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ABSTRACT 

 

Calcium Sulfate Formation and Mitigation when Seawater Was  

Used to Prepare HCl-Based Acids. (December 2011) 

Jia He, B.S., China University of Petroleum 

Chair of Advisory Committee: Dr. Hisham A. Nasr-El-Din 

 

It has been a practice to use seawater for preparing acid in offshore operations 

where fresh water is relatively expensive or logistically impossible to use. However, 

hydrochloric acid will release calcium ion into solution, which will combine with sulfate 

ion in seawater (greater than 3000 ppm) and calcium sulfate will precipitate once it 

exceeds its critical scaling tendency. A few studies have provided evidence for this 

problem and how to address this problem has not been fully examined. 

Core flood tests were conducted using Austin Chalks cores (1.5 in. × 6 in. and 

1.5 in. × 20 in.) with permeability 5 md to investigate the effectiveness of scale inhibitor. 

A synthetic seawater was prepared according to the composition of seawater in the 

Arabian Gulf. Calcium, sulfate ions, and scale inhibitor concentrations were analyzed in 

the core effluent samples. Solids collected in the core effluent samples were analyzed 

using X-ray photoelectron spectroscopy (XPS) technique and thermodynamic 

calculation using OLI Analyzer software were conducted to identify the critical scaling 

tendency of calcium sulfate at different temperatures.  
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Results showed that calcium sulfate precipitation occurred when seawater was 

used in any stage during matrix acidizing including preflush, post-flush, or in the main 

stage. Injection rate was the most important parameter that affected calcium sulfate 

precipitation; permeability reduction was significant at low flow rates, while at high 

rates wormhole breakthrough reduced the severity of the problem.  

More CaSO4 precipitated at high temperatures, accounting for more significant 

permeability reduction in the cores. The values of critical scaling tendency at various 

temperatures calculated by OLI ScaleChem 4.0.3 were believed to be 2.1, 2.0, and 1.2 

respectively.  

A scale inhibitor (a sulfonated terpolymer) was found to be compatible with 

hydrochloric acid systems and can tolerate high concentration of calcium (30,000 mg/l). 

Analysis of core effluent indicated that the new treatment successfully eliminated 

calcium sulfate scale deposition. The concentration of scale inhibitor ranged from 20 to 

250 ppm, depending on the scaling tendencies of calcium sulfate.  

This work confirms the damaging effect of preparing hydrochloric acid solutions 

using seawater on the permeability of carbonate cores. Therefore, it is recommended to 

use fresh water instead of seawater to prepare HCl acids whenever possible. If fresh 

water is not available, then a proper scale inhibitor should be added to the acids to avoid 

calcium sulfate precipitation. 
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1. INTRODUCTION 

 

 The potential of calcium sulfate precipitation is greatly increased when seawater 

is used for matrix acidizing treatments (Oddo et al. 1991; Nasr-El-Din et al. 1996; He et 

al. 2011). In those processes, calcium concentration is greatly increased due to the 

reaction of the hydrochloric acid with calcite in the carbonate reservoir rocks. High 

calcium concentration will combine with high concentration of sulfate in seawater and 

significantly increase the scaling tendency of calcium sulfate. Besides, the solubility of 

calcium sulfate drops greatly once acid spends (Flint 1968; Kruchenko and 

Beremzhanov 1976; Li and Demopoulos 2002). Those two factors account for the 

precipitation of calcium sulfate out of solution once it exceeds the value of critical 

scaling tendency of calcium sulfate (Yeboah et al. 1993a, b; Raju and Nasr-El-Din 

2004). 

 Calcium sulfate will deposit in the stimulated flow channels (Delorey et al. 

1996), possibly cause blockage of pore throats and severely impair the formation 

permeability (Tahmasebi et al. 2007); hence decrease well injectivity or productivity 

(Smith et al. 1968; Shen and Crosby 1983). Even worse, the nucleation and precipitation 

process of calcium sulfate during acidizing treatments may affect the acid reaction with 

carbonate rocks and cause limited acid stimulation effect (He et al. 2011). 

  

____________ 

This thesis follows the style of Society of Petroleum Engineers. 
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 The most common calcium sulfate scale minerals found in the oilfield include: 

anhydrite (CaSO4), hemihydrate (CaSO4·1/2H2O) and gypsum (CaSO4·2H2O) (Kan et 

al. 2005; Schausberger et al. 2009). Gypsum is the stable form below 45˚C while 

anhydrite is the stable form above 93˚C (Furby et al. 1967). The solubility of calcium 

sulfate in brines is influenced by many factors with ionic strength and temperature being 

the most important ones (Abu-Khamsin and Ahmad 2005). Temperature tends to greatly 

reduce the solubilities of all forms of calcium sulfate while the solubilities increase at 

higher ionic strengths (Meijer and Van Rosmalen 1984). 

 Because of the complexity of scale formation and the difficulty to precisely 

conduct thermodynamic calculation to predict scaling, various models have been 

developed, including: EQ 3/6, PHREEQC, ScaleChem, ScaleSoftPitzer, OKSCALE 

(Frenier and Murtaza 2008). To obtain precise thermodynamic properties of calcium 

sulfate in brines, ScaleChem 4.0.3 was used in this work (Millan et al. 2004; Amiri and 

Moghadasi 2010; Lopez-Salinas et al. 2011).  

 Typically, the application of scale inhibitors has been one of the best economical 

methods to mitigate calcium sulfate (Yuan 2004; Fan et al. 2010; Hoang et al. 2009). 

The use of scale inhibitors may act either as chelating agents to form soluble complex 

(Moore et al. 1972; Jamialahmadi and Mueller 1991; Al-Khaldi et al. 2011), or as 

threshold inhibitors which block the development of the supercritical nuclei (He et al. 

1994; Tomson et al. 2003), or as retarders of the growth of the calcium sulfate crystals 

(Amjad and Hooley 1986; Amjad 1988; Liu and Nancollas 1973). By simply adding an 

acid-soluble and effective scale inhibitor into the acid system, mineral scale formation 
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can be prevented during the process of acid stimulation (Smith et al. 2000; Sam 2003; 

Nasr-El-Din et al. 2004). In addition, combining scale inhibition and acid stimulation 

into a single package inherently reduces well intervention costs and well downtime, and 

therefore achieves significant economic benefits (Smith et al. 2001).  

 A sulfonated polymer-based scale inhibitor was selected because of its higher 

calcium tolerant compared with phosphate scale inhibitors (Jordan et al. 1995) and 

superior inhibitor retention efficiency. Besides, the sulfonate groups are strongly ionized, 

which are expected to promote stronger electrostatic interactions between polymer and 

the surface of calcium containing crystals and better inhibit scale formation (Lioliou et 

al. 2006). 

 In the following sections, a detailed literature review is firstly presented on the 

scaling problems in oil fields and studies of solubility of calcium sulfate. Then the 

experimental work and results will be thoroughly discussed. The conclusions and 

suggestions based on our laboratory tests and modeling analysis will be presented 

finally.  

 This study is focused on the effect of preparing acids using seawater on 

permeability of carbonate cores under different injection rates and temperatures and how 

much calcium sulfate will precipitate in the cores under certain conditions. The objective 

is to identify the damaging effect of preparing hydrochloric acid using seawater and 

eliminate the precipitation of calcium sulfate during acid treatments by applying an acid-

compatible scale inhibitor into acid.   



 4 

2. LITERATURE REVIEW 

 

 In this section, literature review on scaling problems caused by incompatible 

fluids mixing is presented. The considerable experimental work and models to predict 

scale formation are reviewed. Besides, methods to inhibit scale formation are also 

discussed. 

 

2.1  The Scaling Problem 

 The scaling phenomenon, the precipitation and deposition of sparingly soluble 

salts in process equipment, is a common problem in many industrial processes, 

especially in oil production. Well production and injection rates and capacities thus drop, 

with consequent economical loss. In some cases, the choke of the flow line is so large 

that the well needs to be closed. Scaling can also cause safety problems, such as 

blockage and failure of valves. A brief literature review on scale formation due to 

incompatibility fluids mixing was conducted. 

 Lindlof and Stoffer (1983) described the problems of sulfate scale in Ghawar 

field where seawater was injected to maintain reservoir pressure. Three water systems 

with a possible incompatibility problem were carefully examined and results showed that 

sulfate scale precipitated in the wellbore where seawater and formation water mixed 

intimately under turbulent flow conditions. 

 Oddo (1991) reported the CaCO3 and CaSO4 scaling problems in and around the 

submersible pumps encountered in wells offshore Indonesia. Twenty-four well brines 
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were analyzed on-site to accurately determine brine chemistries and scale samples were 

analyzed to determine exact composition. Well histories were studied to find correlations 

of procedures which led to scaling problems and saturation indices were calculated to 

give insights into the causes of the intermittent scale formation. CaSO4 scale was 

determined to be a result of the over-flush of the seawater KCl solution after an acid 

stimulation treatment and CaCO3 forms due to the increased temperature or the 

decreased pressure and gas separation in or near the submersible pumps. 

 Bayona (1993) described abnormal reduction in well injectivity associated with 

seawater injection program of the North Uthmaniyah section of the Ghawar Field in 

Saudi Arabia. The major cause of losses of well injectivity is due to the introduction of 

iron corrosion products generated in the piping system.  

 Paulo et al. (2001) identified location of sulfate scale formation due to brine 

mixing in the Alba field in the North Sea. Three principal zones with position relatively 

to injection wells are identified based on theoretical analysis to the production data and 

produced brine compositions of each well.  

 Moghadasi et al. (2003) reported calcium and strontium scale deposition in the 

Iranian offshore of Siri field in the southern Persian Gulf where sea water injection was 

the primary oil recovery mechanism and pressure maintenance means. Carefully study 

showed that the deposits are seldom pure calcium sulfate or calcium carbonate, the 

quantity and morphology of which were greatly affected by conditions such as large 

degree of supersaturation, presence of impurities. 
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 Raju and Nasr-El-Din (2004) conducted field tests to assess compatibility of 

formation water with seawater and formation of calcium sulfate scale. Field results 

indicated that seawater was not compatible with formation water, while injection of 

compatible aquifer buffer zone significantly reduced this problem. Injection of 70 vol% 

of seawater was believed to generate highest scale amount. The critical saturation index 

and amount of CaSO4 scale correlated with OKSCALE scale program were found to be 

0.25 and 450 mg/L respectively.  

 Raju (2009) provided an overview of the scaling problems in Saudi Aramco and 

how Saudi Aramco had mitigated the scaling challenge through careful selection of 

injection water throughout the field lifetime. Calcium carbonate scale was believed to be 

the most common scale in Saudi Aramco due to pressure drop and pH changes while 

sulfate scales resulted by seawater injection were also a significant challenge to oil 

industry.  

 

2.2  Scale Prediction 

2.2.1  Laboratory Study 

 Extensive experimental work has been conducted to study the scale formation in 

oil fields. The kinetic and thermodynamic studies are both reviewed.  

 Fulford (1967) examined the effects of brine concentration and pressure drop on 

gypsum scaling in oil wells. The study revealed that the amounts of scale formed at a 

given pressure drop and temperature depend on the amount of sodium chloride and other 

salts dissolved in solution. The quantity of gypsum deposited increased with salt 
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concentration to a maximum, and then decreased until, with strong brines, no scale is 

formed. Calculations shown that pressure drop can be a major cause of gypsum scale in 

oil wells producing from formations containing anhydrite. 

 Nancollas and Gill (1979) studied transformations that take place between the 

dehydrate, hemihydrate and anhydrite phases of CaSO4 as a function of temperature 

from 90 to 150 ˚C and liquid phase composition during scale formation. The growth and 

dissolution rates of anhydrite follow a kinetic equation second-order in super-saturation 

and under-saturation, respectively. In contrast, the dissolution of hemihydrate follows a 

rate equation first-order in under-saturation, and the phase transformations are 

influenced greatly by temperature changes. Moreover, the rate of dissolution of the 

anhydrite is considerably less than the rate at which the hemihydrate dissolves under 

similar conditions of under-saturation and fluid dynamics.  

 Zhang (1990) investigated the growth rate of calcium sulfate dehydrate using the 

constant composition method over a range of calcium/sulfate molar ratios in 

supersaturated solutions. The rate increased with decreasing Ca
2+/

SO4
2-

 molar ratio. They 

concluded that the rate of crystal growth is not merely a function of the thermodynamic 

driving forces but also depends upon the relative concentrations and characteristics of 

individual lattice ions.  

 Chong and Sheikholeslami (2001) conducted a study on effect of co-precipitation 

of calcium carbonate and calcium sulfate in a solution having CaCO3 as the dominant 

salt at 60, 70 and 80 ˚C. Presence of CaSO4 from 0.002 to 0.01 M increased the calcium 

carbonate solubility product more than an order of magnitude. In solutions with minute 
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amounts of sulfate (0.002M), the CaSO4 solubility product in the mixture was much less 

than that of pure salt. However, further increases in the sulfate concentration to 0.01 M 

increased the CaSO4 solubility constant in the mixture to that of pure salt. Experimental 

results suggested that thermodynamic data for pure salts are not extendable to co-

precipitation.  

 Sheikholeslami and Ong (2003) further examined kinetics and thermodynamics 

of co-precipitation of calcium carbonate and calcium sulfate at salinities up to 1.5 M. 

Kinetics of pure CaSO4 precipitation was found to be strongly affected by the level of 

salinity; however, salinity level had no significant effect on kinetics of CaCO3 

precipitation. The reaction rate of pure CaSO4 is found to be faster compared to the 

mixed system. Thermodynamic solubility constants (ksp) of the pure salts were not 

affected by different salinity levels; however, the salinity level affected ksp in mixed salt 

systems.  

 Ahmi and Gadri (2004) studied the kinetics of formed gypsum from the 

measurements of the induction period for the gypsum nucleation. It was observed that 

the induction period depends highly on temperature, supersaturation, and the lattice 

cation/anion molar ratio, from which homogeneous and heterogeneous nucleation 

mechanisms can be distinguished. The activation energy of gypsum nucleation, 

interfacial tension between gypsum and aqueous solution, and the critical radius were 

determined. The limit between homogeneous and heterogeneous nucleation was 

estimated in an interval of supersaturation ranging between 3.5 and 4. 
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 Abu-Khamsin and Ahmad (2005) conducted core flood study on precipitation of 

calcium sulfate in sandstone cores. The brine was formulated by mixing a calcium rich 

solution with a sulfate rich solution at the core inlet. Experimental parameters including 

temperature, pressure, degree of supersaturation, and flooding velocity were to generate 

reaction rate equations. Precipitation rate of calcium sulfate increased at higher 

temperatures, higher flood velocities, and greater brine supersaturation. The reaction’s 

activation energy was estimated at 26.2 kJ/mol. 

 Tahmasebi et al (2007) conducted and experimental and theoretical study to 

determine the permeability reduction due to calcium sulfate deposition in porous media. 

In his study, brine solutions containing calcium and sulfate ions were injected in a 

packed glass beads porous media at elevated temperatures and various flow rate and 

brine concentrations. A novel empirical equation to predict the permeability reduction 

and mobility reduction due to calcium sulfate scale formation was suggested based on 

experimental parameters.  

 Fan et al (2010) quantitatively evaluated the precipitation kinetics of calcium 

sulfate in the presence and absence of scale inhibitors. The nucleation kinetics of 

calcium sulfates in 0 -3.2 M NaCl solutions was determined from 0 to 200 ˚C at various 

supersaturation conditions. A semi-quantitative model was developed to predict 

precipitation kinetics of calcium sulfate as a function of temperature, pH, saturation 

index, and scale inhibitor concentration. 
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2.2.2  Model Development 

 Numerous programs and calculation models have been developed to predict scale 

deposition. Most of the models available yield scale potential based on several 

parameters such as ion concentrations, temperature, pH, pressure, carbon dioxide partial 

pressures, organic acids, etc. Kinetic studies are incorporated into some models as well. 

 Vetter and Phillips (1970) proposed a simple thermodynamic relation to calculate 

the solubility of different CaSO4 compounds in NaCl brines at different pressures and 

temperatures. Although this method has its limitations, the calculated solubility is as 

accurate as the experimentally determined concentration. Results shown that pressure 

drops are believed to be particularly important to determine where the scale is deposited. 

The area behind the sand face is one of the critical locations where scale deposits. The 

pressure at which the solubilities of CaSO4 in water and in brine are equal depends on 

the NaCl concentration. 

 Vetter et al (1982) reported a new scale prediction model to predict the co-

precipitation of CaSO4, SrSO4, and BaSO4 at various locations in field operations as 

mixtures of injection and reservoir waters flow through injection wells, reservoir, and 

production wells into surface facilities. The scale component with the smallest solubility 

product precipitated first, which is following by the precipitation of second smallest 

solubility product. The composition of solution was adjusted after the previous 

precipitation. The model used comprehensively data of actually measured solubility in 

oil field brines at various temperatures and pressures. The solubility at extreme 

conditions was calculated using thermodynamic parameters. 
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 Atkinson et al (1991) developed the OKSCALE program to predict sulfate 

scaling problems in single brines or brine mixtures. The effects of temperature, pressure 

and ionic strength were considered using the classical thermodynamic approach. The 

activity coefficients needed were calculated with a modified Pitzer equation. The 

important effect of MgSO4 ion association was considered explicitly and all the possible 

sulfate scales were considered simultaneously. The effect of pressure was small and was 

ignored under most practical applications. 

 Yuan and Todd (1991) developed a model for predicting the scaling tendencies 

of barium, strontium, and calcium sulfates resulting from the mixing of incompatible 

injected and formation waters and from temperature and pressure effects. The model 

based on the Pitzer equation was capable of predicting the scaling tendencies of BaSO4, 

SrSO4, and CaSO4 at various water compositions, temperatures, and pressures covering 

oil field conditions. The simultaneous co-precipitation of those sulfate minerals was 

considered and the model can determine whether the CaSO4 scale was in the form of 

anhydrite r gypsum and their corresponding sulfate scaling tendencies. 

 Yeboah et al (1993) developed OSPMod program to predict carbonate and 

sulfate scales in oil field conditions. Experimental solubility data in single and mixed as 

well as natural oil field brines was used to determine the thermodynamic scaling 

potential. Once the scaling potential has been established to exist, flow characteristics 

and kinetic data were used to kinetically predict the scale deposition profile as a function 

of position and time. The critical saturation indices of scale forming salts were 
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determined by correlating the predicted saturation indices of actual wells with field 

observations. The scale formation within rocks was not considered in this model. 

 Oddo and Tomson (1994) developed an updated Oddo-Tomson saturation index 

method to calculate calcium carbonate and sulfate minerals. Experimental solubility data 

and pressure data from the literature or calculation were used in nonlinear least-squares 

fit to determine the conditional constants and associated errors. Then the function form 

of the derived equations can be determined. The recommended saturation index 

equations can be used to calculate saturation index of common sulfate minerals, 

including three different calcium sulfate forms. 

 Bedrikovetsky et al (2003) mathematically modeled BaSO4 scaling process based 

on core flood tests, which consists of the sequence of diffusivity tests, of transient tests 

with chemical reaction, and of steady state tests on simultaneous injection of both 

injected and formation waters. Diffusivity tests were used to determine the diffusion 

efficient, and steady state tests allowed determination of chemical reaction rate constant 

versus velocity. Mathematical modeling data was compared with transient test data to 

validate its results of steady state test. The key finding in the study was the 

proportionality between chemical reaction constant and flow velocity in the range of 

experimental conditions. 

 García et al (2005) proposed an extended UNIQUAC model to predict sulfate 

scaling minerals by incorporating pressure parameters. The improved model had been 

used for correlation and prediction of solid-liquid-equilibrium (SLE) of scaling minerals 

(CaSO4, CaSO4·2H2O, BaSO4 and SrSO4) at temperatures up to 300˚C, pressures up to 
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1000 bar and concentrations up to saturation. More than 4200 SLE measurements had 

been collected and analyzed with only reliable data for parameter estimation. The figures 

presented shown that the extended UNIQUAC model could obtain accurate results even 

at very high temperatures and pressures. Most of the data used for parameter estimation 

can be reproduced by extend UNIQUAC model within experimental accuracy. The 

simplicity of the model made it an appropriate choice to study sulfate scaling minerals as 

it only contains binary interaction parameters which can be applied to any multi-

component system. 

 Kan et al (2005) proposed a scale prediction program - ScaleSoftPitzer based on 

Pitzer equation. In his study, a new high temperature and high pressure flow-through 

apparatus was developed to measure mineral salt solubilities under extreme oil and gas 

production conditions, i.e., high temperature, pressure, TDS, and the presence of 

methanol and ethylene glycol. New solubility data illustrated the validity of the Pitzer 

activity correction of mineral salt solubilities. 

 From the literature review, it can be seen that the scaling problems have been 

extensively studied at various conditions. However, in the case of preparing HCl using 

seawater for matrix acidizing treatment, few experiment studies and prediction models 

have been developed. Therefore, core flooding tests will be conducted to generate 

sufficient data that will help study the process of calcium sulfate deposition in porous 

media. Thermodynamic studies are included whenever necessary. 
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3. STUDIES ON SOLUBILITY OF CALCIUM SULFATE 

 

 In this section, theoretical studies on solubility of calcium sulfate solubility are 

presented. Various parameters, including temperature, pressure, pH, ion composition, 

etc., are covered in this section.  

 

3.1  Introduction 

 The most common calcium sulfate scale minerals found in the oilfield include 

anhydrite (CaSO4), hemihydrate (CaSO4·1/2H2O) and gypsum (CaSO4·2H2O) (Kan et 

al. 2005; Schausberger et al. 2009). If a solution is supersaturated with respect to one or 

more calcium sulfate minerals, precipitation can occur according the reaction: 

  OxHOxH
242

2

4

2 CaSO SOCa    (3-1) 

where x equals to 0, ½, or 2. 

 Calcium sulfate will precipitate once it exceeds its solubility limit in solution, 

and it will precipitate until the product of the ion concentrations equals the solubility 

product. The solubility of calcium sulfate affected by various parameters with the 

temperature and ion strengthen being the most important ones. In the following section, 

various factors that affect the solubility of calcium sulfate will be discussed. 

 

3.2  Factors Affecting Solubility of Calcium Sulfate 

 The solubility of calcium sulfate can be affected by various factors, including 

temperature, ionic strength, pressure, and mixing of fluids. 
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3.2.1  Effect of Temperature 

 Solubility of gypsum tends to increase a little up to about 40 ˚C and then 

decrease slowly with temperature increment. The solubilities of anhydrite and 

hemihydrate decreased with the increased temperature. In the literature, studies show 

that gypsum is the stable form below 45 ˚C and anhydrite is the most stable form above 

93 ˚C. The hemihydrate is metastable at all temperatures.  

 In standard seawater solutions, the solubilities of all three calcium sulfate forms 

increase at increasing ionic strength of the solution, without severely affecting the shape 

of solubility lines. 

 

3.2.2  Effect of Ionic Strength 

 The solubility of calcium sulfate tends to increase at higher ionic strength 

without changing the shape trend of temperature effect. At lower ionic strength, the 

solubility seems to increase significantly with the increment of ionic strength but tends 

to stabilize at higher ionic strength.   

 

3.2.3  Effect of Pressure 

 A drop in pressure can cause calcium sulfate deposition. The reason is quite 

different from that for calcium carbonate. The presence or absence of CO2 in solution 

has little to do with calcium sulfate solubility.  
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3.2.4  Effect of Mixing Fluids 

 The solubility of calcium sulfate in HCl in quite different from that in brine, 

which was shown in Fig. 1. The solubility of gypsum initially increases, attaining a 

maximum 1.8% wt% in the solution with 8% HCl, and then falls. The solubility of 

anhydrite rises sharply, reaching 2.0 wt% in 7.5% acid solution, and then decreases. The 

solubility of hemihydrates was determined only in the solution where it is stable during 

the period required for equilibrium. It can be seen that when the acid concentration drops 

from 15wt% to 0, the solubility of calcium sulfate decreases greatly, from around 

1.5wt% to 0.2wt%. 

 

Fig. 1—Solubility of calcium sulfate in HCl at 25 ˚C 
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4. EXPERIMENTAL SET-UP FOR CORE FLOOD TESTS 

 

4.1  Experimental Systems 

 The core testing system consists of a core holder connected to three separate 

pumps supplying for acid, fresh water and seawater, a pressure transducer measuring the 

overall pressure drop, a pump to apply an overburden pressure over the rubber sleeve 

containing the core sample, a backpressure system, and an effluent fluid collection 

container. The schematic of the experimental system set-up is shown in Fig. 2. 

 

 

Fig. 2—Core flooding set-up mainly consists of three supplying pumps, pressure 

regulator, core holder, and pressure transducers. 

 



 18 

4.2  Fluid Preparation 

Synthetic seawater was prepared according the composition of seawater in 

Arabian Gulf at Kuwait as shown in Table 1. The sulfate concentration determined by 

spectrophotometer apparatus was about 3500 mg/l and calcium concentration analyzed 

by atomic absorption apparatus was about 540 mg/l in the synthetic seawater. The 

synthetic seawater was used for core porosity and permeability measurements and for 

initial saturation of the core. 

 

TABLE 1—COMPOSITION OF SEAWATER 

Ion concentration, mg/L Arabian Gulf at Kuwait 

Chloride (Cl
-
) 23,000 

Sodium (Na
+
) 15,850 

Sulfate (SO4
2-

) 3,200 

Magnesium (Mg
2+

) 1,765 

Calcium (Ca
2+

) 500 

Bicarbonate (HCO3
-
) 142 

  

15 wt% hydrochloric acid was prepared either in fresh water or in seawater to 

examine effect of acid preparation methods on core flood reaction process and corrosion 

inhibitor was added to acid. The same volume of acid was injected in all core flood tests 

for comparison analysis. 
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4.3  Experimental Procedure 

Once the cores were saturated with seawater for about 12 hours, they were 

loaded on the core holder and pressurized with a confining pressure 1,000 psi. Cores 

were injected at a constant flow rate, and 10 ml acid was injected. Note that an 

additional experiment that used fresh water to preflush and post-flush the core was 

conducted for comparison analysis. 

A flooding test was terminated when constant pressure drop, constant pH value, 

constant Ca
2+

 concentration, and constant SO4
2-

 concentration were determined. The 

Ca
2+

 concentration of effluent samples was analyzed by atomic absorption apparatus. A 

spectrophotometer was used to analyze SO4
2-

 concentration and pH value was 

determined by pH meter. Some selected cores were analyzed by CT scan technique 

before and after core flood tests to examine the calcium sulfate precipitation in the cores. 
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5. CALCIUM SULFATE FORMATION 

 

 In this section, core flood tests were conducted to examine formation damage due 

to calcium sulfate precipitation during matrix acidizing treatments. Austin chalk cores 

(1.5 in. × 6 in. and 1.5 in. × 20 in.) with an average porosity 19 vol% and permeability of 

10 md were used. All cores were dried at 100˚C for 4 hours and weighed and then 

saturated with either seawater or deionized water to calculate the pore volume and 

porosity of the cores, Table 2. 

 

5.1  Results of the Base Case at 0.5 cm
3
/min 

 A core flood was conducted to determine the effect of acid prepared in deionized 

water on the core permeability. In this experiment, only deionized water was used in the 

pre and post flushes and to prepare the acid. He core was initially saturated with 

deionized water. The pressure drop across the core is shown in Fig. 3. The initial 

increase in the pressure drop was due to the release of CO2 which was due to the reaction 

of HCl with the calcite rock.  The back pressure of a 1000 psi cannot keep all CO2 in 

solution. At the end of the experiment, the permeability of the core increased from 8.5 to 

11 md, indicating that there was acid stimulation effect. 
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TABLE 2—CORE FLOOD DATA TO EXAMINE FORMATION OF CALCIUM SULFATE 

Run 

Flow 

rate, 

cm
3
/min 

Core 

Length, 

in. 

Temp., 

˚F 

Pre 

flush 

Acid  

mixing  

fluid 

Post 

flush 

Pore 

Volume, 

cm
3
 

Porosity, 

fraction 

Initial 

Permeability, 

md 

1
a 

 

0.5  

 

6 77 DW DW  DW 34.58 0.232 8.5 

2 

 

0.5  

 

 6 77 SW DW SW 34.38 0.231 9.6 

3 

 

0.5  

 

6 77 SW SW SW 30.42 0.175 7.3 

4 

 

1.0  

 

6 77 SW DW SW 32.58 0.219 8.2 

5 

 

1.0  

 

 6 77 SW SW SW 42.23 0.284 11 

6
a 

 

1.0  

 

 6 77 DW DW DW 33.46 0.225 4.2 

7 

 

5.0 

 

 6 77 SW DW SW 33.02 0.222 7.7 

8 

 

5.0 

 

 6 77 SW SW SW 33.79 0.227 9.4 

9 1 20 77 SW SW SW 110.45 0.191 4.1 

10 1  20 150 SW SW SW 115.81 0.2 12.8 

11 1 20 210 SW SW SW 127.86 0.221 14.5 

12
b 

1 20 210 DW DW DW 120.85 0.209 3.1 

SW  =  Seawater 

DW  =  Deionized water 

a: base case for 6 in. cores were saturated with deionized water before preflush 

b: base case for 20 in. cores were saturated with deionized water before preflush 
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Fig. 3—Pressure drop across core #1 at 0.5 cm
3
/min (the acid was prepared in 

deionized water and the core was saturated with deionized water). 

 

 

5.2  Effect of Mixing Seawater on Permeability of Carbonate Cores 

 Core flood tests at 0.5 cm
3
/min were conducted to examine the effect of 

preparing hydrochloric acid with seawater on core permeability.  Two core flood 

experiments were conducted.  In both cases, the cores were saturated with seawater. In 

the first experiment, the acid was prepared with deionized water, whereas in the second 

test, the acid was prepared using seawater. Seawater was used in the preflush and post-

flush in the two experiments. The pressure drop responses for the two tests are given in 

Figs. 4 and 5. The concentrations of calcium and sulfate ions in the core effluent 

samples are shown in Figs. 6 and 7. The permeability of carbonate cores decreased from 
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9.6 to 7.5 md when seawater was used in the pre and post flushes, Table 3. The 

permeability of carbonate cores decreased from 7.3 to 6.8 md (Table 3), indicating that 

calcium sulfate precipitated inside the core, which reduced the stimulation effect of the 

acid. A significant permeability reduction was observed when the acid was prepared in 

deionized water and seawater was used in the preflush and post-flush stage. This is 

because of the solubility of calcium sulfate increases at higher ionic strength of the 

salinity water (Meijer and Van Rosmalen 1984) 

 For the acid prepared in deionized water (Fig. 6), calcium sulfate precipitation 

occurred when seawater was used in the preflush and post-flush stages. The decrease in 

the concentration of sulfate was not clearly due to precipitation of calcium sulfate 

because there is no sulfate ion in the acid. However, material balance calculation showed 

that 15 wt% of the injected sulfate retained in the core (Table 3). More calcium sulfate 

precipitated when acid prepared in deionized water was mixed with seawater in the 

preflush and post-flush stage because of lower solubility of calcium sulfate in fresh 

water. This result was consistent with the material balance calculation that more sulfate 

retained in the core when the acid was prepared in deionized water.  
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TABLE 3—MATERIAL BALANCE AND PERMEABILITY CHANGES 

Run 

Flow 

rate, 

cm3/min 

Core 

Length, 

in. 

Temperature, 

˚F 

Acid  

mixing  

fluid 

Sulfate 

injected, 

mg 

Sulfate 

collected, 

mg 

 

Sulfate 

difference, 

wt% 

 

K, before 

injection of 

acid, md 

K,  

after 

injection 

of acid, 

md 

1
a 

 

0.5 

 

6 77 DW  0 0  0 8.5 11 

2 

 

0.5 

 

6 77 DW 640 546 15 9.6 7.5 

3 0.5 6 77 SW 733 653 11 7.3 6.8 

4 

 

1.0 

 

6 77 DW 1,387 1,218 12 8.2 12 

5 

 

1.0 

 

6 77 SW 1,156 1,047 9 11 11.2 

6
a 

 

1.0 

 

6 77 DW 0 0 0 4.2 32 

7 

 

5.0 

 

6 77 DW 935 917 2 7.7 148.9 

8 5.0 6 77 SW 1,205 1,108 8 9.4 163.7 

9 1.0 20 77 SW 1,022 965 6 4.1 5.8 

10 1.0 20 150 SW 1,589 1,478 7 12.8 4.9 

11 1.0 20 210 SW 1,053 915 13 14.5 5.3 

12
b 

1.0 20 210 DW 0 0 0 3.1 3.6 

SW  =  Seawater 

DW  = Deionized water 

a: base case for 6 in. cores were saturated with deionized water before preflush 

b: base case for 20 in. cores were saturated with deionized water before preflush 
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 In the case of acid prepared in seawater (Fig. 7), pH values after spent acid 

breakthrough were between 6 and 7, indicating that HCl was completely spent in the 

core. Calcium concentration increased from 315 to 37,000 mg/l after spent acid 

breakthrough while the sulfate concentration decreased to 1,800 mg/l after maintaining a 

constant value of 3,500 mg/l. The increase in the calcium ion concentration was due to 

the reaction of HCl with calcite. The decrease of sulfate concentration was attributed to 

two factors: calcium sulfate deposition and second, lower sulfate concentration (2187 

mg/l) in acid. However, the extent of reduction in the sulfate concentration (1,800 mg/l) 

was lower than that in the injected acid. The result also suggests that calcium 

concentration given in Fig. 7 was less than that produced by the reaction of the acid with 

calcite. Finally, both calcium and sulfate concentrations gradually reached their levels in 

seawater. 

 

 
Fig. 4—Pressure drop across core #2 at 0.5 cm

3
/min (acid was prepared in 

deionized water). 
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Fig. 5—Pressure drop across core # 3 at 0.5 cm

3
/min (acid was prepared in 

seawater). 

 

 

 

 

 
 

Fig. 6—Ion concentration in core # 2 (acid was prepared in deionized water). 
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Fig. 7—Ion concentration in core # 3 (acid was prepared in seawater). 

 

 Based on these results, calcium sulfate precipitated whether seawater was used in 

the preflush and post-flush stage or was used to prepare the main acid stage. 

Permeability loss occurred in all tests that included seawater. 

 

5.3  Effect of Injection Rate 

 At 0.5 cm
3
/min, the effect of calcium sulfate precipitation on acid stimulation 

was not significant due to acid face dissolution occurred in all three tests, Fig. 8. Core 

flood tests at higher injection rates were conducted to quantify how much precipitation 

of calcium sulfate would reduce the outcome of acid treatment, especially when there are 

wormholes produced inside the carbonate cores. Both acid prepared in seawater and 
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deionized water were examined. At 1 cm
3
/min, calcium concentration increased from 

zero to 44,000 (in case of acid prepared in deionized water, Fig. 9) and from 315 to 

28,000 mg/l (in case acid was prepared in seawater, Fig. 10). The sulfate concentration 

decreased from 2187 to 1,500 mg/l due to calcium sulfate precipitation after maintaining 

a constant value of 3,500 mg/l in Figs. 9 and 10. And after that they both gradually 

reached to the sulfate concentration in the injected acid. The pH values both varied 

between 6 and 7 after spent acid breakthrough. 

 

 

 

 
 

Fig. 8—Permeability changes at 0.5 cm
3
/min. 
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Fig. 9—Ion concentration in core # 4 (acid was prepared in deionized water). 

 

 

 
 

Fig. 10—Ion concentration in core # 5 (acid was prepared in seawater). 
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In Fig. 11, the permeability of carbonate core increased from 4.2 to 32 md 

(Table 3) when deionized water was used in the preflush, main acid, and post-flush at 1 

cm3/min. Acid stimulation effect was almost completely reduced from 7.62 to 1 when 

seawater was used to either prepare the acid or preflush the cores. Two factors accounted 

for the significant reduction in acid stimulation effect. First, precipitation of calcium 

sulfate blocked the fluid pathways in the carbonate cores. Second, calcium sulfate 

deposition diverted acid solution, which resulted acid face dissolution. This face 

dissolution consumes much of acid at the core inlet and made acid stimulation less 

effective. When acid was prepared in seawater, acid face dissolution was more severe 

because calcium sulfate instantly precipitated after the acid reacted with calcite. 

However, material balance calculations (Table 3) showed that more calcium sulfate 

precipitated when the injected acid was prepared in deionized water, which confirmed 

the results obtained at 0.5 cm
3
/min. 

 
Fig. 11—Permeability ratio obtained with different waters at 1 cm

3
/min. 
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5.4  XPS Analysis of Calcium Sulfate 

 Core flood tests at 5 cm
3
/min which were believed to produce wormhole 

breakthrough in the cores were conducted to collect precipitation of calcium sulfate in 

the effluent samples. At 5 cm
3
/min, calcium concentration increased from 500 to 33,000 

(acid prepared in deionized water, Fig. 12) and from zero to 8,000 mg/l (acid prepared in 

seawater, Fig. 13) after spent acid breakthrough.  The sulfate concentration decreased to 

2,600 mg/l after maintaining a constant value of 3,500 mg/l in Figs. 12 and 13. And 

after that they both gradually reached to the normal concentration level. The pH values 

dropped to 1 in both cases after acid breakthrough, indicating the presence of a low 

concentration of HCl in the effluent samples. 

 
 

Fig. 12—Ion concentration in core # 6 (acid was prepared in deionized water). 
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Fig. 13—Ion concentration in core # 7 (acid was prepared in seawater). 

 

 Fig. 14 shows that solids were collected in the first two samples after acid 

breakthrough and wormholes were observed in the outlet of cores. Even under acidic 

conditions, calcium ion will combine with sulfate ion, depositing calcium sulfate. All the 

precipitations collected at 5 cm
3
/min were dried and then analyzed using X-ray 

photoelectron spectrometer (XPS) (Fig. 15). Calcium, oxygen, and sulfur were identified 

in the solids and atomic concentration ratio of these elements was 16.43:68.21:15.36 

(appropriately 1:4:1), indicating that calcium sulfate was collected. 
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Fig. 14—Wormholes in the outlet and precipitation were observed at 5 cm
3
/min. 

 

 

 

 

 
 

Fig. 15—Precipitation of calcium sulfate collected at 5 cm
3
/min flow rate was 

analyzed using XPS. 
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5.5  Effect of Temperature 

 The solubility of calcium sulfate in brine significantly decreases at higher 

temperatures (Abu-Khamsin and Ahmad 2005). Core flood tests at 150 and 210˚F were 

conducted at 1 cm
3
/min longer cores to examine the effect of temperature on 

precipitation of calcium sulfate. Cores with 20 in. length were used in these tests because 

this length allowed more time for mixing spent acid with seawater and provided more 

precise results for thermodynamic calculations. Acid was prepared in seawater in these 

tests. 

 The sulfate ion concentration profiles at various temperatures are compared in 

Fig. 16. Sulfate concentration decreased to 3,000 mg/l after maintaining a constant value 

of 3,500 mg/l at 77˚F; while at 150˚F, the sulfate concentration decreased to 2,000 mg/l, 

indicating that more calcium sulfate precipitated in the core. At 210˚F, the sulfate 

concentration decreased to 3000 mg/l right after the begging of pumping post-flush, 

showing that calcium sulfate precipitated due to the lower solubility of calcium sulfate at 

higher temperatures.   

 An additional core flood test was conducted at 210˚F using deionized water to 

preflush, prepare the acid and post-flush. The objective of this test was to assess the 

effect of calcium sulfate precipitation on the permeability of carbonate cores at higher 

temperatures. Fig. 17 shows that permeability reduction was significant because of 

precipitation of larger amounts of sulfate in the core. 
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Fig. 16—Comparison of sulfate ion concentration changes at various temperatures. 

 

 

 

 

 
Fig. 17—Permeability changes at various temperatures. 
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5.6  Thermodynamic Calculations 

 The OLI ScaleChem software was used to calculate the scaling tendency of 

calcium sulfate at various temperatures and the critical scaling tendency of calcium 

sulfate was related to the samples that had obvious reduction in sulfate ion concentration. 

The input data for the OLI ScaleChem software included the ion analysis of the core 

effluent samples, pressure, temperature, pH, and fluid density. The output of the 

software included scaling tendency of CaSO4·2H2O, CaSO4, and CaCO3. 

 At 77˚F, two core effluent samples contained a precipitate. Their scaling 

tendencies were 2.0 and 2.1, respectively (Fig. 18). The value of 2.0 was believed to be 

the critical scaling tendency for calcium sulfate under experimental conditions at 77˚F. 

The critical scaling tendency of calcium sulfate was computed to be 2.1 at 150˚F (Fig. 

19). In the case of core flood test at 210˚F, calcium sulfate began to precipitate even 

before the breakthrough of spent acid and calculation showed that the value of the 

critical scaling tendency was 1.2 (Fig. 20).The critical scaling tendency at 77 and 150˚F 

agreed well with previous studies (Raju and Nasr-El-Din 2004). Note that the critical 

scale index is the logarithm of the critical scaling tendency. 
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Fig. 18—Saturation index for CaSO4·2H2O at 77˚F. 

 

 

 

 

 

 
Fig. 19—Saturation index for CaSO4 at 150˚F. 
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Fig. 20—Saturation index for CaSO4 at 210˚F. 

 

 

5.7  Permeability Changes 

 Table 3 demonstrates how calcium sulfate precipitation reduced the core 

permeability after acid injection. At 0.5 cm
3
/min, core permeability increased from 8.5 

to 11 md when deionized was used in all treatment stages. The final core permeability 

decreased from 7.3 to 6.8 md (experiment # 3, Table 3) and from 9.6 to 7.5 md 

(experiment # 2, Table 3) when seawater was used. Therefore, precipitation of calcium 

sulfate in the cores reduced acid stimulation effect. In these 3 core flooding tests, face 

dissolution occurred to the cores. 

 At 1 cm
3
/min, permeability increased from 4.2 to 32 md because the wormholes 

breakthrough the cores without using seawater. When seawater was used in the preflush, 
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post flush or to prepare the main stage, permeability of carbonate cores slightly 

increased. Precipitation of calcium sulfate reduced the effect of acid stimulation. At 5 

cm
3
/min, the permeability increased significantly because wormhole breakthrough 

occurred. 

 In the case of 20 in. core flood tests, permeability increased from 4.1 to 5.8 md at 

77˚F while it decreased from 12.8 to 4.9 md and from 14.5 to 5.3 md at 150 and 210˚F, 

respectively. For the base case, the permeability increased from 3.0 to 3.6 md at 210˚F. 

More reduction in permeability of carbonate cores was due to two factors. The high 

reaction rate between acid and calcite at high temperatures, which makes acid treatment 

less effective, and precipitation of calcium sulfate inside the cores at high temperatures. 

 

5.8  Material Balance 

 Material balance calculations in Table 3 show how much precipitation retained 

in the cores. For the 6 in. core flood tests, the retained sulfate was nearly 10 wt% of the 

injected sulfate. The reduction in the sulfate ion concentration when acid was prepared 

using deionized water was a slightly more than that prepared in seawater because the 

solubility of calcium sulfate decreases in less salinity brines. 

 In the case of 20 in. core flood tests, sulfate retained in the core increased from 

6% at 77F to 13% at 210˚F. The solubility of calcium sulfate decreased with temperature, 

which caused a significant reduction in the permeability of the cores at 210˚F.  
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6.  MIGIGATION OF CALCIUM SULFATE 

 

 In this section, a polymer-based scale inhibitor was added into acid to eliminate 

precipitation of calcium sulfate. The effectiveness and concentration of this scale 

inhibitor, and whether it is needed in the preflush or post-flush stages were determined. 

 Austin chalk cores (1.5 in. × 6 in.) with an average porosity 19 vol% and 

permeability of 5 md were used. All cores were dried at 120˚C for 4 hours and weighed 

and then saturated with either seawater or deionized water to calculate the pore volume 

and porosity of the cores, Table 4. The permeability changes were shown in Table 5. 

 

TABLE 4—CORE FLOOD DATA TO MITIGATE CALIUM SULATE 

Run 

Flow 

rate, 

cm
3
/minn 

Temperature, 

˚F 

Preflush, 

main stage, 

post-flush 

Scale 

inhibitor 

concentration, 

ppm 

Porosity, 

fraction 

Pore 

volume,  

cm
3
 

Initial 

Permeability, 

md 

1 

 

1.0 

 

77 

DW, 

DW+HCl, 

DW  

0 0.225 33.46 4.2 

2 
 

1.0 

 

77 
SW, 

SW+HCl, 

SW 

0 0.284 42.23 11 

3 
 

1.0  

 

77 
SW, 

SW+HCl+SI, 

SW 

20 0.192 33.35 3.8 

4 
 

1.0  

 

77 
SW, 

SW+HCl+SI, 

SW 

20* 0.186 32.35 2.7 

5 
 

1.0  

 

77 
SW, 

SW+HCl+SI, 

SW 

60 0.184 32.01 3.9 

6 
 

1.0 

 

77 
SW, 

SW+HCl+SI, 

SW 

100 0.171 29.73 2.7 

7 
 

1.0  

 

150 
DW, 

DW+HCl, 

DW 

0 0.2 34.71 3.7 

8 

 

1.0  

 

150 

SW, 

SW+HCl, 

SW 

0 0.196 34.09 6 
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TABLE 4 Continued 

Run 

Flow 

rate, 

cm
3
/minn 

Temperature, 

˚F 

Preflush, 

main stage, 

post-flush 

Scale 

inhibitor 

concentration, 

ppm 

Porosity, 

fraction 

Pore 

volume,  

cm
3
 

Initial 

Permeability, 

md 

9 
 

1.0  

 

150 
SW, 

SW+HCl+SI, 

SW 

50 0.188 32.60 5.3 

10 
 

1.0  

 

150 
SW, 

SW+HCl+SI, 

SW 

100 0.202 35.08 3.6 

11 
 

1.0  

 

150 
SW, 

SW+HCl+SI, 

SW 

150 0.204 35.48 4.8 

12 
 

1.0  

 

210 
DW, 

DW+HCl, 

DW 

0 0.192 33.32 6 

13 
 

1.0  

 

210 
SW, 

SW+HCl, 

SW 

0 0.206 35.75 4.1 

14 
 

1.0  

 

210 
SW, 

SW+HCl+SI, 

SW 

50 0.199 34.58 3.7 

15 
 

1.0  

 

210 
SW, 

SW+HCl+SI, 

SW 

200 0.193 33.54 4.4 

16 
 

1.0  

 

210 
SW, 

SW+HCl+SI, 

SW 

250 0.187 32.46 3.6 

17 
 

1.0  

 

210 
SW, 

SW+HCl+SI, 

SW 

500 0.202 35.16 4.4 

 SW – Seawater 

 DW – Deionized water 

 SI – Scale inhibitor 

 * In this case, 20 ppm of scale inhibitor was used in the all the stages.  

 

TABLE 5—PERMEABILITY CHANGES 

Run 

Flow 

rate, 

cm
3
/min 

Temperature, 

˚F 

Preflush, 

main stage, 

post-flush 

Scale 

inhibitor 

concentration, 

ppm 

Initial 

permeability, 

md 

Final 

permeability, 

md 

1 

 

1.0 

 

77 

DW, 

DW+HCl, 

DW  

0 4.2 32 

2 
 

1.0 

 

77 
SW, 

SW+HCl, 

SW 

0 11 11.2 

3 

 

1.0  

 

77 

SW, 

SW+HCl+SI, 

SW 

20 3.8 4.8 
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TABLE 5 Continued 

Run 

Flow 

rate, 

cm
3
/min 

Temperature, 

˚F 

Preflush, 

main stage, 

post-flush 

Scale 

inhibitor 

concentration, 

ppm 

Initial 

permeability, 

md 

Final 

permeability, 

md 

4 

 

1.0  

 

77 

SW, 

SW+HCl+SI, 

SW 

20* 2.7 3.3 

5 
 

1.0  

 

77 
SW, 

SW+HCl+SI, 

SW 

60 3.9 8.3 

6 
 

1.0 

 

77 
SW, 

SW+HCl+SI, 

SW 

100 2.7 25 

7 
 

1.0  

 

150 
DW, 

DW+HCl, 

DW 

0 3.7 8.2 

8 
 

1.0  

 

150 
SW, 

SW+HCl, 

SW 

0 6 6.8 

9 
 

1.0  

 

150 
SW, 

SW+HCl+SI, 

SW 

50 5.3 6.8 

10 
 

1.0  

 

150 
SW, 

SW+HCl+SI, 

SW 

100 3.6 7.5 

11 
 

1.0  

 

150 
SW, 

SW+HCl+SI, 

SW 

150 4.8 13.6 

12 
 

1.0  

 

210 
DW, 

DW+HCl, 

DW 

0 6 7 

13 
 

1.0  

 

210 
SW, 

SW+HCl, 

SW 

0 4.1 3.6 

14 
 

1.0  

 

210 
SW, 

SW+HCl+SI, 

SW 

50 3.7 3.7 

15 
 

1.0  

 

210 
SW, 

SW+HCl+SI, 

SW 

200 4.4 4.6 

16 
 

1.0  

 

210 
SW, 

SW+HCl+SI, 

SW 

250 3.6 4.0 

17 
 

1.0  

 

210 
SW, 

SW+HCl+SI, 

SW 

500 4.4 4.8 

  SW – Seawater 

  DW – Deionized water 

  SI – Scale inhibitor 

  * In this case, 20 ppm of scale inhibitor was used in the all the stages.  
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6.1  In the Absence of Scale Inhibitors 

 Core flood tests at 1 cm
3
/min were conducted using Austin Chalks cores (1.5 in. 

× 6 in.) to examine the sulfate concentration profiles in the absence of scale inhibitors 

over a wide range of temperatures (77 to 210˚F) when seawater was used in all the 

stages (run #2, #8, and #13), Table 4. 

 

6.1.1  Sulfate Concentration Profiles 

 At 77˚F, a significant sulfate concentration reduction was observed after the 

injected of acid (Fig. 21). Two factors accounted for the decrease of sulfate 

concentration: first, calcium sulfate deposition and second, lower sulfate concentration 

(2187 mg/l) in the injected acid.  

 

 

Fig 21—Sulfate concentration profiles during acid treatments in the absence of scale 

inhibitors (77 to 210˚F). 
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 However, the extent of reduction in the sulfate concentration (1,180 mg/l) was 

much lower than that in the injected acid, indicating that the reduction in sulfate 

concentration was largely attributed to precipitation of calcium sulfate.  

 At 150 and 210˚F, sulfate concentration was decreased to 2100 mg/l and 1440 

mg/l respectively (Fig. 21). It is well known that calcium sulfate scale minerals exist 

mainly three forms in the oilfield, including anhydrite (CaSO4), hemihydrate 

(CaSO4·1/2H2O) and gypsum (CaSO4·2H2O) (Kan et al. 2005). All those three forms of 

calcium sulfate have solubilities which decrease with increasing temperature (Meijer and 

Van Rosmalen 1984). Gypsum is the stable form below 45˚C while anhydrite is the 

stable form above 93˚C (Furby et al. 1967). Hemihydrate tends to exist as a metastable 

solid phase over the entire temperature range 0 ˚C to 200 ˚C (Langelier et al 1950). 

However, nucleation of anhydrite has been proved to be an extremely slow process in 

comparison to that of gypsum (Langelier et al 1950; Hasson and Zahavi 1970). Gypsum 

is more readily to precipitate out of solution in a relatively short reaction period 

(approximately 30 minutes), which explains the extent of reduction in the sulfate 

concentration at 77˚F was larger than that of sulfate concentration at 150 and 210˚F. 

 

6.1.2  Permeability Changes 

 In the absence of scale inhibitors, the effect of preparing acid using seawater on 

permeability of carbonate cores (1.5 in. × 6 in.) at 1 cm
3
/min over a wide range of 

temperatures (77 to 210˚F) was shown in Fig. 22. At 77˚F, the permeability of carbonate 

core was increased from 11 to 11.2 md when seawater was used in all the stages; 
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however, the permeability of carbonate core was increased from 4.2 to 32 md when 

deionized water was used in all the stages, Table 5. Calcium sulfate deposition during 

acid treatments significantly caused formation damage and simultaneously affected the 

dissolution rate of carbonate reservoir rocks in HCl acid (Anderson 1991; Taylor et al. 

2006). The acid stimulation effect, which was defined as the ratio of final permeability 

and initial permeability of carbonate cores, was reduced from 7.62 to 1.02. At 150 and 

210 ˚F, the acid stimulation effect was decreased from 2.22 and 1.17 to 1.13 and 0.88 

respectively. The acid stimulation effects at 150 and 210 ˚F were not as obvious as that 

at 77˚F, due to high reaction rate of the hydrochloric acid with calcite in the carbonate 

reservoir rocks (Lund et al. 1973; 1975). 

 

 

 

Fig 22—Effect of mixing seawater on permeability of carbonate cores in the 

absence of scale inhibitors (77 to 210˚F). 
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6.2  Scale Inhibitor Tests at 77 ˚F 

 A sulfonated terpolymer was added to the hydrochloric acid to mitigate calcium 

sulfate precipitation during acidizing treatments. The effectiveness of different 

concentrations of scale inhibitor of was accessed based on analysis of sulfate 

concentration in the effluent samples and determination of acid stimulation effect at 1 

cm
3
/min.  

 

6.2.1  Sulfate Concentration Profiles 

 Upon the addition of 20 ppm of scale inhibitor at 77˚F, sulfate concentration 

gradually decreased to the value of 3,000 mg/l after the injection of acid and then 

gradually reached to its normal concentration value (Fig. 23). The reduction in sulfate 

concentration was mainly due to lower sulfate concentration (2187 mg/l) in the injected 

acid. Sulfate concentration curve demonstrated that the presence of scale inhibitor 

effectively eliminated calcium sulfate precipitation in the acidizing process. However, 

the permeability was just increased from 3.8 to 4.8 md, Table 5. When 20 ppm of scale 

inhibitor was used in the preflush, main and post-flush stages, permeability increased 

from 2.7 to 3.3 md, Table 5. The nucleation process of calcium sulfate might affect acid 

reaction with calcite in carbonate rocks and cause acid treatment less effective. The 

addition of 20 ppm of scale inhibitor effectively eliminated deposition of calcium sulfate 

but not effectively inhibited nucleation of calcium sulfate. A series of core flood tests 

were conducted with an increment of 40 ppm of scale inhibitor added to acid to examine 

whether the increase of scale inhibitor concentration in acid can restore acid stimulation 
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effect in comparison with that of deionized water was used in all the stages. It was noted 

that there was little difference in sulfate concentration curves (Fig. 23); however, 

increase of permeability varied among the different concentrations of scale inhibitor, 

Table 5.  

Fig 23—Sulfate concentration profiles during acid treatments at 77˚F. 

 

6.2.2  Permeability Changes and Acid Penetration Distances 

 In the presence of different concentrations of scale inhibitor, the effect of mixing 

seawater on permeability of carbonate cores (1.5 in. × 6 in.) was shown in Fig. 24. Acid 

penetration distances were determined based on the analysis of computed-tomography 

(CT) scan images of acidized carbonate cores (Fig. 25).  

 The degree of changes in permeability and acid penetration distance varied 

significantly among the different concentrations of scale inhibitor. For example, acid 

stimulation effect was increased from 1.02 to 1.26 and acid penetration distance was 
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increased from 1 to 1.4 in. with the addition of 20 ppm of scale inhibitor in acid. In the 

case of the addition of 100 ppm of scale inhibitor, acid stimulation effect reached 9.26 

and acid penetration distance was 5.8 in., even more than that of deionized water was 

used in all the stages (7.62 and 5.6 in.). The addition of 100 ppm of scale inhibitor at 

77˚F was believed to completely inhibit nucleation of calcium sulfate during acidizing 

treatments and restore the acidizing effect in comparison with that deionized water was 

used in all the stages.  

  

 

Fig 24—Effect of mixing seawater on permeability of carbonate cores at 77˚F. 
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Fig 25—Acid penetration distances in the absence and presence of scale inhibitors at 

77˚F. 
 

 Therefore, it would be reasonably to conclude that by increasing the scale 

inhibitor dosage in acid the precipitation as well as nucleation of calcium sulfate can be 

completely inhibited at 77˚F. Accordingly, it should be possible to overcome the adverse 

impact of calcium sulfate on acidizing treatments at 77˚F by adding an appropriate dose 

of scale inhibitor.  

 

6.3  Scale Inhibitor Tests at 150 ˚F 

 It was well-known that the solubility of calcium sulfate decreases greatly with 

the increment of temperature (Meijer and Van Rosmalen 1984). Temperature tends to 

decrease the solubility of calcium sulfate and therefore significantly increase the scaling 

tendency of calcium sulfate (He et al. 2011). A couple of core flood tests at 150˚F were 

conducted to evaluate the inhibition efficiency of this scale inhibitor at higher 

supersaturated conditions. 
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6.3.1  Sulfate Concentration Profiles 

 In Fig. 26, sulfate concentration curves indicated that the presence of scale 

inhibitor successfully inhibited calcium sulfate precipitation and little difference was 

observed on the addition of different concentrations of scale inhibitor. However, the 

final permeability of carbonate cores was greatly enhanced when the concentration of 

scale inhibitor was increased from 50 to 150 ppm, Table 5. 

 

 
Fig. 26—Sulfate concentration profiles during acid treatments at 150˚F. 

 

6.3.2  Permeability Changes 

 The effect of mixing seawater on permeability of carbonate cores (1.5 in. × 6 in.) 

in the absence and presence of scale inhibitors at 150 ˚F was shown in Fig. 27. Acid 
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stimulation effect was increased from 1.13 to 1.28 with the addition of 50 ppm scale 

inhibitor and reached 2.83 when 150 ppm of scale inhibitor was added to the acid. At 

150 ˚F, nucleation of calcium sulfate can be successfully inhibited by increasing the 

scale inhibitor dosage in acid. 

 
Fig. 27—Effect of mixing seawater on permeability of carbonate cores at 150˚F. 

 

6.4  Scale Inhibitor Tests at 210 ˚F 

 A couple of studies have found that it is very difficult to inhibit calcium sulfate 

scale under highly supersaturated conditions (Vetter 1972; Vetter 1979); for example, 

when the saturation index of calcium sulfate is above 1 (Fan et al. 2010). Core flood 

tests at 210 ˚F were further conducted to examine the inhibition efficiency of this scale 

inhibitor under highly supersaturated conditions.  
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6.4.1  Sulfate Concentration Profiles 

 Upon the addition of 50 ppm scale inhibitor, sulfate concentration dropped to 

2,235 mg/l after the injection of acid in comparison with 1,440 mg/l in the absence of 

scale inhibitors (Fig. 28). In Fig. 29, material balance calculation showed that 3% sulfate 

was decreased in comparison with 7% when no scale inhibitor was applied. At 210 ˚F, 

50 ppm of scale inhibitors was not effectively enough to eliminate calcium sulfate 

precipitation due to the decreasing efficiency of scale inhibitor with increasing 

supersaturation (Vetter 1972). By increasing the concentration of scale inhibitor up to 

200 ppm, it was noted that sulfate concentration after acid injection was decreased to 

2,585 mg/l and generally around 0.4% sulfate was reduced. When the concentration of 

scale inhibitor was increased to 250 ppm, sulfate reduction was up to 2805 mg/l and 

0.2% sulfate was decreased. Generally the same values were obtained when the 

concentration of scale inhibitor was increased to 500 ppm. It could conclude that the 

effectiveness of this scale inhibitor depends on the degree of supersaturation and the 

temperature. More scale inhibitors should be applied to overcome the less effectiveness 

of this scale inhibitor under highly supersaturated conditions. 
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Fig. 28—Sulfate concentration profiles during acid treatments at 210˚F. 

 

 

 

 

 

 

                              Fig. 29—Sulfate material balance at 210˚F. 
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6.4.2  Permeability Changes 

 The effect of mixing seawater on permeability of carbonate cores (1.5 in. × 6 in.) 

in the absence and presence of scale inhibitors at 210 ˚F was shown Fig. 30. At 210 ˚F, 

there exists a general trend that by increasing concentrations of scale inhibitor the acid 

stimulation effect was increased. However, the acid stimulation effect with the increment 

of concentration of scale inhibitor was not as obvious as that at 77 and 150 ˚F, due to 

high reaction rate of the hydrochloric acid with calcite in the carbonate reservoir rocks 

(Lund et al. 1973; 1975).  

 

 
Fig. 30—Effect of mixing seawater on permeability of carbonate cores at 210˚F. 

 

6.5  Scale Inhibitor Requirements 

 Based on above discussions, the concentration of scale inhibitor required to 

completely inhibit precipitation of calcium sulfate ranging from 20 to 200 ppm, 
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depending on the temperatures. However, the concentration of scale inhibit that can 

restore acidizing effect is much higher. All the data are shown in Table 6.  

 

TABLE 6—SCALE INHIBITOR REQUIREMENTS 

No. 
Flow rate, 

cm
3
/min 

Temp., ˚F Dimension, in. MIC, ppm MAC, ppm 

1 1 77 6×1.5 20 100 

2 1 150 6×1.5 50 150 

3 1 210 6×1.5 200 --- 

MIC: Minimum scale inhibitor concentration to mitigate calcium sulfate deposition 

MAC: Scale inhibitor concentration required to restore acidizing effect 
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7. CONCLUSIONS AND RECOMMENDATIONS  

 

7.1  Conclusions 

 Core flood studies were conducted to assess the effect of using seawater in the 

preflush, post-flush, or to prepare HCl on the permeability of carbonate cores. When 

seawater was used to prepare HCl for matrix acidizing, the addition of a sulfonated 

terpolymer into acid was found to be successfully eliminated calcium sulfate 

precipitation during acidizing process under appropriate supersaturation conditions. The 

following conclusions can be drawn from this study: 

 Calcium sulfate precipitated in cores saturated with seawater, whether the 

injected acids were prepared in seawater or in deionized water. 

 Calcium sulfate scale caused severe loss in the permeability of carbonate 

cores, especially at high temperatures. 

 The critical scaling tendencies for calcium sulfate were 2.0, 2.1, and 1.2 at 

77, 150, 210˚F, respectively. 

 When mixing seawater and acid for matrix acidizing treatments, acid 

stimulation effect can be increased as much as that deionized water was used 

in all the stages by addition of appropriate dosage of scale inhibitor into acid. 

 The nucleation and precipitation process of calcium sulfate can be completely 

inhibited by increasing the concentrations of scale inhibitor in acid at 77 and 

150 ˚F. The minimum requirements of scale inhibitor were 100 and 150 ppm 

respectively.  
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 The effectiveness of scale inhibitor depends largely on the scaling tendency 

of calcium sulfate. The higher the supersaturation and the higher the 

temperature, the less effectiveness of the scale inhibitor becomes. A portion 

of calcium sulfate will precipitate during acidizing process under highly 

supersaturated conditions. 

 

7.2  Recommendations 

 Based on above discussions, it is recommended to use fresh water to prepare HCl 

acids. If fresh water is not available, then a proper scale inhibitor should be added to the 

fluids used.  

 Another concern which was not addressed in this study is the presence of barium 

and strontium in the formation water. These divalent cations will precipitate barium and 

strontium sulfates scale during injection of acids which are prepared with seawater. 

Precipitation of these sulfates will increase the damage that was noted in this paper. 

More research work is needed to address this concern in the near future.  

 It should be noted that it is necessary to determine the effectiveness of scale 

inhibitor under a more wide range of temperatures and supersaturation conditions. The 

inhibition mechanisms of scale inhibitor should also be fully examined.  
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