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ABSTRACT 

 

Marker-Assisted Verification of Hybrids in Pearl Millet-Napiergrass (Pennisetum 

glaucum [L.] R. Br. x Pennisetum purpureum Schumach.). (December 2011) 

Charlie D. Dowling, III, B.S., Texas A&M University 

Chair of Advisory Committee: Dr. Russell W. Jessup 

 

 A high-biomass perennial grass that is directly seeded using existing farm 

equipment can reduce both planting and overall input costs.  Three cytoplasmic male-

sterile cms A-lines and four fertile genotypes of pearl millet (Pennisetum glaucum [L.] 

R. Br.) and one novel pearl millet selection from the Perennial Grass Breeding Program 

at Texas A&M University were selected to cross with napiergrass (Pennisetum  

purpureum Schumach.).  The pearl millet parents were chosen based on characteristics 

such as basal tillering, plant height, and days to anthesis. Three napiergrass accessions 

from the Perennial Grass Breeding Program and the cultivar Merkeron were used as 

pollinators for these crosses.  

 The cms and fertile pearl millet accessions produced full heads of seed when 

pollinated with napiergrass.  There was a large range of seed sizes and weights for each 

hybrid family, and the seed were separated into four size classes.  The weight differences 

from the largest to smallest class of seed varied by more than 30%.  All of the seed 

classes germinated, and seed size, in this case, was completely unrelated to the ability to 

germinate.  100% germination was observed in five seed size classes for both PMN 
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hybrids, and 90% germination was observed in three of the eight classes.  Essentially all 

of the hybrid seed recovered from the original pearl millet x napiergrass crosses 

germinated, but all of the F1 hybrids were sterile in that none of them produced viable 

seed.  Flow cytometry could not be used to identify the hybrids because the DNA 

content of pearl millet and napiergrass were essentially the same, even though distinct 

2C and 4C peaks were seen from the diploid pearl millet.  From the 58 EST-SSRs 

surveyed in the bulked segregate analysis, several were heterozygous dominant and 

many were homozygous dominant and hemizygous at its particular loci.  Seven 

hemizygous EST-SSRs were identified for Merkeron, seven for PEPU09FL01, eight for 

PEPU09FL02, and six for PEPU09FL03.  These markers are extremely valuable to any 

pearl millet x napiergrass hybridization program because they provide a means whereby 

the hybrids can be easily identified.  Identification of hemizygous pearl millet markers 

will also assist in future DNA sequencing and also in a marker-assisted breeding 

program. 
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NOMENCLATURE 

 

     PMN    Pearl Millet x Napiergrass 

     EST      Expressed Sequence Tags 

     SSR    Simple Sequence Repeat 

     PCR    Polymerase Chain Reaction 

     BSA    Bulk Segregant Analysis 

     DEC    Dedicated Energy Crop 
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CHAPTER I 

INTRODUCTION  

Competition for land resources is increasing and will continue to increase 

because the world population is expected to reach at least nine billion by 2050 (UN Dep. 

Social Economic Affairs, 2010).  The production of bioenergy crops, therefore, is largely 

being targeted away from productive agricultural lands but towards marginal and 

abandoned grasslands.  In order to reach the goal of producing 36 billion gallons of 

bioethanol production by 2022 and address the mandatory cap on corn ethanol 

production that was mandated by the U.S. federal government, such alternative sources 

of land must be utilized to grow biofuel crops (Sissine, 2007).  These alternative sources 

exist and can be provided by marginal and currently fallow farmlands and grasslands.  

According to the Wisconsin Grasslands Bioenergy Network (WGBN, 2011), an 

estimated 20 - 27 million hectares of marginal land exist in the U.S.  Similarly, the 2007 

U.S. Census of Agriculture reported that approximately 14 million hectares of land 

including idle lands, land currently in cover crops for soil improvements, and fallow 

rotations are available.  If perennial grasses were cultivated on these lands, the U.S. 

could produce and estimated 377 million tons of biomass yr-1 for chemical conversion to 

primary biofuel products (Perlack et al., 2006).  This tonnage does not take into account 

biomass from annual crop residues, and assumptions were made that 22.25 million ha of 

cropland, idle cropland, and pastures were dedicated to the production of perennial  

____________ 
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biomass crops.  It is important to conserve marginal grasslands that are native prairies, 

but a vast majority of marginal grasslands no longer contain native species and can be 

allocated towards improved agricultural productivity via low-input, perennial, biofuel 

systems.  The utilization of perennial crops versus annuals, such as corn or grain 

sorghum, can further provide a sustainable system of producing lignocellulosic ethanol 

while simultaneously preventing soil erosion, reducing the amount of fertilizers applied, 

reducing herbicide applications, and satisfying EPA mandates of reducing carbon 

emissions by sequestering carbon in the soil (Costanza et al., 1997; Kort et al., 1998; 

McLaughlin and Walsh, 1998; Lewandowski et al., 2003; Khanna et al., 2010).  There is 

a tremendous rate of return of energy production in perennial biomass systems with such 

low-input requirements.  The incorporation of low-input management practices with 

biomass feedstocks such as napiergrass (Pennisetum purpureum Schumach.) or pearl 

millet (Pennisetum glaucum [L.] R. Br.) x napiergrass hybrids (PMN) could be used in 

these systems.   

Widely adapted and productive perennial crops are best suited as alternative 

energy sources.  Pearl millet and napiergrass possess such wide adaptation potential and 

produce vigorous interspecific hybrids (Burton, 1944).  With the capacity of being seed 

propagated, these interspecific hybrids have the potential to greatly reduce labor costs 

and improved the economic feasibility in comparison to vegetatively propagated 

perennial biomass such as energycane (Saccharum L. spp.) or Miscanthus Andersson 

species.  In addition, perennial biomass crops such as switchgrass (Panicum virgatum L.) 

that are typically broadcast seeded present crop establishment challenges because of 
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small seed size and seed dormancy issues.  Switchgrass' slow seedling growth and 

negative response to high planting density hinder its establishment and reduces biomass 

production during the establishment year (Guretzky, 2007).  According to a recent 

announcement from the USDA and the U.S. Department of Energy (DOE), the leading 

candidates for bioenergy crops are switchgrass, hybrid poplar (Populus L.), Miscanthus 

giganteus Keng., and Brachypodium P. Beauv. (USDA Press Release, 08/12/11).  None 

of these crops, however, are capable of producing both a high biomass feedstock that 

have superior yield in the establishment year and can be direct seeded.  Switchgrass can 

be direct seeded and Miscanthus can provide establishment year yields, but neither can 

provide both aspects.  Pearl millet x napiergrass, in contrast, is a perennial dedicated 

energy crop (DEC) that may be direct seeded.  Hybrid vigor and feedstock sterility in F1 

PMN progeny further add to the advantages of this interspecific hybrid in comparison to 

other DECs. 

The objectives of this research were to: 1) evaluate the efficiency of interspecific 

hybridization between pearl millet and napiergrass using cytoplasmic male-sterile (cms) 

pearl millet lines as described by Powell and Burton (1966); 2) produce a diverse 

collection of novel PMN hybrids; and 3) screen and identify a number of DNA markers  

specific to napiergrass and that can be used to verify PMN hybrids.  
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CHAPTER II 

LITERATURE REVIEW 

 

Taxonomy and General Overview of Pennisetum Species 

Most members of the genus Pennisetum are widely adapted making the genus 

one of the most diverse in the Poaceae family.  It consists of both tropical and 

subtropical species (Juahar, 1981). The genus consists of more than 140 species, and it is 

considered one of the most important genera in the Paniceae tribe (Jauhar, 1981).  It 

contains a heterogeneous assortment of species and subspecies that have an array of 

ploidy levels (diploids to octoploids), life cycles (annual to perennial), modes of 

reproduction (sexual and apomictic), base chromosome numbers (x = 5, 7, 8, 9), 

morphological distinctions, and useful applications.  The genus consists of five 

subgenera:  Gymnothrix, Eu-pennisetum, Penicillaria, Heterostachya, and Brevivalvula.  

Pearl millet and napiergrass are both members of the subgenus Penicillaria (Stapf and 

Hubbard, 1934).  Domestication of millet species began approximately 10,000 years ago 

in east Asia, and domestication of pearl millet occurred about 4,000 years ago (Lu et al., 

2009).  The species’ primary and secondary centers of diversity include a diffuse belt 

stretching from the Saharan plateau region to western Sudan and east India, respectively 

(ICRISAT, 2011).  The International Crop Research Institute for the Semi-Arid Tropics 

(ICRISAT) germplasm collection consists of 21,594 accessions of cultivated pearl millet 

from 50 different countries, and it is the largest collection of pearl millet germplasm in 

the world.  More than 25 million ha of pearl millet are cultivated in Africa and East Asia 
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where it is a staple grain crop.  Because of its wide range of adaptation, pearl millet has 

been labeled the world's hardiest crop in arid environments and on marginal soils 

(ICRISAT, 2011).  There is a wide range of variability in the ICRISAT collection, and it 

includes collections from institutions (10,201), farmers’ fields (6,537), commercial 

markets (1,681), farmer co-ops (1,357), and threshing floors (479) (ICRSAT, 2011).  

The USDA National Plant Germplasm System (NPGS) is an additional source and has 

more than 2,000 pearl millet accessions (GRIN, 2011).   

Napiergrass, also commonly referred to as elephantgrass, is a C4 perennial grass 

with creeping rhizomes.  It is native to the tropical regions of Africa where cut and carry 

systems are popular for supplementation of livestock.  Napiergrass was introduced into 

the United States by the USDA in 1913 (Thompson, 1919).  After its introduction test 

plots and improvement programs were established.  The labor requirement to establish 

napiergrass vegetatively by either crown sections or stem cuttings, along with 

susceptibility to the eyespot disease (Helminthosporium sacchari Butler); however, it 

caused farmers to lose interest in the crop (Burton, 1944).  Overall, napiergrass has 

desirable characteristics such as insect resistance, rapid growth rate, and a high nutrient 

value (Rao et al., 2003).  When the improved cv. ‘Merkeron’ was registered by Burton in 

1984, several specific and generalized ‘genes’ of interested were noted (Burton, 1989).  

The two most valuable traits were resistance to the eyespot disease and a dwarfing gene 

that resulted in the release of ‘Mott’ (Burton, 1989).  Napiergrass was documented to 

produce as much as 100 tons of fresh weight per ha of biomass and has one of the fastest 

growth rates of higher plants (Renard et al., 2011).  In vitro testing further supports this 
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assertion.  Karlsson and Vasil (1986) reported napiergrass cell cultures were the fastest 

growing of all C4 species tested.  Napiergrass is short-day photoperiod sensitive and 

typically does not flower during pearl millets' growing season in production zones across 

Texas and Arizona (Osgood et al., 1997).  However, napiergrass flowering will occur 

under greenhouse conditions once the day length reaches its preferred minimum in 

regions where aboveground winter kill prevents such under field conditions.  The 

combination of pearl millet's abiotic stress tolerance and integrated agronomic systems 

with napiergrass' perennial growth habit and biotic stress tolerance provides a unique 

possibility of developing large-seeded hybrid lines with superior perennial biomass 

production and forage potential.   

Wide Hybridization in Pennisetum 

 Wide hybridization of Pennisetum species for the development of valuable 

forage crops is extensive (Dujardin and Hanna, 1983; Sotomayor-Rios et al., 1989; 

Sobrinho, 2005).  Pearl millet has been successfully crossed with numerous other 

Pennisetum species such as P. orientale L., P. squamulatum Fresen, and P. 

alopecuroides (L.) Spreng., and introgression of genes from these wild progenitors could 

improve cold hardiness and produce germplasm that reproduced by apomixis (Hanna, 

1982).  In PMN hybrids pearl millet provides hybrid vigor and high quality forage while 

napiergrass contributes perenniality, biomass production, and photoperiodism (Juahar 

and Hanna, 1998).  In nature, both species are predominately cross-pollinated.  The 

resulting heterozygosity from outcrossing, as long as the proper mechanisms for pollen 

distribution are present, produces an array of allelic combinations available for selection 
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(Burton and Powell, 1968).  Protogyny, the phenomena in which the stigmas are exerted 

prior to anther exertion, occurs in both pearl millet and napiergrass and facilitates 

outcrossing.  This trait reduces inbreeding depression and increases heterozygosity in 

nature in both species.  The use of cytoplasmic male-sterile (cms) lines of pearl millet in 

commercial seed production scenarios further maximizes the potential for hybrid seed 

production upon hybridization with napiergrass in frost-free (ie. greenhouse) or tropical 

environments (Osgood et al., 1997).  Previous reports of interspecific hybridization 

between pearl millet (2n = 2x = 14) and napiergrass (2n = 4x = 28) confirmed the 

presence of 21 chromosomes in the resulting hybrids (Burton, 1944; Barbosa et al., 

2003).  The triploid PMN hybrids are sterile, providing a mechanism to alleviate 

concerns of invasiveness from seed.  The aggressive rhizomatous growth habit and 

fertile seed of napiergrass, by comparison, have resulted in it being classified as an 

invasive species by the Florida Exotic Pest Plant Council (FEPPC) in 1999 (GRIN, 

2011).   

 Extensive literature documents the cytogenetics of pearl millet, napiergrass, and 

their interspecific hybrids.  Pearl millet and napiergrass are in the primary and secondary 

gene pools of Pennisetum, respectively (Harlan and De Wet, 1971; Martel et al., 1997).  

Napiergrass is considered an allotetraploid with a genome complement of A’A’BB.  The 

A’ genome is considered homologous to the A genome of pearl millet (Dujardin, M. and 

W.W. Hanna, 1985).  These two parental species have good genetic combining ability, 

and the interspecific hybrids usually have greater resemblance to napiergrass (Gonzalez 

and Hanna, 1984).  This is also generally attributed to the apparent dominance of 
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napiergrass’ B subgenome over pearl millet’s A subgenome.   Napiergrass’ A’ 

chromosomes are smaller than the A chromosomes of pearl millet making chromosome 

pairing difficult during meiosis in PMN triploid hybrids, but they pair at a much higher 

frequency than the A and B genomes which are incomparable (Jahuar, 1981; Pantulu and 

Rao, 1982; Jahuar & Hanna, 1998).   The univalents of the B genome in the triploid lags 

behind during anaphase as whole or portions of the chromosomes are not included 

leading to abberations and thus sterility.  As reported by Juahar (1981), pearl millet’s 

karyotype is considered symmetrical because of metacentric and submetacentric 

chromosomes.  According to Stebbins (1958), in contrast, the fact that pearl millet’s 

largest chromosome is 1.5 times larger than the smallest categorizes it in the 1a class for 

asymmetry using the classification he proposed.  Stebbin (1958) also described the 

karyotype of napiergrass containing metacentric and submetacentric chromosomes as 

well as one acrocentric pair (Stebbins, 1958).  Stebbins (1958) categorized napiergrass 

as asymmetrical in general, and scored it in the 2b class of symmetry. 

Polymerase Chain Reaction Amplification Utilizing EST-SSRs 

 Cytological analysis of PMN and its parents is well documented in the literature 

(Burton, 1942; Jauhar, 1981; Jauhar and Hanna, 1998; and Barbosa et. al, 2003).  

Although this very useful in determining chromosome number and meiotic behavior, 

new techniques for hybrid verification would be highly useful towards marker assisted 

breeding and/or molecular mapping programs.  The genetic relatedness of a number of 

napiergrass accessions was studied at Tifton, GA. using AFLPs (amplified fragment 

length polymorphism) (Harris et al., 2009).  This was the first attempt to determine the 
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phylogeny of this germplasm collection.  Isozymes were used to classify napiergrass 

lines in India (Bhandari et al., 2006), and RADPs (random amplified polymorphic DNA) 

were used to categorize germplasm at the International Livestock Research Institute 

(Lowe et al., 2003).  Finding from this research revealed possible heterotic groups that 

could be useful in future breeding efforts (Harris, et al. 2009).  Wide arrays of molecular 

resources are available for pearl millet because of its importance as a grain crop, but 

very limited molecular data is available for napiergrass.  Implementation of comparative 

genomic approaches of extensive publicly available DNA sequences in the Poaceae, 

PCR amplification utilizing expressed sequence tags (ESTs) of microsatellites, or known 

otherwise as Simple Sequence Repeats (SSRs), provides unique marker sequences for 

the assistance in verification of the hybrid nature of putative PMN hybrids. 

Commercialization of Pearl Millet x Napiergrass 

In addition to reducing the invasiveness compared to napiergrass, PMN hybrids 

also have several agronomic and economic advantages over previously mentioned DECs 

(dedicated energy crops).  Seed of PMN (0.214g -- 0.78 g 100 seed -1) is much larger 

than switchgrass (0.13 – 0. 21 g 100 seed -1) or miscanthus (0.07 - 0.12 g 100 seed -1) 

which allows for longer persistence in the field and the potential to close the crop canopy 

more rapidly (Smart and Moser, 1999).  While Miscanthus x giganteus has comparable 

biomass yield to sugarcane (Saccharum [L.] spp.) and napiergrass, establishment of this 

crop requires a minimum of three years as well as greater inputs of water and fertilizer 

(Lewandowski et al., 2000).  Woodard and Prine (1993) demonstrated that the 

intermediate phenotype of PMN can compete well with energycane and napiergrass, 
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with all of these C4 species producing more than 35 Mg ha-1 yr-1.  Pearl millet x 

napiergrass hybrids are similar to Miscanthus x giganteus in that they are sterile 

triploids, but commercial scale seed production, and high establishment year biomass 

potential provide PMN agronomic advantages.  Pearl millet x napiergrass and its 

reciprocal cross, referred to as kinggrass, have the potential to be use in traditional 

planting and cultural methods.  Implementation of a system described by Osgood et.al 

(1997) in which F1 seed can be mass produced from superior isogenic lines of pearl 

millet and napiergrass is such an improved scenario.  Also, if a cms pearl millet line 

developed for biomass production becomes commercially or publicly available, the 

method described by Powell and Burton (1966) will become the most efficient system 

for commercial scale production of large seeded, perennial biomass feedstocks.  

Vegetative reproduction of PMN is a viable option in the tropics due to the lack of 

interest in commercial seed production and comparatively low labor costs, but its 

usefulness in the southern U.S. is limited because of higher labor costs (Boddorff and 

Ocumpaugh, 1986, and Osgood et. al, 2007).  Thus, there is a need for a tropical winter 

nursery for PMN seed production.  For example, in 1986 Osgood et al. (1997) produced 

1145 kg ha-1 PMN seed in Kunia, Hawaii.  This level of seed production parallels that of 

commercial forage sorghum and translates to economic feasibility for farmers seeking a 

biofuel crop that is 'seeded-yet-sterile'.  Recent improvement efforts of biofuel crops 

emphasize the importance of including feedstock sterility in a product developed for the 

commercial bioenergy industry.  Sorghum species hybrids are a well-documented 

example of biomass crops with the potential to create novel weeds (Cox et al., 1984).  
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Any diploid or tetraploid Sorghum species hybrid has the ability to cross-pollinate, and it 

can become an improved pest for farmers and ranchers. However, non-flowering crops 

eliminate the possibility of pollen flow to an undesirable wild-type or even cultivated 

Sorghum.  Also, commercialization of transgenic species hybrids may lead to even a 

larger problem if they are not completely sterile.  From a review of current options on 

the list of dedicated energy crops, one can acknowledge that a 'seeded-yet-sterile' system 

like PMN provides significant reduction in such risks.   

Sustainability and Remediation 

 Another desirable characteristic of napiergrass in sustainable, low-input systems 

is its ability to not only persist but be productive on marginal lands.  Utilizing marginal 

and abandoned lands removes potential land use impacts on corn, wheat, soybean and 

other major food crops offering farmers and investors significant acreages available for 

biofuel feedstock production.  Cost effective DECs are critical towards the feasibility 

and practicality of developing sustainable bioenergy crops.  One additional benefit of 

using such a crop is potential remediation of depleted or contaminated soils.  

Napiergrass may have the ability to remove high levels of nickel, cadmium, copper, zinc, 

and lead from the soil (Holm, 2010).  According to research done by the Cooperative 

Research Center (CRC) and Contamination Assessment and Remediation of the 

Environment (CARE) in collaboration with Hong Kong-based HLM Asia Group and 

Shaoguan University in China's Guangdong Province, napiergrass has the ability to 

degrade hydrocarbons in contaminated soils (Holm, 2010).  Pearl millet, however, not 

only can persist in sandy, acidic soils, but performs remarkably well in hot environments 
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(Thomas Jefferson Institute, 2007).  It has better drought tolerance and can grow on 

lower pH soils than milo Sorghum bicolor L. Moench. (Jefferson Institute, 2007).  Both 

pearl millet and napiergrass possess advantageous traits for multiple uses on marginal 

lands, and PMN has a similar potential for use in perennial biofuel cropping systems.
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CHAPTER III 

MATERIALS AND METHODS 

 

Pearl Millet x Napiergrass Hybridization 

 Three cytoplasmic male sterile A-lines and four fertile genotypes of pearl millet 

that varied in their area of collection from the USDA NPGS collection as well as one 

novel selection of pearl millet from the Perennial Grass Breeding Program at Texas 

A&M University were selected for hybridization with napiergrass based on their growth 

descriptions, morphological descriptions, and phenological data.  Three novel 

napiergrass genotypes from the Perennial Grass Breeding Program and the cultivar, 

Merkeron, were selected as pollinators for these crosses (Table 1).  All controlled 

crosses were made in a greenhouse during the fall and winter of 2010. A summary of all 

pollinations made is in Table 2.  After the pollinations were made, all pollinated stigmas 

of the fertile and cms pearl millet lines were closely examined to ensure that napiergrass 

pollen was on them.  This reassured complete pollination across the whole inflorescence 

no matter if it was a fertile or cms line.  Since pearl millet is protogynous, emasculation 

of the fertile florets was not necessary which greatly simplifies this process.  Prior to all 

pollinations, pearl millet inflorescences were enclosed in glycine prior to the exertion of 

the stigmas in order to ensure that no foreign pollen was transferred to the maternal 

parents.  All pollinations were made when the temperature and humidity were suitable 

for induction of anther dehiscence of pollen.  This was observed to occur prior to noon 

or very late in the day no matter the conditions of the greenhouse.  Careful consideration 
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of the temperature in the greenhouse was taken as most anthers began dehiscence around 

27 °C.  To collect the pollen inflorescences were held directly over a large Petri dish and 

gently tapped.  A lid was then placed on the Petri dish to ensure containment of the 

pollen.  The glycine bag was then removed from the inflorescence of the female pearl 

millet parent and the inflorescences were gently rolled over the pollen in the Petri dish so 

that it came in contact with the receptive stigmas extending from the spikelets on the 

inflorescence.  The glycine bags were then replaced onto the inflorescences of pearl 

millet for at least 5 to 7 days.  Bags were removed once stigmas were no longer 

receptive. Seed were allowed to mature for 5 to 6 weeks, and hard seed was confirmed 

prior to harvest.  Harvested inflorescences were stored at 10 °C at 30% relative 

humidity.  Threshing was done by hand using a ribbed rubber mat and a block covered in 

the same ribbed rubber material.  After the seeds were threshed, they were returned to 

the cold room for permanent storage.   

Those crosses that yielded large quantities of seed made it possible to separate 

and bulk the seed based on size.  Seed bulks were categorized by pouring all the threshed 

seed through layers of Seedburo® sieves.  The sieve sizes were 1/13” Round, 1/14” 

Round, 1/15” Round and 1/17” Round.   A select number of seed from each size class 

were germinated and the seedlings were transplanted into pots and eventually taken to 

the field in the spring of 2011 to observe any correlations between seed size and plant 

phenotypes.   
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Pearl Millet x Napiergrass Field Observations 

 PMN genotypes were planted into a nursery at College Station, TX on May 10, 

2011.  These plots were maintained with manual weed control and minimal herbicides.  

Occasional spot spraying of 2,4-Dichlorophenoxyacetic acid (2,4-D) was used to control 

moderate morning glory (Ipomoea [L.] spp.) and pigweed (Amaranthus [L.] spp.).  The 

plants were observed and selected for flowering late in the growing season or 

photoperiod sensitive phenotypes. Sterility in the PMN hybrids was determined by 

collecting inflorescences from six of the genotypes.  The total numbers of inflorescences 

collected from each hybrid genotype varied depending on how many were flowering.  

Inflorescences were allowed to mature in the field for at least 4 wk post anthesis, and 

timely collection ensued to prevent loss to seed shattering.  At least two completely 

intact heads were collected and analyzed for each plant to ensure the results.  The total 

number of florets were counted from each inflorescence for each genotype and threshed 

on ribbed rubber mats as described above.  The total number of seed produced was then 

counted, and the percent seed set was determined. 

 Seed viability was determined by germination.  PMN seed of each of the four 

seed classes from two hybrid genotypes were germinated a commercial soil mixture in 

72 cell trays (Figure 4).  One seed was planted in each cell and a total of 10 seeds per 

seed size class were planted, and each class was replicated three times. Germination data 

was recorded after 7 days.   
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Flow Cytometry 

Flow cytometry was used to measure the DNA content of each putative hybrid, a 

female pearl millet parent and a male napiergrass parent.  If the chromosome number 

and DNA content of the parents are known, the ploidy level and possibly the 

chromosome number of the putative hybrids can be predicted from their DNA content. 

Leaves of a diploid female parent and each putative PMN hybrid were collected, placed 

on ice, and brought into the laboratory for analyses.  Pieces approximately 1cm2 was cut 

from a leaf of an individual hybrid and the pearl millet female parent and these were 

placed into a Petri dish and the leaf material was chopped with a razor blade in 0.25 mL 

of Galbraith’s buffer. After the tissue was properly macerated, 1.0 mL of Galbraith’s 

buffer was added to the leaf tissue and strained through a 30 mμ filter into a 2.0 mL 

microtube. Leaf material was kept on ice before and after maceration.  Fifty μL of 

propidium iodide was then added to each microtube and allowed to set for 15 minutes in 

a covered ice chest. The sample solutions were then analyzed for DNA content using a 

Partec CyFlow Counter (Partec GmbH, Münster, Germany). At least 3,000 particles 

were analyzed of each sample.  This protocol was repeated for each hybrid analyzed. 

DNA Isolation 

Genomic DNA was isolated using a modified rapid salt extraction protocol 

described by Aljanabi and Martinez (1997).  Four hundred microliters of homogenizing 

buffer (0.4 M NaCl, 10 mM Tris–HCl, pH 8.0, 2 mM EDTA, pH 8.0) and 100 mg of 

fresh leaf tissue were added to 1.7 mL microtubes.  The plant tissue was pulverized for 

one to two minutes or until adequately pulped.  Forty microliters of 20% sodium dodecyl 
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sulfate and 8 μL of 20 mg/mL proteinase K were added and vortexed for 5 seconds. 

Following incubation in a water bath at 65 °C for a minimum of 1 hour, 300 μL of NaCl 

saturated H2O was added and the samples were vortexed for 30 seconds. Samples were 

spun at 12,000 rpm for 10 minutes, the supernatant was transferred to new tubes, 

samples were spun at 12,000 rpm for 20 minutes, and supernatant was transferred to new 

tubes without disturbing any of the remaining pellets.  Following the addition of 800 μL 

of cold isopropanol and 20 gentle inversions, samples were incubated at −20°C for 1 

hour. Samples were spun at 10,000 rpm for 5 min, and the supernatant was removed.  

Next was the addition of 500 μL of cold 70% ethanol.  The samples were spun at 10,000 

rpm for 5 min, and the supernatant was removed. Microtubes containing DNA were 

inverted until dry, and the DNA was re-suspended in 100 μL of sterile deionized H2O.  

Re-suspended DNA was then quantified prior to its use in PCR amplifications.  DNA 

quantification was completed with a spectrophotometer (Eppendorf, Hamburg, 

Germany).  Dilution of the DNA solution was carried out by first filling a cuvette with 

50μL of deionized H2O and using this sample as a blank to zero the machine.  Next, 

using a clean cuvette 49μL of deionized and autoclaved H2O (PCR H2O) was added 

followed by 1μL of the DNA solution.  After the conclusion of quantifications, 

appropriate quantities of DNA and PCR H2O were added to yield a final concentration 

of 50 ng μL-1 for each genotype included in the survey. 
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EST-SSRs Analysis 

 In the absence of publicly available sequence data for napiergrass, a diverse 

collection of SSRs were surveyed across napiergrass and PMN plant materials. A total of 

21,745 full-length complementary DNA (cDNA) sequences from apomictic buffelgrass 

pistils [Pennisetum ciliare (L.) Link syn. Cenchrus ciliaris L.] were downloaded from 

GenBank (National Center for Biotechnological Information 

(http://www.ncbi.nlm.nih.gov/Genbank/index.html).  Simple sequence repeats were 

identified and primer sequences designed using the SSRLocator software package 

located online at 

http://www.ufpel.edu.br/faem/fitotecnia/fitomelhoramento/faleconosco.html.  These 

PCAR ('Pennisetum-Ciliare-Apomictic-Repeat') marker sequences were used to survey 

the parental pearl millet and napiergrass genotypes. All the maternal parents’ DNA was 

placed in a bulk each with an equal volume of 50μL and concentration of 50 ng μL-1, and 

the bulk female was surveyed in association with each of the four paternal parents.  

Selected SSRs contained at least ten dinucleotide or five tri-, tetra-, or pentanucleotide 

repeats (Jessup, et al. 2002). Primer design was based on the standards of 50% guanine-

cytosine content, minimum melting temperature of 50 °C, absence of secondary 

structure, length of 20–27 nucleotides, and amplified PCR product range of 100–400 

base pairs (bp) in length.  The desired length of markers to be surveyed was between 

100-200 bp long.  A total of 58 SSR markers were surveyed from the compilation of 

sequences from buffelgrass that are between 100-400 bp. Polymerase chain reactions 

were performed in a total volume of 20 μL using 11.8 μL of PCR H2O, 1 μL of 50 ng 
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μL-1 DNA, 2 μL of 1X Promega MgCl2-free PCR buffer, 2 μL 2.5 mM MgCl2, 1 μL of 

4mM deoxynucleoside triphosphates (dNTPs), 1 μL of 2 mM of each forward and 

reverse primer, and 0.2 μL of 5 U μL-1 Taq polymerase. The reactions were conducted in 

96-well plates and temperature cycling was carried out using a PTC-220 Dyad Thermal 

Cycler (MJ Research Inc., Waltham, MA).  The PCR began with an initial denaturation 

at 95 °C for 3 minutes; followed by 40 touchdown decrement cycles at 95 °C for 25 

seconds, 55 °C for 25 seconds, and 70 °C for 45 seconds; and concluded with an 

elongation stage of 72 °C for 10 minutes.  The final hold was at 4 °C indefinitely.  

Amplification of the PCR products was completed using polyacrylamide gel 

electrophoresis (PAGE) on a large MEGA-GEL (C.B.S. Scientific, Del Mar, CA) high-

throughput unit and nondenaturing gels with final concentrations of 40mL acrylamide, 

10mL 10X TBE (tris-borate-EDTA) Buffer, 1.4mL ammonium persulfate, and 80μL 

TEMED (Tetramethylethylenediamine) as described by Wang et al. (2003).  The 

polyacrylamide gels were stained with ethidium bromide for 40 minutes prior to loading 

the DNA into the wells.  Prior to loading the wells, 2μL of gel loading buffer (containing 

35 mL of 50% glycerol, 2.5 mL of 10X TBE, 2 mL of 0.5M EDTA, 0.5 mL of 20% 

SDS, 10 mL de-ionized H2O, and 0.05 g of bromophenol blue) was added to the 96 well 

plate and centrifuged briefly to a maximum 340 rpm.  After the PCR product and 1.5μL 

of 50 bp ladder was loaded onto the gel rig, electrophoresis was carried out on a two 

hour run at a maximum amperage and wattage of 350 mA and 400 W, respectively.  

Since the desired bp length of the surveyed SSRs were 100-200, a run time of two hours 

was ideal.  Identifying alleles that are 200 bp or larger required runs of three hours or 
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more.  Once the gels completed the electrophoresis process, they were then 

photographed using UV light to illuminate the allele bands. The brightness, contrast and 

white levels of the photographs were manipulated using Adobe Photoshop®.  The 

pictures where then scored for the presence or absence of allele bands according to the 

procedure set forth by Rodriguez et al. (2001).  Loci that appeared to be homozygous 

dominant, hemizygous, and some heterozygotes were identified.  The markers were then 

compared to other gel results to determine the best suitable for hybrid analysis using the 

same PAGE protocol. 
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CHAPTER IV 

RESULTS AND DISCUSSION 

 

Pearl Millet x Napiergrass Hybridization 

 Both cms and fertile pearl millet genotypes produced full heads of seed when 

pollinated by napiergrass.  The size, shape, and color of the potential hybrid seed were 

different from the self-pollinated seed of the fertile pearl millet lines.  These differences 

could be noticed without magnification.  All parental lines used in these crosses are 

listed in Table 1.  In Table 2 are the number of inflorescences pollinated for all hybrid 

genotypes and the approximate total number of seeds which resulted from the crosses.  

The number of seed recovered from each genotype with large numbers of seed was 

calculated based on an average weight of 100 seed.  A large range of seed sizes and 

weights were observed, and the size classes were fourfold in each hybrid genotype 

(Figure 1).  The seed sizes from the two different genotypes were similar with the largest 

class (1/13 Round) having slightly more seed than the rest.  The weight differences from 

the largest to the smallest seed class varied by more than 30%.  Seed in all of the seed 

classes had high percentages of germination (Table 3.)  Seed size did not influence the 

germination.  Most seed in the smallest seed class (1/17 Round) had wrinkled seed coats 

and appeared to have abnormal development, but nearly 100% germination was 

observed for this class and across all seed size classes in both PMN genotypes studied 

(Table 3).    
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 Mature inflorescences were collected from individual PMN F1 hybrids in each of 

the six genotypes.  When the panicles were threshed, no seeds were recovered in all of 

the PMN genotypes indicating that all the F1 hybrids were sterile (Table 4).  These 

finding supports previous reports of sterility in PMN hybrids by Burton (1942), Burton 

and Powell (1968), Gonzalez and Hanna (1984), Juahar and Hanna (1998), and Barbosa 

et al. (2003).  Even though members of the A genome from pearl millet and the A’ 

genome from napiergrass pair with one another during metaphase I of meiosis, the seven 

chromosomes of the B genome of napiergrass do not have anything to pair with, and 

they are present as seven univalent.  These univalent lag behind the A and A’ 

chromosomes during meiosis I and II and often are not incorporated into the resulting 

gametes with result in sterility (Jauhar, 1981).  Jauhar (1968) did observe intragenomic 

as well as intergenomic pairing of chromosomes where chromosomes from different 

gene pools paired during meiosis.  Despite the latter finding of Jauhar (1968), the former 

highly predictable behavior of comparable subgenome pairing results in triploid 

(2n=3x=21) genome formula of AA’B or some combination thereof.  

Flow Cytometry 

Histograms showing the 2C and 4C peaks for diploid Tift D2A1 pearl millet, 

Merkeron napiergrass, Tift D2A1 and Merkeron napiergrass, and diploid Tift D2A1 

pearl millet and a putative pearl millet x napiergrass hybrid are shown in Figures 2A, 2B, 

2C, and 2D, respectively.  The 2C and 4C peaks for the pearl millet line (Figure 2A) and 

Merkeron napiergrass (Figure 2B) are quite evident, and the location of the 4C peaks in 

relation to the 2C peaks on the X axis are as they should be even though the 4C peaks for 
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napiergrass are quite broad.  When pearl millet and napiergrass were analyzed together 

there was a single 2C peak.  The 4C peak is probably further to the right and is not 

shown on this histogram.  This demonstrates that the two species have similar DNA 

contents and this agrees with earlier findings (Martel et al. 1997).  When the putative 

PMN hybrids were analyzed with pearl millet as the internal standard, the 2C peaks of 

both plants were located very closely to one another and they produced a single broad 

peak (Figure 2D).  This indicated that pearl millet and the F1 PMN hybrids have similar 

DNA contents, and because of the proximity of 2C peaks, it was not possible to separate 

them from one another.  Consequently, the putative hybrids could not be identified as 

true hybrids using flow cytometry. 

Pearl Millet x Napiergrass Hybrid Verification 

 From the 58 EST-SSRs surveyed in the bulked segregant analysis, several were 

heterozygous dominant, and many others were homozygous dominant and hemizygous 

at the particular loci.  Three of the paternal napiergrass parents that are of novel origin 

contained four markers that were identified to be hemizygous at their particular loci that 

span across all three of these napiergrass genotypes.  Two particular markers occurred in 

all four genotypes even Merkeron.  Five EST-SSRs were found to be novel for 

PEPU09FL01, PEPU09FL02, and PEPU09FL03.  Specifically, of all 58 markers 

surveyed, seven total hemizygous EST-SSRs were identified for Merkeron, seven for 

PEPU09FL01, eight for PEPU09FL02, and six for PEPU09FL03.  These markers took 

precedent over any that were heterozygous to remove a portion of error due to 

segregation in the electrophoresis analysis.  Four of the best were chosen for marker-
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assisted hybrid verification.  An example of one specific marker for hybrid verification 

is shown in Figure 3.  Table 5 shows the overall summary of markers tested across 

parents and progeny including the ratio of hybrids confirmed.  The secondary gene pool 

in napiergrass was said to form seven univalents during meiosis.  The incompatibility of 

the primary and secondary genomes of Pennisetum in these hybrids make analysis 

straightforward, and analysis of hybrids was done with the assumption that the 

hemizygous markers identified came from the B genome of napiergrass.   This method 

of hybrid analysis will return a high success rate.  Likewise, while scoring these gels 

many loci were hemizygous or heterozygous dominant in pearl millet.  Utilizing those 

markers could possibly assist breeding efforts for other potential wide hybrids with pearl 

millet or in the reciprocal hybrid of napiergrass x pearl millet, also known as kinggrass.  
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CHAPTER V 

CONCLUSIONS 

Hybridization between pearl millet and napiergrass in a greenhouse setting is 

possible at College Station, TX.  Flowering in napiergrass occurs almost sequentially as 

the day-length becomes shorter, and pollinations can be made the entire winter when the 

day-length is less than the required 10 ½ or 11 hrs of day light. The size and weight 

differences of PMN hybrid seeds play an important part in the goal to expedite a seeded 

PMN product sometime in the future.  Larger seeds make planting and handling easier 

for farmers, and larger seed would be more likely to break the soil crust as well as persist 

longer in the field under unfavorable conditions than smaller seed.  Additional research 

is needed to investigate the phenotypic and morphological differences in plants from 

these different seed classes to determine if there is any consistency or correlation 

between the two or if it is solely an environmental factor.  As has been reported in the 

literature, these hybrids are completely sterile.  This is a favorable characteristic to 

contain, and along with selection of very late flowering or non-flowering phenotypes a 

highly desirable ‘seeded-yet-sterile’ dedicated energy crop is constructed.  Flow 

cytometry is not a valid method to distinguish napiergrass and pearl millet from their 

interspecific hybrids.  The total DNA content of pearl millet and napiergrass were 

essentially the same even though distinct 2C and 4C peaks were seen from the diploid 

pearl millet, and it was not possible to make any distinctions between the two much less 

their hybrids.  The use of EST-SSRs is a valid method to confirm hybrids in PMN, and 

the identification of new microsatellites that are unique to napiergrass in regards to these 
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particular pearl millet genotypes.  The best case scenario would be where these results 

were ubiquitous across all genotypes of pearl millet as it is almost certain that cultivars 

and wild accessions of napiergrass contain the same major EST-SSR at the given loci.  

This method of hybrid verification can be utilized in the reciprocal cross of napiergrass x 

pearl millet or other wide hybrids with pearl millet as the male parent.  The use of these 

EST-SSRs can be a starting point for DNA sequencing of napiergrass and their use in a 

marker-assisted breeding program. 
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APPENDIX 

A 

B 

Figure 1. Four Seed Size Classes in Two Pearl Millet x Napiergrass Hybrids. 
A) TIFT D2 A1 x ‘Merkeron’ (Classes arranged from 1/13 Round-1/17 

Round, and the seed weight per 100 seed were 7.36mg, 3.88mg, 
3.02mg, and 2.14mg, respectively. 

 
B) ICMA 89111 x ‘Merkeron’ (Classes arranged from 1/13 Round-1/17 

Round, and the seed weight per 100 seed were 7.78mg, 4.35mg, 
3.65mg, and 2.36mg, respectively. 
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Figure 2. Flow Cytometry Hybrid Verification Histograms. 
X axis is the photon intensity associated with DNA content. Y axis is the 
particle or nuclei count.  
A) PEGL 508273 
B) Merkeron 
C) PEGL 508273 w/ Merkeron 
D) PEGL 508273 w/ PMN (508273 x Merkeron) 
 

A B 

   C D 
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Female 
     ꜜ 

Male 
    ꜜ 

Progeny 
  1  2  3 4          5         6         7         8         9        10 

Figure 3.  PCR Products of PMN Hybrid PEGL09TX04 x PEPU09FL01 
                showing 10/10 Hybrids in These Progeny. 

Figure 4.  Germination Tray of the Four Seed Size Classes    
for Pearl Millet x Napiergrass Genotype TIFT 
D2A1 x Merkeron 
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Table 1. Parental Genotypes.   

Species ID Source: GPS 
coordinates/GRIN PI No. 

P. purpureum PEPU09FL01 
PEPU09FL02 
PEPU09FL03   
‘Merkeron’ 

(30.66050 N 86.21496 W) 
(29.34651 N 82.21921 W) 
(29.34651 N 82.21921 W) 
(30.54863 N   96.44158 W) 

   
 TIFT 85D2A1   PI 508273 
P. glaucum ICMA 89111 PI 599192 
 ICMA 88006 PI 596507 
 TIFT 8677 PI 564585 
 No. 467 PI 288787 
 No. 44 PI 295167 
 PEGL09TX04 (30.54863 N   96.44158 W) 
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Table 2. Summary of PMN Crosses Made during Winter 2010 

 

Cross Inflorescences Pollinated Seed Produced 

                               No. 

TIFT D2A1 x Merkeron 45 ~27,000 

TIFT D2A1 x PEPU09FL01 12 200 

TIFT D2A1 x PEPU09FL02 5 85 

TIFT D2A1 x PEPU09FL03 7 100 

ICMA 89111 x Merkeron 35 ~14,000 

ICMA 89111 x PEPU09FL01 9 175 

ICMA 89111 x PEPU09FL02 5 100 

ICMA88004 x Merkeron 4 350 

PEGL288787 x Merkeron 13 ~7,500 

TIFT 8677 x Merkeron 8 350 

TIFT 8677 x PEPU09FL01 2 100 

PEGL295167 x Merkeron 14 ~5,700 

PEGL09TX04 x Merkeron 6 100 

PEGL09TX04 x PEPU09FL01 6 100 
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Table 3. Percent Germination of Seed Size Classes from Two Pearl Millet x Napiergrass  
              Hybrids 
 
     Seed Size Class 
Genotypes    1/13  1/14   1/15   1/17 
TIFT D2 A1 x Merkeron 100%  100%  90%  90% 
 
ICMA 89111 x Merkeron 100%  90%  100%  100%              
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Table 4. Seed Production of Open-Pollinated Pearl Millet x Napiergrass Hybrids 
 

Cross Inflorescences Florets Seed 

                                                         No.  

PEGL09TX04 x Merkeron 22 5,531 0 

ICMA89111 x PEPU09FL01 37 10,475 0 

PEGL09TX04 x PEPU09FL01 2 863 0 

TIFT D2 A1 x Merkeron 7 1,951 0 

ICMA89111 x Merkeron 5 1,435 0 

TIFT 8677 x PEPU09FL01 15 4,560 0 
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Figure 5. Survey of Napiergrass Specific Expressed Sequence Tags-Simple Sequence
     Repeats across Pearl Millet x Napiergrass Hybrids                                                                                                                                                               

Cross Hemizygous Paternal-
Specific Markers 

Hybrids Confirmed/Progeny 
Tested 

No. 

ICMA89111 x 
Merkeron 

4 10/10 

ICMA89111 x 
PEPU09FL01 

4 10/10 

PEGL09TX04 x 
Merkeron 

4 9/10 

PEGL09TX04 x 
PEPU09FL01 

4 10/10 

TIFT D2 A1 x 
Merkeron 

4 10/10 

TIFT 8677 x 
PEPU09FL01 

4 10/10 
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