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ABSTRACT 

 

Regulation of Porcine Conceptus Survival and Growth  

by L-arginine. (December 2011)  

Xilong Li, B.S., Huazhong Agricultural University; 

M.S., China Agricultural University 

Co-Chairs of Advisory Committee:  Dr. Guoyao Wu 
                                                                 Dr. Fuller W. Bazer 

 

This study was conducted to test the hypothesis that dietary supplementation with L-

arginine during early pregnancy will ameliorate embryonic loss in pigs. Gilts were bred 

at the second estrus, and housed individually in pens and fed twice daily 1 kg of a corn- 

and soybean meal-based diet supplemented with 0.0%, 0.4%, or 0.8% L-arginine (w/w) 

between d 0 and 25 of gestation (Experiment 1) or between d 14 and 25 of gestation 

(Experiments 2 and 3). At d 25 (Experiment 1 and 2) or d 60 (Experiment 3) of 

gestation, gilts were hysterectomized to obtain uteri and conceptuses. Total RNA and 

protein were extracted from the frozen tissues. Quantitative RT-PCR, western blotting, 

and microarray analyses were performed to determine the changes of gene expression at 

mRNA and protein levels.  

     Dietary supplementation with 0.8% L-arginine between d 0 and 25 of gestation 

decreased uterine weight, total number of fetuses, number of corpora lutea (CL), total 

fetal weight, total volume of allantoic and amniotic fluids, concentrations of 

progesterone in maternal plasma and allantoic fluid, compared to the control group. 
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However, dietary supplementation with 0.4% or 0.8% L-arginine between d 14 and 25 of 

gestation increased total volume of amniotic fluid, total amounts of arginine in allantoic 

and amniotic fluids, total amounts of fructose and most amino acids in amniotic fluid, 

placental growth, and the number of viable fetuses per litter by 2. Dietary 

supplementation with 0.4% or 0.8% L-arginine between d 14 and 25 of gestation 

increased the total number of fetuses and number of live fetuses, rate of embryonic 

survival, and volumes of allantoic and amniotic fluids in gilts with 15 to 18 CL on d 60 

of gestation compared with the control group. The abundance of placental protein and 

expression of mRNA related to the genes for arginine transport and metabolism, 

including cationic amino acid transporter 1, endothelial nitric oxide synthase (NOS3), 

phosphorylated-NOS3, ornithine decarboxylase, and guanosine triphosphate 

cyclohydrolase-I was increased by dietary supplementation with 0.8% L-arginine 

between d 0 and 25 of gestation. The abundance of total and phosphorylated mechanistic 

target of rapamycin was also enhanced by dietary 0.8% L-arginine supplementation 

between d 0 and 25 of gestation. Microarray analysis revealed that supplementation with 

0.8% arginine between d 14 and 25 of gestation affected placental expression of 575 

genes. 

     Findings from the current study not only advance basic knowledge of mammalian 

reproductive biology, but also have important implications for developing practical 

means to enhance fertility in female pigs.  
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CHAPTER I 

INTRODUCTION AND LITERATURE REVIEW 

 

Introduction 

Profitability of the pig industry critically depends on reproductive efficiency of sows, 

including the number of live piglets weaned per sow per year. However, prenatal 

mortality is a big challenge that must be overcome in order to improve the reproductive 

efficiency of modern high-prolific sows. Prenatal mortality is estimated to be 30-50% in 

pigs (Pope 1994). As a result, gilts produce an average of 9.62 piglets born per litter in 

the United States, which is much lower than the potential of 14 or more piglets per litter 

based on the total number of oocytes ovulated (USDA 2009). More than 75% of prenatal 

loss occurs during the first 25 d of gestation, but another peak in fetal death occurs 

between d 40 to 60 of gestation (Pope 1994). Many factors contribute to embryonic/fetal 

loss, including ovulation rate, fertilization rate, disease (e.g., virus infection), 

chromosomal abnormalities, non-uniform development of conceptuses, and intra-uterine 

crowding or uterine capacity (Pope 1994; Wu et al. 2010). Of those causes, failure of 

development of conceptuses (embryo and extra-embryonic membranes) during the peri-

implantation period is the main cause for embryonic loss (before d 30) and inadequate 

uterine capacity is the major reason for fetal deaths after d 30 (Wu et al. 2010; Bazer et 

al. 2009).  

       

This dissertation follows the style and format of Amino Acids. 
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      Many efforts have been made to improve embryonic/fetal survival in pigs and other  

mammalian species. Animal breeding can improve litter size, but the efficiency is very 

 low. Litter size in the U.S. swine industry increased at a rate of only 0.052 pigs/year 

between 1980 and 2000 (Johnson 2000). The reason for low efficiency of genetic 

selection is low heritability for litter size. Heritability estimates for litter size born is 0.1, 

and even less for live-born pigs in a litter (~0.07) (Rothschild 1996). Another approach 

has been to increase ovulation rate through superovulation; however, an increase in litter 

size was not realized because high ovulation rates in sows have the potential to cause 

excessive intra-uterine crowding of conceptuses which increases fetal mortality (Town et 

al. 2005). 

     Arginine is a conditionally essential amino acid for mammals, including pigs (Wu et 

al. 2009). In addition to being a building block for proteins, it is the precursor for 

synthesis of many biologically active molecules, including nitric oxide (NO), ornithine, 

polyamines (putrescine, spermine and spermadine), creatine, and agamatine (Wu and 

Morris 1998). Of those, NO and polyamines are most important as they stimulate cell 

proliferation, cell migration, cellular remodeling, angiogenesis, and dialation of blood 

vessels to increase blood flow. 

      Although several studies have been conducted to determine effects of arginine 

supplementation on reproductive performance in pigs (Mateo et al. 2007; Zeng et al. 

2008; Campbell 2009; Berard et al. 2009), there are many issues to be addressed. There 

is limited knowledge about arginine metabolism in the uterus and placenta. There is no 

clear answer as to whether effects are mediated directly by arginine or by its metabolites, 
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such as NO and polyamines. Moreover, we do not understand how arginine regulates 

gene expression in the uterus and placenta. Importantly, few studies have focused on 

early pregnancy which is the most critical stage for embryonic/fetal survival. There is a 

need to answer questions such as whether arginine supplementation is safe during early 

pregnancy, if it is effective in improving embryonic survival, and the duration of 

supplementation required to effectively improve embryonic survival during early 

pregnancy. 

Implantation and placentation in pigs 

Following fertilization, the zygotes develop and cleave into 2- and 4-cell stage embryos 

in the oviduct. After entering into the uterus on about d 3 of gestation, embryos continue 

to cleave, develop to the blastocyst stage by d 7 or 8 of gestation and hatch from the 

zona pellucida. After pig blastocysts hatch from the zona pellucida on d 7 or 8 of 

gestation, they migrate within the uterus to achieve equal spacing among themselves. 

Then, blastocysts undergo dramatic changes in morphology from expanded spherical 

blastocysts to tubular, and filamentous forms between d 10 and 12 of pregnancy. The 

diameter of spherical blastocysts is only 5 to 10 mm by d 10 of gestation. However, 

when reaching a spherical diameter of 10 mm at about d 11 of gestation, it takes only 3 

or 4 h for blastocysts to elongate to tubular and then filamentous conceptuses that are 

150 to 200 mm in length; and by d 15 they approach 1,000 mm in length (Geisert and 

Yelich 1997). Interestingly, this dramatic morphological change occurs initially through 

cellular remodeling rather than cellular hyperplasia, but the final phase of elongation 

between d 12 and 15 involves both cellular hyperplasia and cellular remodeling (Geisert 
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et al. 1982). Pig conceptuses initiate attachment of trophectoderm to uterine luminal 

epithelium (LE) on d 13 of pregnancy and implantation is accomplished by about d 18 of 

gestation in advance of placentation and formation of a true epitheliochorial placenta. 

Unique characteristics of domestic animals, including pigs, are the prolonged pre-

implantation period for elongation of conceptus trophectoderm, followed by orientation 

of the blastocyst, apposition between trophectoderm and uterine LE, and then adhesion 

of trophectoderm to uterine LE (Bazer et al. 2009).  

    This prolonged preimplantation period for blastocyst/conceptus elongation allows for 

establishment of maximum surface area of contact between trophectoderm and uterine 

LE for absorption of products secreted by or transported by maternal uterine epithelia 

into the uterine lumen (histotroph) that are essential for survival and growth of the 

conceptus which has superficial and noninvasive attachment between trophectoderm and 

uterine LE in pigs. Although early trophectoderm elongation depends mainly on 

histotrophic nutrition from uterine LE, superficial glandular epithelium (sGE), and GE 

(Spencer and Bazer 2004), rapid growth of blood vessels in the yolk sac (d 16-21) and 

allantois (d 21 to term) of the placenta prepares the conceptus for hematotrophic 

exchange of nutrients and gases between maternal and fetal-placental blood in addition 

to nutrients supplied by histotroph via areolae of the chorioallantoic membranes from the 

post-implantation period of pregnancy to the end of gestation to support growth and 

development of the conceptus (Linton et al. 2008). Importantly, maternal recognition of 

pregnancy starts at d 11 of gestation when the blastocyst begins its dramatic 

morphological changes and also initiates secretion of estrogen which is the signal from 
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trophectoderm for maternal recognition of pregnancy in pigs (Bazer and Thatcher 1977). 

To support these dramatic events in conceptus development, many genes for nutrient 

transport, cellular remodeling, angiogenesis, relaxation of vascular tissues, cell 

proliferation and migration are involved (Bazer et al. 2010). Early embryonic losses 

result from a failure of conceptus development and implantation during the peri-

implantation period of pregnancy (Bazer et al. 2009). 

Arginine metabolism 

Synthesis 

Circulating arginine comes from the exogenous sources in the diet and from endogenous 

synthesis. Dietary arginine requirements vary with species, nutritional status and 

developmental stage (Wu and Morris 1998). De novo arginine synthesis and whole-body 

protein turnover are two main endogenous sources. Whole-body protein turnover 

accounts for 85-95% of total endogenous arginine flux in adult animals and humans. 

However, de novo synthesis of arginine provides 30% of endogenous arginine in 

neonatal pigs (Wu and Morris 1998). The high rate of de novo synthesis may be a 

strategy for the neonate to compensate for arginine deficiency in milk (Davis et al. 

1993b; Wu and Knabe 1994). 

     De novo synthesis of arginine from citrulline was first reported for the mammalian 

kidney in the early 1940s (Borsook H and Dubnoff 1941; Cohen and Hayano 1946). 

However, the mechanism of conversion was not identified until one-decade later (Ratner 

and Petrack 1953). During this de novo synthesis process, citrulline first condenses with 

aspartic acid to produce argininosuccinate by argininosuccinate synthase (ASS), and 
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argininosuccinate is cleaved by argininosuccinate lyase (ASL) to form arginine and 

fumaric acid (Wu and Morris 1998). In addition to the kidney, brain can also produce net 

arginine at a low level in adult animals (Ratner et al. 1960). Although both ASS and 

ASL activities are high in the mammalian liver, there is no net synthesis or release of 

arginine by the liver due to very high hepatic arginase activity which rapidly degrades 

arginine (Wu and Morris 1998).  

     Although citrulline, an immediate precursor of arginine, is synthesized from ornithine 

by ornithine carbamoyltransferase (OCT), the activity of OCT is very low in the kidney 

(Raijman 1974), suggesting that the kidney must take up citrulline from blood to 

synthesize arginine. The liver does not normally contribute citrulline to the circulation 

(Drotman and Freedland 1972) and there is net release of citrulline into the circulation 

only when there are much higher than physiological levels of substrate (e.g., ornithine 

and NH4Cl) are provided (Drotman and Freedland 1972). However, Windmueller and 

Spaeth (1981) reported that in adult rats, the small intestine is the primary organ to 

release significant amounts of citrulline into the blood, which is taken up by the kidneys 

to synthesize arginine. These authors further estimated that 83% of the citrulline taken 

up by the kidney was released from the organ as arginine. In support of this conclusion, 

arginine becomes a nutritionally essential amino acid after massive resection of the small 

intestine in adult rats (Wakabayashi et al. 1994). All of these studies indicate that the 

intestinal-renal axis is the main pathway for de novo synthesis of arginine in adult 

animals. 
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     The substrates for citrulline synthesis in the small intestine were not known until the 

1990s. Glutamine, which was found to be taken up extensively from arterial blood and 

diet, was considered to be a precursor of citrulline in the intestine (Windmueller and 

Spaeth 1981). With improved methodology for amino acid analysis, biochemical 

evidence for citrulline production from glutamine was first reported for porcine 

enterocytes (Wu et al. 1994). During intensive studies to explain the paradoxical change 

in intestinal synthesis of citrulline from glutamine in postnatal pigs (Wu et al. 1995; Wu 

and Knabe 1995), Wu (1997) discovered that proline is a major substrate for citrulline 

production by enterocytes. This finding has been confirmed in studies involving rats 

(Wu 1997), humans (Tomlinson et al. 2011), and sheep (Wu et al. 2008).  Endogenous 

synthesis of arginine from proline plus glutamine provides approximately 60% of the 

total arginine required by neonatal and postnatal pigs (Wu et al. 2004).   

    Studies with porcine enterocytes established the enzymological basis for arginine 

synthesis from glutamine and proline (Wu et al. 1994; Wu 1997). Glutamine is 

converted into glutamate by phosphate-activated glutaminase. Pyrroline-5-carboxylate 

(P5C) is formed from glutamate by P5C synthase. P5C can also be synthesized from 

proline by proline oxidase. P5C is converted into ornithine by ornithine aminotransferase 

(OAT). Citrulline is produced from ornithine and carbamoyl phosphate by carbamoyl 

phosphate synthase I (CPS I). Interestingly, all of the enzymes involved in arginine 

synthesis exist in the enterocyte of neonates (Wu and Knabe 1995). Importantly, 

arginase activity is nearly absent from neonatal enterocytes, thereby maximizing the 

release of arginine from the small intestine (Wu and Knabe 1995).  
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Transport 

Arginine is essential for cell survival and growth. However, cells cannot take up a 

significant quantity of extracellular arginine by simple diffusion. Specific transporters 

are needed for transporting arginine across the cell membrane. As a cationic amino acid, 

arginine shares the same transporters with lysine, ornithine, and histidine. The system y+ 

is the first transport system identified as a cationic amino acid transporter (CAT; 

Christensen and Antonioli 1969). This transport system is selective for cationic amino 

acids and it is Na+-independent. System y+ was thought to be the only transport system 

for cationic amino acids until other novel systems were discovered two decades later 

(Van Winkle et al. 1985, 1988; Devés et al. 1992, 1993). Specifically, system bo,+, Bo,+ 

was discovered for mouse blastocysts (Van Winkle et al. 1985, 1988). In contrast to 

CAT that is highly selective to cationic amino acids, systems bo,+ and Bo,+ can transport 

neutral amino acids in addition to cationic amino acids (Van Winkle et al. 1985, 1988). 

These two systems are distinguished by their dependence on Na+. System Bo,+ is Na+-

dependent, while system bo,+ is Na+-independent (Van Winkle et al. 1985, 1988).  

Subsequently, the fourth transport system named y+L was discovered in the course of 

studies involving human erythrocytes (Devés et al. 1992, 1993). This system has high 

affinity for both neutral and cationic amino acids. Transport of cationic amino acids 

through this system is Na+-independent; however, its apparent affinity for neutral amino 

acids decreases dramatically when Na+ in the medium is replaced with K+ (Devés et al. 

1992). 
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     The most important transporter for arginine uptake in most cell types is system y+, 

which has high-affinity for arginine and is Na+-independent. Recombinant DNA 

technology provided the means to identify the proteins involved in the transport of 

cationic amino acids. Interestingly, it was found that the membrane receptor for 

ecotropic murine leukemia viruses (ecoR) induced cationic amino acid transport (Kim et 

al. 1991; Wang et al. 1991). Because both transport properties and the expression pattern 

of ecoR is the same as system y+, this virus receptor was named mouse cationic amino 

acid transporter (mCAT). Three different genes of CAT (SLC7A1, SLC7A2, and 

SLC7A3) were identified, which encode four homologous proteins CAT-1, CAT-2A 

plus CAT-2B, and CAT-3, respectively (Devés and Boyd 1998). 

     The placenta plays a critical role in the delivery of amino acids from mother to fetus, 

and, therefore, fetal growth. In the human placenta, there are two cell layers between the 

maternal and fetal circulation: syncytiotrophoblast and the fetal capillary endothelium. 

The endothelium is considered to transport amino acids through pores within the 

interendothelial cleft (Leach and Firth 1992). However, the polarized plasma membranes 

of syncytiotrophoblast represent a significant barrier to transport of amino acids. Two 

plasma membranes, the microvillous plasma membrane (MVM; maternal facing) and 

basal plasma membrane (BM; fetal facing), exist in the syncytiotrophoblast. The 

concentrations of most amino acids in plasma of the fetus are higher than those in the 

mother (Philipps et al. 1978), suggesting the need for transporters of  amino acids across 

the placenta. More than 15 amino acids transport systems exist in the human placenta 

(Jansson 2001).  
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    There are four possible cationic amino acid systems (y+, y+L, b0+, and B0+) that can 

transport L-arginine in animal cells (Devés and Boyd 1998), but only two of them are 

present in the syncytiotrophoblast: a high affinity, low capacity system y+ system and a 

lower affinity, higher capacity y+L system (Ayuk et al. 2000). It is well established that 

y+ and y+L systems are present in the MVM for arginine transport, but the y+ system is 

the main transport system for transport of cationic amino acids in most of the cell types 

studied (Ayuk et al. 2000). The transport systems in BM are different from those in 

MVM. In particular, the y+L system represents the principal transport pathway in BM 

(Ayuk et al. 2000). However, there is growing evidence for the existence of system y+ in 

the BM (Speake et al. 2003). Total L-arginine transporter activity is higher in BM from 

preeclamptic placentae compared with those from control placentae (Speake et al. 2003), 

which is predominantly due to increased activity of system y+ (Ayuk et al. 2002). 

Moreover, low concentrations of L-arginine can up-regulate expression of system y+ in 

endothelial cells (Bogle et al. 1996). The presence of system y+ in the BM suggests its 

importance in regulating arginine metabolism in intra-uterine growth restriction (IUGR). 

     Different genes of CAT have different spatial and temporal patterns of expression in 

the ovine conceptus (Gao et al. 2009). The abundance of SLC7A1 mRNA is high in 

uterine LE and sGE on d 16 of the estrous cycle and on d 16 to 20 of pregnancy. 

SLC7A2 mRNA is  most abundant in uterine LE and mid- to deep-glandular epithelia on 

d 14–20 of gestation. However, the abundance of SLC7A3 was not affected by day of 

the estrous cycle or by pregnancy status. In contrast to expression in the uterus, 

SLC7A1, SLC7A2, and SLC7A3 mRNAs were weak in the trophectoderm and 
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endoderm of conceptuses from d 13 to 18 of pregnancy. Expression of the CAT gene is 

induced by P4 and further stimulated by interferon tau (IFNT) in sheep. Long-term 

treatment of ewes with P4 stimulated SLC7A1 in LE and GE, and IFNT tended to 

increase SLC7A1 abundance in LE. SLC7A2 mRNA abundance increased by short-term 

treatment with P4 and IFNT, but SLC7A1 expression was not affected.  

Catabolism 

There are multiple pathways in cells for arginine catabolism. Arginine serves as the 

precursor for synthesis of many biological molecules, including ornithine, polyamines 

(putrescine, spermine and spermidine), proline, glutamine, creatine, agamatine, and 

nitric oxide (NO), as well as protein (Wu and Morris 1998).  

Arginine-ornithine pathway 

The classic pathway of arginine catabolism is initiated by arginase to produce ornithine.  

Ornithine is subsequently converted to polyamines, proline, glutamate, and glutamine. 

Arginase exists as two distinct isoenzymes in mammals. Type I arginase is a cytosolic 

enzyme mainly expressed in the liver. Type II arginase is expressed in mitochondria of 

extra-hepatic tissues including kidney, brain, small intestine, mammary gland and 

macrophages (Wu and Morris 1998). Although hepatic cells have a limited ability to 

extract circulating arginine (Castillo et al. 1996), type I arginase is a component of the 

urea cycle to catalyze urea production from hepatic arginine which is important for 

detoxifying waste nitrogen. All enzymes of the urea cycle are expressed in the small 

intestine of weaned pigs. This may serve as a first line of defense against the toxicity of 

ammonia which is generated from amino acid metabolism in both enterocytes and 
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luminal bacteria in the small intestine (Wu 1995). Arginase isoforms also were detected 

in endothelial cells of various mammalian species (Morris 2009). Li et al. (2001) first 

reported that over-expression of arginase I or arginase II in endothelial cells reduces NO 

synthesis from arginine. Subsequently, elevated arginase activity in endothelium inhibits 

NO production in blood vessels (Lim et al. 2007; Zhang et al. 2001). These results 

suggest that arginase may compete with NOS for arginine in the vasculature to regulate 

blood flow. 

     Ornithine produced from arginine is an important precursor for synthesis of 

polyamines, proline, and glutamine (Wu and Morris 1998). Ornithine is converted into 

putrescine by ODC1. Spermidine is synthesized from putrescine by adding an 

aminopropylic group from decarboxylated S-adenosyl-L-methionine (SAM), and this 

reaction is catalyzed by spermidine synthase. With the presence of spermine synthase, 

spermidine is converted into spermine by adding another aminopropylic group from 

decarboxylated SAM (Wu and Morris 1998). Of these enzymes, ODC1 is the rate-

controlling enzyme for the polyamine biosynthetic pathway. However, arginase-

deficient cells cannot proliferate unless ornithine or polyamines are added in serum-free 

medium (Holtta and Pohjanpelto 1982). This suggests that arginase regulates the 

availability of ornithine for polyamine synthesis. In both the placenta (Kwon et al. 2003; 

Wu et al. 2005) and small intestine (Wu et al. 2000), ornithine is synthesized from 

proline via proline oxidase.  

     Ornithine aminotransferase catalyzes the formation of P5C from ornithine. P5C is the 

common substrate for the production of proline and glutamate via P5C reductase and 
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P5C dehydrogenase, respectively (Wu and Morris 1998). Endogenous synthesis of 

proline is important for protein synthesis in growing animals (Wu et al. 2011). Proline 

production accounts for 54% of arginine catabolism in enterocytes of post-weaning pigs 

(Wu et al. 1996). In many cell types, glutamine synthetase catalyzes ATP-dependent 

synthesis of glutamine from glutamate. The importance of OAT in ornithine metabolism 

is epitomized by gyrate atrophy of the choroid and retina in adult patients with OAT 

deficiency. These patients have 10- to 20- times higher concentrations of ornithine in 

their plasma due to substantially lower OAT levels (Simmell and Takki 1973). Similar 

results were reported for OAT-knockout adult mice fed a standard diet (Wang et al. 

1995).  

       Synthesis of proline and glutamine from arginine is also important in the lactating 

mammary gland which takes up more arginine, but less proline and glutamine from 

blood than their outputs in milk (Mepham and Linzell 1966; Trottier et al. 1997). This 

means extra proline and glutamine in milk is synthesized from arginine in the mammary 

gland. The enzymes for proline and glutamine synthesis from arginine include arginase, 

OAT, P5C reductase and P5C dehydrogenase (Wu and Morris 1998). Activities of these 

enzymes increase substantially with advancing stages of lactation (Mezl and Knox 

1977). 

Arginine-NO pathway 

The pathway of NO production from arginine is most exciting for arginine catabolism. 

Arginine is the precursor of NO, which is catalyzed by NO synthase (NOS) (Bredt and 

Snyder 1994). There are three isoforms of NOS: neuronal NOS (nNOS; also known as 
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NOS1), inducible NOS (iNOS; also known as NOS2), and endothelial NOS (eNOS; also 

known as NOS3). NOS1 and NOS3 are expressed constitutively in a cell-specific 

manner and produce low levels of NO. While NOS2 is induced by certain 

immunological stimuli (including LPS and inflammatory cytokines) to generate large 

amounts of NO which is a major endothelial cell-dependent relaxing factor (Ignarro 

1987).  

      Nicotinamide adenine dinucleotide phosphate hydrogen, calmodulin, flavin adenine 

dinucleotide, flavin mononucleotide, and tetrahydrobiopterin (BH4) are essential 

cofactors for enzymatic activities of all isoforms of NOS (Wu and Morris 1998). In 

addition, NOS1 and NOS3, but not NOS2, require calcium for generation of NO (Bredt 

and Snyder 1994). Nearly all cell types can recycle citrulline into arginine via ASS and 

ASL, and this intracellular arginine-citrulline cycle helps sustain sufficient 

concentrations of arginine to support NO production (Wu and Brosnan 1992). In cells 

and blood, NO is rapidly oxidized via many nonenzymatic reactions to nitrite and nitrate, 

with nitrate being the major product. For example, NO is readily oxidized to nitrite via 

autoxidation or reacts with superoxide anion to yield peroxynitrite (an oxidant). NO and 

nitrite can also be oxidized by oxyhemoglobin or oxymyoglobin to form nitrate. Nitrite 

and nitrate are excreted by the kidneys. The half-life of NO in physiological solutions is 

extremely short (~5 s), but it can be transported as a glutathione adduct to conserve its 

biological activity (Wu et al. 2004). Determination of nitrite and nitrate provides a valid 

indicator of NO synthesis by cells. Synthesis of both NOS and citrulline from arginine in 
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enterocytes of suckling piglets decreases with development. However, they both increase 

markedly in enterocytes of post-weaning pigs (Wu et al. 1996). 

Arginine-agmatine  pathway 

Another pathway of arginine catabolism is agmatine synthesis. Arginine decarboxylase 

(ADC) decarboxylates arginine to produce agmatine. This pathway has long been 

recognized in plants and bacteria. It was thought to be absent from mammals until it was 

discovered in the brain of animals in 1994 (Li et al. 1994). Expression of the ADC gene 

in mammalian cells was confirmed by cloning and characterization of human ADC (Zhu 

et al. 2004). ADC is also present in liver, kidney, adrenal gland, and macrophages (Wu 

and Morris 1998). However, ADC activity is absent from porcine enterocytes (Wu et al. 

1996). ADC has 48% amino acid sequence homology with ODC1, but has no ODC1 

activity (Zhu et al. 2004). Interestingly, agmatine irreversibly inhibits neuronal NOS and 

down-regulates inducible NOS (Halaris and Plietz 2007). 

Arginine-creatine  pathway 

Arginine is one of three amino acid precursors for creatine synthesis. The amidino group 

from arginine is transferred to the amino group of glycine for synthesis of 

guanidinoacetic acid (GAA) by L-arginine:glycine amidinotransferase (AGAT). GAA 

can then be methylated by the methyl donor SAM which is produced from methionine 

(Wyss and Kaddurah-Daouk 2000). AGAT is the first rate-limiting enzyme for creatine 

synthesis. Although hepatocytes can readily convert GAA into creatine, creatine cannot 

be produced directly from arginine, glycine, and methionine in the liver (da Silva et al. 

2009). In the rat, AGAT is predominantly expressed in the kidney, whereas high GAMT 
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activity occurs in the liver (da Silva et al. 2009). This suggests inter-organ cooperation 

for creatine synthesis. De novo synthesis is the major source of creatine in neonatal 

animals (Lamarre et al. 2010; Brosnan et al. 2009). Approximately 20% of whole-body 

arginine utilization in young pigs is accounted for by creatine production (Wu et al. 

2004).  This is an important reason why arginine is an essential amino acid for neonates. 

Function of arginine and its metabolites 

Multiple catabolic fates and unique chemical features enable arginine to have versatile 

functions in cardiovascular, neurological, endocrine, and immunological systems (Wu 

and Meininger 2000; Barbul 1990; Calabrese et al. 2007; Schmidt et al. 1992). 

Moreover, arginine was discovered to regulate the mechanistic target of rapamycin 

(MTOR) cell signaling pathway which plays fundamental roles in protein synthesis, cell 

proliferation and modulation of cytoskeletal structure (Kim et al. 2011; Yao et al. 2008). 

Since the report that dietary supplementation with 0.83% arginine enhances litter size in 

gilts (Mateo et al. 2007), there has been growing interest in the role of arginine in 

embryonic and fetal survival and growth.  

Arginine and cardiovascular functions 

The cardiovascular system is an essential transport network to supply oxygen and 

nutrients to tissues and remove metabolic by-products. Cardiovascular disease is the first 

leading cause for death in the U.S (Lloyd-Jones et al. 2010). Discovery of NO as an 

endothelium-derived vascular smooth muscle cell relaxing factor fundamentally changed 

classical views about the role of endogenous gases in cell physiology (Ignarro et al. 

1987). Results of a study involving anesthetized rabbits indicated that N-monomethyl-L-
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arginine (L-NMMA), a specific inhibitor of NO synthesis from L-arginine, induced a 

dose-dependent increase in blood pressure. However, the effect of L-NMMA was 

reversed by infused L-arginine (Rees et al. 1989). This suggests that NO is a key 

regulator of cardiovascular function. In a study with conscious Long-Evans rats, 

Gardiner et al. (1990) found that administration of L-NMMA increased blood pressure in 

internal carotid, mesenteric, renal, and hindquarters vascular beds indicating that NO can 

regulate regional blood flow. Moreover, the aortic ring of NOS3-knockout mice had no 

relaxation reaction to acetylcholine, and these mutant mice develop hypertension (Huang 

et al. 1995). Results of these studies indicate that NO plays an important role in 

maintenance of vascular tone and hemodynamics. NO, synthesized from arginine, binds 

the heme group of soluble guanylate cyclase (sGC), thereby activating this enzyme for 

generation of cyclic guanosine monophosphate (cGMP) from guanosine-5'-triphosphate 

(GTP) (Bredt and Snyder 1994). The cGMP activates cGMP-dependent protein kinases 

and the phosphorylation of target proteins that elicit a series of physiological responses 

(e.g., relaxation of vascular smooth muscle cells, vasodilation, and mitochondrial 

biogenesis). In addition, NO inhibits the release of endothelin-1 (a vasoconstrictor) by 

EC, and prevents leukocyte adhesion to the endothelium and platelet aggregation (Huang 

2000). 

     Arginine may regulate the synthesis of carbon monoxide (CO) and hydrogen sulfide 

(H2S) from glycine and cysteine, respectively (Li et al. 2009). These gases have 

important biological functions in the cardiovascular system (Maines 1997; Yang et al. 

2008). NO stimulates H2S production in vascular tissues (Zhao et al. 2003), whereas H2S 
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inhibits the arginine–NO pathway in aorta and EC (Geng et al. 2007). Additionally, 

endothelial NO has a permissive role in CO- and perhaps H2S-induced vascular dilation 

(Barkoudah et al. 2004). Thus, there may be cross-talk between various gaseous 

signaling pathways, and physiological levels of NO regulate vascular tone and 

hemodynamics in synergy with other gaseous vasoactive factors.  

      There is compelling evidence that arginine is a useful nutrient to prevent and treat 

cardiovascular disorders. For example, acute infusion of L-arginine rapidly reduced both 

systolic and diastolic blood pressures in patients with hypertension (Nakaki et al. 1990). 

Blood pressure also decreased significantly in response to 4 weeks of dietary 

supplementation with 12 g L-arginine daily (Ast et al. 2010). Paradoxically, although 

intracellular concentrations of arginine are several hundred times higher than the Km of 

NOS (~5 �M). exogenous L-arginine administration still increases NOS activity even 

when levels of L-arginine are excessive. This was termed the arginine paradox (Kurz 

and Harrison 1997). Several theories have been proposed for this paradox, but no one 

can explain it perfectly (Wu and Meininger 2000). However, the discovery of increased 

BH4 availability in response to exogenous L-arginine administration shed light on this 

mystery (Shi et al. 2004). BH4 is the essential cofactor of all NOS isoforms. Arginine 

increases NOS activity and NO production by increasing BH4 availability. In addition to 

hypertentive patients, arginine supplementation is also beneficial for patients with 

cardiovascular disorders, including coronary artery disease, peripheral arterial disease, 

ischemia/reperfusion, and heart failure which are also associated with impaired NO 

synthesis and endothelial dysfunction (Wu and Meininger 2000). 
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Arginine function in reproduction 

Among the products of arginine catabolism, NO and polyamines are most important in 

reproduction as they stimulate cell proliferation, cell migration, cellular remodeling, 

angiogenesis and dilation of blood vessels to increase blood flow. Notably, NOS gene 

knockout mice have proved to be an excellent model system to evaluate the functions of 

NO on reproductive process in females. Results indicate that NO is essential for 

ovulation, embryonic development, and implantation (Maul et al. 2003). There is no 

significant influence of NOS2 deficiency on length of the estrous cycle or ovulation rate. 

However, cycle length was significantly increased and ovulation rate was markedly 

decreased in NOS3 knockout mice (Jablonka-Shariff et al. 1999). The number of 

implanted blastocysts was also significantly lower in NOS3 knockout than wild-type 

mice (Pallares et al. 2008). Remodeling of the uterine vascular wall is essential for 

increasing uterine blood flow which is required for successful pregnancy outcomes (Osol 

and Cipolla 1993). Knockout of the NOS3 gene decreased the remodeling capacity of 

the uterine artery during pregnancy in mice (van der Heijden et al. 2005). This may be a 

major cause for the decline in fetal and neonatal survival in NOS3 knockout mice. 

Although there were no effects on implantation rates and early development of 

implantation sites, viable embryos at mid-gestation and litter size at term were 

significantly reduced in NOS3 knockout mice. This impairment was associated with 

reduced cellularity and abnormally thickened walls of decidual arteries in the absence of 

NOS3 gene expression (Burnett et al. 2002). Results of all of these studies suggest that 

NO is essential for successful pregnancy outcomes. 
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      As noted previously, the key function for ornithine catabolism is the synthesis of 

polyamines (putrescine, spermidine, and spermine) which are crucial for cell growth, 

migration, and proliferation, as well as angiogenesis (Wu, 2009). Results of several 

studies have confirmed that ODC1 and polyamines are essential for healthy pregnancy. 

ODC1 activity increases sharply between d 6 and 8 of gestation which is just after 

implantation (d 4 to 5 of gestation) in mice (Fozard et al. 1980). Similar changes occur 

for uterine levels of putrescine and spermidine. However, when adding 2% DL-�-

difluoromethylomithine (�-DFMO), an irreversible inhibitor of ODC1, to the drinking 

water from d 5 to 8 of gestation, ODC1 activity and concentrations of uterine putrescine 

and spermidine decreased significantly compared with mice not treated with �-DFMO in 

drinking water (Fozard et al. 1980). Meanwhile, all of the mice treated with �-DFMO 

showed pregnancy loss by d 18 of gestation. It was determined that embryonic 

development failed to progress beyond d 6 to 7 of gestation in these mice. However, 

decidualization of the uterine stroma did occur normally after implantation. This 

indicated that ODC1 activity and polyamines are important for embryogenesis after 

implantation (Fozard et al. 1980). This effect of �-DFMO has been confirmed in rats and 

rabbits (Fozard et al. 1980). Polyamines are also essential for blastocyst implantation as 

implantation of blastocysts is significantly inhibited by the ODC1 inhibitor, �-DFMO 

(Zhao et al. 2008). The benefit of polyamines in pregnancy may relate to its regulation of 

synthesis of steroid hormones as well as embryonic, placental and fetal growth and 

development. The activity of ovarian ODC1 increases immediately after ovulation and is 

required to enhance secretion of progesterone by the corpora lutea which is essential for 
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implantation of blastocysts (Bastida et al. 2002). Ovarian growth and the formation of 

Graafian follicles were also inhibited by blocking ODC1 activity in immature female 

mice (Bastida et al. 2005). The decrease in concentrations of progesterone and estradiol 

at diestrus caused by �-DFMO treatment was associated with its inhibitory effects on 

expression of the genes for steroidogenic factor 1, cytochrome cholesterol side chain 

cleavage enzyme, and steroidogenic acute regulatory protein in the ovary (Bastida et al. 

2005). 

      Maternal nutrition plays a critical role in fetal growth and development. The versatile 

functions of arginine make it an ideal nutrient for intervention to overcome undesirable 

reproductive problems such as IUGR and preeclampsia (Wu et al. 2004; Wu et al., 

2009). A major problem in human medicine and animal production is IUGR, which is 

defined as impaired growth and development of the mammalian embryo/fetus or its 

organs during pregnancy (Wu et al. 2006).  Approximately 5% of human infants born in 

the U.S. suffer from IUGR (Marsal 2002). After birth, IUGR offspring often have many 

severe disorders and need special care. Therefore, health costs for managing IUGR 

infants are particularly high and there is also a considerable negative psychological 

impact on parents. Moreover, such offspring have high risks for diabetes, obesity and 

cardiovascular disease in adulthood (Valsamakis et al. 2006). A major factor for IUGR is 

impaired vascular development in the mother and the fetus, resulting in insufficient 

delivery of nutrients and oxygen required for fetal growth. At present, the pathogenesis 

of this disease has not been clarified. Many experiments have been conducted to study 

the effects of arginine supplementation on fetal development in pregnant women and 
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animals. Daily oral administration of 3 g L-arginine to women with pregnancies 

complicated by IUGR resulted in enhanced fetal weights and birth weights 

(Sieroszewski et al. 2004). Intravenous administration of L-arginine (20 g/day) to 

women with IUGR fetuses also increased birth weights (Xiao and Li 2005). 

        Preeclampsia is another severe reproductive disease in women. It affects about 5 to 

8% of all pregnancies (Lain and Roberts 2001). Preeclamptic women usually have 

endothelial dysfunction and hypertention (Roberts 1999). Concentrations of arginine in 

plasma are markedly reduced in patients with preeclampsia (D'Aniello et al. 2001). 

However, asymmetric dimethylarginine, a naturally occurring inhibitor of NO in plasma, 

increased in patients with preeclampsia (Sandrim et al. 2010).  Infusion of L-arginine to 

pregnant women is associated with increased NO production and decreased blood 

pressure (Facchinetti et al. 1999). Long-term dietary supplementation with low doses of 

L-arginine decreased blood pressure through increased synthesis and/or bioavailability 

of NO in women with preeclampsia (Rytlewski et al. 2005). These studies suggest that 

arginine is a functional nutrient that can be used to treat and/or prevent preeclampsia. 

       Embryonic/fetal loss is a major problem in pig reproduction (Pope 1994). However, 

there are few effective ways to reduce high embryonic/fetal loss in pigs (Johnson 2000). 

Interestingly, several lines of experimental evidence suggest that arginine 

supplementation may be effective in enhancing embryonic/fetal survival in pigs. First, 

dietary supplementation with 1.0% arginine-HCl between d 30 and 114 of gestation 

increased the number of live-born piglets by 2 and litter birth-weight by 24% (Mateo et 

al. 2007). Similar results were obtained when 1% arginine-HCl was supplemented to 
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gilts and multiparous sows between d 22 and 114 of gestation (Gao et al. 2011). Second, 

dietary supplementation with 1% arginine to gilts or sows between d 14 and 28 of 

gestation increased the number of live-born piglets by approximately 1 at birth 

(Ramaekers et al. 2006; Campbell 2009). Third, supplementation with 1% arginine 

between d 14 and 28 of gestation increased the number of fetuses per litter by 3 on d 70 

of gestation in gilts (Berard et al. 2009). Similarly, dietary supplementation with arginine 

during early- or mid-gestation increased embryonic survival and litter size in rats (Zeng 

et al. 2008).  Furthermore, dietary arginine supplementation reduced embryonic and fetal 

deaths in mice infected with type 2 porcine circovirus (Ren et al. 2011). Taken together, 

these results strongly support an important role for arginine in improving 

embryonic/fetal survival in mammals. 

Summary and objectives  

Embryonic/fetal loss is a major problem in the swine industry. There has been little 

progress to improve litter size in pigs using genetic and animal breeding approaches. 

Failure of conceptus development and implantation during the peri-implantation period 

of pregnancy is regarded as major causes for embryonic losses in pigs. Arginine is a 

physiologically versatile amino acid. It is a nitrogenous precursor for synthesis of 

ornithine, polyamines (putrescine, spermine and spermidine), proline, glutamine, 

creatine, agamatine, and NO. These biological molecules play key roles in stimulating 

cell proliferation, cell migration, cellular remodeling, angiogenesis and dilation of blood 

vessels, as well as stimulation of various cell signaling pathways. More importantly, 
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arginine and its metabolites have important roles in reproduction, including enhancement 

of embryonic and fetal survival.  

      Our central hypothesis is that dietary supplementation with L-arginine during early 

pregnancy will ameliorate embryonic loss in pigs. The overall objectives of this 

dissertation research were to: (1) determine the effects of dietary arginine 

supplementation during early pregnancy on survival and growth of the porcine 

conceptus; and (2) elucidate the underlying molecular mechanisms associated with 

increased conceptus survival and development. Findings from the current study not only 

advance basic knowledge of mammalian reproductive biology, but also have important 

implications for developing practical means to enhance fertility in female swine. 
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CHAPTER II 

DIETARY SUPPLEMENTATION WITH 0.8% L-ARGININE BETWEEN DAYS 

0 AND 25 OF GESTATION REDUCES LITTER SIZE IN GILTS* 

 

This study determined the effects of L-arginine supplementation during early pregnancy 

on embryonic/fetal survival and growth in gilts. Gilts were housed individually in pens 

and fed twice daily 1 kg of a corn- and soybean meal-based diet supplemented with 

0.0%, 0.4%, or 0.8% L-arginine (w/w) between d 0 and 25 of gestation (10 

gilts/treatment). The diets were made isonitrogenous by addition of appropriate amounts 

of L-alanine. At d 25 of gestation, gilts were fed L-alanine or L-arginine, and 

hysterectomized 30 min later to obtain uteri and conceptuses (embryos and associated 

fetal membranes and fluids). Dietary supplementation with 0.4% or 0.8% L-arginine 

enhanced (P < 0.05) its concentrations in maternal plasma (64% and 98%, respectively) 

as well as the vascularity of the allantoic membrane, compared with the control group. 

Reproductive performance [number of corpora lutea (CL) and fetuses, placental and fetal 

weights, and embryonic mortality] did not differ between the 0.4% Arg and control 

groups. However, supplementation with 0.8% L-arginine decreased (P < 0.05) uterine 

weight (-20%), total number of fetuses (-24%), CL number (-17%), total fetal weight  

 

*Reprinted with permission from “Dietary supplementation with 0.8% L-arginine between days 0 and 25 
of gestation reduces litter size in gilts” by Li X, Bazer FW, Johnson GA, Burghardt RC, Erikson DW, 
Frank JW, Spencer TE, Shinzato I, Wu G, 2010, J Nutr, 140:1111-1116, Copyright [2010] by the 
American Society for Nutrition. 
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(-34%), total volume of allantoic and amniotic fluids (-34 and -42%, respectively), 

concentrations of progesterone in maternal plasma (-33%), as well as total amounts of 

progesterone (-35%), estrone (-40%), and estrone sulfate (-37%) in allantoic fluid, 

compared to the control group. These results indicate that dietary supplementation with 

0.8% L-arginine between d 0 and 25 of gestation, while increasing placental vascularity, 

adversely affects the reproductive performance of gilts.   

Introduction 

Embryonic loss is a significant problem for both pigs and humans (Bazer et al. 2010).  

For example, 30-50% of porcine embryos do not survive to term, with most of the losses 

occurring before d 25 of gestation. After hatching from the zona pellucida, the 

blastocysts  migrate along the length of the uterus and undergo a dramatic change in 

morphology (Bazer et al. 2010). At d 11 or 12 of gestation, the conceptus elongates 

rapidly from a 10-mm spherical to 100-150 mm filamentous form within 3 to 4 h 

(Geisert and Yelich 1997). Thereafter, the conceptuses begin to attach to the uterine 

wall, and attachment is completed approximately by d 18 of gestation. Although early 

trophoblast elongation depends mainly on histotrophic nutrients secreted from uterine 

glands (Spencer and Bazer 2004), blood vessels in the yolk sac and allantois of the  

placental membranes start to grow rapidly to prepare for hematotrophic nutrition, that is 

the transfer of nutrients and gases between the maternal and fetal vascular systems  

(Linton et al. 2008). Thus, the early events of pregnancy are associated with rapid 

changes in expression of genes for nutrient transport, cellular remodeling, angiogenesis 

and relaxation of vascular tissues, as well as cell proliferation and migration (Bazer et al. 
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2009). Failure of conceptuses to undergo implantation and/or cell death during the peri-

implantation period results in early embryonic loss.               

     Arginine is a conditionally essential amino acid for mammals, including pigs (Wu et 

al. 2009). It is the nitrogenous precursor of nitric oxide (NO), which is a vasodilator and 

a cell signaling molecule (Li et al. 2009). Furthermore, NO is essential for ovulation, 

embryonic development, and implantation (Maul et al. 2003). In addition to NO, other 

products of arginine catabolism (e.g., proline and polyamines) are crucial for cell 

growth, migration and proliferation, as well as angiogenesis (Wu 2009). Interestingly, 

supplementing 1.2% L-arginine to rats for 7 d immediately after breeding substantially 

reduced embryonic mortality by 30% (Zeng et al. 2008). Similarly, supplementing 

0.83% L-arginine to gilts between d 30 and 114 of gestation enhanced the number of 

live-born piglets by 2 per litter (Mateo et al. 2007), which represents an important 

breakthrough in swine nutrition and production (USDA 2009).  At present, little is 

known about effects of arginine supplementation on embryonic survival or growth and 

development of conceptuses in pigs. 

      The present study was conducted to test the hypothesis that dietary supplementation 

with L-arginine during the first 25 d of pregnancy would ameliorate embryonic loss in 

pigs. Our results indicated that supplementation with 0.8% L-arginine between d 0 and 

25 of gestation reduced  the number of corpora lutea (CL), concentrations of 

progesterone in maternal blood and the conceptus, as well as litter size. These 

unexpected findings are novel and important, because they question the long-standing 

view that augmenting total daily feed intake of gilts (e.g., from 2 to 4 kg/d and, 
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therefore, doubling arginine intake) reduces embryonic/fetal survival due to increased 

intake of dietary energy (Bazer et al. 1968; Dyck and Strain 1983; Virolainen et al. 

2004). 

Materials and methods 

Chemicals 

L-arginine and L-alanine were provided by Ajinomoto Co., Inc. (Tokyo, Japan).  Amino 

acids for HPLC analysis were purchased from Sigma Chemicals (St. Louis, MO). The 

RIA kits for progesterone (DSL-3400), estrone (DSL-8700), and estrone sulfate (DSL-

5400) were obtained from Diagnostic Systems Laboratories (Webster, TX). 

Anticoagulant vascutainer tubes were procured from BD (Franklin Lakes, NJ). 

Animals and diets 

This study was conducted at the Veterinary Medical Park of Texas A&M University and 

approved by the Texas A&M University Laboratory Animal Care and Use Committee. 

During the entire experimental period, all pigs had free access to drinking water. 

     Gilts (F1 crosses of Yorkshire X Landrace sows and Duroc X Hampshire boars) had 

free access to a sorghum grain- and soybean meal-based diet for finishing swine (Table 

2.1) until 8 wk before breeding at 8 mo of age. During the 8-wk period before breeding, 

gilts were fed 2.7 kg/d of the same diet to meet the National Research Council (NRC)-

recommended requirements of nutrients for pre-breeding gilts (National Research 

Council 1998), and all gilts consumed 100% of the feed provided daily.  
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Table 2.1 Composition of the diet for pre-breeding gilts1,2 

Ingredients % 

Sorghum grain 72.35 

Wheat middlings 10.0 

Porcine meat and bone meal 3.5 

Soybean meal (47.5% crude protein) 7.55 

Soybean hulls 5.0 

Ground limestone 0.58 

Salt mix 0.50 

Monocalcium phosphate 0.34 

Choline chloride 0.05 

Trace mineral premix3 0.08 

Vitamin premix4 0.05 
1All values are expressed on an as-fed basis. 
2Providing 12.8 MJ metabolizable energy per kg diet and the following macronutrients (%): dry matter, 
90.0; crude protein, 14.0; fat, 2.50; fiber, 3.73; L-lysine, 0.63; L-methionine, 0.21; L-cysteine, 0.22; L-
tryptophan, 0.16; L-threonine, 0.48; L-isoleucine, 0.72; L-arginine, 0.83; calcium, 0.65; phosphorus, 0.56; 
sodium, 0.21; chlorine, 0.35; potassium, 0.61; sulfur, 0.17; and magnesium, 0.22. 
3Providing the following microminerals (mg/kg diet): manganese: 64.9; iron, 215; copper, 21.0; cobalt, 

0.16; zinc, 153; iodine, 0.49; and selenium, 0.38. 
4Providing the following vitamins (mg/kg diet): retinyl acetate, 1.76; cholecalciferol, 0.01; D-�-tocopheryl 
acetate, 36.3; menadione sodium bisulfate, 2.22; choline, 1,190; riboflavin, 4.81; niacin, 71.7; pantothenic 
acid, 25.5; vitamin B-12, 0.023; biotin, 0.17; vitamin B-6, 5.35; and thiamine, 6.01. 
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Table 2.2 Composition of the basal diet for gestating gilts1  

Ingredients % 
     Corn grain 80.1 
     Soybean meal (48.5% crude protein)  10.0 
     Alfalfa meal 5.0 
     Monocalcium phosphate 1.9 
     Potassium chloride 0.75 
     Ground limestone 1.0 
     Soybean oil 0.50 
     Salt mix 0.35 
     Vitamin premix2 0.30 
     Mineral premix3 0.10 
Chemical composition 
     Dry matter 

 
89.5 

     Metabolizable energy, MJ/kg 
     Crude protein4 
     Fiber 

12.9 
12.0 
3.62 

     Lysine 0.57 
     Calcium 0.82 
     Potassium 0.94 
     Magnesium 0.15 
     Sulfur 0.19 
     Sodium 0.16 
     Chlorine 0.61 
     Total phosphorus 0.70 
     Available phosphorus 0.47 

1All values are expressed on an as-fed basis. 
2Providing the following (mg/kg of the basal diet): retinyl acetate, 8.07; cholecalciferol, 0.05; D-�-

tocopheryl acetate, 63.6; menadione sodium bisulfate, 1.76, choline, 1,106; riboflavin, 8.57; niacin, 65.2; 
pantothenic acid, 34.6; vitamin B-12, 0.04; biotin, 0.23; vitamin B-6, 7.93; and thiamine, 4.51. 

3Providing the following (mg/kg of the basal diet): manganese: 45.2; iron, 228; copper, 22.2; cobalt, 0.15; 
zinc, 176; iodine, 0.61; selenium, 0.39. 

4 Providing the following (% of the basal diet): alanine, 0.74; arginine, 0.70; aspartate plus asparagine, 
1.29; cysteine, 0.20; glutamate plus glutamine, 2.24; glycine, 0.55; histidine, 0.30; isoleucine, 0.52; 
leucine, 1.09; lysine, 0.57; methionine, 0.22; phenylalanine, 0.54; proline, 1.11; serine, 0.53; threonine, 
0.49; tryptophan, 0.14; tyrosine, 0.42; and valine, 0.61. 
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     Gilts were checked daily for estrus with boars in the morning and bred at onset of the 

second estrus and 12 h later. Three fertile boars were used randomly for breeding to 

minimize boar effects. At the time of breeding (d 0 of gestation), the body weight (BW) 

of gilts was 112.6 ± 3.6 kg (mean ± SEM). Immediately after breeding, gilts were 

assigned randomly to one of three treatment groups (0.0%, 0.4% and 0.8% L-arginine), 

and penned individually. There were 10 gilts per treatment. Between d 0 and 24 of 

gestation, gilts were fed twice daily (0700 h and 1800 h) 1 kg of a corn- and soybean 

meal-based diet (Table 2.2) supplemented with 0.0% (Control), 0.4%, or 0.8% L-

arginine (w/w). All gilts consumed 100% of the feed provided daily. The basal diet (2 

kg/gilt per day) met the NRC-recommended requirements of nutrients for gestating gilts 

(National Research Council 1998). The three diets were made isonitrogenous by addition 

of appropriate amounts of L-alanine and cornstarch: (a) 32.8 g L-alanine/2 kg diet for the 

control group; (b) 16.4 g L-alanine + 8 g L-arginine + 8.4 g cornstarch per 2 kg diet for 

the 0.4% L-arginine group; and (c) 16.0 g L-arginine + 16.8 g cornstarch per 2 kg diet 

for the 0.8% L-arginine group. L-Arginine or L-alanine was added to the basal diet as 

top dressing. L-Alanine, rather than a mixture of amino acids, was used as the 

isonitrogenous control, because it is rapidly catabolized by pigs (Wang et al. 2008), is 

not a substrate for arginine synthesis (Wu et al. 2009), and does not affect any of the 

measured variables of reproductive performance on d 25 of gestation [(a) CL number; 

(b) uterine, placental, and embryonic/fetal weights; (c) the total number of fetuses, 

embryonic survival, and the number of live fetuses; and (d) volumes of amniotic and 

allantoic fluids, compared with non-supplemented gilts (our unpublished observations).  
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     At d 25 of gestation, 22 h after the last meal and 30 min after consumption of L-

arginine (4 or 8 g) or L-alanine (isonitrogenous amounts), gilts were prepared for 

anesthesia (approximately 15 min) and then hysterectomized to obtain uteri and 

conceptuses (embryos and associated fetal membranes and fluids), as described 

previously (Wu et al. 2005). After the abdomen of the gilt was opened, uterine venous 

and arterial blood samples (10 mL) were collected separately into EDTA-coated 

vacutainer tubes. Plasma was obtained after centrifugation (10,000 g for 5 min) and 

stored at -80oC until analyzed for metabolites and hormones. Umbilical or fetal blood 

samples could not be obtained at d 25 of gestation due to the small size of blood vessels.  

After the uterus was obtained and weighed, the numbers of CL, total embryos, and live 

embryos were counted. Additionally, crown-rump length and weight of each fetus, as 

well as placental weight of each conceptus were recorded. Finally, the volumes of 

allantoic fluid (ALF) and amniotic fluid (AMF) for each fetus were measured. Allantoic 

fluid (10 mL) and all amniotic fluid were stored at -80oC for analyses for amino acids 

and hormones. 

Analysis of metabolites and hormones 

Amino acids in uterine arterial and venous samples as well as amniotic and allantoic 

fluids were analyzed by HPLC methods involving precolumn derivatization with o-

phthaldialdehyde (Wu and Knabe 1994). Ammonia, urea and glucose were determined 

using enzymatic methods (Wu et al. 2005). Progesterone, estrone, and estrone sulfate 

were determined using RIA kits according to the instructions of the manufacturer. The 

minimum detection limit was 0.1 ng/mL, 1.2 pg/mL, and 0.01 ng/mL for progesterone, 
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estrone, and estrone sulfate, respectively. The intra-assay coefficients of variation were 

6.3%, 4.7%, and 4.2% for progesterone, estrone, and estrone sulfate assays, respectively. 

The inter-assay coefficients of variation were 9.2%, 5.4%, and 10.7% for progesterone, 

estrone, and estrone sulfate assays, respectively.  

Statistical analysis 

Data were analyzed using General Linear Model procedures of SPSS [Statistical 

Package for the Social Sciences] (Version 12.0, Chicago, IL) for a randomized complete 

block design. Gilt was considered as the experimental unit. Differences among treatment 

means were determined by the Student-Newman-Keuls multiple comparison test. Data 

on the embryonic survival rate was analyzed using the Chi-Square test of SPSS. 

Probability values < 0.05 were considered statistically significant.  

Results 

Reproductive performance of gilts 

Four gilts (1, 1, and 2 gilts in the 0.0%, 0.4% and 0.8% L-arginine groups, respectively) 

were not pregnant at the time of hysterectomy. None of the measurements of 

reproductive performance in gilts differed between the control and 0.4% L-arginine 

groups (Table 2.3).  However, compared with the control group, dietary supplementation 

with 0.8% L-arginine reduced (P < 0.05) uterine weight, the total number of fetuses, the 

number of live fetuses, CL number, total fetal weight, and volumes of ALF and AMF. 

Embryonic survival and total placental weight did not differ between the control and 

0.8% arginine groups. However, embryonic survival was lower (P < 0.05) in gilts 

supplemented with 0.8% L-arginine than in gilts supplemented with 0.4% L-arginine.   
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Maternal plasma metabolites and hormones   

Concentrations of aspartate, glutamate, alanine, and tyrosine were lower (P < 0.05), but 

concentrations of arginine, ornithine and proline were higher (P < 0.05) in plasma from 

gilts supplemented with 0.8% L-arginine, compared with control gilts (Table 2.4).  No 

 

Table 2.3 Reproductive performance of gilts fed diets supplemented with 0, 0.4 or 0.8% 
L-arginine (Arg) from d 0 through d 25 of gestation* 

Variable Control 0.4% Arg 0.8% Arg  SEM P- Value 

BW at breeding, kg 

BW at d 25 of gestation, kg 

BW gain, kg/25 d 

Uterine weight, kg 

Total fetus, n 

Live fetus, n 

CL, n 

Embryonic survival rate, % 

Total viable fetal weight, g 

Total placental weight, g 

Fetal length, cm 

Total ALF volume, L 

Total AMF volume, mL 

 113.9 

120.9 

    7.0 

3.11a 

  13.1a 

  12.7a 

  15.2a 

  83.1ab 

8.3a 

174.9 

     2.11 

     1.28a 

     2.70a 

 110.1 

 115.0 

     4.9 

     2.94ab 

   12.6a 

   12.3a 

   13.7ab 

 90.8a 

8.9a 

147.1 

 2.11 

     1.26a 

     3.37a 

  113.7 

  116.4 

      2.7 

      2.48b 

    10.0b 

      9.6b 

    12.6b 

    75.6b 

      5.5b 

  136.3 

      2.01 

      0.85b 

      1.56b 

  3.6 

  3.2 

  2.7 

  0.1 

  0.4 

  0.5 

  0.4 

  2.3 

  0.8 

22.1 

  0.01 

  0.07 

  0.29 

   0.696 

   0.492 

   0.556 

   0.041 

   0.003 

   0.007 

   0.011 

   0.022 

   0.020 

   0.255 

   0.190 

   0.008 

   0.029 
*Values are means with pooled SEM, n = 9 gilts (Control and 0.4% L-Arg groups) or n = 8 gilts (0.8% L-
Arg group).  Means in a row with superscripts without a common letter differ, P < 0.05. 
 

differences in concentrations of lysine (Table 2.4) and other amino acids (Table 2.5) in 

maternal plasma were detected between the control and 0.8% L-arginine groups. 

Compared with the control group, dietary supplementation with 0.4% L-arginine 

enhanced (P < 0.05) concentrations of arginine, alanine, ornithine, and proline in 
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maternal plasma (Table 2.4) but had no effect on other amino acids (Table 2.5). 

Concentrations of amino acids, other than alanine and arginine, in maternal plasma did 

not differ between the 0.4% and 0.8% L-arginine groups. Concentrations of ammonia, 

urea and progesterone were lower (P < 0.05) in maternal plasma of gilts supplemented 

with both 0.4% and 0.8% L-arginine, when compared with control gilts (Table 2.4). 

However, concentrations of estrone and estrone sulfate (Table 2.4) as well as glucose 

and free fatty acids (Table 2.5) in maternal plasma did not differ among the three 

treatment groups of gilts.  

 

   Table 2.4 Concentrations of free amino acids, ammonia, urea and hormones in uterine 
arterial plasma of gilts fed diets supplemented with 0, 0.4 or 0.8% L-arginine from d 0 
through d 25 of gestation* 

Variable Control 0.4% Arg 0.8% Arg SEM P- Value 

Ala, µmol/L 751a 490b 258c 74 <0.001 

Arg, µmol/L 123c 210b 251a 12 <0.001 

Asp, µmol/L 14a 12ab 10b 1 0.008 

Glu, µmol/L 194a 167ab 148b 7 0.023 

Lys, µmol/L 139 156 132 13 0.486 

Orn, µmol/L 64b 97a 93a 9 0.028 

Pro, µmol/L 220b 295a 310a 16 <0.001 

Ammonia, µmol/L 165a 128b 124b 5 <0.001 

Urea, µmol/L 2112a 1594b 1426b 82 <0.001 

Progesterone, µg/L 20.1a 12.6b 13.5b 1.19 0.013 

Estrone, ng/L 130 118 100 8 0.331 

Estrone sulfate, µg/L 8.27 8.93 7.36 0.61 0.589 
*Values are means with pooled SEM, n = 9 gilts (Control and 0.4% L-Arg groups) or n = 8 gilts (0.8% L-
Arg group).  Means in a row with superscripts without a common letter differ, P < 0.05. 
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Table 2.5 Concentrations of free amino acids, glucose, and non-esterified fatty acids 
(NEFA) in uterine arterial plasma of gilts fed diets supplemented with 0, 0.4 or 0.8% L-
arginine (Arg) from d 0 through d 25 of gestation* 

Amino Acid Control 0.4% Arg 0.8% Arg SEM P- Value 

                                                                   µmol/L 

�-Ala   17.1   15.2    11.8   1.51 0.073 

Asn   36.4   37.4   32.5   2.7 0.396 

Cit   54.3   61.0   54.1   5.0 0.538 

Gln 406.2 387.7 330.5 15.4 0.118 

Gly 692.0 692.7 612.0 26.6 0.386 

His   60.3   62.9   61.3   3.8 0.881 

Ile   73.0   73.2   75.8   6.1 0.937 

Leu 140.3 144.8 145.0 11.4 0.948 

Met   27.8   29.7   26.6   1.9 0.512 

Phe   45.5   50.6   48.0   3.4 0.570 

Ser   83.2   82.3   74.6   5.7 0.525 

Taurine 120.6   94.4 108.6 13.2 0.376 

Thr   99.8 102.6    87.3   8.7 0.434 

Trp   35.5   35.2   34.8   2.5 0.981 

Tyr   54.3   52.8   44.0   3.41 0.101 

Val 164.0 172.7 169.4 14.29 0.910 

Glucose 4054 4129 3953 153 0.902 

NEFA   127   126   158   17 0.714 
*Values are means with pooled SEM, n = 9 gilts (Control and 0.4% L-Arg groups) or n = 8 gilts (0.8% L-
Arg group).   
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   Table 2.6  Concentrations of free amino acids in allantoic fluid of gilts fed diets 
supplemented with 0, 0.4 or 0.8% L-arginine (Arg) between d 0 and 25 of gestation* 

Amino Acids Control 0.4% Arg 0.8% Arg SEM     P- Value 

                                                                       µmol/L 

Asp 8 8 10 0.8 0.524 

Glu 49 39 48   3.9 0.576 

Asn 54 56 54 2.9 0.972 

Ser 405 381 407 16 0.778 

Gln 526 527 498   26 0.886 

His 61 64 66 2.8 0.811 

Gly 452 391 434    23 0.566 

Thr 141 142 136 7.7 0.962 

Cit 9.4 9.6 9.6 0.8 0.996 

Arg 100 141 135 10 0.229 

�-Ala 22 20 24 1.6 0.693 

Tau 322 309 347 23 0.801 

Ala 145 131 157 7.9 0.436 

Tyr 29 31 27 1.8 0.781 

Trp 9 8 12 1.0 0.353 

Met 10 10 11 0.6 0.760 

Val 50 50 54 2.6 0.796 

Phe 20 21 22 1.2 0.778 

Ile 14 14 14 0.9 0.903 

Leu 32 31 35 1.8 0.604 

Orn 102 109 110 4.6 0.755 

Lys 239 252 221 13 0.656 

Pro 168 198 214 11 0.213 
* Values are means and pooled SEM, n = 9 gilts (Control and 0.4% L-Arg groups) or n = 8 gilts (0.8% L-
Arg group). 
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Table 2.7 Concentrations of free amino acids in amniotic fluid of gilts fed diets 
supplemented with 0, 0.4 or 0.8% L-arginine (Arg) between d 0 and 25 of gestation* 

Amino Acids Control 0.4% Arg 0.8% Arg    SEM        P- Value 

                                                                       µmol 

Asp 21 24 24 2.2 0.788 

Glu 132 159 152  12 0.664 

Asn 66 70 77 3.1 0.361 

Ser 346 397 380        17 0.478 

Gln 869 941 978  32 0.376 

His 53 58 59 2.4 0.540 

Gly 324 300 357 16 0.392 

Thr 159 146 156 9.4 0.843 

Cit 8 8 7 0.3 0.550 

Arg 93 94 118 7.9 0.364 

�-Ala 12 11 13 0.8 0.379 

Tau 157 135 184 11 0.184 

Ala 271 295 304 12 0.563 

Tyr 61 68 60 4.5 0.726 

Trp 11 13 15 1.0 0.239 

Met 39 44 42 2.2 0.623 

Val 140 143 153 7.8 0.785 

Phe 51 53 59 3.0 0.601 

Ile 35 35 47 2.5 0.096 

Leu 114 110 128 5.8 0.417 

Orn 63 72 72 3.0 0.392 

Lys 110 121 120 7.1 0.795 

Pro 205 214 192 8.5 0.590 
* Values are means and pooled SEM, n = 9 gilts (Control and 0.4% L-Arg groups) or n = 8 gilts (0.8% L-
Arg group). 
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Table 2.8 Total amounts of free amino acids and hormones in fetal fluids of gilts fed 
diets supplemented with 0, 0.4 or 0.8% L-arginine (Arg) from d 0 through d 25 of 
gestation * 

Variable Control 0.4% Arg 0.8% Arg SEM     P- 
Value 

Allantoic fluid, µmol 

Arg 132b 189a 128b 10 0.034 

Asn 70a 71a 43b 5 0.019 

Gln 670a 681a 401b 48 0.025 

His 79a 82a 54b 5 0.042 

Lys 314a 312a 179b 25 0.035 

Orn 131a 134a 92b 8 0.046 

Pro 211 253 254 23 0.685 

Ser 519a 488a 330b 32 0.038 

Tyr 36a 39a 24b 3 0.012 

Allantoic fluid, �g 

Progesterone 2.29a 2.24a 1.50b 0.127 0.016 

Estrone 0.63a 0.62a 0.38b 0.035 0.002 

Estrone sulfate 56a 59a 35b 4 0.013 

Amniotic fluid, nmol 

Arg 205b 310a 212b 18 <0.001 

Asn 192a 227a 117b 20 0.043 

Gln 2300b 3680a 1967b 305 0.026 

His 121b 224a 103b 15 <0.001 

Lys 303a 338a 201b 21 0.019 

Orn 148b 229a 125b 15 <0.001 

Pro 454b 613a 410b 34 0.017 

Ser 1028a 1352a 550b 89 0.018 

Tyr 129b 256a 108b 16 <0.001 
 *Values are means with pooled SEM, n = 9 gilts (Control and 0.4% L-Arg groups) or n = 8 gilts (0.8% L-
Arg group).  Means in a row with superscripts without a common letter differ, P < 0.05. 
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   Table 2.9 Total amounts of free amino acids, glucose, fructose, and non-esterified fatty 
acids (NEFA) in allantoic fluid and amniotic fluid of gilts fed diets supplemented with 0, 
0.4 or 0.8% L-arginine (Arg) from d 0 through d 25 of gestation* 

Amino Acid Control 0.4% Arg 0.8% Arg SEM P- Value 
Allantoic fluid, µmol 

Ala 186 168 135 11 0.076 
�-Ala 29 26 18 2 0.131 
Asp 10 11 10 1 0.944 
Cit 13 12 10 1 0.194 
Glu 61 53 48 5 0.309 
Gly 587 498 435 40 0.215 
Ile 17 16 13 1 0.124 
Leu 41 38 34 3 0.072 
Met 13 13 10 1 0.145 
Phe 26 25 20 2 0.085 
Taurine 418 404 339 38 0.281 
Thr 184 178 140 16 0.136 
Trp 11 12 10 1 0.710 
Val 64 62 47 4 0.096 
Glucose 1875b 2496a 1622b 144 0.032 
Fructose,mg 1479a 1250ab 882b 91 0.023 
NEFA 47a 47a 26b 4.1 0.044 

Amniotic fluid, nmol 
Ala 764 821 659 74 0.133 
�-Ala 34 40 20 5 0.223 
Asp 59 64 48 7 0.205 
Cit 23 25 17 3 0.108 
Glu 366 423 315 50 0.120 
Gly 974 985 787 96 0.226 
Ile 90 107 76 12 0.172 
Leu 301 348 259 33 0.096 
Met 89 125 77 15 0.103 
Phe 131 150 116 17 0.128 
Taurine 420 467 354 56 0.384 
Thr 434 502 383 50 0.118 
Trp 30 36 27 4 0.177 
Val 335 387 296 34 0.082 
Glucose 2277b 3459a 1502c 186 0.004 
Fructose,mg 2.61ab 3.56a 1.62b 0.31 0.035 
NEFA 0.22a 0.22a 0.11b 0.01 0.001 

 *Values are means with pooled SEM, n = 9 gilts (Control and 0.4% L-Arg groups) or n = 8 gilts (0.8% L-
Arg group).  Means in a row with superscripts without a common letter differ, P < 0.05. 
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ALF and AMF metabolites and hormones 

  The concentration of amino acids in ALF and AMF did not differ among the three 

treatment groups of gilts (Table 2.6; 2.7). Total amounts of asparagine, glutamine, 

histidine, lysine, ornithine, serine, threonine, tyrosine (Table 2.8), glucose, fructose, and 

free fatty acids (Table 2.9) in ALF or AMF were lower (P < 0.05) in gilts supplemented 

with 0.8% L-arginine, compared with values for ALF and AMF from conceptuses of 

gilts in the control and 0.4% L-arginine groups. Total amounts of arginine and alanine 

(Table 2.8), as well as other amino acids (Table 2.9) in ALF and AMF did not differ 

among the three treatment groups of gilts. Total amounts of ammonia, urea and 

hormones (progesterone, estrone and estrone sulfate) in ALF and AMF did not differ 

between the control and 0.4% L-arginine groups, but values for these two treatment 

groups were greater (P < 0.05) than those for the 0.8% L-arginine groups (Table 2.8). 

   Placental vascularity  

Visual examination of the conceptuses indicated the presence of small and pale blood 

vessels on the allantoic membranes of conceptuses from control gilts at d 25 of gestation 

(Fig. 2.1). Of particular note, blood vessels of the allantoic membranes of conceptuses 

from gilts supplemented with 0.4% or 0.8% L-arginine were more extensive and larger, 

compared with those for conceptuses from control gilts (Fig. 2.1). Placental vascularity 

did not appear to differ between conceptuses from gilts receiving 0.4% and 0.8% L-

arginine. 

 



 

 

Fig. 2.1 Representative conceptuses of gilts 
or 0.8% L-arginine from d 0 through d 25 of gestation. 
allantoic membranes in the control group were small and pale
extensive and larger vessels in allantoic membranes of 
0.8% L-arginine. 
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Dietary supplementation with 0.83% L-arginine between d 30 and 114 of gestation 

) or 1% L-arginine between d 14 and 28 of gestation (Ramaekers

) has been reported to enhance fetal survival and growth in gilts.

Surprisingly, results of the present study indicated that supplementation with 0.8% L

arginine reduced CL and embryo numbers as well as uterine weight 

development (i.e., reduced volumes of both AFL and AMF) in gilts at d 25 of gestation. 

Additionally, increasing the supplemental dose of L-arginine from 0.4% to 0.8% reduced 
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embryonic survival rate at d 25 of gestation by 17% (Table 2.3). To our knowledge, this 

is the first report of an adverse effect of dietary L-arginine supplementation during early 

gestation on pregnancy outcome in mammals. Indeed, our results led to the discovery 

that 0.8% L-arginine supplementation immediately after breeding severely reduced CL 

numbers, resulting in impaired production of progesterone in early pregnant gilts.  

       Nutrition, particularly the balance of amino acids in the diet, affects tissue protein 

synthesis (Suryawan et al. 2009; Elango et al. 2009; Deng et al. 2009) and pregnancy 

outcomes (Fiorotto et al. 1995) in mammals. Arginine supplementation (up to 0.8% of 

the diet) had no effect on intestinal absorption of basic amino acids in pregnant gilts as 

concentrations of lysine (Table 2.4) or histidine (Table 2.5) in maternal plasma did not 

differ among gilts fed diets supplemented with 0, 0.4 or 0.8% L-arginine. However, our 

studies indicate that the period of gestation in which L-arginine is supplemented to gilts 

is critical because 0.8% L-arginine was detrimental to embryonic survival between d 0 

and 25. This phenomenon is consistent with previous reports indicating that a high plane 

of feeding between d 0 and 10 of gestation, but not d 11-20, decreased embryonic 

survival and progesterone levels at d 30 in pigs (Dyck and Strain 1983). Similarly, 

embryonic survival on d 28 was greater in gilts fed 1.8 kg of a diet daily between d 0 and 

15 after mating, compared with 2.5-kg diet/d (Pharazyn 1992). Furthermore, embryonic 

survival and concentrations of progesterone in blood were greater in gilts fed 2.1 kg/d of 

a commercial ration during the first 34 d of pregnancy, in comparison with gilts fed daily 

4.3 kg of the diet during that period (Virolainen et al. 2004). Previous researchers 

concluded that the adverse effects of increased feed intake (e.g., augmenting total feed 
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intake from 2 of 4 kg/d) on embryonic survival resulted from increased intake of dietary 

energy (Bazer et al. 1968; Dyck and Strain 1983; Virolainen et al. 2004).  In our study, 

total intake of feed and metabolizable energy (2.0 kg/d and 26 MJ/d, respectively; 

currently recommended by NRC) did not differ among the treatment groups. However, 

doubling L-arginine intake by gilts from 14 to 30 g/d through supplementing 0.8% L-

arginine to the basal diet (which occurred without increasing feed intake) was sufficient 

to decrease concentrations of progesterone in maternal plasma (Table 2.8) and 

embryonic survival (Table 2.3). Thus, the unexpected observations from the current 

work question the long-standing view, based on assumptions, that elevated energy intake 

was solely responsible for high embryonic/fetal mortality in gilts with high feed intake 

(Bazer et al. 1968; Dyck and Strain 1983; Virolainen et al. 2004). 

     Another novel and important finding of this study is that dietary L-arginine 

supplementation during early gestation reduced CL number in gilts (Table 2.3), thereby 

decreasing concentrations of progesterone in maternal blood and the conceptus (Table 

2.8). In the ovary, follicular development and discharge of mature oocytes with the 

formation of CL depends on cell signaling via mitogen activated protein kinases 3 and 1 

[also known as extracellular-regulated protein kinases 1 and 2 (ERK1/2)] (Duggavathi 

and Murphy 2009) and liver receptor homolog 1 [Lrh1] (Duggavathi et al. 2008). Recent 

evidence shows that Lrh1 is essential for ovulation in mice through a mechanism 

involving expression of the NOS3 gene (Duggavathi et al. 2008). Based on available 

data, we suggest that increased production of NO through arginine supplementation may 

impair ERK1/2 signaling and Lrh1 function in the porcine ovary, therefore reducing the 
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number of follicles that ovulated and, therefore, the number of CL and concentrations of 

progesterone in maternal plasma. Regression of CL rarely occurs in pregnant pigs under 

normal feeding conditions (e.g., 2 kg daily of a typical corn- and soybean meal-based 

diet) because CL are the main source for progesterone required for establishment and 

maintenance of pregnancy (Bazer et al. 2009).  Prostaglandin F2a (PGF2�) is a luteolytic 

agent for CL regression when it is secreted from the uterine epithelia into the uterine 

circulation (endocrine secretion) rather than into the uterine lumen (exocrine secretion) 

(Henderson and McNatty 1975; Bazer and Thatcher 1977). Although PGF2� production 

is known to be modulated by estrogen secreted by the conceptus (Bazer and Thatcher 

1977), recent studies have shown that NO can stimulate this biochemical event by up-

regulating expression of cyclooxygenase II, a key enzyme for prostaglandin synthesis 

(Roberto et al. 2008; Salvemini et al. 1993).  Thus, dietary L-arginine supplementation 

between d 0 and 25 of gestation, which promotes systemic NO synthesis in animals (Wu 

et al. 2009), may lead to CL regression through a PGF2�-dependent pathway. 

Additionally, because ovulation usually takes place at about 44 h after onset of estrus 

(Bazer et al. 2010), initiation of L-arginine supplementation within 24 h after onset of 

estrus may inhibit or interfere with ovulation, thereby decreasing the numbers of CL in 

gilts. Future studies are warranted to test these novel hypotheses. 

     Progesterone plays an important role in up-regulating expression of amino acid 

transporters in the uterine endometrium and conceptus (Wu et al. 2009; Johnson et al. 

2009). Thus, total amounts of neutral amino acids (asparagine, glutamine, serine, 

threonine and tyrosine) and basic amino acids (histidine, lysine and ornithine) were 
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lower in ALF and AMF of gilts supplemented with 0.8% L-arginine, compared with 

values for conceptuses from control gilts (Table 2.8). Note that the reduced availability 

of these amino acids in fetal fluids occurred independent of their concentrations in 

maternal plasma (Table 2.4). Indeed, concentrations of asparagine, glutamine, serine, 

threonine, tyrosine, histidine, and lysine in maternal plasma did not differ between the 

control and L-arginine-supplemented gilts, whereas concentrations of ornithine in 

maternal plasma were higher in L-arginine-supplemented gilts (Table 2.4). Thus, 

lowered production of progesterone due to reduced CL numbers not only impairs 

embryonic/fetal survival, but also reduces the availability of total amino acids for uterine 

and conceptus growth. This is consistent with by our finding that uterine weight and total 

viable fetal weight were 20% and 34% lower, respectively, in gilts supplemented with 

0.8% L-arginine, compared with values for control gilts (Table 2.3).     

      Based on our current knowledge about hormonal regulation of conceptus 

development (Bazer et al. 2010), we suggest that a reduction in concentrations of 

progesterone in maternal plasma and total amounts of progesterone, estrone and estrone 

sulfate in ALF may mediate, at least in part, adverse effects of 0.8% L-arginine 

supplementation on embryonic survival in gilts.  Consistent with previous reports (Chen 

et al. 1995; Horne et al. 1983), a reduction in the amounts of estrone and estrone sulfate 

in ALF was associated with fewer live embryos in gilts (Table 2.8). Interestingly, 

circulating levels of progesterone are also reduced in gilts receiving a high plane of 

feeding in association with compromised embryonic survival (Jindal et al. 1996).  

Importantly, daily administration of progesterone has been reported to be effective in 
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ameliorating embryonic and fetal mortality in gilts and sows induced by high feeding 

levels (Jindal et al. 1996). Thus, it can be surmised that supplementation of both L-

arginine and progesterone during early gestation may have the desired benefit of 

enhancing vascular development and angiogenesis in the placenta (Fig. 2.1) while 

preventing embryonic/fetal loss and impairment of uterine growth in gilts. Additional 

work is required to test this novel idea using molecular, genomic and proteomic 

techniques (Wang et al. 2009; Palii et al. 2009). 

     In summary, dietary supplementation with 0.4% L-arginine between d 0 and 25 of 

gestation had no beneficial effect on the reproductive performance of gilts. However, 

supplementation with 0.8% L-arginine during this period of pregnancy, while increasing 

placental vascularity, decreased litter size in gilts. This finding did not support the 

original hypothesis of the present study, but led to an important discovery that 0.8% L-

arginine supplementation immediately after breeding reduced numbers of CL and their 

production of progesterone, therefore impairing conceptus survival and growth in gilts.  
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CHAPTER III 

 DIETARY SUPPLEMENTATION WITH L-ARGININE BETWEEN DAYS 14 

AND 25 OF GESTATION ENHANCES REPRODUCTIVE  

PERFORMANCE OF GILTS 

 

This study determined effects of dietary L-arginine supplementation between d 14 and 

25 of gestation on embryonic survival and growth in gilts. Gilts were checked daily for 

estrus with boars in the morning and bred at onset of the second estrus and 12 h later (the 

time of breeding = d 0 of gestation). Between d 14 and 25 of gestation, 15 gilts per 

treatment were housed individually and fed twice daily 1 kg of a corn- and soybean 

meal-based diet supplemented with 0.0%, 0.4%, or 0.8% L-arginine. All diets were 

made isonitrogenous by addition of L-alanine. At d 25 of gestation, gilts were 

hysterectomized to obtain conceptuses. Compared with control gilts, dietary 

supplementation with 0.4% or 0.8% L-arginine increased (P � 0.05) concentrations of 

arginine in maternal plasma, total volume of amniotic fluid, total amounts of arginine in 

allantoic and amniotic fluids, total amounts of fructose and most amino acids in amniotic 

fluid, placental growth, and the number of viable fetuses per litter by 2. The numbers of 

total fetuses or corpora lutea, total fetal weight, total volume of allantoic fluid, maternal 

circulating levels of progesterone and estrogen, or total amounts of the hormones in 

allantoic fluid did not differ among the three treatment groups. Reproductive 

performance of gilts did not differ between the 0.4% and 0.8% L-arginine groups. These 
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novel results indicate that dietary supplementation with 0.4% or 0.8% L-arginine 

between d 14 and 25 of gestation can enhance embryonic/fetal survival in gilts.  

Introduction 

Arginine serves as the physiological precursor for synthesis of many biological 

molecules, including ornithine, polyamines (putrescine, spermine and spermidine), 

proline, glutamine, creatine, agamatine, and nitric oxide (NO), as well as proteins (Wu 

and Morris 1998). Arginine and its metabolites have versatile functions in 

cardiovascular, neurological, immunological and endocrine systems (Wu and Meininger 

2000; Barbul 1990; Calabrese et al. 2007; Schmidt et al. 1992). Notably, results of recent 

studies led to the discovery that arginine can activate the mechanistic target of 

rapamycin (MTOR) cell signaling pathway (Yao et al. 2008; Kim et al. 2011), which 

plays crucial roles in protein synthesis, cell growth, and cytoskeletal remodeling (Bazer 

et al. 2011a). More importantly, NO and polyamines, two metabolites of arginine 

catabolism, may regulate conceptus survival and growth by promoting cell proliferation 

and migration, angiogenesis, and dilation of blood vessels to increase blood flow. 

     There is evidence that the number of live-born piglets is enhanced by 2 per litter in 

gilts receiving dietary supplementation with 0.83% L-arginine between d 30 and 114 of 

gestation (Mateo et al. 2007). Moreover, embryonic mortality in rats was reduced by 30% 

in response to dietary supplementation with 1.2% L-arginine for 7 d immediately after 

breeding (Zeng et al. 2008). These studies represent an important breakthrough for 

developing strategies to reduce embryonic loss, a major problem in reproduction of 

mammals, including pigs and humans. Early pregnancy (before d 25 of gestation) is the 
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period when 75% of embryonic losses occur (Pope 1994), so this is a critical window to 

control embryonic mortality in pigs (Wu et al. 2010). 

     It was proposed that dietary supplementation with L-arginine during the first 25 d of 

pregnancy would ameliorate embryonic loss in pigs (Li et al. 2010). Unexpectedly, the 

results from the first study (see Chapter �) revealed that supplementing the diet of gilts 

with  0.8% L-arginine between d 0 and 25 of gestation reduced reproductive 

performance as indicated by reductions in embryonic survival, number of corpora lutea 

(CL), and concentrations of progesterone in maternal plasma, as compared with the 

control group. The adverse effects of 0.8% dietary L-arginine supplementation 

immediately after breeding suggest that excessive intake of dietary L-arginine interferes 

with CL formation or promote CL regression by increasing NO synthesis (Roberto et al. 

2008; Salvemini et al. 1993). This, in turn, reduces concentrations of progesterone in 

maternal plasma and the conceptus. Interestingly, there are reports that dietary 

supplementation with L-arginine for 2 wk beginning on d 14 of gestation increases litter 

size at birth in pigs (Ramaekers et al. 2006; Berard et al. 2009). These results suggest 

that initiation of arginine supplementation after CL formation may capitalize on the 

benefits of arginine on conceptus survival and development without adverse effects on 

CL number and progesterone production. However, experimental results in support of 

this proposition are lacking. The present study tested the hypothesis that dietary 

supplementation with arginine between d 14 and 25 of gestation increases survival and 

development of conceptuses on d 25 of gestation. 
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Materials and methods 

Chemicals 

L-arginine and L-alanine were provided by Ajinomoto Co., Inc. (Tokyo, Japan). The 

RIA kits for progesterone (DSL-3400), estradiol (DLS-4400), estrone (DSL-8700), and 

estrone sulfate (DSL-5400) were obtained from Diagnostic Systems Laboratories 

(Webster, TX). Anticoagulant vacutainer tubes were procured from BD (Franklin Lakes, 

NJ). Amino acid standards for HPLC analysis were purchased from Sigma Chemicals 

(St. Louis, MO). 

Animals and diets  

The experimental design was similar to that described in Chapter II with some 

modifications. Briefly, following breeding during the second period of estrus, 45 gilts 

(F1 crosses of Yorkshire X Landrace sows and Duroc X Hampshire boars) were 

assigned randomly to three treatment groups (0.0, 0.4, and 0.8% L-arginine) and penned 

individually. Fifteen gilts were used for each treatment group. Between d 0 and 13 of 

gestation, gilts were fed twice daily (0700 and 1800 h) 1 kg of a corn and soybean meal-

based diet (2 kg diet/d). The basal diet met NRC (1998) recommended nutrient 

requirements for gestating gilts. Starting on d 14 of gestation, gilts were fed twice daily 

(0700 and 1800 h) 1 kg of a corn- and soybean meal-based diet supplemented with 0.0% 

(control), 0.4%, or 0.8% L-arginine (wt/wt) as described in Chapter II.  

Hysterectomy and tissue collection 

At d 25 of gestation, gilts were hysterectomized to obtain uteri and conceptuses after 10 

mL samples of uterine venous and arterial blood were collected for analysis of 
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metabolites and hormones (Li et al. 2010). Uterine weight, CL number, total number of 

fetuses, total number of viable fetuses, fetal weight and length, placental weight, and 

volumes of allantoic (ALF) and amniotic fluids (AMF) were measured and recorded. 

ALF (10 mL) and all AMF from each fetus were collected for assays of metabolites and 

hormones (Wu et al. 1998a).  No fetal blood samples could be obtained on d 25 of 

gestation due to the very small size of umbilical vessels (Li et al. 2010). Portions of each 

placenta from the gilts were snap-frozen in liquid nitrogen. Endometrium was separated 

from myometrium using curved scissors, and snap-frozen in liquid nitrogen (Wu et al. 

1998b). All snap frozen samples were stored at -80oC until analyzed. 

Homogenization of placenta and endometrium  

Frozen placenta (~200 mg) and endometrium (~100 mg) from eight gilts in each 

treatment group were homogenized with a glass homogenizer in 1 mL of ice-cold 1.5 M 

HClO4. The homogenate was transferred into 15 mL BD Falcon™ conical tubes. The 

homogenizer was rinsed twice each with 1 mL of 1.5 M HClO4. The combined 

homogenized solution was neutralized with 1.5 mL of 2 M K2CO3. The solution was 

centrifuged at 10, 000 g for 2 min, and the supernatant fluid was used for HPLC analysis 

of amino acids. 

Analysis of amino acids, fructose, and hormones 

Amino acids in plasma from uterine arterial plasma and amniotic and allantoic fluids as 

well as placental and endometrial extracts were analyzed by HPLC methods (Li et al. 

2010). Fructose was determined in duplicate as described by Roe (1934) with 

modifications. Briefly, 100 �L samples were deproteinized with 200 �L of 4.7% 
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trichloroacetic acid. The solution was centrifuged at 10,000 g for 1 min, and the 

supernatant fluid was used for fructose assay. The reagents were added into a clear 96-

well microplate in the order of 40 �L of sample or fructose standards (STD), 40 �L of 1 

mg/mL resorcinol, and 120 �L of 30% HCl. A microplate was covered by a clear film 

followed by a gentle vortex (30 sec) and incubation at 80 oC for 8 min. After the 

microplate cooled in running tap water, absorbance was measured at 490 nm. Fructose 

concentrations in samples were calculated on the basis of the fructose standard curve. 

      Progesterone, estradiol, estrone, and estrone sulfate were determined using RIA kits 

according to the instructions of the manufacturer. The minimum detection limit was 0.1 

ng/mL, 4.7 pg/mL, 1.2 pg/mL, and 0.01 ng/mL for progesterone, estradiol, estrone, and 

estrone sulfate, respectively. The intra-assay coefficients of variation were 6.3%, 4.6%, 

4.7%, and 4.2% for progesterone, estrone, and estrone sulfate assays, respectively. The 

inter-assay coefficients of variation were 9.2%, 8.5%, 5.4%, and 10.7% for progesterone, 

estradiol, estrone, and estrone sulfate assays, respectively.  

Calculations and statistical analysis   

The total amount of a substance in allantoic or amniotic fluid was calculated as 

concentration times the total volume of the fluid. Data, expressed as means ± SEM, were 

analyzed using General Linear Model procedures of SPSS [Statistical Package for the 

Social Sciences] (Version 15.0, Chicago, IL) for a randomized complete design. Gilt was 

considered as the experimental unit. Differences among treatment means were 

determined by the Duncan multiple comparison test. Data on embryonic survival were 
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analyzed using the Chi-Square test of SPSS. Probability values � 0.05 were considered 

statistically significant.  

Results 

Reproductive performance of gilts 

One gilt from the control group and one gilt from the 0.8% L-arginine group were not 

pregnant at the time of hysterectomy (Table 3.1). There were no differences among the 

three groups of gilts in maternal body-weight gain, total uterine weight, total number of 

fetuses, number of CL, total fetal weight, fetal length, or volume of ALF (Table 3.1). 

However, compared with the control group, dietary supplementation with 0.4% or 0.8% 

L-arginine increased placental weight by 21% and 34% (P < 0.01), respectively and the 

number of live fetuses per litter by 2 (P = 0.05), while reducing (P < 0.01) embryonic 

mortality by 14% and  15%, respectively (Table 3.1). The total volume of AMF was 

greater (P < 0.01) for conceptuses from gilts supplemented with either 0.4% or 0.8% L-

arginine (Table 3.1).  Reproductive performance of gilts did not differ between the 0.4% 

and 0.8% L-arginine groups. 

Concentrations of amino acids, glucose, and free fatty acids in maternal plasma 

Gilts in the 0.4% and 0.8% L-arginine groups had higher (P < 0.05) concentrations of 

arginine and ornithine in maternal plasma, compared with the control group (Table 3.2). 

Concentrations of aspartate, glutamate, and alanine were lower (P < 0.05) in plasma 

from gilts supplemented with 0.8% L-arginine compared with control gilts, but the 

values did not differ between the 0.4% arginine and control groups (Table 3.2). 
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Concentrations of other amino acids, glucose, and free fatty acids in maternal plasma did 

not differ among the three treatment groups of gilts (Tables 3.2 and 3.3).  

 
 
Table 3.1 Reproductive performance of gilts fed diets supplemented with 0, 0.4 or 0.8% 
L-arginine (Arg) between d 14 and 25 of gestation* 

Variable Control 0.4% Arg 0.8% Arg  SEM P- Value 

Number of gilts, n 

BW at breeding, kg 

BW at d 25 of gestation, kg 

BW gain, kg/25 d 

Uterine weight, kg 

Total fetuses, n 

Live fetuses, n 

CL, n 

Embryonic mortality, % 

Weight of viable fetuses, g 

Total placental weight, g 

Fetal length, cm 

Total ALF volume, L 

Total AMF volume, mL 

   14 

 119.9 

 121.3 

     1.1 

 2.46 

   11.3 

   10.5b 

   13.9 

   24.7a 

 5.58 

   93.0b 

     1.84 

     0.95 

    2.52b 

       15 

     113.3 

     114.4 

         1.1 

         2.66 

       12.8 

       12.7a 

       14.4 

   11.2b 

     6.27 

     124.6a 

     1.82 

         1.04 

        4.06a 

      14 

    110.9 

     112.1 

         1.2 

         2.48 

       12.4 

       12.2a 

       13.6 

       10.1b 

         5.83 

     112.5a 

         1.81 

         0.99 

        3.42a 

    

   4.8 

   4.8 

   1.0 

   0.07 

   0.4 

   0.4 

   0.3 

   1.9 

   0.18 

   4.3 

   0.02 

   0.04 

   0.16 

    

   0.762 

   0.745 

   0.998 

   0.389 

   0.228 

   0.050 

   0.586 

   0.001 

   0.252 

   0.004 

   0.872 

   0.631 

   0.001 
*Values are means with pooled SEM; means in a row with superscripts without a common letter differ, P � 
0.05. 
 

Concentrations of amino acids in allantoic and amniotic fluids 

Concentrations of arginine in ALF were greater (P < 0.05) in conceptuses from gilts 

supplemented with 0.4 and 0.8% arginine, compared with control gilts (Table 3.4). No 

difference was detected for concentrations of arginine in AMF among the three 

treatment groups (Table 3.5). Total arginine in ALF (Table 3.6) and AMF (Table 3.7) 
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increased (P < 0.01) in response to dietary supplementation with 0.4% or 0.8% L-

arginine. In ALF, total amounts of other amino acids were not affected by arginine 

supplementation; but total amounts of most amino acids in AMF were greater for 

conceptuses from gilts supplemented with 0.4% and 0.8% arginine (Table 3.7).  

Concentrations of amino acids in placentae and endometria 

Concentrations of arginine were greater (P < 0.05), but concentrations of alanine were 

lower (P < 0.01) in gilts supplemented with 0.8% L-arginine compared with control gilts 

and the gilts supplemented with 0.4% arginine (Table 3.8). Similar results were obtained 

for concentrations of alanine in endometrial samples (Table 3.9). Concentrations of other 

amino acids in placentae and endometria did not differ among the treatment groups of 

gilts. 

  

Table 3.2 Concentrations of free amino acids in uterine artery of gilts fed diets 
supplemented with 0, 0.4 or 0.8% L-arginine (Arg) between d 14 and 25 of gestation* 

Amino Acid Control 0.4% Arg 0.8% Arg SEM P- Value 

 µmol/L 

Asp 18a 17a 11b 1.1 0.018 

Glu 274a 246a 172b 15 0.008 

Arg 161b 313a 336a 24 0.002 

Ala 1114a 999a 437b 105 0.013 

Orn 79b 123a 119a 7.5 0.026 

Lys 217 202 229 9.9 0.558 
     * Values are means and pooled SEM. n = 10; means in a row with superscripts without a common letter 

differ, P < 0.05. 
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Table 3.3 Concentrations of other free amino acids, glucose, and  non-esterified fatty 
acids (NEFA) in uterine arterial plasma of gilts fed diets supplemented with 0, 0.4 or 
0.8% L-arginine (Arg) between d 14 and 25 of gestation* 

Amino Acids Control 0.4% Arg 0.8% Arg SEM     P- Value 

µmol/L 

Asn 82 70 71 2.9 0.215 

Ser 130 122 112 4.9 0.366 

Gln 544 512 456 24 0.322 

His 90 95 93 3.5 0.878 

Gly 734 643 676 54 0.798 

Thr 190 169 167 8.1 0.457 

Cit 71 76 62 3.6 0.291 

�-Ala 25 21 16 1.8 0.114 

Tau 75 79 70 5.5 0.082 

Tyr 107 95 93 3.0 0.075 

Trp 62 55 56 2.6 0.531 

Met 44 40 39 1.7 0.539 

Val 311 283 278 11 0.424 

Phe 80 71 73 2.5 0.308 

Ile 124 111 113 4.6 0.499 

Leu 200 186 179 6.5 0.427 

Pro 252 234 247 8.4 0.663 

Cys 205 236 240 16 0.623 

OH-Pro 19 19 18 1.0 0.940 

Glucose 4177 4444 4050 112 0.359 

NEFA 146 133 142 7.7 0.777 
* Values are means and pooled SEM, n = 10.   
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Table 3.4 Concentrations of free amino acids in allantoic fluid of gilts fed diets 
supplemented with 0, 0.4 or 0.8% L-arginine (Arg) between d 14 and 25 of gestation* 

Amino Acids Control 0.4% Arg 0.8% Arg      SEM     P- Value 

µmol/L 
Asp 8 8 7 0.5 0.735 
Glu 64 62 47 4.3 0.209 
Asn 89 84 78 4.7 0.647 
Ser 526 544 461 27 0.451 
Gln 699 677 597 43 0.613 
His 94 89 92 6.1 0.935 
Gly 460 401 414 26 0.645 
Thr 206 196 204 13 0.945 
Cit 10.3 10.1 9.5 0.8 0.916 
Arg 104b 154a 191a 12 0.006 
�-Ala 33 28 28 1.4 0.319 
Tau 432 396 392 29 0.835 
Ala 196 217 187 12 0.564 
Tyr 79 74 68 3.1 0.369 
Trp 12 14 13 0.8 0.842 
Met 15 15 16 0.9 0.934 
Val 88 86 87 5.6 0.991 
Phe 34 34 37 2.8 0.911 
Ile 24 23 24 1.6 0.977 
Leu 50 48 47 3.7 0.966 
Orn 141 136 145 7.4 0.904 
Lys 299 291 321 19 0.801 
Pro 248 271 234 13 0.546 
Cys 42 39 44 2.7 0.802 
OH-Pro 63 70 59 2.6 0.242 

* Values are means and pooled SEM, n = 10. Means in a row with superscripts without a common letter 
differ, P � 0.05. 
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Table 3.5 Concentrations of free amino acids in amniotic fluid of gilts fed diets 
supplemented with 0, 0.4 or 0.8% L-arginine (Arg) between d 14 and 25 of gestation* 

Amino Acids Control 0.4% Arg 0.8% Arg SEM     P- Value 

                                                                       µmol/L 
Asp 25a 24a 16b 1.6 0.026 
Glu 266a 218a 139b 15 0.001 
Asn 104 98 101 3.8 0.789 
Ser 513 537 499 21 0.781 
Gln 1235 1121 977 48 0.093 
His 68 74 78 3.7 0.481 
Gly 392 446 430 17 0.442 
Thr 214 231 230 11 0.778 
Cit 22 21 21 0.9 0.873 
Arg 118 114 120 5.5 0.910 
�-Ala 27 26 26 1.2 0.882 
Tau 204 249 221 12 0.255 
Ala 361 381 336 13 0.404 
Tyr 121 117 116 3.5 0.864 
Trp 18 17 18 0.7 0.587 
Met 57 55 55 1.5 0.859 
Val 227 220 219 9.0 0.938 
Phe 86 80 84 4.5 0.869 
Ile 63 60 62 2.4 0.882 
Leu 157 151 160 5.5 0.824 
Orn 78 87 74 3.6 0.283 
Lys 174 168 168 7.7 0.942 
Pro 199 214 196 9.2 0.728 
Cys 26 26 27 1.3 0.945 
OH-Pro 39 44 38 1.3 0.144 

* Values are means and pooled SEM, n = 10. Means in a row with superscripts without a common letter 
differ, P � 0.05. 
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Table 3.6 Total amounts of free amino acids in allantoic fluid of gilts fed diets 
supplemented with 0, 0.4 or 0.8% L-arginine (Arg) between d 14 and 25 of gestation* 

Amino Acids Control 0.4% Arg 0.8% Arg      SEM     P- Value 

µmol 
Asp 7 8 7 0.5 0.803 
Glu 59 61 44 5.2 0.394 
Asn 78 82 75 6.2 0.898 
Ser 467 524 437 36 0.629 
Gln 614 661 585 54 0.854 
His 79 85 87 6.5 0.868 
Gly 400 390 394 29 0.991 
Thr 171 192 195 15 0.804 
Cit 8.8 9.0 9.2 0.8 0.980 
Arg 106b 168a 195a 14 0.008 
�-Ala 28 27 27 1.5 0.929 
Tau 351 361 372 24 0.940 
Ala 195 209 189 12 0.805 
Tyr 69 71 66 4.7 0.891 
Trp 11 13 12 1.0 0.567 
Met 13 14 15 1.1 0.815 
Val 74 84 84 6.6 0.810 
Phe 29 33 36 3.0 0.653 
Ile 20 23 23 2.0 0.801 
Leu 42 46 45 3.8 0.876 
Orn 118 131 135 7.8 0.659 
Lys 249 284 302 22 0.600 
Pro 221 262 225 18 0.619 
Cys 36 40 41 3.3 0.867 
OH-Pro 62 62 60 4.6 0.974 

* Values are means and pooled SEM, n = 10. Means in a row with superscripts without a common letter 
differ, P � 0.05. 
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Table 3.7 Total amounts of free amino acids in amniotic fluid of gilts fed diets 
supplemented with 0, 0.4 or 0.8% L-arginine (Arg) between d 14 and 25 of gestation* 

Amino Acids Control 0.4% Arg 0.8% Arg SEM     P- Value 

                                                                       µmol 
Asp 76 84 53 6.0 0.061 
Glu 674a 815a 471b 50 0.007 
Asn 263 346 333 20 0.192 
Ser 1280b 2090a 1642ab 124 0.033 
Gln 3294b 4136a 3227b 187 0.032 
His 163b 285a 274a 20 0.026 
Gly 1065b 1849a 1660a 136 0.050 
Thr 497b 889a 846a 66 0.021 
Cit 58 72 68 6.0 0.152 
Arg 303b 492a 425a 28 0.010 
�-Ala 68 96 87 6.9 0.245 
Tau 538b 967a 715ab 68 0.022 
Ala 1043b 1436a 1059b 72 0.026 
Tyr 294b 431a 363ab 21 0.015 
Trp 46b 60a 66a 3.1 0.016 
Met 159 186 193 14 0.242 
Val 533b 815a 833a 49 0.012 
Phe 221 295 284 19 0.250 
Ile 147b 214a 209a 12 0.035 
Leu 401b 564a 521a 31 0.012 
Orn 183b 342a 216a 22 0.001 
Lys 445b 654a 514ab 38 0.049 
Pro 532c 857a 664b 65 0.001 
Cys 75b 126a 97ab 7.4 0.010 
OH-Pro 98b 176a 136ab 12 0.020 

* Values are means and pooled SEM, n = 10. Means in a row with superscripts without a common letter 
differ, P � 0.05. 
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Table 3.8  Concentrations of free amino acids in placentae of gilts fed diets 
supplemented with 0, 0.4 or 0.8% L-arginine (Arg) between d 14 and 25 of gestation* 

Amino Acids Control 0.4% Arg 0.8% Arg SEM     P- Value 

nmol/mg tissue 

Asp 0.46 0.31 0.36 0.030 0.126 

Glu 0.82 0.70 0.69 0.120 0.596 

Asn 0.20 0.14 0.17 0.011 0.094 

Ser 0.57 0.48 0.46 0.048 0.432 

Gln 2.44 1.90 1.85 0.124 0.596 

His 0.24 0.20 0.15 0.024 0.328 

Gly 0.96 0.86 0.85 0.053 0.649 

Thr 0.43 0.36 0.38 0.032 0.671 

Cit 0.025 0.019 0.021 0.008 0.104 

Arg 0.29b 0.30b 0.36a 0.020 0.034 

Tau 1.01 0.90 0.91 0.063 0.755 

Ala 0.59a 0.54a 0.41b 0.026 0.001 

Tyr 0.17 0.20 0.16 0.016 0.867 

Trp 0.05 0.06 0.05 0.005 0.633 

Met 0.08 0.08 0.07 0.006 0.438 

Val 0.33 0.31 0.32 0.019 0.515 

Phe 0.15 0.14 0.13 0.013 0.770 

Ile 0.12 0.12 0.10 0.008 0.331 

Leu 0.24 0.23 0.19 0.037 0.902 

Orn 0.13 0.11 0.11 0.006 0.193 

Lys 0.38 0.41 0.37 0.034 0.338 
* Values are means with pooled SEM, n = 8.  Means in a row with superscripts without a common letter 
differ, P � 0.05. 
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Table 3.9  Concentrations of free amino acids in endometria of gilts fed diets 
supplemented with 0, 0.4 or 0.8% L-arginine between d 14 and 25 of gestation * 

Amino Acids Control 0.4% Arg 0.8% Arg SEM     P- Value 

nmol/mg tissue 

Asp 0.74 0.59 0.64 0.117 0.720 

Glu 2.05 1.80 1.83 0.075 0.370 

Asn 0.064 0.069 0.063 0.004 0.588 

Ser 0.29 0.32 0.23 0.018 0.076 

Gln 0.86 0.80 0.87 0.048 0.804 

His 0.19 0.19 0.14 0.013 0.302 

Gly 1.88 1.78 1.76 0.086 0.829 

Thr 0.24 0.23 0.23 0.008 0.657 

Cit 0.068 0.072 0.064 0.004 0.572 

Arg 0.27 0.29 0.30 0.024 0.129 

Tau 2.93 2.79 2.53 0.159 0.612 

Ala 1.35a 1.59a 0.74b 0.128 0.012 

Tyr 0.16 0.14 0.15 0.008 0.538 

Trp 0.026 0.024 0.024 0.002 0.187 

Met 0.067 0.064 0.085 0.009 0.109 

Val 0.31 0.31 0.29 0.010 0.617 

Phe 0.10 0.092 0.084 0.005 0.208 

Ile 0.19 0.16 0.12 0.011 0.067 

Leu 0.33 0.31 0.24 0.018 0.147 

Orn 0.082 0.10 0.084 0.008 0.373 

Lys 0.25 0.22 0.23 0.009 0.728 
* Values are means with pooled SEM, n = 8; Means in a row with superscripts without a common letter 
differ, P � 0.05. 
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Table 3.10 Concentrations of hormones in uterine artery and total amounts of the 
hormones in allantoic fluid in gilts fed diets supplemented with 0, 0.4 or 0.8% L-arginine 
(Arg) between d 14 and 25 of gestation* 

Hormones Control 0.4% Arg 0.8% Arg SEM P- Value 

Uterine vein      

     Progesterone, ng/ml 16.3 17.9 17.9 1.14 0.817 

     Estradiol, pg/ml    102.2     108.5 86.9 8.08 0.550 

     Estrone, pg/ml    126.7     112.5 89.4 7.70 0.142 

     Estrone sulfate, ng/ml 9.22   9.07  6.19 0.74 0.174 

Allantoic fluid      

     Progesterone, �g 1.13       1.22 1.14 0.10 0.923 

     Estradiol, ng   670.5   630.8   607.8      42.7 0.842 

     Estrone, ng   614.6   590.1   581.7      58.2 0.974 

     Estrone sulfate, �g     60.6     58.7     63.7 4.57 0.909 
*Values are means with pooled SEM, n = 14 gilts.   
 

Hormones in maternal plasma and ALF 

Progesterone was more abundant (P < 0.01) than estradiol, estrone and estrone sulfate in 

maternal plasma (Table 3.10). In contrast, concentrations of estrone sulfate in ALF were 

approximately 50-fold greater (P < 0.01) than concentrations of progesterone. 

Concentrations and total amounts of progesterone, estradiol, estrone, and estrone sulfate 

in maternal uterine vein and ALF did not differ among the three treatment groups of gilts 

(Table 3.10).   

Fructose, glucose, and free fatty acids in ALF and AMF 

Concentrations of fructose in ALF were similar to those in AMF (Table 3.11).  

Concentrations of fructose, glucose, and free fatty acids in ALF and AMF did not differ 

among the treatment groups of gilts (Table 3.11). Likewise, dietary supplementation 
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Table 3.11 Concentrations and total amounts of fructose, glucose, and non-esterified 
fatty acids (NEFA) in fetal fluids of gilts fed diets supplemented with 0, 0.4 or 0.8% L-
arginine (Arg) between d 14 and 25 of gestation* 

Variable Control 0.4% Arg 0.8% Arg SEM P-Value 

Concentration in ALF      

     Fructose, mg/mL 1.13 1.13 1.09 0.04 0.884 

     Glucose, �mol/L 1961 2076 1707 93 0.254 

     NEFA,  �mol/L 39 38 37 0.5 0.262 

Concentration in AMF      

     Fructose, mg/mL 0.76 0.88 0.82 0.03 0.277 

     Glucose, �mol/L 644 664 731 49 0.803 

     NEFA,  �mol/L 35 36 41 1.3 0.092 

Total amount in ALF      

     Fructose, mg 1045 1178 1099 63 0.682 

     Glucose, �mol 1863 2159 1690 96 0.129 

     NEFA,  �mol 37b 40a 36b 0.6 0.018 

Total amount in AMF      

     Fructose, mg 1.93b 3.38a 2.84a 0.18 0.001 

     Glucose, �mol 1.62b 2.70a 2.50a 0.19 0.034 

     NEFA,  �mol 0.09b 0.15a 0.14a 0.01 0.001 
     *Values are means with pooled SEM, n = 10 gilts; means in a row with superscripts without a common 

letter differ, P � 0.05. 
 

with arginine did not affect total amounts of fructose in ALF (Table 3.11). However, 

total amounts of fructose, glucose and free fatty acids were greater (P < 0.05) in AMF of 

gilts receiving dietary supplementation with 0.4% or 0.8% L-arginine, compared with 

the control group. Neither concentrations nor total amounts of fructose, glucose, and free 

fatty acids in ALF and AMF differed between the 0.4% and 0.8% L-arginine groups, 

with exception for free fatty acids which have a higher total amount in ALF with 0.4% 
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L-arginine supplementation with compared to control and 0.8% L-arginine group (Table 

3.11). 

Discussion 

Embryonic loss is a major problem in pig reproduction (Pope 1994). Unfortunately, 

there are few effective ways to reduce such a high loss of embryos in gestating swine 

(Johnson 2000). Interestingly, dietary supplementation with 1.0% arginine-HCl between 

d 30 and 114 of gestation increased the number of live-born piglets per litter by 2 (Mateo 

et al. 2007). Although there are two critical windows for fetal death after d 30 of 

gestation, more than 75% of prenatal loss occurs during the first 25 d of gestation (Pope 

1994). Threrefore dietary L-arginine supplementation may have positive effects on 

fertility when it is initiated during early pregnancy because it is the most critical window 

of opportunity to control embryonic mortality in pigs. However, results of our previous 

study (Chapter II) indicated that the number of live fetuses, CL number, and 

concentrations of progesterone in maternal plasma were decreased by supplementing 

0.8% L-arginine to the diet of gilts between d 0 and 25 of gestation.  In contrast, results 

of this study with arginine supplementation beginning on d 14 of gestation indicated that 

dietary supplementation with 0.4% or 0.8% L-arginine did not affect number of CL, but 

did increase the number of live fetuses and decrease embryonic mortality at d 25 of 

gestation as compared to control gilts (Table 3.1). The only difference in experimental 

design between the present and previous study as the day when L-arginine 

supplementation was initiated (d 14 in the present study vs d 0 in the previous study). A 

decrease in CL number in response to L-arginine supplementation immediately after 
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breeding may have resulted from the interference with growth and ovulation of ovarian 

follicles and formation of CL (Smith et al. 1994). Maternal recognition of pregnancy 

starts on d 11 of pregnancy in swine when blastocysts begin their dramatic 

morphological changes (Bazer and Thatcher 1977). Supplementing the diet with 0.8% L-

arginine before d 14 of gestation may impede this process, resulting in decreased 

embryonic survival. However, when dietary L-arginine supplementation starts at d 14 of 

gestation, CL formation and maternal recognition of pregnancy are not affected by L-

arginine supplementation.  

       Ramaekers et al. (2006) reported that dietary supplementation with 1% arginine 

from d 14 to 28 increased the number of live-born piglets at birth by approximately 1 per 

sow. The results from the present study indicate that enhanced embryonic survival 

before d 25 of gestation is a major factor contributing to increased litter size at term.  It 

is known that some fetal loss can occur between d 25 of gestation and parturition in gilts 

and sows with large litters early in gestation (Wu et al. 2006). Daily supplementation 

with arginine beyond d 25 of gestation until term will help prevent fetal loss and increase 

litter size to a greater extent (approximately one more live-born piglet per litter), when 

compared with dietary arginine supplementation between d 14 and 25 of gestation. 

Enhanced growth (Table 3.1) and vascularization of the placenta (Chapter II) likely 

promotes embryonic survival in arginine-supplemented gilts and positively impacts fetal 

survival and growth in subsequent stages of gestation. Note that total fetal weight on d 

25 of gestation was not affected by arginine, likely because the embryos receive 

nutrients primarily from uterine secretions during early pregnancy (Bazer et al. 2010).    
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      Another important finding from this study is that CL number was not affected by 

dietary supplementation with arginine between d 14 and 25 of gestation. Similarly, no 

difference was detected in concentrations of progesterone in maternal plasma among the 

three groups of gilts. The CL are the only source of progesterone in pigs and it is 

essential for normal pregnancy (Bazer et al. 2010). Estrogen, another important hormone 

in pregnancy, was not affected by L-arginine supplementation. Thus, an increase in 

embryonic survival in arginine-supplemented gilts is likely mediated by factors other 

than progesterone and estrogen. However, based on results of the previous study (Li et 

al. 2010), it is clear that adequate amounts of progesterone are necessary for arginine to 

enhance embryonic survival during early gestation.   

     The total volume of AMF increased in gilts receiving diets supplemented with 0.4% 

or 0.8% L-arginine, compared with the control group. The mechanisms responsible for 

enhanced transport of water, arginine, most other amino acids, sugars, and ions across 

placentae and the amniotic membrane are unclear. Results of this study suggest an 

important role for arginine in regulating these physiological processes. Total amounts of 

fructose in AMF also increased in the 0.4% or 0.8% L-arginine groups as compared to 

the control group. It is possible that arginine stimulates the conversion of glucose to 

fructose in placentae and subsequent transport of fructose across the fetal side of the 

placenta into the amniotic fluid. This observation is novel and important, as fructose is 

now known to be a substrate for the synthesis of glycoproteins in porcine placentae 

(Appendix Table A-2) and to stimulate MTOR cell signaling in porcine trophectoderm 

cells (Bazer 2011b). Fructose does not move from the fetal system to maternal 
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circulation (Alexander et al. 1955) and an increase in availability of this sugar in 

conceptuses of arginine-supplemented gilts warrants further investigation. 

      Consistent with the previous study (Chapter II), concentrations of aspartate, 

glutamate, and alanine were lower, but concentrations of arginine and ornithine were 

higher in plasma of gilts supplemented with 0.8% L-arginine compared with control 

gilts. Moreover, gilts in the 0.4% L-arginine group had higher circulating levels of 

arginine than control gilts. It is possible that rates of synthesis of aspartate and glutamate 

were greater, or rates of degradation of these amino acids were lower in the whole body 

of control gilts (receiving isonitrogenous amounts of alanine) than in gilts supplemented 

with 0.8% arginine. The findings that embryonic survival was greater in gilts 

supplemented with 0.4% arginine than control gilts even though concentrations of 

aspartate or glutamate in maternal plasma did not differ between the control and 0.4% 

arginine groups indicate that modest changes in aspartate and glutamate availability did 

not affect litter size in gilts. Thus, dietary supplementation with 0.4% L-arginine is 

sufficient to enhance reproductive performance in gilts as is 0.8% L-arginine. This new 

knowledge is very important for developing a cost-effective strategy to enhance swine 

production worldwide. 

     In summary, supplementing the diet of gilts with 0.4% or 0.8% L-arginine between d 

14 and 25 of gestation increased concentrations of arginine in maternal plasma, total 

amounts of arginine in ALF and AMF, and the number of live fetuses per litter by 2 on d 

25 as compared to control gilts. Arginine supplementation also increased the volume of 

AMF as well as total amounts of fructose and most amino acids in AMF possibly due to 
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enhanced transport of ions, water, sugar and amino acids across placentae and into the 

amniotic fluid. These findings will aid in developing cost-effective strategies to enhance 

litter size in swine and also have important implications for improving embryonic 

survival in other mammals.   
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CHAPTER IV 

EFFECTS OF DIETARY SUPPLEMENTATION WITH L-ARGININE 

BETWEEN DAYS 14 AND 25 OF GESTATION ON  

REPRODUCTIVE PERFORMANCE OF GILTS  

AT DAY 60 OF GESTATION 

 

This experiment was conducted to determine the effects of dietary L-arginine 

supplementation between d 14 and 25 of pregnancy on reproductive performance of gilts 

at d 60 of gestation. Sixty gilts were assigned randomly into three treatment groups (0.0, 

0.4, and 0.8% L-arginine) after breeding during their second period of estrus. Gilts were 

fed daily 2 kg of a corn- and soybean meal-based diets supplemented with 0.0% 

(control), 0.4%, or 0.8% L-arginine between d 14 and 25 of gestation. Then gilts were 

returned to the 2 kg/d basal diet between d 26 and 59 of gestation without arginine 

supplementation. At d 60 of gestation, gilts were hysterectomized to obtain uteri and 

conceptuses. The results from all gilts with corpus luteum (CL) numbers ranging from 9 

to 14 indicated no differences among the three treatment groups of gilts: (1) 

concentrations of arginine in maternal plasma; (2) concentrations and total amounts of 

amino acids in allantoic and amniotic fluids; (3) maternal weight gains and uterine 

weight; (4) total number of fetuses, number of live fetuses, and number of CL; (5) rate of 

embryonic mortality; (6) total fetal and placental weights; and (7) volumes of allantoic 

and amniotic fluids. However, analysis of data from gilts with CL numbers ranging from 

15 to 18 revealed that dietary supplementation with 0.4% or 0.8% L-arginine increased 
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the total number of fetuses and the number of live fetuses, rate of embryonic survival, 

and volumes of allantoic and amniotic fluids compared with the control group. Thus, 

arginine supplementation can increase litter size in gilts which have relatively high 

ovulation rates and adequate uterine capacity on d 60 of gestation.  

Introduction 

Dietary supplementation with arginine is a new strategy to decrease prenatal embryonic 

or fetal losses in pigs. However, the timing of arginine supplementation is critical for it 

to be effective.  The number of live-born fetuses increased significantly in gilts fed a diet 

supplemented with 0.83% arginine between d 30 and 114 of gestation (Mateo et al. 

2007). However, the numbers of total and live embryos were decreased by dietary 

supplementation 0.8% L-arginine between d 0 and 25 of gestation (See Chapter II). 

Interestingly, when initiated on d 14 of gestation, L-arginine supplementation increased 

the number of live fetuses per litter and embryonic survival rate on d 25 of gestation, 

compared with the control group (see Chapter III).  

     Although 70% of embryonic and fetal deaths occur before d 25 of gestation, another 

20% of fetal deaths may occur between d 40 to 60 of gestation (Pope 1994). Starting at d 

30 of pregnancy, placental capacity to support fetal development becomes a limiting 

factor for fetal survival and growth (Wilson 2002). An increase in ovulation rate can 

increase the number of embryos that survive during early pregnancy, but it is not 

proportional to the number of live-born piglets (Freking et al. 2007; van der Waaij et al. 

2010). The embryos are either dead or suffer from intra-uterine growth retardation if 

they cannot obtain enough nutrients from dams due to limited uterine capacity. High 
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numbers of embryos in early pregnancy have a negative effect on the survival and 

development of fetuses during mid- and late-pregnancy (Town et al. 2004). This 

suggests that the increase in number of embryos at d 25 of gestation in gilts receiving 

dietary L-arginine supplementation between d 14 and 25 of gestation (Chapter III) may 

not be maintained to a later stage of pregnancy or term. Likewise, it is unknown whether 

arginine supplementation during early gestation may have a programming effect on 

placentae or fetuses to support conceptus survival and growth at advanced stages of 

pregnancy.  

      This study was conducted to determine the effects of dietary arginine 

supplementation between d 14 and 25 of pregnancy on reproductive performance of gilts 

at d 60 of gestation.          

Materials and methods 

Animals and diets  

The experimental design was similar with that described for the study in Chapter III, 

except that gilts received no arginine supplementation after d 25 of gestation. Briefly, 60 

gilts were assigned randomly to one of three treatment groups (0.0, 0.4, and 0.8% L-

arginine) after breeding during their second period of estrus. Throughout the trial, gilts 

were fed twice daily (0700 and 1800 h) 1 kg of a corn and soybean meal-based diet (2 

kg/d). Between d 14 and 25 of gestation, gilts were fed the basal diet supplemented with 

0.0, 0.4, and 0.8% L-arginine. After d 25 of gestation, arginine supplementation was 

terminated. At d 60 of gestation, gilts were hysterectomized to obtain uteri and 

conceptuses after obtaining 10 mL of uterine venous and arterial blood samples for 
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amino acid assays. Uterine weight, CL number, total number of fetuses, total number of 

viable fetuses, fetal weights and lengths, placental weights, and volumes of ALF and 

AMF were measured and recorded. The ALF (10 mL) and AMF (10 mL) from each 

fetus were analyzed for amino acids. 

Analysis of amino acids  

Amino acids in uterine arterial samples as well as ALF and AMF were analyzed by 

HPLC methods as described in Chapter II. 

Statistical analysis   

Data were analyzed using the General Linear Model procedures of SPSS [Statistical 

Package for the Social Sciences] (Version 15.0, Chicago, IL) for a randomized complete 

block design. Gilt was considered as the experimental unit. Differences among treatment 

means were determined using Duncan’s multiple comparison test. Data on embryonic 

survival were analyzed using the Chi-Square test of SPSS. Probability values < 0.05 

were considered statistically significant.  

Results 

Reproductive performance of gilts on d 60 of gestation 

Two gilts from the control group, three gilts from the 0.4% L-arginine groups, and two 

gilts from the 0.8% L-arginine group were not pregnant at the time of hysterectomy. The 

number of CL for all gilts was 14.2 ± 0.36 (mean ± SEM, n = 53) with a range from 9 to 

18. Thus, we considered CL number of 9 to 14 (12.4 ± 0.33; mean ± SEM, n = 31) and 

15 to 18 (16.0 ± 0.20; mean ± SEM, n = 22) to be below and above average, 

respectively. On d 60 of gestation, there were no differences among the three treatme- 
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Table 4.1 Reproductive performance of gilts with 9 to 14 CL at d 60 of gestation fed 
diets supplemented with 0, 0.4 or 0.8% L-arginine (Arg) between d 14 and 25 of 
gestation* 

Variable Control 0.4% Arg 0.8% Arg  SEM P- Value 

Number of gilts, n 

BW at breeding, kg     

BW at d 60 of gestation, kg 

BW gain, kg/60 d 

Uterine weight, kg 

Total no. fetuses, n 

Live fetuses, n 

No. CL 

Embryonic mortality, % 

Total viable fetal weight, kg 

Total placental weight, kg 

Fetal Length, cm 

Total ALF volume, L 

Total AMF volume, L 

  11 

117 

128 

11 

10.1 

11.3 

11.3 

12.6 

9.9 

1.30 

1.98 

13.4 

2.30 

1.45 

  10 

119 

129 

10 

10.8 

11.1 

10.5 

12.3 

13.1 

1.25 

1.61 

13.4 

2.49 

1.30 

  10 

121 

138 

16 

9.7 

10.7 

10.6 

12.4 

14.5 

1.28 

1.78 

13.7 

2.81 

1.35 

 

2.36 

3.58 

1.79 

0.48 

0.29 

0.26 

0.31 

1.79 

0.04 

0.12 

0.11 

0.32 

0.06 

 

0.755 

0.502 

0.344 

0.726 

0.700 

0.423 

0.911 

0.593 

0.864 

0.473 

0.562 

0.819 

0.562 

*Values are means with pooled SEM. 
 

nt groups of gilts with 9 to 14 CL in any measured variable of reproductive performance, 

including body weight gain, uterine weight, number of total and number of live fetuses, 

CL number, rate of embryonic mortality, total fetal and placental weights, and volumes 

of ALF and AMF (Table 4.1). However, the analysis of data from gilts with 15 to 18 CL 

revealed a different picture regarding effects of arginine supplementation on 

reproductive performance. Specifically, for gilts with 15 to and 18 CL, dietary 

supplementation with 0.4% or 0.8% L-arginine increased (P < 0.05) the number of total 

fetuses and number of live fetuses, rate of embryonic survival, and ALF and AMF    
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Table 4.2 Reproductive performances of gilts with 15 to 18 CL at d 60 of gestation fed 
diets supplemented with 0, 0.4 or 0.8% L-arginine (Arg) between d 14 and 25 of 
gestation* 

Variable Control 0.4% Arg 0.8% Arg  SEM P- Value 

Number of gilts, n 

BW at breeding, kg     

BW at d 60 of gestation, kg 

BW gain, kg/60 d 

Uterine weight, kg 

Total no. fetuses, n 

Live fetuses, n 

No. CL 

Embryonic mortality, % 

Total viable fetal weight, kg 

Total placental weight, kg 

Fetal Length, cm 

Total ALF volume, L 

Total AMF volume, L 

  7 

121 

145 

24 

10.1 

11.4b 

10.6b 

15.9 

33.2a 

1.22 

1.80 

13.0 

2.36b 

1.17b 

  7 

120 

142 

22 

11.1 

13.0a 

12.3a 

16.0 

23.0b 

1.42 

1.80 

13.1 

3.93a 

1.53a 

  8 

119 

135 

16 

11.3 

13.6a 

12.5a 

16.0 

22.7b 

1.39 

1.86 

13.1 

3.95a 

1.80a 

 

2.46 

3.09 

1.86 

0.54 

0.34 

0.29 

0.20 

2.20 

0.05 

0.11 

0.14 

0.34 

0.08 

 

0.937 

0.381 

0.181 

0.612 

0.018 

0.007 

0.952 

0.031 

0.177 

0.973 

0.988 

0.013 

0.002 

*Values are means with pooled SEM. Means in a row with superscripts without a common letter differ, P 
< 0.05. 

 

 
volumes, compared with the control group (Table 4.2). The ratio of fetal to placental 

weights did not differ among the three groups of gilts (0.111 to 0.115). Likewise, dietary 

supplementation with 0.4% and 0.8% arginine did not affect the weights of fetal organs, 

including brain, heart, kidney, leg muscle, liver, lung, Intestine, spleen, and stomach, 

regardless of CL numbers (Appendix Table A-3). 
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Table 4.3 Concentrations of free amino acids, glucose, and non-esterified fatty acids 
(NEFA) in uterine artery of gilts with 9 to 14 CL at d 60 of gestation fed diets 
supplemented with 0, 0.4 or 0.8% L-arginine (Arg) between d 14 and 25 of gestation* 

Amino Acids Control 0.4% Arg 0.8% Arg SEM P- Value 

µmol/L 

Asp 12 12 11 1.1 0.906 

Glu 166 169 173 8.2 0.950 

Asn 37 45 37 2.5 0.249 

Ser 97 113 120 4.3 0.099 

Gln 550 610 584 19 0.454 

His 95 99 95 6.1 0.959 

Gly 829 929 931 38 0.500 

Thr 141 143 117 9.9 0.551 

Cit 52 62 58 2.8 0.307 

Arg 147 154 150 5.9 0.894 

�-Ala 28 32 25 3.0 0.693 

Tau 59 55 54 2.3 0.739 

Ala 405 462 502 24 0.301 

Tyr 80 90 72 3.8 0.173 

Trp 54 59 68 4.6 0.495 

Met 39 39 47 1.8 0.184 

Val 217 200 213 6.4 0.547 

Phe 57 58 60 2.6 0.937 

Ile 85 78 80 2.9 0.655 

Leu 181 176 175 3.9 0.831 

Orn 57 78 84 5.3 0.079 

Lys 161 185 148 11 0.365 

Glucose 4476 5020 4480 205 0.480 

NEFA 170 162 181 26 0.962 
* Values are means and pooled SEM; n = 11 (Control) or n = 10 gilts (0.4% and 0.8% L-Arg groups).  
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Table 4.4 Concentrations of free amino acids, glucose, and non-esterified fatty acids 
(NEFA)  in uterine artery of gilts with 15 to 18 CL at d 60 of gestation fed diets 
supplemented with 0, 0.4 or 0.8% L-arginine (Arg) between d 14 and 25 of gestation* 

Amino Acids Control 0.4% Arg 0.8% Arg SEM P- Value 

µmol/L 

Asp 18 14 12 1.1 0.147 

Glu 197 163 157 8.7 0.143 

Asn 46a 43a 35b 1.8 0.049 

Ser 114 129 114 7.8 0.703 

Gln 503 423 503 34 0.587 

His 70 63 83 3.6 0.089 

Gly 892 972 841 63 0.734 

Thr 104 101 138 8.4 0.183 

Cit 72 86 63 6.4 0.370 

Arg 126 138 149 6.4 0.447 

�-Ala 19 16 15 1.7 0.675 

Tau 55 67 63 3.4 0.385 

Ala 490 486 477 11 0.931 

Tyr 84 70 75 3.1 0.170 

Trp 54 58 49 2.4 0.441 

Met 44 45 39 3.4 0.821 

Val 174b 181b 211a 5.8 0.024 

Phe 59 57 51 1.8 0.323 

Ile 71 75 89 3.5 0.121 

Leu 161 159 166 2.9 0.679 

Orn 92 93 73 4.4 0.153 

Lys 88 106 103 8.4 0.084 

Glucose 4212 4260 4653 226 0.730 

NEFA 84 91 117 8.1 0.195 
* Values are means and pooled SEM; n = 7 (Control and 0.4% L-Arg groups) or n = 8 gilts (0.8% L-Arg 
groups). Means in a row with superscripts without a common letter differ, P < 0.05. 
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Concentrations of amino acids, glucose, and fatty acids in maternal uterine plasma on 

d 60 of gestation 

Concentrations of all measured amino acids, glucose, and fatty acids did not differ on d 

60 of gestation among the treatment groups for gilts with 9 to 14 CL (Table 4.3). Similar 

results were obtained for gilts with 15 to 18 CL, except that concentrations of asparagine 

were lower (P < 0.05) and concentrations of valine were higher (P < 0.05) in gilts 

supplemented with 0.8% arginine, compared with the control group (Table 4.4).  

Concentrations and total amounts of amino acids in ALF on d 60 of gestation 

For gilts with 9 to 14 CL, concentrations of glutamine, phenylalanine, and serine were 

higher (P < 0.05) in ALF in response to supplementation with 0.8% arginine, compared 

with the control and 0.4% arginine groups (Table 4.5). In these gilts, concentrations of 

other amino acids in ALF did not differ among the three treatment groups of gilts.  

Dietary supplementation with 0.4% or 0.8% arginine did not affect concentration of any 

amino acid in ALF of gilts with 15 to 18 CL (Table 4.6). 

     For gilts with 9 to 14 CL, total amounts of glutamine, phenylalanine, and serine in 

ALF were higher (P < 0.05) in response to supplementation with 0.8% arginine, 

compared with the control and 0.4% arginine groups (Table 4.7). Total amounts of 

glycine, taurine and tryptophan in ALF were greater (P < 0.05) in gilts supplemented 

with 0.8% arginine as compared to the control group. Total amounts of other amino 

acids in ALF did not differ due to treatment. In contrast, for gilts with 15 to 18 CL, total 

amounts of all measured amino acids, except for threonine, �-alanine, methionine,  
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Table 4.5 Concentrations of free amino acids in ALF of gilts with 9 to14 CL at d 60 of 
gestation fed diets supplemented with 0, 0.4 or 0.8% L-arginine (Arg) between d 14 and 
25 of gestation* 

Amino Acids Control 0.4% Arg 0.8% Arg SEM P- Value 

µmol/L 
Asp 44 49 40 3.6 0.583 
Glu 1207 1080 1312 124 0.751 
Asn 36 56 46 4.0 0.121 
Ser 61b 68b 91a 4.0 0.006 
Gln 288b 380b 528a 28 0.002 
His 48 52 57 4.0 0.719 
Gly 261 375 345 25 0.173 
Thr 94 125 121 9.1 0.349 
Cit 30 36 36 3.5 0.797 
Arg 589 645 633 45 0.891 
�-Ala 115 130 115 9.4 0.768 
Tau 328 270 362 22 0.197 
Ala 89 104 78 7.6 0.359 
Tyr 19 20 12 2.3 0.380 
Trp 19 24 22 1.2 0.217 
Met 5.6 8.7 4.3 0.9 0.110 
Val 32 35 26 2.5 0.332 
Phe 8.3b 11b 17a 1.2 0.022 
Ile 29 30 30 1.3 0.941 
Leu 63 74 45 5.3 0.079 
Orn 811 1023 877 64 0.379 
Lys 591 625 612 19 0.779 

* Values are means and pooled SEM; n = 11 (Control) or n = 10 gilts (0.4% and 0.8% L-Arg groups). 
Means in a row with superscripts without a common letter differ, P < 0.05. 
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Table 4.6 Concentrations of free amino acids in ALF of gilts with 15 to 18 CL at d 60 of 
gestation fed diets supplemented with 0, 0.4 or 0.8% L-arginine (Arg) between d 14 and 
25 of gestation* 

Amino Acids Control 0.4% Arg 0.8% Arg     SEM P- Value 

µmol/L 

Asp 54 66 55 6.6 0.722 

Glu 608 556 757 55 0.408 

Asn 37 49 58 4.4 0.172 

Ser 75 83 81 4.5 0.753 

Gln 303 345 373 21 0.427 

His 46 52 41 3.9 0.561 

Gly 314 261 299 19 0.510 

Thr 122 113 123 12 0.940 

Cit 47 40 46 5.0 0.828 

Arg 487 437 514 43 0.782 

�-Ala 97 66 90 8.5 0.266 

Tau 241 264 337 25 0.347 

Ala 110 96 115 9.4 0.733 

Tyr 20 19 25 2.2 0.522 

Trp 14 22 18 1.8 0.196 

Met 18 14 11 1.9 0.398 

Val 40 49 50 4.9 0.687 

Phe 19 25 20 3.0 0.685 

Ile 36 36 35 1.7 0.982 

Leu 46 41 33 3.1 0.333 

Orn 603 646 669 62 0.926 

Lys 480 385 342 33 0.278 
* Values are means and pooled SEM; n = 7 (Control and 0.4% L-Arg groups) or n = 8 gilts (0.8% L-Arg 
groups).  
 

 



82 
 

 
  

Table 4.7 Total amounts of free amino acids in ALF of gilts with 9 to 14 CL at d 60 of 
gestation fed diets supplemented with 0, 0.4 or 0.8% L-arginine (Arg) between d 14 and 
25 of gestation* 

Amino Acids Control 0.4% Arg 0.8% Arg SEM P- Value 

µmol 

Asp 102 122 112 9.1 0.696 

Glu 2776 2690 3687 330 0.408 

Asn 82 138 130 10.4 0.060 

Ser 140b 169b 255a 13 0.001 

Gln 661b 945b 1484a 84 0.001 

His 111 129 160 11 0.199 

Gly 600b 934a 969a 84 0.050 

Thr 216 310 339 24 0.103 

Cit 70 89 101 8.8 0.423 

Arg        1355 1605 1778 119 0.424 

�-Ala 265 323 323 24 0.559 

Tau 754ab 672b 1016a 59 0.040 

Ala 204 259 220 18 0.432 

Tyr 44 49 35 5.4 0.562 

Trp 43b 59a 62a 3.4 0.044 

Met 13 22 12 2.2 0.125 

Val 73 88 73 6.1 0.521 

Phe 19b 27b 48a 3.5 0.003 

Ile 67 75 84 3.4 0.177 

Leu 157 183 127 12 0.155 

Orn 1864 2548 2465 161 0.178 

Lys 1360b 1556ab 1720a 54 0.035 
* Values are means and pooled SEM; n = 11 (Control) or n = 10 gilts (0.4% and 0.8% L-Arg groups). 
Means in a row with superscripts without a common letter differ, P < 0.05. 
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Table 4.8 Total amounts of free amino acids in ALF of gilts with 15 to18 CL at d 60 of 
gestation fed diets supplemented with 0, 0.4 or 0.8% L-arginine (Arg) between d 14 and 
25 of gestation* 

Amino Acids Control 0.4% Arg 0.8% Arg SEM P- Value 

µmol 

Asp 113b 258a 216a 26 0.035 

Glu 1562b 2318a 2685a 150 0.002 

Asn 87b 193a 228a 20 0.004 

Ser 177b 328a 318a 24 0.004 

Gln 715b 1356a 1473a 111 0.004 

His 109b 206a 177a 16 0.039 

Gly 742b 1026a 1182a 70 0.046 

Thr 287 371 392 25 0.186 

Cit 98b 180a 185a 17 0.038 

Arg 1150b 1900a 2029a 174 0.016 

�-Ala 229 259 356 30 0.283 

Tau 568c 898b 1332a 90 0.001 

Ala 258b 377a 389a 24 0.031 

Tyr 39b 67a 88a 6.6 0.006 

Trp 30b 86a 72a 9.2 0.010 

Met 43 56 44 5.7 0.587 

Val 102b 191a 199a 17 0.026 

Phe 44b 98a 81a 5.5 0.032 

Ile 84b 140a 137a 8.5 0.002 

Leu 116 159 130 8.4 0.071 

Orn 1423b 2333a 2069a 131 0.003 

Lys 1132 1512 1349 89 0.144 
* Values are means and pooled SEM; n = 7 (Control and 0.4% L-Arg groups) or n = 8 gilts (0.8% L-Arg 
groups). Means in a row with superscripts without a common letter differ, P < 0.05. 
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phenylalanine, leucine, and lysine, were greater (P < 0.05) in the 0.4% and 0.8% 

arginine groups, compared with the control group (Table 4.8). In gilts with above 

average number of CL, total amounts of all amino acids in ALF except for taurine did 

not differ between the 0.4% and 0.8% arginine groups.   

Concentrations and total amounts of amino acids in AMF on d 60 of gestation 

For gilts with 9 to 14 CL, concentrations of threonine and citrulline in AMF were higher 

(P < 0.05) in the 0.8% arginine than the control group, but total amounts of other amino 

acids did not differ due to treatment (Table 4.11). Compared with the control group, 

dietary supplementation with 0.8% arginine increased (P < 0.05) concentrations of 

glutamate, glycine, arginine, and taurine in AMF, but had no effect on concentrations of 

other amino acids (Table 4.10). 

      For gilts with 9 to 14 CL, total amounts of threonine and citrulline in AMF were 

greater (P < 0.05) in response to supplementation with 0.8% arginine, compared with the 

control group, but total amounts of other amino acids in AMF were not affected by 

dietary supplementation with 0.4% or 0.8% arginine (Table 4.11). For gilts with 15 to 18 

CL, total amounts of all amino acids, except for methionine, were greater (P < 0.05) in 

AMF in the 0.8% arginine than in the control group (Table 4.12). In these gilts, total 

amounts of asparagine, glutamine, glycine, threonine, arginine, �-alanine, taurine, 

alanine, tryptophan, phenylalanine, leucine, and lysine in AMF were greater (P < 0.05) 

in the 0.8% arginine than the 0.4% arginine group, but total amounts of other amino 

acids did not differ between the two groups. Compared with the control group, dietary 

supplementation with 0.4% arginine increased (P < 0.05) total amounts of glutamate, 
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serine, glycine, citrulline, arginine, �-alanine, taurine, alanine, valine, leucine, ornithine, 

and lysine, but had no effect on total amounts of other amino acids (Table 4.12).    

Table 4.9 Concentrations of free amino acids in AMF of gilts with 9 to 14 CL at d 60 of 
gestation fed diets supplemented with 0, 0.4 or 0.8% L-arginine (Arg) between d 14 and 
25 of gestation* 

Amino Acid Control 0.4% Arg 0.8% Arg     SEM     P- Value 

µmol/L 

Asp 14 13 11 1.1 0.626 

Glu 364 371 352 24 0.947 

Asn 36 32 33 1.5 0.666 

Ser 128 150 146 8.6 0.556 

Gln 976 966 1051 52 0.792 

His 47 42 44 3.3 0.830 

Gly 309 359 386 14 0.109 

Thr  59b 61b 86a 4.1 0.024 

Cit 33b 51a 54a 3.1 0.014 

Arg 111 121 124 3.7 0.374 

�-Ala 11 15 9.3 1.1 0.068 

Tau 78 65 87      4.9 0.196 

Ala 644 756 744         25 0.136 

Tyr 29 35 22      3.5 0.276 

Trp 9 8.7 7.8     1.0 0.885 

Met 29 28 26      1.2 0.630 

Val 89 113 94      5.7 0.162 

Phe 13 14 11      0.9 0.524 

Ile 19 29 21      2.8 0.266 

Leu 75 78 56      5.9 0.303 

Orn 46 51 50      2.6 0.693 

Lys 227 227 212      8.8 0.750 
* Values are means and pooled SEM; n = 11 (Control) or n = 10 gilts (0.4% and 0.8% L-Arg groups). 
Means in a row with superscripts without a common letter differ, P < 0.05. 
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Table 4.10 Concentrations of free amino acids in AMF of gilts with 15-18 CL at d 60 of 
gestation fed diets supplemented with 0, 0.4 or 0.8% L-arginine (Arg) between d 14 and 
25 of gestation* 

Amino Acid Control 0.4% Arg 0.8% Arg     SEM     P- Value 

µmol/L 

Asp 11 11 15 1.2 0.426 

Glu 235b 320a 355a 19 0.019 

Asn 38 33 38 1.8 0.454 

Ser 121 148 144 6.9 0.205 

Gln 943 849 1087 43 0.086 

His 37 37 35 1.9 0.933 

Gly 279b 309b 428a 19 0.001 

Thr   81ab 63b 98a 5.4 0.034 

Cit 41b 56a 50ab 2.7 0.035 

Arg 103b 114ab 143a 6.5 0.042 

�-Ala 11 14 14 1.1 0.554 

Tau 56b 78a 84a      4.3 0.015 

Ala 714 681 754        25 0.558 

Tyr 30 28 36      2.7 0.493 

Trp 10 7.7 13      0.9 0.151 

Met 37 43 39      5.4 0.884 

Val 100 128 106      7.7 0.279 

Phe 12 9.9 13      0.8 0.316 

Ile 24 23 34      2.9 0.292 

Leu 53 50 54      1.6 0.492 

Orn 58 54 46      2.2 0.110 

Lys 221 223 235      7.7 0.789 
* Values are means and pooled SEM. n = 7 (Control and 0.4% L-Arg groups) or n = 8 gilts (0.8% L-Arg 
groups). Means in a row with superscripts without a common letter differ, P < 0.05. 
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Table 4.11 Total amounts of free amino acids in AMF of gilts with 9 to 14 CL at d 60 of 
gestation fed diets supplemented with 0, 0.4 or 0.8% L-arginine (Arg) between d 14 and 
25 of gestation* 

Amino Acid Control 0.4% Arg 0.8% Arg     SEM     P- Value 

µmol 

Asp 19 17 15 1.5 0.509 

Glu 520 482 475 32 0.857 

Asn 51 42 44 2.2 0.246 

Ser 183 195 197 12 0.879 

Gln 1395 1256 1418 71 0.592 

His 67 54 59 4.5 0.530 

Gly 442 467 520 18 0.257 

Thr   84b 79b 116a 5.5 0.026 

Cit 48b 63a 67a 3.0 0.014 

Arg 159 158 167 4.8 0.730 

�-Ala 16 20 12 1.4 0.113 

Tau 111 85 117 6.9 0.105 

Ala 921 983 1004 32 0.581 

Tyr 41 46 30 4.6 0.346 

Trp 13 11 10 1.3 0.777 

Met 42 36 35 1.7 0.275 

Val 127 147 127 7.2 0.442 

Phe 18 18 15 1.2 0.553 

Ile 27 38 28 3.6 0.397 

Leu 108 101 76 8.0 0.290 

Orn 66 67 67 3.5 0.987 

Lys 324 295 286 12 0.470 
* Values are means and pooled SEM; n = 11 (Control) or n = 10 gilts (0.4% and 0.8% L-Arg groups). 
Means in a row with superscripts without a common letter differ, P < 0.05. 
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 Table 4.12 Total amounts of free amino acids in AMF of gilts with 15 to 18 CL at d 60 
of gestation fed diets supplemented with 0, 0.4 or 0.8% L-arginine (Arg) between d 14 
and 25 of gestation* 

Amino Acid Control 0.4% Arg 0.8% Arg     SEM     P- Value 

µmol 

Asp 13b 17b 27a 2.0 0.022 

Glu 300b 533a 639a 45 0.002 

Asn 45b 51b 68a 3.3 0.010 

Ser 142b 227a 259a 15 0.001 

Gln 1103b 1298b 1957a 100 0.001 

His 43b 57ab 64a 3.4 0.045 

Gly 326c 473b 771a 46 0.001 

Thr    94b 96b 176a 11 0.001 

Cit 47b 86a 91a 5.9 0.001 

Arg 121c 175b 257a 15 0.001 

�-Ala 13b 23a 28a 1.7 0.001 

Tau 66c 119b 150a 9.3 0.001 

Ala 835c 1042b 1356a 59 0.001 

Tyr 35b 43ab 65a 5.4 0.048 

Trp 12b 12b 23a 1.7 0.014 

Met 43 66 71 8.6 0.393 

Val 117b 196a 191a 14 0.017 

Phe 15b 15b 23a 1.2 0.042 

Ile 28b 35b 61a 5.7 0.045 

Leu 62c 76b 97a 3.8 0.001 

Orn 68b 83a 84a 3.1 0.010 

Lys 259c 342b 423a 19 0.001 
*Values are means and pooled SEM; n = 7 (Control and 0.4% L-Arg groups) or n = 8 gilts (0.8% L-Arg 
groups). Means in a row with superscripts without a common letter differ, P < 0.05. 
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Table 4.13 Concentrations and total amounts of fructose, glucose, and non-esterified 
fatty acids (NEFA) in fetal fluid of gilts with 9 to 14 CL at d 60 of gestation fed diets 
supplemented with 0, 0.4 or 0.8% L-arginine (Arg) from d 14 through d 25 of gestation* 

Variable Control 0.4% Arg 0.8% Arg SEM P- Value 

Concentration in ALF      

     Fructose, mg/mL 1.07 0.83 0.97 0.06 0.216 

     Glucose, �mol/L 310 286 298 34 0.961 

     NEFA,  �mol 9.9 12 8.9 1.51 0.811 

Concentration in AMF      

     Fructose, mg/mL 1.17 1.37 1.47 0.07 0.207 

     Glucose, �mol/L 1365 1522 1290 81 0.493 

     NEFA,  �mol 15 15 12 1.47 0.608 

Total amount in ALF      

     Fructose, mg 2.44 2.06 2.73 0.14 0.154 

     Glucose, �mol 769 787 837 93 0.965 

     NEFA,  �mol 23 29 25 3.76 0.833 

Total amount in AMF      

     Fructose, mg 1.70 1.78 1.99 0.09 0.446 

     Glucose, �mol 1980 1979 1741 110 0.611 

     NEFA,  �mol 22 20 16 2.04 0.492 
* Values are means and pooled SEM; n = 11 (Control) or n = 10 (0.4% and 0.8% L-Arg groups).  
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Table 4.14 Concentrations and total amounts of fructose, glucose, and non-esterified 
fatty acids (NEFA) in fetal fluid of gilts with 15 to 18 CL at d 60 of gestation fed diets 
supplemented with 0, 0.4 or 0.8% L-arginine (Arg) from d 14 through d 25 of gestation* 

Variable Control 0.4% Arg 0.8% Arg SEM P- Value 

Concentration in ALF      

     Fructose, mg/mL 1.05 1.53 1.24 0.11 0.194 

     Glucose, �mol/L 279 222 213 24 0.535 

     NEFA,  �mol 7.0 5.1 6.8 0.85 0.743 

Concentration in AMF      

     Fructose, mg/mL 1.69a 1.60a 1.26b 0.06 0.011 

     Glucose, �mol/L 1120 1245 1372 61 0.249 

     NEFA,  �mol 12 10 8.1 0.92 0.237 

Total amount in ALF      

     Fructose, mg 2.48b 5.20a 4.89a 0.44 0.016 

     Glucose, �mol 659b 873a 841a 33 0.009 

     NEFA,  �mol 15b 20b 29a 2.13 0.014 

Total amount in AMF      

     Fructose, mg 1.98 2.44 2.26 0.08 0.064 

     Glucose, �mol 1311c 1905b 2470a 134 0.001 

     NEFA,  �mol 14 15 15 1.28 0.900 
*Values are means and pooled SEM; n = 7 (Control and 0.4% L-Arg groups) or n = 8 (0.8% L-Arg 
groups). Means in a row with superscripts without a common letter differ, P < 0.05. 
 

 

Fructose, glucose, and free fatty acids in ALF and AMF on day 60 of gestation 

The concentration and total amounts of fructose, glucose, and free fatty acids were not 

different among three treatment groups in gilts with 9 to 14 CL (Table 4.13). However, 

total amounts of fructose and glucose in ALF were greater in 0.4% L-arginine group or 

0.8% L-arginine group with compared to control group in gilts with 15 to 18 CL (Table 
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4.14). Total amounts of free fatty acids in ALF and total amounts of glucose in AMF 

were higher in the 0.8% L-arginine group compared with control group, but not different 

from the 0.4% L-arginine group in gilts with 15 to 18 CL (Table 4.14). 

Discussion 

The number of live fetuses and the rate of embryonic survival at d 25 of gestation were 

enhanced by 0.4% or 0.8% L-arginine supplementation between d 14 and 25 of gestation 

(Chapter III). This benefit of improved embryonic/fetal survival in response to short-

term arginine supplementation was carried forward to d 60 of gestation for gilts with 15 

to 18 CL (Table 4.2). Interestingly, re-examination of the data in Chapter II revealed that 

in response to dietary supplementation with 0.4% and 0.8% arginine, gilts with high CL 

numbers (15 to 19)  had similar rates of embryonic survival to gilts with 10 to 14 CL 

(Appendix Table A-4; A-5). Of particular note, results of our recent study indicated that 

supplementing 0.4% and 0.8% arginine to the diet of gilts between d 14 and 25 of 

gestation increased the number of live-born piglets by 0.58 and 0.91, respectively, 

compared with control gilts (Jeffrey L. Vallet, Xilong Li, Fuller W. Bazer, and Guoyao 

Wu, unpublished observations). Similarly, studies involving gilts and multiparous sows 

showed that dietary supplementation with 1% arginine between 14 and 28 of gestation 

enhanced the number of live-born piglets at term by approximately 1 per litter as 

compared to the control (Ramaekers et al. 2006). Because arginine is expensive in 

today's market and its supplementation for a prolonged period of time is not expected to 

result in an appreciable economic return to swine producers, identifying a short, but 
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effective window of arginine supplementation, holds great promise to cost-effectively 

enhance litter size in swine (Wu et al. 2006). 

    Uterine capacity is a major limiting factor for the survival and development of fetuses 

in modern highly prolific swine after d 30 of gestation (Wilson 2002). Both the structure 

and function of the placenta plays a key role in regulating the transfer of nutrients and 

oxygen from mother to fetus (Reynolds et al. 2006). Placental efficiency, defined by 

some investigators as the ratio of fetal to placental weights (Molteni et al., 1978; Kurz et 

al., 1999), is often used to evaluate uterine capacity. However, this simplistic definition 

does not take into account fetal survival and development, and should be revised 

accordingly. For example, we found that neither fetal nor placental weights differed 

between control and arginine-supplemented gilts with above average numbers of CL 

numbers, but arginine supplementation increased the number of live fetuses on d 60 of 

gestation by 2 per litter (Table 4.2). Higher placental efficiency is correlated with a 

higher number of live fetuses per litter, which is due, in part, to enhanced vascular 

development of the placenta (Vonnahme and Ford 2004). This is well demonstrated by 

the marked difference between highly prolific Chinese Meishan pigs and western breeds 

of pigs. Compared to western breeds (e.g., Large White), Meishan gilts have similar 

ovulation rates, but produce three to five more live piglets per litter at birth despite 

having smaller placentae (Bazer et al. 1988; Christenson, 1993; Galvin et al., 1993; Lee 

et al., 1995).  

A novel and important finding of this study is that gilts respond differentially to 

dietary arginine supplementation, depending on CL numbers. Specifically, dietary 
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supplementation with 0.4% or 0.8% L-arginine increased the number of live fetuses and 

embryonic survival in gilts with 15 to 18 CL (Table 4.2), which is 2.6 to 5.6 greater than 

the average number of CL (12.4) for gilts that did not exhibit improved reproductive 

performance (Table 4.1). Results of our previous study (Chapter II) suggest that 

progesterone plays a permissive role in the action of arginine to enhance embryonic/fetal 

survival. Because body weights of gilts did not differ between the control and arginine-

supplemented groups, more CL may result in greater concentrations of progesterone in 

maternal circulation and conceptus.  It is tempting to speculate that expression of some 

progesterone-inducible genes may be necessary for arginine to enhance embryonic/fetal 

survival in mammals. Alternatively, arginine or its metabolic products (e.g., creatine, 

NO, and polyamines) may improve the uterine environment in gilts with high CL 

numbers. Further research is warranted to test this novel hypothesis.    

   Results of this study indicate a programming effect of arginine supplementation 

during early pregnancy on the availability of amino acids in the conceptus. Specifically, 

although arginine supplementation was discontinued after d 25 of gestation, there were 

marked differences on d 60 of gestation in total amounts of several key amino acids 

(e.g., glutamine, serine, glycine, and arginine) in ALF and AMF that are related to one-

carbon-unit metabolism as well as the synthesis of glucose and polyamines. These 

pathways play crucial roles in protein synthesis, cell proliferation, and development of 

the conceptus (Wu et al. 2008). This may provide a nutritional basis to explain improved 

embryonic survival at mid-gestation despite short-term supplementation with arginine 

between d 14 and 25 of gestation. Interestingly, in arginine-supplemented gilts with 9 to 
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14 CL, increases in total amounts of some amino acids were observed on d 60 of 

gestation. Whether this change plays a role in reducing fetal deaths between d 60 of 

gestation and parturition is not known. Such a possibility would provide an additional 

mechanism for improving litter size at birth.   

 Because feed intake and concentrations of amino acids in plasma did not differ 

between control and arginine-supplemented gilts, possible mechanisms responsible for 

increased amounts of water, ions, and amino acids in ALF and AMF would be: a) altered 

metabolism of nutrients in the conceptus; and b) enhanced transport of nutrients across 

the placenta, amniotic membrane, and allantoic membrane. In this regard, it is 

noteworthy that we recently discovered that osteopontin rapidly stimulates ion transport 

across the porcine placenta (Johnson et al. 2011). We hypothesize that arginine up-

regulates expression of this integrin-binding protein in the placenta and endometrium, 

thereby enhancing the transfer of nutrients from mother to fetus. Future experiments are 

necessary to test this novel hypothesis. 

      In summary, reproductive performance of gilts with 15 to 18 CL at d 60 of gestation 

was improved by dietary arginine supplementation between d 14 and 25 of gestation. In 

contrast, no changes in fetal growth and survival were observed in gilts with 9 to 14 CL. 

Arginine supplementation during early gestation can improve uterine capacity and 

possibly have a programming effect on placental transport of nutrients from mother to 

fetus. These novel findings provide a much-needed basis for design of future 

experiments to optimize beneficial effects of arginine on improving embryonic survival 

and development in swine and other mammals. 
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CHAPTER V 

MECHANISM OF ARGININE FUNCTION IN PIG REPRODUCTION 

 

This study was conducted to determine the effects of arginine supplementation on the 

expression of key genes related to arginine transport, nitric oxide and polyamine 

synthesis, mechanistic target of rapamycin (MTOR) activation, and other possible cell 

signaling pathways. Placentae and endometria were collected and snap-frozen in liquid 

nitrogen. Total RNA and protein were extracted from the frozen tissues. Quantitative 

RT-PCR, western blotting, and microarray analyses were performed to determine the 

changes of gene expression at the mRNA and protein levels.  Results indicated that 

placental the abundance of proteins encoded for by genes related to arginine transport 

and metabolism, including cationic amino acid transporter 1, endothelial nitric oxide 

synthase (NOS3), phosphorylated-NOS3, ornithine decarboxylase, and guanosine 

triphosphate cyclohydrolase-I were increased by dietary supplementation with 0.8% L-

arginine between d 0 and 25 of gestation. The abundance of total and phosphorylated-

MTOR, but not eukaryotic translation initiation factor 4E binding protein 1 and 

ribosomal protein S6 kinase 1, were enhanced by dietary 0.8% L-arginine 

supplementation between d 0 and 25 of gestation. Interestingly, the mRNA and protein 

levels of the genes related to MTOR signaling and syntheses of NO and polyamines 

were not affected by dietary supplementation with 0.8% L-arginine between d 14 and 25 

of gestation. Microarray analysis revealed that supplementation with 0.8% arginine 

between d 14 and 25 of gestation affected placental expression of 575 genes, with 146 
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genes being up-regulated and 429 genes being down-regulated. These differentially 

expressed genes play important roles in nutrient metabolism, as well as insulin, TGFB, 

and Notch signaling pathways. 

Introduction 

There is growing interest in the role of arginine nutrition in enhancing litter size in 

livestock species. However, few studies have been conducted to explore the underlying 

mechanisms. Thus, there is limited understanding of regulatory functions of arginine in 

the placenta. Results of recent studies indicated that L-arginine is not only a building 

block for proteins, but also has roles in cell signaling (Wu et al. 2009).   

     Specific transporters are needed for transporting arginine across cell membranes. 

There are four possible systems (y+, y+L, b0+, and B0+) for transport of L-arginine by 

animal cells. The most important transporter for arginine uptake in most cell types is 

system y+, which is a high-affinity Na+-independent system. Three different Solute 

Carrier Family 7 (Cationic Amino Acid Transporter, Y+ System) Member genes 

(SLC7A1, SLC7A2, SLC7A3) which encode for four homologous proteins SLC7A1, 

SLC7A2, SLC7B2 and SLC7A3 (Devés and Boyd 1998). Arginine supplementation 

may increase arginine availability by increasing expression of its transporters in 

placental cells.  

     Arginine metabolites such as nitric oxide (NO) and polyamines may be key mediators 

for the function of L-arginine in reproduction. NO is essential for ovulation, embryonic 

development, and implantation (Maul et al. 2003). NO is synthesized from L-arginine by 

NO synthase (NOS) (Bredt and Snyder 1994). There are three isoforms of NOS: 
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neuronal NOS (nNOS; also known as NOS1), inducible NOS (iNOS; also known as 

NOS2), and endothelial NOS (eNOS; also known as NOS3). NOS1 and NOS3 are 

constitutively expressed in a cell-specific manner and produce low levels of NO (Ignarro 

1987). In contrast, NOS2 is induced by certain immunological stimuli, including LPS 

and inflammatory cytokines, to generate large amounts of NO (Li et al. 2007). 

Tetrahydrobiopterin (BH4) is an essential cofactor for all isoforms of NOS. Increasing 

extracellular levels of arginine enhances NO production through increasing the 

availability of BH4 whose de novo synthesis from guanosine triphosphate (GTP) requires 

GTP cyclohydrolase-I (GCH1) as the first and rate-controlling enzyme (Shi et al. 2004) 

The key function for ornithine (another metabolite of arginine) is the synthesis of 

polyamines (putrescine, spermidine, and spermine) via ornithine decarboxylase (ODC1). 

Polyamines are crucial for cell growth, migration, and proliferation, as well as 

angiogenesis (Wu 2009). 

     The mechanistic target of rapamycin (MTOR) cell signaling pathway in skeletal 

muscle (Yao et al. 2008) and small intestine (Rhoads et al. 2006) is known to be 

activated by physiological levels of arginine. MTOR is a highly conserved 

serine/threonine kinase of the phosphatidylinositol kinase-related kinase family (Inoki 

and Guan 2006). The MTOR signaling pathway plays a central role in regulating cell 

growth by sensing and responding to environmental cues, including nutrients 

(Wullschleger et al. 2006). Two distinct MTOR complexes, MTORC1 and MTORC2, 

have been identified in eukaryotic cells (Wullschleger et al. 2006). MTORC1 plays a key 

role in cell proliferation and mRNA translation for protein synthesis, whereas MTORC2 
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is associated with cell migration and cytoskeletal reorganization which is not inhibited 

by rapamycin (Bazer et al. 2009).  MTOR phosphorylates eukaryotic initiation factor 4E 

binding protein 1 (elF4EBP1) and ribosomal protein S6 kinase (RPS6K) (Carrera 2004). 

Most recently, L-arginine was reported to stimulate proliferation of ovine and porcine 

trophectoderm cells through the MTOR-RPS6K-RPS6 signaling cascade (Kim et al. 

2011; Kong et al. 2011). 

     This study was conducted to determine the effects of arginine supplementation on: 1) 

expression of key genes related to arginine transport, synthesis of NO and polyamines, 

and MTOR cell signaling based on RT-PCR and western blotting techniques; and 2) 

global gene expression based on microarray analysis.   

Materials and methods 

Tissue collection   

At the time of sample collection in Experiments 1 and 2, each placenta from a live fetus 

was snap-frozen in liquid nitrogen. Endometrium and myometrium were separated using 

curved scissors and placed immediately in liquid nitrogen. All snap-frozen samples were 

stored at -80oC until analyzed. Eight placentae from each gilt in each group were 

selected randomly for extraction of total RNA and protein.  

Western blotting   

Frozen placentae and endometria (approximately 200 mg) were homogenized at 4oC 

with a model PRO200 homogenizer (PRO Scientific, Oxford, CT) in 0.6 mL of lysis 

buffer (1% sodium deoxycholate, 1% NP-40, 0.1% SDS, 20 mM Tris, 150 mM NaCl, 

5mM EDTA, 1 mM Na3VO4, 1 mM NaF, 2.5 mM sodium pyrophosphate, 1 mM �-



99 
 

 
  

glycerophosphate) containing 1X protease inhibitor cocktail (Set I, Calbiochem, La 

Jolla, CA). The lysates were centrifuged at 16,000 g and 4oC for 15 min. The supernatant 

fluid was transferred into a new tube for protein assay and western blot analyses. Protein 

concentrations were measured using the Pierce BCA Protein Assay Kit (Thermo 

Scientific, USA) with bovine serum albumin as a standard. Proteins were denatured in 

4X NuPAGE LDS Sample Buffer (Invitrogen) containing 10% mercaptoethanol. 

Denatured protein (60 �g for phosphoproteins and 40 �g for other proteins) were loaded 

into 4-12% NuPAGE® Novex Bis-Tris Pre-Cast Gels (Invitrogen). Electrophoresis was 

conducted at 16 W constantly for 1.5 h in NuPAGE® MOPS SDS Running Buffer 

(Invitrogen). Proteins were transferred to a nitrocellulose membrane (Bio-Rad, Hercules, 

CA, USA) in Transfer Buffer (25 mM Tris, 192 mM glycine, and 5% methanol) at 12 V 

overnight, using the Bio-Rad Transblot apparatus (Hercules, CA). Membranes were 

blocked in 5% nonfat dry milk (5% BSA for phosphoproteins) which was dissolved in 

the Tris-buffered saline-Tween solution (TBST; 20 mM Tris, 150 mM NaCl, pH 7.6, and 

0.1% Tween-20) for 3 h at room temperature. The membranes were incubated with 

primary antibodies (Table 5.1) overnight at 4oC with gentle rocking. After being washed 

three times with TBST, the membranes were incubated at room temperature for 1 h with 

a secondary antibody (0.8 mg/mL Donkey Anti-Mouse IgG or Donkey Anti-Rabbit IgG, 

Jackson ImmunoResearch Laboratories, Inc., West Grove, PA) at 1:50,000. Finally, the 

membranes were washed four to six times with TTBS, followed by development using 

Supersignal West Dura Extended Duration Substrate according to the manufacturer’s 

instructions (Thermo Fisher Scientific Inc., USA). Western blots were quantified by 
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measuring the intensity of target protein bands using a ChemiDoc XRS system and 

Quantity One software (Bio-Rad, Hercules, CA). Images for the glyceraldehyde 3-

phosphate dehydrogenase (GAPDH) protein were used to normalize the abundance of 

the target proteins. 

 

Table 5.1 Information on antibodies used for western blotting 

 
Protein  

 
Company 

 
Catalog No. 

 
Dilution 

 
Size (kDa) 

CAT1 Sigma AV43838  1:1000 67 

NOS3 BD 
Transduction 
Laboratories 

610297  1:1000 140 

P-NOS3 
(Ser1177) 

Cell Signaling 
Technology 

9571S  1:500 140 

ODC1 Atlas 
Antibodies  

HPA001536  1:500 51 

GCH1 Produced by Drs. C.J. Meininger 
and G. Wu, Texas A&M University 

 1:500 29 

MTOR Cell Signaling 
Technology 

2983  1:1000 289 

P- MTOR 

(Ser2448) 

Cell Signaling 
Technology 

2974  1:500 289 

RPS6K Cell Signaling 
Technology 

9202  1:500 70 

P-RPS6K 
(Thr389) 

Cell Signaling 
Technology 

9206  1:1000 70 

EIF4EBP1 Cell Signaling 
Technology 

9452  1:1000 15-20 

P- EIF4EBP1 
(Thr70) 

Cell Signaling 
Technology 

9455  1:1000 15-20 

GAPDH Cell Signaling 
Technology 

2118  1:1000 37 
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Total RNA isolation 

Total RNA was isolated from the frozen placentae according to the manual of the 

RNeasy Mini Kit (Qiagen Inc., Valencia, CA). The quality of total RNA was determined 

by 1% agarose electrophoresis. The quantity of the total RNA was measured by 

NanoDrop 1000 Spectrophotometer (Thermo Scientific, USA). 

Microarray analysis 

Total RNA (400 ng) was reverse-transcribed to cDNA. T7 RNA polymerase-driven 

RNA synthesis was used for the preparation and labeling of cRNA with Cy3 or Cy5 dye. 

The labeled cRNA probes were purified with the RNeasy Mini Kit (Qiagen Inc., 

Valencia, CA). Purified cRNA was quantified with the NanoDrop 1000, and 825 ng for 

each were hybridized on a 44 K Agilent porcine gene expression microarray (Agilent, 

Santa Clara, CA). This array includes 43,803 probes which were prepared using gene 

sources from RefSeq, UniGene, and TIGR. The slide format was printed using the 

Agilent’s 60-mer SurePrint technology. The hybridized slides were washed according 

the manual of a commercial kit (Agilent Technology, Palo Alto, CA), followed by 

scanning with a Genepix 4100A scanner (Molecular Devices Corporation, Sunnyvale, 

CA) with the tolerance of saturation setting of 0.005%. A locally weighted linear 

regression (LOWESS) method was applied to normalize the data by the median of the 

signal intensity and local background values. SAS 9.1.3 program (SAS Institute Inc. 

Cary, NC) with mixed model was used to analyze the normalized data (Chiang et al. 

2008). Statistical significance to detect differentially expressed genes was determined by 

the approximate t-test for least-square means, where P < 0.05 was considered to be 
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statistically different. The false discovery rate (Q value) was calculated for each P-value 

using the R program (Chiang et al. 2008). Genes were annotated by basic local 

alignment search tool (BLAST) in the database of the national center for biotechnology 

information (NCBI) and the institute for genomic research (TIGR). The database for 

annotation, visualization and integrated discovery (DAVID) version 6.7 was used to 

generate specific functional annotations of biological processes for the differentially 

expressed genes (Dennis et al. 2003). 

Quantitative real-time PCR 

Total RNA (1 �g) from each sample was used for cDNA synthesis with a random 

hexamer primer of a Thermoscript RT PCR system kit (Invitrogen, Carlsbad, CA) 

according to the manufacturer's manual. The cDNAs were quantified by quantitative RT-

PCR using the ABI Prism 7900HT system with SYBR Green PCR Master Mix (Applied 

Biosystems, Foster, CA). The primers for each gene were designed by using the Oligo6 

program (Table 5.2). The cycling conditions of quantitative RT-PCR amplification were: 

1 cycle at 95°C for 10 min, 40 cycles at 95°C for 15 s and optimal annealing temperature 

for 1 min (Table 5.2). The porcine tubulin � gene used as the housekeeping gene. 

Dissociation curves were performed at the end of amplification for validating data 

quality. All samples were run in triplicate and the average critical threshold cycle (Ct) 

was used for calculating relative mRNA levels of target genes by fold-change and 

statistical significance (Fu et al. 2010). 
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Table 5.2 Sequence and optimal annealing temperatures for primers used in the 
quantitative RT-PCR  

Accession 
No. 

 

Gene 

 

Primer sequence 
Product 

Length (bp) 
Annealing 
Temp. (oC) 

TC290976 Antigen  Forward: 5’- ACTAACTTGAAGTAGCGTGG -3’ 

Reverse:5’- TTTCTGTGTCTGGGACTGTT-3’ 

75 48 

AY610027 ARV1  Forward: 5’- CTCTGCGTCTTCTGTTTGCT-3’ 

Reverse:5’- CCCATTCCTTGGCATATCTG-3’ 

109 53 

TC274873 AMPK Forward: 5’- CAACATTTTCCACCCTTTCG-3’ 

Reverse:5’- GGGCTGCTTTCCAGATTACC-3’ 

94 53.7 

EW039857 CALCR  Forward: 5’- TCCAGCCTTGTTATCGTCTC-3’ 

Reverse:5’- GTGATTTGGATGCAGCTTTG-3’ 

79 53 

EW109654 CASC5  

 

Forward: 5’- CTGTGGTCCTATGAATGTTA -3’ 

Reverse:5’- AACTGTCCTTTCCAGGTTAC-3’ 

289 48 

NM_001001
861  

CXCL2 Forward: 5’- CACTGTGACCAAACGGAA -3’ 

Reverse:5’- GTTGGCACTGCTCTTGTTT-3’ 

120 53 

TC295311 Cytc Forward: 5’- CCATTTCGGTGACATTACTG-3’ 

Reverse:5’- TCTCTCATTCCGTAGGTTCT-3’ 

294 51.4 

TC249250 DRP  Forward: 5’- CAAGTGTGAAAGGTGAAGC-3’ 

Reverse: 5’-GCTATTCTGTGGTCTGCCT-3’ 

220 49 

TC277265 E2F3 Forward: 5’- GCTTTGCGACAAGTGCCTAC-3’ 

Reverse:5’- GGCAGCTAACCAGATGAGAT-3’ 

113 51.6 

EW299999 ElF Forward: 5’- GGAAGACACCACAGAAAGT-3’ 

Reverse:5’- CTTCTCTTAGCCTCTTAGC-3’ 

110 48.9 

TC246681 EndoRT  Forward: 5’- CAACATGGATGGACCTAGAA-3’ 

Reverse:5’- TGTCTGTGAATCAGCATCTG-3’ 

146 50 

NM_214003 IGFBP2 Forward: 5’- GTGGATGGGAACGTGAACTT-3’ 

Reverse:5’- GTGCTGCTCCGTGACTTTCT-3’ 

111 56.8 

TC274812  

 

Mdase Forward: 5’- CAGTCATAAGCGTGGTGGAA-3’ 

Reverse:5’- CGTGACTTTCTCCAGCATCC-3’ 

94 55 

TC254633 NAS  Forward: 5’- CCTCTACCTGACTTCCATTT-3’ 

Reverse: 5’- CATGTTCACAGATACCACGA-3’ 

98 48 

TC267605 PFKFB1 Forward: 5’- GCCTAAGATGACTCAAGAGA-3’ 

Reverse:5’- CGTGGAGATGTAGGTCTTT-3’ 

187 53.3 
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Table 5.2 Continued 

Accession 
No. 

 

Gene 

 

Primer sequence 
Product 

Length (bp) 
Annealing 
Temp. (oC) 

AK233690 PGM1 Forward: 5’- GATTGCTTTGTACGAGACCC-3’ 

Reverse: 5’- CTCACGGATGTGGTCAGAAC-3’ 

118 54 

TC279371 PI3K Forward: 5’- TGAAGGCACCGAAGTTGTCC-3’ 

Reverse: 5’- TGAAGCCCTGTGTCGTCTGG-3’ 

149 58 

NM_213963 PPARGC Forward: 5’- AACCCACAGAGACCCGAAAC-3’ 

Reverse:5’- AAATGTTGCGACTGCGATTG-3’ 

82 53 

AK231515 Presenilin Forward: 5’- AAGGAGCACAGCGGACTCT-3’ 

Reverse:5’- TGGGTACTGAACGGGTGTTT-3’ 

299 57 

TC275071 RAG 

 

Forward: 5’- ATGCCAGATCCTTAACCCAC-3’ 

Reverse:5’- GCAGCAGAAATGAATCCAAC-3’ 

82 53 

BI341657 RasGEF 

 

Forward: 5’- CTCCCATCTACAGCGAGGAA-3’ 

Reverse: 5’- GAGCGTGGTCCTGAGGGTCT-3’ 

104 56 

TC243513 RHBG Forward: 5’- GTGCCTACTTTGGGTTGGTC-3’ 

Reverse:5’- ATGGCAAAGAGGTCCGAATG-3’ 

103 56 

TC257543 RU2S 

 

Forward: 5’- CACTTCTGGAACCCTGCACT-3’ 

Reverse:5’- TGATCCCACTGATTCAAGGC-3’ 

103 53 

NM_001001
863 

TNNT3 

 

Forward: 5’- CCTGTACCARCTGGAGATTG-3’ 

Reverse: 5’- CTGAGGTTGATGATGTCGTA-3’ 

78 51 

DQ225365 Tubulin � Forward: 5’-GCAGTGTTTGTAGACCTG GA-3’ 

Reverse:5’-CAATGGTGTAGTGACCTCGG-3’ 

139 55 

TC293083 unknown Forward: 5’- TAACCTATCAAATGGCAGTT-3’ 

Reverse:5’- CAGAAACAGGACTTTGGGA-3’ 

144 48 

NM_214295 NOS3 Forward: 5’- GCCTACAGGACCCAAGATG-3’ 

Reverse: 5’- TGATGAAGCAGGGTACAGGG-3’ 

100 57 

EU534186 ODC1 Forward: 5’- GGCGCTGAGGTCGGTTTC-3’ 

Reverse:5’- TGCCTGGCTCCGCTATGATT-3’ 

166 57 

XM_001924
171 

GTPCH Forward: 5’- CATGCAGTTCTTCACCAA -3’ 

Reverse: 5’- CCTTCACAATCACCATCTCA-3’ 

98 52 

EU288086 MTOR Forward: 5’- GTCTCTATCAAGTTGCTGGC-3’ 

Reverse: 5’- CTTTCGAGATGGCAATGGAA-3’ 

126 53 

NM_001012
613             

SCF7A1 

 

Forward: 5’- ACTCGACTCTCGTGGACCTT-3’ 

Reverse:5’ GGTCAGTTGACTTTCTGCCT-3’ 

134 54 
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Statistical analysis 

Data were analyzed using the General Linear Model procedures of SPSS (Version 15.0, 

Chicago, IL) for a randomized complete block design. Gilt was considered as the 

experimental unit. Differences among treatment means were determined by using the 

Duncan multiple comparison test.  Probability values < 0.05 were considered statistically 

significant.  

Results 

Expression of genes related to arginine transport and metabolism 

Dietary supplementation with 0.8% L-arginine between d 0 and 25 of gestation increased 

(P<0.05) the abundance of SLCA1, NOS3, pNOS3, ODC1 and GCH1 placental proteins 

(Fig. 5.1). However, expression of these genes at the mRNA and protein levels in  

placentae (Table 5.3; 5.4) and endometria was not affected when dietary L-arginine 

supplementation was provided between d 14 and 25 of gestation (Table 5.5).  Dietary 

supplementation with 0.4% L-arginine either between d 0 and 25 of gestation or between 

d 14 and 25 of gestation had no effect on expression of these genes in the placentae (Fig. 

5.1; Table 5.3). 

Expression of proteins related to the MTOR signaling pathway 

Dietary supplementation with 0.8% L-arginine between d 0 and 25 of gestation increased 

(P < 0.05) the abundance of total and p-MTOR (Fig. 5.2), but did not affect abundance 

of  total or p-EIF4EBP1 and RPS6K (Fig. 5.2). Compared with the control group, dietary 

supplementation with 0.4% arginine either between d 0 and 25 of gestation or between d 
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14 and 25 of gestation had no effect on the abundance of placental MTOR protein (Fig. 

5.2; Table 5.3). 

 

 

Fig. 5.1 Relative abundance of proteins related to arginine transport and metabolism in 
placentae of gilts fed diets supplemented with 0.0, 0.4, or 0.8% L-arginine (Arg) 
between d 0 and 25 of gestation. Protein levels of glyceraldehyde 3-phosphate 
dehydrogenase (GAPDH) were used to normalize the abundance of target proteins. (A.) 
CAT1; (B.) NOS3; (C.) p-NOS3; (D.) ODC1; E.) GCH1. 



107 
 

 
  

 

Fig. 5.2 Relative abundance of proteins related to MTOR cell signaling pathway in 
placentae of gilts fed diets supplemented with 0.0, 0.4, or 0.8% L-arginine (Arg) 
between d 0 and 25 of gestation. Protein levels of glyceraldehyde 3-phosphate 
dehydrogenase (GAPDH) were used to normalize the abundance of target proteins. (A.) 
MTOR; (B.) p-MTOR; (C.) RPS6K; (D.) p-RPS6K; (E.) EIF4EBP1; (F.) p-EIF4EBP1. 
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Table 5.3 Relative abundance of proteins related to arginine transport, metabolism, and 
MTOR cell signaling pathway in placentae of gilts fed diets supplemented with 0.0%, 
0.4% or 0.8% L-arginine (Arg) between d 14 and 25 of pregnancy*  

Protein Control 0.4%Arg 0.8%Arg SEM P-Value 

CAT1 1.155 0.908 0.938 0.052 0.114 

NOS3 0.894 1.075 0.968 0.167 0.746 

P-NOS3 1.041 1.026 0.954 0.062 0.581 

ODC1 0.913 1.126 0.835 0.301 0.780 

GCH1 1.014 1.036 0.954 0.032 0.214 

MTOR 0.931 1.091 1.020 0.055 0.153 

P-MTOR 1.018 1.015 0.983 0.020 0.414 

RPS6K 1.358 0.869 0.928 0.200 0.205 

P-RPS6K 1.015 1.063 0.902 0.055 0.144 

EIF4EBP1 1.291 0.954 0.866 0.108 0.343 

P-EIF4EBP1 1.073 1.119 0.799 0.088 0.265 

*Pooled SEM; n=8; protein levels were determined by western blotting; protein levels of glyceraldehyde 
3-phosphate dehydrogenase (GAPDH) were used to normalize the abundance of target proteins. 
 

 

Table 5.4 Relative levels of mRNA for select genes in placentae of gilts supplemented 
with 0.8% L-arginine in the diet, compared with the control group* 

*n = 8; P < 0.05 was considered significant. 
 

 

 

          Gene Fold change  P-value 

         NOS3 0.76 0.383 

         GCH1 0.77 0.131 

         MTOR 1.04 0.520 

         ODC1 0.83 0.044 

         SCF7A1 0.94 0.550 
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Table 5.5  Relative abundance of proteins in endometria of gilts fed diets supplemented 
with 0.0%, 0.4% or 0.8% L-arginine (Arg) between d 14 and 25 of gestation* 

Protein Control 0.4% Arg 0.8% Arg SEM P-Value 

MTOR 0.978 1.053 0.979 0.021 0.275 

RPS6K 1.060 0.953 1.008 0.175 0.972 

EIF4EBP1 1.103 0.901 1.006 0.142 0.857 

P-MTOR 0.978 1.006 1.019 0.035 0.897 

P-RPS6K 1.026 0.963 1.008 0.053 0.889 

P-EIF4EBP1 0.976 0.910 1.106 0.067 0.936 

NOS3 1.073 1.003 0.903 0.073 0.652 

P-NOS3 0.995 1.034 0.936 0.088 0.909 

ODC1 1.208 0.875 0.891 0.084 0.196 

*Pooled SEM; n=8; protein levels were determined by western blotting; protein levels of glyceraldehyde 
3-phosphate dehydrogenase (GAPDH) were used to normalize the abundance of target proteins 
 

 

Genes related to arginine function based on microarray analysis 

Microarray results from 22 expressed sequence tags (ESTs) were verified using 

quantitative RT-PCR (Table 5.6). One hundred and forty six ESTs were up-regulated 

and 429 ESTs were down-regulated by dietary supplementation with 0.8% arginine 

between d 14 and 25 of gestation (Table 5.7; 5.8). Functional analysis by the DAVID 

program revealed alterations in placental expression of genes in response to dietary 

supplementation with 0.8% L-arginine. These genes are known to play important roles in 

fatty acids biosynthesis, as well as insulin, transforming growth factor beta, and notch 

signaling pathways (Table 5.9). 
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Table 5.6 Verification of microarray data using quantitative RT-PCR 

Accession No. Gene name 
Microarra
y P Value 

Microarray 
Fold change 

RT-PCR 
P Value 

RT-PCR 
Fold change 

      

EW039857 CALCR 0.038 3.23 0.408 0.57 

TC246681 EndoRT 0.024 2.87 0.157 1.36 

AK231515 Presenilin 0.006 2.31 0.021 1.77 

AK233690 PGM1 0.033 2.30 0.624 0.96 

TC275071  RAG 0.006 1.76 0.068 1.36 

TC267605 PFKFB1 0.025 1.55 0.162 1.39 

TC279371 PI3K 0.027 1.45 0.595 0.96 

TC254633 NAS 0.045 1.39 0.556 1.11 

EW109654  CASC5 0.002 1.35 0.164 1.21 

EW299999 elF 0.015 1.17 0.910 1.02 

TC277265 E2F3 0.043 1.16 0.171 0.90 

TC249250 DRP 0.051 1.14 0.786 1.03 

TC295311 Cytc 0.016 0.84 0.238 1.33 

AY610027  ARV1 0.008 0.80 0.273 1.09 

NM_213963 PPARGC 0.032 0.72 0.088 0.70 

TC274812  Mdase 0.000 0.71 0.612 0.96 

TC274873 AMPK 0.022 0.66 0.638 0.94 

NM_001001861  CXCL2 0.013 0.49 0.016 0.43 

NM_214003 IGFBP2 0.002 0.47 0.094 0.51 

TC243513 RHBG 0.006 0.45 0.016 0.63 

TC290976 Antigen 0.006 0.35 0.839 1.04 

TC257543  RU2S 0.015 0.23 0.044 0.38 
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Table 5.7 Genes for which expression in the porcine placentae was up-regulated by 
dietary supplementation with 0.8% L-arginine between d 14 and 25 of gestation in 
comparison with the control group 

EST Accession No. Gene Name P-Value 
Fold 

Change 

BX918610 NM_001001863 Troponin T type 3 0.004 4.61 

TC292911* XM_003129590             Leucine-rich repeat-
containing protein 51-like 

0.001 4.49 

AK231515 EU287432                Presenilin 2 0.006 2.31 

TC275071* NM_000536 RAG-2   

TC278497* NM_018941               Ceroid-lipofuscinosis, 
neuronal 8 

0.010 2.23 

TC289044* XM_001929300            Sus scrofa leucine-rich 
repeat-containing protein 
18-like 

0.020 2.10 

TC275071* AB091391   Recombination activating 
protein 2 

0.006 1.76 

TC275071* AB091391  Recombination activating 
protein 2 

0.006 1.76 

TC274023* NM_001097446            Apolipoprotein B mRNA 
editing enzyme, catalytic 
polypeptide-like 3F  

0.005 1.70 

TC274023* NM_001097446            APOBEC3F 0.005 1.70 

BX666795  
XM_001924347            

Similar to SLCO3A1 
protein  

0.003 1.67 

BX666795 XM_001924347            SLCO3A1 protein 0.003 1.67 

TC278155* NM_214378 RH 0.019 1.66 

EW660666 NM_001045886 

 

Phenazine biosynthesis-
like protein domain 
containing  

0.013 1.54 

TC246855* AY208121 Myostatin 0.022 1.54 

AY610045 XM_001924474            Similar to androgen-
induced 1  

0.018 1.42 
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Table 5.7 Continued 

EST Accession No. Gene Name P-Value 
Fold 

Change 

TC261962* EW422073 HBE1 0.035 1.31 

AK234630 XM_001927389            FK506-binding 
protein  

0.009 1.28 

AJ584674 NM_213757 ST3GAL4 0.000 1.27 

AK239509 AB529869                 PECR mRNA for 
peroxisomal trans-2-
enoyl-CoA reductase 

0.027 1.25 

BX667232 XM_001925672            Similar to pecanex-
like protein 1  

0.030 1.23 

CN155716 EU617320 Small calcium-
binding 
mitochondrial carrier 
1  

0.038 1.23 

EV880225 DQ629170 RPS6 0.017 1.22 

CK467702 NM_001035277            CDH13 0.013 1.22 

CD572284 AJ009912 PLP 0.006 1.21 

DN125568 GQ184633 CDC2 0.048 1.18 

*Sequence can be accessed on http://compbio.dfci.harvard.edu/cgi-bin/tgi. 
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Table 5.8 Genes for which expression in porcine placentae was down-regulated by 
dietary supplementation with 0.8% L-arginine between d 14 and 25 of gestation in 
comparison with the control group 

EST Accession No. Gene Name P-value 
Fold 

Change 

BI341657 XM_001926447            RasGEF domain 
family, member 1A 

0.013 0.18 

TC273367* XM_003129699                         Probable dolichyl 
pyrophosphate 
Glc1Man9GlcNAc2 
alpha-1,3-
glucosyltransferase-like 

0.010 0.20 

TC257543* XM_001927988 RU2S  0.015 0.23 

DN100844 FJ263680 Acetyl-coenzyme A 
carboxylase alpha 

0.003 0.27 

NP321728 AF274712 Pig endogenous 
retrovirus group Beta3 
polymerase 

0.014 0.29 

BI360386 XM_003133904            Oncostatin-M-specific 
receptor subunit beta-
like 

0.009 0.31 

TC238637* NM_214376  Amphiregulin  0.045 0.31 

CF178669 AJ427478  ASIP  0.023 0.33 

CX061534 XM_003130350            Torsin-1A-interacting 
protein 1-like 

0.007 0.40 

TC301037* XM_003357826            Serine/threonine-
protein kinase DCLK1-
like 

0.012 0.42 

TC243513* NM_213996 Rh family, B 
glycoprotein  

0.006 0.45 

DN106254 NM_001098597 OSTN 0.025 0.47 

AY577905 NM_001001861 Chemokine (C-X-C 
motif) ligand 2 

0.013 0.49 

TC278652* NM_214003 Insulin-like growth 
factor binding protein 2  

0.002 0.49 
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Table 5.8 Continued 

EST Accession No. Gene Name P-value 
Fold 

Change 

BP443132 XM_864245.3 CYP2C33 0.037 0.50 

TC280345* XM_003122165            Golgin A1  0.018 0.51 

AY198323 NM_214257 DPP4 0.030 0.51 

DN106254 NM_001098597 OSTN 0.048 0.51 

TC290654* NM_001105290 Bmp7 0.030 0.55 

AK235882 NM_214048 Arginase 1 0.014 0.55 

CO989438 XM_001928917            Potassium large 
conductance calcium-
activated channel, subfamily 
M, beta member 4  

0.017 0.56 

DQ836054 NM_001097442 DAB1 0.021 0.57 

TC270858* AF228059  Decay-accelerating factor 
CD55  

0.026 0.58 

CV878027  XM_001926796            SAMD4A  0.018 0.58 

TC290589* XM_003132094            Upstream binding protein 1 0.005 0.58 

CA513725 XM_003129205            Heat shock 70kDa protein 
4-like 

0.016 0.58 

EV881857  XM_003132080            Sodium bicarbonate 
cotransporter 3-like 

0.009 0.59 

TC266622* XM_003127574            Methylenetetrahydrofolate 
reductase (NAD(P)H), 
transcript variant 1 

0.018 0.60 

TC286353* NM_001243919             CUE domain containing 1  0.007 0.60 

TC250322* NM_001037965 Inhibitor of DNA binding 2 0.007 0.61 

CN159399 NM_001128506 Charged multivesicular 
body protein 4b-like 

0.012 0.61 

AK230591 NM_001128488            Antizyme inhibitor 1 0.016 0.62 

AK234300 XM_003125957            RIB43A-like with coiled-
coils protein 2-like  

0.005 0.627 
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Table 5.8 Continued 

EST Accession No. Gene Name P-value 
Fold 

Change 

TC247541* XM_003134192            Pericentriolar material 1 0.015 0.64 

CF181641 XM_003128338           Dystonin, transcript variant 
2 

0.015 0.64 

AK233736 XM_001927836            Similar to Down syndrome 
critical region gene 1-like 1 
protein 

0.033 0.65 

DQ866834 DQ279926 RXRalpha 0.047 0.65 

AB271924 NM_001099924 FGFR2 0.019 0.68 

AY850382 NM_001011505 KLF13 0.006 0.68 

AB116561 NM_213772 IFNAR1 0.012 0.69 

TC248589* NM_001077215 ROD1 0.025 0.70 

AY610204 NM_214296 RND3 0.039 0.70 

BP142559 XM_001926474            AKAP13 0.016 0.70 

TC257240* XM_001925375            Similar to PR domain 
containing 1 

0.042 0.71 

AY284842 AY284842 GPAT 0.016 0.71 

AK235700 NM_001078670 Interferon regulatory factor 
9  

0.024 0.71 

AK235466 DQ105589S2 CDS2 0.013 0.71 

EU095967 NM_001105286 TRAF6 0.023 0.71 

BP444119 NM_214224 HPD 0.007 0.72 

AY159788 NM_214266 PRKAA2 0.025 0.72 

AK235681 NM_213963 PPARGC-1 0.032 0.72 

DQ853415 NM_001078666 PSEN2 0.034 0.72 

AK240475 XM_001927539            Similar to general 
transcription factor IIH 

0.006 0.73 

BP446317 NM_001097440 BIN1 0.036 0.73 
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Table 5.8 Continued 

EST Accession No. Gene Name P-value 
Fold 

Change 

CK461960 NM_001162401            LPAR2 0.048 0.73 

AB271924 NM_001099924 FGFR2 0.048 0.73 

BI184146 XM_001927725            PTGFRN 0.002 0.74 

CV875504 XM_001926134            Similar to chloride channel 3  0.040 0.74 

EU009401 NM_001098605 PNPLA2 0.014 0.74 

TC261381 NM_213973 HSP90 0.036 0.75 

AK233668 NM_213830 FBP 0.029 0.75 

AY609622 AY609622 Similar to small nuclear RNA 
activating complex 

0.037 0.76 

AB254406 NM_001101814 NR1H3 0.028 0.77 

DN120475 XM_001927228            Tyrosine 3-
monooxygenase/tryptophan 
5-monooxygenase activation 
protein 

0.013 0.77 

AY644721 NM_001009581 PAP7 0.037 0.78 

AJ955195 XM_001929149            Similar to transmembrane 
protein 77  

0.036 0.79 

AK237448 XM_001928092            Similar to Rab-1C 0.033 0.79 

AK234427 XM_001928746            Similar to adenosine 
deaminase-like protein  

0.046 0.79 

TC278200* XM_001925656            Similar to procollagen 0.038 0.79 

AK235686 XM_001925381            Similar to insulin-degrading 
enzyme  

0.016 0.80 

DN100853 AF339885 Mannose-6-
phosphate/insulin-like 
growth factor II receptor  

0.038 0.81 

*Sequence can be accessed on http://compbio.dfci.harvard.edu/cgi-bin 
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Table 5.9 Pathway analysis for genes using functional annotation of the DAVID program   

Gene Name    Species        Database                       Pathway 

5,10-methylenetetrahydrofolate reductase (NADPH) Homo sapiens KEGG_PATHWAY hsa00670:One carbon pool by folate 
hsa00680:Methane metabolism, 

Acetyl-Coenzyme A carboxylase alpha Homo sapiens KEGG_PATHWAY hsa00061:Fatty acid biosynthesis 
hsa00620:Pyruvate metabolism 
hsa00640:Propanoate metabolism 
hsa04910:Insulin signaling pathway 

Arginase, liver Sus scrofa KEGG_PATHWAY ssc00330:Arginine and proline metabolism 
Asparagine-linked glycosylation 8, alpha-1,3-
glucosyltransferase homolog (S. cerevisiae) 

Homo sapiens KEGG_PATHWAY hsa00510:N-Glycan biosynthesis 

Chemokine (C-X-C motif) ligand 2 Sus scrofa KEGG_PATHWAY ssc04062:Chemokine signaling pathway 
Chromatin modifying protein 4B; similar to 
LOC616164 protein 

Bos taurus KEGG_PATHWAY bta04144:Endocytosis 

Inhibitor of DNA binding 2 Sus scrofa KEGG_PATHWAY ssc04350:TGF-beta signaling pathway 
Oncostatin M receptor Homo sapiens KEGG_PATHWAY hsa04060:Cytokine-cytokine receptor interaction 

hsa04630:Jak-STAT signaling pathway 
Potassium large conductance calcium-activated 
channel, subfamily M, beta member 4 

Sus scrofa KEGG_PATHWAY ssc04270:Vascular smooth muscle contraction 

Presenilin 2 Sus scrofa KEGG_PATHWAY ssc04330:Notch signaling pathway 
ssc05010:Alzheimer's disease 

Recombination activating gene 2 Sus scrofa KEGG_PATHWAY ssc05340:Primary immunodeficiency 
Acetyl-Coenzyme A carboxylase alpha Homo sapiens BIOCARTA h_leptinPathway:Reversal of Insulin Resistance by 

Leptin 
5,10-methylenetetrahydrofolate reductase (NADPH) Homo sapiens PANTHER_PATHWAY P02743:Formyltetrahydroformate biosynthesis 
doublecortin-like kinase 1 Homo sapiens PANTHER_PATHWAY P00031:Inflammation mediated by chemokine and 

cytokine signaling pathway 
5,10-methylenetetrahydrofolate reductase (NADPH) Homo sapiens REACTOME_PATHWAY REACT_11193:Metabolism of vitamins and cofactors 
Acetyl-Coenzyme A carboxylase alpha Homo sapiens REACTOME_PATHWAY REACT_1505:Integration of energy metabolism 

REACT_602:Metabolism of lipids and lipoproteins 
Pericentriolar material 1 Homo sapiens REACTOME_PATHWAY REACT_152:Cell Cycle, Mitotic 
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Discussion 

The placenta plays a critical role in transporting amino acids from mother to fetus, 

thereby having an enormous impact on fetal survival, growth, and development. The pig 

has true epitheliochorial placentation, meaning that the placenta is only superficially 

attached to the uterine luminal epithelium. Such a placental structure increases the 

efficiency of gas and nutrient exchanges between fetus and mother. Consistent with the 

increased availability of arginine in the conceptus of arginine-supplemented gilts 

(Chapter II), long-term (between d 0 and 25 of gestation) dietary supplementation with 

0.8% L-arginine increased expression of arginine transporter SLCA1 in the placenta. 

However, the expression of SLCA1 was not affected by short-term supplementation with 

0.8% arginine (d 14-25) or low dose of arginine (0.4%).  Similar results were obtained 

for NOS3, ODC1, GCH1, MTOR, S6K1 and 4EBP1. These results indicate that arginine 

regulation of expression of arginine transporters and MTOR cell signaling pathways 

depend on dose and timing of arginine supplementation. To our knowledge, this is the 

first study of effects of dietary arginine supplementation on in vivo expression of 

placental genes in any animal species.  

     NO and polyamines are crucial for cell growth, migration, and proliferation, as well 

as angiogenesis (Wu 2009). They are regarded as major mediators for arginine function 

in the cell. NO and polyamines play key roles in pregnancy, including ovulation, 

implantation and fetal development (Maul et al. 2003). Interestingly, we found that long-

term (between d 0 and 25 of gestation) dietary supplementation with 0.8% L-arginine 

increased expression of genes for NOS3, p-NOS3, and ODC1. Additionally, dietary 
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supplementation with 0.8% arginine enhanced expression of GCH1 in porcine placentae, 

which is the first and rate-controlling enzyme in the de novo synthesis of BH4 (essential 

cofactor for all NOS isoforms) (Shi et al. 2004). This is in keeping with the previous 

report that dietary L-arginine supplementation stimulates endothelial NO synthesis by 

increasing BH4 availability in both normal and diabetic rats (Kohli et al. 2004). Results 

of in vitro studies have also demonstrated that increasing extracellular L-arginine 

concentration dose-dependently enhanced GCH1 expression and BH4 availability for NO 

production in cultured endothelial cells (Wu et al. 2004).   

      The MTOR signaling pathway plays a central role in regulating cell growth 

(Wullschleger et al. 2006). This pathway can be regulated by the availability of amino 

acids (Martin and Sutherland 2001) with elF4EBP and p70S6K being two important 

genes downstream of MTOR (Carrera 2004). elF4EBP normally binds elF4E (a 

eukaryotic translation initiation factor) to inactivate mRNA translation. However, 

phosphorylation of 4EBP1 by MTOR releases elF4E from its binding with elF4E to 

allow initiation of mRNAtranslation (Gingras et al. 2004). Upon activation by MTOR, 

p70S6K phosphorylates p70S6 to facilitate ribosome biogenesis and translation 

elongation (Gingras et al. 2004).  A novel observation of this study is that long-term 

(between d 0 and 25 of gestation) dietary supplementation with 0.8% L-arginine 

increased expression of total and p-MTOR in porcine placentae. However, expression of 

total and p-elF4EBP and p70S6K was not affected by dietary 0.8% L-arginine 

supplementation between d 0 and 25 of gestation. This suggests that long-term L-

arginine supplementation can activate MTOR, but its effect may not increase 
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phosphorylation of elF4EBP and S6K in the placenta. It is not clear how MTOR 

activation is disassociated with phosphorylation of its two downstream target proteins. 

However, the experimental conditions for the study (e.g., reduced levels of progesterone 

in maternal plasma and allantoic fluid) do not favor optimal survival or growth of 

fetuses. It is possible that the action of arginine on the placenta depends on adequate 

progesterone signaling or receptivity of the organ to physiological levels of arginine.   

Nonetheless, L-arginine could increase the abundance of p-MTOR, p-p70S6K, p-p70S6, 

and p-elF4EBP1 proteins in explant cultures of sheep conceptuses (Kim et al. 2011) and 

in ovine trophectoderm cells (Kim et al. 2011).  

      Because dietary supplementation with arginine between d 14 and 25 of gestation did 

not affect placental expression of genes at either the mRNA or protein levels that are 

known to regulate protein synthesis and cell growth, we used microarray technology to 

identify novel genes that may impact placental growth and development. Importantly, 

such an approach identified differentially expressed genes in the placenta of arginine-

supplemented gilts. Of particular interest, these genes are related to fatty acids 

biosynthesis, as well as insulin, TGF-B, and Notch signaling pathways. Specifically, 

increased expression of type-3 troponin may beneficially enhance the growth of the 

placenta and alter its structure, as reported for myogenesis (Wong and Ordahl, 1996), to 

allow for efficient transfer of oxygen and nutrients from mother to fetus. Additionally, 

expression of leucine-rich repeat-containing proteins in the placenta of arginine-

supplemented gilts may facilitate gene transcription, as reported for other cell types 

(Warfel et al. 2011), to enhance receptivity of the organs to arginine or its metabolites in 
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placental cells. In coordination with these changes, down-regulation of expression of 

IGF-2 binding protein can enhance the availability of IGF-2 to promote placental cell 

growth and differentiation via PI3 and MAP kinase signaling pathways (Kim et al. 

2008). Moreover, reduced expression of heat shock protein 70 in placentae of arginine-

supplemented gilts is consistent with an important role for arginine to reduce oxidative 

stress in animal cells (Jobgen et al. 2009) and improve their survival (Tan et al. 2010). 

      In summary, long-term dietary supplementation with 0.8% L-arginine increased the 

abundance of proteins in the porcine placenta that are related to arginine transport and 

metabolism. Relative abundances of total and p-MTOR were also enhanced by long-

term supplementation with 0.8% arginine. In addition to the MTOR pathway, arginine 

may also affect other cell signaling pathways that promote placental growth and 

development. 
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CHAPTER VI  

SUMMARY AND DIRECTION OF FUTURE RESEARCH 

 

Arginine is the nitrogenous substrate for synthesis of both nitric oxide and polyamines in 

animals, including pigs. Although increasing concentration of arginine in plasma within 

the physiological range has been reported to enhance fetal survival and growth in swine, 

little is known about effects of the effects of arginine on conceptus survival, growth, or 

development during early gestation. Four series of experiments were conducted to fill in 

this gap of knowledge. Dietary supplementation with 0.4% L-arginine between d 0 and 

25 of gestation had no beneficial effect on the reproductive performance of gilts. 

However, supplementation with 0.8% L-arginine during this period of pregnancy, while 

increasing placental vascularity, decreased litter size in gilts. This unexpected finding 

did not support the original hypothesis of the present study, but led to an important 

discovery that 0.8% L-arginine supplementation immediately after breeding reduced the 

number of corpora lutea (CL) and their production of progesterone, thereby impairing 

conceptus survival and growth in gilts. In contrast, supplementing the diet of gilts with 

0.4% or 0.8% L-arginine between d 14 and 25 of gestation resulted in increased 

concentrations of arginine in maternal plasma, total amounts of arginine in allantoic fluid 

(ALF) and amniotic fluid (AMF), and the number of live fetuses per litter by 2 on d 25 

of gestation as compared to the control gilts. Arginine supplementation between d 14 

and 25 of gestation also increased the volume of AMF as well as total amounts of 

fructose and most amino acids in AMF possibly due to enhanced transport of ions, 
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water, sugar and amino acids across placentae and into the amniotic fluid. Reproductive 

performance of gilts with 15 to 18 CL at d 60 of gestation was improved by dietary 

arginine supplementation between d 14 and 25 of gestation. Interestingly, on d 60 of 

gestation, when the basal diet was supplemented with 0.4% or 0.8% arginine between d 

14 and 25 of gestation, no changes in fetal growth and survival were observed in gilts 

with 9 to 14 CL. Collectively, the results indicate that arginine supplementation between 

d 14 and 25 of gestation can improve uterine capacity and possibly have a programming 

effect on placental transport of nutrients from mother to fetus. Long-term dietary 

supplementation with 0.8% L-arginine during early pregnancy increased the abundance 

of proteins in the porcine placenta that are related to arginine transport and metabolism. 

Relative abundances of total and phosphorylated mechanistic target of rapamycin 

(MTOR) were also enhanced by the long-term supplementation with 0.8% arginine. In 

addition to the MTOR pathway, arginine may also affect other cell signaling pathways 

that can promote placental growth and development. 

      These novel findings from this dissertation will aid in developing cost-effective 

strategies to enhance litter size in swine and also have important implications for 

improving embryonic survival in other mammals. These results also provide a much-

needed basis for design of future experiments to optimize beneficial effects of arginine 

on improving embryonic survival and development in swine and other mammals. 

Findings from the current study not only advance basic knowledge of mammalian 

reproductive biology, but also have important implications for developing practical 

means to enhance fertility in female swine. 
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APPENDIX 

 

Table A-1 Oxidation of glucose and fructose in pig placentae* 

 5 mM Glucose  5 mM Fructose 

Variable Areolae Inter-areolae  Areolae Inter-Areolae 

CO2 production,  

nmol per mg 
tissue 

 

1.73±0.36a 

 

0.24±0.03b 

  

0.053±0.008c 

 

0.034±0.007d 

*d 60 of pregnancy; n = 5. Chorioallantois tissue (100 mg) was incubated at 37oC in 1 ml of a culture 
medium containing physiological concentrations of amino acids (Kong et al. 2011) and 5 mM D-[U-
14C]glucose or 5 mM D-[U-14C]fructose for 2 h. The specific activity of D-[U-14C]glucose and D-[U-
14C]fructose in the incubation medium was 990 and 48 dpm/nmol, respectively. At the end of the 2-h 
incubation, 14CO2 was collected in 0.2 ml of Soluene for measurement of radioactivity by a liquid 
scintillation counter (Wu 1997). In glucose oxidation, the average dmp for the blanks was 1234, and the 
average dmp for the samples was 7693 and 4288 for areolae and inter-areolae, respectively. In fructose 
oxidation, the average dmp for the blanks was 91, and the average dmp for the samples was 288 and 143 
for areolae and inter-areolae, respectively. 
a-d Means with different superscripts differed  (P < 0.01), as analyzed by one-way ANOVA. 
 

 

 

 

 

 

Table A-2 Incorporation of radiolabled fructose into proteins in chorioallantois of pig 
placentae * 

Variable Blanka 0.1 mM Fructose 

DPM in protein 87 676† 

* d 60 of pregnancy; n = 6. Chorioallantois tissue (200 mg) was incubated for 6 h at 37oC in 1 ml of an 
oxygenated (95% O2/5% CO2) culture medium containing physiological concentrations of amino acids 
(Kong et al. 2011) and 0.1 mM D-[U-14C]fructose. The specific activity of D-[U-14C]fructose in the 
medium was 474 dpm/nmol. At the end of 6-h incubation, the placenta was washed with 5 ml of Krebs 
buffer and then homogenized in 2 ml of 10% trichloroacetic acid. The trichloroacetic acid-insoluble 
fraction (protein) was solubilized in 0.5 ml of 1 M NaOH and then analyzed for 14C radioactivity.  
aNo chorioallantois tissue in the medium. 
†Differed from the blank (P < 0.001), as analyzed by the Independent-Samples T-Test. 
 



139 
 

 
 

Table A-3 Weight of organs of fetuses from all gilts with 9-18 CL at d 60 of gestation 
fed diets supplemented with 0, 0.4 or 0.8% L-arginine (Arg) from d 14 through d 25 of 
gestation 

Variable Control 0.4% Arg 0.8% Arg SEM P- Value 

                           g 

Number of gilts, n 

Brain     

Heart 

Kidney 

Leg Muscle 

Liver 

Lung 

Intestine 

Spleen 

Stomach 

11 

3.03 

0.88 

1.43 

4.86 

5.35 

4.08 

2.18 

0.08 

0.44 

13 

2.94 

0.85 

1.33 

4.52 

4.85 

3.97 

1.88 

0.09 

0.44 

13 

2.95 

0.91 

1.49 

4.80 

5.26 

4.33 

2.08 

0.08 

0.45 

 

0.04 

0.02 

0.03 

0.11 

0.13 

0.08 

0.07 

0.003 

0.006 

 

0.659 

0.570 

0.129 

0.386 

0.241 

0.156 

0.158 

0.735 

0.551 
* Values are means with pooled SEM. 
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Table A-4 Reproductive performance of gilts with 10 to 14 CL at d 25 of gestation fed 
diets supplemented with 0, 0.4 or 0.8% L-arginine (Arg) between d 14 and 25 of 
gestation* 

Variable Control 0.4% Arg 0.8% Arg  SEM P- Value 

Number of gilts, n 

BW at breeding, kg 

BW at d 25 of gestation, kg 

BW gain, kg/25 d 

Uterine weight, kg 

Total fetuses, n 

Live fetuses, n 

CL, n 

Embryonic mortality, % 

Weight of viable fetuses, g 

Total placental weight, g 

Fetal length, cm 

Total ALF volume, L 

Total AMF volume, mL 

   10 

 117.2 

 119.4 

     2.0 

 2.32 

   10.9 

     9.9 

   13.2 

   25.3a 

 5.33 

   89.3b 

     1.82 

     0.88 

    2.19b 

       8 

     117.5 

     120.4 

         2.9 

         2.44 

       11.0 

       11.0 

       12.3 

     9.5b 

     5.73 

     123.5a 

     1.80 

         0.93 

        3.90a 

      10 

    102.1 

     103.4 

         1.3 

         2.46 

       11.3 

       11.1 

       12.6 

       11.5b 

         5.73 

     112.3a 

         1.84 

         0.99 

        3.36a 

    

   4.9 

   4.9 

   1.3 

   0.08 

   0.3 

   0.3 

   0.2 

   2.6 

   0.22 

   4.9 

   0.02 

   0.05 

   0.22 

    

   0.349 

   0.284 

   0.903 

   0.736 

   0.848 

   0.197 

   0.174 

   0.012 

   0.701 

   0.009 

   0.825 

   0.608 

   0.001 

*Values are means with pooled SEM; means in a row with superscripts without a common letter differ, P � 
0.05. 
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Table A-5 Reproductive performance of gilts with 15 to 19 CL at d 25 of gestation fed 
diets supplemented with 0, 0.4 or 0.8% L-arginine (Arg) between d 14 and 25 of 
gestation* 

Variable Control 0.4% Arg 0.8% Arg  SEM P- Value 

Number of gilts, n 

BW at breeding, kg 

BW at d 25 of gestation, kg 

BW gain, kg/25 d 

Uterine weight, kg 

Total fetuses, n 

Live fetuses, n 

CL, n 

Embryonic mortality, % 

Weight of viable fetuses, g 

Total placental weight, g 

Fetal length, cm 

Total ALF volume, L 

Total AMF volume, mL 

     4 

 147.6 

 141.2 

   -2.1 

2.95a 

   12.7 

   12.7 

   16.3 

   22.4 

 6.32 

   98.3 

     1.90 

     1.20 

     3.59 

       7 

     108.4 

     107.5 

        -1.0 

       2.91a 

       14.9 

       14.7 

       16.9 

   13.1 

     6.81 

     125.9 

     1.84 

        1.15 

        4.17 

      4 

    132.8 

    133.8 

        1.0 

        2.54b 

       15.3 

       15.0 

       16.0 

        6.6 

         6.07 

     106.3 

         1.75 

         0.98 

         3.50 

    

   12 

   11 

   1.7 

   0.07 

   0.6 

   0.6 

   0.4 

   2.6 

   0.21 

   8.7 

   0.03 

   0.05 

   0.16 

    

   0.519 

   0.517 

   0.815 

   0.037 

   0.325 

   0.415 

   0.664 

   0.093 

   0.366 

   0.428 

   0.161 

   0.199 

   0.150 
*Values are means with pooled SEM; means in a row with superscripts without a common letter differ, P � 
0.05. 
 
 
 
 
Table A-6 Adhesion force between the chorioallantoic membrane and epithelium of 
endometrium in gilts at d 25 of gestation fed diets supplemented with 0, 0.4 or 0.8% L-
arginine (Arg) between d 14 and 25 of gestation * 

Variable Control 0.4% Arg 0.4% Arg SEM P-value 

Adhesion force 6.8b 8.7a 7.5ab 0.29 0.025 

* n = 10. Measured by the force to seperate the chorioallantoic membrane and the epithelium of 
endometrium (lowest force = 1; highest force = 10). 
a, b  Means with different superscripts differed  (P < 0.05), as analyzed by one-way ANOVA. 
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Table A-7 Genes for which expression was up-regulated in porcine placentae by dietary supplementation with 0.8% arginine between 
d 14 and 25 of gestation in comparison with the control group* 

Gene ID Accession No. Gene Name P-value Fold Change 

TNNT3 NM_001001863 TNNT3 0.004 4.61 
TC292911 TC292911 Unknown 0.001 4.49 
CX058159 CX058159 Unknown 0.024 4.11 
EW039857 NM_001742                Homo sapiens calcitonin receptor (CALCR) on chromosome 7 0.038 3.23 
TC246681 XM_001788623            Bos taurus similar to endonuclease reverse transcriptase (LOC100140677)   mRNA 0.024 2.87 
CF362298 NM_001075988             Bos taurus transmembrane emp24 protein transport domain containing 6 (TMED6)   0.047 2.84 
TC267763 TC267763 Unknown 0.049 2.60 
DY425109 DY425109 Unknown 0.039 2.59 
TC301630 NG_011688              Homo sapiens growth hormone receptor (GHR) on chromosome 5 0.050 2.59 
AK231515  EU287432                 Sus scrofa presenilin 2 mRNA   complete cds 0.006 2.31 
PGM1 NM_001076903            Bos taurus phosphoglucomutase 1 (PGM1)   0.034 2.30 
TC278497 NM_018941                Homo sapiens ceroid-lipofuscinosis   neuronal 8 (epilepsy   progressive with mental 

retardation) (CLN8)   
0.010 2.23 

CK462699 CK462699 Unknown 0.028 2.15 
TC289044 Q98459 Unknown 0.021 2.10 
TC252173 Q8P941 Unknown 0.029 2.07 
TC255795 Q9TT95 Unknown 0.041 2.00 
BG896072 BG896072 Unknown 0.037 1.97 
TC293083 TC293083 Unknown 0.011 1.89 
TC290408 P60837 Unknown 0.043 1.87 
PGM1 NM_001076903            Bos taurus phosphoglucomutase 1 (PGM1)   0.030 1.86 
BX923086 NM_006377                Homo sapiens unc-13 homolog B (C. elegans) (UNC13B)   0.048 1.80 
TC275071 AB091391  Sus scrofa RAG-2 gene for recombination activating protein 2   0.006 1.76 
TC274023 NM_001097446            Sus scrofa apolipoprotein B mRNA editing enzyme   catalytic polypeptide-like 3F 

(APOBEC3F)   
0.005 1.70 

BX666795  XM_001924347            Sus scrofa similar to SLCO3A1 protein (LOC100156054)   0.003 1.67 
RH NM_214378 RH 0.019 1.66 
DN106369  NM_001109960            Canis lupus familiaris glycophorin A (MNS blood group) (GYPA)   0.022 1.64 
TC279102  XR_021586 Pan troglodytes leucine-rich repeat-containing G protein-coupled receptor 5 (LGR5)   0.036 1.61 
TC267605 NM_001143721            Sus scrofa 6-phosphofructo-2-kinase/fructose-2  6-biphosphatase 1 (PFKFB1)   0.025 1.55 
EW660666  NM_001045886 Bos taurus phenazine biosynthesis-like protein domain containing (PBLD)   0.013 1.54 
TC246855 AY208121 sus scrofa myostatin gene 0.022 1.54 
TC295643 Q4TB76 Unknown 0.045 1.51 
TC266252 Q4ZMW3 Unknown 0.019 1.50 
AJ947838 NM_178177                Homo sapiens nicotinamide nucleotide adenylyltransferase 3 (NMNAT3)   0.022 1.50 
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Table A-7 Continued    

Gene ID Accession No. GeneName P-value Fold Change 

DN116615 Q74P05 Reverse transcriptase 0.047 1.49 
BX674383 XM_001136904            Pan troglodytes hypothetical LOC465780   transcript variant 2 (LOC465780)   0.013 1.46 
TC279371 XM_001496778            Equus caballus phosphoinositide-3-kinase   regulatory subunit 4 (PIK3R4 0.027 1.45 
DN102244 XM_511600  Pan troglodytes mannose receptor   C type 2 (MRC2)   0.034 1.43 
CK466870 Q2XYG1 Unknown 0.003 1.42 
AY610045 XM_001924474            Sus scrofa similar to androgen-induced 1 (LOC100151943)   0.018 1.42 
TC248086 Q00994 Unknown 0.040 1.41 
TC276293 NM_001077619            homo sapiens UBX domain protein 2B (UBXN2B)   0.024 1.40 
DY428406 NG_016762 Homo sapiens pyruvate dehydrogenase kinase   isozyme 3 (PDK3) on chromosome X 0.042 1.40 
AK236663  XM_873525                Bos taurus myoferlin   transcript variant 12 (FER1L3)   0.031 1.39 
DN110652  NM_174525                Beta-crystallin A4 0.041 1.39 
BM484590  NM_174492 Bos taurus tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein   

eta polypeptide (YWHAH)   
0.025 1.37 

EW109654 NM_170589 Homo sapiens cancer susceptibility candidate 5 (CASC5)   transcript variant 1   0.002 1.35 
CF361829 A9YMB8 NADH dehydrogenase subunit 2 0.012 1.34 
TC270961 Unknown Unknown 0.024 1.34 

LOC733663 Unknown Unknown 0.037 1.34 
CYP3A39 NM_214422 CYP3A39 0.027 1.34 
GUCY2C NM_214105 GUCY2C 0.025 1.33 
AJ947745  NG_007956               cytochrome P450   family 20   subfamily A   polypeptide 1 (CYP20A1) 0.022 1.33 
AY609525 NM_001101198            Chromobox protein homolog 3 0.015 1.32 
EW203657 A2AIM8 Talin 1 0.002 1.32 
CJ019155 XM_001489617 Equus caballus dedicator of cytokinesis 11 (DOCK11)   0.006 1.32 
AK233854  NM_001099022            Bos taurus Era G-protein-like 1 (E. coli) (ERAL1)   0.010 1.32 
TC271032 Unknown Unknown 0.036 1.31 
HBE1 EW422073 HBE1 0.035 1.31 
TC267213 Unknown Unknown 0.026 1.30 
TC255027 Unknown Unknown 0.007 1.30 
TC302833 NM_001165887            Homo sapiens zinc finger protein 268 (ZNF268)   transcript variant 9   0.021 1.30 
EW225983 Unknown Unknown 0.034 1.28 
TC263030 Unknown Unknown 0.044 1.28 
TC272293 Unknown Unknown 0.019 1.28 
AK234630 XM_001927389            sus scrofa FK506-binding protein (LOC100152728) 0.009 1.27 
TC259073 XM_001488075            Equus caballus kelch-like 13 (Drosophila) (KLHL13)   0.021 1.27 
BW980922 XM_001113023 Macaca mulatta dUTP pyrophosphatase isoform 2   transcript variant 4 (DUT)   0.021 1.27 
ST3GAL-IV NM_213757 Sus scrofa ST3 beta-galactoside alpha-2  3-sialyltransferase 4 (ST3GAL4)  ST3GAL-IV 0.000 1.27 
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Table A-7 Continued   

Gene ID Accession No. Gene Name P-value Fold Change 

TC269098 Unknown Unknown 0.008 1.27 
AW429646 Unknown Unknown 0.046 1.27 
TC260428 Unknown Unknown 0.019 1.26 
AK236998 XM_847200 Canis familiaris similar to Nonhistone chromosomal protein HMG-17 (High-mobility 

group nucleosome binding domain 2) (LOC609853)   
0.048 1.26 

AK239509 AB529869                  Sus scrofa PECR mRNA for peroxisomal trans-2-enoyl-CoA reductase   0.027 1.25 
TC259570 Unknown Unknown 0.017 1.24 
TC246828 Unknown Unknown 0.017 1.24 
TC287179 NM_014857                Homo sapiens RAB GTPase activating protein 1-like (RABGAP1L)   transcript variant 1   

mRNA 
0.001 1.24 

TC258132 Unknown Unknown 0.047 1.24 
EW484397 NM_001103101            Bos taurus zinc finger protein 502 (ZNF502)   0.025 1.24 
TC293624 AM229312                 Porcine endogenous retrovirus C complete proviral genome   clone PERV-C(1312) 0.032 1.24 
TC277299 XM_534651                Canis familiaris similar to M-phase phosphoprotein 9 (LOC477453)   0.037 1.24 
BX667232 XM_001925672            Sus scrofa similar to pecanex-like protein 1 (LOC100154536)   0.030 1.23 
CN155716 EU617320 Sus scrofa small calcium-binding mitochondrial carrier 1 (SCAMC-1) mRNA 0.038 1.23 
EW131859  XM_001498163 Equus caballus similar to ribosomal protein L9 (LOC100055158)   0.001 1.23 
AK230973  XM_532879                Canis familiaris similar to DEAD (Asp-Glu-Ala-Asp) box polypeptide 1   transcript 

variant 1 (LOC475671)   
0.047 1.23 

AK237164 XM_534550                Canis familiaris similar to CG1218-PA   transcript variant 1 (LOC477355)   0.013 1.23 
EV880225 DQ629170 Sus scrofa RPS6 (RPS6) mRNA   0.017 1.22 
CK467702 NM_001035277            cadherin 13   H-cadherin (heart) (CDH13)   0.013 1.22 
AK232944 XM_535692  Canis familiaris similar to CG18769-PB   isoform B (LOC478513)   0.018 1.22 
TC245796 Unknown Unknown 0.014 1.22 
TC276127 Unknown Unknown 0.010 1.22 
TC292002 XM_001150978            Pan troglodytes similar to LUC7L2 protein   transcript variant 3 (LOC739990)   0.049 1.22 
TC278978 Unknown Unknown 0.033 1.22 
CK453467  XM_001924194 Sus scrofa similar to WD repeat and HMG-box DNA-binding protein 1 (Acidic 

nucleoplasmic DNA-binding protein 1) (And-1) (LOC100152808)   
0.029 1.21 

CD572284 AJ009912  Sus scrofa plp gene 0.006 1.21 
BX670823 XM_001494501             Equus caballus similar to replication protein A3   14kDa (LOC100063929)   0.001 1.21 
TC270552 XM_001503315            Equus caballus pumilio homolog 2 (Drosophila) (PUM2)   0.050 1.21 
TC292269 Unknown Unknown 0.047 1.21 
CF366738 Unknown Unknown 0.029 1.21 
TC272391 Unknown Unknown 0.033 1.21 
CETN3 DN132970 CETN3 0.002 1.20 



 

 
 

145 

Table A-7 Continued   

Gene ID Accession No. Gene Name P-value Fold Change 

TC287511 NM_145647 Homo sapiens WD repeat domain 67 (WDR67)   transcript variant 1 0.015 1.20 
BG695764 NM_006122 Homo sapiens mannosidase   alpha   class 2A   member 2 (MAN2A2)    0.011 1.20 
TC298854 XM_580298                Bos taurus similar to trinucleotide repeat containing 6C (TNRC6C)   0.033 1.20 
AK235662 NG_012170 Homo sapiens RAB23   member RAS oncogene family (RAB23) on chromosome 6 0.043 1.20 
BX675945  XM_542777                Canis familiaris similar to SH3 domain-binding protein 5 (SH3 domain-binding protein 

that preferentially associates with BTK) (LOC485657)   
0.033 1.20 

TC258084 NM_006690                Homo sapiens matrix metallopeptidase 24 (membrane-inserted) (MMP24)   0.045 1.19 
DY437500  NM_015203                Homo sapiens regulation of nuclear pre-mRNA domain containing 2 (RPRD2)   0.026 1.19 
TC255075 Unknown Unknown 0.009 1.19 
TC284683 Unknown Unknown 0.043 1.18 
TC287282 Unknown Unknown 0.033 1.18 
EV898729  XR_045439                Sus scrofa misc_RNA (LOC100152987)   miscRNA 0.017 1.18 
HMGB2 NM_214063 HMGB2 0.045 1.18 
DN125568 GQ184633 Sus scrofa cell division cycle 2 variant 1 (CDC2) mRNA   0.048 1.18 
TC280036 Unknown Unknown 0.020 1.17 
TC276408  XR_042873               Bos taurus misc_RNA (LOC534434)   miscRNA 0.041 1.17 
EW299999  XM_001498308 Equus caballus similar to eukaryotic translation elongation factor 1 beta 2 

(LOC100068470)   
0.015 1.17 

GADD45A NM_001044599 GADD45A 0.044 1.17 
BX672323 XM_001927571            Sus scrofa similar to PC4 and SFRS1-interacting protein (Lens epithelium-derived growth 

factor) (LOC100157597)   
0.019 1.17 

CN162044  NM_024947 Homo sapiens polyhomeotic homolog 3 (Drosophila) (PHC3)   0.029 1.17 
TC277265 XM_001915541 Equus caballus similar to Transcription factor E2F3 (E2F-3) (LOC100052248)   0.043 1.16 
AK233465  BC102499                  Bos taurus LSM8 homolog   U6 small nuclear RNA associated (S. cerevisiae)   mRNA 

(cDNA clone MGC:127377 IMAGE:7953297) 
0.048 1.16 

AY609929 XM_001927909            Sus scrofa similar to DEK oncogene   transcript variant 1 (LOC100156871)   0.040 1.16 
TC248286 Unknown Unknown 0.007 1.16 
CD572531  XM_001929144            Sus scrofa similar to transmembrane 6 superfamily member 1 (LOC100155238)   0.048 1.16 
TC251927  XM_001926317            Sus scrofa similar to TBCC domain containing 1 (LOC100154090)   0.013 1.16 
TC274000 Unknown Unknown 0.037 1.16 
EW046833  NR_002211                Homo sapiens Meis homeobox 3 pseudogene 1 (MEIS3P1)   non-coding RNA 0.029 1.16 
EW304485 XM_531801 Canis familiaris similar to protein phosphatase 1B isoform 2   transcript variant 1 

(LOC474573)   
0.029 1.15 

AY610084  GQ369460                 Sus scrofa clone 1 F-box protein 7 (FBXO7) mRNA 0.046 1.15 
AY609917 XM_001488642  Equus caballus similar to CCHC-type zinc finger   nucleic acid binding protein   transcript 

variant 1 (LOC100050146)   
0.049 1.15 

RPS29 NM_001001633 RPS29 0.031 1.15 
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Table A-7 Continued   

Gene ID Accession No. Gene Name P-value Fold Change 
DB800055  XM_001490197            Equus caballus cytidine and dCMP deaminase domain containing 1 (CDADC1)   0.040 1.15 
ANG2 NM_213808 ANG2 0.046 1.14 
CK467169  XM_001926109            Sus scrofa similar to SNX25 protein (LOC100157280)   0.018 1.14 
TC258796 XM_001928025            Sus scrofa Calcineurin A protein   transcript variant 2 (LOC396603)   0.049 1.14 
AK235945 XM_001928672 Sus scrofa similar to FRA10AC1 protein   transcript variant 1 (LOC100152110)   0.027 1.14 
LOC414417 NM_001001635 Sus scrofa translation factor sui1-like protein (LOC414417)    0.040 1.14 
AK230600 NM_001101220            Bos taurus dynein   light chain   Tctex-type 3 (DYNLT3)   0.026 1.13 
EW593120 NM_001137619            Sus scrofa ribosomal protein S3A (RPS3A)   mRNA 0.018 1.13 
SCYE1 NM_001114283 Sus scrofa aminoacyl tRNA synthetase complex-interacting multifunctional protein 1 

(AIMP1)   
0.026 1.12 

TC281417 XM_876757                Bos taurus similar to Heterogeneous nuclear ribonucleoprotein H (hnRNP H)   transcript 
variant 26 (HNRPH1)   

0.044 1.12 

TC285283 XM_001493049            Equus caballus similar to pinin   desmosome associated protein (LOC100060952)   0.020 1.12 
TC248717 XM_001926594            Sus scrofa similar to ring finger protein 20 (LOC100154259)   0.040 1.12 
TCTP NM_214373 TCTP 0.027 1.12 
AJ659363 XM_001925659            Sus scrofa similar to MGC165949 protein (LOC100158143) 0.036 1.11 
AY609728 BC112734 Bos taurus mitochondrial ribosomal protein L30   mRNA (cDNA clone MGC:137661 

IMAGE:8165094)   
0.034 1.09 

* Determined by microarray 
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Table A-8 Genes for which expression was down-regulated in porcine placentae by dietary supplementation with 0.8% arginine 
between d 14 and 25 of gestation in comparison with the control group* 

Gene ID Accession No. Gene Name P-value Fold Change 
     

AJ964783 O48246 Cytochrome b 0.001 0.15 

BI341657  XM_001926447            Sus scrofa similar to RasGEF domain family  member 1A (LOC100156683)  0.013 0.18 

TC273367  NG_008926              Homo sapiens asparagine-linked glycosylation 8  alpha-1 3-glucosyltransferase homolog 
(S. cerevisiae) (ALG8) on chromosome 11 

0.010 0.20 

TC257543 XM_001927988 Sus scrofa similar to RU2S (LOC100153025)   0.015 0.23 

DN100844 FJ263680 Sus scrofa clone CH242-27L18 acetyl-coenzyme A carboxylase alpha (ACACA) gene  0.003 0.27 

NP321728 AF274712 Sus scrofa pig endogenous retrovirus group Beta3 polymerase gene 0.014 0.29 

TC267851 Unknown Unknown 0.004 0.30 

AK235514 XM_001151324             Pan troglodytes hypothetical protein LOC745470 (LOC745470)  0.037 0.30 

BI360386  XM_001083849            Macaca mulatta similar to oncostatin M receptor  transcript variant 2 (LOC693569)  0.009 0.31 

AREG NM_214376 Sus scrofa amphiregulin (AREG)  0.045 0.31 

CF178669 AJ427478  Sus scrofa ASIP gene for agouti signalling protein and AHCY gene for S-
adenosylhomocysteine hydrolase 

0.023 0.33 

TC257832 NM_001143983            Homo sapiens chordin-like 1 (CHRDL1)  transcript variant 4  0.027 0.33 

TC290976 A7AUI6 41-2 protein antigen 0.006 0.35 

CX061534  NM_015602               Homo sapiens torsin A interacting protein 1 (TOR1AIP1)  0.007 0.40 

CN158380 Q9QF03 Envelope glycoprotein V3 region 0.024 0.41 

TC301037  BC152456                Homo sapiens doublecortin-like kinase 1  mRNA (cDNA clone MGC:176710 
IMAGE:8862589)  

0.012 0.41 

DY414270 NM_003828   Homo sapiens myotubularin related protein 1 (MTMR1) on chromosome X 0.010 0.42 

TC251548 XM_600715               Bos taurus similar to kelch-like 18 (LOC522434)  0.046 0.42 

AK232310 NM_001009778            Ovis aries aldehyde dehydrogenase 1 family  member A1 (ALDH1A1)  0.041 0.43 

TC269985 A0QK03 UDP-glucose 6-dehydrogenase 0.029 0.44 
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Table A-8 Continued   

Gene ID Accession No. Gene Name P-value Fold Change 
BP997825  XM_864249               Bos taurus similar to Zinc finger ZZ-type and EF-hand domain-containing protein 1  

transcript variant 1 (ZZEF1)  
0.045 0.44 

RHBG NM_213996 Sus scrofa Rh family  B glycoprotein (RHBG)  0.006 0.45 

EW614253 Unknown Unknown 0.038 0.45 

IGFBP2 NM_214003 IGFBP2 0.002 0.47 

OSTN NM_001098597 OSTN 0.025 0.47 

CXCL2 NM_001001861 CXCL2 0.013 0.49 

TC278652 NM_214003 Sus scrofa insulin-like growth factor binding protein 2 (IGFBP2)  0.002 0.49 

CYP2C33 NM_214414 Sus scrofa cytochrome P450 2C33 (CYP2C33)  0.037 0.50 

AK238519 XM_874285               Bos taurus similar to phosphofructokinase  platelet  transcript variant 12 (PFKP)  0.025 0.50 

BX674271 XM_001489186            Equus caballus calpain 6 (CAPN6)  0.038 0.50 

TC280345 XM_864245.3 Bos taurus similar to golgin 97  transcript variant 2 (GOLGA1)  0.018 0.50 

DPPIV NM_214257 Sus scrofa dipeptidyl-peptidase 4 (DPP4)  0.030 0.51 

EV918706 Unknown Unknown 0.006 0.51 

OSTN NM_001098597 OSTN 0.048 0.51 

OSTN NM_001098597 OSTN 0.045 0.53 

OSTN NM_001098597 OSTN 0.043 0.54 

BX924685  XM_613086               Bos taurus myotubularin 1 (MTM1)  0.038 0.54 

CH242-
235B3.1 

NM_001105290 Sus scrofa bone morphogenetic protein 7 (Bmp7)  0.030 0.55 

ARG1 NM_214048 Sus scrofa arginase  liver (ARG1)  0.014 0.55 

TC282384 NM_207334               Homo sapiens family with sequence similarity 43  member B (FAM43B)  0.046 0.56 

CO989438 XM_001156630            Pan troglodytes calcium-activated potassium channel beta 4 subunit (KCNMB4)  0.017 0.56 

TC301414 Unknown Unknown 0.036 0.56 
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Table A-8 Continued   

Gene ID Accession No. Gene Name P-value Fold Change 
DAB1 NM_001097442 DAB1 0.021 0.57 

BP441060 BC151769 Bos taurus MARVEL domain containing 2  mRNA (cDNA clone IMAGE:7942171)  0.040 0.57 

TC288678 Unknown Unknown 0.022 0.57 

TC293066 Unknown Unknown 0.026 0.57 

TC270858 AF228059  Sus scrofa decay-accelerating factor CD55 mRNA  complete cds  0.026 0.58 

CV878027  XM_001926796            Sus scrofa similar to SAMD4A protein (LOC100156574)  0.018 0.58 

TC290589 BC047235 Homo sapiens upstream binding protein 1 (LBP-1a)  0.005 0.58 

CA513725 XM_533297               Canis familiaris similar to Heat shock 70 kDa protein 4L (Osmotic stress protein 94) (Heat 
shock 70-related protein APG-1)  transcript variant 1 (LOC476089)  

0.016 0.58 

EV881857  XM_001493559            Equus caballus solute carrier family 4  sodium bicarbonate cotransporter  member 7 
(SLC4A7)  

0.009 0.59 

TC289774 Unknown Unknown 0.013 0.59 

DB803904  XM_524602               Pan troglodytes leucine zipper protein 1  transcript variant 3 (LUZP1)  0.047 0.60 

TC266622 Unknown Unknown 0.018 0.60 

TC286353 NM_001099064            Bos taurus CUE domain containing 1 (CUEDC1)  0.007 0.60 

ID2 NM_001037965 ID2 0.007 0.61 

DY419449 XM_001492190            Equus caballus similar to TPR repeat-containing protein C1orf34 homolog 
(LOC100062643)  

0.025 0.61 

CN159399 NM_001128506 Bos taurus chromatin modifying protein 4B (CHMP4B)  0.012 0.61 

AK230591 XM_853643               Canis familiaris similar to ornithine decarboxylase antizyme inhibitor  transcript variant 10 
(LOC475058)  

0.016 0.62 

AK234050 NM_001075748            Bos taurus CCCTC-binding factor (zinc finger protein) (CTCF)  0.047 0.62 

AK234300  NM_001038191            Bos taurus RIB43A domain with coiled-coils 2 (RIBC2)  0.005 0.63 

AJ955807 Unknown Unknown 0.006 0.63 

DN132980 Unknown Unknown 0.008 0.63 
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Table A-8 Continued   

Gene ID Accession No. Gene Name P-value Fold Change 
     

AK232193 XM_532475               Canis familiaris similar to islet cell autoantigen 1 isoform 1  transcript variant 2 
(LOC475242)  

0.040 0.63 

TC247541 XM_001489418            Equus caballus pericentriolar material 1  transcript variant 1 (PCM1)  0.015 0.64 

CF181641 XM_001252266           Bos taurus similar to dystonin  transcript variant 1 (DST)  0.015 0.64 

TC261918 XM_001916323           Equus caballus AHNAK nucleoprotein (AHNAK)  0.006 0.64 

TC286370   XM_001927561    Sus scrofa hypothetical protein LOC100155972 (LOC100155972)  0.029 0.64 

AK232477  NM_001077833            Bos taurus protein kinase C  zeta (PRKCZ)  0.047 0.64 

CRP NM_213844 CRP 0.028 0.65 

AK233736 XM_001927836            Sus scrofa similar to Down syndrome critical region gene 1-like 1 protein 
(LOC100153773)  

0.033 0.65 

AK232606 XM_001102892            Macaca mulatta similar to Protein C14orf133 homolog  transcript variant 2 (LOC706315)  0.046 0.65 

RXRA DQ279926 Sus scrofa retinoid X receptor alpha transcript variant 1 (RXRalpha) 0.047 0.65 

EW635567 XM_543735               Canis familiaris similar to solute carrier family 2 (facilitated glucose transporter)  member 
13 (LOC486609)  

0.022 0.65 

TC294557 XR_025023               Pan troglodytes similar to PAR-6 beta (LOC458334)  0.012 0.65 

CV867559  AJ009912                Sus scrofa plp gene 0.043 0.65 

TC274128 Unknown Unknown 0.010 0.66 

TC246408 Unknown Unknown 0.029 0.66 

TC300920 XM_001493065            Equus caballus similar to zinc finger protein 783 (LOC100060969)  0.013 0.66 

EV918706 AJ560639  Homo sapiens mRNA for aminopeptidase O (APO gene) 0.046 0.67 

PPARGC-1 NM_213963 PPARGC-1 0.034 0.67 

TC258272 NM_001162429 Bos taurus similar to programmed cell death 6 interacting protein  transcript variant 1 
(PDCD6IP)  

0.033 0.67 

TC239249 NM_001128934            Homo sapiens synaptopodin 2 (SYNPO2)  transcript variant 3  0.006 0.67 

EW196031 NM_052885               Homo sapiens solute carrier family 2 (facilitated glucose transporter)  member 13 
(SLC2A13)  

0.050 0.67 

TC278516 Unknown Unknown 0.042 0.68 
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Table A-8 Continued   

Gene ID Accession No. Gene Name P-value Fold Change 
     HSPA5 X92446 S.scrofa mRNA for grp78 protein 0.019 0.68 

FGFR2 NM_001099924 Sus scrofa fibroblast growth factor receptor 2 (FGFR2)  0.019 0.68 

KLF13 NM_001011505 KLF13 0.006 0.68 

LOC100037960 NM_001097457 Sus scrofa major facilitator superfamily domain containing 6 (MFSD6)  0.044 0.68 

TC291433 NM_015691               Homo sapiens WWC family member 3 (WWC3)   0.021 0.69 

AK236939 BC128144 Homo sapiens component of oligomeric golgi complex 4  mRNA (cDNA clone 
IMAGE:40112536)  

0.008 0.69 

IFNAR1 NM_213772 IFNAR1 0.012 0.69 

AK235751 NM_001172415            Homo sapiens BCL2-associated athanogene (BAG1)  transcript variant 1  0.035 0.69 

TC273652 NM_001098104            Bos taurus par-6 partitioning defective 6 homolog beta (C. elegans) (PARD6B)  0.044 0.69 

CK454680 XM_001927223            Sus scrofa similar to PAB-dependent poly(A)-specific ribonuclease subunit 3 (hPan3) 
(LOC100157385)  

0.015 0.69 

CK458354 XM_537163               Canis familiaris similar to niban protein isoform 2 (LOC480041)  0.049 0.69 

CK467413 NM_001033348            Mus musculus Ral GTPase activating protein  alpha subunit 2 (catalytic) (Ralgapa2)  0.030 0.69 

TC278165 Unknown Unknown 0.030 0.70 

HADHA NM_213962 HADHA 0.037 0.70 

TC272775 NM_001003022            Canis lupus familiaris glucocorticoid receptor DNA binding factor 1 (GRLF1)  0.000 0.70 

ROD1 NM_001077215 ROD1 0.025 0.70 

RND3 NM_214296 RND3 0.039 0.70 

AKAP13 XM_001926474            Sus scrofa A kinase (PRKA) anchor protein 13 (AKAP13)  0.016 0.70 

DT324917 XM_001924319            Sus scrofa similar to DnaJ homolog subfamily B member 12 (LOC100156234)  0.026 0.70 

AY609497 BC010370 Homo sapiens tumor suppressor candidate 3  mRNA (cDNA clone MGC:13453 
IMAGE:4334284)  

0.015 0.70 

TC268146 Unknown Unknown 0.006 0.70 

AK234157 NM_001024571 Bos taurus chromosome 12 open reading frame 41 ortholog (C5H12orf41)  0.007 0.70 
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Table A-8 Continued   

Gene ID Accession No. Gene Name P-value Fold Change 
     AK236119 NM_001135021  Homo sapiens ELMO/CED-12 domain containing 3 (ELMOD3)  transcript variant 2  0.005 0.70 

AK236625 XM_001088315            Macaca mulatta checkpoint suppressor 1  transcript variant 5 (CHES1)  0.040 0.70 

BP434590 NM_024776              Homo sapiens NKF3 kinase family member (SGK269)  0.003 0.70 

PPARGC-1 NM_213963 PPARGC-1 0.037 0.71 

TC257240 XM_001925375            Sus scrofa similar to PR domain containing 1  with ZNF domain  transcript variant 2 
(LOC100154284)   

0.042 0.71 

AK234388 NM_001162886            Sus scrofa v-ets erythroblastosis virus E26 oncogene homolog 1 (avian) (ETS1)  0.039 0.71 

SM22A NM_001110134            Equus caballus transgelin (TAGLN)  mRNA 0.035 0.71 

AK235923 XM_510991 Pan troglodytes hypothetical LOC454118  transcript variant 5 (LOC454118)  0.021 0.71 

EW263623 XM_001139429            Pan troglodytes similar to CREB  transcript variant 2 (LOC459901)  0.011 0.71 

GPAT AY284842 GPAT 0.016 0.71 

TC277497 AB120429 kinesin-family protein KIF1Bbeta3 {Rattus norvegicus}  0.049 0.71 

LOC780415 NM_001078670 Sus scrofa interferon regulatory factor 9 (LOC780415) 0.024 0.71 

AK235466 DQ105589S2 Sus scrofa CDP-diacylglycerol synthase 2 (CDS2) mRNA  partial cds 0.013 0.71 

TRAF6 NM_001105286 TRAF6 0.023 0.71 

CV877363 XM_001500207            Equus caballus similar to DEAH (Asp-Glu-Ala-His) box polypeptide 38 (LOC100054293)  0.039 0.71 

TC274812 Unknown Unknown 0.000 0.71 

LOC448984 Unknown Unknown 0.040 0.71 

TC241377 Unknown Unknown 0.034 0.71 

AK240289 XM_001498786            Equus caballus CTTNBP2 N-terminal like (CTTNBP2NL)  0.007 0.71 

AK232343 AK232343 Unknown 0.025 0.71 

HPD NM_214224 HPD 0.007 0.71 

AK234841 NM_016075  Homo sapiens vacuolar protein sorting 36 homolog (S. cerevisiae) (VPS36)  0.048 0.71 

AK239867  BC063709                Homo sapiens hypothetical protein LOC126917  mRNA (cDNA clone IMAGE:4801936)  
partial cds 

0.028 0.71 

PRKAA2 NM_214266 Sus scrofa protein kinase  AMP-activated  alpha 2 catalytic subunit (PRKAA2)  0.025 0.71 
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Table A-8 Continued   

Gene ID Accession No. Gene Name P-value Fold Change 
BX923341 NM_001098924            Bos taurus ubiquitin specific peptidase 10 (USP10)  0.008 0.72 

TC299183 X58430 Homo sapiens Hox1.8 gene for homeobox protein 0.008 0.72 

TC247962 Unknown Unknown 0.015 0.72 

PPARGC-1 NM_213963 Sus scrofa peroxisome proliferator activated receptor gamma coactivator 1 (PPARGC-1)  
mRNA [NM_213963] 

0.032 0.72 

PPARGC-1 NM_213963 Sus scrofa peroxisome proliferator activated receptor gamma coactivator 1 (PPARGC-1)  
mRNA [NM_213963] 

0.036 0.72 

EV929901 XM_870793               Bos taurus similar to Protein FAM101B (LOC618459)  0.017 0.72 

CV872688 XM_001926594            Sus scrofa similar to ring finger protein 20 (LOC100154259)  0.044 0.72 

AK233041 NM_001133129            Pongo abelii zinc finger with KRAB and SCAN domains 1 (ZKSCAN1)  0.011 0.72 

AK238640 NM_006466               Homo sapiens polymerase (RNA) III (DNA directed) polypeptide F  39 kDa (POLR3F)  0.006 0.72 

PSEN2 NM_001078666 PSEN2 0.034 0.72 

ATP6V1H NM_214240 ATP6V1H 0.040 0.72 

AK235914 XM_001168855            Pan troglodytes TMEM9 domain family  member B  transcript variant 2 (TMEM9B)  0.032 0.72 

AK240543 XM_001928943            Sus scrofa similar to Ubiquitin domain containing 1 (LOC100156395)  0.025 0.73 

CJ012713 XM_001926430             Sus scrofa similar to mast cell proteinase-3 (LOC100155263)  0.039 0.73 

EV978656  NG_011790              Homo sapiens ATP-binding cassette  sub-family A (ABC1)  member 3 (ABCA3) on 
chromosome 16 

0.027 0.73 

TC273277 Unknown Unknown 0.036 0.73 

DR083551 NM_001075289            Bos taurus activating transcription factor 1 (ATF1)  0.013 0.73 

AK240475 XM_001927539            Sus scrofa similar to general transcription factor IIH  polypeptide 3  34kDa 
(LOC100152121)  

0.006 0.73 

EW069422 XM_528043               Pan troglodytes Smad ubiquitination regulatory factor 1 (SMURF1)  0.030 0.73 

TC283069  XM_001156044            Pan troglodytes sideroflexin 1  transcript variant 1 (SFXN1)  0.027 0.73 

BX665101 Unknown Unknown 0.035 0.73 

TC288457  XM_869579    Bos taurus similar to EMI domain containing 2 (EMID2)  0.036 0.73 

BIN1 NM_001097440 BIN1 0.036 0.73 
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Table A-8 Continued   

Gene ID Accession No. Gene Name P-value Fold Change 
     TC283021 Unknown Unknown 0.043 0.73 

AK232443 XM_001501049            Equus caballus similar to Cullin-5 (CUL-5) (Vasopressin-activated calcium-mobilizing 
receptor) (VACM-1) (LOC100061726)  

0.014 0.73 

LOC396848 NM_176636               Bos taurus myosin light chain kinase (MYLK)  0.009 0.73 

CJ038329 P47843 Solute carrier family 2 facilitated glucose transporter member 3 0.028 0.73 

DN101455 XM_001788616 Bos taurus similar to SWI/SNF related  matrix associated  actin dependent regulator of 
chromatin  subfamily c  member 1 (LOC522045)  

0.016 0.73 

LOC100038015 NM_001162401            Sus scrofa lysophosphatidic acid receptor 2 (LPAR2)  0.048 0.73 

E4 NM_213947 E4 0.026 0.73 

FGFR2 NM_001099924 FGFR2 0.048 0.73 

TC266079 Unknown Unknown 0.026 0.73 

AK236120 XM_001929348 Sus scrofa similar to RIKEN cDNA 2810048G17 (LOC100157433)  0.014 0.73 

CV876228 XM_001093735            Macaca mulatta similar to chromatin modifying protein 4C (LOC702310)  0.023 0.73 

BI184146 XM_001927725            Sus scrofa prostaglandin F2 receptor negative regulator (PTGFRN)  0.002 0.73 

ROD1 ROD1 ROD1 0.018 0.74 

CV875504 XM_001926134            Sus scrofa similar to chloride channel 3 (LOC100156049) 0.040 0.74 

BW961052 XM_001928697            Sus scrofa similar to coatomer protein complex  subunit alpha  transcript variant 1 
(LOC100157296)  

0.016 0.74 

AK234049 XM_001112035            Macaca mulatta similar to SP140 nuclear body protein isoform 1  transcript variant 2 
(LOC710925)  

0.003 0.74 

TC260069 Unknown Unknown 0.033 0.74 

CB285502 XM_001162866            Pan troglodytes PR domain containing 4  transcript variant 2 (PRDM4)  0.045 0.74 

DN106070 NM_001105626            Bos taurus tweety homolog 2 (Drosophila) (TTYH2)  0.029 0.74 

BX919286  XM_001493063            Equus caballus similar to tetratricopeptide repeat domain 3 (LOC100060967)  0.046 0.74 

PNPLA2 NM_001098605 PNPLA2 0.014 0.74 

TC289012 Unknown Unknown 0.026 0.74 
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Table A-8 Continued   

Gene ID Accession No. Gene Name P-value Fold Change 
     AK232121 Q9ASK4 Putative LRR receptor-like protein kinase 0.037 0.74 

TC278409 Unknown Unknown 0.014 0.74 

AK230999 BC010355 Homo sapiens zinc finger protein 638  mRNA (cDNA clone IMAGE:4248516)  with 
apparent retained intron 

0.007 0.74 

CJ014614  AF480462                Homo sapiens mixed lineage kinase-related kinase MRK-beta mRNA 0.022 0.75 

TC268607 Unknown Unknown 0.026 0.75 

AK234388 NM_001162886            Sus scrofa v-ets erythroblastosis virus E26 oncogene homolog 1 (avian) (ETS1)  0.013 0.75 

CN157587 NM_014611              Homo sapiens MDN1  midasin homolog (yeast) (MDN1)  0.003 0.75 

AK231618 NM_152305               Homo sapiens KTEL (Lys-Tyr-Glu-Leu) containing 1 (KTELC1)  transcript variant 1  0.014 0.75 

CF361296 Unknown Unknown 0.021 0.75 

BP165217 NM_145160               Homo sapiens mitogen-activated protein kinase kinase 5 (MAP2K5)  0.040 0.75 

EW259004 NM_024091               Homo sapiens FAST kinase domains 3 (FASTKD3)  0.022 0.75 

TC257345 Unknown Unknown 0.033 0.75 

HSP90 NM_213973 HSP90 0.036 0.75 

AJ940394  XM_001925507            Sus scrofa similar to Protein strawberry notch homolog 1 (Monocyte protein 3) (MOP-3) 
(LOC100158131)  

0.023 0.75 

FBP NM_213830 FBP 0.029 0.75 

AK240409 BC109100 Homo sapiens zinc finger protein 75D  mRNA (cDNA clone MGC:126327 
IMAGE:40034784)  

0.011 0.75 

EW046701 BC157843 Homo sapiens protein phosphatase 1H (PP2C domain containing)  mRNA (cDNA clone 
MGC:189738 IMAGE:9057062)  

0.026 0.75 

TC270146 AB209365 Homo sapiens mRNA for diacylglycerol kinase epsilon variant protein 0.023 0.76 

TC294387 Unknown Unknown 0.006 0.76 

DN107931 BC143266 Homo sapiens uveal autoantigen with coiled-coil domains and ankyrin repeats  mRNA 
(cDNA clone MGC:176785 IMAGE:9051768)  

0.048 0.76 

TC266056 XM_001927219            Sus scrofa similar to single-strand selective monofunctional uracil DNA glycosylase 
(LOC100153912)  

0.011 0.76 

EW214587 NM_001037806            Homo sapiens NCK-associated protein 5-like (NCKAP5L)  0.021 0.76 
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AY609622 AY609622 Sus scrofa similar to small nuclear RNA activating complex  polypeptide 3  50kDa 
(LOC100156386)  

0.037 0.76 

EW656850 Unknown Unknown 0.042 0.76 

AK234698 NM_005723               Homo sapiens tetraspanin 5 (TSPAN5)  0.019 0.76 

AK231358 XM_001496368            Equus caballus chromodomain helicase DNA binding protein 4 (CHD4)  0.034 0.76 

TC250538  NM_014997               Homo sapiens kelch domain containing 10 (KLHDC10)  0.005 0.76 

DT327635 NM_015175               Homo sapiens neurobeachin-like 2 (NBEAL2)  0.017 0.76 

TC299692 NM_001025107 Homo sapiens adenosine deaminase  RNA-specific (ADAR)   0.046 0.76 

DY420532 NM_017902               Homo sapiens hypoxia inducible factor 1  alpha subunit inhibitor (HIF1AN) 0.047 0.76 

BX918062  BC000030                Homo sapiens Wolf-Hirschhorn syndrome candidate 1-like 1  mRNA (cDNA clone 
IMAGE:3505788)  

0.044 0.76 

CN157824  NM_052855               Homo sapiens ankyrin repeat domain 40 (ANKRD40)  0.022 0.77 

INSIG1 INSIG1 INSIG1 0.017 0.77 

TC256419 XM_589799               Bos taurus similar to zinc finger and BTB domain containing 38  transcript variant 1 
(ZBTB38)  

0.020 0.77 

TC261725 NM_015459               Homo sapiens atlastin GTPase 3 (ATL3)  0.034 0.77 

EW054519 NM_014016               Homo sapiens SAC1 suppressor of actin mutations 1-like (yeast) (SACM1L)  0.030 0.77 

TC290580 Unknown Unknown 0.047 0.77 

TC297603 Unknown Unknown 0.048 0.77 

BW977049 NM_022750               Homo sapiens poly (ADP-ribose) polymerase family  member 12 (PARP12)  0.027 0.77 

NR1H3 NM_001101814 NR1H3 0.028 0.77 

TC265732 Unknown Unknown 0.049 0.77 

TC278658 Unknown Unknown 0.034 0.77 

TC275612 Unknown Unknown 0.006 0.77 

AK236642 BC011558 Homo sapiens nuclear factor (erythroid-derived 2)-like 2  mRNA (cDNA clone 
MGC:20033 IMAGE:4548874)  

0.027 0.77 
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Gene ID Accession No. Gene Name P-value Fold Change 
AK236072  XM_001150552            Pan troglodytes BTB (POZ) domain containing 7 (BTBD7)  0.010 0.77 

TC277856 Unknown Unknown 0.011 0.77 

AK231141 XM_857278               Canis familiaris similar to helicase with zinc finger domain  transcript variant 7 
(LOC490907)  

0.038 0.77 

YWHAZ XM_001927228            Sus scrofa tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein  zeta 
polypeptide (YWHAZ)  

0.013 0.77 

CX060615 XM_001926596            Sus scrofa similar to HBS1-like protein (LOC100155814)  0.041 0.77 

TC273432 NM_001075242            Bos taurus KIAA1737 (KIAA1737)  0.049 0.77 

AK233400 BT026260 Bos taurus Wiskott-Aldrich syndrome-like (WASL)  0.028 0.77 

BX926031 NR_002323               Homo sapiens taurine upregulated 1 (non-protein coding) (TUG1)  0.001 0.77 

AJ963284 Unknown Unknown 0.000 0.77 

DY426447 NM_001081544            Bos taurus leucine zipper  down-regulated in cancer 1 (LDOC1)  0.044 0.77 

BI399717 Unknown Unknown 0.030 0.77 

AJ655057 NM_003274               Homo sapiens trafficking protein particle complex 10 (TRAPPC10)  0.033 0.78 

TC288314 Unknown Unknown 0.029 0.78 

CJ038028 XM_862420               Canis familiaris similar to filamin A interacting protein 1  transcript variant 4 
(LOC481882)  

0.003 0.78 

DY419617 NM_001076046            Bos taurus small nuclear ribonucleoprotein 70kDa (U1) (SNRNP70)  0.044 0.78 

AK233061 XM_001926938            Sus scrofa similar to Uncharacterized protein C20orf4 homolog (LOC100152525)  0.047 0.78 

TC300581 XM_001928761   Sus scrofa similar to EP300 interacting inhibitor of differentiation 1 (LOC100155122)  0.021 0.78 

DN103217 XM_847823               Canis familiaris similar to bruno-like 4  RNA binding protein  transcript variant 1 
(LOC610838)  

0.025 0.78 

AK236656 NM_001105501            Bos taurus ubiquitin family domain containing 1 (UBFD1)  0.011 0.78 

TC298889 Unknown Unknown 0.026 0.78 

EW078178 XM_863956               Bos taurus similar to zinc finger protein 403  transcript variant 2 (GGNBP2)  mRNA 0.024 0.78 

TC239883 Unknown Unknown 0.036 0.78 

CJ022253 Unknown Unknown 0.030 0.78 

TC272845 Unknown Unknown 0.040 0.78 
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     PAP7 NM_001009581 PAP7 0.037 0.78 

TC283651 Unknown Unknown 0.008 0.78 

TC272853 XM_001916241            Equus caballus SEC31 homolog A (S. cerevisiae) (SEC31A)  0.042 0.78 

AK234063  XM_875085               Bos taurus similar to Dynactin subunit 4 (Dynactin subunit p62)  transcript variant 3 
(DCTN4)  

0.043 0.79 

DB801941 XM_001167842            Pan troglodytes adaptor-related protein complex 3  sigma 2 subunit  transcript variant 1 
(AP3S2)  

0.024 0.79 

AJ949764 Unknown Unknown 0.020 0.79 

EW044715 Unknown Unknown 0.021 0.79 

BX926252 Unknown Unknown 0.031 0.79 

AJ955195 XM_001929149            Sus scrofa similar to transmembrane protein 77 (LOC100158051)  0.036 0.79 

TC257321 NM_014817               Homo sapiens TLR4 interactor with leucine rich repeats (TRIL)  0.045 0.79 

CJ029886 XM_002708672            Oryctolagus cuniculus integrator complex subunit 4 (LOC100350308)  0.023 0.79 

TC289051 Unknown Unknown 0.035 0.79 

AK237448 XM_001928092            Sus scrofa similar to Ras-related protein Rab-35 (Rab-1C) (GTP-binding protein RAY) 
(LOC100151805)  

0.033 0.79 

TC252571 BC025865 Mus musculus vacuolar protein sorting 37C (yeast) (Vps37c)  mRNA 0.015 0.79 

AK234427 XM_001928746            Sus scrofa similar to adenosine deaminase-like protein (predicted) (LOC100155388)  0.046 0.79 

TC273185 NM_024139  Rattus norvegicus calcium binding protein p22 (Chp)  0.040 0.79 

NOG XM_001104355 Macaca mulatta similar to Noggin precursor (NOG)  0.036 0.79 

AJ962580 XM_587548               Bos taurus similar to Inactive phospholipase C-like protein 2 (Phospholipase C epsilon 2) 
(Phospholipase C-L2) (PLC-L(2)) (PLC-L2) (PLCL2)  

0.046 0.79 

TC275311 Unknown Unknown 0.031 0.79 

TC266450 NM_001034841            Homo sapiens inositol 1 4 5-triphosphate receptor interacting protein-like 2 (ITPRIPL2)  
transcript variant 2  non-coding RNA 

0.035 0.79 

AJ943355 XM_001148863            Pan troglodytes haloacid dehalogenase-like hydrolase domain containing 2  transcript 
variant 5 (HDHD2)  

0.020 0.79 
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Gene ID Accession No. Gene Name P-value Fold Change 
CK464272 NM_001167741            Homo sapiens metaxin 3 (MTX3)  transcript variant 1  0.027 0.79 

AK231096 BC149255  Bos taurus signal-regulatory protein alpha  mRNA (cDNA clone IMAGE:8115519)  0.047 0.79 

TC278200 XM_001925656            Sus scrofa similar to procollagen  type IV  alpha 1 (LOC100151842)  0.038 0.79 

AK236606 XM_001151850            Pan troglodytes A-kinase anchor protein 11  transcript variant 4 (AKAP11)  0.013 0.79 

TC299921 Unknown Unknown 0.026 0.79 

EW027983 NM_025107               Homo sapiens myc target 1 (MYCT1)   0.015 0.79 

TC284254 XM_851809               Canis familiaris similar to serine/threonine-protein kinase PRP4K  transcript variant 15 
(LOC488199)  

0.033 0.79 

AK237711 XM_001488261            Equus caballus similar to PHD finger protein 6 (LOC100054177)  0.012 0.79 

EW589095 Unknown Unknown 0.047 0.79 

AK233313 XM_545906               Canis familiaris similar to SH3 domain and tetratricopeptide repeats 1 (LOC488788)  0.023 0.79 

TC300859 AB007872 Homo sapiens zinc finger protein 264 (ZNF264)  0.019 0.80 

TC245799 Unknown Unknown 0.007 0.80 

TC255319 XM_001495384            Equus caballus similar to SWI/SNF related  matrix associated  actin dependent regulator of 
chromatin  subfamily c  member 1 (LOC100064492)  

0.028 0.80 

EW420742 XM_542033 Canis familiaris similar to immediate early response 2 (LOC484917)  0.025 0.80 

AK237711 XM_001488261            Equus caballus similar to PHD finger protein 6 (LOC100054177)  0.009 0.80 

AK235686 XM_001925381            Sus scrofa similar to insulin-degrading enzyme (LOC100155309)  0.016 0.80 

CV874785 XM_001788601 Bos taurus similar to FIP1-like 1  transcript variant 2 (LOC100138550)  0.029 0.80 

AK232495  XM_537970               Canis familiaris similar to Gamma-taxilin (Lipopolysaccharide specific response protein 5) 
(LOC480853)  

0.048 0.80 

DT325774 XM_001109176  Macaca mulatta similar to solute carrier family 39 (zinc transporter)  member 9  transcript 
variant 2 (LOC712430)  

0.034 0.80 

AK237044 XM_001499279            Equus caballus similar to ubiquitin-conjugating enzyme E2Z (LOC100069535)  0.034 0.80 

TC285668 Unknown Unknown 0.036 0.80 
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     BX676607 XM_001928537 Sus scrofa similar to Platelet receptor Gi24 (LOC100154373)  0.049 0.80 

EW369833 XM_606371               Bos taurus par-3 partitioning defective 3 homolog (C. elegans) (PARD3)  0.042 0.80 

BP434962  XM_001928205            Sus scrofa similar to T-complex protein 1 subunit alpha (TCP-1-alpha) (CCT-alpha) 
(LOC100153485)  

0.044 0.80 

AK238011 NM_001105646            Bos taurus aldehyde dehydrogenase 4 family  member A1 (ALDH4A1)  nuclear gene 
encoding mitochondrial protein 

0.046 0.80 

AK234809 NM_001075556             Bos taurus small nuclear ribonucleoprotein 35kDa (U11/U12) (SNRNP35)  0.012 0.80 

AY610027 XM_001926484             Sus scrofa similar to ARV1 homolog (S. cerevisiae) (LOC100151849)  0.008 0.80 

AJ944053 XM_507955               Pan troglodytes phosphoinositide-3-kinase adaptor protein 1 (PIK3AP1)  0.012 0.81 

TC294130 Unknown Unknown 0.032 0.81 

TC281094 Unknown Unknown 0.018 0.81 

TC246475 Unknown Unknown 0.033 0.81 

DN100853 AF339885 Sus scrofa mannose-6-phosphate/insulin-like growth factor II receptor (m6p/igf2r) mRNA  
partial cds 

0.038 0.81 

CN161695 XM_545559               Canis familiaris similar to Integrin alpha-V precursor (Vitronectin receptor alpha subunit) 
(CD51 antigen)  transcript variant 1 (LOC488437)  

0.020 0.81 

TC270371 Unknown Unknown 0.006 0.81 

ODC ODC ODC 0.037 0.81 

TC268131 XM_001150696            Pan troglodytes HMG-BOX transcription factor BBX  transcript variant 13 (BBX)  0.042 0.81 

DN125536 XM_596205               Bos taurus similar to LEM domain containing 2  transcript variant 1 (LEMD2)  0.029 0.81 

AY609497 XM_001488031            Equus caballus similar to tumor suppressor candidate 3  transcript variant 1 
(LOC100049974)  

0.035 0.81 

TC273861 Unknown Unknown 0.036 0.81 

TC268537 AF070556 Homo sapiens tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein  
theta polypeptide (YWHAQ)   

0.001 0.81 

BX671510 NM_001075838            Bos taurus myosin ID (MYO1D)  0.009 0.81 

DN134244 XM_001106950            Macaca mulatta A kinase (PRKA) anchor protein 2 (AKAP2)  0.022 0.81 
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     EW533203 XM_001139700            Pan troglodytes similar to APOLD1 protein (LOC738701)  0.013 0.81 

TC289943 Unknown Unknown 0.045 0.81 

AK232486 NM_001159481            Bos taurus pyruvate dehydrogenase kinase  isozyme 2 (PDK2)  transcript variant 1  0.042 0.81 

TC272320 BC107228 Mus musculus carcinoembryonic antigen-related cell adhesion molecule 19  mRNA (cDNA 
clone MGC:130156 IMAGE:40051962)  

0.026 0.81 

TAF1B TAF1B TAF1B 0.045 0.81 

DB802589 Unknown Unknown 0.017 0.81 

CF177025 NM_001105048            Bos taurus immunoglobulin superfamily  member 1 (IGSF1)  0.034 0.82 

TC275305 XM_856269               Canis familiaris similar to RNA-binding protein 6 (RNA binding motif protein 6) (RNA-
binding protein DEF-3) (Lung cancer antigen NY-LU-12) (Protein G16)  transcript variant 
2 (LOC608064)  

0.027 0.82 

DR066002 BC103112 Bos taurus CD36 molecule (thrombospondin receptor)  mRNA (cDNA clone MGC:128284 
IMAGE:7985341)  complete cds 

0.044 0.82 

AK232065 NM_020921              Homo sapiens ninein (GSK3B interacting protein) (NIN)  transcript variant 2  0.027 0.82 

EW120221 NM_001014942            Bos taurus retinoic acid receptor  alpha (RARA)  0.022 0.82 

TC249497 Unknown Unknown 0.027 0.82 

TC296294  NM_022740              Homo sapiens homeodomain interacting protein kinase 2 (HIPK2)  transcript variant 1  0.029 0.82 

TC282743 Unknown Unknown 0.022 0.82 

DY405668 AB188402 Sus scrofa CD3Z for CD3 zeta chain  CD3 eta chain  partial cds  alternative splicing 0.024 0.82 

CN157435 XM_001918217            Equus caballus cation channel  sperm associated 2 (CATSPER2)  0.042 0.82 

CF362786 Unknown Unknown 0.037 0.82 

DV224594 Unknown Unknown 0.045 0.82 

TC274382 NM_001101064            Bos taurus TSPY-like 4 (TSPYL4)  0.022 0.82 

CK451297 XM_001914696            Equus caballus bromodomain containing 4 (BRD4)  0.018 0.82 

TC242066 BC105323  Bos taurus Rho GTPase activating protein 1  mRNA (cDNA clone IMAGE:7945456)  0.030 0.82 

EW387350 XM_001928378            Sus scrofa hypothetical protein LOC100155837 (LOC100155837)  0.021 0.82 
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AK231743 NM_001011685            Bos taurus 5 10-methylenetetrahydrofolate reductase (NADPH) (MTHFR)  0.032 0.82 

ODC AB529865 Sus scrofa ODC1 mRNA for ornithine decarboxylase 1  0.038 0.82 

EW475595 XM_001929082            Sus scrofa similar to tetraspanin 15 (LOC100157123)  0.047 0.82 

CN158962 NM_001105420            Bos taurus cytoplasmic polyadenylation element binding protein 4 (CPEB4)  0.044 0.82 

AK239900 NM_001105370            Bos taurus similar to leucine-rich-domain inter-acting protein 1; LeR inter-acting protein 1; 
LEAP1 (LOC515042)  

0.031 0.83 

TC302515 AJ504726   Sus scrofa mut gene for methylmalonyl-CoA mutase  exons 1-7 0.012 0.83 

TC258946 NM_001102136            Bos taurus nucleoredoxin (NXN)  0.024 0.83 

EW575812  XM_001487868            Equus caballus translocated promoter region (to activated MET oncogene)  transcript 
variant 1 (TPR)  

0.042 0.83 

LOC733605 NM_001044554 Sus scrofa NADH dehydrogenase 1 beta subcomplex 6 (LOC733605)  0.039 0.83 

DN108591 XM_001499231            Equus caballus PHD finger protein 20-like 1 (PHF20L1)  0.035 0.83 

EW525979 XM_001928262            Sus scrofa similar to B-cell CLL/lymphoma 10 (LOC100153411)  0.016 0.83 

TC256227 Unknown Unknown 0.040 0.83 

TC258553 NM_001106592            Rattus norvegicus zinc finger protein 282 (Znf282)  0.042 0.83 

TC264353 XM_524602               Pan troglodytes leucine zipper protein 1  transcript variant 3 (LUZP1)  0.013 0.83 

EW141994 GU144288 Sus scrofa breed Meishan CDP-diacylglycerol-inositol 3-phosphatidyltransferase (CDIPT) 
mRNA  

0.029 0.83 

BX922324 XM_001097043            Macaca mulatta similar to neighbor of BRCA1 gene 1 (LOC708558)  0.037 0.83 

TC252375 NG_011605              Homo sapiens optic atrophy 1 (autosomal dominant) (OPA1) on chromosome 3 0.016 0.83 

AK233485 Unknown Unknown 0.023 0.83 

TC275758 NM_021705               Homo sapiens nuclear transcription factor Y  alpha (NFYA)  transcript variant 2  0.029 0.83 

CV874400 XR_013993               Macaca mulatta similar to carboxypeptidase D precursor (LOC712407)  0.042 0.83 

BP464264 NM_001033763            Bos taurus DnaJ (Hsp40) homolog  subfamily B  member 1 (DNAJB1) 0.042 0.83 

EW622475 Unknown Unknown 0.027 0.83 

NLN NM_214359 NLN 0.025 0.83 
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BQ599146 XM_001929267             Sus scrofa similar to ubiquinol-cytochrome c reductase binding protein (LOC100157621)  0.035 0.83 

TC250527 Unknown Unknown 0.017 0.83 

LOC733594 Unknown Unknown 0.031 0.83 

TC280160 NM_001080267            Bos taurus hypothetical protein LOC512679 (KIAA1549)  0.034 0.83 

AJ655828 XM_001088983            Macaca mulatta similar to cytoplasmic polyadenylation element binding protein 3 
(LOC698133)  

0.047 0.83 

AK236892 XM_001087186            Macaca mulatta similar to TGF-beta induced apoptosis protein 12  transcript variant 5 
(LOC694549)  

0.020 0.84 

AK234787 NM_001083760            Bos taurus solute carrier family 30 (zinc transporter)  member 7 (SLC30A7)  0.034 0.84 

TC285101 Unknown Unknown 0.009 0.84 

TC244961 Q8BU92 RAS protein activator like 2 0.050 0.84 

EW417533 Unknown Unknown 0.033 0.84 

BX923434 XR_024055               Pan troglodytes similar to KIAA0178 (SMC1L1)  0.035 0.84 

DN101466 XM_585116               Bos taurus similar to axin interaction partner and dorsalization antagonist  transcript variant 
1 (LOC508353)  

0.047 0.84 

TC284856 NM_001106613            Rattus norvegicus protein phosphatase 4  regulatory subunit 2 (Ppp4r2)  0.018 0.84 

AK233507  XM_541506               Canis familiaris similar to Nucleobindin 1 precursor (CALNUC)  transcript variant 1 
(LOC484391)  

0.012 0.84 

TC289103 Unknown Unknown 0.041 0.84 

TC293356 XM_001148120            Pan troglodytes limb region 1 protein (LMBR1)  0.024 0.84 

LOC733610 XM_001488738            Equus caballus similar to Transmembrane protein 59  transcript variant 1 (LOC100050223)  0.044 0.84 

AK234479 NM_001045939            Bos taurus glutaryl-Coenzyme A dehydrogenase (GCDH)  nuclear gene encoding 
mitochondrial protein  

0.027 0.84 

CJ029361 XM_001929357  Sus scrofa similar to transcription termination factor  RNA polymerase II (LOC100156166)  
mRNA 

0.016 0.84 

TC295311 Unknown Unknown 0.016 0.84 

TC289215 XM_001103594            Macaca mulatta similar to hepatic leukemia factor (LOC706623)  0.013 0.84 
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     TC256781 XM_510504               Pan troglodytes coronin  actin binding protein  2B (CORO2B)  0.021 0.85 

TC291534 Unknown Unknown 0.028 0.85 

AK232325 XM_509243               Pan troglodytes PTPRF interacting protein alpha 2 (PPFIA2)  mRNA 0.032 0.85 

AK235920 XM_001926875             Sus scrofa similar to FYVE and coiled-coil domain containing 1 (LOC100154150)  0.048 0.85 

AK233030 NM_004820               Homo sapiens cytochrome P450  family 7  subfamily B  polypeptide 1 (CYP7B1)  0.027 0.85 

DN100970 Unknown Unknown 0.049 0.85 

BW979660 NM_004428               Homo sapiens ephrin-A1 (EFNA1)  transcript variant 1 0.031 0.85 

TC262793 BC144616 Homo sapiens family with sequence similarity 63  member B  mRNA  0.008 0.85 

DV224971 NM_015027               Homo sapiens pyridoxal-dependent decarboxylase domain containing 1 (PDXDC1) 0.043 0.85 

TC276349 Unknown Unknown 0.004 0.85 

TC283027 NG_009369              Homo sapiens gap junction protein  alpha 5  40kDa (GJA5) on chromosome 1 0.022 0.85 

AK235477 XM_001501249            Equus caballus trinucleotide repeat containing 6A (TNRC6A)  0.010 0.85 

BM190617 NM_024776              Homo sapiens NKF3 kinase family member (SGK269)  0.048 0.85 

TC261566 XM_001147305            Pan troglodytes required for meiotic nuclear division 5 homolog B  transcript variant 8 
(RMND5B)  

0.042 0.85 

AK233115 NM_001076539            Bos taurus zinc finger protein 574 (ZNF574)  0.046 0.85 

TC287870 NM_001077984            Bos taurus RNA polymerase II associated protein 1 (RPAP1)  0.013 0.86 

CK453045 XM_518711               Pan troglodytes karyopherin alpha 5 (importin alpha 6) (KPNA5) 0.016 0.86 

P2RY2 P2RY2 P2RY2 0.045 0.86 

BX664868 NM_001046448            Bos taurus tetraspanin 14 (TSPAN14)  0.049 0.86 

BP440893 NM_001046478            Bos taurus rhomboid domain containing 2 (RHBDD2) 0.047 0.86 

AK237910 NG_011499              Homo sapiens JAZF zinc finger 1 (JAZF1) on chromosome 7 0.026 0.86 

TC253559 Unknown Unknown 0.036 0.86 

AJ684796 BC120080                Bos taurus calmodulin 3 (phosphorylase kinase  delta)  mRNA (cDNA clone MGC:140648 
IMAGE:8272819)  

0.023 0.86 
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VWF AF052036 VWF 0.023 0.86 

AK234934 NM_001131045            Sus scrofa solute carrier family 39 (zinc transporter)  member 7 (SLC39A7)  0.007 0.86 

AK235860  NM_001166044  Sus scrofa cyclin-dependent kinase 9 (CDK9)  0.044 0.86 

EW618205 Unknown Unknown 0.045 0.86 

CX064989 Unknown Unknown 0.037 0.86 

DY413627 XP_001926148 similar to KIAA1398 protein 0.024 0.86 

NCOA1 NM_001025228 NCOA1 0.022 0.86 

CV874500 Unknown Unknown 0.036 0.87 

TC276672  AK127343                Homo sapiens cDNA FLJ45415 fis  clone BRHIP3033734  highly similar to Protein 
FAM53B 

0.029 0.87 

TC261431 Unknown Unknown 0.039 0.87 

MITF GU097381  Sus scrofa microphtalmia-associated transcription factor isoform A (MITF) mRNA  
complete cds  alternatively spliced 

0.008 0.87 

AK233061 XM_001926938            Sus scrofa similar to Uncharacterized protein C20orf4 homolog (LOC100152525)  0.010 0.87 

TC252427 X68453  S.scrofa mRNA for tubulin-tyrosine ligase 0.016 0.87 

TC259850 XM_001503832             Equus caballus similar to coiled-coil domain containing 28B (LOC100070339)  0.010 0.87 

AK237279  NM_001034374            Bos taurus microtubule-associated protein  RP/EB family  member 2 (MAPRE2)  0.025 0.88 

DN107664 XM_596055               Bos taurus similar to AT rich interactive domain 2 (ARID  RFX-like) (ARID2)  0.018 0.88 

TC239752 AF097750 Gallus gallus chromatin assembly factor 1 p48 subunit mRNA  0.044 0.88 

TC277649 NM_001015627            Bos taurus resistance to inhibitors of cholinesterase 8 homolog A (C. elegans) (RIC8A)  0.043 0.88 

AY609407 XM_001926939  Sus scrofa similar to syndecan 2 (LOC100152754) 0.024 0.88 

CF359413 NM_001132379            Pongo abelii Der1-like domain family  member 1 (DERL1)  0.032 0.88 

TC270932 XM_001253150            Bos taurus prothymosin  alpha (PTMA)  0.025 0.88 

TC290163 AY550038  Sus scrofa ribosomal protein S28 (RPS28)  0.028 0.88 

TC263689 O77783 Bos taurus exostoses (multiple) 2 (EXT2)  0.034 0.88 
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Table A-8 Continued   

Gene ID Accession No. Gene Name P-value Fold Change 
CN030549 XM_591968               Bos taurus similar to aurora borealis  transcript variant 1 (LOC514162)  0.021 0.89 

EW570014  XM_001925192            Sus scrofa similar to Transmembrane 9 superfamily member 3 precursor (SM-11044-
binding protein) (EP70-P-iso) (LOC100157588)  

0.036 0.89 

TC272557 NM_001075824            Bos taurus tripartite motif-containing 32 (TRIM32)  0.033 0.89 

TC248797 Unknown Unknown 0.025 0.90 

BP171980 XM_001254303            Bos taurus similar to ubiquitin specific protease 48 (USP48)  0.016 0.90 

AK235128 XM_001104624            Macaca mulatta v-akt murine thymoma viral oncogene homolog 3 (AKT3)  0.041 0.90 

TC297181 AF196186 Homo sapiens atypical PKC isotype-specific interacting protein short variant mRNA  
complete cds 

0.041 0.91 

DN117823 Q34177 NADH-ubiquinone oxidoreductase chain 5 0.037 0.92 

IFNGR2 NM_001111258 IFNGR2 0.041 0.93 

* Determined by microarray 
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