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ABSTRACT 

 

Thermo-Poroelastic Modeling of Reservoir Stimulation and Microseismicity Using 

Finite Element Method with Damage Mechanics. (December 2011) 

Sang Hoon Lee, B.S., University of Seoul; 

M.S., Seoul National University 

Chair of Advisory Committee: Dr. Ahmad Ghassemi 

 

Stress and permeability variations around a wellbore and in the reservoir are of 

much interest in petroleum and geothermal reservoir development. Water injection 

causes significant changes in pore pressure, temperature, and stress in hot reservoirs, 

changing rock permeability. In this work, two- and three-dimensional finite element 

methods were developed to simulate coupled reservoirs with damage mechanics and 

stress-dependent permeability. The model considers the influence of fluid flow, 

temperature, and solute transport in rock deformation and models nonlinear behavior 

with continuum damage mechanics and stress-dependent permeability. 

Numerical modeling was applied to analyze wellbore stability in swelling shale 

with two- and three-dimensional damage/fracture propagation around a wellbore and 

injection-induced microseismic events. The finite element method (FEM) was used to 

solve the displacement, pore pressure, temperature, and solute concentration problems.  

Solute mass transport between drilling fluid and shale formation was considered 

to study salinity effects. Results show that shear and tensile failure can occur around a 
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wellbore in certain drilling conditions where the mud pressure lies between the reservoir 

pore pressure and fracture gradient.  

The fully coupled thermo-poro-mechanical FEM simulation was used to model 

damage/fracture propagation and microseismic events caused by fluid injection. These 

studies considered wellbore geometry in small-scale modeling and point-source injection, 

assuming singularity fluid flux for large-scale simulation. Damage mechanics was 

applied to capture the effects of crack initiation, microvoid growth, and fracture 

propagation. The induced microseismic events were modeled in heterogeneous 

geological media, assuming the Weibull distribution functions for modulus and 

permeability.  

The results of this study indicate that fluid injection causes the effective stress to 

relax in the damage phase and to concentrate at the interface between the damage phase 

and the intact rock. Furthermore, induced-stress and far-field stress influence damage 

propagation. Cold water injection causes the tensile stress and affects the initial fracture 

and fracture propagation, but fracture initiation pressure and far-field stress are critical to 

create a damage/fracture plane, which is normal to the minimum far-field stress direction 

following well stimulation. Microseismic events propagate at both well scale and 

reservoir-scale simulation; the cloud shape of a microseismic event is affected by 

permeability anisotropy and far-field stress, and deviatoric horizontal far-field stress 

especially contributes to the localization of the microseismic cloud.      
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1. INTRODUCTION 

 

Stress analysis or rock mass failure in response to water injection is of much 

interest in oil and gas exploration and geothermal reservoir design. The process involves 

coupled rock deformation, fluid flow, heat transfer and chemical interactions in the 

porous rock. Interest in understanding rock deformation and failure during fluid injection 

has increased in enhanced geothermal systems, unconsolidated petroleum reservoirs, and 

unconventional resources such as gas shales.  

From the geomechanical point of view, the impact of the variations of pore 

pressure, temperature and chemical interaction are key factors in reservoir engineering. 

These are of especially interesting around a wellbore, where their impact is particularly 

significant during injection and production, which may lead to problems such as 

borehole collapse, distortion, and buckling during injection or drilling (Yu et al., 2001). 

These problems are mainly caused where the rock’s effective stress exceeds its strength. 

In addition, the far-field stresses are among the most important factors in geomechanical 

engineering since the stress regime impacts rock failure, its geometry, and the resulting 

fluid path. The stress distributions around a wellbore are influenced both by the 

injection-induced stress and far-field stress in the reservoir so they must be accounted for 

in determining the impact of fluid flow, temperature and chemical interaction with far-

field stresses (Fig. 1.1).  

___________ 
This dissertation follows the style of Geothermics. 
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Fig. 1.1. The key factors in geomechanical engineering design. 
 
 
 

Generally, the strain-stress behavior of rocks in experimental tests shows 

hardening and post-peak softening or directly reaches the softening regime, depending 

on the rock type and conditions such as pore pressure, stress conditions, and temperature 

(Jaeger et al., 2007). The continuum damage mechanics approach can capture the 

hardening and softening behavior of the rock (Yuan and Harrison, 2006), and 

permeability variation caused by the stress change and rock failure is critical in the 

analysis of wellbore stability and well stimulation. Induced microseismic events are 

among the promising approaches to estimate permeability changes and stress 

distributions since they measure the earthquake energy where geological formations 

have become imbalanced by fluid injection. The characteristics of microseismic events 

such as their locations, spatial patterns of distribution, and temporal relations between 

the occurrence of seismicity and reservoir activities are often studied for enhanced 

geothermal systems (EGS). Microseismic event detection and interpretation is used for 

estimating the stimulated volume and fracture growth, resulting reservoir permeability, 
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and geometry of the geological structures and the in-situ stress state (Pine, 1984). 

Numerical modeling of the coupled processes in rock can help improve understanding of 

MEQ and will improve reservoir development activities.  

1.1  Motivation and objectives of the study 

The theory of thermo-poroelasticity can explain the coupling of fluid flow and 

temperature effects in rock deformation. It provides a robust framework for studying the 

rock deformation and stress redistributions after rock failure. However, it could be 

improved by developing three-dimensional injection/extraction geomechancis models 

that not only consider induced rock failure and fracture propagation but also take into 

account rock damage and permeability variations. Continuum damage mechanics with 

fully coupled thermo-poroelasticity using finite element methods can be used for this 

purpose. The objectives of the research were: 

• To develop a fully coupled thermo-chemo-poroelastic and three-dimensional 

finite element model that considers rock damage and stress-dependent 

permeability for simulating the influence of fluid flow and temperature with 

various injection schedules under anisotropic far-field stress conditions 

• To investigate the influence of solute transport in wellbore stability with damage 

evolution in low permeability shale drilling 

• To observe the injection-induced stress variations, permeability change and rock 

failure 
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• To simulate and study  the three-dimensional propagation of damage/fracture and 

microseismic events under different stress regimes and to investigate the key 

factors for temporal and spatial distributions in induced microseismic events   

This has been achieved by studying the theory of thermo-poroelasticity and chemo-

thermo-poroelasticity and describing the nonlinear behavior of rock using damage 

mechanics and permeability change caused by fluid injection. 

1.2  Fluid flow, temperature, and solute transport in porous rock 

Coupled hydromechanical process analysis was initially motivated by soil 

consolidation problems. Terzaghi (1923) presented the one-dimensional consolidation 

theory that takes into account pore pressure and the soil deformation. Biot (1941) 

developed a model for linear poroelasticity that considered the stress change under fluid 

loading and pore pressure variations under applied stress. This theory has been extended 

to include the influence of temperature, fluid flow, and rock deformation and is called 

thermo-poroelasticity (McTigue, 1986; Kurashige, 1989; Wang and Papamichos, 1994). 

Heidug and Wong (1996) proposed the constitutive equations for swelling shale based 

on nonequilibrium thermodyanamics. Ghassemi and Diek (2003) considered combined 

effects of chemical potential and thermal osmosis on water flow in and out of the mud 

and shale formation. They indicated that in addition to thermal osmosis, chemical 

osmosis also can be several times higher than hydraulic pressure in certain conditions. 

Also, a linear chemo-thermo-poroelasticity was developed to remedy the cumbersome 
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solution of the original chemo-thermo-poroelasticity for practical applications. Details of 

these mathematical formulations will be illustrated in Section 2.  

1.2.1  Biot poroelasticity 

Biot (1941) developed the coupled fluid and solids consolidation problem in 

porous media. He assumed that the material is homogeneous and fully saturated, and 

fluid flow follows Darcy’s law in porous media. The problem domain that illustrated the 

influence of loading in excess pore pressure variation is shown in Fig. 1.2. Consider a 

fully saturated poroelastic layer from z = 0 to z = h, and normal traction P applied at the 

top surface. Initially the layer deforms as elasticity, and an excess pore pressure induces 

the change of displacement as results of the Skempton effect. The fluid flow dries out 

gradually with time, and the layer continuously deforms vertically. 

 
 

 

Fig. 1.2. Sketch of the Biot consolidation problem. 
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Assuming the fluid drains on the surface and the system is impermeable at the 

bottom, the governing equations for the transient phenomena of consolidation as follow, 
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The analytical solution in Fig. 1.3 shows the displacement change on the top 

surface under loading with respect to time, and the corresponding pore pressure changes 

illustrate how (Fig. 1.4) the saturated water diffuses through the porous soil and out of its 

top surface as time increases. Note that maximum pore pressure in the middle 

(consolidation effect) can disappear in a very short time when the permeability (as is the 

case here) is relatively high (100 md). The consolidation effects will be discussed in 

more detail in Section 3, in the context of pore pressure distribution around a wellbore in 

ultralow-permeability rock.      

 
 

 

Fig. 1.3. Surface displacement with time. 
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Fig. 1.4. Pore pressure change for various depths, as a function of time. 
 
 
 

The theory of Biot consolidation represents fully coupled interaction of fluid 

flow and solids. It provides general schemes of the interaction between fluid flow and 

mechanical loading. Similar phenomena are observed around a wellbore.  

1.2.2  The concept of thermal stress 

The change of temperature induces stress and displacement in a rock skeleton. 

The theory of thermoelasticity is analogous to the theory of poroelasticity, but instead of 

pore pressure, it includes the role of temperature change. Palciauskas and Domenico 

(1982) and McTigue (1986) studied the effects of temperature change on pore pressure 

and stress in rock. Considering linear elasticity, temperature decrease or rise causes a 

change of strain in the rock given by:  

( )0TT −−= βε  .........................................................................................  (1.7) 
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whereβ  is the volumetric thermal expansion coefficient (at constant t and p) that 

indicates the change of strain by the difference of temperature in a rock. An increase in 

temperature will cause bulk volume increase, whereas a decrease of temperature will 

cause bulk volume decrease. Since the injection water in geothermal conditions is cold 

and reservoir temperature is hot, injection leads to tensile stress of rock in the injection 

well. For typical values such as K=10 GPa and β=10-5/K°, a temperature change of 10 K° 

induces a thermal stress around 30 MPa.  

The conductivity and thermal expansion coefficients do not vary widely because 

most rock-forming minerals have similar thermal expansion coefficients. The thermal 

conductivity of rock is in the range of 1 to 10 W/m·K (Jaeger, Cook, and Zimmerman, 

2007). An interesting phenomenon regarding the thermal effects in the rock is that the 

range of the thermal expansion coefficient does not vary significantly with rock type 

(Grimvall, 1986), in contrast to other rock properties such as porosity and permeability 

that may vary by many orders of magnitude. McTigue (1986) determined that the 

thermal expansion coefficient of a fluid-saturated rock is equal to that of the rock 

skeleton in drained conditions, whereas in undrained conditions, it is: 

( )sfsu B ββφαβ −+=  .............................................................................  (1.8) 

where φ and B are the porosity and  the Skempton coefficient. The subscripts s and f 

indicate the rock skeleton and fluid phase, respectively. 

 According to linear thermo-elasticity, the strain is the sum of stress-induced 

strain and thermally induced strain:  
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where ττττ is the relationship of stress and strain in linear elasticity, that is 

ετλ Gtrace 2)( += Iτ .   ............................................................................  (1.10) 

 The governing equation for thermoelasticity is obtained by combining Eq. 1.9 

with the stress equilibrium equation, 0, =jijτ  and the strain-displacement equations. 
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The solutions of temperature distribution and displacement can be solved from Eq. 1.11 

and Eq. 1.12. Thermo-elasticity has been extended to thermo-poroelasticity, which takes 

into account the influence of fluid flow and heat transfer. The theory of thermo-

poroleasticity will be described in Section 2.  

1.2.3  The influence of chemical potential  

 The effect of chemical potential on water and solute transport is of interest in 

ultralow-permeability rock such as shale reservoirs. The general concept of chemical 

interaction in drilling fluid/shale has been studied by experiments (Chenevert, 1970; 

Hale et al., 1992; Mody and Hale, 1993). They showed that the in and out movement of 

water and solution between the drilling mud and the shale reservoir alters the pore 
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pressure distribution, which in turns impacts the effective stresses. The fundamentals of 

fluid movement in shale can be explained by the difference of chemical potential 

between the water and shale as shown in Fig. 1.5.  

 
 

 

Fig. 1.5. Conceptual scheme of osmosis flow by chemical potential.  
 
 
 

A model for chemo-poroelasticity that considers the osmosis, swelling, and 

solute transport between the drilling mud and pore fluid in the rock based on the Gibbs-

Duhem equation in thermodynamics was presented by Heidug and Wong (1996). In this 

section, we only briefly introduce the general constitutive equations and transport 

equations for chemo-poroelasticity. Details will be presented in Section 3. 

Total stress and pore volume fraction has been introduced by Heidug and Wong 

(1996); that is (tension positive), 
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where v  is the pore volume fraction, and βµ  is the chemical potential of thβ chemical 

component. The elastic stiffness coefficients are the tensor in the case of isotropy, as 

   ( ) klijjkiljlikijkl
G

KGL δδδδδδ 






 −++=
3

2
,  ........................................  (1.15) 

where K and G denote the bulk and shear modulus, respectively.  

The presence of hydraulic pressure and chemical potential cause the change of 

pore pressure and solute concentration with time. Fluid flux in shale can be written as 

  ( )DS

f
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L
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where S and D denote the solid and fluid, and the phenomenological coefficients are 

defined by: 

 µ
ρ ℜ

−=ℜ−=
k

LL f
2

1112
,  .........................................................................  (1.17) 

where k and µ are the permeability and viscosity, respectively. ℜ  is the solute reflection 

coefficient which may range from 0 to 1.  

1.3  Deformation and failure of rock 

A number of cases in geothermal and petroleum reservoir operation involve rock 

deformation and failure caused by fluid flow change. Several different failure criteria are 

used for its applications (Jaeger, Cook, and Zimmerman, 2007). In this section, we 

briefly review the strain-stress behavior of rock under stress change, the Coulomb failure 

criterion, and the effect of pore pressure on rock failure. 
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1.3.1  Strain-stress curve 

 The most common tool for studying mechanical behavior of rocks is the uniaxial 

and triaxial test. It provides the rock properties such as modulus, rock strength, and 

hysteretic behavior during loading and unloading. In addition, it can estimate the brittle 

or ductile behavior of rock in a certain conditions of reservoir far-field stress and 

temperature. The general strain-stress curve for rock under compressive stress is 

illustrated in Fig. 1.6. In region A-B, the strain-stress behavior is almost elastic and 

hysteresis may be observed. The stress continues to rise in region B-C but nonlinear 

behavior, which is called the ductile state, begins at point B, which is the yield stress of 

the rock. The third region, C-D beginning with the maximum stress at point C leads to 

large permanent strain change caused by compressive stress, where deterioration of the 

rock causes a brittle state.  

 
 

 

Fig. 1.6. General strain-stress curve for rock under compression.  
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1.3.2  Coulomb failure criterion 

 The mostly widely used model for the prediction of rock failure is the Mohr-

Coulomb failure criterion. Coulomb (1773) developed the model through experimental 

investigation, assuming the shear stress along to the plane causes failure. This 

consideration can be mathematically expressed as 

 
σµτ sS += 1  ............................................................................................  (1.17) 

where τ  is shear stress, 1S  is finite shear stress, and sµ andσ  are the coefficients of 

internal friction and normal stress. Eq. 1.17 can be rearranged to the maximum and 

minimum principal stress as 

 
( ) ( ) ccS φσσφσσ sin

2

1
cos

2

1
31031 −+=− ,  ..............................................  (1.18) 

where cφ  is the angle of internal friction and 1σ  and 3σ  are the minimum and maximum 

principal stress. 

 Understanding tensile failure requires the tension cut-off, T0, which can be 

measured from a tensile experiment since without a tension cut-off, the Coulomb failure 

criterion often overestimates the stress state for the failure criterion. 

1.3.3  Effects of pore pressure in rock failure 

 Fluid injection causes rock failure because of the hydraulic pressure and 

chemical interactions between the rock and the fluid. The mechanical impact with pore 
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pressure has been developed by Terzaghi (1936). He proposed that the failure of soil can 

be controlled by the effective principal stress σ ′ ; that is, 

 
p−′=σσ  ..................................................................................................  (1.18) 

where p is the pore pressure. 

 Fig. 17 and Fig. 1.8 illustrate the stress state in shear and caused tensile failure by 

pore fluid pressure. This fluid-induced failure is frequently observed around a borehole 

during the injection or production operation in geothermal and petroleum reservoirs 

since they experience significant change of pore pressure around a wellbore.  

 
 

 

Fig. 1.7. Stress state that satisfies the shear failure curve.  
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Fig. 1.8. Stress state that satisfies the tensile failure curve.  
 
 
 

1.4  Fundamental of continuum damage mechanics 

The nonlinear behavior of the rock is of much interest in well stimulation and 

hydraulic fracturing design in petroleum and enhanced geothermal reservoirs. Stress 

behavior in triaxial tests shows the hardening and softening process as the vertical 

compressive stress increases. This nonlinear behavior can also be observed frequently in 

oil and gas exploration in, for example, sanding problems in unconsolidated reservoirs, 

reservoir compaction during injection and production, and wellbore stability. More 

importantly, the process of hydraulic fracturing directly contributes to the nonlinearity of 

the rock by imposing fluid loading. Traditional poroelasticity cannot capture the 

hardening and softening behavior after the rock fails, so that it is necessary to consider 

the nonlinear behavior of rock under the effects of fluid flow, temperature change, and 

solute transport. In this section, we briefly review the continuum damage mechanics 
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which illustrate microcracks, microcavities, nucleation, and coalescence. The continuum 

damage theory phenomenologically accounts for the initial evolution of defects such as 

nucleation of a certain amount of cracks and void growth during the deformation.  

Various damage models have been proposed brittle and ductile materials. These 

include creep damage, cycle fatigue, and brittle damage (Kachanov, 1986; Lemaitre and 

Chaboche, 1990; Voyiadjis and Kattan, 1999). Kachanov (1958) first proposed a 

continuum damage model by introducing effective stress in a fictitious, undamaged 

configuration. Later researchers extended his theory for ductile material (Lemaitre, 1984, 

1985; Murakami, 1988) and brittle material (Krajcinovic and Foneska, 1981; 

Krajcinovic, 1983, 1996). Ductile materials show a strong plastic deformation, which is 

the main contributor to the damage evolution and reverse process, so many models for 

ductile material consider the concepts of coupling between plasticity and damage 

mechanics (Gurson, 1977; Tvergaard, 1982; Rousselier, 1987; Mahnken, 2002). 

The theory of damage in porous rock has been implemented by several 

researchers (Hamiel et al., 2004; Selvadurai, 2004; Tang et al., 2002). Bart et al. (2000) 

developed an anisotropic damage model in poroelastic brittle rock and Selvadurai (2004) 

presented the application of an isotropic damage model in a poroelastic contact problem. 

Tang et al. (2002) illustrated brittle rock failure under compressive and tensile stress 

with triaxial tests. They described the sudden drop to the residual stress regime by 

assuming that strain-stress behavior follows the elasticity theory before the rock failure 

and the damage theory after the rock failure without considering the hardening process; 
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instead, rock heterogeneity leads to distributed rock failure (different peak stress in each 

element), which defines the hardening process in the stress and strain behavior.  

Chow and Wang (1987) and Zhao and Roegiers (1993) studied the influence of 

rock damage on the change in Poisson’s ratio. Measurement of the change of 

compressibility in uniaxial tests of Berea sandstone and Cordoba cream limestone (Zhao 

and Roegiers, 1993) showed that Poisson’s ratio is reduced as the damage variable 

increases during the rock fracturing progress. 

To understand the damage variable, we briefly introduce the physical meaning of 

damage variable d and its relations of stress change. We assume that the cross-sectional 

area of the cylindrical bar in the loading condition is A and the area of both cracks and 

voids (damage in the bar) is AD. The removal of defects can be considered as a fictitious, 

undamaged configuration as shown in Fig. 1.9 to use continuum damage mechanics to 

remove both cracks and voids from the cylindrical bar.  

 
 

 

Fig. 1.9. Under uniaxial tension, both voids and cracks are removed in the effective 
undamaged configuration (Voyiadjis and Kattan, 1999). 
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The effective configurations of the cross-sectional area and the stress are denoted 

by A and σ , respectively. The effective undamaged configuration of stress can be 

written as  

  
d−

=
1

σσ ,  ..............................................................................................  (1.18) 

where the damage variable can be described from the continuum damage theory as 

 A

A

A

AA
d

D
=−= ,   ...................................................................................  (1.19) 

where A  is the effective configuration of the cross-sectional area, and AD is the 

damaged area. We can formulate the effective configuration of the stress-strain 

relationship d as 

 

e
klijklij E εσ =  ..............................................................................................  (1.20) 

where ijklE is the elastic moduli tensor for effective configuration of undamaged area 

and  e
ijε  is the similar effective strain. 

 The two theories in the transformation from the nominal to the effective 

configuration are the strain equivalence hypothesis and the strain energy equivalence 

hypothesis. Assuming that the strain in normal configuration is the same as in the 

effective configuration in strain equivalence hypothesis as 

 
ijij εε = ,  ....................................................................................................  (1.21) 

we can derive the expression for the relationship of the effective stress and strain 

configuration with the damage variable as follows: 
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εε

E
d

E =
−1

.................................................................................................  (1.23) 

 From the hypothesis of strain equivalence ( ijij εε = ), the relationship of damaged 

modulus with initial modulus can be written as: 

   EdE )1( −=  ..............................................................................................  (1.24) 

 The other theory for the transformation relation between the damaged and 

fictitious undamaged state was proposed by Sidoroff (1981). The theory assumed that 

the elastic energy in terms of effective configuration and nominal stress are equal; 

therefore, the elastic strain energies for damage and undamaged configuration are the 

same: 

  ijijijij εσεσ
2

1

2

1 =  ......................................................................................  (1.25) 

 The relation of effective and nominal strain can be derived with Eq. 1.24 by 

substituting Eq. 1.18 such that 

  ijij d εε )1( −=  ............................................................................................  (1.26) 

 Therefore, by rearranging of Eq. 1.26 and Eq. 1.18, we can obtain the 

relationship between the initial and damaged modulus, 

 
EdE 2)1( −=  ............................................................................................  (1.27) 
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1.5  Stress-dependent permeability  

 One of the interesting physical properties in a rock is permeability. It varies by 

many orders of magnitude among the various rock types, and it influences the fluid 

transmissibility in porous rock, which in turns impacts the effective rock stress. 

Permeability appears to have a relationship with porosity, but that is still highly 

uncertain because of their complexity in rocks (Ingebritsen and Manning, 2010).  

 The permeability variations induced by altered stress and rock failure have been 

studied by many researchers (Shipping et al., 1994; Kiyama et al., 1996; Coste et al., 

2001; Zoback and Byerlee, 1975). Zoback and Byerlee (1975) illustrated the relation 

between permeability change and the evolution of microcracks and voids. Their 

experimental tests on granite show permeability increases of up to a factor of four during 

rock deformation. Other studies present different magnitudes for the increase in 

permeability depending on rock type and conditions (De Paola et al., 2009; Wang and 

Park, 2002). Stress-dependent permeability has been developed by Elsworth (1989) and 

Bai and Elsworth (1994, 1999) for fractured media and Bai and Elsworth (1994) for 

intact rock. They considered equivalent fracture networks and showed the sensitivity of 

permeability to effective stress with coupled poroelasticity.  

 The empirical models for the correlations relating the permeability increase to the 

porosity change have been proposed by several authors (Labrid, 1975; Lund and Fogler, 

1976; Lambert, 1981). The Labrid permeability model based on porosity change can be 

supposed as: 
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where 0k and 0φ are the initial permeability and porosity, respectively. 

Labrid’s permeability model based on porosity was extended by Thomas et al. 

(2003), who proposed that porosity has correlations with strain:   
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where vε  is the volumetric strain. 

 The other interesting permeability model considering the shear dilation was 

developed from Bai and Elsworth (1994): 
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where the alternate negative and positive sign denote compression and dilatational 

loading.  

 Tang et al. (2002) developed a stress-dependent permeability model based on 

effective stress that accounts for the permeability increase under shear and tensile failure. 

There model emerged from experimental observation in triaxial tests with fluid in and 

out through the core sample.  

For undamaged rock: 

 

( )[ ]pkk iid ασβ −−= 3/exp0  ....................................................................  (1.31) 

For damaged rock: 
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( )[ ]pkk iidd ασβξ −−= 3/exp0  .................................................................  (1.32) 

where dξ is the increasing factor after the rock failure and dβ  represents the sensitivity 

of permeability in exponential decay by compression.  

 Permeability anisotropy is a key factor in the reservoir fluid path that can be 

caused by in-situ stress anisotropy. Experimental studies have shown that the 

permeability behaves isotropically under isotropic loading, whereas anisotropy becomes 

larger with anisotropic loading in core analysis (Bruno et al., 1991; Rhett et al., 1992; 

Ruistuen et al., 1996). From the experimental results of permeability behavior under 

stress variations, we can infer that reservoir permeability is dependent on the deviatoric 

far-field stress. Khan and Teufel (2000) illustrated the change of permeability anisotropy 

with respect to pore pressure variations and far-field stresses. They concluded that the 

maximum permeability direction is parallel to the maximum principal stress, and the 

permeability anisotropy increases as the deviatoric stress increases.      

1.6  Injection-induced microseismicity 

 In geological formations, earthquakes are occasionally caused by redistribution 

of the in-situ earth stresses in the rock mass. The interest in monitoring microseismic 

events during injection and production has increased over the past several years since it 

can be used as a tool to predict the natural fracture distribution and reservoir rock 

properties such as permeability and rock strength. Once injection and production begin 

in geothermal or oil and gas exploration, the pore pressures increase in the injection well 
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and decrease in the production well. This change of pore pressure triggers earthquake 

activity by both shear and tensile failure as shown in Fig. 1.10.  

 
 

 

Fig. 1.10. Microseismic events induced during the injection experiments of the Soultz-
Sous-Forets reservoir.  
 
 
 

 Efforts to estimate reservoir properties during fluid injection and extraction have 

progressed by several researchers (Talwani and Acree, 1985; Shapiro et al., 1997; 1999; 

2002; Adushkin et al., 2000; Fehler et al., 2001). Microseismic event detection and 
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interpretation are used for estimating the stimulated volume; resulting fracture growth, 

reservoir permeability, and geometry of the geological structures; and the in-situ stress 

state (Pine, 1984). The process commonly is referred to as seismicity-based reservoir 

characterization. Progress has been made in quantitative and qualitative analysis of 

reservoir stimulation using microseismic events (Shapiro et al., 1997, 1999, 2002; 

Rothert and Shapiro, 2003). They demonstrated numerical simulations based on a fluid 

diffusion model with a permeability tensor, assuming microseismic events are triggered 

if the pore pressure exceeds certain threshold values. However, rock failure and 

permeability change were not considered. Also, in-situ stress and thermal effects on 

fluid-rock interaction have not been considered. Generally, the induced seismicity occurs 

more frequently by fluid injection if the cracks, natural fractures, and faults exist and are 

subjected to excess shear. Bruel (2002) and Baisch et al. (2003) considered shear failure 

by fluid injection in naturally fractured reservoirs, and Safari and Ghassemi (2011) 

showed thermo-poroelastic analysis of microseismicity, which considered the fluid flow 

and fracture deformation by injection/extraction in geothermal reservoirs. Hydraulic 

fracturing also induces microseismicity. Fracturing is accompanied by tensile failure, 

which contrasts with shear induced failure (although shear failure can also be present in 

the vicinity of the hydraulic fracturing). It creates high energy for monitoring tensile 

failure so that it can be a tool for predicting the intended fractured volume.  
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1.7  Heterogeneous model 

 Rocks are heterogeneous, with natural weaknesses such as pre-existing cracks, 

voids, and grain boundaries. The variations of pore pressure and temperature during 

fluid injection can induce fractures at these defects, resulting in rock failure and fracture 

propagation. Muller et al. (2009) conducted stochastic borehole stability analysis using 

probability distribution functions for rock and reservoir properties such as bulk and shear 

modulus, far-field stress, initial pore pressure, and tension cutoff. They assumed the 

stochastic parameters follow lognormal and normal distributions which are widely used 

in heterogeneous reservoir simulations. The other probability function in geomechanics 

simulation is the Weibull distribution function (Weibull, 1951; Fang and Harrison, 2002; 

Tang et al., 2002; Gharahbagh and Fakhimi, 2010; Min et al., 2011), defined as 
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where s in the variables s0  represents the corresponding mean value. The shape 

parameter n determines the deviation from the mean value. The range of n is from 1 to 

infinity. If n increases, statistical deviations become narrow and the rock is 

homogeneous. Most rock properties, such as modulus and porosity, are heterogeneous 

because of the rock’s components and origin, and numerical modeling needs to depict 

this initial heterogeneity. The Weibull distribution function can be used to generate an 

initial property distribution for numerical modeling. Also, the deviations of rock 

properties from the mean values are important. These deviations can be assumed as 
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flaws in unit volume; therefore, homogeneous rock can be modeled with high value of n, 

and heterogeneity (flaws in unit volume) increase as n decreases.  

1.7.1  Stochastic model 

 To approach realistic reservoir properties and conditions, many stochastic 

approaches have been developed to accommodate small and large-scale heterogeneities 

in reservoir simulations (Knutson, 1976; Smith and Morgan, 1986; Liu, 2006). The two 

main streams in stochastical approaches are the discrete and continuum models.  

 The discrete model considers discrete geological features such as naturally pre-

existing fracture and faults in spatial distributions. Ezzedine (2010) presented stochastic 

discrete fracture network numerical model using Monte Carlo realizations and Cacas 

et al. (1990) proposed stochastic particle trajectories of flow patterns in fractured rock 

incorporating intersections with the network pipes model. Liu (2006) developed 

multiple-point simulations based on the Bayesian updating correction, and demonstrated 

the influence of geostatistical model parameters, number of replicates, and grid-scale.  

 The other stochastic approach is the continuum model. This model describes the 

mean level, deviations from the mean values, and how strongly typical properties are 

related with other neighboring points. Some key concepts are random distribution 

functions such as Gaussian, Weibull, and log-normal distribution functions, and the 

model has been applied to the rock mechanics and reservoir simulations (Muller et al., 

2009; Tang et al., 2002; Voss, 1985; Hewett, 1986). 
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 The discrete models are better suited for modeling large-scale heterogeneous 

reservoirs to describe the discontinuities of rock mass. The continuous models are well-

suited for geomechanical modeling of rock properties, assuming typical probability 

distributions with stationary change. The approach for describing the heterogeneity in 

this work is the continuum model which considers the deviation from the mean values 

based on Weibull distribution function.  

1.7.2  Mesh size sensitivity for heterogeneous models  

 It is critical to consider the influence of mesh scale to model spatial distribution 

of geological media. Especially to describe the discontinuity of reservoir rocks, the mesh 

generation and size selection become more important problems. Liu (2006) tested 

geostatistical modeling with different scales and found good agreement between a finer-

scale mesh and a training model that assumed a synthetic spatial distribution for 

channels in sinuous sand and shale. Similarly, for crack propagation modeling, mesh size 

is crucial to differentiate stress distribution during loading. Liang (2005) presented a 

strain-stress curve with different mesh sizes representing the heterogeneity of rock 

distributions. Fig. 1.11 shows the influence of mesh size for the numerical modeling of 

fracture propagation in heterogeneous media. The stress field in the coarse mesh can 

smear out the stress concentration near the crack tip, so it causes difficulty for 

geomechanical simulations. The finer mesh is suitable for describing the realistic spatial 

distribution; however, it requires extensive computational memory and CPU costs.  
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Fig. 1.11. The influence of mesh size on crack propagation in heterogeneous media 
(Liang, 2005). 
 
 
 
 A selection of optimum mesh size for geomechanical simulation is dependent on 

the local distribution of the reservoir properties and fluid injection conditions. Especially 

for the wellbore stability problem, the mud pressure is maintained in between the initial 

pore pressure and the fracture gradient to avoid well collapse and severe distortion. The 

mesh for numerical modeling for wellbore stability must be finer near the wellbore to 

capture the variations of stress, pore pressure, and temperature; however, the changes of 

pore pressure and temperature are small in the range far from the wellbore (~5m), so the 

large element size is suitable. The design of mesh size should be based on how 

significant the spatial variations of variables are. Also, loading conditions such as fluid 

injection and the difference of temperature between the injection fluid and reservoir are 

key factors in constructing the mesh size; too large mesh sizes and too high heat transfer 

rates can cause numerical oscillation for temperature distribution.  
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1.8  Summary of dissertation  

 This dissertation consists of eight sections. Section 1 introduces the objective of 

this research with review of previous development of the influence of fluid flow, 

temperature, and solute transport. In addition, continuum damage mechanics, stress-

dependent permeability, and injection-induced microseismicity are reviewed.  

 Section 2 describes the theory of poroelasticity, thermo-poroelasticity, and 

chemo-poroelasticity. It consists of the constitutive relations, transport of fluid flow, 

temperature, and solute transport. The Navier-type governing equations are derived with 

constitutive and transport equations. 

 Section 3 contains the procedure for numerical implementation of coupled 

problems using finite element methods, and presents the verifications and examples for 

the influence of fluid flow, temperature, and solute transport. 

 Section 4 shows the application of damage mechanics and the stress-dependent 

permeability model using finite element methods. Numerical modeling for the triaxial 

test has been performed to obtain the parameters for nonlinear behavior of the rock and 

permeability models which are compared with experimental triaxial tests. 

 Section 5 presents wellbore stability in shale reservoir drilling with chemo-

thermo-poro-mechanics using finite element methods. Damage mechanics and stress-

dependent permeability model are introduced. The influence of solute transport and 

thermal stress on rock damage is discussed. 

 Section 6 describes the two-dimensional finite element analysis for well 

stimulation with thermo-poro-mechanics. Heterogeneous modulus and permeability 
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distributions are considered to simulate rock failure and microseismic event propagation. 

Two types of injection methods are presented in this section: injection geometry for 

well-scale simulation and the point-source method for reservoir-scale simulation.  

 Section 7 is the three-dimensional extension of finite element methods in well-

scale simulation. It has been performed under normal, strike-slip, and thrust stress 

regimes so that the shape of damage propagation during fluid injection is affected by far-

field stress. The heterogeneous modulus and permeability have been considered to 

simulate injection-induced microseismic event  propagation.  

 Section 8 describes three-dimensional finite element modeling for reservoir-scale 

simulation with point source injection. The results for the influence of stress regime in 

microseismic events propagation are presented. Then critical factors for injection-

induced microseismicity clouds pattern is presented. 

 Finally, in Section 9, the dissertation will be concluded and future work will be 

outlined.  
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2. THE THEORY OF POROELASTICITY AND ITS EXTENSIONS 

 

 The influence of fluid flow in a porous rock was initially recognized in the soil 

consolidation problem. The one-dimensional consolidation problem, which takes into 

account the pore pressure in soil, was developed by Terzaghi (1923), who demonstrated 

that the total stress concept consists of effective stress and pore pressure. Biot (1941) 

developed a coupled fluid/solid interaction model that assumed that the soil is 

homogeneous and water is incompressible, and used Darcy’s law for fluid flow. The 

linear poroelasticity was extended to combined thermal and hydraulic stress (McTigue, 

1986; Kurashige, 1989). Also the relation of chemical potential and rock deformation 

has been developed on the basis of the thermodynamic law and the Gibbs-Duhem 

equation (Mody and Hale, 1993; Heidug and Wong, 1996; Ghassemi and Diek, 2003; 

Ghassemi et al., 2009; Zhou and Ghassemi, 2009). The sign convention in this section 

follows positive tension. 

2.1  Poroelasticity  

 The linear poroelasticity introduces the coupled interaction between the rock 

deformation and pore pressure variations. The change of pore pressure causes rock 

deformation and also rock could be deformed by fluid flow.   
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2.1.1  Constitutive equations  

 The relation between the solid )( ijε and fluid )(ζ , the stress and pore pressure can 

be described as: 
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where the K and G are the bulk and shear modulus of the drained elastic solid. The 

constantsH ′ , H ′′ and R′
 
denote the coupling between the solid and fluid stress and 

strain. 

 The change of strain by pore pressure is equal to the fluid contents change caused 

by the increase of volumetric stress: 
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 The poroelastic coupling parameters can be defined as (Rice and Cleary, 1976; 

Detournay and Cheng, 1993) 
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 Substituting Eq. 2.4 and Eq. 2.5 into Eqs. 2.1 and 2.2: 
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 After rearranging Eq. 2.6 and Eq. 2.7 to include the stress ijσ  and pore pressure 

p , we obtain: 
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where B is the Skempton pore pressure coefficient is defined by:  
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2.1.2  Field equations  

 To solve the solutions for the stress and pore pressure, the balance equation for 

stress and fluid flow with Darcy’s law are also necessary.  

 The equilibrium equations: 

 

0, =jijσ  .....................................................................................................  (2.10) 

 The fluid mass balance equation can be written as: 
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where iq is the specific discharge vector which has a relation with Darcy’s law: 
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The governing equation for solids is obtained from Eqs. 2.8 and 2.10 as 
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After substituting Eq. 2.7 into Eq. 2.11 with Darcy’s law (Eq. 2.11), the governing 

equation for fluid can be derived: 
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µ  is the fluid diffusion coefficient. Substituting Eq. 2.7 

into Eq. 2.9: 
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α is the Biot modulus (similar to a storage coefficient) 

defined as the change of fluid contents per unit volume as a result of pore pressure 

variation under constant volumetric strain.  

2.2  Thermo-poroelasticity  

 Nonisothermal conditions often arise when geothermal reservoir or steam 

assisted gravity drainage (SAGD) is used to enhance oil recovery. The difference of heat 

expansion coefficients between the rock and fluid cause rock deformation and pore 

pressure. The governing equations for thermo-poroelasticity were developed by 

McTigue (1986), assuming fully-saturated homogeneous rock. 
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2.2.1  Constitutive equations  

The constitutive equations considering the relations of the strain, pore pressure, 

and temperature change were developed from the thermoelasticity and poroelsticity 

(McTigue, 1986):   

 

TKpe
v

vG
eG ijsijkkijijij ∆−−

−
+= δβαδδσ

21

2
2  .......................................  (2.16) 

 

( ) ( ) Tp
vvvG

vv

vG

v
Sf

u

u
kk ∆−−

−+
+−

+
+

−= ββφασαζ
))(1(2

)1()21(

)1(2

21 22

 .....................  (2.17) 

where K is the bulk modulus, fβ and sβ  are the volumetric thermal expansion 

coefficient for fluid and solid, respectively. 

2.2.2  Field equations  

Similarly from the poroelasticity derivations, the thermo-poroelastic governing 

equation can be derived from the constitutive equations and transport equations. We can 

obtain the governing equation for the solid from Eq. 2.16 and Eq. 2.10: 
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 The governing equation for the fluid can be derived by putting Eq. 2.17 into Eq. 

2.11 with Darcy’s law: 
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 The heat transfer equation is obtained by combining the Fourier’s law and energy 

balance equation: 

 
i

T
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where iQ is the heat flux and Tk is the thermal conductivity. mρ  and pc are the total 

mass density and specific heat capacity. 

 Substituting Eq. 2.20 into Eq. 2.21 can obtain the heat transfer equation. 
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where 
pm
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k
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ρ
= is the thermal diffusivity. 

2.3  Chemo-poroelasticity  

Chemical interaction in shale plays a key role in pore pressure distribution and 

effective rock stress. Ghassemi and Dike (2003) showed that the solute transport is 

several times higher than hydraulic pressure at certain conditions. In osmotic flow, the 

difference of water activity caused by chemical potential influences the solute transport. 

Sherwood and Baily (1994) proposed the constitutive equations for the chemically 

induced fluid flow, and Heidug and Wong (1996) developed Biot-like constitutive 

equations based on irreversible thermodynamics. Ghassemi and Diek (2003) developed a 
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linear version for chemo-elasticity to improve the nonlinearity problem between the 

stress and solute concentration. 

2.3.1  Constitutive equations  

The constitutive relation for stress can be described with strain, fluid content, and 

solute concentration (Tao, 2000; Ghassemi and Diek, 2003): 
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where α ′ and χ are defined by: 
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SC are DC  the mean values of solute and diluent mass concentration, respectively, 0T

the average absolute temperature, fρ the average fluid density, R the universal gas 

constant, and SM the molar mass fraction of the solute. 
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 2.3.2  Transport equations  

Assuming that the system is isothermal and binary electrolyte solution. The fluid 

and solute flux can be described with the gradient of pore pressure and solute 

concentration:  
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where ℜ denote the reflection coefficient, fJ and SJ  are the flux for fluid flow and 

solute, respectively, and SD the solute diffusivity. 

 The balance equation for fluid flow and solute transport can be written as 
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f JC ⋅∇+&ρφ  ........................................................................................  (2.28) 

2.3.3  Field equations  

 The constitutive equation for chemo-elasticity (Eq. 2.23) with equilibrium 

equation derives the governing equation: 
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 The solute diffusion equation can be obtained by combining the solute transport 

equation (Eq. 2.26) with mass balance equation (Eq. 2.28) as: 

 

S
S

S C
D

C 2∇=
φ

&  .......................................................................................  (2.30) 

 The coupled fluid diffusion equation can be obtained by combining the fluid 

content constitutive equation (Eq. 2.24) with conservation equations: 
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3. FINITE ELEMENT METHOD FOR COUPLED PROBLEM AND ITS 

VERIFICATIONS 

 

 Section 2 described mathematical models for coupled fluid flow, temperature, 

and solute transport in rock deformation. This section describes the finite element 

method for coupled problems and its verification. The finite element method is one of 

the discretizing techniques for solving partial-differential equations. The method has 

been developed by many researchers (Zienkiewicz and Taylor, 1991; Strang and Fix, 

1973; Cook et al., 2001). Finite element discretization for coupled problems for coupled 

solid-fluid interaction is described by several authors (Smith and Griffiths, 2004; 

Zienkiewicz and Taylor, 1991; Lewis and Schrefler, 1988).  

3.1  Finite element formulations  

3.1.1  Basics for discretization  

In the finite element method, continuous variables such as displacement u , pore 

pressure p , temperature T , and solute concentration SC  can be approximated by u~  , 

p~ , T
~

, and, SC
~

, in terms of their nodal values, interpolating the nodal to nodal values 

by shape functions. Considering a two-dimensional quadrilateral element or a three-

dimensional hexahedron element (Fig. 3.1), the interpolation functions can be written as: 

∑=
=

q

i
ii uNu

1

~

 
 ...............................................................................................  (3.1) 
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∑=
=

q

i
iiTNT

1

~

 
 ...............................................................................................  (3.3) 
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 ..........................................................................................  (3.4) 

where  u~ , p~ , T
~

and SC
~

are approximated in terms of their nodal values iu , ip , iT , and 

S
iC  in the system. iN is the interpolation function and is generally referred to as a shape 

function where subscript “i” denotes the corresponding node.  

 
 

 

Fig. 3.1. Types of elements used for the finite element method. 
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 The shape functions are often taken to be polynomials that depend on element 

type and the number of nodes in the element. Several types of shape functions for two-

dimensional and three-dimensional elements are shown in Fig. 3.2 and Fig. 3.3. 

 
 

 

Fig. 3.2. Shape functions for two-dimensional 4-node and 8-node quadrilateral element.  
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Fig. 3.3. Shape function for the case of three-dimensional 8-node hexahedron element. 
 
 
 

 The choice of shape function and element type varies depending on the purpose 

of the simulations. Especially for solving the mixed forms of finite element formulations, 

Zienkiewicz and Taylor (1991) presented a “patch test” to test the numerical stability of 

several types of element in two-dimensional coupled problems. They showed that finite 

element solutions are stable when the variable configurations are 8 nodes for 

displacement and 4 nodes for pore pressure in each element for a two-dimensional, 

quadrilateral element. For corresponding three-dimensional expansion, configurations 

for the variables are 20 nodes for displacement and 8 nodes for pore pressure in a 

hexahedron element. From a practical point of view, the numerical stability becomes 

critical around a wellbore because of significant gradients of pore pressure, temperature, 
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and rock deformation by fluid injection. Lewis and Schrefler (1988) also suggested a 

degree of freedom in each element two times higher for displacement nodes than pore 

pressure and temperature to obtain more accurate finite element results. The limitations 

of element types for finite element approximations are related with ill-posed shape 

functions that cause the singularity problem which is divided by zero in numerical 

modeling, and the criterions of the stability is analyzed from Babuska (1971, 1973) and 

Brezzi (1974).      

Since the shape functions are defined in a local coordinate system( )ηξ , , it is 

necessary to describe the relation between the global ( )yx,  and local coordinate ( )ηξ ,  

system. For example, the coordinate transformation for the four-node quadrilateral 

element can be written as: 

[ ]{ }
[ ]{ }yN

xN

=+++=
=+++=

44332211

44332211

yNyNyNyNy

xNxNxNxNx

 
 .............................................  (3.5) 

where [ ]N  denotes the shape function vector as described in (Fig. 3.2) and { }x and { }y  are 

the  nodal coordinates in the global coordinate system. 

 The other necessary coordinate transformation is the derivatives from the local to 

global coordinate, which can be described by the chain rule of the partial differentiation: 
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or 
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where [ ]J  is the Jacobian matrix.  

 To solve a partial differential equation (Eqs. 3.10 to 3.13), it is necessary to 

understand the procedure for numerical integration  (Eqs. 3.18  to 3.31) of the weighting 

residual by each shape function by integrating over the equations (Galerkin’s method). 

The transformation between the local Jacobian coordinate and the global coordinate in 

integration should be evaluated as follow: 

∫∫ ∫ ∫=
− −

1

1

1

1
det ηξ dddydx J

 
 ..........................................................................  (3.8) 

The Gauss-Legendre quadrature for finite element numerical integration in two 

dimensions can be described as:  
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 ..........................................  (3.9) 

where nip is the total number of integration points (Gaussian point), iw and jw  are the 

weighting coefficients, and ( )ii ηξ ,  are sampling points in element.  
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3.1.2  Spatial discretization  

For the case of chemo-thermo-poroelasticity, the combining the constitutive 

equations and the balance equations with transport equations yield the governing 

equations: 

( ) ( ) 0'
3 1

2 =∇+∇−∇+∇+⋅∇∇






 + TCpmG
G

K S γχαuu
 
 ...................  (3.10) 
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 ........................  (3.11) 

022 =∇−∇− TDCCDC TSSSS&φ
 
 ..........................................................  (3.12) 

02 =∇− TcT T&

 
 .........................................................................................  (3.13) 

 

where K and G are bulk and shear modulus, respectively, α  Biot’s constant, µ  

viscosity. α ′ , χ , χ ′ , 1γ , 2γ , and β′  are given by:  

D
f

S

RTC

M

ρ
ωαα 0' −=

 

( )
TKRC

M

KK D
f

S

fs ρ
αωφφαβ 10 −++−=′

 

 

χαχ
K

1
'

−=
 

sKαγ =1

 
( )φβββαγ sfs −+=2

 



 48

where SM  is molar mass of the solute,
 

0ω the swelling coefficient, fρ  the fluid mass 

density, R the universal gas constant, φ the porosity, SC and DC the solute and dilute 

concentrations, respectively, and fβ  and sβ  the thermal expansion coefficients of fluid 

and solid, respectively.  

 To discretize the field equations (Eqs. 3.10 to 3.13), we introduce an 8-node 

quadrilateral element and a 20-node hexahedron element for computing the displacement, 

pore pressure, solute mass concentration, and temperature. Substituting the shape 

functions for the factors  (Eqs. 3.1 to 3.4) into the field equations (Eqs. 3.10 to 3.13), and 

then using Galerkin’s method (Finlayson, 1972, see Appendix A), the finite element 

formulations for displacement, pore pressure, solute mass concentration, and 

temperature are obtained as:    

0TVCWpAuKm =+−+ ~~~~

 
 ...................................................................  (3.14) 

0CDpHTNCMpSuA S
HH

T =+++++ ~~~~ˆ~~ &&&&

 
 ..........................................  (3.15) 

u
D
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S fTQCDCM =++ ~~~&

 
 .....................................................................  (3.16) 

0
~~ =+ TUTR
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...........................................................................................  (3.17) 

where 

∫ Ω=
Ω

dBDBK u
T

m
 
 .................................................................................  (3.18) 

∫ Ω=
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T NmαBA

 
 ................................................................................  (3.19) 
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∫ Ω=
Ω

dSC
T NmBW χ

 
 ...........................................................................  (3.20) 

∫ Ω=
Ω

dT
T NmBV 1γ

 
 .............................................................................  (3.21) 

∫ Ω=
Ω

dp
T
p NNS β
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T
p NNM 'ˆ χ
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 .................................................................................  (3.24) 
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 ...............................................................................  (3.25) 

∫ Ω=
Ω

dT
T
T NNR

 
 ......................................................................................  (3.26) 

( ) ( )( ) ( ) ( ){ }∫ Ω∇+∇∇=
Ω

dc TTT
TfTTT NvNNNU

 
 .................................  (3.27) 

( ) ( ) ( )∫ Ω∇∇=
Ω

dT
ppH NkNH η/

 
 ..............................................................  (3.28) 

( ) ( )∫ Ω∇∇=
Ω

dLD
T

ppH NND
 
 .................................................................  (3.29) 

( ) ( )∫ Ω∇∇=
Ω

dDST
SS CCD NND

 
 ............................................................  (3.30) 

( ) ( )∫ Ω∇∇=
Ω

dDC SST
TTD NNQ

 
 ..........................................................  (3.31) 

where the [ ]uD  is the stiffness property for stress-strain relations, and strain 

displacement can be described with [ ]B . (See Appendix A for full explanation of the 
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integrals in Eqs. 3.18 to 3.31.) For example, in the axisymmetric stress-strain problem, 

strain and displacement have a relation (Timoshenko and Goodier, 1982) as shown by 

Eq. 3.32:  
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Matrix [ ]B  is the expression of the spatial derivative: 
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...............  (3.33) 

3.1.3  Discretization in time  

Among the methods to discretize the time steps for partial differential equations 

(Zienkiwicz and Taylor, 1989) are linear interpolations and fixed time stept∆ (Smith and 

Griffiths, 2004). The finite element formulations derived in Section 3.1.2 include the 

time-dependent variables for displacement, pore pressure, solute mass concentration, and 

temperature. The governing equations use the second order for the spatial domain and 

the first order for the time domain. These domains are categorized to a parabolic partial 
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differential equation. A typical expression of a first-order time-dependent problem in a 

finite element formulation can be described by: 

[ ]{ } [ ] { }q
φ

mφK =






+

dt

d

 
 ............................................................................  (3.34) 

Consider two consecutive time steps as follow: 
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 ........................................................................  (3.36) 

where 0 and 1 indicate the previous and current time step, respectively. Then, variation 

of the variable ϕ over the two time steps can be expressed in terms of a linear 

interpolation between its values at the two time steps: 
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Substituting Eq. 3.37 into Eq. 3.35 and Eq. 3.36, we obtain: 
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 ...............................................  (3.38) 

Using Eq. 3.35 and Eq. 3.36 and substituting them into Eq. 3.35 and Eq. 3.36, we arrive 

at the time discretization of finite element method: 

[ ] [ ]( ) { } [ ] ( ) [ ]( ) { }
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 .......................................  (3.39) 

If θ =1/2, it is called the “Crank-Nicolson” method,  
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[ ] [ ] { } [ ] [ ] { }01 22
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 ..............................................  (3.40) 

and if θ =1, is it the “fully implicit” method, which ignores any history since the past is 

unknown:  

[ ] [ ]{ }{ } [ ]{ }01 φMφKM =∆+ t  

The discretization for the finite element method also has incremental version  that results 

from rearranging the governing equations (Eq. 3.14 to Eq. 3.17) for solid, fluid, solute 

concentration, and temperature with linear interpolation for time:  
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 ....................  (3.41) 

The difference between these two methods is that absolute discretization obtains 

total values for displacement, pore pressure, solute mass concentration, and temperature, 

whereas incremental discretization computes the relative values. For example, if we have 

a constant pore pressure boundary condition at the wellbore, the corresponding traction 

and the values for pore pressure at the wellbore should be applied in each time step for 

the absolute version; but for the incremental version, we apply the traction and pore 

pressure values only for the first time step since there is no relative change with a 

constant boundary condition.      
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3.1.4  Boundary conditions 

 It is important to define the boundary conditions in geomechanics simulations; 

for example, hydraulic injection pressurep , injection rate Q , injection temperature T , 

mud solute concentration SC  are often used in geothermal and petroleum reservoir study. 

For the finite element formulation (Eq. 3.41), explicit variables such as displacement 

pore pressure, solute concentration, and temperature can define the boundary by the 

penalty method. This method operates by multiplying the corresponding prescribed 

boundary values on the left-hand side of the matrix and its corresponding coefficient on 

the right-hand side vector by a large value (Fig. 3.4). This in effect fixes the known 

value (boundary condition) on the nodes; that is, it prescribes the value we desired for 

the unknown variables.  

 

 

Fig. 3.4. Illustration of the penalty method in the finite element formulation for the 
boundary conditions of displacement, pore pressure, solute concentration, and 
temperature. 
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The other most-used boundary condition in geomechanics simulations is the 

injection rate boundary condition. Consider the finite element formulation for the fluid 

mass-balance equation (Eq. 3.11). The right-hand side matrix should be defined by 

injection rate Q at the boundary elements as, 

( ) qD
S fCL

k
p

k
TCp =∇+∇−+++⋅∇ 222

2'
µµ

γχβα &&&&u
 
 .......................  (3.42) 

where 

( )∑ Ω=
=

nip

i
iq dQNf

1
 

where nip is the number of Gaussian points and iN denotes the shape function. 

 A typical example of implementation of injection rate boundary conditions for 

the finite element method is illustrated in Fig. 3.5. The difference between the injection 

boundary condition and the pressure boundary condition is that the pore pressure 

distribution is computed through the finite element for the given Q. 

 
 

 

Fig. 3.5. Illustration of injection rate boundary conditions in the finite element method. 
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 Another important boundary condition in coupled fluid flow and solid problems 

is mechanical loading. For describing the prescribed traction that results, for example, 

from pressurizing the wellbore, tractions must relate the acting wellbore with the far-

field stress of the system. For example, if the pore pressure on the wall of the wellbore is 

20 MPa and the far-field stress is 10 MPa, the applied traction is 20 MPa – 10 MPa = 10 

MPa at the wellbore, which takes into account the relative force between the well 

pressure and natural in-situ stress. The mechanical loading term at the boundary for the 

solid in finite element formulations as is described by:  

fTVCWpAuKm =+−+ ~~~~

 
 ........................................................................  (3.43) 

where: 

( )∑ Ω=
=

nip

i
i dfNf

1
 

The right-hand side of Eq. 3.43 is the mechanical load (traction on the boundary). Fig. 

3.6 shows the matrix configuration for the mechanical loading at the boundary. For the 

poroelastic simulation without rock failure, it is not necessary to iterate to solve the 

variables. However, an iteration scheme should be introduced if we consider the rock 

failure and stress-dependent permeability since the results of stress and permeability 

conditions with certain loading are satisfied during the iterations. An illustration of the 

iteration procedure for the case of rock failure and permeability variations is presented in 

Section 4. 

 



 56

 

Fig. 3.6. Illustration of mechanical loading boundary condition in the finite element 
method. 

 
 
 

3.2  Verifications of the finite element method  

In this section, finite element results for coupled problems are compared with 

analytical solutions. The reservoir conditions such as far-field stress, injection pressure, 

temperature, and initial pore pressure are critical in geomechanical simulations; therefore 

it is necessary to validate the numerical modeling under various boundary conditions. 

We verified two-dimensional and three-dimensional finite element modeling using the 

analytical solutions for a wellbore in an poroelastic, thermo-poroelastic, and thermo-

chemo-poroelastic formation. For the poroelastic case, Mode 1, Mode 2, and Mode 3 

were considered (Detournay and Cheng (1988). The verifications of thermal and 

chemical loading were made possible by using the solution by McTigue (1986) and 

Ghassemi et al. (2009), respectively.  
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For better understanding of the wellbore response, the wellbore loading can be 

decomposed into three parts (Carter and Booker, 1982; Detournay and Cheng, 1988).  

We used three modes for decomposition of the poroelastic problem around a wellbore: 

Mode I is an isotropic stress loading of the wellbore; Mode II is the pore pressure 

loading or injection into the wellbore; and Mode III is the loading of the wellbore by a 

far-field deviatoric stress (deviatoric far-field). The complete solution is the sum of the 

solutions to the three modes. The verifications were performed with mesh consisting of 

350 elements and 1141 nodes which have 8 quadrilateral nodes for displacements and 4 

nodes for pore pressure, temperature, and solute concentration (Fig. 3.7). The maximum 

and minimum far-field stress components were applied to the x- and y-directions, 

respectively, and reservoir properties are described in Table 3.1.  

 
 

 

Fig. 3.7. Mesh used for the verifications, consisting of 350 elements and 1141 nodes. 
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Table 3.1   
Rock properties of shale. 

 

Young’s modulus E (GPa) 1.85 
Drained Possoin’s ratio υ  0.219 
Undrained Possoin’s ratio uυ  0.461 
Skempton’s coefficient, B 0.915 
Permeability, k (md) 1×10-10 
Porosity, φ  0.299 

Fluid mass density,  ρf  (kg/m3) 1000 
Fluid viscosity, µ (Pa·s) 0.3×10-3 

 
 
 

3.2.1  Isotropic far-field stress around a wellbore (Mode I) 

 Mode I represents the isotropic far-field stress distribution around a wellbore 

assuming no initial pore pressure; hence, Mode I results are the same as those for linear 

elasticity. We applied 10 MPa for isotropic far-field stress and compared finite element 

results with the analytical solution with a radius (Fig. 3.8; solid lines represent analytical 

solutions and numerical solutions are plotted as dotted symbols). The radial and 

tangential stresses are equally distributed around a wellbore by the isotropic far-field 

stress.  
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Fig. 3.8. Distributions of radial and tangential stress around a wellbore by isotropic far-
field stress (Mode I). Finite element results are compared with the analytical solutions. 
 
 
 

3.2.2  The influence of fluid flow around a wellbore (Mode II) 

 Initial reservoir pore pressure is maintained in equilibrium before we begin any 

exploration such as geothermal heat extraction, well stimulation, and oil and gas 

production. Once the change of pore pressure distribution occurs by fluid injection or 

production, fluid-induced stress variations should be considered. In this part, both 

production and injection-induced stress variations are presented.  

 In one example for stress variation induced by fluid production, we set boundary 

conditions so that the initial pore pressure was 10 MPa and wellbore pressure 0 MPa. 

Far-field stresses were assumed to be zero to study the induced stress variations. The 

comparison of finite element results and analytical solutions for pore pressure and total 
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radial and tangential stresses are presented in Fig. 3.9 to Fig. 3.11 Note that fluid 

extraction causes significant changes of tangential stresses with time around a wellbore.  

 
 

 

Fig. 3.9. Pore pressure distribution with respect to time when the pressure is zero at the 
wellbore (Mode II). Finite element results are compared with the analytical solutions. 

 
 
 

 

Fig. 3.10. The distribution of total radial stress with respect to time under production 
(Mode II). Finite element results are compared with analytical solutions. 
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Fig. 3.11. Total tangential stress distribution with respect to time under production 
(Mode II). Finite element results are compared with the analytical solutions. 

 
 

The other induced stress we are interested in is the injection case. The simplest 

condition for the injection sets pore pressure at the wall at 10 MPa, with no initial pore 

pressure and no far-field stresses. Results for numerical and analytical solutions are 

plotted in Fig. 3.12 to 3.14 for pore pressure and total radial and tangential stress 

distributions. In this case, the tangential stress distributions are significantly changed 

around a wellbore by fluid injection. 
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Fig. 3.12. Pore pressure distribution with respect to time when the pressure is 10 MPa at 
the wellbore (Mode II). Finite element results are compared with the analytical solutions. 
 
 
 

 

Fig. 3.13. The distribution of total radial stress with respect to time when the well is 
pressurized to 10 MPa (Mode II). Finite element results are compared with the analytical 
solutions. 
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Fig. 3.14. Total tangential stress distribution with respect to time under pressurization 
(Mode II). Finite element results are compared with the analytical solutions. 
 
 
 

3.2.3  The influence of deviatoric far-field stress (Mode III) 

Deviatoric far-field stress plays an important role in stress distribution around a 

wellbore. It impacts tensile stress to the maximum far-field stress direction and 

compressive stress to the minimum far-field stress direction around a wellbore. This 

localized stresses often leads to shear and tensile failures around a wellbore. The 

boundary conditions on the well follow (Carter and Booker, 1982; Detrournay and 

Cheng, 1988): 

θσ 2cos0Srr −=
 
 ......................................................................................  (3.44) 

θσ θ 2sin0Sr =
 
 ........................................................................................  (3.45) 

0=p
 
 .........................................................................................................  (3.46) 
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where 0S denotes the deviatoric components in far-field stress and θ  is the horizontal 

rotational angle along to the wellbore.  

The influence of deviatoric stress is apparent where the deviatoric far-field stress 

is 10 MPa in the x-direction and -10 MPa in the y-direction. To clarify the influence of 

deviatoric stress effects, we assumed no initial pore pressure and no isotropic far-field 

stress. The distributions for pore pressure with time are presented in Fig. 3.15 and Fig. 

3.16. The negative pore pressure distributions are localized to the maximum far-field 

stress direction and the positive pore pressure distributions to the minimum far-field 

stress direction, since the effects are coupled around a wellbore. From the physical point 

of view, tensile stress increases the pore volume, whereas compressive stress plays to 

decrease the pore volume. The finite element results for total radial and tangential stress 

distributions are compared with analytical solutions for both maximum and minimum 

far-field stress directions in Fig. 3.17 to Fig. 3.20. The influence of deviatoric stress on 

the fluid variations derived analytically by Detournay and Cheng (1988) are compared 

with finite element results in Fig. 3.21. 
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Fig. 3.15. Pore pressure distribution with respect to time along the maximum far-field 
stress direction when the deviatoric far-field (10 MPa) stress is applied (Mode III). Finite 
element results are compared with analytical solutions. 
 
 
 

 

Fig. 3.16. Pore pressure distribution with respect to time along the minimum far-field 
stress direction when the deviatoric far-field (10 MPa) stress is applied (Mode II). Finite 
element results are compared with analytical solutions. 
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Fig. 3.17. The distribution of total radial stress along the maximum far-field stress 
direction when the deviatoric far-field (10 MPa) stress is applied (Mode III). Finite 
element results are compared with analytical solutions. 

 
 
 

 

Fig. 3.18. The distribution of total radial stress along the minimum far-field stress 
direction when the deviatoric far-field (10 MPa) stress is applied (Mode III). Finite 
element results are compared with analytical solutions. 
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Fig. 3.19. The distribution of total tangential stress along the maximum far-field stress 
direction when the deviatoric far-field (10 MPa) stress is applied (Mode III). Finite 
element results are compared with analytical solutions. 
 
 
 

 

Fig. 3.20. The distribution of total tangential stress along the minimum far-field stress 
direction when the deviatoric far-field (10 MPa) stress is applied (Mode III). Finite 
element results are compared with analytical solutions. 
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Fig. 3.21. Comparison of the finite element results with analytical solutions for the pore 
pressure variations with radius. 
 
 
 

3.2.4  Combined influence (Mode I + Mode II + Mode III) 

We considered the combined influence of isotropic far-field stress, deviatoric far-

field stress, and fluid injection and production around a wellbore. Boundary conditions 

considering all factors are as follows:  

θσ 2cos00 SPrr −=
 
 ................................................................................  (3.47) 

θσ θ 2sin0Sr =
 
 ........................................................................................  (3.48) 

0pp =
 
 .......................................................................................................  (3.49) 

where 0P  denotes the isotropic far-field stress and0p  is injection well pressure. 

 The given boundary conditions for the verifications are isotropic far-field stress 

20 MPa, deviatoric far-field stress 5 MPa, and injection well pressure 10 MPa. The 

comparisons for pore pressure distributions are plotted in Fig. 3.22 (to the maximum far-
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field stress direction), and in Fig. 3.23 (to the minimum far-field stress direction). Total 

tangential stress distributions are also compared to the maximum and minimum far-field 

stress direction in Fig. 3.24 and Fig. 3.25. 

 
 

 

Fig. 3.22. Pore pressure distributions to the maximum far-field stress direction around a 
wellbore for an injection case under anisotropic far-field pressures. Finite element results 
are compared with analytical solutions. 
 
 
 

 

Fig. 3.23. Pore pressure distributions to the minimum far-field stress direction around a 
wellbore for injection case under anisotropic far-field. Finite element results are 
compared with the analytical solutions. 
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Fig. 3.24. Total tangential stress distributions to the maximum far-field stress direction 
around a wellbore for injection case under anisotropic far-field pressure. Finite element 
results are compared with the analytical solutions. 
 
 
 

 

Fig. 3.25. Total tangential stress distributions to the minimum far-field stress direction 
around a wellbore for injection under the anisotropic far-field case. Finite element results 
are compared with analytical solutions. 
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3.2.5  Temperature and solute transport  

 The analytical solution for the impact of thermal loading has been developed by 

McTigue (1986), Kurashige (1989), Li et al. (1998), and Wang and Papamichos (1994). 

They found that the difference of thermal expansion coefficients between the rock and 

fluid flow cause the thermal stress to the rock in turn to impact the pore pressure 

distributions. Cold water injection to the hot reservoir causes rock shrinkage, and result 

in contributions to the tensile stress around the injection wellbore. The finite element 

results are compared with analytical solutions in Fig. 3.26 and Fig. 3.27. Initial reservoir 

temperature of 115°C and injection pressure of 65°C are applied in this comparison. 

Note that thermally-induced tensile stress leads the negative pore pressure distribution 

around a wellbore as described earlier in 3.2.3.      

 
 

 
Fig. 3.26. Comparison of the pore pressure caused by temperature loading using 
variation with radial distance. 
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Fig. 3.27. Comparison of the total radial stress variations caused by temperature loading. 
 
 
 
 Sherwood and Baily (1994) proposed a constitutive model in the membrane 

system, assuming no solute transport consideration, and Heidug and Wong (1996) 

developed a fully coupled ion transport model. To accommodate the nonlinear relations 

between stress and solute concentration, Ghassemi and Diek (2003) proposed a linear 

chemo-thermo-poroelasticity model, and it has been shown both analytically and 

numerically that the resulting errors are negligible when the difference of solute 

concentration between the mud and the shale formation is not severe (Zhou and 

Ghassemi, 2009). Initial reservoir solute concentration is assumed to be 0.2 and mud 

concentration is 0.1 for the comparison. The pore pressure distributions and total 

tangential stress distributions during chemical loading are presented in Fig. 3.28 and Fig. 

3.29. Results show that osmosis flow from the mud to the shale formation causes the 

increase of pore pressure around a wellbore (Fig. 3.28). The stress distributions are 

significantly affected by chemical loading (Fig. 3.29).   
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Fig. 3.28. Comparison of the pore pressure variations with radius caused by chemical 
loading, using numerical and analytical methods. 
 
 
 

 

Fig. 3.29. Comparison of the total tangential stress variations with radius caused by 
chemical loading using numerical and analytical methods. 
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4. IMPLEMENTATION OF DAMAGE MECHANICS AND 

STRESS-DEPENDENT PERMEABILITY 

 

 The previous section presented the numerical procedure for partial differential 

equations—especially for solving the displacement, pore pressure, solute concentration, 

and temperature problems—and also compared the finite element results with analytical 

solutions for various engineering problems such as hydraulic pressure under anisotropic 

far-field stress, the influence of thermal stress, and chemical loading around a wellbore.  

 A coupled chemo-thermo-poroelasticity is critical to understand the interaction of 

pore pressure, temperature, and chemical potential in rock deformation. However, the 

theory has limitations in that it assumes an elastic rock skeleton and constant 

permeability. It is often used to consider the nonlinear behavior of rock in field 

operations such as sanding management, fracturing jobs, and drilling operations in 

unconsolidated reservoirs. Experimental core analysis for the strain-stress behavior of 

the rock in compressive loading shows the four stages of stress which are elastic, 

hardening, softening, and critical stress state (residual strength). Damage mechanics can 

describe the nonlinear behavior of rock under loading by considering the micro-crack, 

microvoid, and crackgrowth stresses (Kachanov, 1986; Lemaitre and Chaboche, 1990; 

Voyiadjis and Kattan, 1999). Kachanov (1986) proposed an effective configuration of 

undamaged material from the nominal state by introducing the damage variable, d .  

 Several researchers have shown that permeability is a stress-dependent property 

(Chin, 2000; Thomas et al., 2003; Bai and Elsworth, 1994; Tang et al., 2002).  Tang et al. 
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(2002) tested permeability variations under triaxial loading and indicated that 

permeability decays exponentially before the rock failure in compressive stress and it 

increases suddenly by a factor of 2 to 3 after the rock failure. Similar results have been 

reported by other researchers (Shipping et al., 1994; Kiyama et al. 1996; Coste et al., 

2001; Zoback and Byerlee, 1975), with the increase in permeability depending on rock 

type and conditions (De Paola et al., 2009; Wang and Park, 2002). Zoback and Byerlee 

(1975) illustrated the relation between the permeability change and microcrack and void 

evolution.   

 In this section, we present a numerical approach for implementing damage theory 

and stress-dependent permeability models into a fully coupled thermo-hydro-mechanics  

model. Triaxial simulations with finite element methods have been carried out to find the 

material parameters which define the peak stress and residual strength. In addition, a 

stress-dependent permeability model has been applied to both elastic and inelastic rock 

states, and then we present the influence of localized rock damage and permeability 

change caused by fluid injection around a wellbore.   

4.1  Damage model 

 A damage and stress-dependent permeability model was proposed by Tang et al. 

(2002) from experiments for porous rock that measured the permeability and modulus 

change with respect to the change of strain (Yang et al., 2004). This model assumes that 

the strain-stress behavior before the rock failure follows the elasticity model without the 

hardening process and reaches the residual strength regime. From this damage model, 
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there is no damage in the elastic phase, but the rock begins to fail by crack initiation and 

void growth when the stress conditions reach the failure state; that is, it satisfies the 

failure criterion. This model has an advantage for describing the behavior of brittle rock, 

which has a short range of hardening and directly reaches the softening regime in triaxial 

tests. An elastic-damage mechanics model represents the rock degradation by expressing 

the damage in terms of a reduction in the elastic modulus as the damage proceeds: 

0)1( EdE −=
 
,  ..........................................................................................  (4.1) 

where d is the damage variable which describes the amount of degradation (crack 

initiation, microvoid growth, and crack propagation) and E  and 0E  are altered modulus 

and initial modulus, respectively.  The degree of damage level can be represented with 

damage variable from 0 to 1 with a relationship of strain variations. For example, d = 0 if 

the rock is in elastic phase, and d = 1 if the rock is perfectly damaged. The damage 

model from the rock failure can be considered as either of two types, compressive and 

tensile stresses.  

 In compressive rock failure, the damage variable for describing softening and the 

critical state can be described as: 
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where crf  is the residual compressive strength and cf  is the maximum compressive 

stress.  crε  and cε  are the residual compressive strain and maximum compressive strain, 

respectively, and ε  is the equivalent strain (Mazars, 1986): 

∑= +
2εε

 
 .............................................................................................  (4.3) 

where iεε =+  if  0≤iε (tensile) and 0=+ε  if  0>iε (compressive). 

 This equivalent strain definition from Mazars (1986) represents a damage 

evolution that is dominated by tensile strain. These components of strain during damage 

evolution can be obtained as follows: 

ct
σσσ +=

 
 ........................................................................................  (4.4) 

where 
t

σ  is built with the tensile components of the principal stress and 
c

σ  is for 

compressive components of principal stress. In this way, we can obtain strain 

components for tensile and compressive stresses:  
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If damage occurs in a tensile stress field, the damage variable is defined using the 

residual tensile strength of rock as: 

ε0
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To trace the progress of damage under tensile stress, we introduced a tension cut-off, T0, 

for tensile failure because the Mohr-Coulomb failure criterion was developed based on 

shear failure and it often overestimates the stress state for rock failure. The Mohr-

Coulomb failure criterion for shear failure can be described as 

fFf cF φσσφσσ
cos

2
sin

2
3131 −

−
−

+
=

 
 ................................................  (4.9) 

where 1σ  and 3σ  are the maximum and minimum principal stresses, respectively; fφ and 

fc represent the friction angle and cohesive strength, respectively. 

4.2  Numerical implementation of the damage model 

 The theory of damage mechanics has been implemented into the finite element 

code described above. For illustration purposes, we consider the numerical simulation of 

the stress-strain response of a rock obtained from a laboratory triaxial experiment. In 

particular, we simulated the experimental data of Wang and Park (2002) and Tang et al. 

(2002), which shows a rapid decrease from the peak stress. The simulation domain for 

the axisymmetric triaxial test is shown in Fig. 4.1. The sample size is 1 cm×2 cm, which 

has axisymmetry so its actual ratio is 1:2. An axial load is applied in the z-directional in 

a step-wise manner by increasing the displacement of the top of the sample. 

Displacement step change in this simulation is 2×10-3m per each step, and the total step 

number is 80. The procedure for implementation of damage mechanics and the stress-

dependent permeability model is illustrated in Fig. 4.2. The state of stress is checked in 

each element by fluid and thermal loading. Once the stress condition is to be satisfied 
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with the failure criterion, the damage variable for the element is computed using 

previously described damage equations (Eq. 4.2 to 4.8). It is important to consider the 

change of the poroelastic parameters such as bulk modulus, Biot’s constant, and porosity. 

The change of porosity, φ, is equal to the damage variable, d (Shao, 2002), and other 

modulus-related parameters are also updated with the relation of 0)1( EdE −= . To 

obtain accurate numerical results, the convergence of damage variables under a certain 

loading is critical before moving to the next time step. For example, damage variables in 

each element in the first and second iterations are compared, and if the result does not 

satisfy the criterion, damage variables are updated with the same loading conditions. The 

tolerance criterion in this simulation is 0.1 %.  

  

 

Fig. 4.1. Finite element mesh used for triaxial simulations. 
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Fig. 4.2. Flow chart of the simulation procedures for the implementation of the damage 
and permeability model in thermo-poroelasticity with rock failure. 

 
 
 

 Simulated results in Fig. 4.3 show the peak stress variations by defining cohesive 

strength cf and the residual strength change by defining fcr in the damage model. Fig. 4.4 

shows the simulated and actual curves for different pairs of cf  and fcr. The best fits with 

experimental data are selected so that the residual strength, fcr, in Eq. 4.4 and the 
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cohesive strength, cf, in the Mohr-Coulmb failure criterion are determined. The 

implementation of the damage model for the tensile failure case is illustrated in Fig. 4.5. 

 
 

 

Fig. 4.3. Strain-stress curve variations with cohesive strength cf  and critical residual 
stress  fcr.  

 
 
 

 

Fig. 4.4. Comparison of numerical implementation of the damage model and the 
experimental triaxial test. Triaxial test results are obtained from Tang et al. (2002). 
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Fig. 4.5. Numerical implementation damage theory for the tensile failure case. 

 
 
 

 To simulate a more realistic triaxial test, we considered the heterogeneity of the 

modulus using the Weibull distribution function, which is widely used in a 

geomechanics simulation to depict the heterogeneity of rock. The heterogeneity of the 

modulus is introduced to the Gaussian points in each element. The Weibull distribution 

functions are defined as, 
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where s is the variables s0  represents the corresponding mean value. 

 The parameter n is the control factor in Weibull distribution function. A large n 

indicates the distributions are narrow and more homogeneous, whereas lower n 

represents the more heterogeneous rock. This index influences the rock failure in triaxial 

tests so that average peak stresses are reduced if the rock is more heterogeneous because 

of the increase of the lower modulus in the distributions. The heterogeneous results are 
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presented in Fig 4.6. Results show a reduction of peak stress and smooth variations in 

the heterogeneity case, which increase compared to homogeneous case. This is because 

of the earlier beginning of rock failure in low modulus elements.   

 
 

 

Fig. 4.6. Finite element results for triaxial stimulation with damage mechanics. The 
stress-strain curve varied with different levels of heterogeneity in Weibull distribution 
function. 
 
 
 

4.3  Implementation of stress-dependent permeability model 

 The rock permeability change is also considered in the elastic phase and the 

damage phase (Tang et al., 2002; Yang et al., 2004): 
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where 0k is the initial permeability and `dζ and dβ are material constants determined 

empirically. Here dζ  ( dζ >1) indicates permeability increase caused by damage. 

Parameter dβ  in the exponent term is the control parameter for the stress sensitivity of 

permeability in the porous rock. This permeability model has been developed from 

experimental results of triaxial compressive tests. The model describes a decay of 

permeability while compressive stress increases in the elastic phase. After the rock fails, 

there is a step increase of permeability that decreases again with continuous compressive 

stress. The numerical results for permeability variations during the triaxial loading are 

illustrated in Fig. 4.7.   

 The changes of poroelastic parameters after rock failure are also important to 

study injection-induced nonlinear behavior of rock since the poroelastic constants are 

applicable for the elastic phase. Major poroelastic parameters to be considered after the 

rock failure are bulk modulus K, shear modulus G, Biot’s constant α , and porosity φ . 

We considered the change of poroelastic parameters with damage evolution; for example, 

Biot’s constant is 1 and the modulus of bulk solids and fluid are also reduced with the 

change of damage variables. Porosity related parameters are recomputed assuming 

porosity, φ  is equal to the damage variable, d (Shao, 2002). 
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Fig. 4.7. Finite element results for permeability variation with triaxial simulation. 
Permeability varied with different material parameter, βd. 
 
 
 

4.4  Numerical analysis of the thermo-poro-mechanical process with damage 

evolution and permeability change 

 In this section, we present numerical examples for damage evolution and 

permeability alteration while considering poroelasticity and thermo-poroelasticity with 

convective heat transfer. First, we present poroelasticity and thermo-poroelasticity 

results without in-situ stresses to focus on the induced increments of damage and 

permeability around a wellbore.  

4.4.1  The influence of damage evolution and permeability change in isothermal 

conditions 

 Consider the influence of fluid flow around a wellbore under isothermal reservoir 

conditions with pressure boundary conditions. We used 350 elements with 1141 nodes to 
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simulate the domain of 5×5 m with a wellbore of radius 0.1 m (Fig. 4.8).  No in-situ 

stress and no initial pore pressure are applied in initial reservoir conditions, and a 

wellbore pressure of 12 MPa is used in the simulation. 

 
 

 

Fig. 4.8. Finite element mesh for coupled thermo-poroelasticity damage model 
consisting of 350 elements and 1141 nodes; zero in-situ stress pore pressure; wellbore 
pressure of 12 MPa. 
 
 
 
Table 4.1   
Rock properties of sandstone. 

 

Young’s modulus E (GPa) 7.92 
Drained Possoin’s ratio υ  0.14 
Undrained Possoin’s ratio uυ  0.35 
Skempton’s coefficient, B 0.77 
Permeability, k (md) 1 
Porosity, φ  0.19 

Fluid mass density,  ρf  (kg/m3) 1000 
Fluid viscosity, µ (Pa·s) 1×10-3 
Thermal expansion coefficient of solid, mα (K-1) 1.8×10-5 

Thermal expansion coefficient of fluid, fα (K-1) 3.0×10-4 

Thermal diffusivity, Tc (m2/2) 1.6×10-6 
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Damage evolution for this problem is presented in Fig. 4.9. The damage 

propagation in time is very slow for the pressure boundary condition. Rock failure 

around the wellbore is caused by tensile failure as the effective tensile stress dominates 

the failure around the wellbore. Fig 4.10 shows the distributions of permeability. A step 

increase is observed in the damage phase caused by microcrack and void growth in the 

rock. The resulting pore pressure distribution is discontinuous because of the high 

permeability in the damage phase (Fig. 4.11). The influence of damage and altered 

permeability is shown in comparison with the homogeneous poroelastic results in Fig. 

4.11, where the solid lines represent the effect of damage and permeability change and 

dashed lines show the poroelastic results without damage and permeability increase 

(reference case). The distributions of total radial stress and tangential stress are plotted in 

Fig. 4.12 and Fig. 4.13; note that total radial stress distributions in the damage phase are 

relatively higher than in the reference case because the pore pressure is higher in the 

damage phase. From a stress analysis point of view, this small discontinuity of total 

radial stress between the damaged and elastic phase is caused by the lack of sufficient 

fluid movement at the interface between damaged and undamaged zones; that is, at the 

boundary between the high permeability and low permeability zones. Different fluid 

pressures in these zones cause a discontinuity of total stress between the damaged and 

elastic phases.  

Fig. 4.14 and Fig. 4.15 illustrate the effective radial and tangential stress around 

the wellbore. The solid lines in Fig. 4.14 and Fig. 4.15 represent the poroelastic case 

with damage evolutions and permeability alterations whereas the dashed lines are for the 
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reference case.  It is observed that the effective stresses in the damage phase are reduced 

in comparison to the reference case because of stress relaxation. However, stress 

concentration is observed between the damage and the elastic phase. This stress 

concentration effect between damage phase and intact rock drives damage propagation 

similar to the case of fracture propagation theory. 

 
 

 

Fig. 4.9. Damage evolution around a wellbore. 
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Fig. 4.10. Permeability distribution around the wellbore. 
 
 
 

 

Fig. 4.11. Comparison of pore pressure distributions for simulations with and without 
damage. Solid lines: pore pressure distributions for damage evolutions and permeability 
change; dashed lines: the reference results from no damage and no step increase in 
permeability. 
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Fig. 4.12. Total radial stress distributions showing damage and altered permeability 
effects around a wellbore. Solid lines: stress distributions for damage case; dashed lines: 
the reference cases with no damage. 
 
 
 

 

Fig. 4.13. Total tangential stress distributions showing damage and altered permeability 
effects around a wellbore. Solid lines: damage evolution and permeability change; 
dashed lines: reference case with no damage. 
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Fig. 4.14. Effective radial stress distributions around the wellbore. Solid lines: damage 
evolution included; dashed lines: no damage considered. 
 
 
 

 

Fig. 4.15. Effective tangential stress distributions showing effects of damage and altered 
permeability around the wellbore. Solid lines: damage evolution; Dashed line: no 
damage. 
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4.4.2  The influence of damage evolution and permeability change in non-

isothermal condition 

 Thermo-poroelastic simulations were performed while considering damage 

evolution and permeability alteration. Both conduction and convective heat transfer have 

been applied with fluid velocity computed using Darcy’s law. We used the same 350 

elements and 1141 nodes mesh in the thermo-poroelasticity case (Fig. 4.16). The penalty 

method is used for the pore pressure and temperature boundary conditions at the 

wellbore wall. Initial reservoir conditions of no in-situ stress and no pore pressure are 

first used to explain the pure effects of damage evolution in the fully coupled thermo-

hydro-mechanical simulations. 

 
 

 

Fig. 4.16. Finite element mesh for the problem: 350 elements and 1141 nodes. Initial 
reservoir temperature is 115 °C, and wellbore pressure is 12 MPa. 
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 The cooling associated with cold water injection in hot reservoir gives rise to 

tensile stresses associated with rock shrinkage. As a result, cooling influences the stress 

distributions differently from the isothermal conditions, as reflected in the distributions 

of damage variable as shown in Fig. 4.17; permeability distributions appear in Fig. 4.18. 

The effect of convective cooling around the wellbore is shown in Fig. 4.19. The solid 

lines represent the temperature profiles caused by both conduction and convection, 

whereas dashed lines are for the case of cooling by conduction only. We observe that the 

effect of convective cooling on temperature distribution can become significant, which 

in turn impacts the stress distributions around the wellbore caused by thermal stress. The 

pore pressure distributions are discontinuous at the interface due to the altered 

permeability in the damage phase as in Fig. 4.20. The total radial and tangential stress 

distributions are plotted in Fig. 4.21 and Fig 4.22, and effective stresses are plotted in 

Fig. 4.23 and Fig. 4.24. Again, we observe discontinuity in the total stress resulting from 

pore pressure discontinuity related to damage and relaxation of effective stress in the 

damage phase. 
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Fig. 4.17. Damage evolution around the wellbore. 
 
 
 

 

Fig. 4.18. Permeability distributions around the wellbore. 
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Fig. 4.19. Temperature distributions around the wellbore. 
 
 
 

 

Fig. 4.20. Pore pressure distributions around the wellbore. Solid lines represent pore 
pressure distributions for damage; dashed lines give the results for the reference case 
with no damage. 
 
 
 



 96

 

Fig. 4.21. Total radial stress distributions around the wellbore. Solid lines:  with damage; 
dashed lines: no damage. 
 
 
 

 

Fig. 4.22. Total tangential stress distributions comparing the damage and altered 
permeability effects around the wellbore. Solid lines: with damage evolutions and 
permeability change; dashed lines: reference case with no damage. 
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Fig. 4.23. Effective radial stress distributions around the wellbore showing the impact of 
damage and altered permeability. Solid lines: with damage evolution and permeability 
change; dashed lines: no damage and permeability increase. 
 
 
 

 

Fig. 4.24. Effective tangential stress distributions. Solid lines: damage evolutions and 
permeability change; dashed lines: no damage and no step increase of permeability. 
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4.5  Discussion 

Damage and stress-dependent permeability models were applied to the theory of 

thermo-poroelasticity. Stress distributions with implementation of damage mechanics 

and the permeability model has been compared with a reference case (constant modulus 

and permeability). Stress relaxation occurred by modulus alteration and concentration of 

effective hoop stress at the interface between the damaged and undamaged rock. Also, 

pore pressure distribution shows the discontinuity at the interface due to the increase of 

permeability in the damaged area. 

The damage model used in this section considered nonlinear behavior of strain-

stress for the shear and tensile failure. This model can describe softening and residual 

strength regime with change the parameters fcr, ftr, and εcr better than other suggested 

damage models that include exponential terms in their equations (Mazars, 1986; Cheng 

and Dusseault, 1993; Selvadurai, 2004). These exponent-based damage models can 

depict the hardening and softening process smoothly; however, it is not convenient to 

control the desired softening regime and residual strength regime. For our applications, it 

is important to consider softening and residual strength since reservoir rocks (shale, 

sandstone, and granite) show brittle behavior with a short range of hardening regime.  
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5. CHEMO-THERMO-PORO-MECHANICAL FINITE ELEMENT ANALYSIS 

WITH DAMAGE EVOLUTION AROUND A WELLBORE IN SWELLING 

SHALE 

 

 Wellbore stability is important when drilling for oil and gas. Especially, well 

design must consider the influence of hydraulic pressure, temperature, and chemical 

osmosis in shale drilling in high pressure and high temperature. The interaction of solid 

and fluid in porous rock has been firstly developed by Biot’s poroelastic theory (Biot, 

1941; Cryer, 1963), and this theory has been extended with the influence of temperature, 

fluid flow, and rock deformation by thermo-poroelasticity (McTigue, 1986; Kurashige, 

1989, Wang and Papamichos, 1994). These authors have shown the impact of thermal 

stress in wellbore stability: thermally induced pore pressure change can be significant in 

low permeability formations. The shale deterioration by chemical influence under 

isothermal condition around a wellbore has been studied extensively; the main driving 

mechanism of fluid flow is the chemical potential gradient in low permeability shale 

reservoirs. Heidug and Wong (1996) proposed constitutive equations for swelling shale 

based on nonequilibrium thermodynamics. Ghassemi and Diek (2003) considered 

combined effects of chemical potential and thermal osmosis on water flow in and out 

between the mud and shale formation. They indicated that thermal-osmosis flows are 

several times higher than hydraulic pressure in certain conditions. On the other hand, the 

chemo-poroelasticity model is not easy to implement because of its nonlinearity 

characteristics in physical parameters so that it can be simplified with linear chemo-
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thermo-poroelastic models if the difference of concentration is not severe (Ghassemi and 

Diek, 2003). The assumptions of elasticity and constant permeability in shale drilling 

have limitations in predicting the real behavior of shale around a wellbore. In addition, 

the strength of shale is weak, so that it is important to predict the stress changes precisely 

around a wellbore influenced by hydraulic pressure, mass solute concentration, and 

temperature. Generally, the stress and strain behavior for shale in triaxial tests shows the 

hardening and softening with compressive or tensile stress (Yuan and Harrison, 2006). 

The damage mechanics model is one of the methods to describe this hardening and 

softening behavior of rock. Continuum damage mechanics was first introduced by 

Kachanov and since has been developed by many researchers (Kachanov, 1958; Mazars, 

1986; Simankin and Ghassemi, 2005; Tang et al., 2002; Li et al., 2005; Selvadurai, 2004) 

who have studied the inelastic rock behavior due to crack initiation, void growth, and 

crack growth. This damage mechanics model has been applied to poroelasticity by 

Selvadurai, who applied consolidation problems with altered moduli and permeability 

change. Also Hamiel et al. (2005) proposed a damage model in poroelastic rock and 

applied the model to the triaxial simulation, considering the time dependent degradation 

and healing process for a damage variable which is dependent on modulus, porosity, and 

Poisson’s ratio. Tang et al. (2002) proposed an isotropic damage model based on 

Kachanov’s (1959) effective stress hypothesis. Also he presented the permeability model 

which describes stress-dependent behavior in the elastic phase and altered permeability 

after the rock failure based on triaxial tests by measuring the permeability change with 

stress variation (Tang et al., 2002). This permeability change by rock failure has been 
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studied by many researchers (Shipping et al., 1994; Kiyama et al.; 1996, Coste et al., 

2001; Zoback and Byerlee, 1975). Their experimental results for tests on several rocks 

show permeability increase by a factor of two to four, and this increase of permeability 

by rock failure depends on the rock type and conditions (De Paola et al. 2009; Wang and 

Park, 2002). 

 This section presents the development of a finite element method to study the 

influence of chemo-thermo-poromechanical coupling on shale damage evolution and 

permeability alteration around a wellbore. The damage model describes the change of 

modulus with rock failure by water activity and thermal stress around a wellbore. A 

number of simulations are presented to verify the model and to illustrate the role of 

damage mechanics and stress-dependent permeability and resulting stress distribution by 

thermal stress and chemical osmosis. In addition, we present the different distributions 

of damage under different far-field stresses and compare the influence of temperature 

and chemical potential. 

5.1.  Finite element results for chemo-thermo-poroelasticity 

 In this section, we briefly present two-dimensional finite element results around a 

wellbore to study the influence of fluid flow, solute transport, and temperature. The 

simulation domain is 12×12 m2 (Fig. 5.1) and is divided into 8000 eight-noded 

quadrilateral elements. The individual shape functions in the mixed approximation will 

not yield meaningful results (Zienkiewicz and Taylor, 1991). Overcoming this numerical 

inaccuracy requires double degrees of freedom for displacements in the presence of large 
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changes of stresses, pressure, concentration, and temperature around the wellbore. 

Details of shale properties in this simulation are illustrated in Table 5.1. Maximum and 

minimum far-field stress are 25 MPa and 15 MPa, respectively, and initial pore pressure 

and temperature are 10 MPa and 115°C. Mud pressure and temperature are set to 15 Pa 

and 65°C. Solute concentration in mud and shale formations are Cmud=0.1 Cshale = 0.2, 

respectively. 

 
 

 

Fig. 5.1. Mesh used for finite element simulation. 
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Table 5.1   
Input material properties for shale. 

 

Young’s modulus E (GPa) 1.853 
Drained Possoin’s ratio υ  0.219 
Undrained Possoin’s ratio uυ  0.461 
Biot’s coefficient, α  0.966 
Permeability, k (md) 1×10-6 
Porosity, φ  0.299 

Fluid mass density,  ρf  (kg/m3) 1111.11 
Fluid viscosity, µ (Pa·s) 1×10-3 
Thermal expansion coefficient of solid, mα (K-1) 1.8×10-5 

Thermal expansion coefficient of fluid, fα (K-1) 3.0×10-4 

Thermal diffusivity, Tc (m2/2) 1.6×10-6 
Reflection coefficient, ℜ  0.2 
Swelling coefficient, 0ω (MPa) 1.5 

Solute diffusivity, SD (m2/2) 2.0×10-9 
 
 
 

 We compared the results which consider the influence of fluid flow, temperature, 

and solute transport based on poroelasticity, thermo-poroelasticity, and chemo-thermo-

poroelasticity. Pore pressure distributions for isothermal and nonisothermal cases are 

plotted in Fig. 5.2 (a) and (b). The deviatoric far-field stress causes the lower pore 

pressure to the maximum far-field stress direction because of the tensile stress around a 

wellbore, and higher pore pressure to the minimum far-field stress direction because of 

the compressive stress. The influence of temperature is described in Fig. 5.2(b). Note 

that the difference of temperature between the mud and shale formation generates 

thermal stress as tensile around a wellbore because of rock shrinkage; therefore, the fluid 

disperses more easily than in the isothermal condition. Fig. 5.2(c) represents the 

influence of solute transport (Cm=0.1, Cshale=0.2) that the osmosis flow cause localized 
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pore pressure inside the shale formation. The result for the fully coupled case has been 

described in Fig. 5.2(d). The effective radial and hoop stress distributions with different 

coupling schemes are plotted in Fig. 5.3 and Fig. 5.4. It is observed that the fluid flow, 

temperature, and solute transport are critical to rock stress; the variations in hoop 

stresses are especially significant. This localization of stress distribution often reaches 

the rock failure criterion, so it is necessary to consider the stress variations after the rock 

failure. The rock damage with altered modulus and permeability will be discussed in the 

next section.  

 
 

 

Fig. 5.2. Two-dimensional plots for pore pressure distribution. The solid-fluid 
interaction between the drilling mud and shale formation under anisotropic far-field 
stress is plotted in (a), the influence of thermal stress is in (b), chemical interaction with 
fluid is in (c), and fully coupled results are in (d).  
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Fig. 5.3. Two-dimensional plots for effective radial stress distribution. The solid-fluid 
interaction between the drilling mud and shale formation under anisotropic far-field 
stress is plotted in (a), the influence of thermal stress is in (b), chemical interaction with 
fluid is in (c), and fully coupled results are in (d). 
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Fig. 5.4. Two-dimensional plots for effective tangential stress distribution. The solid-
fluid interaction between the drilling mud and shale formation under anisotropic far-field 
stress is plotted in (a), the influence of thermal stress is in (b), chemical interaction with 
fluid is in (c), and fully coupled results are in (d). 
 
 
 

5.2  Influence of temperature and salinity in shale damage  

To illustrate the role of various mechanisms on wellbore damage, we considered 

the example of nonisothermal drilling in shale subjected to a stress field given by the 

maximum component of 25 MPa parallel to the x-axis and a minimum far-field 

component of 15 MPa in the y-direction. We assumed that initial pore pressure is 10 
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MPa and the mud pressure is 15 MPa. The initial shale formation temperature is 115°C 

and mud temperature assumed to be 65°C. Two different mud salinities of 0.3 and 0.1 

are considered, and the wellbore integrity is analyzed after 12 hours of drilling.  

The roles of temperature, salinity, and stress have been considered (Ghassemi et 

al., 2009; Zhou and Ghassemi, 2009), and it is known that for conventional rock 

response, cooling tends to reduce the shear failure potential while enhancing tensile 

failure. Also, high mud salinity reduces induced pore pressure and increases the effective 

radial stress at the wellbore wall. A lower mud salinity enhances flow into the rock and 

contributes to higher pressure distribution around a wellbore.  

Fig. 5.5 shows the comparison of damage propagation with respect to the degree 

of coupling and different chemical gradients. Note that Fig. 5.5 (a)-(d) show different 

rock failure distributions for different levels of coupling between thermal, poroelastic, 

and chemical processes. As shown in Fig. 5.5 (a), the poroelastic analysis shows that a 

small zone of rock damage develops in the direction of minimum stress. If cooling is 

taken into account, the shear failure is circumvented and no shear damage is observed. 

However, a small zone of tensile failure occurs in the direction of maximum in-situ 

stress response to cooling [Fig. 5.5 (b)]. This is because the tendency of rock to shrink 

reduces the compressive hoop stress and amplifies the tensile stress.  

The impact of chemo-poroelastic effect is shown in Fig. 5.5 (c), where it is 

assumed that the drilling mud has lower salinity than shale. In this case, osmosis and 

chemically-induced stresses affect damage evolution around the wellbore. Fluid 

movement from the mud to the shale contributes to the higher pore pressure around a 
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wellbore, leading to a large damaged area in the direction of minimum in-situ stress. The 

extent of failure zone is substantially reduced in this case, when the role of cooling is 

taken into account. Fig. 5.5 (d) shows that a fully-coupled simulation (hydraulic, thermal, 

and chemical osmosis) shows a much smaller shear failure zone but with a small tensile 

failure zone.  

 
 

 

Fig. 5.5. The comparison of damage propagation at 12 hr with different coupling in 
numerical simulations. Results are compared with same conditions of mud salinity 
Cmud = 0.1, Cshale = 0.2, SH,max = 25 MPa, and Sh,min = 15 MPa. Poroelastic damage I 
plotted in (a), cooling effects are present with thermo-poroelastic damage in (b), (c) 
shows the influence of osmosis flow with chemo-poroelastic behavior, (d) is fully-
coupled chemo-thermo-poroelastic damage distribution. 
 
 



 109

 
The distributions of pore pressure for the different coupling levels (Fig. 5.6) is the lowest 
in the thermo-poroelasticity case and the highest in the chemo-poroelasticity case of a 
lower salinity mud.   
 
 
 

 

Fig. 5.6. The comparison of pore pressure distributions at 12 hr with different coupling 
in numerical simulations. Results are compared with same conditions of Cmud = 0.1 and 
Cshale = 0.2, SH,max = 25 MPa, and Sh,min = 15 MPa. (a) poroelastic, (b) thermo-poroelastic, 
(c) chemo-poroelastic, (d) chemo-thermo-poroelastic pore pressure distribution. 
 
 
 

The impact of stress-dependent modulus and permeability is easily captured with 

the model. Referring to Fig. 5.7, it is observed that the failed-zone is larger when we 

consider the variation of modulus and permeability. This effect can be explained by 
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stress redistribution and the permeability effect. In constant modulus and permeability 

conditions, the stress distributions are same with rock failure. However, once the 

modulus reduced and permeability increased in the failed area, effective stresses reduced 

and pore pressure increased. These discontinuities in stress and pore pressure in the 

damage phase perform as barriers between the damaged and undamaged areas so that 

effective stresses are increased at the interface. This amplification of effective stresses in 

altered modulus and permeability resulted in larger damage distributions than constant 

modulus and permeability. 

 
 

 

Fig. 5.7. The influence of modulus and permeability change for rock failure distributions. 
Results are compared with same conditions of lower mud salinity and SH,max = 25 MPa, 
Sh,min = 15 MPa. (a) chemo-poroelastic rock failure with altered modulus and stress-
dependent permeability (d) chemo-thermo-poroelastic rock failure with constant 
modulus and permeability model. 
 
 
 
 Another wellbore example to consider is the influence of mud salinity. The 

maximum far-field stress is 25 MPa and the minimum far-field stress is 15 MPa. We 

assumed that the initial pore pressure is 10 MPa and the mud pressure is 15 MPa. The 
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initial shale formation temperature is 115 °C and the mud temperature is assumed to be 

65°C. As before, two different mud salinities of 0.3 and 0.1 were considered, and the 

wellbore integrity was analyzed after 12 hrs of drilling. 

 Fig. 5.8 shows that slight damage observed to the maximum far-field stress 

direction when the mud salinity is higher than shale formation. When the mud salinity is 

lower than the formation, there are high damage by shear and tensile to the both 

maximum and minimum far-field stress directions. It is widely known that pore pressure 

increase in porous rock causes shear or tensile failure because of the effective stress 

reduction by fluid movement. The influence of osmosis flow from the mud to the shale 

causes higher pore pressure around a wellbore, and then it reached the shear and tensile 

failure to the maximum and minimum far-field stress direction. The comparison of pore 

pressure distributions around a wellbore has been presented in Fig. 5.9. 

 
 

 

Fig. 5.8. Damage distributions at 12 hr with SH,max = 25 MPa, Sh,min = 15 MPa. (a) higher 
mud salinity (Cmud > Cshale) (b) lower mud salinity (Cmud < Cshale) 
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Fig. 5.9. Pore pressure distributions at 12 hr with SH,max = 25 MPa, Sh,min = 15 MPa. (a) 
higher mud salinity (Cmud > Cshale) (b) lower mud salinity (Cmud < Cshale) 
 
 
 

Fig. 5.10 shows the damage propagation with time. It is observed that shear 

failure occurred to the minimum far-field stress direction because of highly compressive 

effective hoop stress and then tensile failure to the maximum far-field stress direction 

begins as following the shear failure due to the osmosis flow invasion from the mud to 

the shale formation with respect to time. The distributions of temperature and solute 

concentration are plotted in Fig. 5.11 (a) and (b) for the case of lower mud salinity under 

given mud pressure, in-situ stress, initial pore pressure, and temperature. Note that the 

effective radial and hoop stress in Fig 5.11 (c) and (d) shows the stresses are relaxed in 

damage phase and redistributed around a wellbore by modulus reduction and 

permeability increase in failed zone. 
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Fig. 5.10. Propagation of damage with respect to time with SH,max = 25 MPa, Sh,min = 15 
MPa. The case of lower mud salinity comparing shale formation (a) 0.5 hr (b) 1 hr (c) 3 
hr (d) 6 hr. 
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Fig. 5.11. The distributions of temperature (a), solute mass concentration (b) and 
effective radial and hoop stress distributions (c) and (d), respectively. All results are snap 
shots of 12 hr and the mud salinity Cmud = 0.1 and Cshale = 0.2 and SH,max = 25 MPa, Sh,min 
= 15 MPa. 
 
 
 

5.3  Conclusions 

Two-dimensional fully coupled finite element methods have been developed for 

modeling damage-induced stress variations and permeability change around a wellbore. 

Results show the influence of chemical potential and thermal stress around a wellbore. It 

is clearly presented that the shale is unstable when the mud salinity is lower that 
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formation by osmosis flow and cooling creates tensile stresses by the difference of 

thermal expansion coefficients of solid and fluid. Model can explain the different 

distributions of damage and pore pressure with different mud salinity. Far-field stresses 

are also important in wellbore stability, it tends to be reached failure condition in lower 

mud salinity where the far-field stress is low, although the mud pressure is set to the 

range of initial pore pressure and fracture gradient. In addition, the coupling of hydraulic 

pressure, solute transport and temperature has been compared under same conditions. 

Results show the impact of the osmosis and temperature in the analysis of stress 

distributions. This study indicates that the finite element method with damage mechanics 

and stress-dependent permeability model can be used to model the swelling shale. 
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6. TWO-DIMENSIONAL THERMO-PORO-MECHANICAL MODELING OF 

WELL STIMULATION AND INDUCED MICROSEISMICITY 

 

Stress analysis or rock mass failure in response to water injection is of much 

interest in geothermal reservoir design. The process involves coupled rock deformation 

and fluid flow as described in Biot’s poroelastic theory (Biot, 1941; Cryer, 1963), and its 

thermo-poroelastic (McTigue, 1986) and thermo-chemo-poroelastic extension (Ghassemi 

et al. 2009). Chemical effects can be significant with respect to the clay swelling and 

solute transport and reactivity. Thermo-poroelasticity can be used to assess the influence 

of fluid flow and temperature change on the stress variations in the reservoir. This 

influence is often computed assuming a linear elasticity with constant mechanical and 

transport rock properties. The assumption of elastic rock skeleton and fluid flow and 

heat transport in porous media under constant permeability conditions has limitations in 

predicting the real behavior of the reservoir rock. Generally, the strain-stress behavior of 

rocks in triaxial tests shows hardening and post-peak softening. This behavior depends 

on the rock type, pore pressure, stress conditions, and temperature (Jaeger, Cook, and 

Zimmerman, 2007). The continuum damage mechanics approach is one of the methods 

that can capture the hardening and softening behavior of the rock (Yuan and Harrison, 

2006). Continuum damage mechanics was first introduced by Kachanov and since has 

been developed and applied by many researchers (Kachanov, 1958; Mazars, 1986; 

Simankin and Ghassemi, 2005; Tang et al., 2002; Yang et al., 2004; Selvadurai, 2004) 

who have investigated inelastic behavior caused by crack initiation, microvoid growth, 
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and fracture propagation. Also, the evolution of rock damage in the presence of 

poroelastic and thermo-poroelastic effects has been considered. Selvadurai (2004) 

studied damage in poroelastic brittle rock. His results showed a significant permeability 

alteration caused by damage evolution in consolidation problems. Hamiel et al. (2005) 

developed a model with a time dependent damage variable, porosity, and material 

properties. They proposed different rock behavior with degradation and healing within 

the framework of the poroelastic theory. Tang et al. (2002) proposed a damage and 

permeability model based on experimental strain-stress observations and permeability 

measurements (Tang et al., 2002, Yang et al., 2004). The model was implemented in a 

finite element model and was used to simulate a uniaxial compression test and also 

hydraulic fracture propagation.  

The permeability variations induced by altered stress and rock failure has been 

studied by many researchers (Shipping et al., 1994; Kiyama et al.; 1996, Coste et al., 

2001; Zoback and Byerlee, 1975). Zoback and Byerlee illustrated the relation between 

permeability change and microcrack and void evolution. Their experimental results for 

tests conducted on granite show permeability increasing by a factor of four. Other 

studies present different magnitudes for the increase in permeability depending on rock 

type and conditions (De Paola et al. 2009; Wang and Park, 2002).  

The stimulation of the reservoir rock mass is often accompanied by multiple 

microseismic events. Microseismic event characteristics such as their locations, spatial 

patterns of distribution, and temporal relations between the occurrence of seismicity and 

reservoir activities are often studied for enhanced geothermal systems (EGS). 
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Microseismic event detection and interpretation is used for estimating the stimulated 

volume and fracture growth, resulting reservoir permeability, and geometry of the 

geological structures and the in-situ stress state (Pine, 1984). The process commonly is 

referred to as seismicity-based reservoir characterization. Although progress has been 

made in quantitative and qualitative analysis of reservoir stimulation using micro 

earthquakes (Shapiro et al., 1997; 1999; 2002; Rothert and Shapiro, 2003), the process of 

rock failure and permeability change is not considered. Also, in-situ stress and thermal 

effects on fluid-rock interaction have not been considered.  

In this work, we present the development of a finite element model to study the 

influence of thermo-poro-mechanical coupling on rock damage evolution and 

permeability variation with reference to reservoir stimulation and induced seismicity. 

The damage model we used corresponds to the brittle rock failure behavior with post 

peak softening and permanent deformation prior to the fracture. To capture the full 

effects of rock cooling by injection in the presence of higher fluid fluxes caused by rock 

failure and permeability enhancement, the model considers both the conductive and 

convective heat transfer in porous media. Two types of injection schemes are considered 

in this work: explicit wellbore geometry for small scale simulations and a point source 

approach for large scale simulations. A number of numerical simulations are presented 

to verify the model and to illustrate the role of various mechanisms in rock fracture,  
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6.1  Well stimulation and injection-induced microseismicity  

Two-dimensional fully-coupled thermo-poromechanical simulations have been 

conducted with an altered modulus and permeability model. Mesh information for these 

simulations is as follows: 12,000 quadrilateral elements for a 200×200 m2 simulation 

domain which has a wellbore geometry with 0.1 m radius (Fig. 6.1). The reservoir rock 

is granite with properties listed in Table 6.1. The in-situ stress state is given by 30 MPa 

maximum horizontal stress in the x-direction and 20 MPa in the y-direction for 

minimum horizontal stress. Heterogeneous simulation was carried out using Weibull 

distribution functions for elastic modulus and permeability distributions.  We assumed 

that the rock properties follow the Weibull distribution function in which the shape of 

the heterogeneities are n=2.0 for modulus and permeability, respectively. The same 

values are used for the tensile and cohesive strength distributions. The initial pore 

pressure is 10 MPa and wellbore pressure increased 5 MPa every 0.5 hr until it reached 

30 MPa. 
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Fig. 6.1. Mesh used in damage evolution test with thermo-poro-mechanical simulations. 
 
 
 

Table 6.1   
Input material properties for granite. 

 

Young’s modulus E (GPa) 10 

Drained Possoin’s ratio υ  0.25 

Undrained Possoin’s ratio uυ  0.33 

Biot’s coefficient, α  0.44 

Permeability, max,Hk  (md) 0.01 

Permeability, min,Hk  (md) 0.001 

Fluid mass density,  ρf  (kg/m3) 1111.11 

Fluid viscosity, µ (Pa·s) 1×10-3 

Thermal expansion coefficient of solid, mα (K-1) 2.4×10-5 

Thermal expansion coefficient of fluid, fα (K-1) 2.1×10-5 

Thermal diffusivity, Tc (m2/s) 2.0×10-6 

Porosity, φ  0.01 
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 The simulation results are shown in Figs. 6.2 and 6.3. Injection-induced rock 

failure occurred around the wellbore and propagated out into the rock as shown in Fig. 

6.2. In this simulation, we considered an initially anisotropic permeability distribution in 

the rock, and so the fluid flow in the damaged area is mostly focused in the direction of 

maximum permeability. Note that the far-field stress influences damage propagation 

significantly in this coupled fluid injection analysis. The far-field stress anisotropy 

around a wellbore contributes to tensile stress in the maximum far-field stress direction 

and causes compressive stress in the minimum far-field stress direction. Also, fluid 

injection causes tensile hoop stresses. Therefore, both anisotropic far-field stress and 

fluid-induced stress lead to tensile failure propagation in the maximum far-field stress 

direction. The simulated micro-seismic events are plotted in Fig. 6.3. We assumed that 

seismic events are checked in each Gaussian point and events occurred when the rock 

failed. These widely scatted events are observed in an early time step because of the 

initial failure. The injection-induced localized seismic events propagate into the rock 

with the passage of time.   
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Fig. 6.2. Damage propagation with time; (a): 1 hr, (b): 3 hr, (c): 6 hr, and (d): 12 hr. 
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Fig. 6.3. Results of two-dimensional seismic events plot with time. 
 
 
 

6.2  Point source injection and microseismicity  

We next applied two-dimensional point source injection for large reservoir 

simulation using quadrilateral regular mesh and anisotropic far-field stress distributions 

with 10,000 elements and reservoir size of 1 km × 1 km. Injection rate boundary 

conditions were applied to the point source element while injecting with step increases 

from 0.1 m3/m3
·s to 0.15 m3/m3

·s. Maximum and minimum far-field stresses are 30 MPa 

and 20 MPa, and initial pore pressure is 15 MPa.  Physical parameters for the granite 

reservoir we used in this simulation are described in Table 6.1. Fig. 6.4 represents the 

failure propagation in the homogeneous modulus and permeability to the maximum far-

field stress direction with respect to time when fluid is moving from the point source to 

the reservoir. Results show that fluid injection induces the effective stress change where 



 124

fluid contacts the area and causes tensile failure propagation in the maximum far-field 

stress direction. Injection-induced effective stress variations ( xxσ , yyσ ) are plotted in Fig. 

6.5. In this study, rock failure propagated horizontally to tensile failure, which is similar 

to the previous well stimulation simulation. This horizontal propagation can be 

explained by the interaction of fluid with the rock skeleton that altered the modulus, and 

increased permeability created the stress relaxation in the damage area and amplification 

of stress distributions at the interface. 

 
 

 

Fig. 6.4. Fluid induced damage (rock failure) distributions at 3 hrs and 12 hrs. 
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Fig. 6.5. Effective stress distribution of x (xxσ ) and y-direction ( yyσ ). 

 
 
 

 Heterogenous properties for modulus and permeability have been applied to 

depict more realistic simulations. We assumed that physical properties have Weibull 

distribution functions and seismic events are triggered when the rock stress reaches the 

Mohr-Coulomb failure criterion with fluid injection. Initial modulus and permeability 

distributions are illustrated in Fig. 6.6. We used n=2 for controlling the degree of 

heterogeneity in Weibull distribution functions. Initial modulus distributions varied from 

2 GPa to 18 GPa with mean values of 10 GPa and the average of initial permeability was 

0.01 md with a range of 0.002 ~ 0.02 md as shown in Fig. 6.6. 
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Fig. 6.6. Initial modulus and permeability distribution. The range of modulus is 2 GPa ~ 
18 GPa and permeability is 0.002 ~ 0.02 md. 
 
 
 
 Results show that the damage by injection-induced rock failure propagates to the 

maximum far-field stress distribution; however, heterogeneity creates deviations of 

damage propagation caused by shear and tensile failure (Fig. 6.7). Pore pressure 

distributions are localized because of the permeability increase in the damaged area (Fig. 

6.8). One of the features in the thermo-hydro-mechanical process of injection simulation 

is the localization of pore pressure caused by the localized propagation of rock failure 

and permeability increase. The result in Fig. 6.9 shows the seismicity plots with respect 

to time.  Small circles are initial rock failure caused by far-field stress and large circles 

represent fluid injection-induced shear and tensile failure with time. 
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Fig. 6.7. Damage distributions at 3 hrs and 12 hrs in the heterogeneous case. 
 
 
 

 

Fig. 6.8. Pore pressure distributions at 3 hrs and 12 hrs in the heterogeneous case. 
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Fig. 6.9. Results for microseismic event propagation by fluid injection with time. The 
small circle is the initial rock failure by far-field stress and the large circle represents 
injection-induced triggering of microseismic events.  
 
 
 

6.3  Discussion 

Thermo-poroelastic modeling for microseismic event propagations with damage 

mechanics and the stress-dependent permeability model are presented in this section. 

Previous work from Shapiro (1997; 1999; 2002) for microseismicity modeling was 

developed from the fluid flow equation and criticality. He introduced concept of 

criticality values for pore pressure, assuming that microseismic events occurred if the 

pore pressure exceeded a certain value of criticality. This approach is reasonable from a 

certain point of view, because usually high pore pressure is needed to trigger rock failure. 

Shapiro’s approach also has limitations in that it takes no consideration of permeability 

change, localization of stress distribution, or temperature effects in microseismic event 
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modeling. Fig. 6.10 illustrates the simulation results for induced microseismicity with 

critical pressure and rock failure criteria. We applied the same heterogeneity and 

injection schedule. Maximum far-field stress is to the x-direction and minimum far-field 

stress is to the y-direction. Results show that microseismic events propagate isotropically 

in critical pressure conditions, as opposed to the rock failure criterion. From the 

comparison, we conclude that the rock failure criterion can more effectively describe the 

ellipsoidal patterns from observation data. The main differences in this numerical 

simulation from Shapiro’s model are the coupled impact of fluid flow, temperature, and 

stress change for the analysis of microseismic event propagation. The other 

improvement in this simulation is that permeability increases in the event locations, 

leading to the discontinuity of pore pressure and stress relaxations. In turn, it can explain 

the propagation of localized microseismic events in certain conditions. The influence of 

convective heat transfer is plotted in Fig. 6.11. Results show a larger region of cooling 

by permeability increase when we consider the convective heat transfer. The impact of 

convective heat transfer becomes important when the model considers fluid flow in 

fractures.  
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Fig. 6.10. Comparison of injection-induced microseimic event propagation under the 
same initial heterogeneity and injection schedule. Microseismic events based on critical 
pressure are plotted in (a), and rock failure criteria are plotted in (b).   
 
 
 

 

Fig. 6.11. Comparison of temperature distributions between conductive cooling and 
convective heat transfer in simulation of a sandstone reservoir which has 10 md for 
initial permeability and 100 md after rock failure. Only the conductive heat transfer case 
is plotted in (a) and convective with conductive heat transfer is plotted in (b). Both 
results are the snap shots at 180 sec.      
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6.4  Conclusions 

 Damage mechanics and the stress-dependent permeability model have been 

applied to fully-coupled thermo-poroelasticity. It is observed that effective stresses are 

relaxed in the damaged area and increased at the interface of the damaged and intact 

rock by the change of modulus and permeability with injection-induced rock failure. The 

model has been applied to the microseismic event simulation. Two types of injection 

schemes are used for geometrical well injection in small scale simulations and point 

source injection in large scale simulations. Results show distributed shear and tensile 

failure in the reservoir. The resulting rock failure and permeability enhancement is a 

function of the in-situ stress. Realistic patterns of micro-seismicity have been generated. 

Results show the significant roles of stress state and initial rock permeability in the 

resulting pattern. The results of this study indicate that the finite element method with 

damage can be used to model reservoir stimulation and induced seismicity. 
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7. THREE-DIMENSIONAL FINITE ELEMENT MODELING OF 

THERMO-PORO-MECHANICAL WELL STIMULATION AND 

INJECTION-INDUCED MICROSEISMICITY 

 

 The study of stress variations by fluid injection is important in enhanced 

geothermal reservoir (EGS).  Especially near the wellbore, there is a significant change 

of stresses by temperature, fluid flow and far-field stresses. The influence of fluid flow 

and porous rock has been developed by Biot (Biot, 1941; Cryer, 1963), and its extension 

version of thermo-poroelasticity has been proposed (McTigue, 1986; Kurashige, 1995; 

Wang and Papamichos, 1994). They showed that the impact of thermo-poroelasticity 

around a wellbore that thermally-induced pore pressure distribution is significant if the 

rock permeability is low. The influence of chemical potential also has been developed 

that considered the influence of chemical potential, temperature and fluid flow in shale 

(Heidug and Wong, 1996; Ghassemi and Diek, 2003; Ghassemi et al., 2009). Most of the 

geothermal reservoir rock is granite so that we should consider the low permeable and 

brittle rock with cold water injection. Thermo-poroelasticity can be used to assess the 

influence of temperature and fluid flow change on the stress variations; however, there 

are some limitations that the rock skeleton is assumed to be elastic and constant 

permeability in fluid flow. Generally, the modulus and permeability are changed if the 

rock reaches the failure criterion. The strain-stress behavior in triaxial test shows 

hardening and softening after post-peak stress. This behavior depends on the rock type, 

pore pressure, stress condition and temperature (Jaeger, Cook, and Zimmerman, 2007).  
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Experimental results for permeability variation with stress also have been studied by 

many researchers (Shipping et al., 1994; Kiyama et al.; 1996, Coste et al., 2001; Zoback 

and Byerlee, 1975). Their experimental results for tests conducted on granite show 

permeability increase by a factor of four. Other studies present different magnitudes for 

the increase in permeability depending on rock type and conditions (De Paola et al. 2009; 

Wang and Park, 2002).  

 Continuum damage mechanics is used to consider the crack initiation, void 

growth, and crack propagation that can capture the hardening and softening behavior of 

a rock. Continuum damage mechanics was first introduced by Kachanov and since has 

been developed and applied by many researchers (Kachanov, 1958; Mazars, 1986; 

Simankin and Ghassemi, 2005; Tang et al., 2002; Li et al., 2005; Selvadurai, 2004). It 

can be contrasted with fracture mechanics in that damage mechanics describes crack 

initiation, microcracks, void growth, and crack propagation based on the failure criterion, 

whereas fracture mechanics assumes an initial crack for propagation. The impact of 

damage mechanics has been applied in the presence of poroelasticity. Selvadurai (2004) 

studied damage in poroelastic consolidation problems with a stress-dependent 

permeability model. His results showed a significant permeability alteration caused by 

damage evolution in consolidation problems. Hamiel et al. (2005) developed a model 

with time dependent damage variable, porosity, and material properties. They proposed 

different rock behavior with degradation and healing within the framework of the 

poroelastic theory. Tang et al. (2002) proposed a brittle damage and permeability model 

based on experimental strain-stress observations and permeability measurements (Tang 
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et al., 2002; Li et al., 2005). The model was implemented in a finite element model and 

was used to simulate a uniaxial compression test and hydraulic fracture propagation.  

 Damage mechanics has an advantage of considering the microfracture so that it 

can be one of the promising tools to predict injection-induced microseismic events. 

Microseismic event characteristics such as their locations, spatial patterns of distribution, 

and the temporal relation between seismicity and reservoir activities are often studied for 

enhanced geothermal systems (EGS). Microseismic event detection and interpretation is 

used for estimating the stimulated volume and fracture growth, resulting reservoir 

permeability, and geometry of the geological structures and the in-situ stress state (Pine, 

1984). The process commonly is referred to as seismicity-based reservoir 

characterization. Although progress has been made in quantitative and qualitative 

analysis of reservoir stimulation using micro earthquakes (Shapiro et al., 1997; 1999; 

2002; Rothert and Shapiro, 2003), the process of rock failure and permeability change 

has not been considered. In-situ stress and thermal effects on fluid-rock interaction have 

also not been considered.  

 In this work, we present the development of a three-dimensional (3D) finite 

element model to study the influence of thermo-poro-mechanical coupling on rock 

damage evolution and permeability variation with reference to reservoir stimulation and 

induced seismicity. The damage model we used corresponds to brittle rock failure with 

post-peak softening and permanent deformation prior to fracture. In order to capture the 

full effects of rock cooling by injection in the presence of higher fluid fluxes caused by 

rock failure and permeability enhancement, the model considers both the conductive and 
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convective heat transfer in porous media. A number of numerical simulations are 

presented to verify the model and to illustrate the role of far-field stress and permeability 

change in rock fractures, distributed damage evolution, and induced seismicity. 

7.1  Injection-induced damage propagation 

 In this section, we present numerical examples for hydraulic fracturing 

experiments under the influence of different far-field stresses while taking into account 

fluid and temperature variations around a wellbore.  

 Before conducting large reservoir simulations, we tested a small simulation 

domain consisting of a 3D block of rock with dimensions of 10×10×5 m3 (Fig. 7.1) with 

a 0.2-m injection interval. We use an 8-noded hexahedron element for displacement and 

8 nodes for pore pressure and temperature. All reservoir properties represented a granite 

reservoir (Table 6.1). 

 We compared the numerical solutions with analytical solutions for effective 

vertical stress distribution. We assumed zero far-field stress and pore pressure on the 

wall acting with 10 MPa along the vertical wellbore surface. The induced effective 

vertical stress component contributes to tensile stress since the pore pressure invasion to 

the reservoir leads the effective stress distribution from zero to the tensile stress as seen 

in Fig. 7.1. The plot in Fig. 7.2 compares the numerical solutions for effective vertical 

stress with analytical solutions with time. The comparison of pore pressure, total radial 

stress components, and total tangential stress components are presented in Figs. 7.3 to 

7.5.   
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Fig. 7.1. Induced effective vertical stress variation by fluid injection. 
 
 
 

 

Fig. 7.2. Comparison of numerical solutions with analytical solutions for effective stress 
component, σ′zz,, distribution. 
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Fig. 7.3. Comparison of numerical solutions with analytical solutions for pore pressure 
distribution along to the radial direction. 

 
 
 

 
Fig. 7.4. Comparison of numerical solutions with analytical solutions for total radial 
stress, σrr, distribution. 
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Fig. 7.5. Comparison of numerical solutions with analytical solutions for effective stress 
component, σθθ, distribution. 

 
 
 

 For the analysis of injection-induced rock failure and permeability change, we 

assumed that permeability in the maximum far-field stress direction (x-direction) is 5 

times higher than that in the minimum far-field stress direction (y-direction). The 

vertical permeability value is assumed to be 10% of the permeability in the minimum 

far-field stress direction. The experimental results for the permeability anisotropy 

showed that the permeability path is higher in the maximum stress direction (Khan and 

Teufel, 2000). In this example, the maximum horizontal stress is 30 MPa (x-direction), 

minimum horizontal stress is 20 MPa (y-direction), and the vertical stress is 10 MPa (z-

direction). The injection pressure starts at 13 MPa and is increased at 0.5-hr intervals 

until it reaches 20 MPa. 
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Fig. 7.6. Iso-surface (20%) of injection induced damage variable for the case when the 
minimum in-situ stress is Sv. 
 
 
 
 The iso-surface of the area damaged 20% by 6-hr fluid injection is plotted in Fig. 

7.6. The permeability and pore pressure distributions in the fracture zone are represented 

in Fig. 7.7. Note that axial stress (zzσ ) distribution and horizontal tangential stress 

contribute to failure around the wellbore. In our fracture simulation, the damaged area 

(microcrack and void-growth area) becomes sharper when damage variable 

convergences are satisfied. Also, the anisotropic permeability model under anisotropic 

far-field stress shows more realistic results since fluid injection plays an important role 

in this process and its simulation. 
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Fig. 7.7. Cross sectional view of permeability and pore pressure distributions. Results 
are for a time of 6 hrs.  Permeability distributions: (a) and (b); pore pressure distributions: 
(c) and (d). See Table 7.1 for units. Unit for permeability is md. 
 
 
 

7.2  Damage propagation under different stress regimes 

 After carrying out small reservoir geomechanical simulations, we conducted 

large scale reservoir simulations using a large mesh with 83,232 8-noded hexahedron 

elements for a reservoir size of 240×120 ×150 m3 as shown in Fig. 7.8. We tested three 

different far-field stress regimes:  strike-slip: (SH,max=30 MPa, Sh,min=10 MPa, Sv=20 

MPa), with horizontal far-field stresses as the maximum and minimum in-situ stresses; 

thrust (SH,max=30 MPa, Sh,min=20 MPa, Sv=10 MPa), with vertical far-field stress as the 
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minimum stress component;  and normal faulting (SH,max=20 MPa, Sh, min=10 MPa, Sv=30 

MPa), with the vertical far-field stress as the maximum in-situ stress component. All 

reservoir properties are the same as the previous simulations, and permeability 

anisotropy is oriented according to the far-field stress direction; for example, 

kh, min=0.1×10-3 md,  kH, max=10×10-3 md, and kv=0.1×10-3 md are applied for the strike-

slip regime, kh, min=1×10-3 md,  kH, max=10×10-3 md, and  kv=0.1×10-3 md for the thrust 

regime, and kh, min=0.1×10-3  md,  kH, max=1.0×10-3  md, and kv = 0.1×10-3 md are applied 

for the normal fault  regime.   

 
 
Table 7.1   
Reservoir properties used in the simulations. 
 

 Case 1 
(Strike-Slip) 

Case 2 
(Thrust) 

Case 3 
(Normal) 

SH, max 30 MPa 30 MPa 20 MPa 

Sh, min 10 MPa 20 MPa 10 MPa 

Sv 20 MPa 10 MPa 30 MPa 

kH, max (md) 10×10-3 10×10-3 0.1×10-3 

kh, min (md) 1×10-3 1×10-3 1×10-3 

kv (md) 0.1×10-3 0.1×10-3 0.1×10-3 
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Fig. 7.8. Mesh used in simulation; SH,max represents maximum horizontal stress, Sh,min is 
minimum horizontal stress, and Sv is vertical stress. 
 
 
 

In these simulations, damage propagation caused by fluid injection was 

investigated in relation to the in-situ stress regime. The first case was when the minimum 

in-situ stress is horizontal (Case 1). The injection interval zone is 2 m and injection 

pressure begins at 8 MPa and is increased at 2.5 MPa increments every 0.5 hr until it 

reaches 32 MPa. Fluid injection causes both effective tangential and effective axial 

stresses to become tensile. These two stress components contribute to tensile principal 

stress inside the rock. Fig. 7.9 shows the 20% damaged area. Note that damage and 

fractures propagate vertically and horizontally in this case where the minimum stress is 

horizontal. Height growth occurs rapidly near the wellbore where the axial stress effects 
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dominate. Away from the wellbore, the in-situ stress controls the manner of damage 

zone propagation similar to a hydraulic fracture. The effective axial stress and pore 

pressure distributions are shown in Fig. 7.10. 

 
 

 

Fig. 7.9. Damage and permeability distributions for minimum horizontal far-field stress 
at 12 hrs. 20 % damage of iso-surface is plotted in (a), and (b) is a magnified image. 
Cross-sectional views of permeability distributions are illustrated in (c) and (d). 
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Fig. 7.10. Effective vertical stress and pore pressure distributions for minimum 
horizontal far-field stress at 12 hrs. Cross-sectional views of effective vertical stress are 
in (a) and (b), and pore pressure distributions are in (c) and (d), respectively. 
 
 
 

For Case 2, the vertical minimum in-situ stress regime, the injection interval zone 

is 0.2 m and the pressure begins at 20 MPa and increases at 2.5 MPa at 0.5 hr until it 

reaches 42 MPa. Fig. 7.11 shows the fluid- induced 20% damaged area and the 

permeability distribution. Results show that injection-induced damage and the fractured 

area propagate horizontally. The propagation of damage is much larger in the maximum 

horizontal far-field stress direction than in the minimum horizontal far-field stress 

direction, which is influenced by permeability anisotropy.  
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Fig. 7.11. Damage and permeability distributions for minimum vertical far-field stress at 
6 hrs. 20 % damage of iso-surface is plotted in (a) and (b) is magnified image. Cross-
sectional view of permeability distributions are illustrated in (c) and (d). 
 
 
 

For the Case 3, vertical stress as the maximum far field stress, the same injection 

rate conditions of Case 1 are used for the comparison of the normal fault regime with the 

strike-slip regime (Case 1). The only different properties are far-field stress distribution 

and permeability anisotropy because maximum far-field stress directions are varied from 

the y-direction to the z-direction. Results show a stronger tendency for the induced 

damaged and fractured zone to propagate vertically; however, as shown in Fig 7.12, the 

damage area is smaller (for the same injection rate of Case 1) because of the influence of 

the large, vertical far-field stress.  
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The different geometry of the failure plane for the case of Sh,min and Sv as  the 

minimum in-situ stress components can be attributed to different patterns of fluid and 

stress distribution in each case. In this simulation, the effective axial stress caused by 

fluid injection and deviatoric stress from the horizontal far-field stress are the main 

contributors to tensile failure across the wellbore for case 1 and case 3 (Sh,min as the 

minimum). However, in the case of Sv as the minimum stress, the effective axial stress is 

not significant compared to the minimum Sh,min and the wellbore hoop stress which serve 

to propagate the damage. We observe that a higher injection pressure is needed to 

generate the fracture plane in the homogeneous rock case, when Sv is the minimum in-

situ stress rather than Sh,min, because of the effective stress contributions for tensile 

failure. This is reasonable since there is additional hoop tensile stress (as opposed to only 

axial) when the fracture is initiated in a vertical plane. 

 
 

 

Fig. 7.12. Damage and permeability distributions for minimum vertical far-field stress at 
6 hrs. 20 % damage of iso-surface 
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The variation of damage propagations with time for the strike-slip, thrust, and 

normal fault regimes are illustrated in Figs. 7.13 to 7.15 for comparison. 

Hydraulic fracturing with cold water injection has been illustrated in Fig 7.16. 

Initial reservoir temperature is 200 °C and cold water temperature is 65 °C. Injection 

pressure is maintained 35 MPa for 6 hr, starting from 8 MPa. Both fluid injection and 

temperature difference contribute to fracture propagation. In this simulation, we assume 

the hydraulic fracture (macrocrack) as 90% damage. Results show that the 90% damage 

zone length is 24 m, height is 8 m, and average thickness near the well 10 cm. Note that 

temperature distribution is influenced by fluid flow, which is related with convective 

heat transfer, but the transfer rate is very slow. It is important to define the hydraulic 

fracturing in fluid injection. The main difference in the theory of fracture and damage 

mechanics is that the fracture considers macrocrack propagation, whereas damage 

mechanics considers the micro-fracture. Macrocrack propagation can be explained to be 

a sudden localization of microcracks (Mazars and Pijaudier-Cabor, 1996) so that the 

distributions of damage are generally broader than fracture propagations.  
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Fig. 7.13. Iso-surface 20% damage plot of 3D damage propagation with respect to time 
under horizontal far-field stress as the minimum: (a): 0.5hr, (b): 1 hr, (c): 1.2 hr, (d): 1.5 
hr. 
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Fig. 7.14. Iso-surface 20% damage plot of 3D damage propagation with respect to time 
under vertical far-field stress as the minimum: (a): 1 hr, (b): 1.2 hr, (c): 1.5 hr, (d): 1.9 hr. 
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Fig. 7.15. Iso-surface 20% damage plot of 3D damage propagation with respect to time 
under vertical far-field stress as the maximum: (a): 1 hr, (b): 1.5 hr, (c): 2 hr, (d): 3 hr. 
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Fig. 7.16. Plot for hydraulic fracturing zone (90% damaged area) with minimum 
horizontal (a) and pore pressure distribution (b). Different plane views of temperature 
distributions in (c) and (d). All results have the same time step at 6 hr. 
 
 
 

7.3  Injection volume analysis 

 The influence of injection volume under different stress regimes is reported in 

this section. Well pressure in this comparison is a step increase of 15 to about 44 MPa 

for normal regimes and 20 to about 48 MPa for thrust regimes. Initial well pressure is set 

to the pressure before the rock failure and damage evolution begins after the next step 

increase of wellbore pressure. Fig. 7.17 shows the comparison of a 40% damaged area 

with different far-field stresses when we inject 968 L for 3 days in the normal regime (SH, 
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max = 20 MPa, Sh, min = 10 MPa, Sv = 30 MPa, kH, max = 10×10-3 md, kh, min = 1×10-3 md, 

and  kv = 0.1×10-3) and  340 L for 3 days in the thrust regime (SH, max = 30 MPa,  

Sh, min = 20 MPa, Sv = 10 MPa, kH, max = 1×10-3 md, kh, min = 1×10-3 md, and  kv = 0.1×10-3 

md). The normal regime led to a larger damaged area and higher injection volume than 

the thrust regime. This is because of the influence of the horizontal deviatoric stress to 

increase damage distribution with similar injection pressure schedules. Injection pressure 

is similar to the case of thrust regime, but tangential stress creates larger failure in the 

maximum far-field stress direction around a wellbore in the normal regime. However, in 

the thrust regime the contribution of tangential stress is weak and induced vertical stress 

cause it to fail. Results indicate that larger damage and injection volume can be predicted 

with the same injection pressure where the minimum far-field stress is horizontal than in  

the thrust regime. The thrust regime needs a higher injection pressure schedule to create 

a fracture plane with given far-field stress condition.  

Damage distribution and injection volume have been studied in the same 

injection pressure schedule with different far-field stress (Fig. 7.18). The conditions for 

far-field stress and permeability are SH, max = 20 MPa, Sh, min = 10 MPa, Sv = 30 MPa,  

kH, max = 10×10-3 md, kh, min = 1×10-3 md,  kv = 0.1×10-3 for the normal regime and  

SH, max = 40 MPa, Sh, min = 20 MPa, Sv = 30 MPa, kH, max = 10×10-3 md, kh, min = 1×10-3 md,  

kv = 0.1×10-3 for the strike-slip regime. The injection pressure is scheduled as step 

increases from 5 MPa to 32.5 MPa every 1 hr for both cases. Injection volume is 473 L 

with 3 day injection for the normal regime and 121 L also with 3 day injection for the 

strike-slip regime. Deviatoric stress for the strike-slip regime is 10 MPa, whereas it is 
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5 MPa for the normal regime. Larger damage and injection were observed in the normal-

regime than in the strike-slip regime. Previous comparison shows the influence of 

deviatoric stress in damage distribution with the same initiation of rock failure. However, 

in this comparison, the failure beginning time is different in the normal and strike-slip 

regimes with same injection pressure schedule. Injection-induced damage propagation 

begins later in the strike-slip regime because of higher compressive horizontal stresses. 

This analysis shows that the roles of horizontal deviatoric stress and failure initiation 

pressure aare important to predict injection volume and fracture propagation. This 

analysis indicates that fracture propagation results from the complex interactions of the 

fluid injection pressure, far-field stress, permeability, and rock strength. 

 
 

 

Fig. 7.17. The comparison of damage distribution under different stress regimes. (a) 
normal regime, 968 L for 3 days (b) thrust regime, 340 L for 3 days. 
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Fig. 7.18. The comparison of damage distribution under different stress regimes. (a) 
normal regime, 473 L for 3 days (b) strike-slip regime, 121 L for 3 days. 
 
 
 

7.4  Heterogeneous microseismicity simulations 

In this section, we consider induced microseismicity simulations with damage 

evolution. We assumed that seismic events are generated when the effective rock stress 

reaches the level prescribed by the failure criterion (Mohr-Coulomb) as fluid infiltrates 

the rock and stresses change. The simulation mesh is the same as in the previous 

homogeneous 3D simulations. However, heterogeneities of modulus and permeability 

are considered using Weibull distribution functions. The initial modulus and 

permeability distributions are illustrated in Fig. 7.19. As before, three different far-field 

stress regimes were tested: one with horizontal stress as the minimum, another with 

vertical stress as the minimum, and the other with vertical stress as the maximum. To 

investigate the permeability and far-field stress relationship, we also considered two 

different permeability models: (1) reservoir permeability properties are highly related to 

the far-field stress (anisotropic permeability), and (2) permeability is independent of the 
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far-field stress (isotropic permeability). Details of reservoir properties are described in 

Table 7.2. In the case of anisotropic permeability, we simply assumed a permeability 

that is 10 times higher in the maximum in-situ stress direction and 10 times lower in 

minimum in-situ stress direction. 

 
 

 

Fig. 7.19. Initial heterogeneous modulus which ranges from 4 GPa to 16 GPa in (a) and 
(b), and permeability distribution (0.004 to about 0.016 md) is presented in (c), (d). 
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Table 7.2.   
Reservoir properties used in 3D heterogeneous simulations. 
 

 Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 

Stress 
regime 

Strike-slip Thrust Normal 

E 10 GPa  (n=1.5) 10 GPa  (n=1.5) 10 GPa  (n=1.5) 

k, [md] 

(n=1.5) 
10-2 

kmax=10×10-2 

kmin=0.1×10-2 

kv=1.0×10-2 

10-2 

kmax=10×10-2 

kmin=1.0×10-2 

kv=0.1×10-2 

10-2 

kmax=1×10-2 

kmin=0.1×10-2 

kv=10×10-2 

C0 100 MPa   (n=2) 100 MPa  (n=2) 100 MPa  (n=2) 

T0 5 MPa  (n=2) 5 MPa  (n=2) 5 MPa  (n=2) 

 
 
 
The resulting seismic events distributions are plotted in Figs. 7.20 to 7.22 for 

different reservoir permeabilities in different in-situ stress regimes. Fig. 7.20(a) shows 

the seismic events in time for the conditions of isotropic permeability with minimum 

horizontal far-field stress. Fig. 7.20(b) shows a plot for the same far-field stress 

conditions and injection rate but with anisotropic permeability. The seismic events are 

scattered broadly when permeability is isotropic since there are no significant differences 

in fluid sweep velocities in the x-, y-, and z-directions. However, in the case of 

anisotropic permeability, seismic events are highly localized because fluid invasion is 

focused in the maximum far-field stress direction, and this leads to localized seismic 

events. Same conditions are simulated for the minimum vertical far-field stress case (Fig. 

7.21). Similarly, broad distributed seismic events occur under isotropic permeability 

conditions, and scattered localized events are observed in the anisotropic permeability 

case. Vertical stress as the maximum has been plotted in Fig. 7.22. Note that same 



 157

injection conditions are used for both stress regime simulations. Results show that for 

the normal faulting case, the induced seismicity does not propagate but stabilizes earlier 

because vertical stress is higher than the thrust regime, where a higher injection rate is 

needed to generate tensile failure for fracture propagation in the vertical direction. It is 

worth pointing out that the smaller gray points show the distribution of micro-seismic 

events as a result of the far-field stresses and might be interpreted as background values. 

 
 

 

Fig. 7.20. Predicted micro-seismic events after 10 hrs of pumping for the case of 
horizontal stress as the minimum far-field stress: (a) isotropic permeability and (b) 
anisotropic permeability. 
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Fig. 7.21. Micro-seismic events after 6 hrs of pumping for the case that the vertical 
stress is the minimum far-field. (a) isotropic permeability and (b) anisotropic 
permeability. 
 
 
 

 

Fig. 7.22. Micro-seismic events after 6 hrs of pumping for the case that the vertical 
stress is the maximum far-field. (a) isotropic permeability and (b) anisotropic 
permeability. 
 
 
 
 The influence of cooling has been compared in Fig. 7.23. Initial reservoir 

temperature is assumed 200°C and injection cold water temperature is 50°C. The heat 
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transfer by conduction and convection between the fluid flow and hot reservoir causes 

tensile stress, which creates larger induced microseismic events. For the cooling case, 

the fluid contact in an early time step contributes significantly to tensile stress, resulting 

in larger failure than in the isothermal case. Results show that larger initial microseismic 

events occurred for the case of cooling [Fig. 7.23(a)] than in the isothermal condition 

[Fig. 7.23(b)]. Since the heat transfer rate is slower than fluid transport, the effects of 

thermal stress are important for the long-term fluid injection (3 to 12 months). However, 

the thermal stress also plays an important role in short-term fluid injection (3 to 6 days) 

to estimate the microseismic event propagation since the cooling that creates more 

tensile stress in an early time step on the wall of the wellbore results in larger rock 

failure with the same fluid injection.  

 
 

 

Fig. 7.23. Comparison of microseismic events after 65 hrs of pumping for the case of 
isothermal condition and cooling condition. (a) isothermal and (b) cold water (50°C) to 
the hot reservoir (200°C). 
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7.5  Conclusions 

Damage mechanics and stress-dependent permeability models have been applied 

to injection induced stress variations in thermo-poroelasticity. The parameters for strain-

stress and strain-permeability can be obtained by triaxial simulations comparing the 

experimental results. The modulus and permeability changes caused by rock failure 

influence the stress distributions, which in turn affect the impact of damage propagation. 

The results show that the failure plane is perpendicular to the minimum far-field stress 

distribution. Cold water injection in the normal or strike-slip regime shows penny-shape 

propagation which can capture the hydraulic fracturing. The study of injection volume 

indicates that the influence of far-field stress, injection pressure schedule, and fracture 

initiation pressure can be used to predict the drainage volume and fractured area related 

to fluid injection. We considered a heterogeneous modulus and permeability in 

microseismicity simulations and compared the effect of permeability anisotropy. The 

propagation of microseismic events is localized when the reservoir permeability is 

anisotropic because of fluid path localizations. The results of this study indicate that the 

finite element method with damage can be used to model reservoir stimulation and 

induced seismicity.  
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8. THREE-DIMENSIONAL THERMO-PORO-MECHANICAL ANALYSIS 

WITH POINT SOURCE FOR INDUCED MICROSEISMICITY 

 

Three-dimensional injection induced damage/fracture propagation at well 

scalewas presented in the previous section. To simulate microseismic event propagation 

in larger space, it is efficient to consider the point source injection scheme because 

injection well radius (~0.1 m) is negligible compared to reservoir size. Point source is 

localized fluid and heat flux without geometry considerations for mathematical 

approximation to simplify the problem. The development of numerical implementation 

of the point source method was described in Section 3.1.3.  

We performed three-dimensional (3D) simulation with point source fluid loading. 

We used an 8-node hexahedron element for displacement, pressure, and temperature, 

and the total element number used in this simulation is 32,000. Reservoir size is 1 km × 

1 km × 0.5 km, and we assume that the depth of injection is 2.5 km and the injection 

interval is 25 m at the middle point of the reservoir (Fig. 8.1). We also considered 

gravitational force to the z-direction which has gradual change for vertical stress and 

maximum and minimum horizontal far-field stresses are constant to the vertical direction. 

Three different types of far-field stress regimes are studied with same injection rate to 

analyze the influence of far-field stresses as shown in Table 8.1. Newberry geothermal 

reservoir stress regimes are used for strike-slip and normal regime. For thrust regime, we 

tested Cooper basin geothermal reservoir stress regime.  Initial reservoir properties for 

modulus and permeability are generated using Weibull distribution functions.  
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To apply gravity in the simulations, we used the measured reservoir data as 

initial pore pressure and far-field stress for initial background stresses that increase with 

depth. The other method to apply gravity in the simulation is by applying the force to the 

z-direction in each element on a basis of rock density data. We performed the 

simulations based on reservoir stress data. The progress of reservoir stress distribution 

during fluid injection can be computed by summing the induced stress variation and the 

background far-field stress field in each Gaussian point of the element.     

Fig. 8.2 shows initial heterogeneity with average modulus of 10 GPa and average 

permeability of 0.01 md. The injection schedule and pressure changes are plotted in 

caused  by rock failure and the propagation of the damaged area.  

 
 

 

Fig. 8.1. Mesh used in three-dimensional simulation; SH,max represents maximum 
horizontal stress, Sh,min is the minimum horizontal stress, and Sv is the vertical stress. 
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Table 8.1   
Reservoir properties used in 3D simulations. 
 

 
Case 1 

(Strike-slip) 

Case 2 

(Thrust) 

Case 3 

(Normal) 

SH, max 70 MPa 95 MPa 48 MPa 

Sh, min 46 MPa 70 MPa 36 MP 

Sv 60 MPa 60 MPa 60 MPa 

kH, max 1×10-2 md 1×10-2 md 1×10-2 md 

kh,min 1×10-2 md 1×10-2 md 1×10-2 md 

kv 0.1×10-2 md 0.1×10-2 md 0.1×10-2 md 

 
 
 

 

Fig. 8.2. Initial heterogeneous modulus (a) and permeability (b).  
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Fig. 8.3. Injection rate and injection pressure are plotted in normal, strike-slip, and thrust 
regime. 
 
 
 

8.1  Microseismicity in strike-slip regime 

Three-dimensional injection-induced stress and permeability change were 

performed under a strike-slip regime (horizontal far-field stresses are the maximum and 

the minimum, and vertical stress is intermediate) for a Newberry geothermal reservoir. 

Fig. 8.4 describes the injection-induced microseismic events with respect to time. We 

assumed that microseismic events occurred if the effective rock stresses reached the 

shear or tensile failure criterion. Change of color represents the time scale from the 

initial time step to 72 hrs. Results show that seismic events are propagated irregularly 

because of the heterogeneity from fluid injection, but a cross-sectional view shows that 

the seismic event propagation follows the maximum horizontal stress direction as shown 

in Fig. 8.5. The different mode of rock failure is plotted in Fig. 8.6, where the red 
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denotes the shear failure and the blue is tensile failure caused by the stimulation. The 

distributions of S1-S3 (maximum principal stress – minimum principal stress) and 

minimum far-field stress distributions are plotted in Fig. 8.7 and Fig. 8.8. The stress 

distribution along the vertical direction increases as the depth increases because of the 

gravity in the far-field stress. The results of stress distribution show that fluid injection 

decreases the effective stress level, which results in shear and tensile failure and stress 

relaxation at the microseismic event location. Pore pressure distributions are plotted for 

1-hr and 3-day stimulations in Fig. 8.9; it dispersed nonhomogeneously due to the 

heterogeneous permeability.   

 
 

 

Fig. 8.4. Micro-seismic events after 3 days pumping for the case of strike-slip regime. 
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Fig. 8.5. Cross-sectional views for strike-slip regime. (a) represents top view, (b) is 
maximum directional side view, and (c) is minimum directional side view. 
 
 
 

 

Fig. 8.6. Injection-induced failure analysis. Blue represents tensile failure and red shows 
shear failure. 
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Fig. 8.7. The difference of maximum and minimum principal stress distribution for 1 hr 
injection (a) and after 3 days pumping (b). 
 
 
 

 

Fig. 8.8. Minimum principal stress distribution for 1 hr injection (a) and after 3 days 
pumping (b). 
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Fig. 8.9. Pore pressure distribution for 1 hr injection (a) and after 3 days pumping (b). 
 
 
 

8.2  Microseismicity in thrust regime 

In the Cooper Basin geothermal reservoir, the vertical far-field stress is the 

minimum (thrust regime). It has been tested with the same heterogeneity and injection 

rate schedule as performed in previous strike-slip regime. Injection-induced seismic 

events in a 3-day injection schedule are plotted in Fig. 8.10. Microsesimic events did not 

happen and the formation stabilized after 40 hrs because the rock failure did not occur 

with the given injection rate and far-field stress. The shape of the seismic-event clouds is 

spherical (Fig. 8.11) and the number of events is less than in the strike-slip regime case 

because the compressive far-field stress in the thrust regime case is higher; therefore, the 

possibility of rock failure was less with the same injection rate. Most seismic events 

were generated by shear failure in this simulation. Stress distributions for maximum and 

minimum principal are illustrated in Figs. 8.13 and 14.  
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Fig. 8.10. Micro-seismic events after 3 days pumping for the thrust regime. 
 
 
 

 

Fig. 8.11. Cross-sectional views for thrust regime. (a) represents top view, (b) is 
maximum directional side view, and (c) is minimum directional side view. 
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Fig. 8.12. Injection-induced failure analysis. Blue represents tensile failure and red 
shows shear failure. 
 
 
 

 

Fig. 8.13. The difference of maximum and minimum principal stress distribution for 1 hr 
injection (a) and after 3 days pumping (b). 
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Fig. 8.14. Minimum principal stress distribution for 1 hr injection (a) and after 3 days 
pumping (b). 
 
 
 

8.3  Microseismicity in normal regime 

One of the most common stress regimes in reservoirs is the normal stress regime. 

In this stress regime, vertical fracturing is observed and the microseismic event shape is 

ellipsoidal because of the stress differences in horizontal far-field stress. Injection-

induced seismic events are illustrated in Fig. 8.15. Small dots represent initial shear 

failure caused by natural compressive far-field stress. Cross-sectional views in Fig. 8.16 

show that microseismic events are propagated to the maximum horizontal far-field stress 

direction and also to the vertical far-field stress direction. The pattern of events cloud is 

a penny shape, which is similar to hydraulic fracturing, but the events can be observed 

broadly since microseismic events include not only microcrack but also macrocrack 

generation by fluid injection. Shear and tensile failure modes are plotted in Fig. 8.17, 

which shows that shear failure is randomly observed at the bottom side because of the 
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increase in vertical far-field stress due to gravity, and also induced shear and tensile 

failure are observed because of water injection. Changes in principal stress distributions 

and pore pressure distributions are plotted in Figs. 8.18 to 8.20. 

 

 

Fig. 8.15. Micro-seismic events after 3 days pumping for the normal regime. 
 
 
 

 

Fig. 8.16. Cross-sectional views for normal regime. (a) represents top view, (b) is 
maximum directional side view, and (c) is minimum directional side view. 
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Fig. 8.17. Injection-induced failure analysis. Blue represents tensile failure and red 
shows shear failure. 
 
 
 

 

Fig. 8.18. The difference of maximum and minimum principal stress distribution for 1 hr 
injection (a) and after 3 days pumping (b). 
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Fig. 8.19. Minimum principal stress distribution for 1 hr injection (a) and after 3 days 
pumping (b). 
 
 
 

 

Fig. 8.20. Pore pressure distribution for 1 hr injection (a) and after 3 days pumping (b). 
 
 
 

8.4  Discussion of microseismicity in three different stress regimes  

We presented microseismic event propagation under three different stress 

regimes (strike-slip, thrust, normal regime) with the same injection schedule and the 

same distribution of heterogeneity of modulus and permeability. Results show that the 

patterns of microseismic events are penny shaped for strike-slip and normal regimes. 
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However, we observed differences in the event locations and times with changes in far-

field stress conditions. Especially in the normal regime case, initial rock failure 

increased as the depth increased, and it also influenced the injection induced 

microseismic event propagation. The difference of seismic events with normal and 

strike-slip regimes is compared in Fig. 8.21. For the thrust regime in the simulation, it 

the distance of events from the injection source is relatively shorter than in the strike-slip 

and normal regimes because of the effective stress contributions toward shear and tensile 

failure. This is also observed in well-scale simulation (Section 7) for the thrust regime.  

 
 

 

Fig. 8.21. Comparison of seismic events in normal and strike-slip regimes. 
 
 
 

We tested the influence of permeability anisotropy in a thrust regime that had 10 

times higher permeability in the horizontal directions and 10 times lower permeability in 

the vertical directions. This assumption is accompanied by the experimental results that 

the maximum fluid path increases proportionally as the deviatoric stress increases in 

rock. Results in Fig. 8.22 show that injection-induced microseismic events are 
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horizontally scattered. Note that small dots represent initial rock failure in the reservoir. 

Cross-sectional views in Fig. 8.23 show the microseismic events localized to the 

horizontal direction by fluid injection. This result indicates that the fluid flow path 

highly influences the stress distribution, and it causes the shape of the rock failure and 

microseismic events. Permeability distribution for the initial injection and after 3 days 

for the thrust regime is described in Fig. 8.24. The rock failure induced by injection 

increased permeability and triggered microseismicity.  

 
 

 

 

Fig. 8.22. Microseismic events after 3 days pumping in the highly anisotropic 
permeability case. 
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Fig. 8.23. Cross-sectional views for thrust regime. (a) represents top view, (b) is 
maximum directional side view, and (c) is minimum directional side view. 
 
 
 

 

Fig. 8.24. Cross-sectional views for permeability distribution. (a) initial permeability 
distribution, (b) permeability distribution after 3 days injection. 
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8.5  Influence of deviatoric stress 

In this section, we present the results of microseismic event propagation under 

three stress regimes that show different event propagation with the same injection 

schedule and the same distribution of heterogeneity. This indicates that the far-field 

stress plays an important role in induced seismicity. We studied the influence of 

deviatoric far-field stress in microseismic events propagations as changing horizontal 

deviatoric stresses. The simulation conditions for this study are presented in Table 8.2, in 

which horizontal far-field stress is changed with same vertical far-field stress (strike-slip 

regime). Permeability anisotropy is considered so that the vertical direction has 10 times 

lower permeability.  

 
 

Table 8.2   
Reservoir properties used in the simulations for stress regime and permeability 
anisotropy. 
 

 Case 1 Case 2 Case 3 

SH, max 55 MPa 60 MPa 65 MPa 

Sh, min 45 MPa 40 MPa 35 MPa 

Sv 50 MPa 50 MPa 50 MPa 

kH, max 1×10-2 md 1×10-2 md 1×10-2 md 

kh,min 1×10-2 md 1×10-2 md 1×10-2 md 

kv 0.1×10-2 md 0.1×10-2 md 0.1×10-2 md 

 
 
 

In contrast with the result for the thrust regime, the events cloud scattered 

horizontally. In the small deviatoric stress reservoir condition, the fluid path has the 
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dominant effect in microseismic event propagation since permeability anisotropy in 

horizontal direction is 10 times higher than in the vertical direction. However, if the 

horizontal deviatoric stresses increase as in cases 2 and 3, the influence of horizontal 

deviatoric stresses becomes significant as the deviatoric stresses increase. Figs. 8.25 to 

8.27 show that microseismic events propagate to the maximum far-field stress direction, 

and the cloud shape is sharper in the maximum horizontal far-field stress direction as the 

deviatoric stress increases. The results indicate that permeability anisotropy is critical for 

event propagation when the deviatoric stress is not severe, and also the far-field stress 

influences the microseismic pattern as the deviatoric stress increases.   

 
 
 

 

Fig. 8.25. Cross-sectional views for the case of 5 MPa as deviatoric stress after 3 day 
injection. (a) represents top view and (b) is minimum directional side view. Blue dots 
represent tensile failure and red dots are shear failure. 
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Fig. 8.26. Cross-sectional views for the case of 10 MPa as deviatoric stress after 3 day 
injection. (a) represents top view and (b) is minimum directional side view. Blue dots 
represent tensile failure and red dots are shear failure. 
 
 
 
 

.  

Fig. 8.27. Cross-sectional views for the case of 15 MPa as deviatoric stress after 3 day 
injection. (a) represents top view and (b) is minimum directional side view. Blue dots 
represent tensile failure and red dots are shear failure. 
 
 
 

8.6  Anisotropic permeability 

As we have seen in previous results, fluid path is one of the key factors for 

microseismic event analysis. In this simulation, we studied the influence of permeability 

anisotropy. Table 8.3 shows different permeability anisotropy, which increases the 
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permeability in the direction of the maximum horizontal far-field stress. Note that 

vertical permeability is lower than horizontal permeability and only the values of kH, max 

are changed and far-field stress conditions are the same. 

 
 

Table 8.3.   
Input parameters for stress regime and permeability anisotropy. 
 

 Case 1 Case 2 Case 3 

SH, max 60 MPa 60 MPa 60 MPa 

Sh, min 40 MPa 40 MPa 40 MPa 

Sv 50 MPa 50 MPa 50 MPa 

kH, max 2×10-2 md 5×10-2 md 10×10-2 md 

kh,min 1×10-2 md 1×10-2 md 1×10-2 md 

kv 0.1×10-2 md 0.1×10-2 md 0.1×10-2 md 

 
 
 

Figs. 8.28 to 8.30 show seismic event clouds for different permeability 

anisotropy after 3 day injection. The shape of the microseismic event clouds becomes 

narrow and sharper as the permeability anisotropy increases in the maximum direction 

because of the localization in the fluid path. Note that few events appear in the vertical 

direction because vertical permeability is 10 times lower than horizontal permeability.  

 
 



 182

 

Fig. 8.28. Cross-sectional views for the case of kH, max = 2×kH, min after 3 day injection. (a) 
represents top view and (b) is minimum directional side view. Blue dots represent tensile 
failure and red dots are shear failure. 
 
 
 
 

 

Fig. 8.29. Cross-sectional views for the case of kH, max = 5×kH, min after 3 day injection. (a) 
represents top view and (b) is minimum directional side view. Blue dots represent tensile 
failure and red dots are shear failure. 
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Fig. 8.30 Cross-sectional views for the case of kH, max = 10×kH, min after 3 day injection. (a) 
represents top view and (b) is minimum directional side view. Blue dots represent tensile 
failure and red dots are shear failure. 
 
 
 

8.7  Microseismic simulations in Soutz-Sous-Forets stress regime 

We performed microseismicity simulation with a Soultz-Souls-Forest stress 

regime. One of the most important characteristics in the GPK-1 and GPK-2 stress regime 

is a transition of stress regime froma  normal regime to a strike-slip regime as the 

reservoir depth increases, as shown in Fig. 8.31. Three different stress regimes have been 

tested: the normal regime (1.25 km – 1. 75 km), the transition (2.75 km – 3.25 km), and 

the strike-slip regime (4.25 km – 4.75 km). We assumed that there are no natural fracture 

and fault in this simulation.   
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Fig. 8.31. Change of far-field stress with respect to depth in Soultz-Sous-Forets 
geothermal reservoir. 
 
 
 

Microseismic events propagation with time and failure mode at 1.25 km–1.75 km 

are plotted in Fig. 8.32 and Fig. 8.33 (normal regime). Microseismicity propagated 

perpendicular to the minimum horizontal far-field stress direction. Transition and strike-

slip regime cases are also plotted in Figs. 8.34 to 8.37. The minimum far-field stress 

does not change with depth variations as the minimum; therefore, microseismic events 

are propagated normal to the minimum far-field stress directions. Both shear and tensile 

failure from fluid injection were observed. The comparison of microseismic events 

propagation as the depth increase is illustrated in Fig. 8.38. 
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Fig. 8.32. Cross-sectional views for the normal regime (1.25km – 1.75km) after 3 day 
injection. (a) represents top view and (b) is minimum directional side view. 
 
 
 

 
Fig. 8.33. Shear and tensile failure plot for the normal regime (1.25km – 1.75km) after 3 
day injection. (a) represents top view and (b) is minimum directional side view. Blue 
dots represent tensile failure and red dots are shear failure. 
 
 
 

 

Fig. 8.34. Cross-sectional views for the transition regime (2.75km – 3.25km) after 3 day 
injection. (a) represents top view and (b) is minimum directional side view. 
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Fig. 8.35. Shear and tensile failure plot for the transition regime (2.75km – 3.25km) after 
3 day injection. (a) represents top view and (b) is minimum directional side view. Blue 
dots represent tensile failure and red dots are shear failure. 
 
 
 
 

 

Fig. 8.36. Cross-sectional views for the strike-slip regime (4.25km – 4.75km) after 3 day 
injection. (a) represents top view and (b) is minimum directional side view. 
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Fig. 8.37. Shear and tensile failure plot for the strike-slip regime (4.25km – 4.75km) 
after 3 day injection. (a) represents top view and (b) is minimum directional side view. 
Blue dots represent tensile failure and red dots are shear failure. 
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Fig. 8.38. Comparison of microseismic events propagation under different depth. (a) 
injection depth is 1.5 km in normal regime (b) 3 km in transition regime, and (c) 4.5 km 
in strike-slip regime. 
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We also performed injection-induced microseismic event propagations in 

existing natural fractures. The mesh used in this simulation is 250 m×250 m×250 m with 

an 8-node hexahedron element and one simplified, circular natural fracture (representing 

the conceptual model of a Soutz-Sous-Forets geothermal reservoir). The natural fracture 

is inclined by 20° from the vertical direction, and its fracture radius is 50 m (Bruel, 

2002).  To describe the natural fracture in finite element modeling, we assumed that is 

modulus is 10-5 times lower (~0.1 MPa) and permeability is 106 times higher (~103 md) 

than an intact granite reservoir, and its cohesive strength is zero in the naturally fractured 

zone. The mesh for numerical modeling is presented in Fig. 8.39. Fig. 8.40 shows the 

initial natural fracture configuration and initial distribution of modulus. The stress 

regime in this simulation is a normal regime with SH,max = 50 MPa, Sh,min = 30 MPa, and 

Sv = 60 MPa; the injection rate is 24 L/sec.    

 
 

 

Fig. 8.39. Mesh used in naturally fractured reservoir simulation; 250×250×250 m3 with 
64,000 elements. 
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Fig. 8.40. Natural fracture configuration is illustrated in (a), and initial distribution of 
modulus properties are plotted in (b).  
 
 
 
 The results for microseismic event propagation with time and pore pressure 

distribution after a 3 day injection schedule are presented in Fig. 8.41. The microseismic 

event propagation in Fig 8.41(a) shows almost the same growth rate in the up and down 

direction because the influence of gravity in far-field stress, initial pore pressure, and 

fluid gravity is ignored in this simulation. Note that the microseismic event propagation 

is fast inside the natural fracture in early time steps because of quick fluid movement to 

the natural fracture, and then there is a small delay to generate propagation of new 

events. A possible reason is that it needs more pore pressure to propagate the rock failure 

in the intact rock since rock properties and permeability are discontinuous between the 

natural fracture and the intact rock. The comparison of numerically obtained 

microseismicity with real field date is presented in Fig. 8.42. The numerical simulation 

that assumed a single large fracture can describe the main features of the experimental 
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data in Soultz-Sous-Forets. However, the distribution of microseismicity between the 

simulation and field data is different. To improve the numerical modeling for 

microseismicity, it is necessary to consider not only large main fracture but also other 

factors that can influence microseismicity, such as localized permeability distribution, 

modulus, and rock strength in small natural fractures around the injection area.   

 
 

 

Fig. 8.41. Microseismic event propagation and pore pressure distribution with fluid 
injection to the natural fracture. (a) microseismic events propagation with time (b) pore 
pressure distribution after 3 days injection.  
 
 
 
 

 
Fig. 8.42. Comparison of numerical results for injection-induced microseismicity with 
experimental data. (a) numerical results assuming the injection in single large fracture  
(b) experimental data at GPK1-well in Soultz-Sous-Forets geothermal reservoir.  
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8.8  Conclusions 

The influence of far-field stress and permeability anisotropy has been studied 

through a thermo-hydro-mechanical model with damage evolution. Point source 

injection was applied to simulate a large reservoir efficiently. A fully-coupled finite 

element method with damage mechanics provided the tools to analyze injection induced 

microseismicity. Results show that the far-field stress and permeability anisotropy 

influence the stress distributions, which in turn impact microseismic event propagations. 

The event propagation is perpendicular to the minimum far-field stress distribution. Cold 

water injection in normal or strike-slip regime leads to vertical propagation, which can 

capture the effects of hydraulic fracturing, but the event cloud shape is also related with 

permeability anisotropy when deviatoric stress is small. Thermal stress plays an 

important role for predicting the stress distribution by cold water injection and triggered 

microseismicity in early time steps. The pattern of microseismic events becomes 

elliptical and localized when the reservoir permeability anisotropy increases. Injection 

induced microseismicity in single large, fractured reservoirs also has been presented. 

Results show that event propagations are triggered quickly inside the fracture because of 

low modulus and higher permeability in natural the fracture. Comparing the simulated 

microseismicity with real data for Soultz-Sous-Forets qualitatively showed that 

numerical results with the assumption of a single large fracture can capture the main 

distribution of microseismicity in field experimental data.     
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9. CONCLUSIONS AND RECOMMENDATIONS 

 

9.1  Conclusions 

Thermo-poro-mechanical and chemo-thermo-poro-mechanical models for the 

rock response to fluid injection and drilling mud infiltration were developed using the 

finite element method. The rock failure and damage propagation were modeled by 

considering the nonlinear strain-stress behavior of rock. Damage mechanics and stress-

dependent permeability were also implemented into the finite element model. The model 

has been applied to plain-strain wellbore stability analysis in shale to study the effects of 

solute transport, heat transfer, and stress distribution around a wellbore. Also, a thermo-

poro-mechanical process with damage mechanics and stress-dependent permeability was 

applied to two- and three-dimensional damage/fracture propagation and microseismicity. 

Especially for three-dimensional simulation, both well-scale and reservoir-scale 

numerical modeling was presented. 

Finite element simulation of triaxial compression behavior of rock was carried 

out to find out optimum damage mechanics material parameters which can describe 

microvoid and microcrack growth and crack propagation. The hardening and softening 

behavior of rock and strain-permeability behavior under compression were compared 

with the experimental results. We described the influence of material parameters to 

determine the peak stress and residual strength regime. 
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The alteration of modulus and permeability with rock damage has been studied. 

The results show that the discontinuity of modulus and permeability causes retardation 

of fluid movement between the high permeability damaged and low permeabilty 

undamaged rock. Stress relaxation by modulus reduction in the damaged zone also plays 

an important role in propagation of damage and leads to the stress concentration between 

the interface of damaged and undamaged rock.  

In shale instability analysis, if mud salinity is lower than the formation, it 

enhances rock damage by shear and tensile failure around a wellbore because of osmosis 

effects between the drilling mud and shale formation. Cooling of the rock causes more 

tensile hoop stress and reduces the pore pressure around a wellbore than in isothermal 

conditions. Results show that thermally induced tensile stress contributes to stabilize the 

shear failure in the minimum far-field stress direction; however, it enhances tensile 

failure potential in the maximum far-field stress direction.    

We studied distribution of two- and three-dimensional injection-induced damage 

propagation microseismic events using the fully-coupled thermo-poroelastic finite 

element methods. To simulate the rock mass more realistically, heterogeneous modulus 

and permeability were implemented in the numerical modeling of microseismic events. 

We assumed that the rock properties follow a statistical distribution generated using the 

Weibull distribution function.  Both well-scale and reservoir-scale simulation have been 

developed for the analysis of injection-induced rock damage and microseismic event 

propagation. We found that deviatoric far-field stress and permeability anisotropy 

contribute to predict the localization of microseismic event propagation. The results 
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show that the shape of injection-induced microseismic events becomes elliptical and 

sharper as the deviatoric far-field stress and permeability anisotropy increase. Also we 

illustrated that the microseismic events are localized when we use rock failure criteria 

for comparing the pore pressure criticality. 

Results show that a finer mesh provides more accurate numerical solutions but 

there are limitations of computational speed and memory storage to solve large-scale, 

fully-coupled problems. To optimize the mesh size and element numbers, we used a 

finer mesh around the wellbore and saw significant changes of pore pressure, 

temperature, and solute mass concentration. For the wellbore stability problem, the 

system domain size is relatively small compared to the injection simulation, so we used a 

much finer mesh around a 2-meter radius zone around the wellbore. However, for the 

injection simulations, damage propagation in the maximum direction is longer than 

wellbore stability problem. So that a fine mesh is used not only around a wellbore but 

also in the areas parallel to the maximum far-field stress direction. There is a possibility 

of unrealistic large damage propagation if the mesh size is too large to accurately 

compute the stress localizations within elements. 

9.2  Recommendations 

In this dissertation, we considered single-phase water injection and a mechanical 

damage model. For future studies, the following topics are recommended. 

• Multiphase flow simulation (water and steam in geothermal reservoirs, oil, gas, 

and water in petroleum reservoirs)  
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• Naturally fractured reservoir simulation 

• Damage model improvement (thermal, chemical, and mechanical damage model) 

• Extended finite element method to simulate fracture propagation efficiently 

• Discrete heterogeneous model to depict more realistic geomechanics simulation 

• Multilayer simulation 

• Anisotropic damage mechanics 

 

 The applications of heterogeneous reservoir modulus and permeability have been 

used to depict more realistic geomechanics simulations. In this work, a continuous 

stochastic model approach was used to simulate heterogeneous reservoirs. However, in 

reality geological media have a lot of discrete features such as fissures, faults, and 

natural fractures. To simulate these more realistically, we recommend introducing a 

combined approach of stochastic and discrete modeling. For example, we can model the 

natural fracture and faults by discrete modeling and other regions can be described with 

continuous stochastic modeling. Finer mesh will be better for near injection and 

production well, and coarse mesh is recommended for the regions where fluid injection 

and production do not cause much variation in stress, etc. The choice of finer and coarser 

mesh sizes is relative to the total reservoir size that needs be simulated, the numerical 

accuracy requirements for each case, and the variations of numerical variables by 

boundary conditions such as injection rate, well pressure, production rate, and far-field 

stress. The mesh dependency problem is more significant when we consider the 

nonlinear stress-strain behavior. Fig. 9.1 shows a typical example of damage/fracture 
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trajectory with different scales of mesh size. We observed that damage distributions are 

localized as mesh density increases with the same loading conditions. Particularly for the 

simulation of damage propagation, the loading condition and post-peak response 

contributes to mesh density (Abu Al-Rub and Kim, 2010). As the mesh size decreases, 

average variation of displacement decreases during the damage propagation because of 

damage localization in finer mesh. Therefore, it is necessary to use finer mesh in finite 

element modeling for the nonlinear behavior of rock and stress dependent permeability. 

 
 

 

Fig. 9.1. Simulated crack propagation for three mesh densities: (a) coarse, (b) 
medium, and (c) fine (Abu Al-Rub and Kim, 2010).  
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NOMENCLATURE 

 

a Compressibility 

A Cross-sectional area 

AD Damaged cross-sectional area 

B Skempton coefficient 

cf Fluid diffusion coefficient 

cF Cohesive strength 

cp Specific heat capacity 

cT Thermal diffusivity 

CS Solute concentration 

d Damage variable 

DS Solute diffusivity 

E Elastic modulus 

f loading pressure 

fc Maximum compressive strength  

fcr Residual compressive strength  

ftr Residual tensile strength 

fq fluid injection rate 

G Shear modulus 

h Depth between bottom and surface 

Jf Fluid flux 
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JS Solute mass flux 

k Permeability 

k0 Initial permeability 

kH,max Maximum horizontal anisotropic permeability 

kh,min Minimum horizontal anisotropic permeability 

kv Vertical anisotropic permeability 

kT Thermal conductivity 

K Elastic stiffness matrix 

J Jacobian matrix 

M Biot modulus 

N Shape function vector 

p Pore pressure 

p0 Initial pore pressure 

P0 Isotropic far-field stress 

s the variables of s0 

s0 mean value of the corresponding of s 

S0 Finite shear stress 

S0 Deviatoric component in far-field stress 

S1 Finite shear stress 

SH,max Maximum horizontal far-field stress 

Sh,min Minimum horizontal far-field stress 

Sv Vertical far-field stress 
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t Time 

T Temperature 

T0 Initial temperature 

u Displacement of x-direction 

v Displacement of y-direction 

w Displacement of z-direction 

ws Displacement of z-direction at the surface 

α  Biot’s constant 

fα  Volumetric thermal expansion coefficient of fluid 

Sα  Volumetric thermal expansion coefficient of solid 

β  Thermal expansion coefficients 

dβ  Material parameter for stress-dependent permeability 

ε  Strain 

cε  Maximum compressive strain 

crε  Residual compressive strain 

trε  Residual tensile strain 

vε  Volumetric strain 

φ  Porosity 

fφ  Friction angle 

µ  Fluid viscosity 

θ  Parameter for time discretization 
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µ  Fluid viscosity 

mρ  Total mass density 

ν  Poisson ratio 

uν  Undrained poisson ratio 

σ  Total stress 

σ ′  Effective stress 

1σ  Maximum principal stress 

3σ  Minimum principal stress 

τ  Stress which has the relationship with strain in linear elasticity 

0ω  Swelling coefficient 

ξ  Fluid content 

dξ  Increasing factor for permeability increase after failure 

ℜ  Reflection coefficient 
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APPENDIX A 

DERIVATION OF FINITE ELEMENT DISCRETIZATION FOR FULLY 

COUPLED CHEMO-THER-POROELASTICITY 

 

1. Field equations for displacement, pore pressure, solute mass concentration, and 

temperature 
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2. Weight residual method 

The governing equation can be discretized from the following examples. A 

typical example for solving the differential equation is 

fuL =)(  ....................................................................................................  (A.5) 

where L is the differential equation as a function of u, and f is the known function of the 

independent variables. 

 The solution of u has weak formulations:  
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If we substitute )(xU N  in the left hand side of Eq. A.5, the residuals can be obtained by 

fUL N −)( , which is called the residual of the approximation. 

0)()()( 0
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The parameter jc is solved by setting residual R to vanish by integration in the weighted-

residual method: 

),...3,2,1(),()( NidCxRx ji =Ω∫
Ω
ψ ......................................................  (A.8) 

where )(xiψ are the weight functions and the most widely used weighted-residual 

method can be summarized as 

 Galerkin’s method: ii φψ =  

 Petrov-Galerkin method: ii φψ ≠  

 Least squares method: 
i
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3. Application of Galerkin’s method for the variables 

 The continuous variables u, p, CS, and T are approximated by the nodal values 

through the shape functions as  
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We can substitute the nodal variables to the field equations by applying Galerkin’s 

residual method.  
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For fluids, 
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For solute mass concentrations, 
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For temperature, 
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Integration by parts for the above three equations leads to 
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