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ABSTRACT 

 
Microdrilling of Biocompatible Materials. (December 2011) 

Sankalp Mohanty, B.Tech, National Institute of Technology, Tiruchirappalli, India 

Co-Chairs of Advisory Committee: Dr. V. Jorge Leon  
     Dr. Wayne N.P. Hung 

 

This research studies microdrilling of biocompatible materials including commercially 

pure titanium, 316L stainless steel, polyether ether ketone (PEEK) and aluminum 6061-

T6. A microdrilling technique that uses progressive pecking and micromist coolant is 

developed that allows drilling of 127 µm diameter microholes with an aspect ratio of 

10:1. The drilling parameters, dominant wear pattern, hole positioning accuracy and 

effect of AlTiN tool coating are experimentally determined. The experimental data trend 

agrees with classical Taylor’s machining equation. Despite of fragile and long 

microdrills, the progressive pecking cycle and micromist allowed deep hole drilling on 

all the tested materials. Drill wear is more pronounced at outer cutting edge due to 

higher cutting speeds. However, when drilling 316L stainless steel attrition wear at 

chisel edge is dominant. Hole quality degradation due to formation of built up edge at 

the drill tip is observed. Coated drill improves tool life by 122% and enhances hole 

quality when drilling 316L stainless steel. The hole positioning accuracy is improved by 

115% and total hole diameter variation decreased from 0.11% to 0.003% per mm of 

drilling distance. 
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1. INTRODUCTION 

 

There has been a rapid increase in demand of medical devices which are used in 

medicine, dentistry and biotechnology. As these devices interact with biological systems 

the material used for manufacturing these devices must be biocompatible or 

biomaterials. According to a study the total market for biomaterials in United States is 

$9 billion USD in the year 2000 (Ratner, 2004). With the increase in emphasis on 

healthcare, the market for biomaterials is bound to increase in coming years. Moreover, 

the global market also holds a promising future for the usage of biomaterials. 

 

Manufacturing of medical devices needs utmost precision and state of the art quality 

control. These devices need to pass stringent norms set forth by various agencies. Many 

of the medical devices like catheter tubes, needles have a functional requirement for 

small holes in the range of few hundred microns with high aspect ratios. Product 

miniaturization is becoming key aspect of modern design which demands micro 

manufacturing techniques. Micromachining technologies play an important role in 

manufacturing of these devices. Micromachining is the next generation of precision 

material removal at the micro-scale level. It has numerous advantageous in terms of 

energy saving, minimum lubrication, easier control of waste and pollution. The 

applications of this technology extend anywhere from electronics to microscale medical  

 

This thesis follows the style of Machining Science and Technology. 
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implants.  Micromilling and microdrilling have the potential to be the most cost effective 

and efficient material removal process due to ease of use and accessibility of the tools, 

which make research in the field very valuable. While of most of the work in 

micromachining is done in micromilling, few people have done extensive research on 

high aspect ratio microdrilling. Also, limited study has been done on microdrilling of 

difficult to drill materials like CP titanium and 316L stainless steel.     

 
The scope of this research is limited to biomaterials namely commercially pure (CP) 

titanium, 316 L stainless steel, aluminum 6061-T6, and PolyEther Ether Ketone (PEEK) 

plastic. Microdrilling with an aspect ratio of 10:1 is performed at high rotational speeds 

using micromist as a coolant in all the cases. The main objectives of present research are 

to: 

• Analyze wear pattern of microtools 

• Model tool wear under different cutting conditions  

• Analyze hole quality 

Information about tool wear pattern for tested materials can be found in sections 4.2 to 

4.5; tool wear model is described in section 4.6, and hole quality is discussed in section 

4.7. The subsequent sections discuss about literature review of microdrilling and 

properties of biocompatible materials, experimental set up and design, results and 

discussions followed by conclusions and recommendations.  
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2. LITERATURE REVIEW 

 

2.1 Materials for biomedical applications 

Biomaterial is defined as a nonviable material used in a medical device, intended to 

interact with biological systems (Williams, 1987). Biomaterials can include metals, 

polymers, glasses, carbons, and composite materials. It is generally integrated with a 

medical device or used as an implant. It is extensively used in biotechnology, dentistry, 

and medicine. It encompasses different fields of science like medicine, biology, 

chemistry and material science. Until recently its application was limited due to 

biocompatibility issues but with technological advancement and better knowledge of 

human body, it is now used successfully for making implants and medical devices. There 

is a huge demand for biocompatible materials due to increase in healthcare spending. 

TABLE 1 highlights the market figures for biomaterials and healthcare.  

 

The application of biomaterials in human body dates back to early civilizations. Though 

there was a little knowledge of material science, biology and medicine but still the 

success of these implants shows the drive to address the need to replace vital body parts 

with an implant.  Similarly linen sutures were used by early Egyptians, catguts were 

used in middle ages in Europe and metallic sutures were mentioned in Greek literature 

(Ratner, 2004).  
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TABLE 1 The Biomaterials and Healthcare Market - Facts and Figures (per year) (U.S numbers- Global 
numbers are typically 2-3 times the U.S numbers) (Ratner, 2004) 

 

 
 
Due to its sensitive application a biomaterial must possess certain properties. A 

biomaterial should not be toxic unless and otherwise it is intended (e.g. smart drug 

delivery system that kills cancer cells) (Ratner, 2004).  

 

Biocompatibility is defined as ability of a material to perform with an appropriate host 

response in a specific application (Williams, 1987). The implant material should be inert 

to inflammatory reactions which can vary in intensity and duration. The mechanical 
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properties of implant materials vary according to their application; for example a hip 

prosthesis must be strong and rigid where as a tendon implant must be strong and 

flexible (Ratner, 2004). Medical devices are designed and manufactured under strict 

quality control norms.  

 
 
TABLE 2 Some Applications of Synthetic Materials and Modified Natural Materials in Medicine (Ratner, 
2004) 
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These norms and regulations are set by Food and Drug Administration (FDA) in USA 

and similar bodies worldwide. The biomaterials must comply with these regulations 

before they can be used for making implants. Application of some of the materials in 

medicine is listed in TABLE 2. 

 

2.1.1 Titanium alloys 

Commercially available pure titanium and Ti-6Al-4V are the most common type of 

titanium used for medical implants. Mechanical and physical properties of CP titanium 

grade 2 are given in TABLE 3 and TABLE 4.The Ti alloy Ti-6Al-4V is an alpha-beta 

alloy of titanium and its microstructure is dependent on the type of heat treatment cycle 

and mechanical working. The material composition of CP titanium grade 2 for implants 

is given in TABLE 5.  

 

It has excellent biocompatibility because of its high corrosion resistance and inert nature. 

It can be used in direct contact with tissue or bone. Ti alloy machining usually 

encounters the problems of high tool wear rate, high machining cost, and low 

productivity. There is a crucial need for cost-effective machining processes applicable to 

Ti alloy. It has a poor surface wear characteristic and hence cannot be used in direct 

contact with another metal. It has lower density compared to iron, low modulus and very 

stable oxide layer. It has better corrosion resistance compared to stainless steel and 

cobalt when contact with body fluid. It is used in widely in biomedical implants and 

aerospace industry. Some of the applications in medical implant are joint replacement 
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arthroplasty, femoral hip stem, fracture fixation plate, spinal component, orthopedic 

implants, and pacemaker case. However, Ti alloys have poor machinability due to 

several reasons. One of the reasons is poor thermal conductivity of Ti alloy which leads 

to high temperature of the cutting edge (approximately 1000°C). At this high 

temperature the tools wear is accelerated.  

 
 
TABLE 3 Mechanical Properties of Commercially Pure Titanium Grade 2 (ASTM B348-11, 2011) 

Mechanical Properties Min. 

Tensile Strength, MPa 345 

Yield Strength, MPa 275 

Elongation, % 20 

Reduction in area, % 30 
 
 
TABLE 4 Physical Properties of Commercially Pure Titanium Grade 2 (Boyer et al., 1994) 

Density 4.51 g/cc 

Specific Heat Capacity 0.54 J/g-°C 

Thermal Conductivity 16.3 W/m-K 

Melting Point 1662-1692 °C 
 
 
TABLE 5 Material Composition of Commercially Pure Titanium Grade 2 (ASTM B348-11, 2011) 

Elements  

Percentage 

composition max. 

Carbon 0.08 

Oxygen 0.25 

Nitrogen 0.03 

Hydrogen 0.015 

Iron 0.3 
 
 
The second reason is its strong affinity to many tool materials (especially at high 

temperatures) (Dornfeld et al., 1999). This will also cause rapid tool wear. Furthermore, 
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because Ti alloy can retain its hardness and strength at high temperatures, the force and 

stress on the cutting edge will be higher (Thornes, 2001). This can potentially cause 

some tools to fail. 

 

2.1.2 Stainless steels  

Stainless steel is chemically inert to many products, easy to clean and sanitize to 

eliminate bacteria and residues. It can be machined, formed and welded. Due to its inert 

nature and ease of manufacturability it is widely used in making medical devices and 

implants. Based on medical application stainless steel can be divided into commercial 

grade and implantable grade. Commercial grade is used for non-implant devices 

subjected to transient body fluid contact, e.g. scissors, trays, forceps, scalpels. 

Implantable grade is suitable for long term contact with the body tissue and fluids and 

hence have high corrosion resistance. Impurity refining is done using vacuum melting 

and electro-slag process. 

 

Stainless steel can also be classified by their crystalline structure as martensitic, ferritic 

austenitic, duplex and precipitation hardenable. Martensitic stainless steel has body 

centered tetragonal structure. It is ferromagnetic, heat-treatable and has high hardness. 

Ferritic stainless steel has body centered cubic structure. It is softer compared to 

martensitic steel. Austenitic stainless steel is non-heat treatable, non-magnetic, and can 

maintain high strength at cryogenic as well as at high temperature. It has excellent 

corrosion resistance property. Duplex contains 2 phase alloys e.g. ferrite and austenite. It 
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has improved mechanical strength, superior stress corrosion resistance and pitting 

resistance. Precipitation hardenable alloys can be adjusted for ductility and hardness.   

 

Stainless steel 316L has a wide variety of application in industry and has unique material 

properties. Another version of the 316 stainless steel is 316L having less carbon content. 

The composition and mechanical properties of stainless steel 316L are shown in TABLE 

6 and TABLE 7 respectively. It is an austenitic stainless steel with iron, chromium, 

nickel, molybdenum and manganese. The main purpose of addition of chromium is to 

form a surface oxide layer which is resistant to corrosion. The disadvantage of adding Cr 

is that it stabilizes the ferritic phase of iron and steel which is weaker compared to 

austenitic phase. Moreover, molybdenum and silicon are also ferritic stabilizers and 

hence nickel is added to stabilize stronger austenitic phase. Low carbon content in 316L 

helps in improving corrosion resistance by diminishing the formation of carbides in the 

grain boundaries which ultimately hamper the formation of protective oxide formation 

(Ratner, 2004). 

 

Some of the typical application of stainless steel in medical implants and devices are 

bone screws, bone plate for fracture fixation, joint replacement (knee, hip), forceps, 

scissors, needles, braces, scalpels etc. 
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TABLE 6 Physical Properties of 316L Stainless Steel (Azom, 2009) 

Grade 
Density 
(kg/m3) 

Elastic 
Modulus 

(GPa) 

Mean coefficient of Thermal 
Expansion (µm/m/°C) 

Thermal 
Conductivity 

(W/m.K) 

0-100 °C 0-315°C 0-538°C 
At 

100°C 
At 

500°C 

316L 8,000 193 15.9 16.2 17.5 16.3 21.5 

                                                                                                                                                                                                                                              

 
 
TABLE 7 Grade Specification Comparison of 316L Stainless Steel (Azom, 2009) 

Grade 
UNS 
No 

Old British Euronorm Swedish 
SS 

Japanese 
JIS 

BS En No. Name 

316L S31603 316S11   1.4404 
X2CrNiMo17-

12-2 
2348 SUS316L 

 
 

2.1.3 Aluminum alloy 

Aluminum is one of the most abundant metals on earth and has wide application in 

engineering field. There are two types of aluminum alloys namely wrought alloy and 

cast alloys. The properties that make aluminum favorable for many applications are light 

weight, appearance, mechanical properties, physical properties and corrosion resistance. 

Aluminum has a density of only 2.7 g/cm 3, approximately one-third as much as steel 

(7.83 g/cm3). It has excellent corrosion resistance in most environments, including 

atmosphere, water (including salt water), petrochemicals, and many chemical systems. 

There are different families of wrought alloys of aluminum depending on the type of 

alloying element starting from 1xxx to 9xxx. 
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Aluminum 6061 is the most widely used alloy in 6000 series. It is a precipitation 

hardening alloy containing magnesium and silicon as its major alloying elements. The 

mechanical and physical properties of aluminum 6061 are listed in TABLE 8 and 

TABLE 9 respectively. It exhibits excellent formability and good weldability. It is 

available in pre-tempered grades such as, 6061-O (solutionized), 6061-T6 (solutionized 

and artificially aged), 6061-T651 (solutionized, stress-relieved stretched and artificially 

aged). 

 
 

TABLE 8 Typical Mechanical Properties of Alloy 6061 (ASM Handbook Volume 1: Properties and 
Selection: Irons, Steels, and High-Performance Alloys, 1990) 

 

 
 
TABLE 9  Physical Properties of Alloy 6061 (ASM Handbook Volume 1: Properties and Selection: Irons, 
Steels, and High-Performance Alloys, 1990) 

Density 2.7 g/cc 

Specific Heat Capacity 0.896 J/g-°C 

Thermal Conductivity 167 W/m-K 

Melting Point 582-652 °C 

Solidus 582 °C 

Liquidus 652 °C 
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However, aluminum is not used as an implant material as it is not biocompatible but it 

has a wide application in manufacturing of medical equipment. It is used for making 

trays, crutches, hospital beds, wheel chairs and other medical devices. 

 

2.1.4 Polymers 

Many types of polymers are widely used in medical implants including orthopedic, 

cardiovascular, dental and soft tissue. They represent the largest class of biomaterials.  

They can be derived from natural sources or synthetic processes. Both natural and 

synthetic polymers are long chain molecules that consist of a large number of small 

repeating units. They can be classified on the basis of their structure as thermoplastic, 

thermoset and elastomer. Thermoplastic is a linear or branched polymer widely used in 

medical field. Thermoset is a cross-linked polymer which is rigid and cannot be 

recycled. Elastomers are highly elastic. Thermoplastic, thermoset and elastomers are 

widely used to make medical devices. Some of the applications of polymers include 

artificial teeth, membrane for dialysis, contact lenses, and drug delivery systems. 

Biodegradable polymers are used in making implants. Body cellular fluids, lipids and 

protein interact with polymers. These implants need not be removed surgically and can 

be used as temporary implants. Some of the examples include polylactide, lactide 

copolymers, biodegradable stitches. The applications of biodegradable polymers include 

vascular graft prostheses, heart patch, and non-absorbable sutures.  
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PolyEther Ether Ketone (PEEK) is one of the most mechanically robust and high 

temperature thermoplastics. Mechanical and physical properties of PEEK are given in 

TABLE 10 and TABLE 11 respectively. It is resistant to solvent, radiation, bases and to 

some acids. It exhibits high strength and toughness over a wide range of temperatures. It 

has excellent friction and wear properties. 

 
 
TABLE 10 Mechanical Properties of PEEK, standard viscosity grade for injection molding (Platt, 2003) 

Ultimate Tensile Strength 100 MPa 
Yield Strength 89.6 MPa 
Shear Strength 52.4 MPa 

Compressive Strength 118 MPa 
Ductility 50% elongation at break 

Flexural Strength 170 MPa 
Hardness 126 Rockwell R 

Poisson's Ratio 0.39 
 
 
TABLE 11 Physical Properties of PEEK, standard viscosity grade for injection molding (Platt, 2003) 

Density 1320 kg/m3 

Specific Heat Capacity 1700 J/kg-K 

Thermal Conductivity 0.2 W/m-K 

Melting Point 343 °C 
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2.2 Microdrilling 

2.2.1 Definition 

Microdrilling of hole diameter less than 0.5 mm with aspect ratio larger than 10 is 

becoming increasingly popular (Lin et al., 1995). FIGURE 1 shows size comparison of 

microdrill of diameter 0.050 mm with an ant’s leg. It is a challenging task to produce 

good quality hole consistently without damaging the parent material. Microhole drilling 

is becoming increasingly more important due to its application in various industries like 

medical engineering (FIGURE 2), aeronautics, electronics, optics, and automotive.  

 
 

 

FIGURE 1 Microdrill of diameter 0.050 mm compared to an ant’s leg. 
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FIGURE 2 160µm hole in stainless steel needle (after POTOMAC, 2011). 

 
 

2.2.2 Overview of microdrilling technologies 

Manufacturing processes to produce micro-holes include electro discharged machining 

(EDM), energy beam (laser, electron), chemical etching, and lithography. Previous 

attempts have been made to drill small holes using EDM. This could cause subsurface 

damages and give a rough surface finish due to repeated sparks. Also, the electrode gets 

consumed with time which affects both the form and dimension of the part. Laser 

drilling is another technology used in microdrilling applications. It is a complex and 

expensive process in which the laser thermally interacts with the material that causes 

change in material property in the heat affected zone. Electron beam drilling is also used 

to drill miniature holes where a highly concentrated electron beam is focused on the 

workpiece in high vacuum. Upon impact, the release of kinetic energy of the electrons 

causes thermal damage and vaporizes the workpiece. There is need for a process which 

is cost effective and can address these problems. Etching is also used for micro-hole 

fabrication in which many chemical solutions including acids and bases are used to 

remove layers from the workpiece surface. Depth of hole can be controlled by etching 
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time and etching rate. The major drawback associated with etching is undercut of cavity 

that produces sloping walls. Lithography is capable of producing micro features and is 

commonly used for fabricating MEMS devices. Photolithography transfers patterns and 

shapes on the substrate by optical and chemical means. Electron beam lithography uses 

concentrated electron beam to form shapes and patterns on the substrate by selectively 

exposing it. Both processes are expensive and involve complex steps. 

 

Although, micro EDM and laser microdrilling can compete against traditional micro-

hole drilling, there are concerns about surface integrity, hole quality, aspect ratio, 

product contamination and cost. Thus when micro holes are required, the traditional 

microdrilling has the potential to achieve superior roundness, smoother surfaces, and 

better lead times (Allen et al., 2000). Although the technology is promising, there is lack 

of information on traditional microdrilling of biomaterials. 

 

2.2.3 Challenges in traditional microdrilling 

Drilling is a complex material removal process whose performance depends on many 

interacting factors. Drilling is more challenging than turning and milling because of the 

complexity involved in removing chips from the hole. Microdrilling poses a greater 

challenge than macrodrilling in many aspects: 

• Microdrills are subjected to severe skidding motion during initial penetration into 

the workpiece. A very small radial force during skidding can lead to fracture of 

the tool in the first hole itself (Imran et al., 2008) 
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• Heat dissipation in microdrilling especially while drilling holes with high aspect 

ratio is a major concern. High temperature may arise due to inefficient supply of 

coolant and can eventually break the tool. Most of the research presently 

discusses microdrilling with an aspect ratio of 5:1 and below. Deep hole drilling 

with aspect ratio of 10:1 or more demand special cooling techniques (Imran et 

al., 2008). 

• Chip removal is another major concern in deep hole microdrilling. The inability 

of the cutting fluid to reach cutting zone and remove chips effectively can lead to 

tool breakage.  

• Entry burr formation in microdrilling severely affects the hole quality. 

• Although there are similarities between macro and micromachining but the 

cutting parameters of macro machining, like cutting speed, feed and depth of cut, 

cannot be offhand downscaled into the micro range due to size effects. Presently 

there is a lack of literature for selecting these cutting parameters for a given 

material. 

• Microdrills can fracture even with by a small impact as they are very weak in 

bending due to their slender shape. Handling these tools to carry out various 

experiments also poses difficulty. 

• Work hardening of certain materials like austenitic stainless steel makes 

microdrilling even more challenging. Rubbing of tool against work hardened 

zone leads to rapid tool wear. 
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2.2.4 Microdrill life and failure modes 

Usually the microdrill life is very short. In most of the practical condition the life of 

microdrills is randomly distributed from 1- 100 holes (Tansel, 1998). Typically the drills 

fail due to gradual wear of cutting edge or too high cutting temperature. However, 

majority of the failure is due to excessive cutting force at the tip of the tool causing it to 

fail suddenly by brittle fracture (Ueng et al., 2006). This kind of failure is unpredictable 

and difficult to observe with unaided eye. Even a slight damage may lead to total 

breakage of the tool in a few seconds. Secondly, monitoring microdrilling operation is 

more difficult than monitoring macro-scale conventional operations. The cutting forces 

in microdrilling are very small and hence to identify the signals of cutting forces and 

torque is quite difficult due to poor signal to noise ratio. Also there is no simple 

correlation between tool wear and cutting forces (Ueng et al., 2006). 

 

Kudla (2011) studied the behavior of microdrills in bending, compression and torsion 

under static condition. Torsion is applied along with compression and the values of 

deflections, forces, and torques are measured. The formation of micro cracks and their 

propagation is observed.  
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During drilling the tool is exposed to the action of torque M (torsion moment), thrust F 

(axial feed force) and radial force R (FIGURE 3). The microdrill with diameter d is 

rotating at n rpm. Torque M generates shear stress in the drill, thrust F causes 

compression and buckling and radial force R causes bending of microdrill. The friction 

force f is generated from the chips clogged in the flute. 

 
 

 

FIGURE 3 Motions, basic phenomena and resulting cutting forces in drilling process (after Kudla, 2011). 

 
 
The entry of the drill tip plays a very important role. The surface irregularities on the 

work part cause the drill tip to be pushed aside and change of its axial position (FIGURE 

4). Excessive stress from cutting forces is one of the main reasons for drill failure.  
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(a)                                                                             (b) 

FIGURE 4 a) Spiral marks made by twist drills on plain carbon steel b) Double start drill spot in stainless 
steel specimen (after Kudla, 2011). 

 
 
Some of the important observations from the experiment are: 

• In steel microdrills the breakage followed elastic and then plastic deformation of 

the cutting part whereas sintered carbide microdrills showed only elastic strains 

and brittle fracture sections. 

• The first crack took place on the drill periphery due to maximum stress value. 

• Under dynamic condition start of the drilling is very important to minimize drill 

tip wandering and reduce radial force. 

• Under dynamic condition drill breakage is a sudden and complex phenomenon. 
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(a) Thrust variation 

 

(b) Torque variation 

FIGURE 5 Cutting force variation as drill depth increases continuously. Frequency: 750 Hz, feed rate: 
0.32 mm/s, diameter: 0.5 mm (after Cheong et al., 1999). 

 
 
Cheong et al. (1999) proposed a method to regulate the cutting force to achieve 

continuous drilling instead of peck drilling in microdrilling applications. They also 

discussed two important problems given as under:  

• Force increasing: For drilling holes which have high aspect ratio, the cutting 

forces increase with the drill depth (FIGURE 5). 
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• It can be seen that as the drill depth increases (a function of drill time) both thrust 

and torque increase. This is due to the chip produced during drilling which 

increases the friction between the tool and the job leading to wear. 

• Drill wandering: The wandering motion of the drill is more likely to take place 

during the inlet stage of drilling. Torque and thrust variation during initial 

wandering motion is shown in the FIGURE 6. It can be seen that torque has a 

much higher degree of variation than thrust. The paper also discusses the four 

boundary conditions for drilling which is shown in FIGURE 7. Wandering 

motion is most likely to occur in for the boundary condition shown in FIGURE 

7(b) where lateral motion is possible as drill bit motion is not stabilized. When 

the drill feed velocity is large or the drill is drilling through the workpiece, the 

boundary condition changes to FIGURE 7(c). After the drill has completely 

penetrated into the workpiece the condition changes to FIGURE 7(d).It is found 

that in order to minimize the effect of wandering motion it is desirable to change 

the boundary condition. This can be achieved by lower initial drill rotation speed 

to feed rate ratio compared to later stages of penetration. 
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(a) Thrust 

 

(b) Torque 

FIGURE 6 Cutting force variation during wandering motion. Frequency: 750 Hz, feed rate: 0.18 mm/s, 
diameter: 0.9 mm (after Cheong et al., 1999). 
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FIGURE 7 Drill wandering motion and variation of boundary conditions: (a) Drill clamped in the spindle, 
(b) end point free, (c) end point pin joint, (d) end point fixed (after Cheong et al., 1999). 

 
 
Classical Taylor’s equation gives a good approximation of tool life. It uses cutting speed, 

feed rate, and depth of cut to predict tool life. Tool life can be predicted under different 

cutting conditions for a single tool using the same equation. If a tool is used at an initial 

condition and then altered, tool life can still be predicted by taking all the cutting 

conditions into consideration. Hung and Zhong (1996) proposed cumulative wear 

models to predict tool life progressively as the tool is used under different cutting 

conditions.  Equations (1) and (2) represent the cumulative tool wear models. 

 

 



25 
 

 �� = �∆��
�

�	

 (1)

 ��
/
 = � ∆�����
/
��	

� � ∆����	


 (2)

 

FIGURE 8 Cumulative wear model with transition from high to low speed and low to high speed (after 
Hung, 1996). 

 
 
where Tc and Vc represent the cumulative tool life and the cumulative average of the 

cutting speeds for the tool life, respectively; k is the number of machining experiments 

done using the tool, ∆�� is the time at each experiment, Q is the cumulative wear on the 

tool in micrometers, n is the constant based on tool wear rate, and Vcj is the cutting speed 

of the tool at each experiment. 

 

The order of experiments was negligible as predicted in Equation (2).  High speeds could 

be used first with rapid wear then switched to low speeds or low speeds first with lower 
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wear rates, the models still held consistent and accurate in determining the tool wear 

(Hung and Zhong, 1996).  FIGURE 8 shows data plots of the cumulative wear model. 

 

2.2.3 Machine tool and requirement 

Microdrilling requires precision equipment for consistent quality of holes. (Iwata et al., 

1981) used both vertical and horizontal drilling machine for conducting experiments 

(TABLE 12). 

 
 
TABLE 12 Machine Specifications for Microdrilling (Iwata et al., 1981) 

Nomenclature Spindle 1 Spindle 2 
Maximum spindle 
speed, rpm 180,000 50,000 
Radial error load free 
condition, µm < 1 
Feed rate, mm/min 30-800 
Feed per step 10 µm - 99.99 mm 

 
 

Chern and Lee (2005) studied the effect of vibration on drilling quality of aluminum 

alloy and steel alloy. They used machining center MC-1050P, Mitsubishi-520AM 

controller with spindle speed range of 45 rpm to 6000 rpm for carrying out microdrilling. 

Laser displacement meter (Keyence LC-2430) was used to measure the vibration 

amplitude of the workpiece. Toolmakers’ microscope (Olympus-STM) was used for 

measuring the hole diameter and tool wear measurement. It had a maximum 

magnification of 600 times. Klocke et al., (2009) conducted microdrilling experiments 

without cooling on the ultra-precision CNC Machining center KERN Evolution. It had a 
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position accuracy of ± 0.5 µm, maximum spindle speed of 160,000 rpm. It also featured 

non-contact measurement of the microdrills with a laser beam. 

 

Imran et al.  (2008) conducted microdrilling tests using a Mikron HSM 400 high speed 

machining center. The tests were carried out using HOCUT 3830 water based coolant. 

The tool edge radius was measured using scanning electron microscopy (SEM) and BSE 

microscopy studies were carried out on Hitachi 3400 scanning electron microscope. 

 

2.2.5 Process parameters and case studies 

The cutting parameters of conventional machining, like cutting speed, feed and depth of 

cut, cannot be offhand downscaled into the micro range. When the uncut chip thickness 

is on the same order as the material grain size, the workpiece material cannot any more 

be assumed as homogeneous and isotropic. Furthermore, the tool edge radius 

significantly influences the cutting mechanism in micro machining with regard to the 

effective rake angle and the ploughing effect (Dornfeld et al., 1999). 

 

In a study the relation between drill geometry parameters, cutting conditions and tool 

wear shows that an increase in feed increases both thrust force and torque but an increase 

in spindle speed only increases thrust force and decreases torque (Chen and Ehmann, 

1994). Also the effect of point angle on the thrust force is much more significant than the 

torque. 
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Klocke et al. (2009) investigated the size effects by down scaling the twist drill process 

into the micro range (Ø 50-1000 µm). The drill used in this study is made up of ultra-

fine grained carbide with point angle 118°, front clearance angle 10°, and helix angle 

35°. Experimental microdrilling tests are conducted on steel AISI 1045 (normalized and 

full-annealed) under different cutting conditions (drill diameter, feed, cutting speed) and 

compared with data obtained from conventional drilling. Due to different mechanical 

loading capacities of the drills and to ensure the comparability of the micro and 

conventional drilling results, the feed is selected as 0.012 times drill diameter and the 

drilling depth amounted to 2 times drill diameter for all drilling tests. 

 

An increase in the cutting speed decreases the feed force until it reaches a minimum 

value after which the feed force again starts to increase (FIGURE 9). At higher cutting 

speeds the temperature between the tool and metal interface starts to increase causing 

thermal softening. However, at very high speeds there is a formation of built up edge 

contrary to the conventional machining. 

 

Hoshi et al. (1981) studied high speed micro deep drilling in two types of drilling 

machine i.e. horizontal drilling and vertical drilling. In horizontal drilling relative rotary 

motion is applied to both workpiece and the drill. Three types of drills are used in their 

study, details of which are given in TABLE 13. Also the cutting conditions are listed in 

TABLE 14 for all the drills. 
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FIGURE 9 Effect of cutting speed on feed force in steel AISI 4015 (after Klocke et al., 2009). 

 
 
TABLE 13 Dimension of Twist Drills (Hoshi et al., 1981) 

 
 
 
TABLE 14 Cutting Conditions (Hoshi et al., 1981) 

 
 
 
Effect on cutting forces and temperature under different lubricating conditions like dry 

cutting, air blow, direct application of oil and oil mist is studied. Oil mist is found to 

give the best result in terms of cutting forces and torque (FIGURE 10).  
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FIGURE 10 Cutting forces, torque and temperature under different lubricating conditions (after Hoshi et 
al., 1981). 

 
 
They made following observations based on experimental data: 

• Holes of diameter 0.1 mm can be drilled efficiently with spindle speed of 

100,000 rpm, feed rate of 11.5 mm/min, feed increment of 10 µm with oil mist 

lubrication. 

•  At higher spindle speeds there is a decrease in both torque and thrust force due 

to reduced chip load (FIGURE 11). However, outer corner wear and flank wear 

are more at higher spindle speed. 

• Worn out drills lead to burr formation. 

 

Imran et al. (2008) investigated the feasibility of deep hole microdrilling of Ni based 

super alloy. Poor machinability of these alloys made it a challenging task. Two drills are 

used in the experiment; center drill to make a pilot hole and then a twist drill for actual 

drilling. 
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FIGURE 11 Effect of spindle speed on torque and thrust in stainless steel (after Hoshi et al., 1981). 

 
 
Specifications of the drills are given as under:  

• Pilot drill:  Point angle 120°, helix angle 30° 

• Twist drill: Diameter 0.5 mm, point angle 150°, helix angle 30° 

Drill is made up of tungsten carbide which is coated with TiAlN. All machining trials 

are conducted on Micron HSM-400 machine and BLASOCUT BC 25-MD is used as a 

coolant. Cutting conditions of the tools are given in TABLE 15 and TABLE 16. 

 
 

 
TABLE 15 Cutting Conditions for Pilot Hole (Imran et al., 2008) 
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TABLE 16 Cutting Conditions for Actual Hole (Imran et al., 2008) 

 

 

 

 

Some of the important results and observations from their research are: 

• Tool life decreases on either side of cutting range of 3000 rpm to 5000 

rpm. Higher cutting speeds cause hardening which leads to tool wear 

(FIGURE 12) 

• Higher feed rate can cause drill fracture due to higher mechanical load 

and disturbances at the beginning of the hole (FIGURE 13) 

• Peck depth also has an effect on tool life. Tool life decreases on either 

side of the nominal value of 0.1mm (FIGURE 14) 

• It is possible to drill 80 holes of 0.5 mm diameter with an aspect ratio of 

10 times the hole diameter. 

• As number of holes increases, hole diameter decreases (FIGURE 15).    
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FIGURE 12 Effect of spindle speed on drill life (after Imran et al., 2008). 

 
 

 

FIGURE 13 Effect of feed rate on drill life (after Imran et al., 2008). 

 

 

 

FIGURE 14 Effect of peck depth on drill life (after Imran et al., 2008). 
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FIGURE 15 Variation of hole diameter (after Imran et al., 2008). 

 
 

2.2.6 Hole quality 

Lee et al. (2002) studied burr formation in microdrilling where they investigated the 

factors which significantly influence the burr formation process. The primary factors in 

their analysis are diameter, feedrate, cutting speed, and mechanics of burr formation.  

Experiment is carried out in two types of materials namely 6061-T6 aluminum and 

25MoCrS4 steel using speed and feed combination listed in TABLE 17. Three different 

cutting tool diameters are 130 µm, 250 µm, and 500 µm. A microdrill is attached to Mori 

Seiki CNC drilling center TV-30 or Cameron Microdrill Press MD-90. The height and 

thickness of the burr are measured using SEM pictures. The tendency of increasing 

height with increase in feed rate is observed in aluminum micro burr (FIGURE 16). 
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The effect of cutting speed is not clear from the experiment. Increase in feed rate also 

increases the thickness of the micro burr whereas the effect of speed is not consistent 

with burr formation. 

 

In case of steel, feed rate shows the same trend for thickness as well as the height of the 

burr as that of aluminum (FIGURE 17). Cutting speed again has no significant effect on 

the thickness of the burr. Also it is observed that there is a uniform burr formation at 

lower feed rates but at higher feed rates there is a formation of crown burr.  

 
 

TABLE 17 Experimental Cutting Condition (Stirn et al., 2002) 

 

 
 

 
 

FIGURE 16 Burr height of aluminum in 130 micron drill (left) and 250 micron drill (right) (after Stirn et 
al., 2002). 
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 FIGURE 17 Burr height of steel in 130 micron drill (left) and 250 micron drill (right) (after Stirn et al., 
2002). 

 
 
Imran et al. (2010) investigated the effect of tool geometry in microdrilling of Ni based 

super alloy. Factorial design is used to find the effect of drill point angle and helix angle 

on tool wear and burr size. Burr formation and surface integrity is also studied in terms 

of surface and subsurface alterations. 

 

A two factorial design with three levels is used in which the two factors are drill point 

angle and helix angle (TABLE 18) Inconel 718 alloy is used for conducting the 

experiments. Drills of diameter 500 µm coated with TiAlN and base material made with 

fine tungsten carbide is used. All tests are conducted on Mikron HSM 400 high speed 

machining center. HOCUT 3830 is used as water based coolant. A fixed feed of 7 

µm/rev and speed of 7000 rpm is used for all the experiments. 
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TABLE 18 Factors and their Levels (Imran et al. 2010) 

 
 
 
Some of the important outcomes of the experiment are: 

• Tool wear is strongly influenced by interaction of helix angle and drill point 

angle. An optimum value of 150° point angle and 40° helix angle results in 

reduced drill wear rate, reduced burr height and subsurface plastic deformation 

for microdrilling of nickel based super alloy. 

• Increase in burr size is influenced by increase in tool wear which increases the 

plastic deformation and more material is extruded in the form of burr. 

• The angle of burr cap is smaller than the drill point angle showing evidence that 

the material experiences spring back when pushed out. 

• For 130° and 150° drill point angle, the thickness of deformation reduces with 

increase in drill helix angle as shown in FIGURE 18. 

 

Sugawara and Inagaki (1982) attempted to investigate the phenomena in which burr size 

was reduced and cutting ability was improved as the drill diameter went down in 

workpieces which were granular in structure and had relatively large crystals. They 

performed the experiment with various materials and different diameters of the drill. The 

cutting conditions are given below in TABLE 19. 
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FIGURE 18 Variation of deformation zone at various points and helix angles (after Imran et al. 2010). 

 
 
In a single crystal structure the grain boundary is far away from the drilling point and 

therefore range of plastic flow can be large. Due to this reason the quantity of burr 

formation is large. In polycrystals with large grains, the number of grains in the drilling 

area is small. Hence working area supports the plastic flow but the grain boundaries 

impede it. This is also illustrated in FIGURE 19. 

 
 
TABLE 19 Working Conditions in Drilling (Sugawara and Inagaki, 1982) 
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FIGURE 19 Variation of workpiece cutting ability with drill diameter (after Sugawara and Inagaki, 1982). 
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3. EXPERIMENTS 

 

The objective of the experiment was to successfully drill microholes and build a tool 

wear model. Proper selection of cutting parameters was important to get useful results. 

Although parameters for macro-scale drilling drills are available, little information about 

microdrilling made it a challenging task. Several experiments were performed under 

different cutting conditions to understand the effect of cutting speed and chip load. Also, 

machine runout analysis was performed to understand the effect of tool deflection. 

 

3.1 Materials 

Commercially pure titanium, 316 L stainless steel, 6061-T6 aluminum and PEEK plastic 

were used. Initially the Ti samples were machined to the dimension of 12 mm X 8 mm X 

90 mm using milling machine and edges were deburred.  

 

It was decided to grind the sample step by step moving from 200 to 600 grit sandpapers 

followed by polishing. This helped in improving the surface finish without work 

hardening. Parallelism of the sample was measured with respect to the clamp base using 

a dial indicator (FIGURE 20). The measured values along the length and the width of the 

workpiece were 0.076 mm and 0.025 mm respectively. Sample preparation process for 

stainless steel was on the same lines as Ti alloy.   
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FIGURE 20 Parallelism measurement of the workpiece. 

 
 

3.2 Tooling and machine 

• Microdrills   

The tools used in these experiments were provided by Performance Micro Tools. 

The corresponding part numbers for the tools were KT-0050-R and KT-0040-R. 

The specifications of the tools are listed in TABLE 20  Cemented carbide is one 

of the most widely used cutting tool material. Its properties are given in TABLE 

21.  

 

 

 

 

 

 

 

 

Workpiece 

Clamp base 

Dial indicator 
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TABLE 20  Specifications of Microdrills (Performance Micro Tools, 2011) 

Nomenclature KT-0050-R KT-0040-R 

Diameter, mm 0.127 0.100 

Material Micrograin Tungsten 

Carbide (WC)  

Micrograin Tungsten 

Carbide (WC)  

Coating Uncoated and AlTiN 

coated  

Uncoated 

Point angle, degree 135° 135° 

Rake angle, degree 30° 30° 

Helix angle, degree 44° 40° 

Number of flutes 2 2 

Flute length, mm 2.286 1.778 

Overall length, mm 38.1 38.1 

Shank diameter, mm 3.175 3.175 

 
 
TABLE 21 Properties of Tungsten Carbide (Mitsubishi Materials Corporation, 2011) 

Hard 

Materials 

Hardness 

(HV) 

Thermal 

conductivity 

(W/m.k) 

Thermal 

Expansion 

(x 10
-6

/k) 

Tool 

Material 

WC 2100 121 5.2 
Cemented 
Carbide 
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• HAAS OM 2 CNC Machine 

It is a vertical CNC machine that was used for conducting all the experiments. 

The workpiece was clamped on the table which had 4 degrees of freedom. The 

drill was mounted using a collet. The spindle could move up and down along the 

Z-axis. Machine specifications are given in TABLE 22 and additional details 

about the machine are given in appendix A1.The CNC code for microdrilling is 

given in appendix A4. 

 
 
TABLE 22 HAAS OM 2 Machine Specification (High Point Precision Products, 2011)  

Characteristics Specifications 

Spindle   
Max rpm 
Min rpm 

50,000 
1000 

Feed rate   
Max cutting 12.7 m/min 
Max thrust 5111 N 
Accuracy   
Positioning ±0.005 mm 
Repeatability ±0.003 mm 

 
 

• UNIST cool lubricator system  

It was used to supply micromist lubrication during drilling to enhance tool life by 

using minimum quantity of coolant. The micro fluidization system consisted of a 

variable rate pulse generator which produced infinite cycles of metering pump. 

Lubricant output was controlled by a knob on each metering pump. The pulse 

generator was set at 4 pulses per minute. The lubricant used for the experiments 

was Coolube 2210 EP which was supplied by UNIST. 
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• Mistbuster 850 Air Cleaner  

It is an electronic mist collector that was used for cleaning oil mist and smoke 

from metal working application to maintain healthy mist free environment in the 

workplace. It is equipped with a variable motor which can be set at high and low 

settings. During the experiments it was set at high setting.  

3.3 Metrology 

• Olympus STM 6 Optical Microscope 

It was used for measuring tool wear throughout the experiment. It is equipped 

with the DP 70 12.5 megapixel camera. It has a resolution of 0.1µm. It is a 3-axis 

measuring microscope having objective lens from 1.25x to 50x.  Co-axial knobs 

are provided for movement of the 3-axis stage. Different stages on these knobs 

provide coarse and fine movement.  

 

• Keyence LK-G1577 Laser Displacement Sensor 

It was used to measure and set offset in z-direction. The measurement accuracies 

required for micromachining is in the range of microns. This called for the use of 

ultra-precision measuring instruments that are stable and reliable. As the tool was 

susceptible to break easily even with slightest contact with workpiece hence it 

was difficult to measure the tool offset in z direction. In order to overcome this 

difficulty, a sponge was mounted on top of a flat metal piece. This arrangement 

was placed on top of the workpiece and z-offset was measured by touching the 

sponge face with the drill. The height of sponge metal piece assembly was 



45 
 

subtracted from the z offset to get the actual tool offset from the workpiece.  The 

laser system was used for measuring the height of the sponge and metal assembly 

accurately.  

 

• Ultrasonic cleaner Metason 200 

It was used to clean dirt, oil and small chips of metal attached to the microdrills 

before observing them under microscope. It required a cleaning agent to 

effectively clean the workpiece which in present case was Isopropyl alcohol. An 

ultrasonic transducer produces compression waves through the cleaning agent. 

This results in the formation of large number of minute vacuum bubbles. These 

bubbles collapse, release high energy and pressure which helps in removing the 

contaminants from the surface. 

 

• JEOL JSM-6400 Scanning Electron Microscope (SEM) 

To study the minute details of the holes and the tool requires a Scanning Electron 

Microscope. A JEOL JSM-6400 SEM is used for studying the wear and quality 

of the holes. It has a tungsten source SEM having secondary electrons (SE), 

backscattered electrons (BSE). It has a magnification range from 10X to 

300,000X with a resolution of 3.5nm. The accelerating voltage can be varied 

from 0.2 to 40kV. The sample to be studied is placed in the SEM chamber after 

ultrasonically cleaned in alcohol and blew dry. 
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• GF AgieCharmilles Cut 20P Wire Electro Discharge Machining (EDM)  

It was used to cut the drilled sample without damaging the surface details. It was 

important to observe the section of the hole to verify depth of hole and to extract 

information from microstructure deformation near the hole. As the holes were 

very small it was difficult to cut a section through the holes. Wire EDM was used 

to cut a section close to the holes and later this section was ground and polished 

to get the required detail. 

 

3.4 Machine runout  

Machine runout was measured and analyzed to confirm the adequacy of the machine to 

perform the experiments. High runout would affect the quality of the hole. The runout 

data was analyzed from previous data collected using a Keyence LK-G157 displacement 

laser system. TABLE 23 and TABLE 24 show the test parameters used in the 

experiment. 

 

The experiments were conducted on HAAS OM2 machine. The end milling tools were 

provided by MA Ford. Micro milling was performed on 316 L stainless steel along a 

straight line using constant axial and radial depth of cut.  
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TABLE 23 Conditions for Measuring Spindle Runout (Chittipolu, 2009) 

Microcutting tool Gauge pin, diameter: 3.175 mm 

Spindle speed 
0 rpm (stationary), 6000 rpm (19.15 m/min), 
10,000 rpm (31.92 m/min) 

 
 
TABLE 24 Process Parameters for Measuring Tool Deflection when Machining (Chittipolu, 2009) 

Microcutting tool Diameter: 1.016 mm, 2 flute 

Workpiece material 316L Stainless Steel 

 Chip load 10 µm/tooth 

Axial depth of cut 0.35 mm 

Radial depth of cut 0.56 mm 

Spindle speed 

6,000 (19.15 m/min), 15,000 
(47.88 m/min) and 25,000 rpm 
(79.80 m/min) 

Coolant Unist mist spray 
 
 

3.5 Tool workpiece positioning 

The tool was mounted in the collet carefully without causing any damage to the cutting 

edge. The work coordinate system for the workpiece is shown in FIGURE 21. The back 

left corner of the workpiece was set as programming reference point for all the 

experiments (FIGURE 21). The x, y position of the tool was set by using an ocular lens. 

Very precise positioning in x, y direction was not necessary as a clearance of at least 

twice the diameter of the tool was provided between the holes in both x and y directions. 

The procedure for determining the z height is as follows (FIGURE 22):  

1) A central point was marked on the surface of the foam block and the height of 

the block was measured at that marked location using Keyence LK-G1577 Laser 
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Displacement Sensor (FIGURE 23). This process was repeated multiple times, 

each time moving the block to a slightly different location. These heights were 

averaged to find the height of the foam block which was 30.092 mm. 

2) The work surface of the CNC machine and tip of the tool was cleaned using 

ultrasonic cleaner with rubbing alcohol. 

3) The sponge block was placed on the work surface, and the tip of the tool was 

adjusted so that it was directly above the central marked point on the sponge 

block surface. 

4) The laser on the vice clamp was mounted at an angle so that the laser spot was 1-

2 mm away from the marked point.  

5) The tool was slowly lowered until it contacted the sponge block. This was 

indicated by a sudden change in laser values. When the tool contacted the sponge 

block, the value on the laser jumped suddenly.  

6) The z coordinate displayed on the CNC work co-ordinate display screen 

combined with the average height of the sponge block indicated the height of the 

tool above the work surface. 
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FIGURE 21 Coordinate frame of the workpiece. 

 
 

 

FIGURE 22 Setup showing the Keyence laser and cutting tool for tool positioning in z-direction. A: 
Keyence laser, B: Microdrill, C: Foam block (after Kajaria, 2009). 
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FIGURE 23 Schematic layout to measure height of the foam block with laser displacement sensor. 

 
 

3.6 Nozzle orientation 

Nozzle angle is set based on the research for optimization of coolant spray direction to 

maximize surface contact. Spray angle played a crucial role to maximize the 

effectiveness of micro-mist coolant. The nozzle position was set with respect to the tip of 

the tool, being the origin.  The coordinates were (r, θ, Ø) = (30 mm, 60̊, 55̊).  ‘r’ is the 

radial distance from the tool tip; ‘Ø’ is the angle between the y-axis on the machine 

coordinate system and the mist nozzle direction, and ‘θ’ is the angle between the tool 

axis and the mist nozzle direction. FIGURE 24 and FIGURE 25 show the orientation of 

the tool. 
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FIGURE 24 Coolant nozzle angle setup for θ (front view). A: Nozzle, B: Spindle, C: Workpiece (after 
Kajaria, 2009). 

 
 

 
 

FIGURE 25 Coolant nozzle angle setup for Ø (top view). A: Workpiece, B: Nozzle (after Kajaria, 2009). 
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3.7 Experimental procedure 

All the tools were numbered for easy identification and tracking. Each drill was 

inspected in the optical microscope for any defects or irregularities before starting the 

experiment. In case any impurity was found attached to the tool, it was cleaned using 

ultrasonic cleaning. 

 

The collet was cleaned using compressed air and then the tool was tightened in the 

collet. The workpiece and nozzle were positioned as described in section 3.4 and 3.5 

respectively. Before running the actual CNC program a warm up program was run if the 

machine was idle for more than two hours. This helped in minimizing wear and tear of 

the spindle. The warm up program is given in APPENDIX B.  

 

The drilling program was written with pecking cycle incorporated as a macro in the main 

program (see APPENDIX B). Variable peck cycle was used instead of using constant 

peck to save time and resources. The pecking depth was deep in the beginning, but was 

reduced as we drilled deeper. We started with an initial pecking depth of 2*diameter and 

gradually reduced it to 0.5*diameter at the depth of 10*diameter (TABLE 25). Pecking 

depth and pecking cycles was calculated from: 

�
� = 1

9�−1.5� + 19.5� ��������� ≤ 10 (3)

�
� = 0.5�������� > 10 (4)
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where 

P = incremental pecking depth (mm) 

D = drill diameter (mm) 

R = intermediate drill aspect ratio  

 
 
TABLE 25 Pecking cycle for drill diameter 0.127 mm with an aspect ratio of 10:1 

Pecking cycle 

Number 

Hole depth 

(mm) 

Aspect ratio P/D Pecking 

depth (mm) 

1 0.254 2 1.83 0.233 

2 0.487 3.83 1.53 0.194 

3 0.681 5.36 1.27 0.162 

4 0.843 6.63 1.06 0.135 

5 0.977 7.70 0.88 0.112 

6 1.090 8.58 0.74 0.094 

7 1.183 9.32 0.61 0.078 

8 1.261 9.93 0.51 0.065 

9 1.326 10.44 0.43 0.054 

 
 
The UNIST cool lubricator system was turned on before actual drilling. Normally the 

coolant system took some time before it started spraying the coolant. The presence of 

coolant was checked by placing a paper in front of the nozzle for oil trace. Mist buster 

air cleaner was started and drilling was performed along the width of the workpiece. 

Each cycle consisted of ten holes with a pitch of twice the diameter (FIGURE 26). After 

end of each cycle the drill was carefully removed from the collet and taken for 

inspection. The drill was mounted again in the collet after inspection and the next cycle 

of drilling was started at a distance of five times drill diameter from the previous row. 
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Two different cutting speeds were used for the same chip load for each material. Tool 

wear in Ti was studied with air blown and also with oil mist.  The drilling parameters 

and conditions used for different materials are given in TABLE 26. 

 
 
TABLE 26 Cutting Conditions for Different Materials 

Material 
Cutting 

Condition 

Tool 

Diameter 

(µm) 

Spindle 

speed 

(rpm) 

Cutting 

Speed 

(m/min) 

Chip 

Load 

(µm/flute) 

Aspect 

ratio 

CP Ti 
Grade 2 

Oil mist 

100 40,000 12.5 0.1 

10:1 

127 50,000 20 0.1 
127 30,000 12 0.05 
127 50,000 20 0.05 

Air blown 
100 20,000 5 0.05 
100 15,000 6 0.05 

316 L 
Stainless 

steel 
Oil mist 

127 35,000 14 0.02 
127 50,000 20 0.02 
127 35,000 14 0.035 
127 50,000 20 0.035 

Al-6061 
T6 

Oil mist 
127 20,000 8 1 
127 40,000 16 1 

PEEK Oil mist 
127 10,000 4 0.06 
127 15,000 6 0.06 
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FIGURE 26 Drilling sequence. 

 
 

3.8 Calibration  

A standard piece was measured under microscope and picture was taken with a known 

scale (FIGURE 27). This picture was imported to Solidworks to measure10 µm, 30 µm, 

and 50 µm dimensions ten times each using Solidworks interface. Mean and standard 

deviation was found for each set of dimension (TABLE 27). The maximum percentage 

deviation was found to be 1.3%. 
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FIGURE 27 Picture of standard piece for calibration. 

 
 

TABLE 27 Measured Values of Calibrated Piece using Solidworks 

Observation 
50 µm measured 

as (in µm) 

30 µm measured 

as (in µm) 

10 µm measured 

as (in µm) 

1 50.393 30.332 10.052 
2 50.481 30.201 10.009 
3 50.350 30.157 10.140 
4 50.393 30.288 10.140 
5 50.262 30.201 10.184 
6 50.393 30.245 10.140 
7 50.306 30.288 10.140 
8 50.393 30.288 10.096 
9 50.393 30.245 10.227 

10 50.393 30.201 10.140 
11 50.393 30.245 10.052 
12 50.306 30.201 10.096 
13 50.350 30.288 10.140 
14 50.481 30.332 10.140 
15 50.350 30.288 10.184 
16 50.393 30.288 10.140 
17 50.481 30.376 10.096 
18 50.350 30.245 10.140 
19 50.437 30.201 10.096 
20 50.393 30.201 10.184 

Mean 50.385 30.256 10.127 
Standard deviation 0.058 0.056 0.051 

Percentage deviation 0.008 0.009 0.013 
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3.9 Tool wear measurement 

Micro images of the tool were taken before drilling and after every ten holes. Digital 

image stitching was used to obtain a final picture with deep depth of field. Tool wear 

was monitored on both flutes.  

 

FIGURE 28 shows the picture of the new tool and FIGURE 29 shows picture of worn 

out tool. Outline of the new tool was drawn by importing the image of the new tool 

using SolidWorks 2011. Tool wear was measured along the vertical line as shown in 

FIGURE 30. Pictures of the tool after every ten holes were superimposed on the tool 

outline. Care was taken to align the pictures before measuring wear along the cutting 

edge. 

 
 

 
 

FIGURE 28 New drill as seen under microscope. 

 

Chisel Edge 

Main cutting 
edge 
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FIGURE 29 Worn out tool as seen under microscope. Workpiece: CP Ti, cutting speed: 20 m/min, chip 
load: 0.1 µm/flute, drilling distance: 101.6 mm, mist coolant. 

 
 

 
FIGURE 30 Tool wear measurement at the cutting edge. Workpiece: CP Ti, cutting speed: 20 m/min, chip 
load: 0.05 0.1 µm/flute, drilling distance: 76.2 mm. 

 
 

3.10 Hole quality assessment 

Hole position, diameter, depth and straightness were studied for hole quality assessment. 

A drilled sample was sectioned to measure the hole quality and to observe the 

microstructure. Microstructure was observed to study the effect of work hardening and 

grain boundary deformation. 

Chisel Edge 

Worn out 
main cutting 
edge 
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The process of sample preparation and etching is given as under: 

• Section the workpiece using wire EDM 

• Mold the workpiece into a hard resin mount 

• Grind  

• Polish 

• Chemical etching 

• Observe in microscope 

 

At first the workpiece was cut very close to the holes by using wire EDM process. Care 

was taken not to cut through the holes but at the same time cut as close to the holes as 

possible. Trials cuts were performed before cutting the actual sample to measure the 

erosion of the metal due to wire EDM. The cut workpiece was then placed in a silicone 

mold with the cut section facing down. A mixture of 15 parts of Epofix embedding resin 

and 2 parts of Epofix hardener was prepared in a separate container. This mixture was 

stirred gently using a wooden stirrer. The mixture was then poured gently into the rubber 

mold to avoid any formation of bubbles. The presence of bubbles might collect dirt 

which could scratch the surface. The mold was then left to dry overnight (FIGURE 

31).After the mold was hardened it was ground to make both the top and bottom surface 

parallel. The mold was ground on different grits of sand paper.  The sample was first 

ground on 200 grit paper, moving gradually to 400 and then 600 grit paper. Each time 

the sample was washed thoroughly before moving to the next grit of sand paper.  The 
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sample was ground both in horizontal and vertical direction until all the machining 

marks were cleared. 

 
 

 

FIGURE 31 Molded workpiece. 

 
 
The metal side of the mold was polished gradually from 1 micron to 0.05 micron with 

alumina polishing compound. To finish off the polishing stage, the side opposite to the 

metal side was also smoothed, while smoothing this side it was also made parallel to the 

reverse side by using a micrometer to check for parallelism. By making the surfaces 

parallel it would be easier to focus the entire face of the sample at once.  

 

After polishing the sample was etched to reveal the microstructure. The purpose of 

chemical etching was to optically enhance contrast coloring of the grains in the sample.  

Different reagents were applied for different materials; for Ti, Kroll’s reagent was used 

as a chemical etchant whereas for 316 L “Glyceregia” was used.  The chemical 
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composition for Kroll’s reagent and Glyceregia is shown in TABLE 28. Kroll’s reagent 

was used by immersion whereas Glyceregia was used by swabbing on the sample. The 

etching time varies based on desired contrast level.  The recommended range varies from 

10 seconds to several minutes, with longer times resulting in more contrast but potential 

for oversaturation in detail.   

 
 
TABLE 28 Etchants for Titanium and Stainless Steel (ASM Handbook, 1990) 

 
Etchants Material Chemical Amount (ml) Etch time 

(min) 

Kroll’s 

reagent 

CP Titanium Distilled water 92   

Nitric acid 6 1 

Hydrofluoric 

acid 

2  

                                                                                                            

Glyceregia 

316 L 

Stainless 

Steel 

Hydrochloric 

acid 

15  

Glycerol 10  5 

Nitric acid 5   

 
 

3.11 Microhardness 

Microhardness testing was done on the sectioned sample to determine the work 

hardening zone.  The Leco LM-21 microhardness indenter was used.  In the test, a 
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Vickers micro-indenter with a 136º pyramidal tip was indented into the material.  The 

indenter was pressed into the material with a small mass of 0.05 kg with a dwell time of 

13 s to form a square impression into the material. The first indentation was made close 

to the hole edge progressively moving away from the edge as shown in FIGURE 32.    

 
 

 

FIGURE 32 Microhardness location near a drilled edge. 

 

Microhardness 
indentation 
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FIGURE 33 Vickers microhardness test (after BAM, 2011). 

 
 
Then the diagonals of the square were measured and averaged using the optical 

microscope. FIGURE 33 shows the method of indenture and process of measuring the 

diagonals.  Then by having used a static load, constant dwell time, and knowing the 

average length of the diagonals, equation (5) was used to determine the hardness of the 

material.  Micro hardness was then plotted against the distance of indentation from the 

hole edge.  

"#�$%&'' = 1.(5)) * +,
$-  (5)
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4. RESULTS AND DISCUSSIONS 

 

4.1 Machine runout analysis 

The Keyence displacement laser recoded deflections of the tool under three different 

conditions: 

• Stationary tool 

• Running  tool at 6000 rpm without cutting any material 

• Running tool at 6000 rpm while machining under different conditions 

It can be seen that when the spindle was stationary there was still some displacement of 

the tool (FIGURE 34). When the spindle was running at 6000 rpm without cutting any 

material the displacement increased. The displacement of the tool increased further as 

soon as the machining started.  

 
 

 
 

FIGURE 34 Keyence laser raw data from tool runout/displacement during machining at 6000 rpm (after Chittipolu, 
2011). 
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To get further insight into the data Fast Fourier analysis was performed by Shioshaki 

(2011) and then placed in a power spectrum graph for above conditions (FIGURE 35). It 

can be seen that during stationary condition noise level had a thin scatter of data with a 

small peak at 127 Hz. At 6000 rpm before machining, there were two peaks at 127 Hz 

and 32 Hz which could be explained by noise and spindle runout respectively. While 

machining, the peaks were observed at the same frequencies but the amplitude was more 

due to tool deflection. The scatter of data also increased after machining. As there was 

no peak in amplitude other than the noise and the spindle runout, it could be concluded 

that the runout due to tool was negligible and tool was good for conducting experiments. 

Spindle runout also contributed to the increase in diameter of the drilled hole. 

 

4.2 Microdrilling of CP titanium 

Major wear in drilling Ti was observed in the main cutting edge towards the outer 

corner. Cutting speed is a function of tool radius which is maximum at outer corner of 

the cutting edge hence resulting in maximum wear (FIGURE 36 (c)). Chisel edge wear 

was negligible compared to outer corner wear.  
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FIGURE 35 Frequency spectrum of tool runout: (top) laser noise; (middle) spindle at 6000 rpm; (bottom) machining 
at 6000 rpm (after Shioshaki, 2011). 
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(a)                                                                                      (b) 

 
 

                                                                                    (c) 

 
FIGURE 36 Progressive wear of drill. Drilling CP Ti at cutting speed 20 m/min., chip load 0.1 µm/flute, 
and mist coolant. Tool cutting edge after drill depth of (a) 2.54 mm (b) 3.08 mm (c) 7.62 mm respectively.  

 
 
Workpiece material was adhered to the chisel edge and main cutting edges forming built 

up edge (BUE) even after ultrasonic cleaning with rubbing alcohol (FIGURE 37). This 

was evident in SEM image which showed brightness contrast between tool and 

workpiece material. 

Outer corner 
wear 
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Chemical etching with aquaregia dissolved most of the BUE on the microdrill and hence 

gave a clearer image of the tool however some remaining BUE can still be seen after 

chemical etching (FIGURE 38). 

 
 

 
(a)                                                 (b) 

 

FIGURE 37 Built up edge on microdrill after ultrasonic cleaning with rubbing alcohol. Drilling CP Ti at a 
cutting speed of 6 m/min, chip load 0.02 µm/flute, and mist coolant. (a) BUE on chisel and cutting edge 
(b) BUE on outer corner. 

 
 
 

BUE 
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` 
 

FIGURE 38 Remaining built up edge on microdrill after chemical etching followed by ultrasonic 
cleaning. Drilling CP Ti at  cutting speed of 12 m/min, chip load 0.05 µm/flute, and mist coolant. 

 
 

 
 
FIGURE 39 EDX of a built-up edge on the tool face. Drilling CP Ti at cutting speed of 6 m/min, chip 
load 0.02 µm/flute and with mist coolant. 

 
 
Also, the Energy Dispersive X-ray spectroscopy (EDX) confirms the presence of Ti on 

tungsten carbide the tool face (FIGURE 39). During drilling, BUE was formed at lower 

cutting speeds with high chip load. Most of the BUE formation was seen at the chisel 

BUE 
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edge where the cutting speed was minimum. Titanium chips are welded to the tool 

cutting edge due to increased temperature between the tool and the chip. Increase in 

temperature can be attributed to the poor thermal conductivity of Ti in which case a large 

amount of heat (as high as 80%) is absorbed by the tool itself (Li et al., 2007) . Also, the 

micro mist coolant was not very effective to lubricate the drill surface. While drilling a 

deep hole BUE grows until it reaches its maximum size. At higher speeds material at the 

tool face begins to soften and the binding force decreases thus eliminating BUE. This 

plucking of BUE causes tool chipping and rapid failure of the tool. Also, BUE changes 

the cutting geometry of the tool and hence the cutting forces.  

 

Formation of BUE was also reported in macromachining of titanium. Komanduri (1982) 

found shear failure of BUE at the apex of the tool while drilling Ti alloy at low cutting 

speeds. The cutting speeds used ranged between 0.0212 µm/s to 5.1 m/s. Rahim and 

Sharif (2006) reported similar results where workpiece material adhered to the tool while 

drilling Ti alloy with a drill diameter of 6 mm. Drilling was performed at different 

cutting speeds 25, 35 and 45 m/min, constant feed 0.06 mm/rev in presence of water 

soluble coolant. They found non uniform flank wear and micro-chipping as the dominant 

wear pattern. Arrazola et al. (2009) showed EDX analysis to confirm presence of BUE 

on the tool cutting edge during turning of Ti alloy. The feed and depth of cut was kept 

constant at 0.1 mm/rev and 2 mm respectively whereas cutting speed was varied from 50 

m/min to 100 m/min. 
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Adhesive and diffusion wear were the major wear mechanisms involved in machining Ti 

alloys (Muthukrishnan and Davim, 2011). Adhesive wear rate was promoted by the 

formation of BUE. Severe adhesive wear was characterized by welding and tearing of 

work material on the tool surface. In the present case, BUE formation was major reason 

for adhesive wear in the tool. Diffusion wear was characterized by movement of atoms 

from the tool material to the workpiece material. 

 

Gradual diffusion of tool material to the workpiece led to weakened cutting edge and 

chipping of the cutting tool (Patil, 2010). Diffusion wear occurred at elevated 

temperature and required some solubility of tool material with work material phase 

(Patil, 2010).  Simon et al. (2005) showed that Ti reacted with carbon at elevated 

temperatures causing diffusion of carbon. Arrazola et al. (2009) found diffusion of 

carbon on the tool face while drilling Ti alloy with WC/Co tool. Ginting et al. (2004) 

found adhesion and diffusion as the major wear mechanism while milling Ti alloy with a 

carbide tool. According to their study, cobalt binder material of the tool substrate also 

got dissolved and diffused by heat. The absence of cobalt from the tool matrix combined 

with interruptive mechanical loads splits the grains, finally leading to cracking, flaking, 

chipping and fracturing. 

 

4.3 Microdrilling of 316L stainless steel 

Unlike CP titanium where outer corner wear was predominant, severe tool wear was 

observed on the cutting lip close to chisel edge (FIGURE 40). Wear was also observed 
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on the chisel edge and outer corner of the cutting edge.  Chisel wear occurs due to the 

rubbing action of the tool under high compressive stress acting at high temperature. The 

rubbing marks can be seen near the chisel edge of the tool (FIGURE 41). This rubbing 

action of the chisel edge increased the deformation and work hardening zone of the 

workpiece. Consequently, the main cutting edges faced greater resistance leading to 

higher temperatures and lower tool life.  

 

Since microdrilling information is limited, data for macrodrilling of stainless steel is 

presented. Lin and Shyu (2000) found chisel and outer corner wear as dominant wear 

while drilling austenitic stainless steel which was in line with the present result. Coated 

drills of diameter 8 mm were used. Cutting speed employed was 25.2 m/min and feed 

was variable. Dolinsek (2003) reported high rubbing action at the chisel edge of the tool 

due to work hardening of austenitic stainless steel. The drill diameter ranged from 5 to 

15 mm. Cutting parameters varied between cutting speeds of 5–15 m/min and feeds 0.08 

to 0.31 mm/rev. Iwata et al.  (1981) also reported outer corner wear while microdrilling 

of stainless steel. Drill diameter of 0.45 mm, 0.35 mm, and 0.1 mm were used to drill 

stainless steel. For microdrill of diameter 0.1 mm, following cutting parameters were 

used; spindle speed 10,000 rpm to 140,000 rpm, feedrate 30 mm/min to 120 mm/min, 

feed per step 10 µm, and aspect ratio 4:1.  
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(a) (b) 

 
 

(c) 
 

FIGURE 40  Progressive wear of cutting lip and chisel edge. Drilling 316 L stainless steel at a cutting 
speed 14 m/min, chip load 0.02 µm/flute, and with mist coolant. Tool cutting edge after drill depth of (a) 
12.7 mm (b) 63.5 mm (c) 101.6 mm respectively. 

 

Cutting lip 
wear close to 
chisel edge 
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FIGURE 41 Abrasive rubbing marks on microdrill. Drilling 12.7 mm on 316 L stainless steel at a cutting 
speed 14 m/min, chip load 0.050 µm/flute and with mist coolant.  

 
 
Although BUE was observed under all cutting conditions, severe BUE formation was 

observed under low cutting speeds (FIGURE 42). BUE was more prominent near the 

chisel edge area as the cutting speed was lowest in that region. Poor thermal conductivity 

leading to high cutting temperature was one of the main reasons behind BUE formation. 

This promoted severe adhesion to workpiece material and BUE formation. High aspect 

ratio (10:1) of drilling also increased the tendency to form BUE. Heat dissipation in 

microdrilling especially while drilling holes with high aspect ratio, was a major concern. 

High temperature might arise due to inefficient supply of coolant.   

 

As information on microdrilling was limited therefore data for macrodrilling and turning 

of stainless steel was presented to substantiate BUE formation. Dolinsek (2003) reported 

Rubbing marks due 
to abrasive wear 
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formation of BUE while drilling austenitic stainless steel. Paro et al. (2001) found the 

presence of BUE on the cutting tool while turning austenitic stainless steel at cutting 

speed 60-100 m/min, feed 0.24 mm/rev and depth of cut 1.6 mm. Rapid tool wear and 

chipping were the major tool failure modes. They concluded that the presence of BUE 

decreased the machinability and affected the surface roughness of the workpiece. Similar 

results were obtained by Korkut et al. (2004) who reported poor performance of tools at 

lower cutting speed while turning AISI 304 which was an austenitic stainless steel. This 

behavior was attributed to poor thermal conductivity and formation of BUE.  

 

Notch or groove wear was observed under closer examination of the cutting lip 

(FIGURE 43). Notch wear was an indication of the hard abrasive surface of the 

workpiece which was formed due to work hardening. Chandrasekaran and Johansson 

(1994) found that practical tool life is limited by notch (groove) wear while machining 

high alloy steels (Cr 18-27% and Ni 12-30%). Notch wear is commonly observed in 

machining nickel based super alloys. 
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FIGURE 42 Micrograph showing BUE on tool after drilling 12.7 mm on 316 L stainless steel at a cutting 
speed 14 m/min., chip load 0.050 µm/flute and with mist coolant. 

 
 
Shaw et al. (1966) had concluded continuous seizure and plucking of tool material as a 

possible wear mechanism for such alloys. Notch wear information for turning and 

milling of stainless steel was presented in absence of any data for microdrilling. 

Chandrasekaran and Johansson (1994) studied notch wear mechanism while turning 

austenitic stainless steels with cutting speed varying from 100-250 m/min, feed 0.08-0.3 

mm/rev and depth of cut 0.5-4 mm without coolant. They reported poor machinability of 

austenitic stainless steel displaying different tool wear modes like flank, crater, notch 

and micro-chipping. 

 

BUE stuck at 
chisel edge 
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FIGURE 43 Micrograph showing notch wear at the cutting lip. Drilling 316L stainless steel, drilling 
distance 12.7 mm, cutting speed 14 m/min., chip load 0.050 µm/flute and with mist coolant. 

 
 
Endrino et al. (2006) reported chipping of cutting edge while milling 316 austenitic 

stainless steel. Cutting conditions were: cutting speed of 120 m/min, feed rate of 0.05 

mm, depth of cut of 10 mm and radial depth of cut of 0.5 mm in presence of coolant. 

The workpiece material was hot rolled Shao et al. (2007) found the basic tool wear 

modes while milling austenitic stainless steel are abrasive wear, adhesive wear, and 

diffusion wear.  

 

Vickers microhardness was measured near a drilled surface. The microhardness test was 

performed on the 10th hole of the workpiece (12.7mm drilling distance) to measure the 

effect of work hardening after the sharp edges of the drill were worn out (FIGURE 44). 

The overall hardness of unmachined 316 L stainless steel varied from 330-380 HV. The 

hardness near the drilled section was found to be 15% greater than the unmachined zone. 

Notch wear 
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This increase in hardness was due to the high degree of work hardening characteristic of 

316 L stainless steel. Similar work hardening was reported by Dolinsek (2003) while 

drilling austenitic stainless steel leading to higher resistance near the chisel edge of the 

drill. Work hardening was one of the major reasons for poor machinability of austenitic 

stainless steels (Jiang et al., 2007). It was one of the major reasons for the notch wear 

seen on the cutting lip of the tool. Ideally, the main cutting edges should not perform cut 

at the work hardened layer from the previous cut. Therefore, the feed should be greater 

than the depth of the work hardened zone to improve tool life. Hence it was important to 

find the depth of the work hardened zone to choose the best feed rate or chip load. To 

find the thickness of work hardened zone, hardness was plotted against distance from the 

hole section (FIGURE 45).  

 
 

 

FIGURE 44 Vickers hardness test with a 50 g load, dwell time 13 s. Drilling 316 L stainless steel, 10th 
hole (drilling distance 12.7 mm), cutting speed 14 m/min., chip load 0.035 µm/flute and mist coolant. 

Edge of the 
sectioned hole 

Indentation 
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It can be seen from the plot that the work hardening zone in the present scenario is 

approximately 30 µm from the edge of the hole section. This experiment can be repeated 

at different section of the holes to get an average work hardened zone. This means that 

the chip load required to cut this zone should exceed 30 µm for better tool life. However, 

it was found that increasing the chip load by a small amount (0.05 µm/flute) drastically 

increased the tool wear. Higher chip loads were characterized by notching of cutting lip 

(FIGURE 46).  

 
 

 
 

FIGURE 45 Vickers hardness of drilled 316 L stainless steel. Micro-hardness with a load of 50 g and 
dwell time 14 s. Drilling at  cutting speed 14 m/min., chip load 0.035 µm/flute , mist coolant, and 10th hole 
(drilling distance 12.7 mm). 
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(a)                                                                       (b) 

FIGURE 46 Effect of chip load on tool wear. Drilling 12.7 mm on 316 L stainless steel with micro-mist 
lubricant at a cutting speed of 14m/min., chip load of (a) 0.02 µm/flute and (b) 0.05 µm/flute.  

 
 
As BUE formation was the reason for adhesive wear in the microdrill, it was decided to 

use coated drills for improved performance. A coating AlTiN had less surface adhesion 

tendency to austenitic stainless steel which would minimize the BUE formation on the 

chisel edge. The drill with diameter 0.127 mm was coated and used for drilling 316L 

stainless steel which showed improved performance. There was minimum BUE 

formation on the chisel edge even after drilling distance of 101.6 mm as compared to 

uncoated drill which showed significant BUE formation after drilling distance of 12.7 

mm under similar condition. However, the BUE formation was significant as the drilling 

distance increased (FIGURE 47).   

 
 
 
 
 
 
 
 
 
 

Notch 
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                          (a)                                                                              (b) 

 
 

(c) 
FIGURE 47 Microdrill coated with AlTiN. Drilling 316 L stainless steel at a cutting speed 14 m/min., 
chip load 0.02 µm/flute, and with mist coolant. Tool cutting edge after drill depth of (a) 12.7 mm (b) 101.6 
mm (c) 177.8 mm respectively. 

 
 

4.4 Microdrilling of aluminum 6061- T6 

Major wear while drilling aluminum alloy was observed in the main cutting edge 

towards the outer corner. Chisel edge wear was less compared to outer corner wear. 

There was BUE formation in later stages of the drilling near the chisel edge (FIGURE 

48). This was in line with the findings of Trent (2000), who reported BUE formation in 

aluminum alloys at low cutting speed. There was a gradual increase in wear of the 

BUE 



82 
 

cutting edge as we move towards the outer corner of the tool. This is because of the 

increase in cutting speed as we move away from the center of the tool.  However, tool 

wear was less compared to tools after drilling CP titanium and 316 L stainless steel even 

at higher chip loads. This can be attributed to the fact that aluminum alloys have very 

good machinability due to high thermal conductivity and low cutting energy which 

generates a low temperature during cutting (Liu, 2004).  

 
 

 
                                              (a)                                                                      (b) 

 
                                                                                   (c) 
 

FIGURE 48 Progressive wear on cutting lip. Drilling aluminum 6061-T6 at a cutting speed 8 m/min., chip 
load 1 µm/flute, and with mist coolant. Tool cutting edge after drill depth of (a) 635 mm (b) 1270 mm (c) 
2032 mm respectively. 

 

 

BUE 
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4.5 Microdrilling of PEEK 

Tool wear in microdrilling of PEEK was found to be minimal compared to other metals 

(FIGURE 49). Uniform wear was observed at the cutting lip. While cutting metals high 

temperatures can be reached leading to thermal softening of tool material which 

accelerates wear. However, in case of polymer based materials like PEEK the maximum 

temperature reached at high cutting speed is much lower compared to metals hence 

lesser tool wear (Rahman et al., 1999).  

 
 

 

                             (a)                                                                                 (b) 

FIGURE 49 Progressive wear on cutting lip. Drilling PEEK at a cutting speed 6 m/min., chip load 0.06 
µm/flute, and with mist coolant. Wear after drill depth of (a) 508 mm (b) 1116 mm respectively. 

 
 

4.6 Tool wear modeling 

A tool wear model was required to predict tool life and to understand the effect cutting 

parameters. Tool wear was measured as explained in section 3.7. The cumulative tool 

wear was plotted against drilling distance in a log-log plot. All the tools were run until 

fracture or chip off. Tool life was set based on a limiting wear value for each material. 
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The effect of chip load and cutting speed on tool life was observed for both CP titanium 

and 316 L stainless steel.  

4.6.1 Model for microdrilling of CP titanium 

As the cutting speed was increased from 12.5 m/min to 20 m/min at a constant chip load 

of 0.1µm/flute, greater tool wear was observed at higher cutting speed for the same 

drilling distance (FIGURE 50). This increase in tool wear was because of increase in 

cutting temperature at the tool metal interface which led to thermal softening of the tool 

material. Rahim and Sharif (2006) also reported severe tool wear at higher cutting 

speeds while drilling titanium alloys. Ezugwu and Wang (1997) also reported cutting 

speed as the most influencing parameter on tool life while machining titanium alloys. 

They found that the tool life dramatically improved as the cutting speed was reduced. 

However, at lower cutting speeds (6 m/min) tendency to form BUE increases which may 

ultimately lead to tool failure.  
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Also, increase in chip load from 0.05 µm/flute to 1 µm/flute for the same cutting speed 

led to an increase in tool wear (FIGURE 50). However, effect of cutting speed on tool 

wear was more prominent compared to chip load. Tool life was sensitive to feedrate and 

therefore to chip load while machining titanium alloy (Ezugwu and Wang, 1997). From 

tool wear characteristics, maximum drilling distance of 110 mm was attained at a cutting 

speed of 12 m/min and chip load of 0.05µm/flute. The limiting tool wear criteria for 

drilling CP titanium was chosen to be 8 µm. The limiting tool wear was chosen as the 

minimum of the maximum tool wear values for different cutting conditions before tool 

failure. 

 

Drilling distance was plotted against cutting speed in a log-log plot at constant chip 

loads (FIGURE 51). Tool life decreased at higher chip loads for same cutting speed as 

seen in the plot. This was due to higher temperature and force at higher chip load. 
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FIGURE 50 Tool wear under different cutting conditions while drilling CP titanium. 
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FIGURE 51  Tool life for CP titanium .Tool wear criteria of 8µm. 

 
 

Taylor tool life equation is used to solve for constants that relate the tool life to a cutting 

speed. 

 .��/�
 = 0 (6)

 

where,  . = cutting speed (m/min), fc = chip load (µm/flute), T = tool life or drilling 

distance (mm), values of a, n, and C depend on workpiece, tool material and 

cutting conditions. 
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                                                              .�
 = 01���������������������������������������������������������������������������������������������(8)         
 
By solving for n and C’ we can calculate tool life for a particular cutting speed and chip 

load for a given material. 

 

From FIGURE 51 we have two cutting speeds and corresponding tool life (in terms of 

drilling distance) for a given chip load which can be used to solve for constants. The 

calculation for finding out the constants is shown below for chip load of 0.1µm/flute. 

 

 19.9�� 2
23%� * 35


�22�
 = 0′ (9)

 

Similarly, 

 12.6�� 8
8,
� * 70
�22�
 = 0′ (10)

 Solving for n and C’ 

 ln 19.9 + % * ln 35 = ln 12.6 + % * ln 70 (11)

 % = ln 19.9 − ln 12.6
ln 70 − ln 35  (12)

 

 

% = 0.659 

0′ = 207.)56 

The equation of the tool life for 0.1 µm/flute is 

.�<.=>? = 207.)56 (12a)
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Once these constants are known, tool life can be found for different cutting speeds at 

same chip load by using Taylor’s equation.  

 

Similar calculation can be done for chip load of 0.05 µm/flute.   

% = 0.673 

0′ = 277.01( 

.�<.=@A = 277.01( (12b)

 

4.6.2 Model for microdrilling of 316L stainless steel 

Similar trends were observed in tool wear characteristics for both CP titanium and 316 L 

stainless steel. As the cutting speed was increased from 14 m/min to 20 m/min at a 

constant chip load of 0.02 µm/flute, greater tool wear was observed at 20 m/min speed 

for the same drilling distance (FIGURE 52). This increase in tool wear was because of 

increase in cutting temperature at the tool metal interface due to poor thermal 

conductivity of 316L stainless steel. Chip loads used were much lower compared to CP 

titanium as higher chip loads led to severe tool wear. Also, for the same drilling distance 

tool wear for 316L stainless steel was higher compared to CP titanium. This can be 

attributed to its tendency to work harden easily which makes it difficult to machine. 

Maximum drilling distance of 100 mm was obtained with cutting speed of 14 m/min and 

chip load of 0.02 µm/flute.  
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FIGURE 52 Tool wear under different cutting conditions while drilling 316L stainless steel with a 
limiting tool wear criteria of 15µm. 

 
 
Increase in tool wear at higher cutting speed was also observed by Hoshi et al. (1981) in 

micro deep drilling of stainless steel. They used a grade of stainless steel for their 

experiments which had a lower percentage of Ni compared to 316L stainless steel. 

Nickel imparts work hardening property to the steel which makes 316L more difficult to 

machine. They measured tool wear on drill of diameter 0.350 mm and reported difficulty 

in measuring wear for drill of diameter 0.1 mm.  
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FIGURE 53 Tool life for drilling 316L stainless steel. Tool wear criteria of 15µm. 

 
 
The limiting tool wear criteria for drilling 316L stainless steel was 15 µm which was 

shown by dotted line (FIGURE 52). The limiting tool wear was chosen as the minimum 

of the maximum tool wear values for different cutting conditions before tool failure. 

Tool life in terms of drilling distance could be found until the tool was worn out by 15 

µm for each cutting speed and chip load combination from FIGURE 52. For AlTiN 

coated tools the limiting tool wear criteria was characterized by chipping of coating form 
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each chip load in a log-log plot (FIGURE 53). It was evident from the graph that tool life 

decreases with increase in cutting speed and chip load. Tool life can be found for chip 

loads of 0.02 µm/flute and 0.035 µm/flute and a cutting speed from the graph.  

 
 

 

                                             (a)                                                      (b) 

FIGURE 54 Microdrill coated with AlTiN. Drilling 316 L stainless steel at a chip load 0.02 µm/flute with 
mist coolant. (a)  cutting speed 14 m/min, drill distance of 177.8 mm (b) cutting speed 20 m/min, drilling 
distance 88.9 mm respectively. 

 

  

BUE 
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It can be seen from the graph that for a cutting speed of 20 mm/min and comparable 

drilling distance of 35 mm, the chip load for 316L stainless steel is 0.02 µm/flute which 

is much lower than chip load of 0.1 µm/flute for CP titanium.  This also implies that CP 

titanium can be microdrilled 400% faster than 316L stainless steel. 

 

Also, for coated drill the tool life was greater than uncoated tool for the same chip load. 

This can be explained by less BUE formation which decreased the adhesive wear in the 

tool. Notch wear which was seen earlier in case of uncoated tools was absent in case of 

AlTiN coated tools for both cutting speeds hence the actual tool life would be greater 

than the result shown above. Again Taylor’s equation can be used to solve for constants 

and tool life can be found for different cutting speeds at a constant chip load. Cutting 

speeds and corresponding tool life values are substituted in Equation (8) for a chip load 

of 0.035 µm/flute.  

 

 20� 2
23%� * 1(


�22�
 = 0′ (13)

 Similarly,  

 

1)�� 2
23%� * 32


�22�
 = 0′ 

 

(14)

 ln 20 + % * ln 1( = ln 1) + % * ln 32 (15)
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 % = ln 20 − ln 1)
ln 32 − ln 1( (16)

% = 0.620 

0′ = 120.002 

        .�<.=-< = 120.002 
(16a)

 
Similar calculation can be done for a chip load of 0.02 µm/flute. 
 
For uncoated drill, 

% = 0.)79 

0′ = 11).270 

        .�<.B@? = 11).270 
(16b)

For AlTiN coated drill, 

% = 0.515 

0′ = 201.31( 

        .�<.>
> = 201.31( (16c)
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4.7 Hole quality 

4.7.1 Drill wandering and position accuracy 

Drill wandering is one of the major problems associated with microdrilling. This could 

happen if the drill was not centered and drill tip started to skid. The skidding motion 

increased the radial force which ultimately led to tool failure while entry. It also affects 

the position accuracy of the hole. In microdrilling it is sometimes difficult to use a center 

drill to position the hole accurately due to smaller size of center drill which is difficult to 

manufacture.   

 
 
 

 

(a) 

 

(b) 

FIGURE 55 Hole wandering in drilling CP titanium. (a) Unpolished surface; cutting speed: 4 m/min, chip 
load: 1 µm/flute, aspect ratio: 2:1. (b) Polished surface; cutting speed 12 m/min, chip load: 0.05 µm/flute, 
aspect ratio: 10:1. 

Drilling sequence 

Hole 1 

Hole 11 

 Hole 21 

Hole 1 

Hole 21 

Hole 51 

200 µm 

380 µm 



96 
 

Wandering in microdrilling was studied by Kudla (2011). They have discussed drill tip 

wandering while drilling stainless steel workpiece. Cheong et al. (1999) has also 

discussed wandering in microdrilling and various boundary conditions to avoid drill 

wandering.  In all the cases, rows of holes were studied for wandering motion of the 

drill. The deviation in hole position was plotted against number of holes. 

 

While drilling Ti, the tool fractured after drilling first few holes. Upon closer 

examination of the workpiece it was found that the holes were irregular in shape due to 

drilling on milled surface (FIGURE 55). The surface was polished to improve hole 

position and minimize drill skidding.  

 

Also, parallelism of the workpiece was ensured during grinding to avoid increase in 

radial force during drilling. Noticeable difference was observed in positioning accuracy 

after grinding and polishing the workpiece. The mean deviation in hole position was 

reduced by 38% (FIGURE 56).  A paired t-test was performed to confirm the difference 

in means between two samples (TABLE 29). 
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FIGURE 56 Box plot showing the deviation of hole position in polished and unpolished sample of CP 
titanium. 

 
 
TABLE 29  Paired t-test to Compare Means of Deviation of Hole Position in Polished and Unpolished 
Sample of CP Titanium. Sample Size = 60, Null hypothesis, Ho: µpolished = µunpolished 

     

Statistical 

characteristics 

Values Statistical 

characteristics 

Values 

Difference 0.021610 t-Ratio 2.673914 

Standard Error 

Difference 

0.008082 Degree of 

freedom 

45.86017 

Upper Control Limit 

Difference 

0.037878 Prob > |t| 0.0104 

Lower Control Limit 

Difference 

0.005341 Prob > t 0.0052 

Confidence 0.95 Prob < t 0.9948 

    

 

Grand Mean 

27% 
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FIGURE 57  Position deviation of consecutive holes. Uncoated tool on CP titanium. Unpolished surface; 
cutting speed: 4 m/min, chip load: 1 µm/flute, aspect ratio: 2:1. 

 
 

It was observed that the deviation in hole position increased along a row (FIGURE 57). 

The drop in hole position deviation between rows could be explained by ultrasonic 

cleaning of microdrills removing chips attached to the tool. Grinding and polishing 

removed surface irregularities and made the surface more even. This reduced the 

tendency of the drill to drift hence decreasing the deviation in hole position (FIGURE 

58). This could happen due to the formation of BUE on the chisel during drilling which 

could lead to wandering motion. Also the position accuracy of the spindle was ±5 µm 

which could also affect the position of the hole. 
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FIGURE 58 Position deviation of consecutive holes. Uncoated tool on CP titanium. Polished surface; 
cutting speed 12 m/min, chip load: 0.05 µm/flute, aspect ratio: 10:1. 

 
 

Drill wandering when drilling 316L stainless steel was studied for both coated and 

uncoated drills (FIGURE 59). Deviation in hole position was higher in case of uncoated 

tool compared to coated (FIGURE 60). This difference could be seen in the paired t-test 

which verified that there was a significant difference between the samples of coated and 

uncoated tool (TABLE 30). 

 

AlTiN coated tool reduced tool wear. It showed improvement in terms of less BUE 

formation and hence less deviation in hole position. Also there was comparatively less 

wear of the chisel edge in coated tool which also helped in better positioning of the tool. 

The bar graphs also show progressive increase in hole deviation along a row with 

maximum deviation being lower in case of coated tools (FIGURE 61 and FIGURE 62). 

 

 

0

20

40

60

80

100

120

140

0 5 10 25 30 55 60

D
ev

ia
ti

on
 i

n 
ho

le
 p

os
it

io
n,

 µ
m

Number of holes



100 
 

 

 

(a) 

 

(b) 

FIGURE 59 Hole wandering in drilling 316L stainless steel. (a) Uncoated tool; cutting speed: 14 m/min, 
chip load: 0.02 µm/flute. (b) AlTiN coated tool; cutting speed: 14 m/min, chip load: 0.02 µm/flute. 

 
 

 
FIGURE 60 Box plot showing the deviation of hole position while drilling 316L stainless steel with 
coated and uncoated tool. 

 

 

 

Drilling sequence 

Hole 1 

Hole 11 

 Hole 21 

Hole 21 

Hole 61 

 Hole 121 

Grand Mean 

115% 



101 
 

TABLE 30 Paired t-test to Compare Means of Deviation of Hole Position while Drilling 316L stainless 
steel with Coated and Uncoated Tool. Sample Size = 60, Null hypothesis, Ho: µcoated = µuncoated 

     

Statistical 

characteristics 

Values Statistical 
characteristics 

Values 

Difference 0.012157 t-Ratio 2.61382 

Standard Error 

Difference 

0.004651 Degree of 
Freedom 

49.89187 

Upper Control Limit 

Difference 

0.021499 Prob > |t| 0.0118 

Lower Control Limit 

Difference 

0.002815 Prob > t 0.0059 

Confidence 0.95 Prob < t 0.9941 

 
 

 
FIGURE 61 Position deviation of consecutive holes. Uncoated tool on 316L stainless steel. Cutting speed: 
14 m/min, chip load: 0.02 µm/flute. 
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FIGURE 62 Position deviation of consecutive holes. AlTiN coated tool on 316L stainless steel. Cutting 
speed: 14 m/min, chip load: 0.02 µm/flute. 

 
 

Aluminum alloy sample was not polished before drilling (FIGURE 63). Deviation in 

hole position was less than CP Ti and 316L stainless steel (FIGURE 64).  

 
 
 

 
 
 

FIGURE 63 Hole wandering in drilling unpolished aluminum 6061-T6. Cutting speed: 8 m/min, chip 
load: 1 µm/flute. 
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Low tool wear when drilling aluminum alloy reduced BUE, hole position deviation, and 

burr formation.  

 
 

 
FIGURE 64 Position deviation of consecutive holes. Uncoated tool on unpolished aluminum 6061-T6. 
Cutting speed: 8 m/min, chip load: 1 µm/flute. 

 
 
Similar analysis was done for microdrilling of PEEK. Deviation in hole position was 

studied before and after polishing (FIGURE 65). Significant improvement was observed 

after polishing the workpiece (FIGURE 66). Bar graph was plotted to show the deviation 

in hole position along different rows (FIGURE 67 and FIGURE 68). TABLE 31 shows 

the paired t-test for comparing hole position deviation in polished and unpolished 

sample. 

 

However, severe burr formation was observed on the entry side. The hole circumference 

was not clearly visible due to burr formation which made the task of finding hole 

deviation very difficult. Perhaps this was the reason for high hole deviation on PEEK 
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compared to other metals. Also, a dark ring was formed around the periphery of the hole 

while drilling. This might affect the surface property of the material. 

 

 
(a) 

 
 

 
(b) 

 
FIGURE 65 Hole wandering in drilling PEEK. (a) Unpolished; cutting speed: 4 m/min, chip load: 0.06 
µm/flute. (b) Polished; cutting speed:  4 m/min, chip load: 0.06 µm/flute.  

 
 
 

 
 

FIGURE 66 Box plot showing the deviation of hole position while drilling polished and unpolished 
sample of PEEK.  
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TABLE 31  Paired t-test to Compare Means of Deviation of Hole Position while Drilling Polished and 
Unpolished Sample of PEEK. Sample Size = 60, Null hypothesis, Ho: µpolished = µunpolished 

 
Statistical 

characteristics 

Values Statistical 
characteristics 

Values 

Difference 0.096653 t-Ratio 5.32526 

Standard Error 

Difference 

0.018150 Degree of 
Freedom 

37.7613 

Upper Control Limit 

Difference 

0.133403 Prob > |t| <.0001 

Lower Control Limit 

Difference 

0.059903 Prob > t <.0001 

Confidence 0.95 Prob < t 1.0000 

 
 

 
FIGURE 67 Position deviation of consecutive holes. Uncoated tool on unpolished PEEK. Cutting speed: 
4 m/min, chip load: 0.06 µm/flute. 
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FIGURE 68 Position deviation of consecutive holes. Uncoated tool on polished PEEK. Cutting speed:  4 
m/min, chip load: 0.06 µm/flute. 

 
 

4.7.2 Hole diameter 

Variation in hole diameter was studied for CP titanium and 316 L stainless steel. 

Diameter was measured along the row of holes. Analysis of variance (ANOVA) was 

conducted to verify the difference in means of diameter along the rows (TABLE 32, 

TABLE 33, TABLE 34). Significant difference between diameters was observed along 

the row in both the materials (FIGURE 69). Total variation in diameter was quantified as 

maximum percentage change in diameter per unit of drilling distance. The hole diameter 

reduced as we drilled more holes along the row. This could be explained by the wear in 

tool cutting edges as we drill more holes. In case of 316L stainless steel, hole diameter 

was studied for both coated and uncoated tools. The variation in diameter between rows 

was found to be more in case of uncoated tool as compared to coated tool (FIGURE 70 
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and FIGURE 71). This could be explained by less wear of coated tools as compared to 

uncoated one.  

 
 

 
 

FIGURE 69 Box plot showing variation in hole diameter between rows in polished CP titanium. Total 
variation in diameter 0.052% per mm. Cutting speed 12 m/min, chip load: 0.05 µm/flute. 

 
 
TABLE 32 Anova Comparing Means for Variation in Hole Diameter Between Rows in CP Titanium. 
Sample Size = 29, Null hypothesis, Ho: µ1st row = µ3 rd row = µ6th row 
 

Source Degree of 
Freedom 

Sum of 
Squares 

Mean Square F Ratio Prob > F 

Row of holes 2 0.00015161 0.000076 18.5038 <.0001 

Error 26 0.00010652 0.000004   

Total 28 0.00025813    

 
 

 

Grand Mean 
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FIGURE 70 Box plot showing variation in hole diameter between rows in 316L stainless steel drilled with 
uncoated tool. Total variation in diameter 0.11% per mm. Cutting speed: 14 m/min, chip load: 0.02 
µm/flute. 

 
 

TABLE 33 Anova Comparing Means for Variation in Hole Diameter Between Rows in 316L Stainless 
Steel Drilling with Uncoated Tool. Sample Size = 30, Null hypothesis, Ho: µ1st row = µ2nd row = µ3rd row 

Source Degree of 
Freedom 

Sum of 
Squares 

Mean Square F Ratio Prob > F 

Row of holes 2 0.00021304 0.000107 17.9754 <.0001 

Error 27 0.00016000 0.000005   

Total 29 0.00037303    

 
 
 

 
FIGURE 71 Box plot showing variation in hole diameter between rows in 316L stainless steel drilled with 
AlTiN coated tool. Total variation in diameter 0.003% per mm. Cutting speed: 14 m/min, chip load: 0.02 
µm/flute. 

Grand Mean 

Grand Mean 
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TABLE 34 Anova Comparing Means for Variation in Hole Diameter Between Rows in 316L Stainless 
Steel Drilling with AlTiN Coated Tool. Sample Size = 60, Null hypothesis, Ho: µ2nd row = µ5th row = µ7th row 

Source Degree of 
Freedom 

Sum of 
Squares 

Mean Square F Ratio Prob > F 

Row of holes 2 0.00001187 0.0000059348 3.4712 0.0378 

Error 57 0.00009745 0.0000017097   

Total 59 0.00010932    

 
 

4.7.3 Hole straightness 

Hole straightness was studied for both CP titanium and 316 L stainless steel. For 

studying straightness of the hole the sample was sectioned between the holes and 

polished as explained earlier FIGURE 72. 

 

A point was taken on the edge of the hole as an origin. Both X and Y coordinates were 

measured for different points along the edge of the hole.  These points were plotted and a 

best fit line was drawn for CP titanium (FIGURE 73). Points which were farthest apart 

from this line on both the sides gave the error in straightness. Straightness was measured 

along the depth of the hole for a distance of 254 µm which in this case was twice the 

diameter (FIGURE 74). Similar plot was repeated for 316L stainless steel (FIGURE 75). 

 

It can be seen that the spread of error in straightness was higher in 316L stainless steel 

compared to CP titanium. This could be due to strong built up edge formation near chisel 

edge in 316L stainless steel which could affect the geometry of the hole.   
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                                         (a)                                                                                        (b)      

FIGURE 72 Sectioned hole to measure straightness in CP titanium. Cutting speed: 20m/min, chip load: 
0.05µm/flute.  (a) Micrograph of hole section (b) Magnified view of hole edge. 

 
 

 
FIGURE 73 Hole straightness in drilling CP titanium. Cutting speed: 20m/min, chip load: 0.05µm/flute. 
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FIGURE 74 Edge of a sectioned hole to measure straightness in 316L stainless steel. Cutting speed: 14 
m/min, chip load: 0.035µm/flute.  

 
 

 
FIGURE 75 Hole straightness in drilling 316L stainless steel. Cutting speed: 14 m/min, chip load: 
0.035µm/flute.  
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5. CONCLUSIONS 

 

This research studied microdrilling of CP titanium, 316L stainless steel, aluminum 6061-

T6, and PEEK plastic. It was found that: 

1. Surface polishing was the key to successfully drill microholes. A rough surface 

deflected microdrill tip and caused positioning errors as well as premature tool 

failure.  

2. Microholes of diameter 127 µm were successfully drilled on all materials at 10:1 

aspect ratio using micromist and progressive pecking cycle. The selected 

parameters allowed at least 70 holes to be drilled with single tool on all tested 

materials. 

3. Microdrill wear at the outer corner was more pronounced when drilling CP 

titanium but attrition wear at chisel edge was more significant for 316L stainless 

steel. Insignificant tool wear was found after drilling more than 150 holes on 

6061-T6 aluminum and PEEK plastic.  

4. The classical Taylor’s equation for macro machining was applicable in 

microdrilling to rank tool performance and machinability of CP titanium  and  

316L stainless steel. For the same cutting speed of 20 m/min and comparable 

drilling distance of about 35 mm, CP titanium can be microdrilled 400% faster 

than 316L stainless steel since the chip load for the former is 0.1 µm/flute and 

that for the latter is 0.02 µm/flute.  Also, AlTiN coated drills improved tool life 

by at least 122%. 
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5. Coated drills significantly improved hole quality. Hole position accuracy 

improved by 115%. Total variation in diameter decreased from 0.11% to 0.003% 

per mm of drilling distance. 

 

Although, deep hole microdrilling was successful for all tested materials for a range of 

chip loads, productivity and cost should be optimized for AlTiN and other coating 

materials. Specific coating should be investigated for different materials such as CP 

titanium and Ni-Ti alloys. Another interesting direction for future research is to develop 

techniques to drill with minimum burr, or subsequent burr removal because burr 

formation at the entry or exit ends of a hole was often observed during the experiments. 
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APPENDIX A 

EQUIPMENT DETAILS 
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A.1 HAAS OM2 specifications: 

• Five degrees of freedom 

• Maximum spindle of 50,000 rpm 

• Maximum feed rate 19.2 m/min 

 

 

 

 
 

FIGURE A.1 Runout of HAAS OM2 air spindle at 10,000 rpm (after Kajaria, 2009). 
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FIGURE A.2 HAAS OM2 Office Milling Machine (after High Point Precision Products, 2011). 

 

A.2 UNIST Cool Lubricator System 

UNIST cool lubricator system is used to supply micro-mist during drilling. The micro 

fluidization system consists of a variable rate pulse generator which can produce infinite 

cycles of metering pump. This pulse generator allows for automatic, infinite repeat 

cycling of the lubricator pump from a single air source. The continuous output of 

lubricant can be controlled by 3 separate adjustments using an air metering screw, a 

pulse generator which can produce 5-200 pulse /minute and a 0.2-1.0 cc stroke liquid 

metering pump. It can be adjusted to deliver 0.1 to 3.0 drops of lubricant per cycle and the 

number of cycles can vary between 5 and 200 per minute. The system contains a standard 

10-ounce oil reservoir which can hold more than 9000 drops of lubricant. Lubricant 

output is controlled by a knob on each metering pump. Air metering is done by a control 

screw which can be adjusted for density and distance of the spray. The spray has an included 

angle of approximate 11-18 degrees depending on the amount of air introduced. This 

provides flexibility in adjusting the area covered by the spray. 
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FIGURE A.3 Unist mist system (after Unist, 2011).  
 

The lubricant used for the experiments is Coolube 2210 EP which is supplied by UNIST. 

The lubricant is compatible with titanium, aluminum, steel, stainless steel and many 

other materials. The lubricant is non-toxic, non-polluting, non-drying and non-staining. 

It is designed for long tool life. Some of the important properties of Coolube are: 

• Low surface tension and high heat capacity  

• Designed to eliminate burrs and rough surface finish 

• Doesn’t require high pressure pumps 

• Viscosity index doesn’t change much with temperature  

 

A.3 Laser Displacement Sensor - Keyance LK-G1577 
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 The Keyence laser systems allow the user to measure differentially over various 

surfaces ranging from glass like to highly dull metals. It is a 2D displacement system 

that has an emitter and a receptor, which are calibrated to measure with an accuracy of 

±0.5% and resolution of 0.5µm. The laser system is used to investigate the stability of 

the spindle as well as measurement of distance between tool and workpiece. The latter 

information is used to position the tool with respect to the workpiece. Keyence uses 

software known as LK navigator to calibrate the laser intensity for different types of 

surfaces.  

 

A.4 AgieCharmilles Wire EDM 
 
The machine itself has capabilities to cut small pieces like the work material or larger 

samples if needed.  The table size is 350 x 250 x 250 mm and can taper at 25 degrees as 

well.  It uses wires of 0.15 to 0.30 mm so it has a reasonable small amount of cutout 

path, but more importantly it can cut pieces at under 0.25 microns.  The high quality 

surface finish allows cutting of samples with minimal cutting tool residuals and is very 

efficient for the experiments that are needed in this research. 
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FIGURE A.4 AgieCharmilles Wire EDM (after Agie, 2011). 
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APPENDIX B  

CNC CODE FOR MICRODRILLING 
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B.1 Spindle warm-up program: 
 
O02026 (NSK 20 MIN SPINDLE WARM-UP)  
M03 S10000  
G04 P120.  
M03 S20000  
G04 P180.  
M03 S25000  
G04 P180.  
M03 S30000  
G04 P180.  
M03 S35000  
G04 P180.  
M03 S40000  
G04 P180.  
M03 S50000  
G04 P180.  
M05  
M30  
 
B.2 Microdrilling macro : 
 
(created 06/22/11)  
(Start depth = B/#2)  
(Hole depth = C/#3)  
(Feed rate = J/#5)  
(Tool diameter = D/#7)  
(Retract height = A/#1)  
(Number of holes = F/#9)  
(#11= hole count)  
 
#11= 0 (Sets hole count to zero)  
 
WHILE [ #11 LT #9 ] DO1  
#102= #2  
#104= 2 * #7  
(Temporary variables that do not alter original values)  
 
WHILE [ #102 GT #3 ] DO2  
(Pecking Loop Start)  
#6= #102 - #104  
(Current Peck Depth)  
IF [ #6 LT #3 ] THEN #6= #3  
(Sets Peck Depth to Final Depth if it overshoots)  
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G90 G01 Z [ #102 + 0.2 ] F50.  
(Stands off 0.2 mm)  
G01 Z#6 F#5  
G01 Z#1 F100.  
G04 P1.5 (Pauses one half second to cool and flush chips)  
 
#102= #102 - #104  
(Resets Hole Depth for next pass)  
#8= -1.0 * #6 / #7  
(Defines aspect ratio)  
#104= #7 * [ -1.5 * #8 + 19.5 ] / 9  
(Sets new peck increment)  
END2  
(Pecking Loop End)  
G91 X [ #7 * 3 ] F200.  
(MOVES INCREMENTAL DISTANCE IN X DIRECTION)  
(NOT DEPENDENT UPON COORDINATES)  
#11= #11 + 1  
 
END1  
M99  
(RETURNS TO MAIN PROGRAM) 
 
 
B3.Microdrilling main  program: 
   
(created 06/22/11)  
 
N35 G00 G17 G21 G40 G90  
(STANDARD START-UP SETTINGS)  
 
N45 T1  
(IDENTIFIES TOOLING)  
 
N50 G54 G00 X1.5 Y-1. Z1.  
(MOVES MACHINE TO STARTING COORDINATES)  
(COORDINATES SET IN LINE G55 IN OFFSETS)  
(MUST SET ZEROES ON UPPER LEFT CORNER OF PART)  
 
N55 G43 H01  
(CALLS OUT TOOL LENGTH COMPENSATION)  
 
N60 S50000 M03  
(SETS SPINDLE SPEED AND TURNS ON CLOCK-WISE)  
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N70 G65 P15 A1. B0. C-1.27 D0.127 J2. F20.  
(G65 CALLS FOR MACRO)  
(Retract height = A)  
(Start depth = B)  
(Hole depth = C)  
(Tool diameter = D)  
(Feed rate = J)  
(Number of holes = F)  
 
N75 G90 G54 X0. Y0. Z5.  
(RETURNS TOOL TO START POSITION)  
 
N80 M30  
(ENDS PROGRAM)  
% 
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APPENDIX C  

TOOL WEAR DATA 
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TABLE C1 Tool wear while drilling 316Lstainless steel 

 
 
 
 
 
 
TABLE C2 Tool wear while drilling CP titanium with chip load 0.05 µm/flute with 0.127 
mm drill. 

No. of holes 
Mist_20m/min_0.05um/flute 

(T14_s50k_F 5mm/min_D0.127) 
Mist_12m/min_0.05um/flute 

(T18_s30k_F 3mm/min_D0.127) 

10 Radial Wear(um) Wear(um) 

20   
30 3.473 4.502 
40 4.374 4.502 
50   
60 9.777 6.175 
70  6.689 
80 10.934 8.233 
85   
90   

100  8.233 
110   

   
     

 

 

 
 
 

No. of holes

New tool

10 12.70 10.0 5.66 9.00 7.08 9.78 12.86 11.96

20 25.40 20.0 7.98 11.32 16.34 12.86

30 38.10 30.0 7.98 16.21 22.38 15.18

40 50.80 40.0 19.04

50 63.50 50.0 9.52 13.51

60 76.20 60.0 9.52 14.79

70 88.90 70.0 9.52 14.79

80 101.60 80.0 10.55 17.11

Mist_20m/

min_0.035

um/flute 

Mist_14m/

min_0.035

um/flute 

Mist_20m/

min_0.02u

m/flute Drill  distance in mm

Mist_14m/

min_0.02u

m/flute 

Mist_20m/

min_0.02u

m/flute 

Mist_14m/

min_0.02u

m/flute 
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TABLE C3 Tool wear while drilling CP titanium with chip load 0.05 µm/flute with 
0.1mm drill. 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

No. of holes 
Mist_V 6m/min_0.05um/flute 

(T1_s20k_F 2mm/min_D0.100) 
Mist_6m/min_0.05um/flute (T5_s20k_F 

2mm/min_D0.100) 

10 Wear(um) Wear(um) 

20 
30 3.345 4.116 
40 5.789 5.660 
50 8.104 6.689 
60 8.876 6.689 
70 8.876 
80 11.835 
85 
90 

100 
110 
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TABLE C4 Tool wear while drilling CP titanium with chip load 0.1 µm/flute. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Number of holes 
Mist_20m/min_0.1um/flute 

(T11_s50k_F 10mm/min_D0.127) 
Mist_12.5m/min_0.1um/flute 

(T6_s40k_F 8mm/min_D0.100) 

10 Wear(um) 

20 

30 2.701 3.731 
40 5.274 5.146 

50 5.274 6.303 

60 5.274 6.303 

70 6.818 6.303 

80 6.818 6.303 

85 7.847 7.590 
90 7.847 8.748 

100 

110 7.847 

 10.163 

 10.163 
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TABLE C5 Tool wear while drilling CP titanium without mist coolant. 

 

 

 
 
 
 
 

 

 
 
 

Number of 
holes 

Air_V 
12m/min_0.1um/flute 

(T3_s30k_F 
6mm/min_D0.127) 

Air_6m/min_0.05um/flute 
(T2_s20k_F 

2mm/min_D0.100) 

Air_5m/min_0.05um/flute 
(T4_s15k_F 

1.5mm/min_D0.100) 

 Wear(um) Wear(um) Wear(um) 

10 

20 4.374 

30 5.660 7.461 

40 8.876 9.262 

50 

60 

70 11.320 

80 

85 

90 

100 

110 
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APPENDIX D  

RAW DATA FOR HOLE QUALITY MEASUREMENT 
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TABLE D1 Hole diameter while drilling CP titanium. 
 

1st row  154.7804 3rd row 147.0284 6th row 147.6098 

1st row  149.7416 3rd row 144.4444 6th row 141.2145 

1st row  150.0646 3rd row 145.0904 6th row 146.3178 

1st row  146.447 3rd row 147.1576 6th row 143.9922 

1st row  147.4806 3rd row 146.5762 6th row 144.186 

1st row  148.2558 3rd row 148.5142 6th row 142.4419 

1st row  151.3566 3rd row 145.0904 6th row 146.2532 

1st row  151.2274 3rd row 145.6718 6th row 143.3463 

1st row  148.6434 3rd row 146.8346 6th row 144.3152 

1st row  151.8734 3rd row 149.031     

 
 
 
 
TABLE D2 Hole diameter while drilling 316L stainless steel with AlTiN coated tool. 
 

2nd  row 148.0963 5th row 144.9319 7th row 146.1977 

2nd row 146.1977 5th row 144.299 7th row 146.1977 

2nd  row 148.7292 5th row 146.1977 7th row 145.5648 

2nd  row 146.1977 5th row 144.9319 7th row 146.8306 

2nd  row 146.8306 5th row 147.4635 7th row 146.8306 

2nd  row 145.5648 5th row 144.9319 7th row 145.5648 

2nd  row 145.5648 5th row 148.7292 7th row 145.5648 

2nd  row 146.8306 5th row 148.0963 7th row 146.1977 

2nd  row 146.8306 5th row 146.8306 7th row 147.4635 

2nd  row 146.1977 5th row 149.3621 7th row 146.1977 

2nd  row 148.0963 5th row 147.4635 7th row 147.4635 

2nd  row 147.4635 5th row 146.1977 7th row 143.0332 

2nd  row 150.6279 5th row 147.4635 7th row 146.8306 

2nd  row 146.1977 5th row 148.7292 7th row 148.0963 

2nd  row 148.7292 5th row 148.0963 7th row 148.0963 

2nd  row 146.1977 5th row 147.4635 7th row 144.299 

2nd  row 148.0963 5th row 145.5648 7th row 145.5648 

2nd  row 146.8306 5th row 146.8306 7th row 145.5648 

2nd  row 147.4635 5th row 146.8306 7th row 145.5648 

2nd  row 146.8306 5th row 148.0963 7th row 145.5648 
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TABLE D3 Hole diameter while drilling 316L stainless steel with uncoated tool. 
 

1st row 150.7599 2nd row 145.0828 3rd row 140.0364 

1st row 142.5596 2nd row 144.452 3rd row 140.0364 

1st row 148.8675 2nd row 143.8212 3rd row 141.298 

1st row 143.1904 2nd row 143.8212 3rd row 140.6672 

1st row 146.9752 2nd row 141.9288 3rd row 141.298 

1st row 150.1291 2nd row 142.5596 3rd row 140.6672 

1st row 145.0828 2nd row 142.5596 3rd row 138.144 

1st row 148.8675 2nd row 139.4056 3rd row 141.9288 

1st row 145.7136 2nd row 138.144 3rd row 137.5132 

1st row 142.5596 2nd row 138.7748 3rd row 139.4056 
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