some feedstocks can be harvested only 

in specific seasons. Designing an economically viable SC to provide biofuel on a year around 

basis is a challenging problem.  

The DOE reports that biomass logistics, which includes harvesting/collecting, storing, and pre-

processing, constitutes as much as 20% of the current cost of supplying cellulosic ETOH (U.S. 
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Department of Agriculture (USDA) and DOE, 2008). Thus, reducing the logistics cost of 

cellulosic biomass is a key factor in successful commercialization. The DOE recently announced 

a goal for the biomass multi-year program plan: “The feedstock logistics goal is to reduce the dry 

herbaceous feedstock logistics cost to $0.39 per gallon ($0.103 per liter) of ETOH (equivalent to 

approximately $35 per dry ton [$38.59/dry Mg] in 2007 $) by 2012, with further reduction to 

$0.33 per gallon ($0.087 per liter) of ETOH by 2017” (DOE, 2010). 

 Moreover, the biofuel industry must cope with uncertainties (e.g. harvest yield due to 

weather and the market price of fuel). The moisture content of biomass fluctuates with weather 

conditions and is also uncertain. In addition, biofuel must compete with petroleum-based fuels, 

the price of which is highly variable due to complex relationships between supply, demand, fuel 

trading futures, and inventories.  However, due to RFS2, the effect of price variation on biofuel 

production quantity will be relatively low, but its effect on the profit of biofuel suppliers may be 

significant. To make it possible for second generation biofuels to be competitive with first 

generation biofuels and petroleum-based fuels, it is essential that the feedstock logistics system 

as well as the SC be designed optimally. Developing a multi-period deterministic model for 

biofuel SC design is necessary to identify dynamic features in the biofuel industry and can lead 

to insights into system operations and interactions. Moreover, it is required to address details of 

several unique features of cellulosic feedstocks (e.g., high moisture content, dry matter loss in 

storage facilities, and single destination for feedstock supply) so that a model reflects the actual 

features that characterize the industry.  

 In addition, since reducing the cost of supplying feedstock is of primary importance, a 

computer model that estimates important measures (e.g., cost, energy used, CO2 emission, 

biomass yield) by simulating detailed logistics operations is needed. A simulation model can 

consider operations in detail and accurately estimate costs that can be input to the proposed 
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optimization model.  

 Based on this background, section 1.1 introduces research objectives. Sections 1.2 and 

1.3 give a problem statement and an overview of our method of approach for each research 

objective, respectively. The last section describes the organization of the dissertation. 

1.1 Research objectives 

 The long term goal of this study is to provide an effective approach to design the 

cellulosic biofuel SC that will support and accelerate the successful commercialization of the 

biofuel industry. Specific research objectives are: 

(1) Assessing the state-of-the-art biofuel SC studies; 

(2) Providing a mathematical-based decision support tool to design the economically 

viable cellulosic biofuel SC, in which the overall system including location, capacity 

and technology of each facility is structured in the most profitable way and biomass 

are supplied to meet a year-round biofuel demand;  

(3) Evaluating biofuel economics in the test region of Central Texas under several 

scenarios; 

(4) Solving effectively large-scale instances of the modeled biofuel SC within 

reasonable run time;  

(5) Developing new IBSAL simulation elements to model a new biomass logistics 

system based on large packages of chopped biomass, biomass module system; and 

(6) Evaluating the performance of alternative biomass logistics systems, including bale, 

silage and module systems. 

1.2 Problem statement 

 Figure 2 depicts the five-echelon biofuel SC, including feedstock production, 

preprocessing, conversion in refineries, distribution, and consumption by customers. The term 
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upstream is commonly used to refer to the portion of the SC from feedstock production to 

conversion plants; and downstream, from conversion plants, which are included in both upstream 

and downstream, to customer zones. Even though it is important to improve technologies and 

efficiencies in each echelon, integrating technologies and coordinating echelons is necessary for 

the system to be most profitable.  

 

 

Figure 2 Schematic of facility alternatives of cellulosic biofuel SC system in time period t 

 

 The optimization problem is to prescribe strategic level decisions (i.e., locations where 
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facilities should be opened, and capacities and technology types of opened facilities) as well as a 

strategic plan for material flow, including single destination transfers in the upstream; and 

quantities transported, inventoried, and produced, while using a mix of different types of 

biomass as feedstocks and their changes from feedstocks to preprocessed products, and 

subsequently to biofuels. The objective is to maximize after tax profit of the total system from 

feedstock suppliers to customer zones. The model can be used to prescribe specific material 

flows in the tactical level at which the SC design has been fixed and accurate forecasts of 

demands, weather conditions, and other features are available to plan specific processing, 

transporting, and storage quantities over a planning horizon of intermediate duration. 

 Several assumptions will be invoked to structure the system: available feedstock 

supplies are given; the demand for biofuel in each customer zone and in each time period is 

known; preprocessors, refineries, distributors collaborate perfectly throughout the SC to 

maximize total system profit; preprocessing includes biomass drying and size-reduction 

operations, the main purposes of which are to reduce feedstock logistics cost (by transporting 

less water and denser biomass) and to promote conversion process efficiently; and the generated 

biofuel could be ETOH or drop-in-fuel. We assume that one of the most promising conversion 

technologies currently being developed is employed in the SC. 

 For the perspective of the operational level, simulation models evaluate the performance 

of several biomass logistics systems, including the bale system, which is one most commonly 

used for herbaceous (i.e., non-woody cellulosic ) biomass; the silage system; and the module 

system, which is currently being developed at Texas A&M University. A biomass logistics 

system integrates several processing steps before conversion, including harvesting, collection, 

transportation, storage, and preprocessing. For a given set of input values (e.g., farm land area, 

biomass yield, weather conditions, moisture content, and harvesting schedule), several measures 
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(e.g., cost, energy, and CO2 emissions) for each operation can be estimated based on a discrete 

event simulation model that reflects actual phenomena (e.g., operation delay due to weather 

conditions, physical and chemical dry matter loss, moisture content variation, and biomass 

density change). 

1.3 Method of approach 

 This section describes the approach to achieve research objectives. Each of subsections 

corresponds with each of objectives that we introduce in section 1.1. 

1.3.1 Research objective 1 

 Since the biofuel industry is just being initiated, a literature review of relevant SC issues 

has not yet been published. The biofuel industry shares features with the petroleum-based fuel 

industry in terms of market, but it also has some unique characteristics, especially related to the 

feedstock supply. More generally, certain prior work on generic SCs may be adapted to the 

biofuel SC. 

 Therefore, this literature review will analyze the state-of-the-art fuel SC research and 

compare biofuel and petroleum-based fuel SC studies. Also, it will relate research on generic 

SCs to the biofuel SC. Based on the perspective gained from the review, fertile avenues for 

future research will be recommended. 

1.3.2 Research objective 2 

 The flow of biofuels in the downstream and of several kinds of biomass feedstocks in 

the upstream can be described as multi-commodity flow with commodity-type changes. Before 

preprocessing operations in the upstream, each commodity represents a combination of a 

biomass type and a moisture content; after a preprocessing operation, the commodity type is 

changed to preprocessed biomass (i.e., size-reduced and dried). In the downstream, commodities 

are biofuels, which are converted in refineries from preprocessed biomass. The multi-
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commodities in the system must be processed, stored and transported, based on prescribed 

capacities of the processing and storage facilities that are opened, and on the available capacities 

of selected transportation routes. To deal with these features, two types of decision variables will 

be incorporated in the model: binary variables prescribe the opening of facilities and the single 

destination (i.e., facility) to which each facility in the upstream ships; and continuous variables, 

the capacities of facilities opened and the quantities of material flows (i.e., in processing, storage 

and transportation). 

 This paper formulates MIP model which is a time-staged, multi-commodity flow, 

network design problem with an objective of maximizing profit. The model invokes five types of 

constraints. First, each facility must employ only one technology type from among several 

alternatives. Second, the capacity of each opened facility will be restricted to or be less than the 

capacity limit associated with the corresponding location. Third, in order to facilitate 

management in the upstream, a constraint will be employed to assure that each field storage 

facility supplies a single open preprocessing facility, which, in turn, supplies a single open 

refinery. Fourth, the amount of materials flowing on each arc will be restricted by the capacity of 

that arc. Finally, flow balance equations will be employed to represent operations in each 

echelon: moisture content reduction in each preprocessing facility; chemical dry matter loss in 

each biomass storage facility; conversion from biomass to biofuel in each refinery; and material 

flow balance at each biofuel storage facility. 

1.3.3 Research objective 3 

 This research will present a case study to demonstrate how managers can use the 

proposed models. According to the analysis of Milbrandt (2005) (see Figure 3), the northern, 

central and eastern regions of Texas have some available biomass that can be used to generate 

biofuel. The central region is selected as a test bed because it represents an example that does not 
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provide a sufficient amount of crop residue to meet its own biofuel needs so that some energy 

crops must be planted to meet demand. Moreover, since the central region has no first-generation 

biofuel refinery yet, a sensitivity analysis to investigate the significance of economic factors will 

be more focused than in the case that also involves some first generation refineries. For instance, 

a few first generation biorefineries are already operating in northern panhandle area of Texas.  

 A sensitivity analysis will be conducted relative to the selected region by evaluating 

relevant economic factors: feedstock price vs. biofuel price and feedstock supply vs. biofuel 

demand. Through the sensitivity analysis, we will be able to identify which factors are most 

economically significant to the biofuel SC system. 

 

 

Figure 3 Available biomass distribution in Texas 

 

1.3.4 Research objective 4 

 Through preliminary computational work, instances have been found to be very large, 

mainly due to the number of flow variables. This section describes a solution approach to deal 

efficiently with instances of large size. 
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 (1) Reformulation. In the upstream, a commodity is defined by a combination of 

biomass type and moisture content. Since moisture content can vary according to biomass 

source, location and time period, considering a large area or many time periods would generate a 

huge number of commodity types. Therefore, if commodity type can be redefined by modeling a 

commodity that does not depend on moisture content, the formulation would be improved. To 

resolve this issue, this study provides a way to redefine the commodity type. 

In addition, to simplify the model further, another technique, a node-arc split with respect to 

biomass types, has been employed. This technique transforms multi-commodity flow into single 

commodity flow on each split arc. A single commodity on each split arc can be considered 

simply as energy flow on it.  

 (2) Decomposition. Based on the reformulation, the embedded flow problem, which is 

an embedded generalized flow problem (GFP), can be decomposed into a subproblem. This 

study deals with the uncapacitated, embedded GFP in BSCP under a CG-based decomposition 

approach, which solves the linear relaxation of BSCP at the root node. To solve UEGFP 

effectively, this study develops a new dynamic programming algorithm, which is called 

backward reaching algorithm (BRA), generating improving path-flows (i.e., columns) effectively 

in O(m). The master problem prescribes optimal, profitable flow quantities, considering side 

constraints. 

 (3) POC. This idea starts from the observation that the optimal solution opens facilities 

only if the system is profitable; and, accordingly, the fixed cost related to opened facilities could 

be restricted by available profit. Since the binary variable that prescribes the opening of each 

facility alternative is associated with its fixed cost, the relationship between fixed costs of 

opening facilities and profit would induce another relationship between binary variables and 

profit. And, possibly, the induced relationship could be used as an inequality to restrict binary 
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variables. This study develops a POC that is based on a portion of the objective function in MIP 

and may restrict the B&B search tree so that it can accelerate B&B procedure. 

1.3.5 Research objective 5 

 As a precursor to the design and fabrication of the biofuel processes, evaluating the 

significance of several factors and their interactions in the biomass logistics system will help to 

optimize the SC design. The IBSAL simulation framework developed by the DOE is an efficient 

tool to evaluate biomass logistics operations. It calculates several performance measures for each 

operation (e.g., biomass yield, dry matter loss, costs, energy used, CO2 emissions, and working 

hours). In addition, it provides several elements, each of which represents a unit operation, so 

that composing a new logistics model based on IBSAL is straightforward. 

 However, since the biomass module system involves some new types of processes that 

are not yet available commercially, IBSAL does not provide elements to represent them. Thus, 

this research develops IBSAL elements to simulate the operation and cost of processes that can 

form and handle biomass modules. Then, a simulation model is used to identify factors that are 

critical in achieving high performance and low cost of the biomass module system.  

1.3.6 Research objective 6 

 To compare performances of alternative biomass logistics systems, including bale, silage 

and biomass module, simulation models for those systems are developed. This research 

investigates advantages/disadvantages of each biomass logistics system under various 

environments (e.g., crop yield and transportation distance). 

1.4 Organization of the dissertation 

 This dissertation is organized in seven chapters. Chapter II reviews literature associated 

with the first objective, specifically about biofuel SC studies, comparing those to petroleum-

based fuel SC studies. Chapter III formulates a MIP model that is a time-staged, multi-commodity 
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flow, network design problem and gives a case study in a region of Central Texas, addressing the 

second and third objectives. Chapter IV describes a solution method devised, which includes 

reformulation, CG for an uncapacitated, embedded GFP, and POC to deal with large size 

instances, and provides computational results, addressing the fourth objective. Chapter V 

addresses the fifth objective by developing new IBSAL simulation elements for the biomass 

module logistics system. Chapter VI compares performance measures between several biomass 

logistics systems by using IBSAL simulation models addressing the sixth objective. Finally, 

Chapter VII presents conclusions and some recommendations for future research. 
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CHAPTER II 

LITERATURE REVIEW  

 

This chapter reviews the literature related to SCs of biomass for liquid fuels and for 

cofiring in power plants, as well as petroleum-based fuel. The objectives of this review are (1) an 

analysis of the state-of-the-art fuel SC research, (2) a comparison of biofuel and petroleum-based 

fuel SC studies, (3) a comparison of the characteristics of the biofuel SC and the generic SC, and 

(4) a perspective from which we suggest fertile avenues for future research that would expedite 

biofuel commercialization. 

The body of this chapter is organized in five sections. Sections 1 through 5 discuss SC 

studies related to biofuel and petroleum-based fuel according to the upstream, midstream, and 

downstream categorization. In particular, section 1 reviews operational-level studies, and section 

2 reviews tactical-level studies of supply chain management (SCM) related to fuels. Section 3 

reviews models that integrate strategic and tactical decisions in fuel SCM; and section 4 relates 

models capable of integrating strategic, tactical, and operational decisions in fuel SCM. Section 

5 discusses other review papers that have dealt with the management of the generic SC. Section 

6 analyzes fuel SCM. 

2.1 Operational level studies in fuel SCM 

Operational-level SC studies deal with decisions that affect the short term (e.g., hourly, 

daily, or weekly). Related biofuel SC studies have dealt with costs of operations, harvest 

scheduling, and upstream transportation. Studies of the petroleum-based fuel SC have dealt with 

refining operations in midstream. 

2.1.1 Biofuel 

Early studies of the operational level of biofuel SCs analyzed economic factors, for 
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example, estimating the cost of each operation from farm to conversion plant. The primary 

objective of most early studies was to assess the economic feasibility of the biofuel industry by 

estimating the cost of biomass logistics. Jenkins et al. (1984) estimated costs for alternative 

processes in biomass logistics, including collection and transportation of several types of 

biomass (e.g., rice, wheat, and barley straws; corn and sorghum stover; cotton stalks; orchard 

pruning; and forest slash). Gemtos and Tsiricoglou (1999) and Tatsiopoulos and Tolis (2003) 

provided a similar analysis, based on cotton stalk, that dealt with an electricity-generating plant 

in Greece. Petrou and Mihiotis (2007) reported a study for cotton-stalk biomass as a feedstock of 

biofuel, using another example in Greece. 

Hamelinck et al. (2007) addressed international bioenergy logistics. They reported that, 

in Sweden and the Netherlands, several green-energy producers already import biomass, 

requiring the supply of long-distance biomass transportation. They analyzed SCs of Europe, 

including transportation of biomass from Latin American to conversion plants in Europe. They 

estimated the cost for each possible operation in such an international biomass SC. Gronalt and 

Rauch (2007) proposed a method to evaluate the total cost of supplying woody biomass from 

forest to conversion plants for a state within Austria, comparing central and local chipping 

alternatives. The system cost they calculated includes the costs of transportation from forest to 

terminals and from terminals to conversion plants and of operating terminals, but does not 

include harvesting costs. 

Simulation models have been based on economic analyses to estimate important 

measures, including cost, energy consumption, and carbon emission. Mantovani and Gibson 

(1992) introduced a simulation model to analyze biomass harvesting and transportation costs by 

using SLAM simulation language. They considered three kinds of biomass: maize, low-quality 

hay, and wood chips. Gallis (1996) provided a simulation model also based in SLAM to estimate 
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logistics cost of forest biomass for several scenarios in Greece. De Mol et al. (1997) proposed 

both simulation and optimization models. Their simulation model analyzes all operations and 

calculates annual costs, energy consumption, and the flow of biomass from farm to conversion 

plant within a given network of facilities. They estimated dry matter and moisture losses. They 

classified the costs associated with biofuel in three categories: feedstock, logistics, and power 

plant. The main purpose of this simulation model was to assess the economic feasibility of the 

biofuel industry, but the paper does not provide a numerical example or a detailed mathematical 

formula for each simulation module.  

Sokhansanj et al. (2006a) reported a similar, integrated biomass supply analysis and 

logistics (IBSAL) model. Their ExtendSim simulation model is similar to that of De Mol et al. 

(1997), but it calculates the carbon emissions that result from processing and transportation, and 

includes formulae that give good estimates of physical phenomena and logistics operations, 

including biomass availability, moisture content, weather factors affecting field operations, 

equipment performance, dry matter loss, and costs. They analyzed a numerical example that 

applied their model to corn stover collection and subsequent transportation in bales. In 2007, 

Kumar and Sokhansanj (2007) employed IBSAL to study switch grass logistics and compared 

several options for collection and transportation. They noted that the simulation approach is 

limited because it uses a given network structure, which specifies facilities and their capacities as 

well as transportation distances, which depend on facility locations.  

Ravula et al. (2008) used a simulation model to study transportation in the cotton 

logistics network as a possible model for the biomass system. Typically, cotton is collected and 

then compressed in long blocks, known as cotton modules, for transportation. Then, cotton 

modules built by several farmers are transported to a gin for processing. To consider continuous 

cotton module supply in a biomass transportation system, they proposed a knapsack optimization 
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model with binary decision variables that prescribe truck schedules and module pickups. They 

used their simulation model to study a transportation system, investigating greedy strategies, 

such as “shortest first” or “longest first, shortest second,” to schedule transportation operations 

using a limited number of equipments that are specialized for harvesting cotton.  

Two other important issues in biomass are maintaining a sustainable supply and assuring 

reduced environmental impact. Forests are a primary source of cellulosic biomass and related 

studies have been focused on harvest sustainability since the 1980s. Those studies are applicable 

but, since they focus on forest products rather than biofuel, this paper simply outlines recent 

trends in forest harvesting research. Major concerns associated with scheduling forest harvests 

include producing greatest benefits, achieving consistent and stable harvest yields, and reducing 

the environmental impact of required treatment operations. Murray (1999) reviewed two basic 

harvest-scheduling models: the unit restriction model (URM) and the area restriction model 

(ARM). These two models differ in just one constraint, which involves spatial restrictions. URM 

does not allow harvesting in an area that is adjacent to another one that has been harvested, while 

ARM limits the extent of contiguous harvesting areas in each cluster of areas. Most recent 

studies have focused on different solving methodologies to overcome the computational 

challenges of the ARM. Martins et al. (2005) posed a column-generation approach that solved 

sub-problems using heuristics. Gunn and Richards (2005) formulated a mixed integer program 

(MIP), including strengthening and lifting constraints, to improve the basic ARM formulation. 

Goycoolea et al. (2005) proposed a MIP based on the node packing problem. They devised an 

exact-optimizing algorithm that uses strong valid inequalities, which form clique representations 

of a projected constraint. Constantino et al. (2008) presented a new MIP model, which comprises 

polynomial numbers of variables and constraints, and used branch and bound to solve it. 
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Since first-generation biomass (e.g., edible crops, such as corn and sugar cane) has been 

used to produce ETOH, we also consider SC research in the agri-food area. A few papers have 

dealt with the sugarcane SC. Higgins (1999, 2002) formulated a MIP to improve yield by 

scheduling sugarcane harvests and solved it using several heuristics. Higgins and Postma (2004) 

addressed a scheduling problem to optimize the rostering of harvesting groups into sugarcane 

rail and road sidings to reduce transportation and harvesting costs. They used a tabu search to 

solve their MIP, which uses a weighted, multi-objective function, including transportation 

capacity, the total amount of movement across sidings, and a measure of adherence to a schedule 

that reflects perfect equity between farmers. Lejars et al. (2008) used the MAGI simulation 

package to plan sugarcane harvesting. Its main purpose was also to improve yield and, thus, 

profit. 

2.1.2 Petroleum-based fuel 

The first studies of the operational level of the petroleum-based fuel SC were reported in 

the 1960s. Aronofsky and Williams (1962) developed a multi-period, linear programming model 

to prescribe oil well production. They developed two models: one schedules production rates 

from either single or multi-well systems; the other, drilling and rig operations. Decision variables 

in the first model set of production rates for oil wells and those in the second model prescribe the 

number of wells completely drilled, the number of rigs purchased, and the number of rigs in 

operation. 

Most operational-level studies of the petroleum-based fuel SC deal with the midstream 

(i.e., operations at refineries). Pinto and Moro (2000) developed a modeling framework for 

planning and scheduling refinery operations. Considering the market demand for oil derivatives 

typically supplied by a refinery in Brazil (e.g., metropolitan diesel, characterized by low sulfur 

levels for environment; regular diesel, used in areas with no special concern for atmospheric 
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pollution; and low-valued maritime diesel, featured with high flashing point for safety), their 

non-linear optimization model prescribes the amount of each oil derivative to be produced, while 

satisfying all process constraints. Neiro and Pinto (2004) extended this earlier work, providing a 

general modeling framework for the operational planning of sub-facilities within a refinery (e.g., 

processing units that modify the material physically or chemically, tanks for mixture and storage 

of the different feed streams, and pipelines for transportation of crude oil and products). Decision 

variables prescribe material flow through each process step. They incorporated detailed 

operational constraints to represent practical features associated with the refining process. 

Because they defined each outlet flow as the product of the associated feed flow rate and certain 

properties of the input, the resulting multi-period model is a large-scale mixed integer non-linear 

program (MINLP). Even though they proposed a decomposition scheme to solve the MINLP, 

they gave no further details or computational results. 

Research has also addressed operational-level planning for downstream operations. 

Ronen (1995) addressed a scheduling problem associated with the distribution of petroleum 

products, considering the two basic types of plants: refineries and lube plants. Refineries produce 

light products (e.g. gasoline, kerosene, diesel oil, aviation fuel) as well as heavy products (e.g. 

base stock for lubes, and residual oil). Lube plants manufacture lube oils, greases, and waxes. 

Ronen explained four different types of operational environments encountered in practice: light 

products transported in bulk from refineries to tank terminals and industrial customers; light 

products, from tank terminals to retail outlets; bulk lubes, from lube plants to industrial 

customers; and packaged lubes, from lube plants to retail outlets and industrial customers. He 

proposed two scheduling formulations: set partitioning for minimizing cost and set packing for 

maximizing profit.  
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2.2 Tactical level studies in fuel SCM 

Tactical level studies deal with planning decisions that focus on a somewhat longer time 

period (e.g., monthly) than addressed by operational level studies. Generally, those decisions 

prescribe inventory policy and material flow. 

2.2.1 Biofuel  

Apparently, no study has dealt with the tactical level of the biomass SC. We surmise this 

is because generic SC studies that predated early biomass SC research contributed strategic, 

tactical, and operational models as well as models that integrate the various levels. Some 

representative generic SC studies are introduced in section 6. In addition, the biofuel industry has 

been in a state of flux as it investigates several types of biomass and several possible processes 

to convert biomass to biofuel (e.g. chemical or thermochemical processes). Tactical-level studies 

will doubtlessly be undertaken once the conversion process is fully developed. 

2.2.2 Petroleum-based fuel 

In contrast, research in the petroleum-based fuel industry has studied tactical planning of 

inventory management and product flow. Catchpole (1962) proposed a linear program to plan 

the flow of crude oil from wells to refineries, and the flow of oil products from refineries to 

distribution centers. In addition, he analyzed the convexity and non-linearity of his model. For 

example, the use of lead to improve octane for motor gasoline has a decreasing effect as 

concentration increases, so that the objective function and constraints are non-linear. Capital and 

operating costs are concave non-linear functions. In addition, he noted that costs and demand 

must be considered as stochastic factors. He solved the problem using Dantzig-Wolfe 

decomposition. Klingman et al. (1987) formulated a production and inventory planning model 

for refineries. Their model, named the SDM (Supply Distribution Marketing) system, has been 

used by the Citgo Petroleum Corporation. Decision variables prescribe production amounts, spot 
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purchase amounts, oil product exchange with other companies, inventory, and distribution. This 

multi-period network flow planning model requires the network structure to be input.  

Sear (1993) addressed the problem of distribution in the downstream segment of the oil 

SC. He dealt with three product classes: motor spirits (petrol), which have a low flashpoint; 

middle distillates (diesel fuel, oil for heating, etc.), which have high flashpoints; and fuel oils 

(black oils), which often require heated storage. His model prescribes flows of the various oil 

products, given a network structure. He also derived an equation to estimate delivery cost based 

on the assumption that delivery involves vehicle routing.  

Escudero et al. (1999) formulated a model, named CORO, to prescribe crude oil supply, 

transformation in refineries, and distribution to customers for a given facility network structure, 

while considering demand and spot price uncertainties. They formulated a scenario-based 

stochastic programming model for which decision variables prescribe the supply volume of 

crude oil, the volume transformed at the refinery, the transported volume, the spot volumes 

supplied by other companies, the spot volumes sold to other companies at the depot, and the 

volumes of excess and deficit at the depot. Dempster et al. (2000) applied the CORO model and 

extended it to the multi-stage case. Through some numerical examples, they concluded that the 

multistage model is more robust in the face of uncertainty than the two-stage model; it requires 

significantly less memory, and provides more realistic cost estimates. In one of their examples, 

the deterministic equivalent to the multistage model comprised about 50% fewer constraints than 

the two-stage model.  

Chenga and Duran (2004) developed a simulation model for planning worldwide crude 

oil transportation and a Markov decision model for the stochastic optimal control of the 

inventory/transportation system. They solved their model using an approximation algorithm 

based on problem decomposition and function approximation to deal with the large state-space 
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involved. Lababidi et al. (2004) formulated a production planning model for a petrochemical 

company. For a given facility network, they dealt with raw material procurement and production 

costs, as well as lost demand, backlogging, transportation, and storage penalties. Their model 

includes operational level constraints related to refinery processing and uses a two-stage 

stochastic program to deal with uncertain demands, market prices, raw material costs, and 

production yields. MirHassani (2008) also formulated a scenario-based stochastic program to 

plan the distribution of petroleum-based oil products in the face of uncertain demand. Decision 

variables prescribe the volumes transported by each transportation mode and the volumes of 

shortage and excess of each product. 

A study by Levary and Dean (1980) proposed a SC model for another form of energy 

(natural gas) and it may be applicable to biofuel. Their multi-period, multi-objective model deals 

with demand uncertainty caused by weather variability. The duration of each time period varied 

according to the variance of demand. Their model incorporates lead time from supply to 

destination, both through constraints and decision variables, which prescribe the amount of gas 

flow. Within one period (at least one month in duration), some equations are based on minor 

(daily) time periods to incorporate the daily rate of flow and the maximum possible rate of flow. 

This device allowed the authors to integrate time-period mismatches to model different 

operations. 

2.3 Models for integrating strategic and tactical decisions in fuel SCM 

Models that integrate strategic and tactical decisions typically deal with both types of 

decisions and relate to a monthly or yearly time frame. The production and distribution problem 

is one example of such an integrated model. 

2.3.1 Biofuel 

Most biofuel SC models deal simultaneously with the strategic and tactical levels of 
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upstream operations (i.e., from farms to the refinery). Several studies have built upon a classical 

production/distribution MIP model. De Mol et al. (1997) introduced a MIP that prescribes plant 

openings as well as annual flows of biomass. They compared advantages and disadvantages of 

simulation and optimization models. In 2004, Gunnarsson et al. (2004) extended the classical 

production/distribution model to the forest-fuel industry. They considered preprocessing 

alternatives and limited the used of less attractive biomass in order to produce forest fuels of 

desired quality. A multi-period MIP for forestry production and logistics formulated by 

Troncosoa and Garrido (2005) prescribes discrete capacity decisions for forest processing 

facilities (e.g., sawmills, board plants, and remanufacture plants) as well as material flow 

decisions, considering harvesting and forest-area limitations.  

Huang et al. (2010) developed a multistage model for strategic biofuel SCM from 

biowaste feestock fields to end users to determine locations and sizes of new refineries, 

additional capacities, and quantity of material flows on a yearly basis. Whereas, several studies 

have dealt with a one-year planning horizon, considering loss of dry mass over time. Ekşioğlu et 

al. (2009) proposed a SC design model that uses corn and corn stover biomass to produce ETOH. 

Their multi-period MIP prescribes the network design as well as material flows from the 

upstream to the downstream. In 2010, Ekşioğlu et al. (2010) extended their study by considering 

modes of transportation. Zhu et al. (2010) formulated a MIP to prescribe locations of biomass 

storage and conversion facilities, modes of transportation from farms to refineries, and flows of 

biomass in the upstream.  

Several studies have dealt with uncertainty in the biofuel SC. Cundiff et al. (1997) 

developed a two-stage stochastic program to manage production uncertainty caused by weather 

over multiple time periods. Their model prescribes optimal storage capacities, including 

installation of new, or expansion of existing, facilities. Even though they considered some 
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strategic design aspects, the main decisions, which deal with uncertainty, are associated with the 

tactical level. 

Gigler et al. (2002) applied an agri-product SC study to the biofuel SC, considering 

biomass as a specific type of agri-product. Their dynamic programming model for the agri-

product SC deals with the characteristic change of quality and appearance over time. Moisture 

content is used as a measure of quality and particle size represents appearance. Before arriving at 

a refinery, biomass should be in an appropriate state as measured by moisture content and 

particle size. They gave a numerical example that illustrates the delivery of willow biomass to 

energy plants. They modeled processing steps from harvesting to conversion plant, calculating 

quality, appearance, and costs to prescribe an optimal processing path. 

Dunnett et al. (2007) addressed a modeling framework for the upstream SC of biomass 

used for combustion plant, discussing system components that must be represented appropriately 

(e.g., SC structure, storage strategy, and task schedule). They formulated a MIP, which is based 

on a state-task network, to prescribe the selection of structural components, the number of units 

installed on components, and assignment of task to units. Through a numerical example of a 20 

megawatt (MW) peak output heat plant with Miscanthus as a feedstock, they showed that 

optimization solutions result in 5-25% cost reduction compared to a simple heuristic strategy. 

2.3.2 Petroleum-based fuel 

The first model that integrated strategic and tactical planning for the petroleum-based 

fuel SC appeared in the early 2000s. Brimberg et al. (2003) formulated a model to design oil 

pipelines running from onshore wells to a port. Decision variables prescribe, for a single time 

period, strategic decisions (which pipeline segment to open and the capacity of each segment) 

and tactical decisions (the amount of flow in each segment). They solved their model based on a 

decomposition scheme, using an interactive B&B procedure, which incorporates several 
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techniques at each branching node, including applying augmented valid inequalities and either 

tabu search or variable neighborhood search. They applied their approach to an example based 

on a south Gabon oil field.  

Most studies of downstream operations have dealt with designing the network (strategic) 

and prescribing material flows (tactical). Al-Qahtani and Elkamel (2008) formulated a model to 

design processes and integrate production capacity expansions in a multiple refinery complex 

using different feedstocks, each with a unique chemical composition. Each refinery consists of 

different production units that can operate in different operating modes (i.e., processes), which 

depend on targeted production quantities. Their single-period MIP deals with strategic capacity 

expansion, transshipments between refineries, and tactical flows of crude oils and intermediate 

materials between refineries (e.g., heavy naphtha is transported to a catalytic reformer; and light 

naphtha, to a light naphtha pool or an isomerization unit), considering practical features 

associated with refining processes. Their numerical example deals with three complex refineries 

in one industrial area, a common configuration, and showed that the integrated planning of 

refineries in an area is economically attractive in comparison with decentralized management. 

Khor et al. (2008) formulated a petroleum refinery planning model that addresses uncertainties 

associated with demand, price and yield. They formulated four models to hedge against 

uncertainty: (1) Markowitz’s mean-variance (MV) model, which minimizes variance; (2) two-

stage stochastic program to deal with randomness of constraint coefficients; (3) mean–risk 

model, which incorporates the MV model within the framework developed in (2); and (4) a 

reformulation of the mean–risk model in (3) that adopts the mean-absolute deviation (MAD) as 

the measure of operational risk imposed by recourse costs. Decision variables prescribe 

production capacities, which can vary over time; material flows; and inventories for each 

processing operation. They used three scenarios in a numerical example and analyzed solutions 
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prescribed by the four models. Kim et al. (2008) formulated a model to integrate strategic 

supply-network design and tactical production planning for several products (e.g., gasoline and 

diesel) at the downstream level. Their distribution network model combines a network design 

model and a production planning model for multi-site refineries. They coupled their MIP with 

the non-linear production planning model of Li et al. (2005), which deals with operations at a 

crude distillation unit and a blender. Importantly, through several examples, they showed that a 

model that integrates strategic and tactical decisions can improve profit in comparison with using 

separate models at individual refineries.  

2.4 Models for integrating strategic, tactical, and operational decisions in fuel SCM 

To our knowledge, no available models integrate biofuel and petroleum-based fuel SCs 

in all decision levels. However, Fiedler et al. (2002) provided a conceptual study. Using a 

strategic model based on a geographic information system (GIS) to design cost-efficient supply 

logistics for the industrialized use of biomass, they analyzed options available to managers, 

including choice of sources of biomass (e.g. owned or contracted supplier) and types of biomass, 

assessment of necessary logistics processes (e.g., pre-processing, storage, and transportation 

mode), and design of the transportation network. 

2.5 Trends in generic SCM 

A rather extensive literature has addressed SC management over last two decades. Since 

the biofuel SC is a specific type of SC, much of the work on generic SCs may apply. Here, we 

discuss several recent review papers to identify research trends related to SCM. 

Over the last two decades, information technology (IT) has been improved and has 

become a major driving force for SC innovations. Min and Zhou (2002) reviewed SC models, 

using four major categories: deterministic, stochastic, hybrid, and IT-driven models. IT-driven 

models aim to integrate and coordinate various phases of SC planning on a real-time basis, 
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including models of warehouse management systems, transportation management systems, 

collaborative planning and forecasting replenishment, material requirement planning, enterprise 

resource planning, and GIS. Bilgen and Ozkarahan (2004) reviewed strategic, tactical, and 

operational models for production and distribution. They classified papers in terms of the 

solution methodology used: optimization-based, metaheuristic, IT-driven, and hybrid models. 

They suggested that future research should address multiple conflicting objectives, stochastic 

factors, and other issues, including bill of materials, fuzzy constraints, logical constraints, 

operational decisions, and reverse SCs. Many IT-driven models (e.g., real time planning and 

management based on information systems) are applicable to the biofuel SC. In particular, GIS is 

very useful in dealing with dispersed biomass supply locations. Graham et al. (2000) employed 

GIS to calculate exact transportation distances and costs for supplying switchgrass in eleven US 

states. 

Another important trend relates to sustainable SCM. Sustainable products provide 

environmental, social, and economic benefits, while protecting public health and welfare, and the 

environment over their life cycles. Seuring and Muller (2008) offered a review of the literature 

on sustainable SCM from 1994 to 2007. They described distinctive features of sustainable SCM, 

which must consider the SC in a long-term perspective; risk management; and a wider set of 

performance objectives, including economical, environmental and social benefits. Sustainable 

SCM entails a need for companies to collaborate. They proposed that future research should 

identify shortcomings of existing models since sustainable development is primarily one-

dimensional, focusing on environmental issues. A perspective that integrates social issues (e.g., 

partnership issues related to human rights and working conditions between a company and its 

suppliers) is required. Most papers report empirical research, so that theoretical developments 

are needed. Biofuel is a potentially sustainable product, so generic sustainable SCM studies 
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could be specialized to deal with the sustainability and environmental friendliness of biofuel 

SCM. The impact of using land for energy production (rather than food) is affecting government 

policy toward biofuels, and studies of sustainable SCM may be able to address related concerns. 

Due to issues related to public health, agri-food SCs have been the focus of a significant 

amount of recent research (Wilson, 1996; Ahumada and Villalobos, 2009). Ahumada and 

Villalobos (2009) reviewed the literature related to agri-food supply chains (ASCs). They 

compared SC studies that deal with both perishable and non-perishable agri-products, 

considering their objectives, planning scopes, decision variables, and modeling approaches. They 

concluded that the state-of-the-art planning models for ASCs lags that in other industries, 

including electronics and automotive. They recommended that future research should address the 

perishability of products and formulated operational models that integrate production and 

distribution decisions. Perishability is common to agri-products in general and to biomass in 

particular, and it is very important aspect of SCM. Problems that involve perishable inventories, 

one important part of SCM, have been studied for several decades. Goyal and Giri (2001) 

reviewed deteriorating inventory models proposed since the early 1990s. They classified 

perishable inventory models depending upon the life time of the product: fixed, random 

(exponential decay), and decay corresponding to the proportion of inventory decrease per unit 

time. Thus, some aspects of agri-product SCM may be applicable to biofuel SCM. In addition, 

other generic agricultural studies, such as farm planning (1987) and agri-product production 

planning (1998), also may be directly related to biomass productivity. 

Facility location is a classical problem that is a component in the strategic planning of 

SCs. Klose and Drexl (2005) reviewed facility location models. They provided basic 

formulations for representative models, including a continuous location model, a network 

location model, uncapacitated/capacitated single/multi-layer models, a dynamic model, and a 
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probabilistic model. Melo et al. (2009) provided a comprehensive review of the facility location 

problem. They concluded that capacity, inventory, and production decisions are important in 

addition to location-allocation decisions. Even though procurement, transportation-mode 

selection, and routing are important, not many papers have considered them. They also observed 

the recent trend to incorporate risk management in the design of SCs. Relatively few studies 

have been able to address uncertainty (Birge and Louveaux, 1997) related to generic (Santoso et 

al., 2005), petroleum-based fuel (Escudero et al., 1999), or biofuel supply chains (Cundiff et al., 

1997). Melo et al. (2009) concluded that there is still a lack of research that addresses multi-

period, multi-layer, stochastic models, noting that most papers deal with a single-period and 

assume a deterministic environment. Since biomass has very low energy density and is 

geographically dispersed, the structure of the facility network must be optimized so that the 

biomass SC can contribute to the economic viability of the industry. It may be possible to 

ameliorate the computational challenges posed by the multi-level structure of the biofuel SC 

through applying results obtained by generic facility location studies. 

With a trend towards globalization, international issues have been major topics of 

concern. Goetschalckx et al. (2002) reviewed the literature on modeling and designing global 

logistics systems, focusing on the savings potential generated by integrating the strategic design 

of global SC networks with tactical production-distribution decisions. They analyzed the 

international features represented in strategic logistics models (e.g. stochastic features, taxation, 

transfer prices, and trade barriers) and formulated a model to prescribe transfer prices in global 

logistics systems. Meixell and Gargeya (2005) provided a comprehensive review of global SC 

design since 1980. They analyzed the literature based on four dimensions: decision variables, 

performance measures, SC integration, and globalization considerations. They concluded that 

several industries (i.e., food and medication) have not been explored in the context of global SC 
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models, while others (e.g. electronics manufacturing, apparel, fiber and textile, and automotive) 

have been studied extensively. In addition, they suggested that future research should focus on 

multi-tier SCs with both internal production sites and external suppliers. While most countries 

are requiring more extensive use of biofuel, not all countries around the world have land and 

environment capable of producing necessary quantities of feedstock for biofuel, so that an 

international market is likely to develop for biofuel. Moreover, even though the energy density 

of biomass is too low to offset the energy needed to transport it over a long-distance, some 

countries in Europe (e.g. Netherlands and Sweden) import biomass (e.g., wood pellets) from 

South America because the European Union has rules requiring member countries to generate 

20% of their electricity from renewable sources by 2020. Their demands have led some 

companies in the U.S. to export pellets to Europe (e.g., Green Circle Bio Energy Inc., Dixie 

Pellet LLC, Phoenix Renewable Energy LLC) (The Wall Street Journal, 2009b). 

Due to numerous efforts in SCM research, several sub-areas have evolved in SCM. 

Kouvelis et al. (2006) provided a comprehensive review of all topics addressed in SCM studies, 

including SC design, uncertainty, the bullwhip effect, contracts and SC coordination, capacity, 

sourcing decisions, applications, and the practice and teaching of SCM. If the biofuel industry 

matures and needed interactions between entities (e.g., supplier, manufacturer, buyer, and 

transporter) evolve, these topics will have to be investigated to deal with these complicated 

phenomena as they relate to biofuel. 

2.6 Discussions 

We categorize each paper examined according to two dimensions (i.e., SC level and 

decision level) as shown by Figure 4 for biofuel and Figure 5 for petroleum-based fuel. Figures 4 

and 5 show the number of papers we review in each category and Tables 1 and 2 give 

taxonomies of these papers. 
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It is noteworthy that biofuel studies predominantly relate to upstream processes (i.e, 

from biomass suppliers to conversion plants) especially at operational and integrated levels. The 

reason is that prior research has focused on evaluating various types of feedstock and improving 

the efficiency of feedstock logistics. A second observation is that no study optimizes conversion 

operations in midstream because several technologies are still being developed and tested. 

Virtually, no study has dealt with the downstream and recently only a few studies have dealt 

with all echelons from the upstream to the downstream, likely because downstream processes for 

biofuel may be similar to those for petroleum fuel. In practice, some biofuels (i.e., so called 

drop-in fuels) can be distributed within the existing infrastructure for petroleum-based fuels, 

while other biofuels (e.g., ETOH) must be handled separately from petroleum-based fuels. 

In contrast, studies of petroleum-based fuel have addressed upstream, midstream, 

downstream, and mid/downstream at operational, tactical, and integrated levels. Studies that 

have focused on planning at the operational level have addressed upstream, midstream and 

downstream levels of the SC. The most frequently studied combination has dealt with the 

mid/downstream (i.e., refining and distribution) and the tactical level of production planning. 

Integrated planning models have been formulated for upstream (pipeline layout design and 

material flow, refinery facility location or capacity expansion), midstream (intermediate product 

flow decision between sub-facilities within a refinery, sub-facility network design, and refinery 

production planning) or mid/downstream (refining and distribution decisions). More aspects of 

the petroleum-based fuel SC have been addressed than of the biofuel SC, apparently because the 

later is a developing industry that has only recently been promoted by government policies. 
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Figure 4 Categorization of papers related to biofuel SCM papers 

 

 

Figure 5 Categorization of papers related to petroleum-based SCM papers 
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Table 1 Taxonomy of biofuel SCM papers 

SCM planning level Layer in SC Year Researchers 

Operational 
Upstream 

1984 Jenkins et al. 

1992 Mantovani and Gibson 

1996 Gallis 

1997 De Mol et al.  

1999 Gemtos and Tsiricoglo 

1999 Murray  

2002 Higgins  

2003 Tatsiopoulos and Tolis 

2004 Higgins and Postma  

2005 Goycoolea et al.  

2005 Gunn and Richards  

2005 Hamelinck et al.  

2005 Martins et al.  

2006 Sokhansanj et al.  

2007 Gronalt and Rauch Peter  

2007 Kumar and Sokhansanj  

2007 Petrou and Mihiotis 

2008 Constantino et al.  

2008 Lejars et al.  

2008 Ravula et al.  

Up/Midstream 1999 Higgins  

Integrated 

Upstream 

1997 Cundiff et al.  

2002 Gigler et al.  

2004 Gunnarsson et al.  

2005 Troncosoa and Garrido  

2007 Dunnett et al.  

2010 Zhu et al.  

All 
2009 Ekşioğlu et al.  

2010 Ekşioğlu et al.  

2010 Huang et al. 
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Table 2 Taxonomy of petroleum-based fuel SCM papers 

SCM planning level Layer in SC Year Researchers 

Operational 

Upstream 1962 Aronofsky and Williams  

Midstream 
2000 Pinto and Moro  

2004 Neiro and Pinto  

Downstream 1995 Ronen  

Tactical 

Upstream 2004 Chenga and Duran  

Mid/Downstream 

1962 Catchpole  

1980 Levary and Dean  

1987 Klingman et al.  

1993 Sear  

1999 Escudero et al.  

2000 Dempster  

2004 Lababidi et al.  

2008 MirHassani  

Integrated 

Upstream 2003 Brimberg et al.  

Midstream 
2005 Li et al.  

2008 Al-Qahtani and Elkamel  

2008 Khor et al.  

Mid/Downstream 2008 Kim et al. 
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CHAPTER III 

MIP MODEL AND A CASE STUDY ON A REGION IN CENTRAL T EXAS 

 

 This chapter formulates a model to maximize the profit of a cellulosic biofuel SC 

ranging from feedstock suppliers to biofuel customers. The model deals with a time-staged, 

multi-commodity flow, production/distribution system, prescribing facility locations and 

capacities, technologies, and material flows. A case study based on a region in Central Texas 

demonstrates application of the proposed model to design the most profitable biofuel SC under 

each of several scenarios. A sensitivity analysis identifies that ETOH price is the most 

significant factor in the economic viability of a cellulosic biofuel SC. 

This study holds two primary research objectives. The first is to formulate a 

mathematical model to prescribe an optimal biofuel SC that allows use of various types of 

cellulosic biomass and deals with upstream and downstream material flows. The second is to 

apply the model in a case study to demonstrate its use in providing decision support for industry 

managers and government officials. 

The body of this chapter comprises three sections. Section 1 describes the system and 

section 2 presents our mathematical model. Section 3 provides a case study based on a region in 

Central Texas. Section 4 analyzes impacts of several economic factors based on computational 

results and gives recommendation of future research. Finally, Section 5 gives conclusions. 

3.1 System description 

The biofuel SC system considered comprises five echelons: feedstock production, 

preprocessing, production in conversion plants, distribution, and consumption by customers, and 

including possible storage locations. Each facility can use one of several technology alternatives. 

For example, biomass can be stored using outdoor-uncovered, outdoor-covered, indoor-aerobic, 
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or indoor-anaerobic technologies. Preprocessing technology could include size reduction, drying 

moisture content, or both. Moreover, conversion technology may involve a biochemical, a 

thermochemical, or a bio-thermochemical process. Even though improving technologies and 

efficiencies in each echelon is important, integrating technologies and coordinating echelons is 

necessary for the system to be most successful economically.   

Materials flowing in the SC must be stored before being processed either at 

preprocessing or conversion facilities, and again stored as they wait to be transported after 

processing. While it is being stored at upstream locations, biomass degrades over time, losing 

some portion of its mass due to chemical reactions (e.g., fermentation and breakdown of 

carbohydrates) (Sokhansanj et al., 2006b). The rate of dry matter loss in storage depends on the 

type of biomass, moisture content, and storage conditions.  

Some feedstocks contain high moisture content and must be dried on the field 

immediately after harvesting and/or in a preprocessing facility to reduce the cost of transporting 

it and to meet requirements of the conversion technology selected. Since cellulosic biomass 

typically has low energy density, it is important to reduce moisture content so that energy is not 

expended in transporting it. In particular, transportation routes must be carefully prescribed so 

that the system is able to achieve a net production of energy while managing green house gas 

emissions. Preprocessing facilities may also involve a size reduction operation to reduce the 

transportation cost by increasing density and to facilitate the conversion process. 

In the upstream, the various types of feedstocks must share the capacities of 

transportation vehicles and processing facilities. In the downstream, some biofuels (e.g., ETOH) 

must be transported and/or stored separately from petroleum-based fuels, while other biofuels 

(i.e. so called drop-in fuels) are compatible with petroleum-based fuels and can be handled easily 

within the existing infrastructure. 
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The variability of several important factors over time (e.g., the seasonality of biomass 

availability, biomass moisture content, and the demand and price of fuel) could significantly 

affect the SC design so that a time-staged model is required. A strategic model, which deals with 

a long-range forecast of demand can capture such dynamics using a time period of one quarter 

(i.e., 3 months) duration. 

We invoke several assumptions to structure the system: available feedstock supplies are 

known; the demand for biofuel in each customer zone in each period is known; preprocessors, 

refineries, and distributors collaborate perfectly in all operations from field storage to customer 

zones to maximize total profit; preprocessing includes drying and size-reduction operations. We 

model the types of preprocessing technologies that appear to be the most attractive among the 

ones currently under development. Since the energy density of biomass is relatively meager, it 

cannot be transported over long distances if the SC is to result in a net production of energy. 

Further, transport over longer distances increases green house gas emissions. We invoke the 

single destination assumption to reflect the needs to result in net energy production and manage 

green house gas emissions as well as to promote management efficiency. 

3.2 Mathematical model 

We use a multi-commodity flow model to represent several kinds of biomass feedstocks 

in the upstream and of biofuels in the downstream. In the upstream, each commodity represents a 

combination of a feedstock type and a range of moisture content. Commodities must be 

processed, stored and transported, based on prescribed capacities of processing plants and 

storage facilities, and on the available capacities of transportation routes. The capacity of a 

storage facility is the maximum amount of biomass or biofuel it can store; that of a preprocessing 

(conversion) facility is the maximum amount of biomass (biofuel) that it can process in a year.  

Our model prescribes two types of decisions variables: binary variables select facilities 
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to open and arcs representing routes; and continuous variables prescribe the capacities of open 

facilities and the quantity of material flow on each arc. Table 3 shows notations used in the 

formulation.  

 

Table 3 Notation 
Sets 
A : Directed arcs : 	 
��
� � 
��
��� 
��
�  (
��
� �: Directed arcs in period t that start or end at node frt 
��
��� : Arc that represents inventory held at facility f of type r from period t to period t+1 ��  :  Candidate locations for facilities in echelon l or feedstock supply site (���, ��� ) or 
customer  
        zone (���), � �   �!" : Upstream facilities : 	 ��� � ��� � �"� � �"� � �"# � �$� �%&'( : Downstream facilities )	 �$� � �$# � �%� � ��� � : All facilities : 	 �!" � �%&'( �'*+ : Warehouses where biomass is held before preprocessing : 	 ��� � �"� �'*� : Warehouses where biomass is held : 	 �'*+ � �"# � �$� �'*� : Warehouses where biofuel is held : 	 �$# � �%� �'*: Warehouses : 	 �'*� � �'*� �"$ : Process facilities (preprocessing, refinery) : 	 �"� � �$� �&" : Operating facilities : 	 �\-��� � ���� .�: Feedstock commodities := /-0, 1, 2�3, 0 � �, 1 � 4, 2 � 5� .�: Biofuel commodities := /63, 6 � 7 .: Commodities := .� � .�   :  Echelons, /�1, �2, 51, 52, 53, ;1, ;2, ;3, <=, =>3  (F1: farm, F2: field storage, P1-3: 
preprocessing facilities, R1-3: conversion facilities, DC: distribution center, and CZ: customer 
zone) 5� : Feedstock(biomass) types raised or gathered at 0 � ��� ;� :  Types of technologies at facility f, 0 � �� 4 : Time Periods (monthly) 
Indices 
a : arc, ? � 
 
e : biofuel type, 6 � 7 

f : facility, 0 � � 
k : commodity type, @ � . 
l : layer, � �   
p : biomass type, 2 � 5 
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Table 3 Continued 
r : technology type, A � ; 
t : time, 1 � 4 
Parameters =BC : Fixed cost associated with arc a (fixed transportation cost on a transportation arc, 
        fixed holding cost on an inventory arc) (dollar) =��&  : Fixed cost of opening facility f of type r (dollar) =D : Cost of commodity k, k => feedstock p from farm f in period t (dollar) <D�
 : Demand of end product k in customer zone f in period t, k := e (liter) 5D�
 : Price of biofuel type k in customer zone f in period t (dollar) EBC : Variable cost  for a unit of flow on arc a (variable transportation cost on transportation      
        arc, variable holding cost on inventory arc) (dollar) E�� : Variable cost per unit of capacity of opening facility f of type r (dollar) FBC : Flow capacity of arc a (Mg/single period) F��  : Capacity of facility f (biomass storage (Mg), preprocessing (Mg), refinery (liter), or 

biofuel storage (liter)) FD� : Supply capacity of commodity k at farm f during period t for feedstock type p (Mg) GD : Moisture content of commodity k (decimal fraction) HDIDJ�� : Amount of  biofuel k2 produced from one unit of pre-processed feedstock k1  at  

   conversion plant f using technology r (decimal fraction) KD�� :  Chemical dry mass loss rate (fraction) of feedstock k  held at warehouse f of storage 

type r 
Decision Variables L�� : Capacity of facility f of type r, 0 � �&" , A � ;� M�� : 1 if facility f of type r is open, 0 otherwise, 0 � �&" , A � ;� NB: 1 if arc a is used, 0 otherwise, ? � 
 ODB : Flow amount of commodity k on arc a, @ � ., ? � 
 

  

 Model P describes the formulation: 

P: Z� 	 Max ∑ ∑ ∑ ∑ 5D�
ODBB�VWXY,Z �[+
�C���\]D� Ĵ _ ∑ ∑ `=��& M�� a��$W���bcE��L��d _ ∑ =BCNBB�V _ ∑ ∑ EBCODBB�VD�^ _ ∑ ∑ ∑ ∑ =DODBB�VWXYe ,�[+
�C���fID�^   (3.1) 

s.t.   ∑ M����$W g 1   0 � �&"  (3.2) L�� _ F��M�� g 0   0 � �&" , A � ;�  (3.3) 
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∑ NBB�VWXYe g 1   0 � �"� � �$�, A � ;� , 1 � 4  (3.4) 

∑ ODBD�^ _ FBCNB g 0   0 � �, A � ;� , 1 � 4, ? � 
��
�   (3.5a) ∑ ODB,B�VWXYijkD�^ _ L�� g 0   0 � �'* , A � ;� , 1 � 4  (3.5b) 

∑ ∑ ODBB�lmnoeD�^ _ L�� g 0   0 � �"$ , A � ;� , 1 � 4  (3.5c) ∑ ODBB�lmnoe g FD�   @ � ., 0 � ���, A � ;� , 1 � 4  (3.6a) ∑ ODBB�VWXYe _ ∑ -1 _ Gp�ODBB�VWXYZ 	 0   @ � .�, 0 � �"�, A � ;� , 1 � 4  (3.6b) 

∑ ODBB�VWXYe a ODB,B�VWXYqjk _ ∑ ODBB�VWXYZ _
`1 _ KrIstdODB,B�VWXYZIqjk 	 0   

 @ � .�, 0 � �'*�, A � ;� , 1 �4  

 

(3.6c) 

∑ ODJBB�VWXYe _ ∑ ∑ HpIpJstODIBB�VWXYZD� Î 	 0   @� � .�, 0 � �$�, A � ;� , 1 � 4  (3.6d) 

u ODBB�VWXYe a ODB,B�VWXYqjk _ u ODBB�VWXYZ _ ODB,B�VWXYZIqjk

	 0 

@ � .�, 0 � �'*�, A � ;� , 1 �4  

(3.6e) 

∑ ODBB�VWXYZ g  <D�
   @ � .�, 0 � ���, A � ;� , 1 � 4  (3.6f) M�� � /0,13 f � �&" , A � ;�  (3.7a) NB � /0,13, ? � 
  (3.7b) L�� w 0 0 � �&" , A � ;�  (3.7c) ODB w 0 @ � ., ? � 
  (3.7d) 

Objective (3.1): Maximize the present worth of total system profit, defined as the discounted 

revenue earned from selling biofuels in the customer echelon minus all discounted costs, 

including the fixed cost of capital for each facility opened and variable costs associated with 

operating facilities, purchasing feedstocks, carrying inventory, and transporting biomass and 

biofuel 

Constraint (3.2): At most, one technology type can be selected for each facility 

Constraint (3.3): If facility f is opened, the amount of flow out of it is restricted by its capacity; 

otherwise, the facility can sustain no flow 
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Constraint (3.4): Each field storage (preprocessing) facility must use a transport link to a single 

destination preprocessing (refinery) facility  

Constraint (3.5.a): If arc a is selected, the flow amount is restricted by the arc capacity; 

otherwise, the flow amount on the arc must be zero 

Constraint (3.5b): The capacity of storage facility  0 � �'*  restricts the amount of inventory 

that it can hold 

Constraint (3.5c): The capacity of processing facility 0 � �"$  restricts the amount that it 

produces  

Constraint (3.6a): The capacity at farm  0 � ���   (i.e., supply limit) restricts the amount of 

biomass it can supply 

Constraint (3.6b): Flow balance at preprocessing facility 0 � �"� 

Constraint (3.6c): Flow balance at biomass storage facility 0 � �'*�, including dry mass loss 

Constraint (3.6d): Flow balance at conversion facility 0 � �$� 

Constraint (3.6e): Flow balance at biofuel storage facility 0 � �'*� 

Constraint (3.6f): Flow balance at customer zone 0 � ��� (the inflow of biofuel must be less 

than or equal to demand) 

Constraint (3.7a): Binary restrictions on decision variables M��. 

Constraint (3.7b): Binary on decision variables NB. 

Constraint (3.7c): Non-negativity restrictions on decision variables L��. 

Constraint (3.7d): Non-negativity restrictions on decision variables ODB. 

3.3 Case study 

We now present a case study to demonstrate the types of analysis our model will support. 

We select nine counties in Central Texas as a test bed because this region has relatively high 

biomass availability (Milbrandt, 2005) and it is representative of regions that cannot provide a 
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sufficient amount of crop residues to meet its own biofuel needs, so they must be supplemented 

with energy crops to meet demand. Even though this region has relatively high biomass 

availability, our analysis found that most crop residues must be left in the fields after harvest to 

maintain soil fertility (see section 3.3.3). Thus, instead of crop residues, we employ switchgrass 

as a feedstock to meet demand under the assumption that it will be grown on some of the land 

currently used to grow food crops as well as some of the land set aside by the Conservation 

Reserve Program (CRP), which is a voluntary conservation program administrated by USDA to 

assist agricultural producers in enhancing environmentally sensitive lands.  

We assume that a single biofuel (i.e., ETOH) is produced from several types of 

cellulosic feedstocks (i.e., switchgrass, mill residues, and urban wood wastes). We use a one-

year planning horizon in which each period represents a quarter (i.e., three months).  

We study the effect of four factors on SC design (switchgrass cost, ETOH price, 

switchgrass yield, and ETOH demand) under 18 scenarios that evaluate switchgrass cost vs. 

ETOH price and three other scenarios that assess supply vs. demand (see Table 4). We analyze 

several measures of the prescribed SC performance (e.g., profit, revenue, cost, material flow 

pattern, ratio of supply to demand, and land area used) for each scenario. We base ETOH price 

on the trend forecasted by the U.S. Energy Information Administration for the price of regular-

grade gasoline, including taxes. Even though counties are in the same region, each may offer 

different soil, terrain, and weather conditions, affecting the price of biomass. Furthermore, 

contracts with growers may differ. While our model can accommodate county-dependant 

parameter values, our case study assumes the same values for all counties due to the lack of more 

specific data.   

The following sub-sections describe the data we gathered to formulate our case study. 

Most data are available from papers, reports and data services provided by the U.S. government. 
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Table 4 Scenarios of sensitivity analysis for a region in Central Texas 

Scenario 
Group 

Scenario 
No 

Switchgrass 
Cost 

ETOH 
Price 

Switchgrass 
Yield ETOH 

Demand 
$/Mg $/gal $/L Mg/acre Mg/ha 

A. 
Cost  
vs.  

Price 

1 50 2.50 0.66 10.00 24.71 E10 for local area 
2 50 2.60 0.69 10.00 24.71 E10 for local area 
3 50 2.70 0.71 10.00 24.71 E10 for local area 
4 50 2.80 0.74 10.00 24.71 E10 for local area 
5 50 2.90 0.77 10.00 24.71 E10 for local area 
6 50 3.00 0.79 10.00 24.71 E10 for local area 
7 60 2.50 0.66 10.00 24.71 E10 for local area 
8 60 2.60 0.69 10.00 24.71 E10 for local area 
9 60 2.70 0.71 10.00 24.71 E10 for local area 
10 60 2.80 0.74 10.00 24.71 E10 for local area 
11 60 2.90 0.77 10.00 24.71 E10 for local area 
12 60 3.00 0.79 10.00 24.71 E10 for local area 
13 70 2.50 0.66 10.00 24.71 E10 for local area 
14 70 2.60 0.69 10.00 24.71 E10 for local area 
15 70 2.70 0.71 10.00 24.71 E10 for local area 
16 70 2.80 0.74 10.00 24.71 E10 for local area 
17 70 2.90 0.77 10.00 24.71 E10 for local area 
18 70 3.00 0.79 10.00 24.71 E10 for local area 

B.  
Supply 

vs. 
Demand 

19 60 2.90 0.77 7.00 17.30 E10 for local area 
20 60 2.90 0.77 13.00 32.12 E10 for local area 

21 60 2.90 0.77 10.00 24.71 E20 for local area 

 

3.3.1 Cost estimates and technical factors 

  Table 5 presents a list of cost estimates and technical factors used in the case study. We 

have consulted a number of publically available sources to gather data with the goal of making 

the case study as realistic as possible. 

  We employ a one-year planning horizon and amortize the cost of capital for opening a 

facility over a 20-year lifetime at a 10% discount rate. However, since the biofuel industry is in 

an early stage of development, not much recent data is available.  Therefore, a case study  
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Table 5 Cost estimates and technical factors 
Parameters Value Reference Remark 

Refinery 

Fixed opening cost $4,511,168 
Nguyen and Prince 

(1996) 
  

Variable opening cost $0.0071/L 
Nguyen and Prince 

(1996) 
  

Variable operating 
cost 

$0.032/L Aden et al. (2002)   

Preprocessing 
facility 

Fixed opening cost $60,000 
Sokhansanj et al., 

(2006a) Using a Tub 
Grinder  
and a biomass 
dryer 

Variable opening cost $1.00/Mg 
Sokhansanj et al., 

(2006a) 
Variable operating 

cost 
$18.14/Mg 

Sokhansanj et al., 
(2006a) 

Biomass 
storage  
facility 

Indoor 
Anaerobic 

Fixed cost $15,153 
Anderson and Noyes 

(2010) 
  

Variable 
cost 

$151.46/m2 
Anderson and Noyes 

(2010) 
  

Outdoor 
uncovered 

Fixed cost $1,515 Assumption 
 10% of 
Outdoor uncovered Variable 

cost 
$15.15/m2 Assumption 

Biofuel 
storage  
facility 

Fixed cost $1,000 Assumption   

Variable cost $0.063/L Assumption 
Referred to eBay  
and Northern Tool 

Transportation 
cost 

Biomass 
$6.81/Mg + 

$0.08/Mg-km 
Glassner et al. (1998) 

Based on bale 
system. 
Same for all 
biomass 

ETOH 
$1.00/Mg + 

$0.08/Mg-km 
Assumption 

 
Single 

destination 
Management cost  $100/month Assumption 

 
Biomass 
purchase  

cost 

Switchgrass $50, $60 and $70/Mg Perrin et al., (2008)   
Mill residues $4/Mg Fehrs (1999)   
Urban wastes $12/Mg Fehrs (1999)   

Conversion  
factor 

From biomass to 
ETOH 

70% of the 
theoretical 
estimate 

Assumption 
Hamelinck et al. 
(2005) 

Dry matter 
loss 

 Outdoor 
uncovered 

Switchgrass 2%/month 
Shinners and Binversie 

(2004) 
  

Wood 
wastes 

2%/month Kofman (2006)   

Indoor 
anaerobic 

Switchgrass 0.3%/month 
Shinners and Binversie 

(2004) 
  

Wood 
wastes 

0.5%/month Kofman (2006)   

Moisture 
content 

Switchgrass Uniform(20%, 50%) 
Kumar and Sokhansanj 

(2007) 
  

Wood wastes Uniform(10%, 20%) Fehrs (1999)   
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solution might over- or under-estimate the actual value a bit because data that describe the 

change of cost parameters over time is not yet available. 

  It was not possible to find sources for some parameters, so we estimate them based on 

values associated with similar processes. We assume that cost for an outdoor-uncovered storage 

facility is 10% of the cost of an indoor anaerobic storage facility, and that of transporting ETOH 

involves a fixed cost of $1.00/Mg plus a variable cost of $0.08/Mg km. We estimate the cost of 

biofuel storage based on the cost of oil storage tanks posted on some commercial online 

shopping malls [eBay.com], augmented with the fixed cost of capital for land ($1,000) and the 

variable operating cost ($0.01/liter). We assume that the cost for the single-destination limitation 

relates to administration and is about $100/month. A wide range of efficiencies of characterizing 

the technologies that convert cellulosic biomass to ETOH has been reported (e.g., 35 to 68% 

(Hamelinck et al., 2005)). We assume a 70% of conversion efficiency for each type of biomass, 

based on their theoretical estimates. The theoretical ETOH yield of biomass estimated based on 

Theoretical Ethanol Yield Calculator by DOE are 397.6 liter/Mg for switchgrass, 381.6 liter/Mg 

for secondary mill residues, and 439.1 liter/Mg for urban wood waste.   

3.3.2 Demand 

This sub-section describes how we estimate biofuel demand in the Central Texas region. 

We assume that the demand for ETOH is 10% of the demand for gasoline, because E10 (a 

mixture of 10% ETOH and 90% gasoline) can be distributed easily in the current infrastructure 

for petroleum-based fuel.  

Table 6 gives the population of each county in the region, the average annual 

consumption of gasoline from 1998 to 2007 in Texas and an estimate of the demand for ETOH 

(10% of gasoline consumption based on the population of each county). The overall average 

demand for ETOH is 1,425 liters/year/person (National Priorities Project Database).   
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3.3.3 Biomass supply 

We now describe our analysis procedure and estimate biomass availability in the 

selected region. We estimate the amount of available crop residue based on farmed land area and 

crop yield in each county as provided by USDA-National Agricultural Statistics Service. 

Wilhelm et al. (2004) reported that some residue associated with certain crops should be left in 

the field to maintain soil quality: more than 6.0 Mg/hectare/year for corn residue; and more than 

3.0 Mg /hectare/year for wheat residue. Based on their estimates, most crop residues available in 

the Central Texas region should be left in the field. Thus, we have not considered crop residues 

as possible feedstocks. 

To supply an amount of biomass sufficient to meet demand, we assume that switchgrass 

will be grown on some farm lands instead of the current food crops and on some CRP land areas 

as well. Table 6 gives an estimated amount of switchgrass that could be made available in each 

county. In addition to using switchgrass as a feedstock, we include other cellulosic biomass (i.e., 

mill residues and urban wood wastes) as feedstocks based on the data provided by Milbrandt 

(2005) so that we consider three types of biomass as a feedstock. We assume that switchgrass is 

harvested only in Summer and Fall and other biomass (i.e., mill residues and wood wastes) is 

supplied uniformly in all seasons. 

3.3.4 Transportation cost 

We estimate transportation distance based on the length of the straight line between the 

center points of each pair of counties. We invoke two assumptions to estimate transportation 

distances within each county: preprocessing, biorefinery, and distribution center facilities are at 

the same location so that the cost of transportation between each relevant pair of echelons is very 

small; farms and customer zones are uniformly distributed within a county so that the 

transportation distance between each pair of field storage and preprocessing facilities, and  
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Table 6 Estimated biofuel demand and switchgrass availability 
 

County Hill McLennan Falls Bell 
Williamso

n 
Travis Hays Comal Bexar 

Demand 

Population (2008)(a) 35,637 230,213 16,900 285,084 394,193 998,543 149,476 109,635 1,622,899 

Gas Consumption(b) (KL/year)  50,769 327,962 24,076 406,131 561,568 1,422,526 212,944 156,186 2,311,985 

Demand for ETOH(KL/year)  5,077 32,796 2,408 40,613 56,157 142,253 21,294 15,619 231,198 

Supply 

Farm Land Area(2009) (ha) 72,843 60,662 56,535 53,580 57,749 9,105 1,012 6,111 11,250 

CRP land Area (2009) (ha) 1,912 69 140 349 379 0 0 0 0 

Total Area (ha) 74,755 60,732 56,675 53,929 58,128 9,105 1,012 6,111 11,250 

Switchgrass 
Production 

Amount 
(Mg/year) 

Yield: 7  
Mg/ha/year 

523,285 425,121 396,725 377,503 406,893 63,738 7,082 42,775 78,752 

Yield: 10  
Mg/ha/year 

747,550 607,316 566,750 539,289 581,276 91,054 10,117 61,108 112,503 

Yield: 13  
Mg/ha/year 

971,815 789,511 736,775 701,076 755,659 118,371 13,152 79,440 146,253 

(a) The U.S. Census Bureau, 2008 

(b) 1,425 L/year/person (National Priorities Project Database)  
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between each pair comprising a distribution center and a customer zone is about 19 km, because 

the size of most counties is approximately 50 by 50 km and the average distance from any 

location in a county to the center point is about 19 km. The transportation mode considered in 

this case study is a truck. We assume that the bale system is used to transport biomass. 

3.4 Results 

This section analyzes the results of our computational experiments for 21 scenarios (See 

Table 1). The number of binary and continuous variables are 2,034 and 96,030, respectively. 

IBM ILOG CPLEX 12.1 solved each instance within one hour in a personal computer with 

Core(TM)2 Duo CPU 3.16GHz and 4G RAM, prescribing an optimal solution for each scenario.  

3.4.1 Basic results 

  This section describes results prescribed by the optimization model for scenario 11, 

which we consider to be a basic (i.e., bench marking) scenario because it has the smallest ETOH 

price (i.e., $0.77/Liter) while meeting all customer-zone demands for biofuel using the median 

cost of switchgrass (i.e., $60/Mg). 

3.4.1.1 Facility location, technology, and capacity 

  Table 7 describes results about the strategic level decisions. While preprocessing 

facilities are opened at three counties (i.e., 2, 5, and 9), refineries are only opened at counties 2 

and 5. Note that we consider only single technology for preprocessing facility and refinery in this 

case study. Alternative technology is considered for the selection of storage types in 

preprocessing facility (i.e., outdoor-uncovered and indoor-anaerobic). However, only field 

storage facilities, the type of which is an outdoor-uncovered, are opened mainly due to high 

fixed cost of other storages in echelons of preprocessing facility and refinery. Relatively large 

field storages are prescribed at counties 1, 3, 5, and 6. 
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Table 7 Facility location, capacity, and technology type for scenario 11 

Echelon 
Location 

Capacity Technology Type 
No County Name 

Field Storage 

1 Hill 575,722 Mg outdoor-uncovered 

2 McLennan 4,950 Mg outdoor-uncovered 

3 Falls 403,626 Mg outdoor-uncovered 

4 Bell 9,950 Mg outdoor-uncovered 

5 Williamson 583,141 Mg outdoor-uncovered 

6 Travis 114,813 Mg outdoor-uncovered 

7 Hays 8,759 Mg outdoor-uncovered 

8 Comal 63,341 Mg outdoor-uncovered 

9 Bexar 16,001 Mg outdoor-uncovered 

Preprocessing  

2 McLennan 1,299,048 Mg/year grinding & drying 

5 Williamson 938,998 Mg/year grinding & drying 

9 Bexar 64,192 Mg/year grinding & drying 

Biorefinery  
2 Bell 205,920 KL/year 70% conversion efficiency 

5 Williamson 222,569 KL/year 70% conversion efficiency 

DC layer - - - - 

 

3.4.1.2 Material flow pattern 

We analyze the material flow pattern in each time period under the scenario 11. Figure 6 

depicts the material flow pattern in each season. Each straight arc represents the aggregated flow 

of all types of biomass in the upstream and ETOH in the downstream. Rectangular icons in the 

field storage echelon represent inventory carryovers from one period to the next. Using facilities 

opened (See Table 7), materials flow through three preprocessing facilities (in counties 2, 5, and 

9), and two refineries (in counties 2 and 5). 

Since we assumed that switchgrass is harvested only in Summer and Fall, significant 

amounts of biomass inventory are carried over in field storage to meet year-round demand.  Even 

though some portion of biomass is degraded in field storage due to chemical dry matter loss, our 

model prescribes inventory carryover only in the field storage echelon, because the capital cost 

of storage in other echelons (i.e., preprocessing facility and refinery) is relatively high compared 
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to the potential cost of dry matter loss. The amounts of dry matter loss in storages are 198,256 

Mg of switchgrass, 821 Mg of mill residues, and 7,803 Mg of wood wastes, respectively. 

A quarter-by-quarter plan for material flow is essential to support strategic decisions and 

can give useful information to Energy companies in support for tactical-level decisions, (e.g., in 

planning manpower and equipment needs in each period). However, to support tactical-level 

plans most effectively, the duration of a time period should be defined as a month, if not an even 

shorter time. In fact, time periods need not be of the same duration. Shorter time periods could 

be used to model the dynamics of harvesting and longer ones could be used to plan inventories 

and material flows at other times of the year. 

 

 

Figure 6 Material flow pattern for scenario 11 in each time period 
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3.4.2 Sensitivity Analysis 

This section discusses results from several scenarios and analyzes factors that are 

significant to the biofuel SC. 

3.4.2.1 Impact of the combination of feedstock cost and ETOH price 

We compare performance measures (i.e., profit, revenue, and cost) that result in 

scenarios 1 - 18 to identify the impact of the combination of feedstock cost and ETOH price. 

Figure 7 shows that profit increases faster as feedstock cost reduces than as ETOH price 

increases. This reinforces the expectation that feedstock cost is a significant factor in 

determining profit. When the price of ETOH at the pump is less than $0.66/L (i.e., scenarios 7 

and 13), the biofuel SC is not economically viable; our model opens no facilities and prescribes 

no material flow. 

 

 

Figure 7 Relationship of profit to combinations of feedstock cost and ETOH price 

 

Table 8 details results for scenarios 1 - 21 (ETOH production; profit; revenue; total cost; 

cost breakdown on detail processes; the percentage of land area used to grow switchgrass; and 
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the ratio of supply to demand). The refinery represents the most significant cost component in 

the SC. The cost to both purchase and collect feedstocks, is also a significant component. These 

results suggest that the components of the biofuel SC that offer the most leverage to improve the 

economic viability of the biofuel industry are the costs of refining and of feedstocks. 

In terms of material flows, as ETOH price increases and feedstock cost reduces, the total 

amount of ETOH supplied increases so that the revenue increases. Our model prescribes the 

same amount of material flows for a set of scenarios (i.e., for those with a cost of switchgrass 

that is either $50/Mg ($60/Mg) with a price of ETOH that is above $0.74/L ($0.77/L)) because 

all demands are met in these instances and the amounts of processing materials are same. In 

addition, this also describes the reason why the total costs of scenarios 4, 5, and 6 are same and 

those of scenarios 11 and 12 are same. 

Energy companies would be able to use a sensitivity analysis to evaluate the economic 

feasibility of generating biofuels in a selected region. Moreover, applying our model and method 

of analysis to a region or the entire country would provide useful information for government 

policy makers, for example, in estimating the subsidy levels required to induce investment in the 

bioenergy industry. 

3.4.2.2 Impact of the combination of feedstock supply and ETOH demand 

We now analyze the significance of combinations of feedstock supply and ETOH 

demand, studying scenarios based on scenario 11, which meets all customer-zone demands for 

biofuel. Scenarios 19, 20 and 21 are the same as scenario 11, except 19 tests a switchgrass yield 

of 17.30 Mg/ha (7.00 Mg/acre); 20 tests a switchgrass yield of 32.12 Mg/ha (13.00 Mg/acre); 

and 21 assumes that E20 can be used, doubling ETOH demand in comparison to scenario 11, 

which assumes that E10 is used. 
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Table 8 compares results for scenarios 19, 20 and 21 with those of scenario 11. As 

switchgrass yield decreases (i.e., scenario 19), the amount of ETOH produced, profit and land-

area used decrease. Even though the amount of biomass is not sufficient to meet demand, some 

portion of land area is not used, because using it is not profitable. On the other hand, as 

switchgrass yield increases (i.e., scenario 20), the amount of ETOH produced and profit increase 

and the land area used decreases. As demand increases (i.e., scenario 21), the land area used 

increases slightly so that profit and the amount of ETOH produced also increase. 

Energy companies can analyze land areas requirements to determine which farms they 

should contract to supply feedstocks in the most profitable way. For example, even though 

feedstock supply is not sufficient to meet demand under scenarios 19 and 21, some portion of 

land area in county 9 is not used because of prohibitive transportation cost.  

3.5 Discussions 

Our mathematical model, which deals with a multiple commodity flows, represents 

specific characteristics of several types of cellulosic biomass as well as the changes biomass 

undergoes in storage and processing in the various echelons of the SC. To our knowledge, this is 

the first model to deal with all echelons of the biofuel SC, including both upstream and 

downstream; the selection of technology and location for each opened facility; biomass moisture 

content; dry matter loss in storage; and single destination in the upstream of the biofuel SC. 

Our case study demonstrates the use of our model as a decision support tool based on a 

set of data we have been able to gather from public sources to represent the biofuel industry in 

Central Texas. Our case study indicates that this region would be able to meet all local demand 

for ETOH only under certain scenarios that utilize E10. In particular, case studies provide 

informative results, identifying relationships that have not been investigated previously.  Even 

though other factors (i.e., feedstock cost, feedstock yield, and ETOH demand) affect the 
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Table 8 Comparison of scenarios to analyze combinations of feedstock cost and ETOH price 

Scenario 
No 

ETOH 
Production 

(KL) 

Profit 
($) 

Revenue 
($) 

Total Cost 
($) 

Cost breakdown (%) Used 
/Given 
Area 
(%) 

Supply 
/Demand 

(%) FS(c) FT(d) PR(e) RF(f) ET(g) 

1 129,116 57,829 115,710,527 115,652,698 16.45 7.96 8.93 66.25 0.39 34.6 24.5 
2 253,460 7,764,851 236,229,115 228,464,264 18.56 8.07 8.96 63.93 0.48 63.2 48.1 
3 427,976 19,542,153 414,222,801 394,680,649 20.60 7.77 8.79 61.70 1.13 96.6 81.2 
4 527,157 38,188,889 529,117,456 490,928,558 21.41 6.68 8.76 61.81 1.34 98.6 100.0 
5 527,157 57,085,950 548,014,508 490,928,558 21.41 6.68 8.76 61.81 1.34 98.6 100.0 
6 527,157 75,983,002 566,911,560 490,928,558 21.41 6.68 8.76 61.81 1.34 98.6 100.0 

7(b) - - - - - - - - - - - 
8 57,433 1,431,448 53,528,573 52,097,125 12.50 8.40 8.61 70.23 0.24 7.8 10.9 
9 248,363 8,862,751 240,381,774 231,519,024 21.29 7.73 8.66 61.86 0.45 61.3 47.1 
10 362,200 19,290,223 363,544,743 344,254,519 22.99 7.48 8.52 60.07 0.94 78.3 68.7 

11(a) 527,157 36,558,390 548,014,508 511,456,118 24.56 6.41 8.41 59.33 1.29 98.6 100.0 
12 527,157 55,455,442 566,911,560 511,456,118 24.56 6.41 8.41 59.33 1.29 98.6 100.0 

13(b) - - - - - - - - - - - 
14      41,369 1,221,476 38,556,930 37,335,453 8.18 9.09 8.49 73.97 0.24 1.0 7.8 
15 54,609 2,816,185 52,854,063 50,037,878 12.90 8.38 8.50 69.97 0.24 6.6 10.4 
16 246,584 9,973,884 247,499,534 237,525,650 23.80 7.51 8.38 59.88 0.44 60.4 46.8 
17 362,200 19,495,985 376,528,484 357,032,498 25.74 7.21 8.22 57.92 0.90 78.3 68.7 
18 527,157 34,952,361 565,901,332 530,948,971 27.22 7.34 8.05 56.20 1.19 98.6 100.0 
19 380,859 28,144,334 395,926,768 367,782,433 23.85 7.72 8.39 59.06 0.97 96.6 72.2 
20 527,157 41,958,476 548,014,508 506,056,032 23.99 6.40 8.47 59.96 1.18 94.8 100.0 
21 529,493 39,925,524 550,439,343 510,513,818 24.72 6.48 8.46 59.69 0.65 98.8 50.2 

(a): a basic scenario to compare other scenarios about supply/demand changes; (b): non-profitable; (c): FS-Feedstock;  
(d): FT-Feedstock Transportation; (e): PR-Preprocessing; (f): RF-Refinery; and (g):ET-ETOH Transportation 
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economic viability of the SC, ETOH price appears to be the most significant factor to economic 

viability; moreover, based on profits, the overall SC structure prescribed could be much different 

from one based on minimizing cost. 

Biofuel manufacturers can use our mathematical model to plan the most profitable SC 

design and estimate the profit that a particular region might generate. In addition, government 

policy makers can employ our model to identify policies most likely to support a viable biofuel 

industry, for example, through a combination of providing subsidies and attracting private 

investment.  
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CHAPTER IV 

A SOLUTION METHOD FOR BSCP MIP MODEL 

 

This chapter describes a solution method to solve large instances of BSCP MIP model 

formulated in Chapter III. Section 1 describes a formulation of BSCP, an alternative to the 

embedded multi-commodity flow problem proposed by Chapter III. Section 2 explains our CG 

approach, which incorporates our new DP algorithm to generate flow-paths in the uncapacitated, 

embedded GFP subproblem. Section 3 describes the logic underlying POC. Section 4 evaluates 

the performance of our solution approach through computational tests. 

4.1. Formulation 

Our prior formulation of BSCP in Chapter III deals with material flows based on a 

multi-commodity viewpoint, defining each commodity in the upstream as the combination of 

biomass type and moisture content, which depends on location and time period. Since the 

number of flow variables is proportional to the number of commodities, reducing the latter 

would reduce the number of flow variables. In comparison, the alternative formulation we 

present in this paper reduces the number of commodities, downsizing the model in Chapter III 

and, therefore, enhancing solvability. This section describes a two-step procedure to define each 

commodity and the network that represents flows. 

4.1.1 Commodity definition  

 We consider moisture content implicitly by invoking certain assumptions and defining 

transportation costs appropriately. The assumptions are that the moisture content of feedstock 

held in field storage facilities changes according to the weather conditions in each time period 

and that moisture content becomes negligible after drying during preprocessing. We adjust the 

cost of transporting each unit on each arc in each echelon before preprocessing to reflect the 
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moisture content of biomass in each time period. For example, 10 Mg biomass with a wet-basis 

moisture content of 10% is 9 Mg of dry biomass and 1 Mg of water. If feedstock is transported at 

a unit cost of $9.90 per Mg, the cost to transport this 10 Mg is $99.00. In contrast, if we define 

unit transportation cost to be $11.00 (=9.9*10/9) per Mg instead of $9.90, we can calculate 

transportation cost by considering only the dry biomass being transported; that is, 9 Mg*$11.00 

per Mg = $99.00. Thus, by defining unit transportation costs based on the moisture content in 

each time period, we can deal with only the dry matter of biomass, so that a single commodity 

can be defined based only on biomass type. 

4.1.2 Network definition 

 Even after defining commodities, several biomass types can be transported on the same 

route in the upstream. Our modeling alternative forms the underlying network by duplicating 

nodes and arcs in the upstream with respect to biomass types (e.g., switchgrass and wood 

wastes), so that only a single commodity flows on each (duplicate) arc. Figure 8 depicts an 

example of duplicating nodes and arcs with respect to biomass type k.  

 

 
Figure 8 Network transformation by duplicating nodes and arcs: (a) original network, and (b) 

duplicate network 
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 In Figure (8a), two biomass types flow on arc (i, j). We duplicate nodes i and j, creating 

i1, i2 and j1, j2, respectively, and all other arcs incident to nodes i and j as well. For example, arc 

(i, j) is duplicated to form (i1, j1) and (i2, j2), one for each type of biomass. The flow variable in 

the original network, ODB, can be represented as Ox� and Ox� in the duplicate network, where s1 

and s2 are arcs in the duplicate network (Figure (8b)) and a is an arc in the original network 

(Figure (8a)). 

 Flow is reduced on some arcs because dry matter loss occurs over time in storage and 

the conversion efficiency of a refinery is less than 100%. For example, a flow of 100 Mg of 

biofuel, produced at a conversion efficiency of 70%, reduces a flow of 142.86 (=100/0.7) Mg of 

biomass into the refinery. This requires the flow of 145.77 (=142.86/0.98) Mg of biomass into 

the storage facility, in which biomass is subject to 2% dry matter loss in a month. Such a flow 

problem can be modeled as a GFP. 

 This modeling alternative results in a single commodity, biomass, flowing in the 

upstream, but conversion introduces another commodity type, biofuel, in the downstream, we 

must deal with such a commodity type change. Flow balance constraints related to supply (i.e., 

farms) and demand (i.e., customers) nodes may not be satisfied at equality because of flow gains 

and losses associated with biomass storage and conversion. Moreover, whereas an exact 

formulation of GFP requires an equality condition for all constraints that represent flow balance, 

our prior formulation of BSCP involved some inequality constraints associated with supply and 

demand nodes to prescribe only profitable flow quantities. Therefore, to transform the embedded 

flow problem to the exact form of an embedded GFP, additional manipulation of the network is 

required, as we now describe. Figure 9 shows an example of the final form of a duplicate 

network, which is acyclic. 
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Figure 9 Example of a duplicate network 

 

First, we convert each unit of flow to the same metric (e.g., a measure of energy) and 

revise related parameters (e.g., costs, prices, and multipliers) to correspond. Second, dummy 

start and end nodes (i.e., y+ and y�z, respectively, where {z 	 { a 1) are augmented, along with 

new directed arcs that connect node y+ to each supply node and each demand node to y�z. The 

cost associated with each new arc emanating from y+ and pointing to a supply node is minus one 

times the cost of biomass at the supply point; its lower bound is zero and its upper bound is the 

capacity of the supply node to produce biomass. Similarly, the cost of each new arc from a 
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demand node to y�z is the biofuel selling price; its lower bound is zero; and its upper bound is the 

demand of the demand node. 

 Lastly, two special arcs, one from y+ to y+ and one from y�z to y�z, are added to allow a 

feasible flow balance at y+ and y�z; i.e., the flow amount on arc (y+, y+) (arc (y�z, y�z)) must equal 

the amount of flow-out (flow-in) of node y+  (y�z ) (Ahuja et al., 1993). Then, the modified 

network, in which supplies and demands of all nodes are zero, represents a generalized 

minimum-cost circulation problem (Wayne, 2002). A unit of flow on arc (i,j) will be |�} at node 

j: if |�} ~ 1, the arc is lossy; and if |�} � 1, the arc is gainy. 

4.1.3. Mathematical model 

 Table 9 defines the notation we use in our formulation, model 1 ((4.1)-(4.7)). 

 

Table 9 Notation 
Indices 
a : arc                                  ? � 
 
b : biomass type                  � � � 
e : biofuel type                    6 � 7 
f : facility                            0 � � 
i : duplicate node                y � �� 
k : commodity                    @ � . 
l : layer (echelon)               � �   
r : technology type             A � ;� 

s : duplicate arc                  � � 
� 
t : time                                1 � 4 
Sets 
 : Directed arcs                                                                           : 	 
��
� � 
��
�  
� : Duplicate directed arcs                                                          : 	 
D��
�� � 
D��
��  
B�: Arcs that are duplicate from original arc a 
��
�  (
��
� �: Directed arcs in period t that start or end at node frt 
��
�  : Arc for which flow represents inventory held at facility f of type r from period t to 

period t+1  
D��
��  (
D��
�� �: Duplicate arcs in period t that start (end) at duplicate node kfrt 
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Table 9 Continued 
D��
��  : Duplicate arc that represents inventory held at facility f of type r from period t to period 

t+1  
C  : Directed arcs associated with transportation : 	 
��
� , 0 � ��� � �"# � �$# � �%� , A �;� , 1 � 4 � : Feedstock(biomass) types supplied by facility  (e.g., farm) 0 � ��� �� :  Candidate locations for facilities in echelon l, feedstock supply site (���, ���), or customer  
        zone (���), � �   �'*+ : Warehouses where biomass is held before preprocessing : 	 ��� � �"� �'*� : Warehouses where biomass is held                                   : 	 �'*+ � �"# � �$� �'*� : Warehouses (i.e., storage tanks) where biofuel is held     : 	 �$# � �%� �'*: Warehouses                                                                          : 	 �'*� � �'*� �"$ : Process facilities (preprocessing, refinery)                          : 	 �"� � �$� �&" : Facilities                                                                               : 	 �\-��� � ���� �!" : Upstream facilities                                                    : 	 ��� � ��� � �"� � �"� � �"# ��$� �%&'( : Downstream facilities                                                      )	 �$� �  �$# � �%� � ��� � : All facilities                                                                              : 	 �!" � �%&'( .�: Feedstock types (i.e., commodities)                                       � /-0, 1, ��3, 0 � �, 1 � 4, � �� .�: Biofuel commodity                                                                 � /63, 6 � 7 .: Commodities                                                                            � .� � .�   :  Echelons, /�1, �2, 51, 52, 53, ;1, ;2, ;3, <=, =>3  (F1: farm, F2: field storage, P1-3: 

preprocessing facilities, R1-3: conversion facilities, DC: distribution center, and CZ: 
customer zone) �� : Duplicate nodes ;� :  Types of technologies at facility f, 0 � �� 4 : Time Periods 

Parameters =BC : Fixed cost of selecting arc a =��&  : Fixed cost of opening facility f of technology type r  =x : Revenue (>0) or cost (<0) for a unit flow on arc s <x : Upper bound on flow on arc s, associated with demand of the starting node kfrt of arc s |x : Multiplier associated with arc s FBC: Upper bound on flow on arc a F�� : Capacity limit of facility f (biomass storage, preprocessing, refinery, or biofuel storage) Fx : Upper bound on flow on arc s, which is associated with supply capacity of the end node 
kfrt of arc s E�� : Variable cost per unit of capacity of opening facility f of technology type r  
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Table 9 Continued ExC : Variable cost  for a unit of flow on arc s (variable transportation cost on transportation           
 arc, variable holding cost on inventory arc) 
Decision Variables L�� : Capacity of facility f of technology type r,            0 � �&" , A � ;� M�� : 1 if facility f of type r is opened, 0 otherwise,       0 � �&" , A � ;� NB: 1 if arc a is used, 0 otherwise,                                  ? � 
 Ox : Flow amount on duplicate arc s,                              � � 
�

 

 

We now present model 1: 

Model 1: 

 

Z� 	 Max _ ∑ ∑ =��& M����$W���bc _ ∑ ∑ E��L����$W���bc _ ∑ =BCNBB�V a∑ =xOxx�V�    

(4.1) 

s.t. ∑ M����$W g 1   0 � �&" (4.2) 

 _F��M�� a L�� g 0   0 � �&" , A � ;� (4.3) 

 ∑ NBB�VWXYe g 1   0 � �"� � �$�, A � ;� , 1 � 4 (4.4) 

 _FBCNB a ∑ Oxx�V�� g 0   ? � 
C (4.5a) 

 _L�� a ∑ ∑ Oxx�V�WXY�qD g 0   0 � �'* , A � ;, 1 � 4 (4.5b) 

 _L�� a ∑ ∑ Oxx�V�WXY�eD g 0   0 � �"$ , A � ;, 1 � 4 (4.5c) 

 Ox g Fx  � � 
D��
�� , @ � .�, 0 � ���, A � ;� , 1 � 4 (4.6a) 

 Ox g <x � � 
D��
�� , @ � .�, 0 � ���, A � ;� , 1 � 4 (4.6b) 

 ∑ Oxx�-�,}� _ ∑ |xOxx�-},�� 	 0   y � ��
 (4.6c) 

 M�� � /0,13 0 � �&" , A � ;� (4.7a) 

 NB � /0,13 ? � 
% (4.7b) 

 L�� w 0 0 � �&" , A � ;� (4.7c) 

 Ox w 0 � � 
� . (4.7d) 

Objective (4.1) is to maximize the present worth of total system profit: the first term gives the 

fixed cost of opening all facilities; the second, total variable cost associated with the capacity of 

facilities opened; the third, total fixed cost associated with selection of single destination; and the 



62 

 

last, total net profit from supplying biofuel. Constraint (4.2) is that each facility 0 � �&" can 

employ, at most, one technology type A � ;�. Constraint (4.3) restricts the capacity of facility 

0 � �&" by its capacity limit F��, if it is opened; otherwise, it allows no flow from facility f. 

Constraint (4.4) requires that each field storage (preprocessing) facility 0 � ���-�"# ) use a 

transport link to a single destination (i.e., preprocessing (refinery)) facility 0 � �"�-�$��  to 

facilitate flow management in the upstream. Constraints (4.5) impose flow capacity FBC for arc 

? � 
  (4.5.a), L��  for storage facilities (4.5.b), and L��  for processing facilities (4.5.c). 

Constraints (4.6) correspond to an embedded GFP: (4.6.a) imposes the capacity Fx  (i.e., supply 

limit) of arc s associated with farm  0 � ��� and A � ;� in period 1 � 4 to restricts biomass flow; 

constraint (4.6.b) restricts the inflow of biofuel according to the demand <x of arc s associated 

with customer zone 0 � ���  and type A � ;�  in period 1 � 4; and constraint (4.6.c) balances 

flow at each (duplicate) node i in the (duplicate) network, where |x  marks gains, losses or 

unchanged flow across arc s, which is incident from i. Constraints (4.7.a) and (4.7.b) invoke 

binary restrictions on decision variables M�� and NB, respectively. Constraints (4.7.c) and (4.7.d) 

restrict decision variables L�� and Ox, respectively, to be non-negative. 

4.2. CG for an embedded GFP 

Figure 10 depicts the structure of the constraint matrix of model 1. Constraints (6), 

which represent an embedded GFP on the network, involve a large number of continuous flow 

variables. Since GFP can be solved effectively by specialized algorithms (e.g., Vaidya, 1989; 

Murray, 1992; Kamath and Palmon, 1995; Wayne, 2002; and Goldfarb and Lin, 2002), an 

embedded GFP can be used effectively as a sub-problem in a CG approach in this and many 

other applications. This paper devises a CG approach, treating the embedded GFP as a 

subproblem, to solve the linear relaxation of model 1. 
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Figure 10 Structure of the constraint matrix 

 

4.2.1 Tree- vs. path-flows in CG 

 If the flow upper bound of each arc is not considered, a feasible solution to the 

embedded GFP can be viewed as a path-flow; or, if considered, a tree flow, which can be 

represented as an aggregation of a set of path-flows. Jones et al. (1993) analyzed the impact of 

the number of sub-problem extreme points on the performance of CG in a multi-commodity flow 

problem. They reported that using path-flow solutions in multi-commodity flow subproblems is 

computationally superior to using tree flows, because a network admits fewer paths than trees, so 

that using path-flow solutions can result in substantially fewer master-problem iterations. 

Following the earlier findings of Jones et al. (1993), we generate columns based on path-

flows, imposing the upper bound constraint on each arc flow in the master problem rather than in 

the subproblem. Note that, since such an uncapacitated, embedded GFP is a linear program, the 

master problem of our decomposition scheme provides the same bound at each B&B node as 

does the linear relaxation of the original model 1. 

4.2.2 Path-based formulation 

 This subsection presents our path-based formulation, model 2. Table 10 gives additional 

notation used in model 2. 
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Table 10 Notation for model 2 
Indices 
p : path,      2 � 5 
Sets 5 : Paths  from α to β that satisfy flow balances (6.c) 
��x�  : Duplicate arcs from α to the one immediately preceding arc s on path p 
����  : Duplicate arcs from α to node y on path p 
�� : Duplicate arcs on path p ��� : Duplicate nodes on path p 

Parameters =� : Variable cost of a unit flow on path p        � ∑ �x�=xx�V�� , 2 � 5 �x� � ∏ |}}� V���I  ,  2 � 5 if � � 
��, 0 otherwise 

Decision Variables �� : Flow amount on path p,       2 � 5 

 

 To implement CG, generating columns from an uncapacitated, embedded GFP, we now 

transform the arc-based form of model 1 to the path-based form of model 2, the linear relaxation 

of which is the master problem in our CG decomposition: 

Model 2: 

 

Z� 	 Max _ ∑ ∑ =��& M����$W���bc _ ∑ ∑ E��L����$W���bc _ ∑ =BCNBB�V a∑ =�����"   
(4.8) 

s.t.       (4.2), (4.3), (4.4), and (4.7a-c)  

 _FBCNB a ∑ `∑ �x�x�V�� d����" g 0   ? � 
C (4.9a) 

 _L�� a ∑ �∑ ∑ �x�x�V�WXY�qD�^ � ����" g 0   0 � �'* , A � ;, 1 � 4 (4.9b) 

 _L�� a ∑ �∑ ∑ �x�x�V�WXY�eD�^ � ����" g 0   0 � �"$ , A � ;, 1 � 4 (4.9c) 

 ∑ `�x�d����" g Fx   � � 
��� (4.10a) 

 ∑ `�x�d����" g <x   � � 
��� (4.10b) 

 �� w 0. 2 � 5  (4.11) 

Objective (4.8) is the same as objective (4.1) except the fourth term which is re-expressed based 

on path p instead of arc s. Similarly, constraints (4.9a-c) and (4.10a, b) correspond with 
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constraints (4.5a-c) and (4.6a, b), respectively, replacing flow variable Ox and relevant coefficient 

by using variable O� and coefficient based on path p: flow Ox on arc s can be represented by 

Ox 	 ∑ �x�����" . Constraints (4.11) restrict decision variables �� to be non-negative. Note that 

all path-flows on path 2 � 5 in model 2 satisfy constraints (4.6c) in model 1. The coefficient of 

�� (i.e., �x�) implies that each unit flow comprising �� induces flow �x� on arc s in path p. The 

linear relaxation of model 2 is the so-called master problem of a type II CG (Wilhelm, 2001) that 

uses an uncapacitated, embedded GFP price-out subproblem, to identify improving columns.  

 Model 2 can be transformed to form a type III CG, using Dantzig-Wolfe Decomposition, 

by adjusting the coefficient of �� on each arc � � 
�� from �x� to �x���, where �� is an extreme 

flow amount on path p, and by incorporating convexity constraint, ∑ ����" 	 1. However, our 

preliminary computational tests have shown that using type II CG gives better results for BSCP, 

so this paper reports its use. Our strategy is to solve the subproblem to determine an optimal unit 

path-flow from y+ to y�z, generating a column that enters the restricted master problem (RMP), 

which induces a set of path-flows to determine optimal, profitable flow quantities for the linear 

relaxation of model 2. 

4.2.3 Subproblem to generate paths 

 Table 11 defines additional notation that we use to formulate the subproblem. Path-

based model 2 involves a flow variable (��) for each of many paths. The simplex optimality 

criterion indicates that entering path p as a column in the master problem basis will improve the 

current solution if ̀�?� _ =�d ~ 0 and that, if ̀�?� _ =�d w 0 for all paths 2 � 5, the current 

master problem solution is optimal, where �  is a dual vector of model 2; ?�  , 

-0, … , -∑ �x�x�V�� �, … , -∑ ∑ �x�x�V�WXY�qD�^ �, … , �∑ ∑ �x�x�V�WXY�eD�^ � , … , -�x���C , is a column 

vector associated with variable ��; and =� is the objective function coefficient associated with 
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variable ��, where =� 	 ∑ �x�=xx�V�� .  
 

Table 11 Notation for sub-problem 
Indices 
u : row,     � � � 
Sets 
��� : Arcs in path p with non-zero entries in row u of the constraint matrix of model 1 ;�x : Rows with non-zero entries in the column associated with arc s of the constraint matrix of 
model 1 � : Rows of the constraint matrix of models 1 and 2 
Parameters ?�  : Column vector of coefficient associated with variable ��  in the constraint matrix of 

model 2,    2 � 5 �� : Dual variable associated with row u in model 2,   � � � 
Decision Variables �� : 1 if path p is used, 0 otherwise,        2 � 5 

 

 Each non-zero element of ?�  can be interpreted as sum of certain �x�  values 

corresponding to arcs in path p with non-zero entries in row u of the constraint matrix of model 

1. Thus, by using 
���, which denotes a set of arcs in path p with non-zero entries in row u of the 

constraint matrix of model 1, each non-zero element of ?� can be expressed as a  generalized 

form, -∑ �x�x�V��  �. So, ?�can be re-expressed: 

?� 	 �0, … , ∑ �x�x�V��  , … , ∑ �x�x�V��|¢| �C
  (4.12) 

Let � � /�� � /0,13: ∑ ����" 	 1, 2 � 53. For a given vector of dual variable values, 

�D, each associated with a row in the RMP, at iteration k in our CG procedure,  

SUB: 

  

 

>x�£`�Dd 	 ¤y{/`�D?� _ =�d��: �� � �3  
	 ¤y{/¥-��D, … , �|!|D � �0, … , ∑ �x�x�V��  , … , ∑ �x�x�V��|¢| �C _ ∑ �x�=xx�V�� ¦ ��: �� � �3  
	 ¤y{/§∑ �x�`∑ ��D��$�� _ =xdx�V�� ¨ ��: �� � �3  
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	 min /�∑ =x�x�V�� � ��: �� � �3,                                                                             (4.13) 

where =x¬ � ∑ ��D��$�� _ =x; and =x� � �x�=x¬. The final form of the subproblem is similar to the 

shortest path problem with cost =x� on arc s. However, since arc cost =x� depends on the path p in 

which arc s is included, and each arc may have a different cost in association with each possible 

path, solving subproblem (4.13) is not trivial. Therefore, we propose a new DP algorithm in the 

following section. 

4.2.4 BRA to solve the sub-problem 

 This section presents a definition of the shortest distance from each node to end node y�z, 

based on arc costs =x�, and describes BRA to solve the sub-problem. 

4.2.4.1 Problem structure 

 Given that the series of n(p) nodes on path p is y+ _ y� _ y� … _ y�-���� _ y�z , model SUB 

can be re-expressed: 

>x�£`�Dd 	 ¤y{ /-=�­�I�  a =�I�J� a ® a =�j-��ZI�j�� ���: �� � �3. (4.14) 

By expanding cost parameters, =x�, using the definition =x� 	 =x¬ ∏ |}}� V���I , we obtain 

>x�£`�Dd 	 ¤y{/-=�­�I¬ a |�­�I=�I�J¬ a ® a -∏ |}}� V��,ij-��ZIJ �=�j-��ZI�j�¬ ���: �� � �3. (4.15) 

Then, we can rearrange coefficients of this objective function based on arc multipliers:  

>x�£`�Dd 	 min /¯=�­�I¬ a |�­�I/=�I�J¬ a ® a |�j-��ZJ�j-��ZI/=�j-��ZI�j�¬ 3 … 3° ��: �� � �3. (4.16) 

 To establish the dynamic programming recursion, let 0¯y�z° � 0;  

0±y�-����² � =�j-��ZI�j�¬ ;  

0±y�-����² � =�j-��ZJ�j-��ZI¬ a |�j-��ZJ�j-��ZI=�j-��ZI�j�¬ 	  =�j-��ZJ�j-��ZI¬ a
|�j-��ZJ�j-��ZI0±y�-����²;  
in general, 0±y}² � =�³�³eI¬ a  |�³�³eI0¯y}��°, so that 0¯y+° � =�­�I¬ a |�­�I0¯y�°.  
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We can now simplify Equation (4.16): 

>x�£`�Dd 	 ¤y{/¯=�­�I¬ a |�­�I/=�I�J¬ a ® a |�j-��ZJ�j-��ZI/0±y�-����²3 … 3° ��: �� � �3 
                               	 ¤y{/0¯y+°��: �� � �3. (4.17) 

By using Equation (4.17), we can define the shortest distance from each node j to the end node 

y�z 

Definition 4.1. The shortest distance from node y} to end node y�z, 0¯y}°, is defined recursively by 

0±y}² � ´ 0                                                                        
¤y{`�³,�³eId�Vi³�e /=�³�³eI¬ a |�³�³eI0±y}��²3         y0 y} 	 y�z         

 y0 y} � �\/y�z3,µ (4.18) 

where =�³�³eI¬ 	 ∑ ����$�i³i³eI _ ¶�³�³eI. 

 A related property is stated by Property 2. 

Property 4.2. If  5±y}² 	 y} _ y}�� _ ® _ y�z  is the shortest path from node y}  to y�z , sub-path 

5±y}��² 	 y}�� _ ® _ y�z  is the shortest path from node y}�� to y�z. 

Proof. This property follows from the recursion and the dynamic programming principle of 

optimality. ■ 

4.2.4.2 Computing algorithm  

 Based on Definition 4.1 and Property 4.2, we now describe BRA to find the shortest path 

from each node to end node y�z . First, we note prior work on the conventional shortest-path 

problems. Ahuja et al. (1993) described two groups of solution algorithms: label-setting 

algorithms, which designate one label as permanent at each iteration, and label-correcting 

algorithms, which mark all labels as temporary until the final iteration. A few fundamental label-

setting algorithms are the reaching algorithm on acyclic networks with the worst-case 

complexity of O(m), and Dijkstra’s algorithm on cyclic networks with nonnegative arc lengths, 

with O(n2). Several label-correcting algorithms (e.g., FIFO label-correcting algorithm with 
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worst-case complexity O(nm) (Bellman, 1958)) have been developed for solving the shortest 

path problem on networks with arbitrary costs and arbitrary topology.  

 Zhu and Wilhelm (2012) reviewed the literature (e.g., Desrochers and Soumis, 1988; and 

Dumitrescu and Boland, 2003) related to the resource-constrained shortest path problem and 

proposed a three-stage approach for solving it as a sub-problem in CG. However, the 

conventional shortest path problem is different from ours, in which the distance from each node 

to end node y�z is defined based on arc costs =x�. 

 Let G = (�� , 
�) be the duplicate network of the embedded GFP, where �� is the set of 

nodes and 
� is the set of directed arcs. Note that G is acyclic. For a given G = (�� , 
�), order 

nodes topologically (Step 1), initialize 0¯y�z° = 0 (Step 2) and 0¯y° = M for each y � �� (Step 3), 

where M is a big number, and update distance label of each predecessor of node y�z (Step 4). 

Then, process node j in decreasing topological order by updating distance label of each 

predecessor i of node j (Step 5). For each node j, scan incoming arcs. For each arc -y, ·� � 
}��, if 

0¯y°  � =�}¬ a |�}0¯·°, set 0¯y°  	 =�}¬ a |�}0¯·°. Figure 11 gives a formal description of our BRA.  

 Next, we prove the correctness of BRA by proving that whenever it processes node j in 

step 5, the optimal distance label of node j has already been determined so that BRA is a label-

setting algorithm. 

Proof. Suppose that BRA has processed nodes y�z , y�, … , yD and their distance labels are optimal. 

Next, BRA processes node yD��. Let the shortest path from node yD�� to the node y�z be  yD�� _
y¸ _ ® _ y�z where y¸ � yD��. By property 4.2, the path y¸ _ ® _ y�z  must be the shortest path 

from node y¸ to y�z. Since BRA processes nodes in decreasing topological order and -yD��, y¸� �

�¹��,  node y¸ is included in /yD , … , y�z3 and the distance label of node y¸, f[ y¸] , is equal to the 

shortest distance of the path from node y¸ to y�z  by hypothesis. While processing node y¸, arc 
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-yD��, y¸� must be scanned and the distance label of node yD��, 0¯yD��°, set equal to =��ZI,�¹¬ a
|��ZI�¹0¯y¸°; that is, the shortest distance from node yD�� to y�z (i.e., path yD�� _ y¸ _ ® _ y�z ). 

Therefore, when BRA processes node yD�� , its distance label is already optimal. Even if 

alternative optima exist, the optimal distance label of node yD��, 0¯yD��°, is not affected because 

the shortest distance associated with each alternative shortest path is the same as 0¯yD��°. ■ 

 

Line No. Step Operation 
1 1. Determine the topological ordering of nodes in G 
2 2. 0¯y�z° º 0  and ��¶¶¯y�z° º » 
3 3. 0¯y° º ¼ and ��¶¶¯y° º »  for each y � ��\/y�z3  
4 4. For each arc incident to node y�z : -y, y�z� � 
� 
5   0¯y° º =�,�j�′  and ��¶¶¯y° º y�z 

6  End for 
7 5. For each node · � ��\/y�z3 in the decreasing topological ordering  
8   For each incoming arc -y, ·� � 
}��  

9    16¤2 º =�}′ a |�}0¯·°  
10    If 0¯y° � 16¤2  
11    Then  0¯y° º 16¤2 and ��¶¶¯y° º · 
12   End for 
13   · º {6M1 {ÃÄ6  
14  End while 

Figure 11 BRA 

 

 Now, we analyze the worst case complexity of BRA. 

Proposition 4.3. The worst case complexity of BRA is O(m), where m is the number of arcs. 

Proof. Step1, ordering nodes topologically can be done in O(m) (Ahuja et al., 1993). Step 2 runs 

in O(1).  Steps 3 and 4 run in O(n) and O(m), respectively, where n is the number of nodes. Step 

5 examines each arc just once (lines 7 and 8) and each line within step 5 runs in O(1) (lines 9-11 

and 13) so that total runtime of step 5 is O(m). Since ¤ w  { according to the network structure 

of the embedded GFP, the worst-case complexity of BRA is O(m).  ■ 
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 Based on the shortest path solution found by BRA, we can construct a column 

representing flow on path p, which starts as a unit flow as it emanates from node y+, flows as 

�x� 	  ∏ |}}� V���I   units on each arc s in path p, and ends as ∏ |}}� V��ij�J   units at node y�z . The 

coefficient associated with variable �� in each row of model 2 represents this flow amount (i.e., 

�x�) on each arc s in path p.  

4.2.5 Acceleration techniques 

 We employ two techniques to accelerate CG convergence. The first is to incorporate 

extra dual cuts. Liang and Wilhelm (2007) generalized extra dual cuts, describing that inserting a 

polynomial number of extra dual cuts into RMP upon initialization restricts the dual space, 

potentially accelerating CG convergence. Alvelos and Valerio de Carvalho (2007) incorporated 

cycle paths as extra dual cuts to generate several additional, feasible flow paths by forming a 

linear combination of the cycle and flow paths generated by the subproblem.  

 Similarly, this study uses two portions of the SC network to generate cycle paths as extra 

dual cuts: the first group of cycle paths is generated based on the upstream along cycles, y+ Å 

farm in period t -y� � ���� Å  field storage facility of y�  in period t -y� � ���� Å  … Å field 

storage of y� in period t+j `y}�� � ���d Å farm in the same location as y� in period t+j `y}�# �
���� Å y+, where 1 � 4 and 1 g · g |4| _ 1; and the second, based on the downstream along 

cycles, y�z Å  customer zone -y� � ���� Å  distribution center -y� � �%�� Å  biofuel storage 

facility in a biorefinery -y# � �$#� Å  distribution center in a location different to y�   -yÆ �
�%�� Å customer zone in a location different to y� -yÇ � ���� Å y�z. Figure 2 depicts examples of 

such cycle paths.  

 The second technique is based on the conjecture that incorporating multiple columns 

found to be improving at each of CG iteration may lead to faster CG convergence. After solving 

the subproblem once, we incorporate several paths, each with positive reduced cost, rather than 
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incorporating only the best column. However, dual variables from RMP might not provide a 

good primal (master problem) solution (i.e., far from an optimal solution) in initial stages of the 

CG search, so that, if several paths were incorporated, some may never be entered into the RMP 

basis and would only increase runtime because they would have to be priced out at each 

iteration.  

 Therefore, we incorporate only a small portion of paths that have positive reduced cost 

in initial iterations. We control the number of paths that are made available to RMP, based on the 

ratio of their reduced costs to the most favorable reduced cost. For example, if the criterion for 

this ratio is set to 1%, only those improving paths whose reduced costs are within 1% of the most 

favorable reduced cost are incorporated. As the number of CG iterations increases, our algorithm 

increases this criterion linearly from 1% up to 100%, with the expectation that dual variable 

values will provide more useful information as the search approaches the optimal RMP solution. 

We determine the iteration number at which the criterion becomes 100%, through preliminary 

experiments for each instance (see Section 4.4.2). 

4.3. Partial objective constraint 

 This section introduces POC, an inequality based on the portion of objective function (1) 

associated with binary variables. Subsections describe the definition of POC, its properties, and a 

method to obtain right-hand-side values for POC. 

4.3.1 Definition of POC 

 Let H = {-0, A�: 0 � �&" , A � ;�3, ÈÉ Ê �, and ÈË Ê 
. Binary variables, the indices of 

which are in ÈÉ or ÈË, are employed to construct POC. Then, objective function (1) can be re-

expressed: 

 >� 	 Max /; _ �3, (4.19) 

where ; 	 _ ∑ =��& M��-�,���*\�Ì _ ∑ E��L��-�,���* _ ∑ =BCNBB�VÍ\�Î a ∑ =xOxx�V� ; and  
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          � 	 ∑ =��& M��-�,����Ì a ∑ =BCNBB��Î . 

At the optimal solution of model 1, -Ï�, Ð�, Ñ�, Ò��, the optimal objective function value 

>� can be represented as 

>� 	 ;� _ �� , (4.20) 

where  ;� 	 _ ∑ =��& M���-�,���Ó\�Ì _ ∑ E��L���-�,���Ó _ ∑ =BCNB�B�V\�Î a ∑ =xOx�x�V�  and  

           �� 	 ∑ =��& M���-�,����Ì a ∑ =BCNB�B��Î .  

Letting >��Ô  denote the objective function value of the incumbent solution of mixed integer 

program found during the B&B procedure, ;� _ �� 	 >� w >��Ô, so that  

�� g ;� _ >��Ô g ��_5Õ=.  (4.21) 

By using this relationship in (21) between a portion of the optimal objective function value, ��, 

and UB_POC, we define POC based on � in (19) and UB_POC in (21):  

� 	 ∑ =��& M��-�,����Ì a ∑ =BCNBB��Î g ��_5Õ=, (4.22) 

Note that different POCs can be defined based on the definitions of subsets ÈÉ and ÈË. 

4.3.2 POC properties 

 Here, we describe several properties of POC. 

Property 4. POC may cut off some portion of the B&B tree but not the optimal integral solution. 

Proof. If the value of UB_POC were greater than �� and it be decreased, POC will tighten the 

restriction on binary variables in sets ÈÉ and ÈË so that some feasible integral solutions of model 

1 can be infeasible to POC and can be cut off by POC. To prove the second part of Property 4, 

we show that, incorporating POC, re-optimizing model 1 at the optimal solution prescribes the 

same optimal solution as that of model 1. Let -Ï�, Ð�, Ñ�, Ò�� be the optimal solution of model 1. 

Then, the optimal objective function value of model 1 is ;� _ �� 	 ;� _ -∑ =��& M���-�,����Ì a
∑ =BCNB�B��Î �. Since POC does not involve any variables associated with ;�, incorporating POC 
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into model 1 does not affect ;�. Also, POC restricts ∑ =��& M��-�,����Ì a ∑ =BCNBB��Î  by using the 

upper bound of ∑ =��& M���-�,����Ì a ∑ =BCNB�B��Î , ��_5Õ=. Thus, the optimal solution of binary 

variables in sets ÈÉ  and ÈË , (i.e., M��� , -0, A� � ÈÉ ;and  NB�, ? � ÈË ) is still  feasible to POC. 

Therefore, POC of Equation (4.22) does not cut off the optimal integral solution. ■ 

Property 5. POC may tighten the bound provided by the linear relaxation of model 1.  

Proof.  This is trivial. Let >Ö"�  be the optimal objective function value of the linear relaxation of 

model 1 and >Ö"_"&��  be that of the linear relaxation of model 1 after incorporating POC. Since 

POC can cut off the optimal solution of the linear relaxation of model 1, >Ö"_"&�� g >Ö"� . ■ 

 However, even though POC offers these favorable properties, an appropriate value of 

UB_POC must be determined to be effective in tightening bounds without cutting off the optimal 

integral solution. The following section presents a method to determine an appropriate value of 

UB_POC.   

4.3.3 A method to obtain UB_POC  

 We consider an upper bound ��_;� w ;�: 

∑ =��& M��-�,����Ì a ∑ =BCNBB��Î g ;� _ >��Ô g ��_;� _ >��Ô   (4.23) 

 Upper bound ��_;� can be calculated by solving problem 5!×, which is the same as 

model 1, except the objective function is changed from ¤?M /; _ �3 to ¤?M /;3. 
 PUB: >!×� 	 ¤?M /; | s. t. -4.1� _ -4.7�3  (4.24) 

Proposition 6. ;-�+�� g >!×� , where ;-�+�� , defined under Equation (4.20), is a portion of the 

optimal objective function value of model 1 and >!×�  is the optimal objective function value  of 

PUB. 

Proof. By way of contradiction, suppose that there exist optimal solutions Ü� of model 5!× and 

Ý� of model 1, respectively, such that ;-�+�-Ý�� 	 ;-�+�� � >!×� 	 ;-�Æ�-Ü��, where ;-�+�-Ý�� is 
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the portion (defined as ;-�+�) of the objective solution value of model 1 associated with its 

optimal solution Ý�, and ;-�Æ�-Ü�� is the objective function value of model PUB evaluated at its 

optimal solution Ü�. Since the constraints of model 1 constitute model 5!×, Ý� is also a feasible 

solution with respect to model 5!× . So, this implies that ;-�+�� 	 ;-�+�-Ý�� 	 ;-�Æ�-Ý�� g
;-�Æ�-Ü�� 	 >!×� , where ;-�Æ�-Ý��  is the objective function value of 5!×  associated with 

feasible solution Ý�. The inequality follows from the fact that Ý� is a feasible solution to model 

5!×, a maximizing problem, and Ü� is its optimal solution. This contradicts the assumption that 

;-�+�� � >!×� . ■ 

 Let >!×_���   be the optimal objective function value of the linear relaxation 5!×_�� of 5!×. 

Then, >!×_��� w >!×� . To determine the value of >!×� , problem 5!× , a mixed-integer program, 

must be solved. Therefore, even though >!×_��� w >!×� , it is attractive to use >!×_���  as an upper 

bound on ;� , because we can obtain it easily by solving a linear programming problem as 

described in Figure 12. 

 

(1) Solve the linear relaxation of model 1 at the root node of the B&B tree. 
(2) Set the objective coefficients of binary variables in selected sets ÈÉ and ÈË to zero, creating an 

instance of problem 5!×_��. 

(3) Solve problem 5!×_��, using the Dual Simplex method, starting with the optimal root-node 

solution as the initial feasible solution. 

Figure 12 Procedure to calculate  ���_���  

  

 We now re-express POC:  

∑ =��& M��-�,����Ì a ∑ =BCNBB��Î g >!×_��� _ >��Ô .  (4.25) 
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>��Ô w 0 in model 1 because a solution in which all decision variables are zero is feasible. In 

addition, whenever a new integral incumbent solution is found during the B&B procedure, the 

right-hand side of inequality (4.25) can be reduced, tightening POC. 

4.3.4 Selection of ÞÐ and ÞÑ  

 This paper generate two types of POCs, each based on a particular selection of subsets ÈÉ 

and ÈË.  

 POC1: ∑ =��& M��-�,���* a ∑ =BCNBB�V g ��_5Õ=�,  

includes all binary variables (with ÈÉ 	 � and ÈË 	 
); and  

 POC2: ∑ =��& M��-�,���* g ��_5Õ=�,  

includes only binary variables M�� (with ÈÉ 	 � and ÈË 	 »), which are associated with facility 

locations and technology types and have large objective function coefficients in comparison with 

those of binary variables NB. 

4.4. Computational tests 

The objectives of our computational tests are to evaluate the efficacy of our solution 

approach and benchmark against a state-of-the-art commercial solver. We employ CPLEX 12.1 

and C++ with Callable Library under the Windows 7 64-bit operating system with an Intel(R) 

Core(TM)2 Quad CPU Q9650 @ 3.00 GHz and a RAM of 8GB. 

Our experiment is based on a case study reported by An et al. (2011b), which involves 

nine counties in the Central Texas Region. This region is representative of many others for 

which cellulosic biomass must be supplemented with energy crops to its meet fuel demand. An 

et al. (2011b) conducted a sensitivity analysis for several economic factors, including cost and 

supply of feedstock (e.g., switchgrass, whose moisture content ranges generally from 20 to 

60%), and price and demand of ETOH. All parameter values used in our computational tests are 

from Chapter III. 
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Table 12 shows 15 test instances, which we generated based on two factors: the numbers 

of farms and time periods (e.g., quarters, bi-months, months). Our tests involve five levels (9, 12, 

15, 25 and 34) of the number-of-farms factor, and three levels (4, 6 and 12) - representing 

quarters, bi-months and months- of the number-of-time-periods factor.  

 

Table 12 Test instances 

No Name # Farms #  
Periods 

#  
Rows 

Variables 
Embedded GFP 

Network 
Binary  

x 
Binary  

y 
Binary 
Total 

Continuous # Nodes # Arcs 

1 F9T4 9 4     2,813           81         648              729 5,150 902 5,067 
2 F9T6 9 6     4,205           81         972           1,053 7,760 1,352 7,677 
3 F9T12 9 12     8,381           81      1,944           2,025 15,590 2,702 15,507 
4 F12T4 12 4     4,178         108      1,152           1,260 8,594 1,202 8,484 
5 F12T6 12 6     6,248         108      1,728           1,836 12,938 1,802 12,828 
6 F12T12 12 12   12,458         108      3,456           3,564 25,970 3,602 25,860 
7 F15T4 15 4     5,760         135      1,800           1,935 12,902 1,502 12,765 
8 F15T6 15 6     8,615         135      2,700           2,835 19,412 2,252 19,275 
9 F15T12 15 12   17,183         135      5,400           5,535 38,942 4,502 38,805 
10 F25T4 25 4   12,589         225      5,000           5,225 33,502 2,502 33,275 
11 F25T6 25 6   18,845         225      7,500           7,725 50,352 3,752 50,125 
12 F25T12 25 12   37,613         225    15,000         15,225 100,902 7,502 100,675 
13 F34T4 34 4   20,788         306      9,248           9,554 60,250 3,402 59,942 
14 F34T6 34 6   31,130         306    13,872         14,178 90,510 5,102 90,202 
15 F34T12 34 12   62,156         306    27,744         28,050 181,290 10,202 180,982 

 

 The following subsections describe the design of our experiments, report the runtime to 

solve the linear relaxation of model 2 at the root node of the B&B search tree, and present our 

overall evaluation based on the 15 test instances described in Table 12. 

4.4.1. Test procedure  

 Our approach uses a CG approach to solve the linear relaxation of model 2 but not to 

prescribe bounds at nodes in the B&B search tree, because our preliminary tests showed that 

using CG to prescribe bounds at all nodes is not as fast as CPLEX B&B. We conjecture that 

CPLEX is faster - at least in part - because it employs an early termination criterion that allows 
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the dual simplex algorithm to stop before reaching an optimal solution. In contrast, CG must use 

the primal simplex algorithm, which must be solved until finding at least a near-optimal solution. 

CPLEX also enjoys the advantages of having been coded by professional programmers and 

having been refined over a long period of time. 

We believe that our experience is not unique: most studies since the mid 2000s have not 

compared their branch-and-price algorithms with commercial solvers. Rather, their 

computational tests compared different branch-and-price algorithms (e.g., Senne et al., 2005; 

Villa and Hoffman, 2006; Grønhaug et al., 2010; Gutierrez-Jarpa et al., 2010; Irnich, 2010; and 

Brunner et al., 2011). Some papers that have compared branch-and-price performance with a 

commercial solver (Brunner et al., 2011; and Mestry et al., 2011) reported only the gaps 

provided by two codes within a given runtime limit. We speculate that the capabilities of 

commercial solvers may have been improved during last decade to the point at which only 

branch-and-price codes written by professional programmers can be competitive; otherwise, they 

cannot be competitive, even though they may offer certain theoretical advantages. 

 Therefore, rather than using CG to prescribe bounds, this paper presents an approach, 

which solves BSCP faster than state-of-the-art solver CPLEX 12.1, using our BRA in CG at the 

root node of the search tree and CPLEX defaults with POC during the B&B search. 

 Figure 13 structures our solution procedure, elements of which are discussed in sections 

3 and 4. In step 1, CG solves the linear relaxation of model 2 using CPLEX to solve RMP and 

RBA to solve the sub-problem at each CG iteration. Step 2 calculates >!×_���  for POC(s) by 

solving 5!×_�� as described in section 4. Step 3 generates POC, using >!×_���  from Step 2. Steps 

2 and 3 are iterated for selected subsets ÈÉ and ÈË . By incorporating POC1 or POC2, step 4 

modifies model 1, forming model 1’. Step 5 uses CPLEX B&B logic to solve model 1’ at nodes 

after than the root node so that CPLEX defaults control the branching process. Note that CPLEX 
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does not allow a right-hand-side constant to be changed after its branching logic starts. Thus, our 

computational tests do not update >��Ô to strengthen UB_POC when a new incumbent solution is 

found; rather, we maintain >��Ô 	 0 or the incumbent solution value solved by using CPLEX 

heuristics in Step 2-1. 

 

Step1. Solve the linear relaxation of model 2 using CG. 
Step2. Modify objective function coefficients and solve PUB_lp using CG, starting with the 
optimal root node solution as the initial feasible solution to obtain the UB_POC.  
(Step2-1. Solve model 1 by using CPLEX heuristics to strengthen UB_POC using incumbent 
solution.) 
Step3. Generate POC using UB_POC. Iterate steps 2 and 3 for selected subsets ÈÉ  and ÈË , 

generating associated POC(s). 
Step4. Incorporate POC(s) into the model 1 only at the root node, forming model 1’. 
Step5. Solve the augmented model 1’ by using CPLEX B&B logic. 

Figure 13 Solution procedure 

 

4.4.2 Solving the linear relaxation of model 2 using CG 

 Table 13 compares runtimes required to solve the linear relaxation of model 2 using both 

CPLEX and our CG approach. The first column gives the names of test instances and the second 

column presents the optimal objective function value of the linear relaxation of model 2, which 

is the same value as that of model 1, for each instance. Columns 3 and 4 (5 and 6) give CPLEX 

(CG) results (i.e., runtime and number of simplex iterations). Time Reduction (columns 7 and 8) 

gives two measures to compare runtimes of CPLEX and CG: ‘A-B’ is the CPLEX runtime minus 

that of CG; and ‘100*B/A’ gives the percentage of CPLEX runtime required by our CG 

approach. The last two columns give CG iteration numbers: CG iteration number for 100% 

criterion (columns 9), after which 100% improving columns found are incorporated into RMP as 

described in section 3.5; and one for the total number of CG iterations (columns 10) to obtain the 

optimal solution. 
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Table 13 Comparison of CPLEX and CG for the linear relaxation of model 2 

Name Optimal 
value 

CPLEX CG Time Reduction CG iteration 
number  

Time 
(sec) 

# Simplex 
Iter. 

Time 
(sec) 

# 
Simplex 

Iter. 

A-B 
(sec) 

100*B/A 
(%) 

100% 
criterion  Total 

F9T4 1.719960E+07 0.22  2,000 0.16    2,410 0.06 71.4% 3 23 
F9T6 1.844870E+07 1.03      7,861 0.55 5249 0.48 53.0% 3 37 
F9T12 1.173080E+07 4.29        22,256 2.48  19,333 1.81 57.8% 1 49 
F12T4 2.344030E+07 0.90           7,130 0.44  4,513 0.46 48.4% 3 26 
F12T6 2.462720E+07 2.43         13,923 1.23 8,379 1.20 50.7% 9 48 
F12T12 9.964422E+06 8.53        30,950 5.49          6,377 3.04 64.4% 1 90 
F15T4 1.143080E+07 1.12       7,519 0.28          2,846 0.84 25.0% 3 22 
F15T6 1.240550E+07 3.09       14,875 1.00         4,959 2.09 32.3% 1 44 
F15T12 3.520170E+07 28.55        69,378 22.33        87,803 6.23 78.2% 21 113 
F25T4 1.248940E+07 4.04        13,784 0.69          4,411 3.35 17.0% 3 30 
F25T6 1.362290E+07 14.24         32,384 3.32        15,249 10.92 23.3% 3 55 
F25T12 1.477820E+07 124.38         60,410 32.01    86,287 92.37 25.7% 1 95 
F34T4 1.007000E+07 10.73        21,208 1.21         6,537 9.52 11.3% 2 23 
F34T6 3.541140E+07 64.60        72,608 15.62        49,942 48.99 24.2% 3 56 
F34T12 1.624580E+07 328.28       187,251 66.74        13,732 261.54 20.3% 1 111 

  

 Our CG approach solves all test instances of the linear relaxation of model 2 faster than 

CPLEX. As the instance size increases, the ratio of CG runtime to that of CPLEX decreases; that 

is, the runtime advantage of CG increases with instance size in these tests. Note that the CG 

iteration number of 100% criterion, which was determined by preliminary computational tests to 

manage the number of improving columns incorporated, is generally less than 20% of the total 

CG iteration number. 

4.4.3 Solving BSCP using CG and POC(s) 

 Table 14 presents several solution values to generate POC(s). The first column again 

notes the instance. The first three columns give optimal solution values of (linear relaxation) 

model 1 and their gaps. Columns 5 and 6 give the left-hand-side values of POC1 and POC2 at 

the optimal solution of model 1. Columns 7 and 8 present the optimal solution value of model 

5!×with respect to POC1 and POC2. By using the values in columns 7 and 8, and the trivial 
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incumbent solution >��Ô 	 0 , we determine the right-hand-side values of POC1 and POC2 

(columns 9 and 10). Columns 11-13 give the incumbent solution value solved by CPLEX 

heuristics, their gaps, and their runtimes. Finally, columns 14 and 15 present the right-hand-side 

values of POC1’ and POC2’ strengthened by the incumbent solution value in columns 11 and 12. 

 The gaps between ZLP (column 2) and ZIP
 (column 3) range from 41% to 453%. Since 

POC1 and POC2 use the trivial incumbent solution >��Ô 	 0, each of their right-hand-side 

values is the same as the optimal solution values of model 5!×. The gaps between ZIP (column 3) 

and the incumbent solution values solved by CPLEX heuristics (column 12) range from 38% to 

100%. For instances F15T4 and F34T4, CPLEX heuristics found only the trivial incumbent 

solution (i.e., >��Ô 	 0). 

 Table 15 compares the runtimes of CG with POC(s) against the benchmarking CPLEX 

B&B. The first column gives the names of test instances. A group of seven columns, CPLEX, 

POC1, POC2, POC1&2 (i.e., both POC1 and POC2), POC1’, POC2’, and POC1’&2’, gives 

runtimes for each of the two methods we tested: without using CPLEX cuts and with using 

CPLEX cuts. Note that the runtimes associated with POC(s) involve the runtimes of CG.  

 In the first group of columns in Table 15 (i.e., without CPLEX cuts), our solution 

approach based on POC is faster than CPLEX with a few exceptions: two instances (F12T12 and 

F34T6) for POC1; four instances (F9T4, F9T6, F25T4 and F34T6) for POC2; and three 

instances (F9T4, F15T6 and F25T4) for POC1&2. Figure 14 graphs the ratio of runtime of 

POC1, POC2, and POC1&2 to CPLEX runtime on each test instance without using CPLEX cuts. 

A ratio less than 1.0 indicates a method that is faster than CPLEX. POC1 is less effective than  
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Table 14 Solution values to generate POC1 (POC2) and strengthened POC1’ (POC2’) 

Name ZLP ZIP GAP(a) 
LHS* (b)  
of POC1 

LHS* (b)  
of POC2 

R*(24)_1(c) R*(24)_2(c) 
RHS of 
POC1 

RHS of 
POC2 

Zinc_H(d) GAP_H(e) 
Time 
for 

Zinc_H

RHS of 
POC1' 

RHS of 
POC2' 

F9T4 1.71996E+7 9.78245E+6 76% 4.70541E+6 4.69581E+6 1.87632E+7 1.87628E+7 1.87632E+7 1.87628E+7 5.20740E+6 47% 1.4 1.35558E+7 1.35554E+7 

F9T6 1.84487E+7 9.52891E+6 94% 4.78806E+6 4.78006E+6 1.98643E+7 1.98641E+7 1.98643E+7 1.98641E+7 5.87931E+6 38% 5.2 1.39850E+7 1.39848E+7 

F9T12 1.17308E+7 5.14870E+6 128% 4.70211E+6 4.69581E+6 1.30093E+7 1.30092E+7 1.30093E+7 1.30092E+7 2.13364E+6 59% 36.2 1.08757E+7 1.08756E+7 

F12T4 2.34403E+7 1.42319E+7 65% 4.96325E+6 4.94855E+6 2.51494E+7 2.51490E+7 2.51494E+7 2.51490E+7 4.95891E+6 65% 2.4 2.01905E+7 2.01901E+7 

F12T6 2.46272E+7 1.45254E+7 70% 4.79046E+6 4.78006E+6 2.62423E+7 2.62420E+7 2.62423E+7 2.62420E+7 7.08008E+6 51% 8.6 1.91622E+7 1.91619E+7 

F12T12 9.964422E+6 4.01397E+6 148%  4.70321E+6 4.69581E+6 1.07575E+7 1.07575E+7 1.07575E+7 1.07575E+7 1.09415E+5 97% 59.2 1.06481E+7 1.06481E+7 

F15T4 1.14308E+7 4.30164E+6 166% 4.70961E+6 4.69581E+6 1.19664E+7 1.19663E+7 1.19664E+7 1.19663E+7 0.00000E+0 100% 2.1 1.19664E+7 1.19663E+7 

F15T6 1.240550E+7 5.67554E+6 119% 4.70801E+6 4.69581E+6 1.31053E+7 1.31052E+7 1.31053E+7 1.31052E+7 3.50819E+5 94% 17.1 1.27545E+7 1.27544E+7 

F15T12 1.477820E+7 7.62659E+6 94% 4.62327E+6 4.61157E+6 1.57969E+7 1.57968E+7 1.57969E+7 1.57968E+7 1.23092E+7 51% 436.0 2.51008E+7 2.51006E+7 

F25T4 1.24894E+7 4.79253E+6 161% 4.71591E+6 4.69581E+6 1.30858E+7 1.30857E+7 1.30858E+7 1.30857E+7 4.03922E+6 16% 10.3 9.04658E+6 9.04648E+6 

F25T6 1.36229E+7 6.33165E+6 115% 4.71381E+6 4.69581E+6 1.43774E+7 1.43773E+7 1.43774E+7 1.43773E+7 3.74868E+5 94% 44.1 1.40025E+7 1.40024E+7 

F25T12 3.74989E+7 2.66001E+7 41% 9.32388E+6 9.30938E+6 3.98109E+7 3.98107E+7 3.98109E+7 3.98107E+7 2.11335E+6 72% 1658.9 1.36836E+7 1.36835E+7 

F34T4 1.00700E+7 1.81969E+6 453% 4.63587E+6 4.61157E+6 1.05612E+7 1.05610E+7 1.05612E+7 1.05610E+7 0.00000E+0 100% 21.1 1.05612E+7 1.05610E+7 

F34T6 3.54114E+7 2.27045E+7 56% 9.32758E+6 9.30938E+6 3.74207E+123.74204E+7 3.74207E+7 3.74204E+7 6.98688E+6 69% 557.0 3.04338E+7 3.04335E+7 

F34T12 1.624580E+7 8.36782E+6 94% 4.62697E+6 4.61157E+6 4.62697E+6 4.61157E+6 4.62697E+6 4.61157E+6 1.88906E+6 77% 458.6 1.54430E+7 1.54429E+7 

(a) GAP = 100 * (ZLP -ZIP )/ ZIP 
(b) LHS* of POC1 (POC2): LHS of POC1 (POC2) at optimal solution 
(c) R*(24)_1 (_2): R*(24) for POC1 (POC2) 
(d) Incumbent solution value by using CPLEX heuristics 
(e) GAP_H = 100 * (ZIP - Zinc_H)/ ZIP   
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Table 15 Comparison of runtimes 

Name 
Without CPLEX cuts (sec) With CPLEX cuts (sec) 

CPLEX POC1 POC2 POC1&2 POC1' POC2' POC1'&2'  CPLEX POC1 POC2 POC1&2 POC1' POC2' POC1'&2'  

F9T4 4.1 4.0 4.2 4.2 4.0 3.9 4.0 39.7 11.0 25.3 18.3 10.84 25.2 18.3 

F9T6 10.5 8.9 10.7 9.2 9.1 10.0 8.5 62.5 32.8 71.2 45.0 32.59 71.0 44.5 

F9T12 46.6 37.5 25.9 26.8 39.8 22.6 23.7 227.2 223.7 175.1 184.7 222.56 161.0 184.2 

F12T4 60.8 28.9 30.6 34.4 28.9 29.9 33.9 118.8 120.3 133.8 116.3 119.7 133.9 115.5 

F12T6 47.7 29.9 45.8 32.3 30.7 44.2 30.8 163.9 329.9 288.2 252.6 328.5 360.8 222.6 

F12T12 205.0 337.3 106.9 91.2 337.6 105.8 91.4 850.9 683.0 672.8 943.4 683.0 673.6 945.0 

F15T4 14.9 12.2 12.1 10.1 12.2 12.1 10.1 229.0 147.1 173.5 192.2 147.1 173.5 192.2 

F15T6 37.4 39.7 25.6 38.6 38.9 24.1 40.3 373.2 544.6 489.9 393.6 543.1 490.8 397.3 

F15T12 724.2 716.1 714.3 464.3 716.3 718.2 465.5 3997.1 3765.5 3744.8 4845.3 4528.6 3696.1 2605.7 

F25T4 142.9 98.3 263.9 162.4 96.6 228.4 239.8 1546.0 5546.2 2290.3 3273.1 1993.3 2719.21 3121.4 

F25T6 651.7 478.1 580.2 553.3 473.7 580.2 555.1 4007.7 >7200 5724.6 3262.2 >7200 6732.7 >7200 

F25T12 2199.7 1189.0 2129.4 1176.7 1277.4 2138.3 1141.0 >7200 >7200 >7200 >7200 >7200 >7200 >7200 

F34T4 1184.1 526.2 642.3 581.1 526.2 581.1 526.2 >7200 >7200 >7200 >7200 >7200 >7200 >7200 

F34T6 2589.8 4907.5 3397.1 2164.0 4936.2 5893.0 2891.9 >7200 >7200 >7200 >7200 >7200 >7200 >7200 

F34T12 >7200(a) >7200 >7200 >7200 >7200 >7200 >7200 >7200 >7200 >7200 >7200 >7200 >7200 >7200 

(a) >7200.0: optimal solution was not found within the time limit of 7200 sec 
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POC2 and POC1&2 in our tests. It is interesting to note that the runtime of POC1&2 is between 

or better than those of POC1 and POC2, with the exceptions of F12T4. Average ratios of runtime 

of our methods to that of CPLEX are 90% for POC1, 91% for POC2, 76% for POC1&2, 

respectively, implying that POC1&2 outperforms, on average, CPLEX, POC1, and POC2.  

 The strengthened POC2’ is faster than POC2 for most instances, with the exception of 

F15T12 and F34T6. In contrast, the strengthened POC1’ and both POC1’&2’ do not reduce 

runtimes in our tests. From the results in the second group of columns in Table 15, solving with 

CPLEX cuts is slower than solving without CPLEX cuts for all instances. Especially, for four 

instances (F25T12, F34T4, F34T6, and F34T12), it did not find the optimal solution within 7200 

seconds. 

 

 
Figure 14 Comparison of four solution methods 

 

 To investigate the impact of the right-hand-side value of POC1, we solved the instance 

F9T6 by using strengthened right-hand-side values of POC1. Table 16 compares the 

performance of POC1 with various right-hand-side values. The first column gives the test 
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number and the second, the name of POC. Columns 3 and 4 present the right-hand-side values 

and their gaps. Columns 5-7 provide performance measures (i.e., runtime, simplex iterations and 

nodes examined).  

 Row 1 gives the result using CPLEX without POC1. Row 2 is associated with POC1 and 

row 3, with POC1’, which has a strengthened right-hand-side value by using CPLEX heuristics. 

From row 4 to 6, we strengthened the right-hand-side value of POC1. Row 7 gives the result by 

using the optimal right-hand-side value of POC1. As the right-hand-side value of POC1 

decreases up to the optimal solution, the runtime, simplex iterations, and nodes examined 

decrease as well. This result implies that the performance of POC(s) depends on the quality of 

the right-hand-side value and such inequalities may be helpful in accelerating B&B. 

 

Table 16 Comparison of various strengthened right-hand-side values of POC1 for instance F9T6 
No POC RHS of POC1 GAP_RHS Runtime (sec) Iteration Nodes 
1 - - - 10.50 62935 1781 
2 POC1 19864300 315% 8.9 55641 1126 
3 POC1_H(a) 13984993 192% 8.9 55641 1126 
4 POC1_a 10000000 109% 7.5 49333 1018 
5 POC1_b 8000000 67% 6.3 40349 884 
6 POC1_c 6000000 25% 6.3 40349 884 
7 POC1_*(b) 4788056 0% 6.2 39839 725 

(a) By using CPLEX Heuristics 
(b) Optimal 

 

4.4.4 Analysis of the performance of POC(s) 

 This section analyzes and compares the performances of POC1, POC2, and POC 1&2 

based on a few typical test instances (i.e., F12T4, F12T6, and F12T12). Each following 

subsections compare the detail performances of those solution methods, without using CPLEX 

cuts, for several cases: the performance of POC1&2 is better than those of POC1 and POC2; that 

of POC1&2, between those; and that of POC1&2, worse than those. 
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4.4.4.1 The performance of POC1&2 is better than those of POC1 and POC2 (F12T12) 

 Figure 15 compares best bound, best integer, and the number of iterations based on four 

solution methods for instance F12T12 over the entire B&B procedure. In terms of runtime, 

POC1&2 is best among all methods; POC2 is second; CPLEX, third; and POC1, the worst. The 

best bound of CPLEX decreases slower than others and the gap of CPLEX decreases slower than 

others. Note that, by default, CPLEX has a relative MIP gap of 10-4 (0.01%) and an absolute MIP 

gap of 10-6, and the number of simplex iterations in this paper does not include the iterations 

caused by CPLEX strong branching. 

 

 

Figure 15 Comparison of Best Bound, Best Integer, and # Iterations based on four solution 

methods (Instance: F12T12, Scope: the entire B&B search) 

  

 One interesting observation is that all methods show very small gaps between best 

bound and best integer after about 1500th node. In the initial stage of the B&B search, binary 

variables associated with opening facility (i.e., M�� ), which have relatively large objective 

coefficients, might be selected as a branching variable because CPLEX branching rule may tend 
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to branch first on a variable which has a large impact on the objective function value. Followed 

by those binary variables, binary variables NB associated with selecting arc, which have small 

objective coefficient (e.g., 300) compared to  M�� (e.g., 4,511,168 and 60,000), may be selected 

as a branching variable. Even though fixing NB to zero may make some impact on material flows, 

the impact of fixing it to one on the solution and the objective function values may be very 

small. In addition, the number of binary variables NB (e.g., 3,564 for F12T12) is much larger than 

that of M�� (e.g., 108 for F12T12). Thus, in some unfortunate case, while fixing NB variables, it 

could take long time to reach the relative optimality gap less than 0.01%.  

 Figure 16 enlarges Figure 15 for the range between 1st and 1000th node in the B&B 

search. POC1&2 shows the smallest best bound in the initial stage (up to 100th node) of the B&B 

search.  Even though the best integer of POC1&2 increases slower than other methods, the gap 

between best bound and best integer decreases faster than others (see the result on 800th node in 

Figure 3). This earlier convergence of POC1&2 than others might result in earlier termination. 

However, even though the gap of POC1 between best bound and best integer decreases faster 

than CPLEX, POC1 searched larger number of nodes, resulting in larger runtime and simplex 

iterations than CPLEX. This might be associated with an unlucky B&B search path as well as 

large B&B search space according to the large number of NB variables. 
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Figure 16 Comparison of Best Bound, Best Integer, and # Iterations based on four solution 

methods (Instance: F12T12, Scope: between 1st and 1000th node in the B&B search) 

 

4.4.4.2 The performance of POC1&2 is between those of POC1 and POC2 (F12T6) 

 Figure 17 compares best bound, best integer, and the number of iterations based on four 

solution methods for instance F12T6 over the entire B&B procedure. Overall convergence 

pattern is similar to that of F12T12. POC1 is the best among all methods; POC1&2 is second; 

POC2, third; and CPLEX, the worst. The gap of CPLEX converges slower than others. 

 Even though the number of nodes searched of POC2 is greater than that of CPLEX, the 

number of simplex iterations of CPLEX is greater than that of POC2, resulting in that runtime of 

CPLEX is greater than that of POC2. This may be because the nodes in B&B search path of 

CPLEX require more simplex iterations than those in the B&B search path of POC2.  
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Figure 17 Comparison of Best Bound, Best Integer, and # Iterations based on four solution 

methods (Instance: F12T6, Scope: the entire B&B search) 

 

 Figure 18 enlarges Figure 17 for the range between 1st and 1000th node in the B&B 

search. POC1&2 shows the smallest best bound and the largest best integer in the initial stage 

(up to 100th node) of the B&B search. Even though the gap between best bound and best integer 

of POC1&2 decreases faster than others, the gaps of POC1, POC2, and POC1&2 become similar 

on 400th node. After about 500th node, POC1 shows the smallest gap. This faster convergence of 

POC1 than others may result in earlier termination. One interesting observation is that the 

number of iterations of CPLEX is smallest among all methods in the initial stage of B&B search 

before 300th node, but becomes largest after 450th node. 
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Figure 18 Comparison of Best Bound, Best Integer, and # Iterations based on four solution 

methods (Instance: F12T6, Scope: between 1st and 1000th node in the B&B search)  

 

4.4.4.3 The performance of POC1&2 is worse than those of POC1 and POC2 (F12T4) 

 Figure 19 compares best bound, best integer, and the number of iterations based on four 

solution methods for instance F12T4 over the entire B&B procedure. POC1 is best among all 

methods; POC2 is second; POC1&2, third; and CPLEX, the worst. Even though CPLEX shows 

the smallest gap in the initial stage of B&B search, the number of nodes searched of CPLEX is 

greater than others, resulting in that runtime of CPLEX is the largest among all methods: i.e., it 

took longer time for CPLEX to reach the relative optimality gap less than 0.01%. This might be 

due to the unlucky path of CPLEX B&B search. 
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Figure 19 Comparison of Best Bound, Best Integer, and # Iterations based on four solution 

methods (Instance: F12T4, Scope: the entire B&B search) 

 

Figure 20 Comparison of Best Bound, Best Integer, and # Iterations based on four solution 

methods (Instance: F12T4, Scope: between 1st and 1000th node in the B&B search) 

 

 Figure 20 enlarges Figure 19 for the range between 1st and 1000th node in the B&B 
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search. Even though POC1&2 shows the smallest best bound and the largest best integer in the 

initial stage (up to 100th node) of the B&B search, the gap between best bound and best integer 

of POC1&2 decreases slower than others after 100th node: i.e., the initial advantage was not 

helpful to acquire faster convergence. This may result in the larger runtime of POC1&2 than 

POC1 and POC2. 

4.4.4.4 Discussions on the performance of POC 

 Since the analysis showed that the performance of POC is associated with CPLEX 

strong branching, here, this paper briefly reviews studies for B&B. Benichou et al. (1971) 

proposed the concept of pseudo-cost, remarking that “though the results are unstable, the 

comparison show the interest of such a strategy to speed up … ”. Linderoth and Savelsbergh 

(1999)  conducted a computational study of B&B search strategies, noting that “there is no one 

search strategy that will work best on all problem instances”. Fischetti and Lodi (2003) presented 

local branching, reporting that their method improved the performance in 23 out of 29 cases. 

Achterberg et al. (2005) described reliability branching, noting that “we did not base our 

conclusions on performances of single instances and discuss those in detail. We rather rely on 

average numbers of over all instances”. Glankwamdee and Linderoth (2006) studied lookahead 

branching, noting that “the intuition behind our study is to view strong branching as a greedy 

heuristic for selecting the branching rule”. Achterberg and Berthold (2009) proposed hybrid 

branching, comparing the performances of several rules based upon the geometric means of 

runtime and the number of nodes examined. Ostrowski et al. (2011) introduced orbital 

branching, comparing the performance of branching rules based upon the number of best 

runtimes. Karamanov and Cornuejos (2011) considered branching on general disjunctions, 

showing that their method outperforms on average the benchmarking method, with several 

extreme cases in which their method is worse. Based up on this limited literature review, it 
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seems that studies for B&B have not focuses on the details about exceptional cases, but reported 

the average performance.  

 Linderoth and Savelsbergh (1999) noted that the ability of the selection of a suitable 

subset of variables on which to perform a number of dual simplex iterations impacts greatly on 

the effectiveness of strong branching. Thus, we may expect that using POC1&2 may be better 

than using a single POC (i.e., POC1 or POC2). In effect, on average, POC1&2 outperforms 

others. However, from Glankwamdee and Linderoth (2006)’s perspective that considers strong 

branching as a greedy heuristic, it may not be guaranteed that providing better information to 

strong branching always outperform providing worse information. 

 

 

 

 

 

 

 



94 

 

CHAPTER V 

SIMULATION MODEL: PART1. BIOMASS MODULE LOGISTICS S YSTEM 

 

This chapter introduces a simulation model for a biomass module logistics system which 

uses large biomass packages (i.e., modules) of sufficient size and density to provide maximized 

legal highway loads and quick load/unload times. Such a system was being tested conceptually 

at Texas A&M University, but modeling was used to predict system performance prior to 

constructing prototypes.  

Section 1 presents a background of biomass logistics systems. Section 2 describes the 

conceptual biomass module system. Sections 3 and 4 give details of IBSAL modeling and a 

simulation model, respectively. Section 5 gives simulation results and analyzes the sensitivity of 

each performance factor to the system. 

5.1 Background 

 The conceptual logistics system described here has similarities with the cotton logistics 

system, which uses large packages commonly called cotton modules.  Cotton is normally 

harvested and collected in a dump basket on the harvester. A dump trailer transports collected 

material to a module builder located at the edge of a field. The module builder compresses the 

cotton into large modules (e.g., 2.4 m wide * 2.4 m high * 9.8 m long) (Ravula et al. 2008). The 

cotton modules, protected from weather with a plastic cover, wait on a field to be transported to 

gins by module haulers. A recent development is cotton harvesters that form smaller modules 

on-board the harvester, eliminating the need for the dump trailer, the module builder and the 

associated labor (Taylor, 2007). Ravula et al. (2008) suggested that it may be possible to apply 

operational strategies from a cotton logistics system to a biomass logistics system, describing the 

similarities between those systems.  
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 In many industries, logistics systems use large packages to deliver materials efficiently. 

Shipping companies use large containers to facilitate material handling and to protect shipping 

products. Even though its adoption required huge investment and negotiated standards, cost 

savings from improved material handling efficiency exceeds those investment costs. As a result, 

factories are located far from customers and low-cost products are shipped around the globe 

(Levinson, 2008).  A disadvantage of the container shipping system is the accumulation of empty 

containers at the customer locations and the need to find return loads or ship empty containers.   

 Chapter II provides a review about operational level studies of biofuel SC, most of 

which estimated performance of biomass logistics systems. In particular, since a bale system has 

been commonly used to transport hay, several earlier studies (Jenkins et al., 1984; Sokhansanj et 

al., 2006; Petrou and Mihiotis, 2007; Kumar and Sokhansanj, 2007; Morey et al., 2010; Suh and 

Suh, 2010) employed a bale system to estimate important measures (e.g., cost and energy) 

associated with delivering biomass. Table 17 describes highlights of those studies. 

 Jenkins et al. (1984) estimated logistics costs of several types of biomass (e.g., corn and 

sorghum stover, wheat and barley straw, and rice straw) in California of the U.S.A. They 

developed a cost equation that includes a variable cost of transportation, a fixed cost of 

transportation, and collection and processing cost. The collection and processing costs were 

$28.02/Mg for corn and sorghum stover, $29.58/Mg for wheat and barley straw, and $35.35/Mg 

rice straw, respectively. For the straw, the fixed transportation cost was $6.14/Mg and the 

variable transportation cost was $0.061/Mg-km; and, the fixed and variable transportation costs 

of the corn and sorghum stover were $9.78/Mg and $0.078/Mg-km, respectively. 
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Table 17 Estimates of biomass logistics cost in prior studies 

Categ
ory 

Authors Year Biomass Process 

Cost 

Remark 
Collection  

& 
Processing 

($/Mg) 

Transportation 
($/Mg-km  
or $/Mg) 

Total 
($/Mg) 

Bale 

Jenkins et al. 1984 

Rice straw 
swath-rec bale-transport-store-tub 
grind 

41.50 0.061 $/Mg-km 
41.5+0.061*

d 
d: distance from farm to 
a refinery 
Include storing 
operation 

Wheat or 
barley straw 

swath-rec bale-transport-store-tub 
grind 

35.72 0.061 $/Mg-km 
35.72+0.061

*d 
Corn or 
Sorghum 
stover 

swath-roll bale-transport-store-
tub grind 

37.80 0.078 $/Mg-km 
37.8+0.078*

d 

Tatsiopoulos 
IP, Tolis AJ 

2003 Cotton stalks 

cut-collect(by 3rd party)-
transport-drying & baling-store-
transport 

- - 58.5(a) 
Include storing 
operation 

cut-collect(by farmers)-transport-
drying & baling-store-transport 

- - 33.8(a) 

Sokhansanj et 
 al. 

2006 Corn stover 
combine-shred-bale-stack- 
load-transport-unload-stack-grind 

39.65 13.76 $/Mg 53.57 
Distance winding 
factor: 1.4 
32-160 km 

Petrou and 
Mihiotis 

2007 Cotton stalks cut-bale-transport-store-transport 18.51 0.2 $/Mg-km 62.53 
Include payment to 
 contractors 

Kumar and 
Sokhansanj 

2007 Switchgrass 

swath-rake-bale(square)-stack-
tarp-transport-stack-grind 

36.69 - 41-45 

Transporting distance: 
3-77 km 

swath-rake-bale(square)-stack-
tarp-grind-transport 

33.70 - 41-55 

swath-rake-bale(round)-stack-
tarp-transport-stack-grind 

35.21 - 39-48 

swath-rake-bale(round)-stack-
tarp-grind-transport 

32.22 - 39-54 

Sokhansanj et 
 al. 

2010 Corn stover 
harvest-bale(square)-stack-
transport 

38.01 9.98 $/Mg 48.35 Distance: 70 km 

Morey et al. 2010 Corn stover 
shred-rake-bale-transport-grind-
roll press-transport 

43.08 6.40 $/Mg 48.48 
Include storing 
operation 
Distance: 42 km 
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Table 17 Continued 

Category Authors Year Biomass Process 

Cost 

Remark 
Collection  

& 
Processing 

($/Mg) 

Transportation 
($/Mg-km  
or $/Mg) 

Total 
($/Mg) 

Bale 

Suh and Suh 2010 Corn stover bale-transport-grind - - 12-42 
Refinery Capacity: 
0-2500 million 
liters/year 

   
bale-grind-pellet-
transport(truck)-grind 

- - 18-33 
 

   
bale-grind-pellet-transport(rail)-
grind 

- - 27-30 
 

Silage 

Turhollow et 
 al. 

1996 
Herbaceous 
crops 

chop-truck in field-transport 7.2 
8.37-13.98 

$/Mg 
15.57-21.28   

   
chop with wagon-transport 7.3 

8.37-13.98 
$/Mg 

15.58-21.29   

Kumar and 
Sokhansanj 

2007 Switchgrass chop-ensile-transport 27.18 - 38-59 
Transporting distance: 
3-77 km 

(a): converted from euro to U.S. dollar by using the exchange rate of 1.3 for U.S. dollar per 1 euro
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 The logistics system for cotton stalks investigated by Tatsiopoulos and Tolis (2003) 

comprises chopping, transporting to an intermediate warehouse, biomass treatment (i.e., drying 

only, drying-baling, and drying-pelletizing) and storing in an intermediate warehouse, and 

transporting to a power plant. They compared costs of several logistics systems considering 

several technologies of biomass treatments in an intermediate warehouse and the type of the 

ownerships of transportation vehicles (i.e., third party companies and farmers). In the case of 

drying-baling, the estimated logistics costs were $58.5/Mg when using third party machines and 

$33.8/Mg when using farmers’ machines. Petrou and Mihiotis (2007) evaluated the commercial 

price of biomass delivered by several collection methods of cotton stalks: uprooting and baling; 

cutting and baling; and cutting and transfer in bulk. The first and second methods resulted in 

similar prices and the third one was worse than others. 

 Corn stover has been studied as feedstock based on a bale system. Sokhansanj et al. 

(2006) developed the IBSAL simulation framework and evaluated a bale system for corn stover 

feedstock. Their model comprises combine, shredding, baling, stacking, truck travel, stacking, 

and grinding. The estimated cost was $53.57/Mg, including the transportation cost of 

$13.76/Mg.  

 Morey et al. (2010) estimated the logistics cost of corn stover based on a bale system in 

Minnesota. The logistics system investigated consists of shredding, raking, baling, transportation 

to storage site, tub-grinding, compacting, and transportation to conversion plant by a semi-truck. 

The total cost for delivering bulk corn stover to conversion plants is estimated at $48.48/Mg. 

 Suh and Suh (2010) in Minnesota developed a simulation model to compare five 

logistics options for delivering corn stover based on the combination of a process type and a 

transportation method (see Table 1). Their model does not include harvesting and collecting 
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operations. The costs were estimated at $12-56/Mg and show that using pellet operation is better 

than other options. 

 Logistics systems to deliver switchgrass also have been evaluated. Kumar and 

Sokhansanj (2007) employed IBSAL to evaluate several logistics system for switchgrass as 

described in Table 1. The most economic logistics system was a loafing system, the cost of 

which was $30-45/Mg over several biorefinery capacities. Loafing is a form of large biomass 

package formed directly from a windrow of material.  The loafing system was estimated to 

deliver biomass at lower cost than baling ($40-55/Mg).  

 In 1996, Turhollow et al. investigated the cost of a silage system for herbaceous crops. 

They estimated in-field cost at about $3-12/Mg and the transportation cost at about $8-14/Mg, 

assuming that the silage density on the truck was 249.89 or 416.48 kg/m3 (15.6 or 26.0 lb/ft3). 

Kumar and Sokhansanj (2007) also evaluated a silage system for switchgrass. The estimated 

total cost was $38-59/Mg including processing cost of $27.18/Mg. 

 As these studies have shown, the cost to deliver herbaceous biomass varies by feedstock 

type, location and technologies used for packaging the biomass. The cost estimates were 

determined using economic modeling and simulation.  The USDA and DOE (2008) reported that 

biomass logistics, which includes harvesting/collecting, storing and pre-processing, constitutes 

as much as 20% of the current cost of supplying cellulosic ETOH. Reducing the logistics cost 

will be a key factor in successful commercialization of the cellulosic bioenergy industry. 

5.2 Description of the conceptual biomass module system 

 The biomass module system investigated consists of several unique machines. 

Subsection 1 describes the overall system.  Subsections 2, 3 and 4 give details about the 

individual machines required in the system.  The module system was not intended for any 

specific biomass crop or growing region.  The fundamental features of the system (high density 



 

 

and rapid handling) are applicable to all biomass logis

system (gas tight packaging) was intended to allow the handling and storage of high moisture 

biomass.  This feature is especially needed for high yielding biomass crops that are difficult to 

field dry to safe storage moisture (< 20%) and high rainfall regions.  

Other machines were required to make up the entire logistics system, but are not described here 

because they are commercial machines implemented as IBSAL simulation elements.  Those 

additional machines included a mower/conditioner and a tractor/semi

5.2.1 Overall system 

 The conceptual module

including cutting and conditioning for field drying

from a local field location and loading them onto trailers

and unloading/transport within 

biomass module system. The shaded blocks represent 

(module former and hauler) or modification (forage harvester).

 

Figure 21 Schematic of the biomass module system
are not currently available in the

 

 

and rapid handling) are applicable to all biomass logistics systems.  However, one feature of the 

system (gas tight packaging) was intended to allow the handling and storage of high moisture 

biomass.  This feature is especially needed for high yielding biomass crops that are difficult to 

age moisture (< 20%) and high rainfall regions.   

Other machines were required to make up the entire logistics system, but are not described here 

because they are commercial machines implemented as IBSAL simulation elements.  Those 

uded a mower/conditioner and a tractor/semi-trailer combination.

module-based logistics system comprised a series of unit operations, 

and conditioning for field drying, chopping, forming modules, mov

location and loading them onto trailers, highway transport to a 

within the bio-refinery. Figure 21 depicts these unit operations in the 

The shaded blocks represent machines that require development 

(module former and hauler) or modification (forage harvester).  

Schematic of the biomass module system:  shaded blocks represent unit operations that 
are not currently available in the IBSAL simulation tool, and were developed in this study
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 Biomass chopped by a self-propelled forage harvester (SPFH) is collected in the module 

former, which is towed by the forage harvester. The module former compresses the collected 

biomass and generates biomass modules, which are enclosed in a plastic oxygen barrier. The 

biomass module produced is a large package that can be transported effectively by the module 

hauler and semi-trailer. A module hauler transports modules for a relatively short distance 

(expected to be less than one mile) from the field to the local field storage or loading site. For 

long distance transport to a refinery, a semi-trailer is used. Within the refinery, module haulers 

would be used again to unload and transport modules. 

5.2.2 Modified forage harvester 

 The SPFH will pull a module former, so it will require more power than a conventional 

forage harvester of the same capacity. Commercially available forage harvesters are designed to 

pull a silage wagon, but the mass of the former and the on-board biomass will cause the draft to 

exceed significantly that of the silage wagon. Therefore, changes in the operational parameters 

of the SPFH when used in the biomass module system were required. These included the 

additional power to handle the module former and operational factors (e.g., speed and setup 

time) associated with efficiency.  

 In a conventional forage chopping system, some portion of chopped biomass can be lost 

when the stream of chopped material is not retained in the haul trailers (overflow on filled 

trailers, poor stream direction by operator, etc.).  The modified forage harvester was expected to 

reduce such biomass losses incurred by directly coupling the material transfer between the 

forage harvester and the towed module former.  

5.2.3 Module former 

 Since no such machine exists currently, the module forming operations were anticipated.  

While the forage harvester is operating, chopped biomass is blown into the towed module 
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former. The module former continuously compresses biomass into a constrained package. When 

the quantity of biomass reaches its predefined amount of 13.6 Mg wet weight (15 tons), the 

package would be closed and the next one started.  The formed module length would vary with 

the moisture content of the biomass, but maximum length would be 7.3 m (24 ft.).  The module 

former has the capacity to haul up to one and a half full length modules.  The finished modules 

would be unloaded when the machine reaches the edge or the field or a turn-row.  The module 

will wait at the field edge until transported by a module hauler. While unloading the formed 

module, the forage harvester is required to stop its operation so that unloading operation would 

decrease the system field efficiency. 

 Since a module former is not commercially available, several assumptions were 

employed to define its properties: power – 298.4 kW (400 hp), maximum volume - 47.6 m3 

(1,680 ft3), module dry matter density target – 240.3 kg/m3 (15 lb/ft3); $450,000 purchase cost 

and plastic cost of $50/module. Module former properties (e.g., purchase cost, power, loading 

preparation time, unloading time, and module density) may be strongly related to its 

performance.  A range of these values was investigated through a sensitivity analysis (see section 

5.4.2). 

5.2.4 Module hauler 

 The module hauler was patterned after a similar machine used in Australian to load 

cotton modules (which are 25% longer than US standard modules) onto flat-bed trailers (Figure 

22). That machine can load and unload the modules quickly (2-3 minutes), and transports the 

cotton modules from the fields to the loading site. This machine straddles the trailers and uses its 

tilting, live bed to unload the module onto the trailer.  To work with biomass modules, this 

concept must be modified to handle the greater mass and to lift two biomass modules at one 

time.  Unloading is a reverse operation of loading.  



 

 

 Since a module hauler 

define its properties; power –

purchase cost - $375,000; and average travel speed 

also investigated with a sensitivity analysis 

 

Figure 22 Australian module hauler loading a cotton module from the field

 

5.3. IBSAL modeling 

 This section presents details as

The IBSAL modeling tool is described, followed by descriptions of

developed to represent the conceptual machines of the biomass 

those machines considered in a sensitivity analysis

5.3.1 Overview of IBSAL 

 IBSAL is a collection of simulation elements

package (Imagine That, Inc., 20

compatible with ExtendSim 

 

Since a module hauler was also commercially unavailable, judgments were made to 

power – 335.7 kW (450 hp), ability to load two maximum size modules

$375,000; and average travel speed - 11.3 km/hr (7 mph). These 

a sensitivity analysis (see section 2.4.2). 

Australian module hauler loading a cotton module from the field

This section presents details associated with the IBSAL simulation models developed

The IBSAL modeling tool is described, followed by descriptions of new IBSAL element

conceptual machines of the biomass module system

machines considered in a sensitivity analysis, and the model of the entire module system.

IBSAL is a collection of simulation elements programmed in ExtendSim, a simulation 

package (Imagine That, Inc., 2010).  This study used a version of IBSAL obtained in 2010 and

ExtendSim versions 7.0 and 8.0. The authors have collaborated with ORNL 
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personnel to verify and improve IBSAL, and have access to a version of IBSAL not yet released 

to the public. Some elements have been updated (e.g., moisture content variation logic, dry 

matter loss logic and etc.) from the version used in previous studies (i.e., Sokhansanj  et al., 

2006; Kumar and Sokhansanj, 2007; Sokhansanj  et al., 2008).  

 Inputs are spatial information such as farm size, yield, and transportation distances, 

harvesting schedule in a weekly basis, daily weather data, and machine data. Outputs are cost, 

energy input, carbon emission, quantities of biomass lost and delivered, and operation time. 

 In IBSAL, simulation items are generated based on the harvesting schedule (i.e., discrete 

event simulation). Each simulation item represents a quantity of biomass calculated based on a 

unit land size and specified crop yield. Thus, the amount of biomass in each simulation item is 

set by the user. For example, if the input values of a unit land size and a crop yield are 50 ha and 

5 Mg/ha respectively, each simulation item represents 250 Mg of biomass. The generated 

simulation item passes through all simulation elements in the model, in which several attributes 

(e.g., moisture content) are updated and some resources (e.g., cost  and energy) used to process 

the biomass are calculated.  

 The simulation model checks the input weather condition to determine how conditions 

affect processes (change in moisture content) or are suitable for machine operations (rainfall 

prevents operation).  If machine resources are not sufficient to process the simulation items 

arrived, the simulation items wait in the queue in each simulation elements until the weather 

condition become better or a machine resource is available. In particular, some collecting 

machines (e.g., forage harvester and baler) include logic for a field-drying operation.  If the 

moisture content of a simulation item is greater than the target value (e.g., 20%), the simulation 

item will wait in the queue up to some predefined maximum waiting time. 

 IBSAL simulation models calculate several performance measures (e.g., cost, required 
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energy, a quantity of CO2 emissions, and the tonnage of processed biomass) associated with 

supplying biomass to a refinery. The cost includes capital, maintenance, tax, interest, and labor 

costs. The required energy is calculated based on the power of each machine and its working 

time. The quantity of CO2 emissions is assumed to be proportional to the energy used. The mass 

of biomass is that portion remaining after considering the dry matter loss in each operation. 

  The IBSAL libraries provide several simulation elements that represent machines or 

processes. These are categorized as harvesters, tractors, transporters, loaders, processors, and 

storages. Simulation elements in each group have similar structure, so a new or modified element 

can utilize much of the existing structure and algorithm.  An additional functionality added at 

Texas A&M was the ability to capture and use historical weather from the NOAA National 

Climatic Data Center, rather than the TMY2 weather data used by the original IBSAL package. 

5.3.2 New IBSAL elements 

 Three new IBSAL elements were developed; a forage harvester working with a towed 

module former, the module former, and a module hauler.  Each are described individually.  

5.3.2.1 Modified forage harvester 

 In the conceptual logistics system analyzed in this study, operations of a forage harvester 

and a module former are strongly coupled: i.e., those two machines must work together. In the 

ORNL version of IBSAL, some elements can have a strong relationship, for example between a 

tractor and a trailer, each unit operation element in IBSAL deals only with one machine and has 

no logic to relate with a strongly coupled machine. To consider such strong relationship in detail, 

the forage harvester element required information from the module former (e.g., maximum load 

and loading/unloading time) and vice versa (e.g., operating time).  These two elements were 

developed separately, although mechanisms were added to pass the necessary information. 
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 To create the SPFH compatible with the module former, the existing IBSAL element for 

a commercial forage harvester was modified. This new simulation element was developed to 

incorporate several additional aspects:  

(1) The simulation item was changed from a bulk of biomass based on a unit land area to a 

module, the size of which was calculated based on the maximum volume and the 

maximum weight limitations defined by the module former, 

(2) operations can proceed only when both a forage harvester and a module former are 

available, and  

(3) the total processing time was the sum of the setup time of a machine, the operating time 

of chopping, and the unloading time of modules. 

 To specify the property of the modified SPFH, a user can set several parameters, for 

example, power, purchase cost, dry matter loss, efficiency, speed, daily working hours, and the 

maximum moisture content for operation to begin. In particular, several parameters (i.e., power, 

purchase cost, dry matter loss and efficiency) may be affected by the required modification of a 

commercially available SPFH so that this paper considered those in the sensitivity analysis (see 

Section 5.4.2). 

5.3.2.2 Module former 

 The simulation element of a module former was built from other transporter elements in 

IBSAL. The module former element uses the same processing time as the forage harvester. It 

contains logic for calculating system performance measures based on the processing time.  It 

also contains logic that utilizes the moisture content attribute of the biomass in each simulation 

unit to determine the dimensions and mass of the module formed and the frequency of unloading 

finished modules. 

 A module former in a simulation model can be defined by setting several parameter 
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values of its simulation element such as purchase cost, power, efficiency, preparation time, 

unloading time, module density, the maximum volume of a module. This paper examined several 

values of purchase cost, power, efficiency, preparation time, unloading time and module density 

through a sensitivity analysis (see Section 5.4.2). 

5.3.2.3 Module hauler 

 The module hauler element was developed based on the IBSAL element of a 

commercially available truck. The modifications in logic are that it can deal with two modules at 

once, and that it can load and unload two modules in one operation by itself without using other 

loading/unloading machines. 

 Similar to existing transporter IBSAL elements, several parameters (e.g., purchase cost, 

power, speed, loading/unloading time, the number of operators and machines, min/max 

transportation distances, and weather conditions) are used to define a module hauler that is used 

in a simulation model. The sensitivity analysis considered several parameters including purchase 

cost, power, speed, and loading/unloading time (see Section 5.4.2). 

5.4 Simulation model 

5.4.1 Simulation scenario 

 The simulation consisted of a conceptual series of sequential operations that generated 

the simulation units and proceeded through delivery to a conversion plant. Grass-type biomass 

was available from some farm land area. Crops were cut by mower/conditioners based on a 

predefined harvest-schedule. The cut biomass was allowed to field dry until the required 

moisture content was acquired or the maximum waiting time reached. A forage harvester 

chopped the biomass and a module former generates biomass modules. The generated modules 

were laid down on the field and were transported by a module hauler to a local field-storage site. 

Modules stored in a local field-storage site were transported to a refinery by semi-trailer. The 



 

 

semi-trailer transported two modules at once. After arriving to a refinery, a 

hauler was used to unload and 

operations were included in the simulation.

with existing and modified IBSAL 

 

Figure 23 Module-based biomass simulation model:  the OutPutExcel elements record the 
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for 1992 was selected because the total precipitation in 1992 of 606 mm is about the median of 

the total precipitations in College Station, which range from 250 mm in 2010 to 1141 mm in 

1994. The dry matter yield of biomass was evaluated at 11.2 or 22.4 Mg/ha (5 or 10 ton/ac). The 

farm area was 20,250 ha (50,000 ac) for the yield of 11.2 Mg/ha (5 ton/ac), and 10,125 ha 

(25,000 ac) for 22.4 Mg/ha (10 ton/ac). Thus, the annual biomass supply was the same to both 

yield cases (i.e., 250,000 Mg). 

5.4.2 Sensitivity analysis 

 Since the required machines in the module-based logistics system are not available 

commercially, several values critical to the estimating cost and capacity are not known and must 

be considered for their ultimate impact on the design of such machines. Several factors related to 

the system performance were identified and tested with a range of values through a sensitivity 

analysis. For each property, a median value (selected as a most likely value based on the 

experience of the authors), an optimistic and a pessimistic value were selected.  Table 18 gives 

the properties and values considered in the sensitivity analysis. 

 While a commercially available forage harvester is considered to have 10% dry matter 

loss (Sokhansanj et al., 2008), the dry matter loss was judged to be improved as a result of the 

close coupling of the forage harvester and the module former (6% for median or 2% for 

optimistic). The impact on field efficiency for the towed SPFH/module former combination 

compared to a conventional forage harvester (85%) was considered to be zero in the optimistic 

scenario, 10% in the median case and a reduction of 25% in the pessimistic situation. While the 

basic forage harvester modeled in IBSAL has a power of 376.7 kW (505 hp), additional power of 

37.3, 59.7, and 74.6 kW (50, 80, and 100 hp) were considered. Since the modified forage 

harvester may require additional cost, three additional costs (i.e., +30,000, +60,000, and 
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+90,000) were considered based on the purchase cost of the basic forage harvester (i.e., 

$161,200).  

 

Table 18 Machine properties and values used to evaluate the biomass module system  
No Machine Property Values Unit 
1 

Forage 
Harvester 

Purchase cost 191,200, 221,200, 251,200 $ 
2 Dry matter loss 0.02, 0.06, 0.10 Decimal fraction 
3 Efficiency 0.60, 0.75, 0.85 Decimal fraction 

4 Power 
376.7 + 37.3, 59.7, 74.6 
(505 + 50, 80, 100) 

kW 
(hp) 

5 

Module 
Former 

Purchase cost 350,000, 450,000, 550,000 $ 

6 Power 
223.8, 298.4, 373.0 
(300, 400, 500) 

kW 
(hp) 

7 Preparation time 10, 30, 60 sec 
8 Unloading time 0.5, 2, 4 minute 

9 Module density 
192.2, 240.3, 288.4 
(12, 15, 18) 

kg/m3 
(lb/ft3) 

10 

Module 
Hauler 

Purchase cost 250,000, 375,000, 500,000 $ 

11 Power 
261.1, 335.7, 410.3 
(350, 450, 550) 

kW 
(hp) 

12 Average travel speed 
4.8, 11.3, 16.1 
(3, 7, 10) 

km/hour 
(miles/hour) 

13 Loading time 1, 2, 3 minute 
14 Unloading time 1, 2, 3 minute 

  

 Purchase cost of a module former ($350,000 - 550,000) and the required power (223.8 - 

373.0 kW {300 - 500 hp}) were estimated based on similarity to the function and complexity of 

the John Deere round module cotton picker. Since 20 to 30 modules may be generated from a 

unit of the plastic cover material, and time is required to refill the consumable plastic 

periodically, the required preparation time was judged to range from 10 to 60 seconds/a module. 

The time required to unload a formed module was assumed to be from 0.5 to 4 minutes. Module 

density produced was judged to be from 192.2 to 288.4 kg/m3 (12 to 18 lb/ft3). 
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 A module hauler would be more costly than the machines used to handle and load cotton 

modules in Australia because of the greater weight being handled.  Assumptions representing a 

module hauler included the following: the purchase cost would be from $250,000 to $500,000; 

the power was from 261.1 to 410.3kW (350 to 550 hp); the average travel speed was from 4.83 

to 16.09 km/hr (3 to 10 miles/hr); and the loading/unloading times were from1 to 3 minutes. 

5.5 Results 

5.5.1 Sensitivity analysis procedure 

 The simulation included sufficient numbers of each machine to harvest, collect and 

deliver all biomass within a harvesting time period (i.e., from August 1 to December 31) so that 

no biomass remains in the system after finishing the simulation run. The machine numbers for 

each type in Table 19 were determined manually with multiple simulation runs to select the 

appropriate number.   

 Three scenarios were considered to investigate the relationship between performance 

factors, transportation distance and crop yield; 40.2 km (25 miles) and 11.2 dry Mg/ha (5 dry 

ton/ac) for scenario I; 80.47 km (50 miles) and 11.2 dry Mg/ha (5 dry ton/ac) for scenario II; and 

40.23 km (25 miles) and 22.4 dry Mg/ha (10 dry ton/ac) for scenario III. The change in the costs, 

energy consumption and productivity between the median and best or worst property values was 

examined to determine which factors resulted in the greatest improvement or degradation as the 

property was changed.  For each scenario, 29 cases of data setup were simulated (i.e., the median 

case for all factors, and 28 cases varying individually each of the fourteen factors to the best and 

worst values).  The total number of test cases was 87. Each case was named by using the 

combination of scenario number, best/worst, and a performance factor number (coded as in 

Table 2). For example, the case of ‘I-B-1’ meant that scenario was I and the value of factor 1 

(forage harvester dry matter loss) was at the best value. Best value was interpreted as giving the 
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lowest cost/energy consumption.  Median cases were named as ‘I/II/III-M-0’. 

 

Table 19 The number of machines used in each case of scenario I 

Cases Windrower 
Forage  

Harvester 
Module 
Former 

Module 
Hauler 
in fields 

Trailer 
Module 
Hauler 
in plant 

I-M-0 3 8 8 7 8 2 
I-B-1 3 8 8 7 9 2 
I-B-2 3 8 8 7 8 2 
I-B-3 3 8 8 7 8 2 
I-B-4 3 8 8 7 8 2 
I-B-5 3 8 8 7 8 2 
I-B-6 3 8 8 7 8 2 
I-B-7 3 8 8 7 8 2 

I-B-8 3 8 8 7 8 2 

I-B-9 3 8 8 7 8 2 
I-B-10 3 8 8 7 8 2 
I-B-11 3 8 8 7 8 2 
I-B-12 3 8 8 6 8 2 
I-B-13 3 8 8 7 8 2 
I-B-14 3 8 8 7 8 2 
I-W-1 3 8 8 7 8 2 
I-W-2 3 9 9 7 8 2 
I-W-3 3 8 8 7 8 2 
I-W-4 3 8 8 7 8 2 
I-W-5 3 8 8 7 8 2 
I-W-6 3 8 8 7 8 2 
I-W-7 3 8 8 7 8 2 

I-W-8 3 8 8 7 8 2 

I-W-9 3 8 8 9 12 2 
I-W-10 3 8 8 7 8 2 
I-W-11 3 8 8 7 8 2 
I-W-12 3 8 8 12 8 2 
I-W-13 3 8 8 7 8 2 
I-W-14 3 8 8 7 8 2 

  

5.5.2  Simulation results 

 This section shows the simulation results for the basic scenario, followed by scenarios 

with varying transportation distance and biomass yield. In all cases, comparisons were made 

between the simulated results for the scenario with median property values and the changing of 
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single properties. Because the study focus was to determine the influence of machine operational 

factors, no attempt was made to vary multiple properties simultaneously. All cost results were 

reported based in year 2007 US dollars for making our estimates comparable to the goals of the 

DOE, which were estimated in year 2007 US dollars as well. 

5.5.2.1 Basic scenario 

 Scenario I was considered to be the base scenario. Tables 20 and 21 give the estimates of 

the performance measures for best and worst cases, respectively.  

 

Table 20 Estimates of the performance measures in scenario I median case and best values 

Cases 

Cost ($/Mg) 
Change 
of Cost 
($/Mg) 

Energy 
(MJ/Mg)  

Change 
of Energy 
(MJ/Mg)  

CO2 
(kg/Mg) 

Change of 
CO2 

(kg/Mg) 

Collection 
& 

Processing 

Transport
ation 

Total 

I-M-0 19.02 9.60 28.62 - 478.74 - 32.83 - 

I-B-1 18.61 9.60 28.21 -0.41 478.74 0.00 32.83 0.00 

I-B-2 18.61 9.59 28.20 -0.41 471.72 -7.02 32.35 -0.48 

I-B-3 17.71 9.65 27.36 -1.25 455.84 -22.90 31.26 -1.57 
I-B-4 18.88 9.60 28.47 -0.14 472.64 -6.10 32.41 -0.42 

I-B-5 18.16 9.60 27.76 -0.86 478.74 0.00 32.83 0.00 

I-B-6 18.89 9.60 28.49 -0.13 456.33 -22.41 31.29 -1.54 

I-B-7 18.84 9.60 28.44 -0.18 475.54 -3.20 32.61 -0.22 
I-B-8 18.22 9.61 27.83 -0.79 464.40 -14.34 31.84 -0.98 

I-B-9 18.15 8.16 26.32 -2.30(a) 440.75 -37.99(a) 30.22 -2.60(a) 

I-B-10 19.02 9.48 28.50 -0.12 478.74 0.00 32.83 0.00 

I-B-11 19.02 9.41 28.43 -0.19 470.65 -8.10 32.27 -0.56 
I-B-12 19.02 9.40 28.42 -0.20 473.88 -4.86 32.49 -0.33 

I-B-13 19.02 9.50 28.52 -0.09 476.48 -2.26 32.67 -0.15 

I-B-14 19.02 9.50 28.52 -0.09 476.48 -2.26 32.67 -0.15 

 (a) the property with the greatest change in that performance factor. 

  

 The total cost to capture and deliver biomass was $28.26/Mg for the median case (I-M-

0) and ranges from $26.36 to $32.33/Mg. The range of energy consumed was from 440.75 to 
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540.10 MJ/Mg with a median case of 478.74 MJ/Mg. The median case of CO2 emission was 

32.83 kg/Mg and varies from 30.22 to 37.83 kg/Mg. The numbers of each machine were selected 

to process all available biomass during the simulation time, so biomass tonnages were the same 

in all cases except the cases, I-B-2 and I-W-2, which considered the change in dry matter loss. 

Thus, estimates of the biomass tonnage are not reported. 

 

Table 21 Estimates of the performance measures in scenario I median case and worst values   

Cases 

Cost ($/Mg) 
Change 
of Cost 
($/Mg) 

Energy 
(MJ/Mg)  

Change 
of Energy 
(MJ/Mg)  

CO2 
(kg/Mg) 

Change of 
CO2 

(kg/Mg) 

Collection 
& 

Processing 

Transport
ation Total 

I-M-0 19.02 9.60 28.62 - 478.74 - 32.83 - 

I-W-1 19.43 9.60 29.03 0.41 478.74 0.00 32.83 0.00 
I-W-2 19.50 9.66 29.17 0.55 488.01 9.27 33.46 0.64 
I-W-3 21.84 9.55 31.39 2.78 529.28 50.54 36.29 3.47 
I-W-4 19.16 9.60 28.76 0.14 484.84 6.10 33.24 0.42 
I-W-5 19.88 9.60 29.48 0.86 478.74 0.00 32.83 0.00 
I-W-6 19.15 9.60 28.75 0.13 501.15 22.41 34.36 1.54 
I-W-7 19.29 9.59 28.88 0.27 483.57 4.83 33.16 0.33 
I-W-8 20.09 9.58 29.68 1.06 498.03 19.28 34.15 1.32 
I-W-9 20.42 11.91 32.33 3.72(a) 540.10 61.35(a) 37.03 4.21(a) 
I-W-10 19.02 9.71 28.73 0.12 478.74 0.00 32.83 0.00 
I-W-11 19.02 9.78 28.80 0.19 486.84 8.10 33.38 0.56 
I-W-12 19.02 10.49 29.51 0.89 500.36 21.62 34.31 1.48 
I-W-13 19.02 9.69 28.71 0.09 481.00 2.26 32.98 0.15 
I-W-14 19.02 9.69 28.71 0.09 481.00 2.26 32.98 0.15 

(a) the property with the greatest change in that performance factor.   

 

 In general, all fourteen factors were consistent in having similarly ranked changes in 

both the best and worst scenarios.  Increasing the module DM density achieved by the module 

former (factor 9) from 240.3 to 288.3 kg/m3 (15 to 18 lb.ft3) had the largest impact on cost, 

energy, and CO2 emissions for both the best and worst comparisons. The module density 
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affected the transportation, collection and processing costs. The efficiency of the forage 

harvester (factor 3) was the second most important factor in both best and worst cases.  In the 

best case, reducing the time to unload a module from the module former (2.0 to 0.5 min) gave 

the third best improvement in cost, but for the worst case, reducing travel speed from 11.3 to 4.8 

km/hr resulted in the third greatest increase in cost.  For all three machines, the power 

requirements did not have a great influence on the cost, but did on the energy consumption and 

CO2 emissions.   

5.5.2.2 Impact of variations of a transportation distance and a biomass yield 

 Since the sensitivity of the performance factors could be changed in different biomass 

supply system environments, variations of transportation distance and biomass yield were 

considered. Scenario II considered the increase of the transportation distance from 40.2 to 80.5 

km (25 to 50 miles). Scenario III dealt with the increase of the biomass yield from 11.2 to 22.4 

Mg/ha (5 to 10 Mg/ac). In scenario III, the total biomass amount was kept the same as in 

scenario I, so the harvested area decreased by 50%. 

 Table 22 shows estimates of the performance measures in several scenarios. As the 

transportation distance increased (from scenario I to II), the cost, energy, and CO2 emission 

increase. On the other hand, as the biomass yield increases (from scenario I to III), the cost, 

energy, and CO2 emission decrease.  

 In terms of collection and processing cost, the results of scenario I and II were same. 

This was because an identical amount of biomass was collected, and the increased transportation 

distance did not affect the collection and processing cost. However, since the influence of field 

efficiency increases in the higher yield of scenario III, the collection and processing cost 

decreased significantly. For the transportation cost, the results of scenario II were much larger 

than the results of scenario I and III. Even though the transportation costs of scenario III are 
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slightly less than those of the scenario I, those differences are not meaningful, because those 

differences could occur due to the slight change of the number of generated modules associated 

with different predicted biomass moisture content. The simulation results show that the increase 

of transportation distance affects only the transportation cost, and the increase of biomass yield 

influences the costs associated with collection and processing. 

 

Table 22 Estimates of the performance measures in several scenarios 

Scenarios 
Scenario I Scenario II Scenario III 

Value Case Value Case Value Case 

Cost 
($/Mg) 

Collection  
& Processing 

min 17.71 I-B-3 17.71 II-B-3 11.52 II-B-9 
max 21.84 I-W-9 21.84 II-W-9 13.79 II-W-9 

Transportation 
min 8.16 I-B-9 14.28 II-B-9 8.13 II-B-9 

max 11.91 I-W-9 20.84 II-W-9 11.89 II-W-9 

Total 

min 26.36 I-B-9 32.43 II-B-9 19.65 II-B-9 

max 32.33 I-W-9 41.26 II-W-9 25.69 II-W-9 
median 

case 
28.62 I-M-0 35.81 II-M-0 21.97 II-M-0 

Energy 
(MJ/Mg)  Total 

min 440.75 I-B-9 586.63 II-B-9 327.61 II-B-9 

max 540.10 I-W-9 753.04 II-W-9 427.25 II-W-9 
median 

case 
478.74 I-M-0 650.27 II-M-0 365.80 II-M-0 

CO2 
(kg/Mg) Total 

min 30.22 I-B-9 40.22 II-B-9 22.46 II-B-9 
max 37.03 I-W-9 51.63 II-W-9 29.30 II-W-9 

median 
case 

32.83 I-M-0 44.59 II-M-0 25.08 II-M-0 

 

 Figure 24 and 25 depict the impact of the transportation distance and the biomass yield 

on the sensitivity of the performance factors such as cost and energy, respectively. Each bar 

represents the change of the estimate of the performance measure from the median case to the 

best (or worst) case of each of all factors (1 – 14). So, the length of the bar represents the 

measure of the significance of each factor to the system performance. Since the CO2 emission is 

calculated based on the used energy, that chart is not included.  
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Figure 24 Comparison of the impact of the variation of the transportation distance and the 

biomass yield to the sensitivity of the performance factor: cost 

 

 
Figure 25 Comparison of the impact of the variation of the transportation distance and the 

biomass yield to the sensitivity of the performance factor: energy 

  

 



118 

 

 

 

 When the transportation distance increases (i.e., from I-B/W to II-B/W), only the 

significance of a module density (factor 9) increases. This result implies that module density is 

the critical factor to improve the system performance. 

 For the cases under scenario III in which a biomass yield increases, the significance of 

several factors decrease. While the changes of the significance of factors 10, 11, and 12 related 

to a module hauler were very small, the significance of factors associated with a forage harvester 

(1, 2, 3, and 4) and a module former (5, 6, 7, 8 and 9) decrease considerably. This is because the 

increase in biomass yield may affect operations associated with harvesting and collecting in a 

field, and the transportation distance was equal in scenarios I and III. 

 For the most significant factors, the reduction in cost and energy between the median 

and best values was of lesser absolute magnitude than resulted from including the worst values.  

Those factors having small impact on the cost and energy consumption had nearly equal change 

when varied between the best and worst values.  These observations indicate that the selected 

median values were reasonable for the operation of the conceptual system. 

5.6 Discussion 

 The analysis of the overall system performance as a function of the considered factors 

provides important guidance in the establishing of design specifications for the three machines 

critical to the conceptual system considered.  The dry matter density of the biomass modules was 

shown to be the factor most affecting cost of delivering the biomass.  The worst case value for 

density (192 kg/m3) is roughly equivalent to the densities achieved in commercial balers.  For the 

biomass module system to achieve lower costs, the density will need to be near to 240 kg/m3. 

 The cost to supply a unit Mg of herbaceous biomass to a conversion plant ranged from 

$19.65 to $41.26/Mg with a median cost of $28.62/Mg. This cost range is very competitive with 

other biomass logistics systems estimated in the literature. This result indicated that development 
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of the biomass module system would be justified, and provided design specifications to be met.  

Such a feedstock supply system could overcome some barriers for successful commercialization 

of the cellulosic biofuel industry. 

 In general, field efficiency impacts significantly on accomplishing an economical 

agricultural system.  Since a forage harvester and a module former were strongly coupled in the 

module system, the turning, preparation time and unloading would result in lower field 

efficiency. Moreover, techniques used to form the biomass modules will have a large effect on 

influence on field efficiency. For example, the length of a plastic on a roll that must be 

periodically loaded will affect the preparation time, and field size, shape and biomass moisture 

content will affect the number of modules produced and the locations where they must be 

unloaded.  The design of the coupled forage harvest and towed module former must incorporate 

mechanisms that allow for high field efficiencies. 

 Other factors can provide additional value and must be included in the design 

considerations.  However, the potential gains are more limited, and design compromises can be 

made on those factors. 

 The IBSAL simulation tool proved useful in conducting the sensitivity analysis for the 

operational factors of the conceptual system.  The IBSAL framework is modularized very well 

so that developing new elements did not affect existing elements. Moreover, IBSAL elements in 

each machine category have similar structures (e.g., harvester and transporter). Therefore, the 

development of new elements on IBSAL framework was relatively straightforward. However, 

since a simulation item in IBSAL is defined based on the biomass amount per a unit land area, it 

was required to split those simulation units into multiple units of a module size to consider the 

detail operations in a module system. This meant that all subsequent elements in the operational 

sequence had to be compatible with those smaller simulation units.  
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CHAPTER VI 

SIMULATION MODEL: PART2. EVALUATION OF ALTERNATIVE 

BIOMASS LOGISTICS SYSTEMS 

 

This chapter evaluates economic benefits of a biomass module system, comparing it to 

bale and silage systems. Section 1 presents a background of IBSAL studies for biomass logistics 

systems. Section 2 describes several biomass logistics system including biomass module, silage, 

and bale systems. Section 3 provides simulation models based on IBSAL. Section 4 gives 

simulation results and compares several performance measures of several biomass logistics 

systems. 

6.1. Background 

 Several studies based on IBSAL have reported projected costs of various logistics 

systems. The first study was Sokhansanj et al. (2006) that estimated a bale system for corn stover 

by using IBSAL. They developed an IBSAL simulation model that comprises combine, 

shredding, baling, stacking, truck travel, stacking, and grinding. Their model resulted in 

$53.57/Mg for the operations in their bale system, which consists of the CP cost at $39.81/Mg 

and the transportation cost at $13.76/Mg. 

 In 2007, Kumar and Sokhansanj employed IBSAL to evaluate and compare several 

biomass logistics systems (i.e., bale, silage, and loaf systems), considering switchgrass as a 

feedstock. Their study invoked several assumptions that the yield of switchgrass is 11 dry 

Mg/ha; a given farm land area supplies switchgrass to a refinery which is located at the center 

point of the land considered; the utilization rate of the land for growing switchgrass is about 

10%; and a road winding factor is 1.4. From their evaluation results (see Table 23), a loafing 

system was the best system in terms of both CP and transportation costs. They estimated 
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transportation costs based on the maximum transportation distance with the assumption that the 

minimum transportation distance is 3 km, noting that a transportation distance is proportional to 

a refinery capacity. Even though the silage system studied by Kumar and Sokhansanj (2007) has 

relatively small CP costs for several scenarios, transportation costs were higher than other 

logistics systems. This implies that the silage system may not be an appropriate method for a 

large-capacity refinery.  

 

Table 23 Predicted logistics costs for switchgrass by IBSAL (Kumar and Sokhansanj, 2007) 

System Process 

Cost 
Transportation 

Machine 
Collection  

& 
Processing 

($/Mg) 

Transportation 
($/Mg)+ 

($/Mg/km) 

Total 
($/Mg)+ 

($/Mg/km) 

Biomass 
Density 
(kg/m3) 

Speed 
(km/h) 

Cost 
($/h) 

Bale 

swath-rake-
bale(square)-stack-
tarp-transport-stack-
grind 

33.43 3.05+0.111*d(a) 36.26+0.111*d 128 24 50.46 

swath-rake-
bale(square)-stack-
tarp-grind-transport 

32.76 1.18+0.173*d 33.94+0.173*d 64-96 24 51.68 

swath-rake-
bale(round)-stack-
tarp-transport-stack-
grind 

31.95 3.05+0.111*d 34.78+0.111*d 128 24 50.46 

swath-rake-
bale(round)-stack-
tarp-grind-transport 

31.28 1.18+0.173*d 32.46+0.173*d 64-96 24 51.68 

Silage 
chop-ensile-transport 27.18 5.66+0.258*d 32.84+0.258*d 64-96 24 51.68 

swath-rake-chop-
pile-transport 

14.81 5.66+0.258*d 20.47+0.258*d 64-96 24 51.68 

Loaf 
swath-rake-loaf-
grind-transport 

22.33 1.18+0.173*d 23.51+0.173*d 64-96 24 51.68 

(a) d is a maximum transportation distance 

 

 However, since the detail processes of the logistics systems in prior studies are not 

exactly the same and they dealt with different biomass crops as well as different transportation 

distances, comparing their results directly may be inappropriate. 
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 Based on the previous cost estimates which are reported by previous studies, the 

currently available logistics systems may not be suitable for delivering herbaceous biomass crops 

to refineries due to high logistics cost incurred by low density of biomass materials as well as 

high moisture content. The USDA and the DOE (2008) reported that biomass logistics, which 

includes harvesting/collecting, storing and pre-processing, constitutes as much as 20% of the 

current cost of supplying cellulosic ETOH.  

6.2. Description of biomass logistics systems 

Figure 26 depicts the detail processes of the logistics systems considered in this chapter: 

i.e., biomass module, silage, and bale systems. The operations involved in the logistics systems 

are classified into three categories (i.e., in-field operation, road-transportation, and in-plant 

operation) to reveal distinction between each other more clearly. The in-field operation includes 

several operations from harvesting to field-transportation for delivering crops to local storage 

sites.  

The road-transportation covers a few operations associated with transportation on roads 

such as loading and unloading as well as actual road-transportation. Only the bale system 

involves a process that is classified as the in-plant operation (i.e., grinding). The CP includes 

operations both in the fields and in a refinery. 

Most herbaceous biomass has high moisture content (e.g., 20 – 60%) so that decreasing 

moisture content before transportation may be needed to improve transportation efficiency. 

Therefore, it is assumed that field-drying operations after windrowing will be conducted in all 

systems. Another assumption invoked is that biomass will be stored on the fields without using 

any facilities so that the storage cost could be negligible. Moreover, the materials chopped by a 

forage harvester are assumed to be used in a conversion plant without any additional size-

reduction process in both the biomass module and the silage systems. 
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Figure 26 Process diagram for each of biomass logistics systems: (a) biomass module 

system, (b) silage system, and (c) bale system 

 

After windrowing, crops conditioned are dried on the fields under the atmosphere until 

the required moisture content (e.g., less than 20%) has been acquired or the maximum 

managerial waiting time has been reached. Therefore, the time for field-drying operation may 

vary according to weather conditions. The following subsections describe details of each 

biomass logistics system. 

6.2.1 Biomass module system 

 The biomass module system is a conceptual system using several conventional machines 

as well as specially designed new machines, as described in Chapter V. It begins from cutting 

and drying operations. After a SPFH chops crops, the chopped materials are collected in a 

module former which is pulled by a SPFH. Strongly coupled operations between a SPFH and a 
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module former may decrease the loss of biomass while transferring the chopped materials into a 

module former. However, to represent such a feature, a commercially available SPFH may be 

needed to be modified because pulling a module former may require more power and energy. 

Moreover, the field efficiency of the modified SPFH may be decreased due to the strongly 

coupled operations with a module former. For example, when a module former unloads a 

biomass module, a modified SPFH must stop its operation. 

 A module former is a new machine that compresses the collected biomass for increasing 

density and generates large biomass modules. The expected density will be about 240 km/m3 (15 

lb/ft3). The size of each module is determined based on the maximum weight load and the 

maximum volume of a transportation machine. For example, when a biomass module has high 

moisture content, the module size may be limited by the maximum weight load of a 

transportation machine so that it could be smaller than the maximum volume of a transportation 

machine. To facilitate biomass handling and keep biomass from being affected by the 

atmosphere, biomass modules are covered in a plastic package, which requires additional cost 

(e.g., $50/module). 

 Biomass modules are handled and transported efficiently by a module hauler in the 

fields and by a semi-trailer on the roads. A module hauler is a new machine that is specially 

designed for handling modules in a field area. In addition, it is designed to load (unload) 

modules to (from) a semi-trailer quickly. A semi-trailer is used for long-distance transportation 

from a field storage location to a conversion plant. At a conversion plant, a module hauler is 

required to unload modules from a semi-trailer and to move them within it.  

6.2.2 Silage system 

 The initial stage of the silage system considered is similar to the biomass module system 

as shown in Figure 26: i.e., after cutting and conditioning, biomass materials are dried on the 
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fields. Then, a SPFH chops biomass, collecting them into a wagon moving alongside of the 

SPFH. In the fields, wagons transport the chopped biomass. Then, for road-transportation, trucks 

are used. The density of biomass transported is the same as that of biomass after they are 

chopped by a SPFH, typically 80 kg/m3 (5 lb/ft3). 

6.2.3 Bale system 

 Different to the module and the silage systems, the bale system does not contain 

chopping operation after field-drying. Instead, a baler collects biomass materials on the ground 

and generates bales, increasing density, in general, up to 128 km/m3 (8 lb/ft3). Then, a stinger 

collects bales in the fields and transport to field storage sites. A semi-trailer is used for road-

transportation. A bale loader loads bales to a trailer and unloads them from it. After delivering 

biomass bales to a conversion plant, bales need to be ground for reducing their sizes enough to 

be processed in a conversion plant. 

6.3. IBSAL modeling 

 This section explains IBSAL simulation models to evaluate biomass logistics systems. 

Each of subsections describes a basic scenario and common factors for simulation models, and 

presents simulation models for the biomass module, the silage, and the bale systems, 

respectively. 

6.3.1 Simulation scenario  

 This subsection describes the scenario that was used in the simulation models 

developed. Grass-type biomass is supplied to a conversion plant from a farm land area located at 

College Station, Texas state of the U.S. Total annual mass supply is 250,000 dry Mg/year. Two 

cases of average biomass yield have been considered such as 11.2 and 22.4 Mg/ha (5 and 10 dry 

ton/ac) so that total crop supply area is 20,234 ha (50,000 ac) for 11.2 Mg/ha and 10,117 ha 

(25,000 ac) for 22.4 Mg/ha.  
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 National Climatic Data Center operated by the U.S. National Oceanic and Atmospheric 

Administration provides historical weather data for several locations in the U.S. and several 

other counties. Since the precipitation of 606 mm in 1992 is approximately the median of 

historical data for the total year-precipitations in College Station, which range from 250 mm in 

2010 to 1141 mm in 1994, the daily weather data for the year 1992 were selected to be used in 

the simulation models.  

 The in-field transportation distance was assumed to be 0.16-0.48 km. To investigate the 

impact of transportation distance, several transportation distances between the fields and a 

conversion plant (i.e., 16, 40, 80, and 161 km) have been considered. Enough number of 

machines was used to each operation to process all biomass within a harvesting time period (i.e., 

from August 1 to December 31) so that no biomass remains in the system after finishing the 

simulation run. 

 Simulation items are generated based on the harvesting schedule. Each simulation item 

represents some amount of biomass (e.g., 250 Mg) which is calculated based on a unit land area 

and a crop yield. A generated simulation item passes through all simulation elements in the 

model, in which several attributes (e.g., moisture content) are updated and some relevant 

measures (e.g., cost  and energy) are calculated. Each simulation model follows the operation 

procedure illustrated in Figure 26. 

6.3.2 Biomass module system 

 The simulation model of the biomass module system described in Chapter V was used 

again (see Figure 23 in section 5.4.1). The model comprises existing IBSAL elements (i.e., 

windrower and semi-trailer) and several new IBSAL elements (i.e., a modified SPFH, a module 

former, and a module hauler). After mowing and conditioning by the windrower element, 

simulation items will stay in the queue of the SPFH element to meet the requirement for the safe 
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level of moisture content or the maximum waiting time. Then, as long as machines in the 

subsequent simulation elements are available, simulation items will pass through them, 

calculating relevant measures (e.g., cost, energy used and dry matter loss). Table 23 provides 

detail specifications of machines used in the simulation models. Note that the parameter values 

for the new IBSAL elements have been selected to use the median values provided in Table 18 

(see section 5.4.2), which were selected as a most likely value based on the experience of the 

authors. 

6.3.3 Silage system 

 The simulation model of the silage system consists of series of a unit operation element 

provided by IBSAL (see Figure 27). All parameter values are provided by the database of 

IBSAL for commercially available machines. Note that the SPFH used in this model has less 

power, (i.e., 376.7 kW) and more dry matter loss (i.e., 0.25) compared to the modified SPFH 

used in the biomass module model (i.e., 436.4 kW and 0.06, respectively), and the density of 

biomass transported is 80.09 kg/m3 which is less than that of the biomass module system, 240.28 

kg/m3 (see Table 24). 



 

 

Figure 

 

Figure 27 Simulation model for the silage system 
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Table 24 Specification of machines used in each simulation model 

System No. Machine 
Power 
(kW) 

Width  
(m) 

Speed 
(km/h) Efficiency 

Cost 
($/hr) 

Dry  
Matter 
Loss 

Max 
Volume 

(m3) 

Max 
Load 
(Mg) 

Load/Unload  
Time (min) Etc 

Module 

1 Windrower 89.52 4.6 12.9 0.8 106.80 0.05 - - -   

2 
SPFH 

with Module 
Former 

436.4 4.3 9.7 0.75 228.40 0.06 - - - 
Particle Size 
: 2.54 cm 

3 Module Former 298.4 - - - 150.70 0 47.57 15 0.5/2.0(/module) 
Biomass Density 
: 240.28 (kg/m3) 

4 Module Hauler1 335.7 - 11.8 - 122.40 0 47.57 15 1.0/1.0(/module) 
Transport 2 modules 
Distance: 0.16-0.48 km 

5 Semi-trailer 410.3 - 80.5 - 23.93 0 95.14 30 1.0/1.0(/module) Transport 2 modules 

6 Module Hauler2 335.7 - 11.3 - 122.40 0 47.57 15 1.0/1.0(/module) 
Transport 2 modules 
Distance: 0.48 km 

Silage 

1 Windrower 89.5 4.6 12.9 0.80 106.80 0.05 - - -   

2 SPFH 376.7 4.3 9.7 0.85 238.60 0.25 - - - 
Particle Size 
: 2.54 cm 

3 Wagon 119.4 - 16.1 - 21.86 0.005 33.98 25 3.0/5.0 
Biomass Density 
: 80.09 (kg/m3) 
Distance: 0.16-0.48 km 

4 Truck 410.3 - 88.5 - 29.43 0.005 72.49 40 5.0/10.0   

Bale 

1 Windrower 89.5 4.6 12.9 0.80 106.80 0.05 - - -   

2 Baler 261.1 3.1 12.9 0.65 60.07 0.25 - - - 

Biomass Density 
: 128.14 (kg/m3) 
Bale Size: 
: 0.9*1.2*2.4 (2.72 m3) 

3 Stinger 261.1 - 24.1 - 85.85 0.005 - 20 0.1/0.05(/bale) 
Transport 8 bales 
Distance: 0.16-0.48 km 

4 Loader1 223.8 - - - 131.00 0.005 - - 0.25/0.2(/bale)   
5 Semi-trailer 410.3 - 80.5 - 23.93 0.005 - 30 0.25/0.2(/bale) Transport 34 bales 
6 Loader2 223.8 - - - 131.00 0.005 - - 0.25/0.2(/bale)   

7 Grinder 288.7 - - 0.80 275.90 0.1 - - - 
Particle Size 
: 1.27 cm 
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6.3.4 Bale system 

 Figure 28 describes the simulation model of the bale system. The initial stage of the 

bale system model up to the windrower element is same to other simulation models. Then, the 

density of simulation items is set to be 128.14 kg/m3 (8 lb/ft3) through the baler element. The 

size of a rectangular bale that the model considered is 0.9 m*1.2 m*2.4 m (2.72 m3). The stinger 

element estimates measures associated in-field transportation of bales. The bale loader elements 

are used before and after the semi-trailer element, which can transport 34 bales at once. Only the 

bale simulation model has an in-plant operation (i.e., grinding) for reducing the size of biomass 

materials. Similar to the silage simulation model, the bale simulation model comprises 

simulation elements existing in the current version of IBSAL. 

6.4. Simulation results 

This section describes the performance measures, which are estimated by simulation 

models, and the number of machines assigned for each scenario, and presents their estimates for 

several scenarios.  

6.4.1. Performance measures 

 Simulation models estimate several performance measures (e.g., cost, required energy, 

a quantity of CO2 emissions, and the net biomass yield) to supply biomass from farms to a 

conversion plant. The cost includes capital, maintenance, tax, interest, and labor costs. The 

required energy is calculated based on the power of each machine and the working time. The 

quantity of CO2 emissions is calculated based upon that of the energy used. The net biomass 

yield is the amount of biomass after considering physical dry matter loss occurred through all 

operations in each system. 



 

 

Figure 

 

 

Figure 28 Simulation model for the bale system 
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6.4.2. The number of machines 

 Each simulation element used enough number of machines to process all biomass within 

a simulation time horizon (i.e., harvesting period) so that simulation models did not hold any 

simulation items after the simulation run finished. To decide the appropriate number of machines 

to be assigned, preliminary simulation runs were conducted. Table 25 gives the number of 

machines assigned to each simulation element under several scenarios. The transportation 

distance affects the required number of machines associated with transportation (e.g., a semi-

trailer and a truck). 

 

Table 25 The number of machines used in each machine under several scenarios 

System No. Machine 
Transportation Distance (km) 

16 40 80 161 
Y11(a) Y22(b) Y11 Y22 Y11 Y22 Y11 Y22 

Module 

1 Windrower 3 2 3 2 3 2 3 2 

2 
SPFH 

with Module 
Former 

8 4 8 4 8 4 8 4 

3 Module Former 8 4 8 4 8 4 8 4 
4 Module Hauler1 7 7 7 7 7 7 7 7 
5 Semi-trailer 5 5 9 9 15 15 29 29 
6 Module Hauler2 2 2 2 2 2 2 2 2 

Silage 

1 Windrower 3 2 3 2 3 2 3 2 
2 SPFH 4 2 4 2 4 2 4 2 
3 Wagon 14 14 14 14 14 14 14 14 
4 Truck 30 30 60 61 110 110 209 209 

Bale 

1 Windrower 3 2 3 2 3 2 3 2 
2 Baler 8 4 8 4 8 4 8 4 
3 Stinger 3 3 3 3 3 3 3 3 
4 Loader 2 2 2 2 2 2 2 2 
5 Semi-trailer 4 4 9 9 18 18 33 34 
6 Loader 2 2 2 2 2 2 2 2 
7 Grinder 8 8 8 8 8 8 8 8 

(a): Crop yield of 11.2 Mg/ha (5 ton/ac) 
(b): Crop yield of 22.4 Mg/ha (10 ton/ac) 

  

 As transportation distance increases, the required number of transportation machines 
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increased as well, while other machines were not affected. Similarly, several machines 

associated with in-field operations were affected by the crop-yield variation (e.g., a windrower, a 

SPFH and a module former). 

6.4.3. Estimates of performance measures 

 This section provides the simulation result of each biomass logistics system. Comparison 

with the results of several scenarios describes the impact of variations of a transportation 

distance and a biomass yield on the performance of each biomass logistics system. 

6.4.3.1 Total cost 

 Figure 29 depicts estimates of the logistics costs with respect to transportation distances 

(i.e., 16, 40, 80, and 161 km) as well as crop yields (11.2 and 22.4 dry Mg/ha). For a short 

transportation distance less than about 5 km, the silage system has lower cost than other systems. 

In contrast, the biomass module and the bale systems are better in all scenarios, in which 

transportation distance is greater than 5km, because the silage system appeared to be more 

sensitive (i.e., larger slope) to transportation distance than others. The biomass module system 

has the lowest logistics cost compared to other systems. Moreover, the sensitivity of the biomass 

module system to the transportation distance is lowest among all systems. 

 As crop yield increases from 11.2 to 22.4 dry Mg/ha, the total cost decreases in all 

systems. This is primarily due to the decrease of the CP costs (see Table 4). In particular, the 

change of the crop yield affects significantly the biomass module system: i.e., the reduction of 

the CP cost of the biomass module system ranges from 34 to 39% with respect to the crop-yield 

change from 11.2 to 22.4 dry Mg/ha; that of the silage system, from 13 to 27%; and that of the 

bale system, from 14 to 27%, respectively. The bale system showed the least impact on the CP 

cost from the crop-yield change because the grinding operation, which is a major component for 

the cost of the bale system, is not affected by a crop yield. 
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Figure 29 Total cost of several logistics systems under several scenarios 

  

 Based on the target that DOE set in the biomass multi-year program plan in 2010, the 

economic feasibility of the logistics systems can be speculated. For example, if the logistics cost 

per a unit biomass is under $38.59/Mg, which is the DOE goal by 2012, the biomass logistics 

system can be considered to be economically feasible. The results in Table 25 indicate that only 

a few cases of the logistics systems satisfy the criteria: that is, for the biomass module system, 

the cases of the distance 16-80 km for both crop yields of 11.2 and 22.4 Mg/ha satisfy this 

criterion; and for the bale system, only one case of the distance 16 km for a crop yield of 22.4 

does. 
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Table 26 Estimates of performance measures of each biomass logistics systems regarding transportation distances and crop yield 

System 

Trans. 
Distance 

(km 
(mile)) 

Collection & 
Processing 

($/Mg) 

Transportation 
($/Mg) 

Logistics Cost  
($/Mg) 

Energy  
(MJ/Mg) 

CO2  
(kgCO2/Mg) 

Net Biomass Yield 
(Mg) 

Man Hour  
(Hour) 

Y11(a) Y22(b) Y11 Y22 Y11 Y22 Y11 Y22 Y11 Y22 Y11 Y22 Y11 Y22 

 Module  
  
  
  

16 (10)   19.19  12.59       5.03       5.03  24.22*  17.62*  376  263     26     18  197,534  197,536  19,527  14,420  
40 (25)   18.80  12.24       9.73       9.73  28.53*  21.97*  479  366     33     25  197,534  197,536  26,541  21,416  
80 (50)   18.20  11.62     17.52     17.52  35.72*  29.14*  650  537     45     37  197,534  197,536  38,229  33,078  

161 (100)   17.00  10.38     33.11     33.11  50.10  43.49  993  879     68     60  197,534  197,536  61,607  56,400  

 Silage  
  
  
  

16 (10)   15.83  11.59     35.75     35.75  51.57  47.34  1,073  1,001     74     69  170,380  170,363  73,192  68,426  
40 (25)   19.72  15.52     66.41     66.41  86.13  81.93  1,867  1,795    128    123  170,380  170,363  119,866  115,162  
80 (50)   23.52  19.40  120.16  120.16  143.68  139.56  3,191  3,120    219    214  170,380  170,363  197,585  193,016  

161 (100)   31.25  27.12  227.66  227.66  258.91  254.78  5,839  5,769    400    396  170,380  170,363  353,285  348,640  

 Bale  
  
  
  

16 (10)   36.74  26.66       8.08       8.08  44.82  34.73*  536  417     39     31  157,317  157,317  73,148  66,061  
40 (25)   32.30  27.39     14.43     14.43  46.73  41.82  706  586     51     42  157,317  157,317  82,217  75,229  
80 (50)   33.50  28.59     25.05     25.05  58.55  53.64  988  868     70     62  157,317  157,317  97,521  90,526  

161 (100)   35.90  31.00     46.29     46.29  82.19  77.29  1,552  1,432    109    100  157,317  157,317  128,128  121,157  

(a): Crop yield of 11.2 Mg/ha (5 ton/ac) 
(b): Crop yield of 22.4 Mg/ha (10 ton/ac) 
*: meet the 2012 goal of DOE in the biomass multi-year program plan 
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6.4.3.2 Transportation cost 

 Figure 30 shows estimates of transportation cost for each logistics system. Since 

transportation cost does not increase as crop yield increases (see Table 26), Figure 30 has no data 

plot associated with the crop-yield change. The trend line equations are provided to estimate 

transportation cost for other transportation distances between the simulation data points. The 

slope and the intercept of the trend line equation can be considered as the variable and fixed 

costs of transportation, respectively.  

 

 
Figure 30 Transportation cost of several logistics systems regarding transportation distance 

  

 For all systems, each linear trend line strongly corresponds with its simulation data (i.e., 

R2 ≥ 0.9997). The biomass module system has the lowest slope and intercept, implying that it has 

the least impact from the transportation distance and may be appropriate for long-distance 

transportation compared to other systems.   
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6.4.3.3 Other performance measures 

 Table 25 gives all detail estimates for several performance measures. Estimates of 

energy used and CO2 emissions are proportional to the total costs. The biomass module system 

was estimated to deliver the largest amount of biomass to a conversion plant among all logistics 

systems (i.e., the smallest dry matter loss). This may be mainly because it uses a plastic package 

to cover each module so that physical dry matter loss is very low (i.e., close to zero) while 

transporting modules. On the other hand, the bale system shows the smallest net biomass yield 

supplied (i.e., the largest dry matter loss) because it has more operations than others so that more 

physical dry matter loss can occur in such additional operations. For man-hour results, the 

biomass module system shows the best results. This is partly because it has simplified operations 

and delivers highly densified biomass. 

6.4.3.4 Total expected profit 

 To our knowledge, any previous studies for biomass logistics system have not addressed 

a measure which deals with both perspectives of cost and net biomass yield simultaneously. 

Thus, This subsection presents total expected profit that deals with both perspectives of those 

simultaneously.  

 Simulation models estimated logistics cost based on a unit amount of biomass ($/Mg), a 

unit logistics cost, and a net biomass yield as reported in Table 4. Revenue from a unit biomass, 

unit revenue, may not be affected directly by the selection of logistics systems because revenue 

is based on the selling price of the final product (e.g., ETOH). In general, profit from a unit 

biomass, unit profit, can be calculated from unit revenue minus unit cost which includes unit 

logistics cost and unit cost of all other processes except logistics (e.g., cost of conversion 

process). Since total expected profit for a given farm land area can be estimated from unit profit 

times net biomass yield, it involves both perspectives of logistics cost and net biomass yield. 
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 Even though various net biomass yields might incur different unit cost of all other 

processes except logistics due to economy of scale, to analyze the effects of logistics cost and net 

biomass yield on profit more clearly, this study simplified a procedure to estimate total expected 

profit. First, this study invoked an assumption that unit costs of all other processes except 

logistics are the same for various net biomass yields. Second, tax was not considered in the 

analysis. The following steps describe the procedure to estimate total expected profit by using 

logistics cost and net biomass yield: 

1. In general, unit profit = unit revenue – unit cost. 

2. By decomposing unit cost into unit logistics cost and unit cost of other processes,  

 unit profit = unit revenue – unit logistics cost – unit cost of other processes. 

3. Let UR_UC denote unit revenue – unit cost of other processes. Then, unit profit can 

be re-expressed: 

 unit profit = UR_UC –  unit logistics cost. 

4. By using net biomass yield and unit profit, total expected profit is: 

 total expected profit = net biomass yield * unit profit 

 =  net biomass yield * (UR_UC –  unit logistics cost)  

 =  net biomass yield * UR_UC –  net biomass yield * unit logistics cost. 

Note that the UR_UC is associated with some exogenous variables including, for example, end 

product price, government subsidy, and cost of conversion technology.  

 Based on this relationship, Table 27 presents equations of total expected profit for 

several scenarios in each logistics system. To generate positive total profit from a given farm 

land area, UR_UC must be greater than unit logistics cost. Since net biomass yield is the gradient 

of total expected profit (i.e., the slope of the equation), it affects significantly total expected 

profit. Unit logistics cost affects the y-axis intercept of the equation (i.e., – net biomass yield * 
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unit logistics cost).  

 

Table 27 Estimates of total expected profit based on net biomass yield and unit logistics cost 

System 
Trans. 

Distance 
(km) 

Total Expected Profit ($) 

Y11 Y22 

Module  

16  197534*UR_UC- 197534*24.22   197534*UR_UC - 197534*17.62  
40  197534*UR_UC - 197534*28.53   197534*UR_UC - 197534*21.97  
80  197534*UR_UC - 197534*35.72   197534*UR_UC - 197534*29.14  
161  197534*UR_UC - 197534*50.10   197534*UR_UC - 197534*43.49  

 Silage 

16  170380*UR_UC - 170380*51.57   170380*UR_UC - 170380*47.34  
40  170380*UR_UC - 170380*86.13   170380*UR_UC - 170380*81.93  
80  170380*UR_UC - 170380*143.68   170380*UR_UC - 170380*139.56  
161  170380*UR_UC - 170380*258.91   170380*UR_UC - 170380*254.78  

 Bale 

16  157317*UR_UC - 157667*44.82   157317*UR_UC - 157667*34.73  
40  157317*UR_UC - 157317*46.73   157317*UR_UC - 157317*41.82  
80  157317*UR_UC - 157317*58.55   157317*UR_UC - 157317*53.64  
161  157317*UR_UC  - 157317*82.19   157317*UR_UC - 157317*77.29  

 

 To illustrate the use of equations in Table 27, suppose that switchgrass is harvested and 

supplied to a biofuel refinery. Mandil and Shihab-Eldin (2010) reported that refining cost for 

switchgrass is about $0.39/liter ($1.46/gallon) and ETOH yield could be up to 300 liters/Mg by 

using current biochemical conversion process. Figure 31 shows estimates of the total expected 

profit of each biomass logistics system for switchgrass under the condition of transportation 

distance of 16 km and crop yield of 11.2 Mg/ha. The x-axis value, UR_UC, can be determined 

by using ETOH yield, ETOH price, and refining cost: (a) if ETOH price is at $0.66/liter 

($2.5/gallon), UR_UC is $81.13/Mg (=300liters/Mg * ($0.66/liter - $0.39/liter)); (b) at 

$0.79/liter ($3.0/gallon), $120.75/Mg; and (c) at $0.92/liter ($3.5/gallon), $160.38, respectively.  

 The biomass module system shows higher profit and a wider profitable range with 

respect to UR_UC than other systems. The bale system is better than the silage system, if 

UR_UC is less than $132.86/Mg (e.g., (a) and (b)); the silage system is better than the bale, if 



 

 

not (e.g., (c)). This shows an example that a logistics system with lower logistics cost may not 

always be better than another system with higher logistics cost, implying that it may be 

necessary and valuable to consider both perspectives of logistics cost and net biomass yield 

simultaneously for evaluating biomass logistics system more 

 

Figure 31 Example of the total expected profits: transportation distance of 16 km and crop yield 

 

 

 

not (e.g., (c)). This shows an example that a logistics system with lower logistics cost may not 

always be better than another system with higher logistics cost, implying that it may be 

ssary and valuable to consider both perspectives of logistics cost and net biomass yield 
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CHAPTER VII  

CONCLUSIONS AND FUTURE RESEARCH 

 

 This dissertation provides an effective approach to design the SC of the cellulosic 

biofuel industry. It achieves its purpose in five related parts: literature review of the biofuel SC 

studies; formulation of BSCP with a case study on a region in Central Texas; an exact solution 

approach to solve large-scale instances of BSCP; development of new IBSAL simulation 

elements to model the biomass module system; and evaluation of alternative biomass logistics 

systems. 

7.1 Conclusion and future research on the literature review of the biofuel SC studies 

 The first part of this dissertation reviews research on SCs for the biofuel and petroleum-

based fuel industries as well as the literature on relevant, generic supply-chain models that have 

been published over the last decade. This paper identifies trends in generic SCM: 

internationalizing facility location, increasing use of IT, improving sustainability, and managing 

product perishability. It presents taxonomies of supply-chain studies that deal with biofuel and 

petroleum-based fuels, categorizing papers according to decision level (strategic, tactical, 

operational, and integrated) as well as process level (upstream, midstream, and downstream). By 

reviewing quantitative models available for petroleum-based fuels and generic SCM studies, this 

paper identifies gaps in biofuel research.  

 The biofuel industry is on the verge of growing explosively due to environmental 

regulations and renewable, sustainable energy needs. Currently, the industry is relying upon pilot 

plants to develop efficient processes to produce cellulosic biofuel and verify its economic 

viability. Operations Research can play a pivotal role in providing decision support to optimize 

the biofuel SC and to predict how relevant parameters affect system performance and economic 
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viability. The ultimate transition from pilot plant to a large-scale, commercial system will give 

rise to new issues that Operations Research models can address to enhance economic viability. 

Therefore, studies of the biofuel SC are indispensible and future research, as recommended by 

this paper, will contribute to the growth and viability of the biofuel industry. 

 Based on the perspectives that this paper provides, we now recommend fertile 

opportunities for research to contribute to biofuel SCM. 

(1) Strategic level. In the near future, the U.S. government may begin to regulate the release of 

GHG from power plants, cars, and factories with the stated goal of reducing global warming. 

Even though studies have dealt with network design, including locations for feedstock, 

preprocessing facilities, and bio-refineries, no study has considered the impact of GHG 

emissions on design. To enable the biofuel industry to be more environmentally friendly, 

network design must deal with GHG emissions. Because demand for biofuel can be expected to 

grow dramatically in the future as government support increases and crude oil prices rise and 

because technologies are in a state of flux, facility location and capacity planning are very 

important topics. In particular, it may be possible to adapt capacity planning models that have 

been proposed for generic SCs. However, the multi-level facility network design problem is 

computationally challenging because of its large scale. Thus, appropriate solution methodologies 

are needed. 

(2) Tactical level. One characteristic aspect of the biofuel SC is that feedstock (i.e., biomass) 

deteriorates over time. Inventory models are needed to quantify tradeoffs between the cost of 

biomass loss in storage and the cost of preprocessing capacity. Larger capacities would allow 

preprocessing facilities to process biomass more quickly, so that less storage capacity would be 

required. However, capacity is expensive and it may be more economical to build plants of lesser 

capacities and incur the costs of providing storage facilities and of biomass degradation. Another 
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characteristic of biofuel SC is that some important feedstocks (e.g., herbaceous crops) are 

harvested seasonally. Because feedstock availability is limited during some part of the year, 

storage or/and alternative biomass sources are required. This topic offers a fertile opportunity for 

researchers to optimize the SC appropriately. Paralleling inventory-control models that have 

been formulated for crude oil and oil products, new models are needed to prescribe inventory 

policies for biomass and biofuel based on market forces. 

(3) Operational level. Several types of biomass can be used for feedstock; most are subject to 

restrictions such as seasonal harvesting and sustainability requirements. Since sufficient supplies 

of biomass must be developed to meet demand, optimizing harvesting operations to improve 

productivity is an important issue. We note that no planning models address the biofuel 

conversion processes, but several studies address the planning of petroleum-refinery operations 

and it may be possible to adapt them for biofuel applications. We expect that ongoing studies 

will identify efficient conversion processes in the near future, so that such planning models will 

soon be required. 

(4) Integration of strategic, tactical, and operation levels. Integration of strategic-, tactical-, 

and operational-level decisions is an ongoing issue relative to the generic SC. In comparison, 

integrating the three levels is more important for the biofuel industry: biomass has low energy 

content so that any possible losses in the SC must be minimized to enable the economic viability 

of the industry. Accordingly, optimization approaches that are capable of solving large-scale 

instances effectively will play a key role in the economic vitality of the biofuel industry. 

(5) Risk management. The biofuel industry is more vulnerable to risk than many other 

industries because feedstock yield depends on the weather and could be negatively affected by 

pests and diseases.  In addition, biofuel must compete with petroleum-based fuels, the price of 

which is highly variable due to complex relationships between supply, demand, fuel trading 
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futures, and limited reserves. For example, the Green Hunter Energy biodiesel refinery in 

Houston, which had been the largest in the U.S., recently was offered for sale at an undisclosed 

price after the owner shut down the $70 million facility in the face of low demand. Such setbacks 

have resulted from the dramatic fall in petroleum-based fuel prices during the 2008-09 global 

recession (The Wall Street Journal, 2009a). This experience highlights the need for risk 

management in the biofuel industry. 

(6) Impact on the petroleum industry. Since anticipated, new regulations on GHGs will likely 

increase the use of biofuel, demand will likely become more predictable, regardless of the price 

of petroleum-based fuel. Amounts of fuel produced in petroleum refineries will be 

correspondingly reduced; in fact, some facilities will be shut down.  We expect that opportunities 

may evolve to allow biofuel distribution to be integrated with the existing downstream system 

for petroleum-based fuel.  The compatibility of the fuel types must be considered in assessing the 

economics of such an integration. 

(7) Adopting generic SCM research. The biofuel SC is directly related to the sustainable SCM 

in general and to the agri-food SCM in particular. Therefore, the biofuel industry can benefit 

from the transfer of technologies from these related areas. In particular, these areas may lend 

quantitative methods to enhance sustainability, deal with perishability, and plan harvesting. In 

addition, biofuel SCM may require new models for international operations, perhaps adapting 

features from available generic international SCM.  The proximity of North American Free 

Trade Agreement- and Central America Free Trade Agreement-member countries and the 

favorable climates they offer to produce biomass can be expected to stimulate growth of biofuel 

supply chains in those countries.  While few quantitative papers have addressed supply chains in 

these particular areas, some models (e.g., Wilhelm et al., 2005; and Robinson and Bookbinder, 

2007) are available to serve as a starting point from which to formulate models to design biofuel 
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supply chains.  To implement IT-driven SCM, the biofuel industry must be able to prescribe 

plans on a real-time basis. For example, real-time information about biomass inventory could 

help to manage harvesting and to make decisions about biomass transportation. Finally, because 

feedstock-supplier locations are dispersed, GIS is a necessary tool for planning the biofuel SC. 

(8) Geographical area. The amount of biofuel needed to contribute meaningfully to energy 

independence is prodigious, so that feedstock sources must be found widely across the U.S.   

Thus, interest in, and need for, biofuel is ubiquitous and, even though each geographical area 

may emphasize certain features (farm size, distances, climate, length of growing season, 

availability of water) giving advantage (or disadvantage) to certain types of biomass, all share 

central features in common.  This paper cites research conducted in a number of states, including 

Texas (Boske and Woodward, 2009), Oklahoma (Oklahoma Bioenergy Center, 2007), Louisiana 

(Sharma et al., 2010), Mississippi (Ekşioğlu et al., 2009; and Ekşioğlu et al., 2010), Tennessee 

(Zhu et al., 2010), Virginia (Cundiff et al., 1997), and California (Huang et al., 2010). The 

Midwest has emphasized corn for ethanol (Haddad et al., 2010); and the northwest, forest 

products (Clark et al., 2010). Cities may provide yet other types of biomass (Fehrs, 2011).  Each 

of these studies has dealt with biomass types that are best suited to the features that are prevalent 

in a region; but, in each case, the resulting model represents these features parametrically so that 

input data can tailor it for application in a variety of geographical areas. 

7.2 Conclusion and future research on formulation of BSCP with a case study 

 The model to design a cellulosic biomass/biofuel SC design considers strategic- and 

tactical-level decisions in both upstream and downstream echelons over multiple periods. In 

addition, our model deals with the unique features of the biofuel industry. Through a case study 

that represents the Central Texas region, we identify several important applications of our model 

and provide insights into the significance of system components and interactions among them. 



146 

 

 

 

 Future research can extend this study in several ways. First, specialized solution 

algorithms must be developed to solve large-scale instances, which could cover a larger 

geographical area and prescribe detailed, tactical-level decisions that must deal with more time 

periods in the planning horizon. Second, the relationship between storage capacity and 

replenishment policy in the multi-echelon system must be determined so that both can be 

prescribed more accurately. Third, considering several alternative transportation modes (e.g., rail 

and truck) may allow costs to be reduced since large quantities of biomass must be transported. 

Fourth, dealing explicitly with uncertainty by using stochastic programming models can be 

expected to lead to robust SC designs. Lastly, models could be formulated to represent the 

interests of specific stake holders (e.g., biomass suppliers, refineries, distribution centers) so that 

ways in which they could co-operate to improve efficiency and profitability can be identified. 

7.3 Conclusion and future research on an exact solution approach 

 This paper presents a new solution approach for BSCP. We deal with material flows 

based on the viewpoint of single-commodity, generalized flows, an alternative to the multi-

commodity flow model of An et al. (2011b). We use a CG approach to solve the linear relaxation 

of model 2 at the root node. In this CG context, our BRA solves the subproblem, an 

uncapacitated, embedded generalized minimum cost circulation problem, generating improving 

flow-paths (i.e., columns) effectively in O(m). 

 We devise POCs, inequalities based on a portion of the objective function and augment 

them to the linear relaxation of BSCP to cut off some portion of the B&B search tree, facilitating 

solution. Average ratios of runtime of our methods to that of CPLEX are 90% for POC1, 91% 

for POC2, 76% for POC1&2, respectively, implying that POC1&2 outperforms, on average, 

CPLEX, POC1, and POC2. POC1&2 improved best bound in the initial stage of B&B search. 

POC1&2 might be helpful to find integral solution earlier than others, so that it may contribute 
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to faster convergence than POC1 and POC2. However, the initial better bound does not 

guarantee less runtime, but, on average, performs better.  

 Several studies associated with B&B did not deal with each instance in detail for their 

analysis, but considered, in general, average performance. Providing better information to strong 

branching may not guarantee better solution because we can consider strong branching as a 

greedy heuristic. 

 Our CG approach solves the linear relaxation of BSCP at the root node of the B&B 

search tree faster than CPLEX. For one instance (F34T4), its runtime is just 11.3% of that of 

CPLEX. Our approach can be applied to many other important problems that involve an 

embedded GFP. 

  CPLEX cuts do not reduce runtimes to solve our BSCP instances. Our solution 

approach, which involves use of CG at the root node and CPLEX B&B supplemented with 

POC(s), solves most of our BSCP instances faster than CPLEX. Even though we had to maintain 

>��Ô 	 0 or the incumbent solution from CPLEX heuristics because CPLEX does not allow a 

right-hand-side constant to be changed after branching begins, using POC(s) gives good results, 

implying that such inequalities may be helpful in accelerating B&B.  

 Finally, we suggest several fertile topics for future research. First, in addition to the 

embedded GFP sub-problem, it would be helpful to define a second type of sub-problem that is 

an integer problem to allow bounds at B&B nodes to be tightened to facilitate solution. Second, 

since our CG approach is not guaranteed to generate all alternative optimal shortest paths, it will 

be interesting to study the impact of making only alternative optimal shortest paths available to 

the master problem. Third, our approach incorporates several path-flows (columns) with positive 

reduced cost after solving the subproblem once at each CG iteration to accelerate CG 

convergence. However, future research could investigate avenues to improve our methods, better 
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managing the number of paths generated to enhance solution capability. Fourth, POC appears to 

offer promise and could be used to other mixed-integer programs that involve a similar objective 

function structure to ours. Finally, our solution approach offers promise in application to other 

problems that involve an embedded generalized flow problem. 

7.4 Conclusion and future research on new IBSAL elements for the biomass module system 

 Several IBSAL elements were developed to evaluate a conceptual logistics system based 

on biomass modules. Those elements described the anticipated operation of a self-propelled 

forage harvester coupled to a module former and a module hauler capable of loading and 

unloading two modules to and from flat-bed semi-trailers.  Simulation models based on the new 

and existing elements in IBSAL suggested the biomass logistics cost to range between $19.65 

and $41.26/Mg with varying yield levels and transport distances. A sensitivity analysis indicated 

the factors with greatest influence on cost to be module density, forage harvester field efficiency 

and module hauler transport speed. 

7.5 Conclusion and future research on evaluation of alternative biomass logistics systems 

 This study developed simulation models based on IBSAL to address several biomass 

logistics systems, including biomass module, silage, and bale systems. The biomass module 

system shows the best estimates for cost, energy, CO2 emissions and man-hour among biomass 

logistics systems considered. In particular, the transportation cost of the biomass module system 

was least affected by transportation distance compared to other systems. In addition, the 

doubling of crop yield reduced the CP cost significantly, ranging from 14 to 34%.  The biomass 

module system was expected to generate the best total expected profit. 

This paper suggests several future studies to improve the biomass logistics system 

further.  The first is considering several weather conditions to investigate the impact of weather 

condition. The second is applying this study to other locations and various crops to obtain more 
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robust evaluation result. The third is devising a method to optimize the number of machines used 

in the simulation model to consider the restriction of available machines in the region studied. 

Finally, even though this study has not used any storage elements from IBSAL, it will be needed 

to improve the logic for storage in IBSAL to consider more realistic aspects of storage operation 

because current logic invokes some unrealistic assumptions that biomass materials will be stored 

steadily and the number of turnover is a constant value. 
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