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ABSTRACT

Network Coding in Distributed, Dynamic, and Wireless Environments:

Algorithms and Applications. (December 2011)

Mohammad Asad Rehman Chaudhry, B.Sc., The University of Engineering and

Technology;

M.Sc., The University of Engineering and Technology

Chair of Advisory Committee: Dr. Alexander Sprintson

The network coding is a new paradigm that has been shown to improve through-

put, fault tolerance, and other quality of service parameters in communication net-

works. The basic idea of the network coding techniques is to relish the ”mixing”

nature of the information flows, i.e., many algebraic operations (e.g., addition, sub-

traction etc) can be performed over the data packets. Whereas traditionally infor-

mation flows are treated as physical commodities (e.g., cars) over which algebraic

operations can not be performed. In this dissertation we answer some of the impor-

tant open questions related to the network coding. Our work can be divided into four

major parts.

Firstly, we focus on network code design for the dynamic networks, i.e., the

networks with frequently changing topologies and frequently changing sets of users.

Examples of such dynamic networks are content-distribution networks, peer-to-peer

networks, and mobile wireless networks. A change in the network might result in

infeasibility of the previously assigned feasible network code, i.e., all the users might

not be able to receive their demands. The central problem in the design of a feasible

network code is to assign local encoding coefficients for each pair of links in a way

that allows every user to decode the required packets. We analyze the problem of

maintaining the feasibility of a network code, and provide bounds on the number
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of modifications required under dynamic settings. We also present distributed al-

gorithms for the network code design, and propose a new path-based assignment of

encoding coefficients to construct a feasible network code.

Secondly, we investigate the network coding problems in wireless networks. It

has been shown that network coding techniques can significantly increase the overall

throughput of wireless networks by taking advantage of their broadcast nature. In

wireless networks each packet transmitted by a device is broadcasted within a certain

area and can be overheard by the neighboring devices. When a device needs to trans-

mit packets, it employs the Index Coding that uses the knowledge of what the device’s

neighbors have heard in order to reduce the number of transmissions. With the Index

Coding, each transmitted packet can be a linear combination of the original packets.

The Index Coding problem has been proven to be NP-hard, and NP-hard to approx-

imate. We propose an efficient exact, and several heuristic solutions for the Index

Coding problem. Noting that the Index Coding problem is NP-hard to approximate,

we look at it from a novel perspective and define the Complementary Index Coding

problem, where the objective is to maximize the number of transmissions that are

saved by employing coding compared to the solution that does not involve coding. We

prove that the Complementary Index Coding problem can be approximated in several

cases of practical importance. We investigate both the multiple unicast and multiple

multicast scenarios for the Complementary Index Coding problem for computational

complexity, and provide polynomial time approximation algorithms.

Thirdly, we consider the problem of accessing large data files stored at multi-

ple locations across a content distribution, peer-to-peer, or massive storage network.

Parts of the data can be stored in either original form, or encoded form at multiple

network locations. Clients access the parts of the data through simultaneous down-

loads from several servers across the network. For each link used client has to pay
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some cost. A client might not be able to access a subset of servers simultaneously

due to network restrictions e.g., congestion etc. Furthermore, a subset of the servers

might contain correlated data, and accessing such a subset might not increase amount

of information at the client. We present a novel efficient polynomial-time solution for

this problem that leverages the matroid theory.

Fourthly, we explore applications of the network coding for congestion mitigation

and overflow avoidance in the global routing stage of Very Large Scale Integration

(VLSI) physical design. Smaller and smarter devices have resulted in a significant

increase in the density of on-chip components, which has given rise to congestion

and overflow as critical issues in on-chip networks. We present novel techniques and

algorithms for reducing congestion and minimizing overflows.
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CHAPTER I

INTRODUCTION

A. Network Coding

The network coding has gained a significant interest from the research community

since the first paper by Alshwede et al. in 2000 [1], as it has been shown to improve

throughput, resilience and fault tolerance, and other quality of service parameters

in communication networks as compared to the traditional techniques. The basic

idea of the network coding is to allow algebraic operations on the data packets at

the network nodes (routers, relays etc), as compared to the traditional schemes in

which intermediate nodes can only forward packets. In traditional approaches data

packets are treated as physical commodities and data flow is dealt in the same way

as commodity flow, e.g., cars on a highway over which algebraic operations (addition,

subtraction etc) can not be performed. Whereas the network coding takes advantage

of the fact that data flow is different from the commodity flow and the data packets, in

contrast to the physical commodities, can be subject to algebraic operations (addition,

subtraction etc). In the network coding the packet transmitted by a network node is

a function of the packets received at its incoming links as shown in Figure 1. Consider

a butterfly network where each link can just send one packet per time unit as shown

in Figure 2. This network was presented by Alshwede et al. in [1]. Note, that in

this butterfly network there are two edge-disjoint paths from source to each of the

terminals. Namely, the two edge-disjoint paths from the source s to the terminal t1

are s−w− t1 and s− x− y− z− t1, and the two edge-disjoint paths from the source

s to the terminal t2 are s−x− t2 and s−w− y− z− t2. It is obvious that the source

The journal model is IEEE Transactions on Information Theory.
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Fig. 1. The network coding.

s can send two packets per time unit to either terminal t1 or terminal t2 by sending

one packet per time unit on each of the corresponding edge-disjoint paths, but note

that using traditional routing approach the source s can not send two packets per

time unit to both of the terminals t1 and t2 simultaneously due the the bottleneck

link y − z. In case the source can subdivide a packet into smaller subpackets (this

technique is referred to as fractional routing) then the rate at which source can send

packets to both of the terminals is bounded by 1.5 packets per time unit. By using

the network coding, i.e., combining packets at the network node y (e.g., addition over

a finite field), the source can send two packets per time unit to both of the clients.

Terminal t1 shall be receiving two packets a and a + b per time unit, i.e., it receives

packet a directly and can decode packet b by a simple subtraction (a+ b)− a of the

two received packets. Similarly terminal t2 can get both the packets a and b from its

received packets b and a + b. In short an information flow rate of two packets per

time unit can not be achieved with traditional routing, whereas the network coding

achieves this rate.

Another application of the network coding is wireless networks. For example

consider a wireless network consisting of two nodes and a relay as shown in Figure 3.
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Fig. 2. The butterfly network [1].

The nodes can not communicate directly, and need the help of the relay to exchange

data. Traditional approach requires four transmissions in the system. Two transmis-

sions to deliver packet a from node 1 to node 2, as firstly node 1 transmits packet

a to the relay, and then the relay transmits this packet to the node 2. Similarly

two transmission are required to deliver packet b from node 2 to node 1. By using

the network coding technique, the number of transmissions in the network can be

reduced from four to three. In case of the network coding approach the relay firstly

receives packet a from node 1 and waits until it receives packet b from node 2, and

after receiving both the packets it creates a combined packet a + b and broadcasts

it to both the nodes. Note, it results in total of three transmissions in the network

one transmission from each of the nodes, and one transmission from the relay. Each

node after receiving packet a + b can decode either packet a or b based on whatever

it already has. For example node 1 already has packet a and it can use (a+ b)− a to
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Fig. 3. The network coding in wireless setup.

decode packet b, and similarly node 2 can decode packet a.

The reduction in the number of transmissions in the network can result in reduc-

ing overall energy consumption, and interference in the network. Furthermore, the

network coding in this scenario results in efficient utilization of bandwidth.

Distributed data storage is crucial for providing secure and reliable data access

through redundancy. It has been shown that the network coding based regenerating

codes can significantly reduce the bandwidth required for repairing the failed disks in

a distributed storage system [2].

Another interesting application of the network coding is in Very Large Scale

Integration (VLSI) circuit design where congestion and overflows are one of the major

challenges due to increase in density of on-chip components. The increase in density

of on-chip components results from decreasing chip size and increasing demand of

chip functionalities. The network coding can be utilized in the global routing stage

of VLSI physical design to encourage sharing of circuits or wires among different
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Fig. 4. Classification of the contributions presented in the dissertation.

circuits [3].

B. Contributions

This dissertation focuses on four different aspects of the network coding as shown

in Figure 4. Contribution of the dissertation can be classified into following four

categories:

1. Efficient Network Coding Algorithms For Dynamic Networks

In this part of the dissertation we present design of efficient multicast network codes

for dynamic networks. Examples of such dynamic networks are content-distribution

networks, peer-to-peer networks, and mobile wireless networks. Dynamic nature of

networks can arise because of many scenarios like varying capacity of the links due

to congestion, hardware failures resulting in loss of communication links, addition

of new communication links to compensate for broken links, and varying number of

end users connected to a network. To the best of our knowledge, the algorithms
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presented are the first distributed and fully deterministic algorithms for the network

code assignment that can deal with the dynamic nature of the networks.

One of the central problems in the network coding is to design an efficient algo-

rithm that assigns the local encoding coefficients in a way that allows each user to

decode the required packets. Such a network code is called a feasible network code.

We focus on maintaining the feasibility of a given network code upon an addition of

a new user, or a change in the network topology. Any change in the network might

result in infeasibility of the previously assigned feasible network code, i.e., all the

users might not be able to receive their demands. Our goal is to minimize the num-

ber of encoding coefficients that are required to be modified (after a change in the

network) to keep the network code feasible. A smaller number of required changes

in the encoding coefficients will allow the coding network to adjust for a new user or

a change in the network topology more efficiently, and also reduce the disruption to

existing users.

Formally, we consider the problem of minimizing the number of encoding coef-

ficients that are required to be changed to accommodate a new user or respond to

a change in the underlying network topology. We focus on three natural questions.

One, what is the computational complexity of this minimization problem. Two, if

it is possible to establish tight upper and lower bounds on the minimum number of

changes required in encoding coefficients to cope up with dynamic nature of the net-

work. Three, if it is possible to design an algorithm that efficiently handle frequent

network changes. Our work deals with these questions in that order.

In order to understand how changes in a network can affect the feasibility of a

network code consider the following examples. Consider a mulitcast network with

one source and four terminals t1, t2, , t3, t4 as shown in Figure 5(a). The source

wants to send two packets a and b to all the terminals. When a new terminal t̂ joins
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Fig. 5. (a) A network and corresponding feasible network code. (b) A new network N̂
after a new node t̂ joins.

the network and connects to nodes v6 and v8, the previously feasible network code,

as shown in Figure 5(a), becomes infeasible as the new terminal is unable to decode

the original packets sent by the source. Note that the new terminal t̂ is receiving the

packet a + b from both of its incoming links, hence it can neither decode packet a

nor packet b. In case of the failure of an edge (v2, v7) for the network shown in 6(a)

the effected terminals t2 and t3 respond to the loss of a link by connecting to nodes

v6 and v8 respectively in order to maintain the minimum connectivity requirement

to be able to receive two packets from the source. This change in topology makes

the network code infeasible as shown in 6(b). Accordingly, there is need to modify

a number of network coding coefficients to make the network code feasible again.

Keeping the modifications to a minimum is practically important as it will allow the

coding network to adjust for a new user or a change in the network topology more

efficiently and also reduce the disruption for existing users.
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Fig. 6. (a) A network N and a feasible network code C for N. (b) A new network N̂
after failure of an edge.

We first analyze the problem of maintaining the feasibility of a network code

by minimizing the encoding coefficients that need to be modified (after a change

in the network) to keep the network code feasible. Second, we present lower and

upper bounds on the number of modifications required in case of an addition of a

new user or a failure of an edge. Third, we analyze the computational complexity

of the problem in hand, and prove it to be NP-complete. Fourth, we present an

algorithm for the network code design, and propose a new path-based assignment of

encoding coefficients to construct a feasible network code. Fifth, we present a new

method for assignment of encoding coefficients which is based on the prime numbers.

The presented assignment scheme is distributed in nature, and does not require full

knowledge of the network topology. Sixth, we present extensive simulation studies

on practical networks to show the advantage of the proposed schemes in practical

scenarios.
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2. Index Coding

Another aspect of our work is investigation of the network coding in single hop wire-

less networks. The related problem, referred to as the Index Coding problem [4, 5],

has recently attracted a significant interest from the research community [6]. It has

been shown that the Index Coding techniques can significantly increase the overall

throughput of wireless networks by taking advantage of their broadcast nature. In

wireless networks each packet transmitted by a device is broadcasted within a certain

area and can be overheard by the neighboring devices. When a device needs to trans-

mit packets, it employs the opportunistic coding approach that uses the knowledge of

what the device’s neighbors have heard in order to reduce the number of transmis-

sions. With opportunistic coding approach, each transmitted packet can be a linear

combination of the original packets over a certain finite field. An instance of the Index

Coding problem comprises of a server, and a set of clients. The server holds a set of

n packets P = {p1, . . . , pn}. Each client is interested in a certain subset of packets

available at the server, and might have a (different) subset of packets available as side

information. The server can broadcast the packets in P or encoding thereof. The

goal is to find a scheme that requires the minimum number of transmissions to satisfy

the requests of all clients. The server can broadcast the packets in P or encoding

thereof. The objective is to identify a scheme that satisfies the demands of all clients

with the minimum possible number of transmissions. Each client is represented by a

pair (Want, Has), where Want is the set of packets required by the client, and Has

is the side information or the set of packets available to the client.

Figure 7 shows an instance of the Index Coding problem. The central node,

referred to as a server, needs to deliver five packets p1, . . . , p5 to five clients c1, . . . , c5;

packet pi needs to be delivered to client ci. Each client ci has access to some side



10

Fig. 7. An instance of the Index Coding problem including a server and five clients.

Server can transmit the packets p1, · · · , p5 or their linear combinations to satisfy

the demand of the clients.

information which might be the packets overheard (cached) from prior transmissions.

These packets are included in the client’s “Has” set. It is easy to verify that all clients

can be satisfied by broadcasting three packets p1 + p2, p3 + p4, and p5 (all additions

are over GF (2)). Whereas in traditional approach all the five packets p1, . . . , p5 are

needed to be transmitted, hence the Index Coding technique reduces the number of

transmissions from 5 to 3.

The Index Coding problem has been proven to be NP-hard, and NP-hard to

approximate. First, we propose an efficient exact, and several heuristic solutions for

the Index Coding problem. Our numerical study suggests that the exact solutions can

be efficiently identified for small instances, while the heuristic solutions with small

computation time can achieve near optimal performance for larger instances. We

then focus on finding approximate polynomial time solutions for the Index Coding

problem with mathematically proven guarantees.
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Noting that the Index Coding problem has been proven to be NP-hard to approx-

imate, we explore at it from a novel perspective and define the Complementary Index

Coding problem. The goal of the Complementary Index Coding problem is to max-

imize the number of saved transmissions, i.e., the number of transmissions that are

saved by employing encoding compared to the solution that does not involve coding.

For the instance of the Index Coding problem shown in Figure 7, the number of saved

transmissions is 2. Second, we prove that the Complementary Index Coding problem

can be approximated in several cases of practical importance. We investigate both

the multiple unicast and multiple multicast scenarios for the Complementary Index

Coding problem. In the multiple unicast scenario, each packet is requested by a single

client; while in the multiple multicast scenario, each packet can be requested by sev-

eral clients. Third, we present polynomial time approximation algorithms for finding

scalar and fractional linear solutions for the multiple unicast scenario. Fourth, we

show that for the multiple multicast scenario finding an approximation solution is

NP-hard, and the multiple multicast scenario is NP-hard to approximate as well.

Fifth, we focus on finding sparse solutions to the Index Coding problem with

mathematically provable guarantees. In a sparse solution each transmitted packet is a

linear combination of at most two original packets. With the sparse Index Coding, the

encoders and decoders can be implemented very efficiently which makes it attractive

for practical applications. The sparse Index Coding can be implemented over a small

field (GF (2)), which results in significant reduction in the size of the packet headers

and the associated overhead. Consider another instance of index coding problem

shown in Figure 8. An optimal solution for satisfying three clients c1, c2, c3, is to

broadcast one packet p1 + p2 + p3. But under the restriction of encoding at most

two packets, the server can satisfy three clients in two transmissions: p1 + p2, and

p3, i.e., still a transmission is saved compared to the traditional schemes. We analyze
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Fig. 8. An instance of the Index Coding problem. The optimum non-sparse solution

is to broadcast one packet p1 + p2 + p3. However an optimal solution to sparse

Index Coding problem requires two transmissions, i.e., p1 + p2, and p3.

both scalar and fractional versions of the problem, and provide polynomial time

solution. For the scalar case, we present a polynomial time algorithm that achieves

an approximation ratio of 2 − 1√
n
. For the fractional case, we present a polynomial

time algorithm that provides the optimal solution to the problem.

Sixth, we perform an extensive experimental study which demonstrates that our

algorithms achieve good performance in practical scenarios.

3. Distributed Data Retrieval

In many practical settings, clients need to access large data files stored at multiple

locations across the network. For example, in content distribution networks the data

is stored across multiple geographical locations to enable efficient access by multiple

clients. Similarly, in peer-to-peer networks clients retrieve popular files such as movies

from their peers. In mass storage systems, the data is distributed throughout the
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network to increase the reliability and resilience to failures. When a client needs to

obtain a copy of a large data object, it initiates simultaneous downloads from multiple

servers.

In this part of the dissertation, we consider the problem of accessing large data

objects (e.g., multimedia files, datasets, etc) stored at multiple network locations.

Each data object can be divided into a number of fixed-size blocks, which are stored

at servers across the network.

There are three major approaches for distributing the data across the servers.

The first approach uses data replication or mirroring. With this approach, several

copies of each block are stored on different servers across the network. A client needs

to identify a subset of the nearby servers that collectively store all the required blocks

and obtain one copy of each block through simultaneous downloads.

The second approach uses erasure correcting codes to generate parity check

blocks. With this approach, k original blocks are encoded into n blocks using a

Maximum Distance Separable (MDS) code, such that any k out of n blocks are suf-

ficient for decoding the content of the file. A client needs to locate k nearby servers,

and initiate simultaneous downloads to obtain k different coded blocks. The blocks

are then decoded to obtain the content of the required file.

The third approach is to use a general linear coding scheme, which is not nec-

essarily an MDS coding scheme. Such schemes are used, for example, in distributed

storage systems [2]. In such schemes, a client needs to identify a subset of servers

that collectively store enough data to be able to obtain the content of the original

file. More specifically, suppose that the original file is divided into k blocks and that

each block stored at a server is a linear combination of k original blocks. Thus, a

client needs to simultaneously download data from k servers that store k linearly

independent combinations of the original blocks. The contents of the original file can
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then be decoded by performing linear operations on the obtained data. Note that the

general linear coding scheme includes the first two approaches as special cases.

Clients access the data through simultaneous downloads from several servers

across the network. For each link used client has to pay some cost. The cost can

capture price of usage, link congestion etc. A client might not be able to access a

subset of servers simultaneously due to network restrictions e.g., congestion, capacity

overload etc. Furthermore, a subset of the servers might contain correlated data, and

accessing such a subset might not increase amount of information at the client.

We focus on the general linear coding settings and consider the problem of min-

imizing the total cost of downloading the contents of a file from multiple servers. We

assume that each link in the network is associated with a certain cost and has capacity

constraints. Our goal is to find a set of k paths of minimum total cost that connect

a subset of data servers with the client. The k paths should satisfy the following

constraints:

1. Each path connects a data server and the client;

2. Each path is used for downloading a single data block;

3. The k downloaded data blocks are linearly independent;

4. The number of paths that share a single link cannot exceed the capacity of that

link.

Note that in order to solve this problem we need to select a subset of data servers

and the corresponding paths to the client through which the data will be downloaded.

We refer to this problem as the Distributed Data Retrieval (DDR) problem.

Figure 9 demonstrates three approaches for storing three original blocks, a, b, and

c across four servers and the corresponding instances of Problem DDR. Figure 9(a)
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Fig. 9. Storage schemes considered. (a) Replication-based approach. (b) An approach

based on MDS codes. (c) An approach based on general linear codes. For each

scenario, the optimal set of paths to retrieve packets a, b, and c is shown by

thick lines.

shows a replication based approach. With this approach a client needs to find three

disjoint paths, one originating at a server that stores block a, second at a server that

stores block b, and third at a server that stores block c. Figure 9(b) demonstrates

the approach where the data is stored using an MDS code (here, all operations are

performed over GF (2)). With this approach, the client needs to find three disjoint

paths of the minimum total cost to any three distinct servers. The general coding

approach is depicted in Figure 9(c). In this scheme, the paths must originate at

servers that store linearly independent combinations. In all figures, disjoint paths of

minimum total cost are shown by thick lines.

We present a novel efficient polynomial-time solution for the Distributed Data

Retrieval (DDR) problem that leverages the matroid theory. Our experimental study

shows the advantage of our solution over alternative approaches.
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4. Efficient Rerouting Algorithms for Congestion Mitigation

In this part of the dissertation we investigate the applications of the network coding

for congestion mitigation and overflow avoidance in the global routing stage of Very

Large Scale Integration (VLSI) physical design. With the advent of smaller devices,

a significant increase in the density of on-chip components has raised congestion and

overflow as critical issues in VLSI physical design automation. We present novel

techniques for reducing congestion and minimizing overflows. Our methods are based

on ripping-up nets that go through the congested areas and replacing them with

congestion-aware topologies. Our contributions can be summarized as follows. First,

we present several efficient algorithms for finding congestion-aware Steiner trees, i.e.,

trees that avoid congested areas of the chip. Second, we show that the novel tech-

nique of network coding can lead to further improvements in routability, reduction of

congestion, and overflow avoidance. Thirdly, we present an algorithm for identifying

efficient congestion-aware network coding topologies. We evaluate the performance of

the proposed algorithms through extensive simulations using the International Sym-

posium on Physical Design (ISPD) routing benchmarks.

To understand how network coding can help in congestion avoidance in VLSI

design, consider a routing instance depicted in Figure 10(a). In this example, we

need to route two nets, one net connecting source s1 with terminals t1, t2, and t3, and

the other net connecting source s2 with the same set of terminals. The underlying

routing graph is represented by a grid G(V,E) as shown in Figure 10(a). Suppose

that due to congestion each edge of this graph has a residual capacity of one unit,

i.e., each edge can accommodate only a single wire. It is easy to verify that only

one net can be routed without an overflow. For example, Figure 10(b) shows a

possible routing of a net that connects s1 with terminals t1, t2, t3. Figure 10(c) shows
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that routing of both nets results in an overflow. In this example, two nets transmit

different signals, a and b, over separate Steiner trees. Figure 10(d) shows that the

network coding approach allows to route both nets without violating edge capacities.

With this approach, the terminal t1 creates a new signal, a ⊕ b, which is delivered

to terminals t2 and t3, while the signals a and b are delivered to terminals t2, and t3

directly. It is easy to verify that with this scheme each terminal can decode the two

original signals, a and b.

The example above indicates that network coding can offer two distinct advan-

tages. First, it has a potential of solving very difficult cases. In some instances, the

network coding technique allows to solve cases that cannot be routed by conventional

techniques. Second, it can achieve a decrease in the total wirelength, and, at the

same time, alleviate the routing congestion.

C. Dissertation Outline

In Chapter II, we discuss the network coding for dynamic networks. In Chapter III we

introduce the Index Coding problem and present the corresponding model. Chapter

IV describes a set of efficient algorithms for the Index Coding problem . In Chapter V

we discuss the Complementary Index Coding problem. In Chapter VI, we discuss the

Sparse Index Coding problem. Chapter VII deals with the distributed data retrieval

problem. Chapter VIII discusses applications of the network coding in congestion

mitigation and overflow avoidance in the VLSI circuit design. We present conclusions

in Chapter IX.
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Fig. 10. (a) The underlying routing graph with a set of source nodes and terminals.

(b) A rectilinear Steiner tree that connects source s1 to all terminals. (c) A

collection of two rectilinear Steiner trees that connect sources s1 and s2 to all

terminals. (d) A network coding based solution.
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CHAPTER II

EFFICIENT NETWORK CODING ALGORITHMS FOR DYNAMIC

NETWORKS∗

In this chapter we focus on design and analysis of efficient multicast network codes

for dynamic networks. We present a distributed and fully deterministic algorithm for

network code assignment that can deal with the dynamic nature of the network. For-

mally, we first consider the problem of maintaining the feasibility of a given network

code upon a change in the network topology or addition of a new user. Our goal is

to minimize the number of encoding coefficients that need to be modified to keep the

network code feasible. We also present a new network coding algorithm that uses

path-based assignment to efficiently handle frequent changes in the network topology

and the multicast group.

A. Introduction

The central problem in multicast network coding is to design an efficient algorithm

that assigns the encoding coefficients to the pair of edges in a way that allows each

terminal node to decode the required packets. Such an assignment of local encoding

coefficients is called a feasible network code. Currently, the main applications of the

network coding technique are in the areas of content-distribution networks [7], peer-

to-peer networks [8], and wireless networks [9]. Such networks typically have highly

dynamic topologies and a frequently changing set of users. The dynamic nature of

∗Parts of this chapter are reprinted with permission from “Efficient Network Cod-
ing Algorithms for Dynamic Networks” by M. A. R. Chaudhry, S. Y. EL Rouayheb,
and A. Sprintson, in the proceedings of the 6th Annual IEEE Communications Society
Conference on Sensor, Mesh and Ad Hoc Communications and Networks Workshops
(SECON Workshops ’09), Rome, Italy 2009, pages 1-6.
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the networks arises because of many scenarios like varying capacity of the links due to

congestion, hardware failures resulting in loss of communication links and addition of

new communication links to compensate for broken links, and varying number of end

users connected to a network. Any changes in the network might result in infeasibility

of the previously assigned feasible network code.

In order to understand how dynamic network can affect the feasibility of a net-

work code consider the following examples. Consider a mulitcast network with one

source and four terminals t1, t2, , t3, t4 as shown in Figure 11(a). The source wants

to send two packets a and b to all the terminals. When a new terminal t̂ joins the

network and connects to nodes v6 and v8, the previously feasible network code, as

shown in Figure 11(a), becomes infeasible as the new terminal is unable to decode

the original packets sent by the source. For the same example, in case of a failure

of an edge (v2, v7) as shown in 12(b) the effected terminals t2 and t3 respond to the

loss of a link by connecting to nodes v6 and v8 respectively in order to maintain the

minimum requirement. This change in topology makes the network code infeasible as

shown in 12(b). Accordingly, there is a need to modify a number of network coding

coefficients to make the network code feasible again. Keeping this modification to

the minimum is practically important as it will allow the coding network to adjust

for a new user or a change in the network topology more efficiently and also reduce

the disruption for existing users.

1. Related Work

Network coding research has been initiated by the seminal paper by Ahlswede et

al. [1], and since then attracted a significant interest from the research community.

Koetter and Médard [10] developed an algebraic framework for network coding. This
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Fig. 11. (a) A network and corresponding feasible network code. (b) A new network

N̂ after a new node t̂ joins.

framework was used by Ho et al [11] to show that linear network codes can be ef-

ficiently constructed through a randomized algorithm. Jaggi et al [12] proposed a

deterministic polynomial-time algorithm for finding feasible network codes in multi-

cast networks. Network coding algorithms for dynamic networks have been studied

in references [13], [14], and [15]. Ho et al [13] showed that the network coding ap-

proach provides substantial benefits in dynamically varying environments. Zhao and

Médard [14] considered the problem of modifying network topology in a way that

minimizes the number of required code rearrangements. Their algorithm uses linear

programming approach and relies on a cost function that penalizes edges whose addi-

tion might require a change in the network code. Ho et al [15] presented a framework

for network management based on the network coding approach and considered the

problem of minimizing the number of network codes required for handling all single

edge failures. In reference [16] presented an overview of different algorithms to assign

network coding coefficients.
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Fig. 12. (a) A network N and a feasible network code C for N. (b) A new network N̂
after failure of an edge.

2. Organization

The rest of the chapter is organized as follows. In Section B we present the model

and the definition of the problem. In Section C we analyze the problem in context

of the changes in the multicast group due to the addition of a user. In Section D

we analyze the problem in context of the changes in the topology due to failure of

an edge. We present a new deterministic algorithm that uses path-based assignment

of local encoding coefficients in Section E. Furthermore, in Section F we present a

distributed, prime number’s based assignment of encoding coefficient. In Section G

we present the simulation study.

B. Model

We consider a multicast network N that uses a directed acyclic graph G(V,E), with

vertex set V and edge set E, to send data from source s to a set T of terminal nodes.

The number of terminal nodes is denoted by k, i.e., k = |T |. The data is delivered

in packets, each packet is an element of a finite field Fq = GF (q). We assume that
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the communication is performed in rounds, such that each edge e ∈ E transmits one

packet per round. Note that this does not result in any loss of generality since edges of

higher capacity can be substituted by multiple parallel edges. At each communication

round, the source node needs to transmit h packets R = (p1, p2, . . . , ph)
T from the

source node s ∈ V to each terminal node t ∈ T . We refer to h as the rate of the

multicast connection. It was shown in [1] and [17] that the maximum rate of the

network, i.e., the maximum number of packets that can be sent from the source s to

a set T of terminals per time unit, is equal to the minimum capacity of a cut that

separates the source s from a terminal t ∈ T . Accordingly, we say that a multicast

network N is feasible if any cut that separates s and a terminal t ∈ T has at least h

edges.

Without loss of generality, we assume that the source node s has exactly h

incoming edges, each incoming edge transmits one of the original packets in R. We

also assume that each terminal t ∈ T has h incoming edges and no outgoing edges.

For each edge e ∈ E we denote by pe the packet transmitted on that edge.

Let e(v, u) be an edge in E and let Me be the set of incoming edges to its

tail node v, Me = {(w, v) | (w, v) ∈ E)}. Then, we associate with each pair of edges

{(e′, e)|e′ ∈Me} a local encoding coefficient βe′,e ∈ Fq. The local encoding coefficients

of the edges that belong to Me determine the packet pe transmitted on edge e as a

function of packets transmitted on the incoming edges of e. Specifically, the packet

pe is equal to

pe =
∑
e′∈Me

βe′,e · pe′ , (2.1)

where all operations are performed over Fq.

We say that edge e′ is adjacent to edge e if the head node of e′ is identical to the

tail node of e. We denote by S the set of the adjacent pairs of edges in the network.
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We refer to the set of local encoding coefficients C = {βe′,e | (e′, e) ∈ S} as a network

code for N.

Note that each packet transmitted over the network is a linear combination of

the original packets p1, p2, . . . , ph generated by the source node s. Accordingly, for

each edge e ∈ E we define the global encoding vector Γe = (γe1, . . . , γ
e
h)
T ∈ Fhq , that

captures the relation between the packet pe transmitted on edge e and the original

packets in R:

pe =
h∑
i=1

γei · pi. (2.2)

For each terminal t in T we define the transfer matrix Mt that captures the

relation between the original packets R and the packets received by the terminal

node t ∈ T over its incoming edges. The matrix Mt is defined as follows:

Mt =

[
Γe1t | Γe2t | . . . |Γeht

]
, (2.3)

where Et = {e1
t , . . . , e

h
t } is the set of incoming edges of terminal t.

Our goal is to find a set of local encoding coefficients C = {βe′,e | (e′, e) ∈ S}

that allows each terminal to decode the original packets R from the packets obtained

on its incoming edges. This can be accomplished only if the matrix Mt is a full-rank

matrix for each terminal t ∈ T . The assignment of C that satisfies this condition is

referred to as feasible network code.

An edge e(u, v) is referred to as a forwarding edge if it is an outgoing edge of the

source node s or pe = βe′,e · pe′ where e′ ∈Me i.e., the packet pe transmitted on edge

e depends on only one of the incoming packets available at node u. Otherwise, edge

e is referred to as an encoding edge. We say that a node v, v 6= s, is an encoding node

if at least one of its outgoing edges (v, u) is encoding. If all outgoing edges of a node

v are forwarding, then the node is referred to as a forwarding node. Encoding nodes
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generate new packets by combining the packets received over their incoming edges;

forwarding nodes only forward incoming packets. We denote by X (G,C) the set of

all encoding nodes in graph G(V,E) with respect to a feasible network code C.

Suppose that a change in network topology has occurred. We denote by Ĝ(V̂ , Ê)

the new underlying graph, by N̂ the new network, and by Ŝ the new set of adjacent

edges. Let Ĉ be a feasible network code for N̂ .

We define following two types of changes associated with local encoding coeffi-

cients:

• We define set S̄ that includes all pairs of adjacent edges for which the encoding

coefficients have been changed as follows:

S̄ =
{

(e′, e) | (e′, e) ∈ S ∩ Ŝ, β(e′, e) 6= β̂(e′, e)
}
.

Note that S̄ is the number of changed local encoding coefficients. Our goal is

to minimize |S̄|.

• Total number of changes in encoding nodes is defined as:

|A ∪B|,

where

A = {v|v ∈ X (G,C) ∩ X (Ĝ, Ĉ), (e′(u, v), e(v, w)) ∈ S ∩ Ŝ, β(e′, e) 6= β̂(e′, e)}

and

B = {v|v /∈ X (G,C), v ∈ X (Ĝ, Ĉ)}

In other words, by a change in an encoding node v we mean modifying βe′,e for

a pair of edges e′(u, v) and e(v, w), or modifying βe,e′ for a pair of edges e(u, v)

and e′(v, w) such that a non-encoding node v becomes an encoding node. We



26

refer to |A∪B| as the number of changes in encoding nodes required by Ĉ. Our

focus is to minimize |A ∪ B|. We refer to the problem to be the problem of

finding a feasible network code Ĉ that minimizes |A ∪B| as the problem EN.

In this chapter we focus on network coding algorithms for dynamic networks.

Specifically when a new user joins the network or when the network undergoes a

topological change due to a failure of an edge. Upon addition of a new user or an

edge failure the existing network code might no longer be feasible. A straightfor-

ward approach is to compute a new network code Ĉ for N̂ from scratch. However,

with this approach the local encoding coefficients for all pairs of edges in S might

change. In practice, this may incur a substantial overhead, associated with determin-

ing, distributing, and changing the encoding coefficients for a large number of network

nodes. However, in many cases, we only need to change a small number of encoding

coefficients to make the new network feasible as shown in the following examples.

Example 1 (Adding a new terminal) Consider network shown in Figure 13. The

original network N together with the corresponding network code C is depicted in Fig-

ure 13(a). The network delivers two packets, a and b, to four terminals, t1, t2, t3,

and t4. Suppose that a new terminal t̂ joins the network. In order to maintain the

feasibility requirement, two new edges, (v6, t̂) and (v8, t̂) have been added to the net-

work. The resulting multicast network N̂ is depicted in Figure 13(b). Since the global

encoding coefficients of edges (v4, v6) and (v5, v8) are linearly dependent, and since

nodes v6 and v7 can only forward their incoming packets, we need to change some of

the encoding coefficients for edges in S so the new terminal t̂ will be able to decode

the packets sent by source s. Figure 13(c) depicts a new network code Ĉ formed from

C by changing a single encoding coefficient (β(v2,v4),(v4,v6)), i.e., the network code Ĉ

depicted in Figure 13 requires a change of only one coefficient.
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Fig. 13. (a) Original network N and a feasible network code C for N. (b) A new

network N̂ that includes a new terminal node t̂. (c) A new network code Ĉ
for N̂.

Example 2 (Failure of an edge) Consider the network N with the feasible network

code C depicted in Figure 14(a), and assume that edge (v2, v7) has failed. The modified

network topology is depicted in Figure 14(b). In the new topology, nodes t2 and t3 are

connected to nodes v6 and v8. However, with the network code C, the global encoding

vectors of the edges (v4, v6) and (v4, v8) are linearly dependent. The new feasible

network code Ĉ for N̂ can be constructed by modifying the local encoding coefficient

β(v2,v4),(v4,v6) for the pair of edges (v2, v4) and (v4, v6), i.e., the network code Ĉ depicted

in Figure 14 requires a change of only one coefficient.



28

Fig. 14. (a) Original network N and a feasible network code C for N. (b) A new

network N̂ constructed after a failure of edge (v2, v7) with a new network code

Ĉ for N̂.

In what follows we discuss two specific scenarios of network under dynamic setting

and describe the bounds on the number of changes required to maintain the feasibility

of the code.

C. Adding a New Terminal to the Multicast Group

In this section we focus on the scenario in which a new terminal t̂ joins the existing

multicast group T . First, we establish lower and upper bounds on the number of

modified network coding coefficients. Next, we prove that finding a modified network

code with minimum number of changes in the encoding nodes is an NP-complete
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problem.

Let N be the original multicast network over the graph G(V,E), with a set of

terminal nodes T and a corresponding feasible network code C = {βe′,e}. Let t̂ be a

new terminal node, and N̂ be a modified multicast network over graph Ĝ(V̂ , Ê) and

set of terminals T̂ = t̂ ∪ T . We begin with the lower bound.

Lemma 3 Let Mt̂ be the transfer matrix for t̂ with respect to the code C. Then,

a feasible network code Ĉ for N̂ requires at least h − rank(Mt̂) changes of the local

encoding coefficients in C, i.e., |S̄| ≥ h− rank(Mt̂).

Proof: It is sufficient to show that a change in one encoding coefficient can

increase the rank of the transfer matrix by at most one. Suppose that we change the

local encoding coefficient for a pair (e′, e) of adjacent edges from β′e′,e to β′′e′,e. Let

M′ t̂ and M′′ t̂ be the transfer matrices before and after the change, respectively. Then

M′′ t̂ can be expressed as:

M′′t̂ = M′t̂ + (β′′e′,e − β′e′,e)(Γe′ ·Me), (2.4)

where Γe′ is the global encoding coefficient for edge e′ (before the change) and Me

is 1 × h matrix that ties the packet sent on edge e and the packets received by the

incoming edges of t̂. Note that the rank of Γe′×Me is at most one. The subadditivity

property of the rank function implies that the rank of M′′
t̂

is bounded by the rank of

M′
t̂

plus one.

We proceed to establish an upper bound.

Lemma 4 Let F̂ be a set of h disjoint paths between s and t̂ in Ĝ(V̂ , Ê). Let S̃ be a

set that contains pairs of adjacent edges in S such that each pair (e′, e) ∈ S̃ belongs to

one of the paths in F̂ . Then, a feasible network code can be constructed by changing

the local encoding coefficients of the edges that belong to S̃, i.e., |S̄| ≤ |S̃|.
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Note that the lemma implies that it is sufficient to only change |S̃| encoding coeffi-

cients.

Proof: First, we define a new network code Ĉ as follows:

β̂e′,e =


βe′,e + ∆βe′,e if (e′, e) ∈ S and (e′, e) ∈ P̂

βe′,e if (e′, e) ∈ S and (e′, e) /∈ P̂

∆βe′,e otherwise.

(2.5)

We show that it is possible to assign the values of {∆βe′,e} such that the resulting

network code Ĉ is feasible. We show that for each t ∈ T̂ the determinant det(M̂t) of

the transfer matrix M̂t is not identically equal to zero with respect to the new network

code Ĉ. To this end, we substitute the values of coefficients in {βe′,e} according to

their assignment in C and leave {∆βe′,e} to be variables. Then, for each t ∈ T̂ the

determinant of the transfer matrix M̂t is a multivariate polynomial in {∆βe′,e}. We

observe that for each t ∈ T this polynomial is not identically equal to zero. Indeed,

with the assignment of ∆βe′,e = 0 for each pair of adjacent edges (e′, e) in F̂ the

transfer matrix M̂t for each t ∈ T is identical to the transfer matrix Mt for the

same terminal under code C. For terminal t̂ the multivariate polynomial det(Mt̂) will

include an additive term
∏

(e′,e)∈F̂ ∆βe′,e, hence this polynomial is also not identically

equal to zero. Therefore, for a sufficiently large field (q ≥ |T̂ |) it is possible to select

the values of {∆βe′,e} such that the transfer matrix for each terminal are invertible.

The modified network code can be constructed through a simple modification

of the algorithm due to Jaggi et. al. [12]. In addition, a random algorithm for the

network code assignment can be used.

Figure 15 shows an instance of the dynamic network coding problem for which

the bound established by Lemma 4 is tight. The initial network includes nodes
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Fig. 15. An instance of a coding network. The arcs show local encoding coefficients

between adjacent edges. (a) Original network code. (b) Modified network

code.

s, v1, . . . , v9. The existing network code C is shown in Figure 15(a). While the

presented coding network is not minimal, all redundant edges can be justified by

adding additional terminals. When a new terminal t̂ joins the network, we need to

modify at least three pairs of adjacent edges. Figure 15(b) shows a modified network

code that requires at least three changes.

Next, we proceed to discuss the complexity of finding a feasible network code

when a new terminal joins the network. The objective is to keep the number of

changes in the encoding nodes to a minimum.

Theorem 5 The problem EN is an NP-complete problem, i.e., finding a network

code Ĉ that requires the minimum number of changes in the encoding nodes is an
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NP-complete problem.

Proof:

We use a reduction from the Set Cover problem. The Set Cover problem is a

known NP-hard problem [18]. The Set Cover problem is defined as follows. Given a

universe set U = {x1, · · · , xa} and collection C = {c1, · · · , cr} of subsets of U , does

there exist a subset of C ′ ⊆ C of size k such that each element of U belongs to at

least one member of C ′ (or if there exists a Set Cover of size k). Given an instance

of the Set Cover problem we construct an instance of a dynamic network as follows:

• A dynamic network N that uses the graph G(V,E) as shown in Figure 16. Each

edge in G(V,E) is of capacity a, except for dotted edges. Each dotted edge is

of capacity 1. For each ci ∈ C there is node ci in graph G(V,E), and for each

xi ∈ U there is a node xi in G(V,E). For each xj ∈ U and ci ∈ C, such that

xj ∈ ci, there is a dotted edge (ci, xj).Note that the capacity of minimum cut

separating s from either of the terminals t1 or t2 is r · a. So source s can send

r · a packets to both the terminals t1 and t2.

• Initially terminal t1 demands r · a packets from the source s as shown in Figure

16. Note, as s needs to transmit r · a packets to a single terminal t1, so a flow

of value r · a between s and t1 is sufficient. So for all the pair of edges that are

not the part of this flow we set their local encoding coefficients to be zero, and

for rest of the edges encoding coefficient is chosen to be one, i.e., for each pair

of edges (s∗, vi), it holds that (vi, ui) β(s∗,vi),(vi,ui) = 0, and for each pair of edges

(s, wi), (wi, ui), it holds that β(s,wi),(wi,ui) = 1. Such a flow is shown in brown in

Figure 16.

• Suppose that the terminal t2 joins the terminal set.
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Fig. 16. (a) An instance of Set Cover problem (b) Corresponding Dynamic network

N.

• The objective is to satisfy the demands of both the terminals t1 and t2, while

making least number of changes in the encoding nodes (i.e., already assigned

encoding coefficients at the nodes).

We start by analyzing graph G(V,E). First we note that the capacity of the

minimum cut separating source s from either terminal t1 or terminal t2 is r · a, so

source s can send r · a packets to both of the terminals t1 and t2. Second, note that

to satisfy both t1 and t2 source s must send a packets on each of edge (s, wi), one

packet on each of the dotted edges (xi, t2) , and a packets on the edge (s, s∗). Indeed

removing (or decreasing capacity) of any of these edges reduces the minimum cut
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capacity between s and t1, or s and t2. This also implies that the terminals t1 and

t2 shall be getting a · (r − 1) units of flow via edges (s, wi), and terminal t1 shall be

getting the remaining a units of flow via the edge (s∗, t1). So there is no other option

for terminal t2 to get the remaining a units of flow unless the packets sent on edge

(s, s∗) are mixed with some of the packets sent on edges (wi, vi); each such mixing

results in a change in an encoding node vi (i.e., change of at least one local encoding

coefficient from zero to some non-zero value for the pair of edges (s∗, vi),(vi, ui) ).

Third note, as terminal t2 must get a total of a units of flow from the edges (xi, t2)

i.e., use all of the (xi, t2) edges, so the set of nodes ci that are feeding these (xi, t2)

edges correspond to set cover in the given instance of the Set Cover problem. This

follows from the fact that an edge (ci, xj) exists if xj ∈ ci, and the union of the ci

feeding edges (xi, t2) is of cardinality a. So a feasible network code that meets the

demands of both the terminals t1 and t2 results in a feasible solution to the Set Cover

problem.

Four, we show that if there exists a subset of C ′ ⊆ C of size k such that each

element of U belongs to at least one member of C ′, then source can satisfy both the

terminals t1 and t2 by making k changes in the encoding nodes. This follows from

the fact that for all the packets transmissted on the edges (ui, cj) the only packets

that might be useful for terminal t2 are the ones that are mixed with packets sent on

(s∗, wi). Furthermore, mixing at an encoding node vi corresponds to addition of ci in

C ′ in the Set Cover problem. So following point three, mentioned previously, if the

demands of both the terminals can be met by making k changes in encoding nodes,

then there exists a subset of C ′ ⊆ C of size k such that each element of U belongs to

at least one member of C ′.

Hence the Set Cover problem can be reduced to problem EN i.e, the problem

EN is an NP-hard problem. Furthermore, as a solution to the problem EN can be
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verified in polynomial time, therefore the problem EN is an NP-complete problem.

D. Failure of an Edge

Dynamic networks can also experience frequent changes in the network topology. In

particular, some of the network edges may fail and new edges and nodes may be

added to the network to maintain the feasibility of the network. However under these

changes the existing network code might not be feasible. Therefore to maintain the

feasibility of network code some of the coding coefficients are required to be changed.

Let N be an original multicast network over the graph G(V,E), with a set of

terminal nodes T and a corresponding feasible network code C = {βe′,e}. Let Fi be

a set of h {P i
1, · · · , P i

h} disjoint paths between source s and terminal ti. Let ê ∈ E

be a failed edge, and let T̂ ⊂ T be effected terminals i.e. ∀ti ∈ T̂ the failed edge ê

belongs to Fi. Let graph Ĝ(V̂ , Ê) be the graph formed from G(V,E) by deleting edge

ê. We begin by establishing the lower bound on the number of changes in encoding

coefficients.

Lemma 6 Let Mi be the transfer matrix for ti ∈ T̂ with respect to the code C.

Then, a feasible network code Ĉ for N̂ over modified graph Ĝ(V̂ , Ê) requires at least

maxti∈T̂ (h − rank(Mi)) changes of the local encoding coefficients in C, i.e., |S̄| ≥

maxti∈T̂ (h− rank(Mi)).

Proof of lemma 6 is similar to that of Lemma 3. Now we proceed to establish an

upper bound on the number of modified network coding coefficients required when

an edge fails.

Lemma 7 Let P̃i be a set of disjoint path between source s and terminal ti ∈ T̂ such

that failed edge ê ∈ P̃i. Let S̃i be the set that contains the pairs of adjacent edges
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(e′, e) ∈ P̃i. Then, a feasible network code can be constructed by changing the local

coding coefficients of edges that belong to union of S̃i over all ti ∈ T̂ , i.e., |S̄| ≤
⋃
ti∈T̂
S̃i.

Lemma 7 can be proven using similar arguments as given in proof of Lemma 4.

Next, we proceed to discuss the complexity of finding a feasible network code

when an edge that has been transmitting packets fails, and the objective is to keep the

number of changes in the encoding nodes to a minimum while finding a new feasible

network code Ĉ.

Theorem 8 Finding a network code Ĉ that requires the minimum number of changes

in the encoding nodes is an NP-complete problem.

Proof:

We use reduction from the Edge-Disjoint-Path problem. The Edge-Disjoint-Path

problem is defined as follows. Given a directed graph G′(V ′, E ′) and two pairs of nodes

(s̄1, t̄1), (s̄2, t̄2) , s̄1, t̄1, s̄2, t̄2 ∈ V ′, do there exist two edge-disjoint paths in G′(V ′, E ′)

one connecting s̄1 to t̄1 and the other connecting s̄2 to t̄2. This problem is known to

be NP-hard [19].

Given an instance of the Edge-Disjoint-Path problem we construct an instance

of a dynamic network N that uses the graph G(V,E) as shown in Figure 17. Graph

G(V,E) is formed by graph G′(V ′, E ′) by adding nodes S, u,s1,s2,t1, and t2. The

capacity of each edge in G(V,E) is one. In the network N each of terminals t1 and t2

demands two packets from the source s. Initially source s transmits two packets to

each t1 and t2 using the paths shown by dotted lines.

Suppose that, edge (s, u) fails. Then, based on the structure of the graph G(V,E)

to satisfy the demands of both the clients the source S send data through edges

(s1, s̄1), (s2, s̄2), (t̄2, t1) and (t̄1, t2). The only way S can satisfy both clients without

making any changes to the encoding nodes is to find two edge-disjoint paths, one
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Fig. 17. Reduction from the Edge-Disjoint-Path problem to the Problem EN.

connecting s̄1 to t̄1 and the other connecting s̄2 to t̄2. Hence, if source S can satisfy

the demands of both the terminals t1 and t2 without making any change to encoding

nodes then there exist two disjoint paths in G′(V ′, E ′) one connecting s̄1 to t̄1 and

the other connecting s̄2 to t̄2, otherwise these paths do not exist.

E. Path-based Assignment of Encoding Coefficients

In this section we present a path-based approach for the assignment of the local

encoding coefficients. We first present our approach in the context of static networks

and then discuss its operation in dynamic networks.

Let N be the original multicast network that needs to deliver h packets per

communication round from source node s to a set of terminal nodes ti ∈ T over

communication graph G(V,E). The first step of our algorithm is to determine, for
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Algorithm PBA (G, s, T )
1 Determine, for each terminal ti ∈ T , a set Fi of h edge-disjoint paths
{P i

1, · · · , P i
h} between s and ti;

2 Associate each terminal ti with the encoding parameter ϕi;
3 For each pair of edges (e′, e), where e′ = (u, v) and e = (v, w) do;
4 Identify T(e′,e) ⊆ T such that ∀ti ∈ T(e′,e) (e′, e) ∈ Fi;
5 Assign coding coefficients βe′,e as follows:

βe′,e =
∑

ti|ti∈T(e′,e)

ϕti ; (2.6)

Fig. 18. Algorithm PBA

each terminal ti ∈ T , a set Fi = {P i
1, . . . , P

i
h} of h edge-disjoint paths between s and

ti. Then, we associate each terminal ti with the encoding parameter ϕi. For every

two pairs of adjacent edges e′ = (u, v), e = (v, w) we define a subset T(e′,e) of T which

includes all terminals ti ∈ T for which it holds that both e′ = (u, v) and e = (v, w)

belong to the same path in Fi. Then, the local encoding coefficient βe′,e is defined to

be the sum of the encoding parameters ϕi that correspond to the terminals in T(e′,e).

The formal description of the Algorithm PBA for path-based assignment of coding

coefficients is given in Figure 18.

We demonstrate our approach through the following example. Consider the

communication network presented in Figure 19(a). The network includes a source

node s and a set of terminals T = {t1, t2, t3}. First, we identify three disjoint paths

to each terminal in T (see Figures 19(b)-(d)). Then, we associate each terminal ti with

an encoding parameter ϕi. Then, for each pair of adjacent edges e′ and e we assign

the corresponding local encoding coefficient βe′,e to be the sum of the coefficients that

correspond to the terminals which include both edges (v, u) and (u,w) on one of their

disjoint paths from the source. Figure 19(e) shows the local encoding coefficients
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Fig. 19. (a) An instance to the network coding problem with three terminals t1, t2, and

t3; (b) Three disjoint paths to terminal t1; (c) Three disjoint paths to terminal

t2; (d) Three disjoint paths to terminal t3; (e) Local encoding coefficients for

node v4, v5 and v8. For example the packet p(v4,v6) sent on edge (v4, v6) is

equal to p(v4,v6) = ϕ3 · p(v1,v4) + (ϕ1 + ϕ2) · p(v2,v4).

assigned by our scheme for the network depicted in Figure 19(a). Our goal is to

select the values of ϕi that yield a feasible network code. For the network depicted

in Figure 19(a) it is easy to verify that ϕ1 = ϕ2 = ϕ3 = 1 yields a feasible solution

over F3.

Using the arguments similar to that used in Lemma 4, we can show that for a

sufficiently large field size Fq there always exists a feasible assignment of the encoding

coefficients. Moreover, when a new terminal t̂ joins the network, it is possible to find

a feasible value of ϕt̂ provided that the total number of active terminals is bounded.

However, finding a feasible assignments of ϕt̂ requires full knowledge of the network
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topology. In what follows we present an assignment of the encoding coefficients that

does not require full knowledge.

F. Codes Based on Prime Numbers

The first step of the algorithm is to find a set Fi = {P i
1, . . . , P

i
h} of h edge-disjoint

paths between s and ti . Let θj denote the j’th prime number (i.e., θ1 = 2, θ2 =

3, θ3 = 5, . . . ). Let πk be the product of the first k numbers, i.e.,

πk =
k∏
j=1

θj.

The steps for assigning coding coefficients are the same as given in Algorithm

PBA except for the Step 2 where encoding parameter ϕi for terminal ti is defined as

follows:

ϕi = πk/θi =
k∏

j=1,j 6=i

θj. (2.7)

It is easy to see that this algorithm is distributed and does not require the

full knowledge of network topology to assign local encoding coefficents. Indeed an

encoding node only needs to know the flow passing through it to assign local encoding

coefficients.

Figure 20 shows an example of a network code based on prime numbers for a

network with two terminals.

In Theorem 9 below we show that the assignment of the local encoding coefficients

given by Equation (2.7) is feasible over a sufficiently large primary finite field.



41

Fig. 20. (a) Local encoding coefficients, ϕ1 = θ2 = 3 and ϕ2 = θ1 = 2. (b) Global

encoding coefficients.

Theorem 9 Let Fq be a finite field such that

q > (2 · πk)|E|,

where |E| is the number of edges in a network. Then, the path-based assignment of

the local encoding coefficients over Fq given by Equation (2.7) results in a feasible

network code.

Proof: Let N be the coding network that needs to deliver h packets per communi-

cation round from source node s to a set of terminal nodes ti ∈ T over communication

graph G(V,E) and let {βe′,e} be a set of local encoding coefficients for the adjacent

edges. Let Fi denote a flow composed of h edge-disjoint paths {P1, . . . , Ph} between

s and a terminal ti ∈ T . We say that a pair (e′, e) of adjacent edges belongs to Fi if

there exists a path Pi in Fi such that both edges, e′ and e belong to Pi. We denote

by

g(Fi) =
∏

(e′,e) adjacent,
(e′,e)∈Fi

βe′,e
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the gain of Fi. Then, based on the result in [20, Th. 3], the network code {βe′,e} is

feasible, if and only if, for each terminal ti ∈ T it holds that

Bi =
∑

Fi:Fi is a flow from s to ti

`(Fi) · g(Fi) 6= 0, (2.8)

where `(Fi) ∈ {1,−1}, and the summation is done over all flows between s and ti.

Next, we will show that the choice of the ϕi’s as described in Eq. (2.7) will lead

to Bi 6= 0, for all ti ∈ T . For every flow F from s to the terminal node ti with a

non-zero gain, one of the two following conditions holds:

1. Flow F is equal to flow Fi. In this case g(F) will include an additive term

ϕN
′

i = (πk/θi)
N ′ for some integer N ′. It easy to verify that all other multiple

terms in g(F) will have multiplicative factor θi.

2. Flows F and Fi are not identical. In this case, there exist adjacent edges

e′ = (u, v), e = (v, w) such that both e′ and e belong to a path in F , but there

is no path in Fi that includes both e′ and e. In this case, every additive term

in g(F) is divisible by θi.

We conclude thatBi will include one additive term (πk/θi)
N ′ for some integerN ′, while

rest of the additive terms will include θi as a multiplicative factor. The Fundamental

Theorem of Arithmetic implies that Bi is not equal to zero when addition is over the

integers. We note that this also holds if the size q of the finite field is greater than

Bi.

Next, we show that (2 · πk)|E| is an upper bound on Bi. This will imply that for

any prime field Fq such that q ≥ (2 · πk)|E|, Bi has a non-zero value.

First, we observe that each encoding coefficient is bounded by πk. Second, any

flow Fi from s to ti contains at most |E| edges, so the maximal gain g(Fi) of Fi is at
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most (πk)
|E|. We also note that the number of (s, ti) flows is bounded by 2|E|. Thus,

by Equation (2.8), (2πk)
|E| is an upper bound on the value of Bi and the theorem

follows.

Our algorithms requires a finite field of size (2πk)
|E|. It can be shown that the

product of k prime numbers is bounded by 4k. Then, the required size of the field

is equal to 2(2k+1)|E|. Each element in such field can be represented by (2k + 1) · |E|

bits. Hence, the required packet size is linear in the number of edges in the network

and the number of terminals.

After finding a set Fi = {P i
1, . . . , P

i
h} of h edge-disjoint paths between s and

each of ti ∈ T , the flows between s and all k terminals can be found in time

O(kV E log(V 2/E)) [21]. The amount of computations required is equal to num-

ber of encoding coefficients {β(e′,e)}, which is O(|E|). Hence the running time of the

proposed algorithm is O(|E|+ kV Elog(V 2/E)).

G. Simulation Results

In order to evaluate performance of the proposed algorithms we have used the prac-

tical ISP topologies of backbone networks determined by the Rocketfuel project [22]

and the network code described in section II.F. Number of the links and backbone

routers in each ISP determined by the Rocketfuel project [22] are shown in Table I.

1. Experimental Setup

For the purpose of simulations the backbone ISP map is transformed into a graph

where each backbone router is taken as a node and a link between any pair of backbone

routers is presented by a bidirectional edge of unit capacity. For each experiment we

randomly select a multicast topology. More formally we choose a source and a set
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Table I. Number of Routers and Links for ISP Backbone Networks.

AS ISP Routers Links

1221 Telstra 355 700

1239 Sprintlink 547 1600

1755 Ebone 163 300

2914 Verio 1018 2300

3257 Tiscali 276 400

3356 Level3 624 5300

3967 Exodus 338 800

7018 AT&T 733 2300

of terminals from the graph according to a uniform distribution. The source and

terminals are chosen such that mincut for each terminal from the source is at least 2.

Then we find h disjoint paths from the source to each terminal where h is minimum of

the mincuts among all the terminals. Without loss of generality, we only consider the

instances of network topologies for which there exists a network coding opportunity

otherwise we discard that network and restart by selecting a new set of source and

terminal nodes. A Network coding opportunity exists if a mixing of packets at at-

least one node is required. We have conducted experiments for counting the number

of encoding coefficients that need to be modified to keep the network code feasible

network upon a change in the multicast group.
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Fig. 21. Update Ratio for dynamic multicast networks.

2. Dynamic Networks

In this set of experiments we have compared proposed algorithm based on prime num-

bers given in section II.F with Deterministic Linear Information Flow (DLIF) algo-

rithm proposed by Jaggi et al. [12]. The performance metric is termed as update ratio,

which is defined to be the ratio of the ”Number of update messages required by DLIF”

to the “Number of update messages required by the proposed algorithm”. Where

number of update messages is equal to the number of encoding coefficients that need

to be modified to keep the network code feasible upon change in the multicast group.

The proposed algorithm responds to changes in topology instantaneously because

of its predetermined path coefficients, whereas in case of DLIF algorithm [12] a more

extensive exercise for recomputing the number of updates messages is required.

Formally we start with a random multicast topology with a source and a set of

15 terminals. Then a random toss decides whether new terminal has to join or an
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existing terminal has to leave. In case when a new terminal has to join a random

node is selected from rest of the nodes (nodes that are neither source nor terminal)

to join and in case of leaving, a random node from the existing nodes (source and

terminals) is decided to leave the network. Next number of update messages required

for this new multicast network is calculated. We have run 5000 such iterations for

each ISP. Figure 21 shows the average update ratio required for each ISP backbone

topologies over a set of 5000 experiments. The average value of update ratio is 1.86

which means that on average proposed algorithm requires 80% less update messages

as compared to DLIF and this advantage can go as high as 172%. The results show

that the proposed algorithm is capable of handling dynamic networks more efficiently.

H. Conclusion

This chapter focuses on minimizing the number of encoding coefficients that need to

be modified to keep the network code feasible network upon change in the multicast

group or a change in network topology. We have established an upper bound and

a lower bound on the number of changes required in encoding coefficients under dy-

namic settings. We have also establish hardness results for the problem of minimizing

the number of encoding coefficients in unaffected paths. To compute the encoding

coefficients we came up with an efficient path-based algorithm . We have also pre-

sented an algorithm based on prime number which do not require full knowledge of

network topology and is capable to handle needs of dynamic network more efficiently.

The experimental study supports our claims
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CHAPTER III

INDEX CODING∗

In this chapter, we introduce the Index Coding problem and presents the model. The

problem is motivated by several applications in wireless networking and distributed

computing, including wireless architectures that utilize network coding and oppor-

tunistic listening. Upcoming chapters discuss efficient exact solution, several heuris-

tic solutions, and approximation algorithms for special cases of the Index Coding

problem.

A. Introduction

The Index Coding problem [4,5] is one of the basic problems in the wireless network

coding. Recently, it has attracted a significant attention from the research community

(see e.g., [23–26] and references therein). An instance of the Index Coding problem

comprises of a server, a set X = {c1, . . . , cm} of m wireless clients, and a set P =

{p1, . . . , pn} of n packets that need to be delivered to the clients. Each client is

interested in a certain subset of packets available at the server, and has a (different)

subset of packets as side information. The server can transmit the packets to clients

via a noiseless wireless channel. The goal is to find a transmission scheme that requires

the minimum number µ of transmissions to satisfy the requests of all clients.

∗Parts of this chapter are reprinted with permission from “Efficient Algorithms for
Index Coding” by M. A. R. Chaudhry, and A. Sprintson, in the proceedings of the 2008
Annual IEEE International Conference on Computer Communications (INFOCOM)
Workshops, Phoenix, U.S.A. 2008, pages 1-4.; and “On the Complementary Index
Coding Problem” by M. A. R. Chaudhry, Z.Asad, A. Sprintson, and M. Langberg in
the proceedings of the 2011 IEEE International Symposium on Information Theory
(ISIT), St. Petersburg, Russia, 2011, pages 244-248.; and “Finding Sparse Solutions
for the Index Coding Problem” by M. A. R. Chaudhry, Z.asad, A. Sprintson, and
M. Langberg to appear in the proceedings of the 2011 IEEE Global Communications
Conference (GLOBECOM), Houston, U.S.A., 2011.
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Without loss of generality, we assume that the “wants” set of each client is of

cardinality one. Indeed, if it is not the case, each client ci whose “wants” set contains

more than one packet can be substituted by multiple clients whose “wants” sets

contain only one packet and whose “has” sets are equal to H(ci). We define the

coding gain as the ratio between the minimum number of transmissions needed to

satisfy all clients without encoding to the minimum number of transmissions required

when encoding is used.

The Index Coding problem is motivated by various applications in wireless net-

working and distributed computing. For example, efficient index codes are instru-

mental for the wireless network architectures that utilize the network coding and

opportunistic listening techniques [23, 27]. In addition, the Index Coding problem

has several applications in satellite communication networks where the clients have

limited storage and maintain part of the received information [5].

Figure 22 depicts a simple instance of the Index Coding problem with a server

that needs to deliver five packets P = {p1, . . . , p5} to five clients. Each client requires a

unique packet in P and has access to a subset of P . It can be verified that the demands

of all clients can be satisfied by broadcasting three packets: p1 +p2, p3 +p4, and p5 (all

additions are over GF (2)). Note that with the traditional approach (without coding)

all five packets p1, . . . , p5 need to be transmitted.

We present our results in the context of wireless data transmission. However, the

considered problem is very general and can arise in many other practical settings. For

example, consider a content distribution network that needs to deliver several large

files (such as video clips) to different clients. In this setting, if some of the files are

already available to some clients then the distribution can be efficiently implemented

by multicasting a (small) set of linear combinations of the original files. For example,
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Fig. 22. An instance of the Index Coding problem.

Figure 23 depicts a video server that has three movies A, B, and C, and three clients

that request one of the movies, while two other movies are already available to them.

With the traditional approach, the server needs to transmit each movie separately to

the client that has requested this movie. With the encoding approach the server only

needs to multicast one file A + B + C, reducing the total amount of the consumed

network resources and alleviating the congestion at the server.

The research on the Index Coding problem can be classified into two main direc-

tions. The first direction focuses on achievable rate bounds, as well as on the connec-

tions between the Index Coding problem and the Network Coding problem [28–30].

The second direction focuses on analyzing the computational complexity of the Index

Coding problem as well as developing heuristic approaches to this problem [23–26,31].

In particular, the Index Coding problem has been shown to be NP-hard (in the lin-

ear setting). Moreover, finding an approximation solution for this problem is hard

under a certain complexity assumption [31]. In this dissertation we have explored

the later direction and present both the efficient heuristic based solutions as well as

approximation solution for special cases of Index Coding problem.
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Fig. 23. A content distribution network.

B. Model

An instance of the Index Coding (IC) problem includes a server s, a set of m wireless

clients X = {c1, . . . , cm}, and a noiseless broadcast channel. The server holds a set

of n packets, P = {p1, . . . , pn}, that need to be transmitted to the clients. A client

ci ∈ X is represented by a pair (wi, H(ci)), where wi ∈ P is the packet required by

client ci and H(ci) ⊆ P is the side information set available to client ci.

Note that our assumption that each client requires a single packet does not limit

the generality of the problem. Indeed, a client that requires more than one packet

can be represented by multiple clients that share the same side information set, but

require different packets.

We then define the Complementary Index Coding (CIC) problem where instead

of minimizing the number of transmissions µ, our goal is to maximize the number

of “saved” transmissions, i.e., n − µ, where n is the number of packets that need to

be delivered to the clients. Thus, the CIC problem seeks to maximize the benefit



51

obtained by employing the coding technique, e.g., for the problem instance shown

in Figure 22, two transmissions can be saved by using coding. Note that, if OPTIC

is the optimum of the Index Coding problem and OPTCIC is the optimum of the

Complementary Index Coding problem, then it holds that |OPTCIC | = n− |OPTIC |.

In a scalar-linear solution, each packet is considered to be an element of the Ga-

lois field of order q, i.e., pi ∈ GF (q). A scalar-linear solution includes µ transmissions

such that the packet pi =
∑n

j=1 g
j
i · pj transmitted at iteration i, 1 ≤ i ≤ µ is a linear

combination of packets in P , where gi = {gji } ∈ GF (q)n is the encoding vector for

iteration i. To decode packet wi, client ci uses a linear decoding function ri, such

that wi = ri(p
1, . . . , pµ, H(ci)). The goal of the Index Coding problem is to find the

minimum value of µ such that there exists a set of µ encoding vectors g1, g2, . . . , gµ

and a set of m decoding functions r1, . . . , rm that allow each client to decode the

required packet. The goal of the CIC problem is to maximize the value of n−µ, i.e.,

the number of transmissions that were “saved” by using the encoding scheme.

In a vector-linear solution, each packet pi is subdivided into k smaller size sub-

packets p1
i , · · · , pki . Then, each transmitted packet is a linear combination of the

subpackets {pji | 1 ≤ i ≤ n, 1 ≤ j ≤ k}, rather than the original packets. With

vector-linear network coding our goal is to find encoding and decoding schemes that

minimize the ratio of µ
k
, where µ is the number of times a combination of subpackets

is transmitted. For the CIC problem, the goal is to maximize the value of n− µ
k
.

For example, consider the setting depicted in Figure 22. As mentioned in the In-

troduction, the scalar-linear solution requires three transmissions (i.e., saves 2 trans-

missions). However, there exists a vector-linear solution that achieves µ
k

= 2.5 by

dividing each packet into two parts (i.e., k = 2) and sending five combinations of

subpackets, each subpacket is half the size of the original packet. Specifically, each

packet pi is divided into two sub-packets p1
i , and p2

i and then the following five linear
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combinations of the resulting packets are transmitted: p1
1 +p1

2, p2
2 +p1

3, p2
3 +p1

4, p2
4 +p1

5,

and p2
5 + p2

1.

Moreover, the Sparse Index Coding (SIC) problem is defined as a class of Index

Coding problem where each transmitted packet must be a linear combination of at

most two packets in P . For example consider an instance of the IC problem in which

a server needs to deliver three packets p1, p2, p3 to three clients. Each client wants

one packet and has other two packets. An optimal solution to the IC problem can

satisfy all clients by transmitting a single packet p1 + p2 + p3. Note that in the case

of the SIC problem where the server is restricted to encode at most two packets, the

optimal scalar-linear solution can save 1 transmission by transmitting two packets

p1 + p2, and p2 + p3. However in the case of the vector-linear solution to the SIC

problem the optimal can save 1.5 transmissions by transmitting the packets p1
1 + p1

2,

p2
2 + p1

3, and p2
3 + p2

1, where each packet pi is divided into two half packets p1
i , and p2

i .

We denote the minimum value of the scalar and vector-linear solutions to Problem

SIC by OPT s and OPT f , respectively.

Wherever required, we shall introduce specific extensions or modifications of the

model described here in Chapters IV, V and, VI where we deal with the special cases.
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CHAPTER IV

EFFICIENT ALGORITHMS FOR INDEX CODING∗

In this chapter, we propose efficient exact and heuristic solutions for Index Coding

problem. Our numerical study shows that exact solutions can be efficiently obtained

for small instances of the problem, while heuristic solutions with low computation

time can achieve near-optimal performance for large instances.

A. Finding an Optimal Solution Through SAT Solver

Our exact solution is based on a reduction to the SAT problem which, in turn, can

be efficiently solved by available SAT solvers such as Chaff [32] or Minisat [33]. In

this section we assume that all the operations are performed over GF (2).

In what follows we show how to check whether it is possible to satisfy all clients

through k transmissions. The minimum value of k can be efficiently identified through

the binary search algorithm. We need to check whether there exist k encoding vec-

tors g1, . . . , gk of size n, and m decoding vectors q1, . . . , qm of size k that allow each

client to decode the packet in its “wants” set. Here, gj, 0 ≤ j ≤ k is the encoding

vector used for transmission j, i.e., the packet xj transmitted at round j is equal to

xj =
∑n

t=1 g
t
j · pt. Each client ci ∈ C uses a corresponding vector qi to decode the

packet in W (ci). In particular, it computes the following linear combination of the

original packets:

k∑
j=1

qji · xj =
k∑
j=1

qji ·
n∑
t=1

gtj · pt ==
n∑
t=1

pt

k∑
j=1

gtj · q
j
i =

n∑
t=1

rtipt,

∗Parts of this chapter are reprinted with permission from “Efficient Algorithms
for Index Coding” by M. A. R. Chaudhry, and A. Sprintson, in the proceedings
of the 2008 Annual IEEE International Conference on Computer Communications
(INFOCOM) Workshops, Phoenix, U.S.A. 2008, pages 1-4.
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where rti =
∑k

j=1 g
t
j · q

j
i defines the linear combination of the original packets used by

client ci to decode the packet in W (ci). Note that client ci will be able to decode the

packet in W (ci) only if the following two conditions hold:

1. rti = 1 for the packet pt in the “wants” list W (ci) of ci;

2. rti = 0 for the every packet pt that does not belong to either “has” list H(ci) of

ci or “wants” list W (ci) of ci, i.e., pt /∈ {H(ci) ∪W (ci)}.

The two above conditions result in the following constraints on {gi} and {qi}:

∑k
j=1 g

t
j · q

j
i ≡ 1 ∀ci ∈ C and pt ∈ W (ci);

∑k
j=1 g

t
j · q

j
i ≡ 0 ∀ci ∈ C and pt /∈ {H(ci) ∪W (ci)};

This, in turn, can be efficiently transformed into a Boolean problem by substi-

tuting the summation and multiplication over GF (2) by the AND (∧) and XOR (⊕)

operations, respectively, over the boolean variables.

⊕kj=1

(
gtj ∧ q

j
i

)
≡ 1 ∀ci ∈ C and pt ∈ W (ci); (4.1)

⊕kj=1

(
gtj ∧ q

j
i

)
≡ 0 ∀ci ∈ C and

pt /∈ {H(ci) ∪W (ci)}.
(4.2)

While equations 4.1 and 4.2 can be easily transformed into the conjunctive normal

form (CNF), a straightforward transformation may result in an exponential number of

variables. Accordingly, in order to perform the transformation in an efficient manner,

we use the Tstein transformation [34]. Such a transformation guarantees that the

size of the CNF representation is linear in the size of equations (4.1) and (4.2).
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Experimental Results: We have implemented the SAT approach and tested it

on several random instances of the Index Coding problem. Specifically, given an

instance of the original problem we transformed it to the CNF form and then invoked

the Minisat [33] solver on the resulting CNF formula. Our results show that it is

possible to efficiently obtain an optimal solution for instances that include up to

12 clients. For 10 clients we were able to achieve the coding gain as high as 2.4.

Figure 24 shows the average coding gain as a function of the number of clients using

the SAT-based solution.

B. Heuristic Approaches

The previous works [4,35] show that it is NP-hard to find an optimal solution for the

Index Coding problem. Moreover, it was shown in [31] that finding an approximate

solution for this problem is also NP-hard. Accordingly, we present several heuristic

approaches and compare their performance through simulations.

1. Reduction to Graph Coloring

The Index Coding problem is related to the graph coloring problem of an undirected

graph G(V,E). In graph coloring, we need to assign a color to each vertex v ∈ V such

that for any edge (v, u) ∈ E, the vertices v and u are assigned different colors, and

the total number of colors is minimized. In this section we show a heuristic approach

that transforms an instance I of the Index Coding problem to an instance I ′ of the

graph coloring problem.

Specifically, consider an instance I of the Index Coding problem, in which the

“wants” set of each client is of cardinality one. Then, we construct an instance

G(V,E) of graph coloring problem as follows:
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• For each client ci ∈ C there is a corresponding vertex vci in V ;

• Each two vertices vci and vcj are connected by an edge if one of the following

holds:

– Clients ci and cj have identical “wants” sets, i.e., W (ci) = W (cj);

– W (ci) ⊆ H(cj) and W (cj) ⊆ H(ci).

Let V̂ ⊆ V be a clique in G(V,E), i.e., each two vertices of V̂ are connected

by an edge in G. Note that all clients that correspond to nodes in V̂ can be satis-

fied by one transmission, which includes a linear combination of all packets in their

“wants” sets. Thus, we can minimize the number of transmissions by solving the

clique partition problem [18]. In the clique partition problem, we need to partition

set V into minimum number of disjoint subsets V1, V2, . . . , Vk, such that for 1 ≤ i ≤ k

the subgraph of G induced by nodes in Vi is a complete graph. Note that the clique

partitioning problem for graph G(V,E) is equivalent to the graph coloring problem of

the complimentary graph Ĝ(V, Ê) of G(V,E) (the complimentary graph Ĝ(V, Ê) of

G(V,E) contains all edges in V ×V \E). The graph coloring problem for Ĝ(V, Ê) is a

partition of V into minimum number of disjoint sets V1, V2, . . . , Vk such that each Vi is

an independent set for Ĝ(V, Ê); |V1, V2, . . . , Vk| = χ is called the chromatic number of

Ĝ(V, Ê), or minimum number of colors required to color Ĝ(V, Ê). The graph coloring

problem is a well-studied problem with a wealth of efficient heuristic solutions avail-

able in the literature. In general graphs no constant factor approximation algorithm

exists for the graph coloring problem [36].

Our simulation results, shown in Figure 24 and Table II, show that this technique

can be used for a larger number of clients compared to the optimal SAT-based solution

although it is suboptimal in terms of the coding gains.
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Fig. 24. Comparison of average coding gain between SAT-based, graph coloring and,

color saving techniques.

2. Sparsest Set Clustering

In order to to be able to use our algorithm for a larger number of clients, we employ

the “divide-and-conquer” approach. With this approach, the clients are divided into

different groups, the problem is then solved for each group separately. The solution

for the original problem is then combined from the solution of the subproblems.

The important decision in such an algorithm is to partition the clients into groups,

in a way that minimizes the overall number of transmissions. We note that it is

desirable to find a partition in which the clients that belong to different groups have

in common as few packets in their “has” and “wants” sets as possible. For this

purpose we construct an auxiliary directed graph G(V,E) as follows:

• For each client ci ∈ C there is a corresponding vertex vci ∈ V ;

• Each two vertices vci and vcj are connected by a directed edge (vci , vcj) if one



58

of the following holds:

– Clients ci and cj have identical “wants” sets, i.e., W (ci) = W (cj);

– W (ci) ⊆ H(cj).

Then, our goal is to find a partition of G(V,E) into two clusters of (almost) equal

size such that the total number of edges that connect different clusters is minimized.

To that end, we use the following greedy heuristic:

1. Partition the set V into two subsets V1 and V2 of (almost) equal size (in an

arbitrary way);

2. If there exists a node v ∈ V1 that has more neighbors in V2 than in V1, move v

to V2;

3. If there exists a node v ∈ V2 that has more neighbors in V1 than in V2, move v

to V1.

This procedure continues until we have nodes in V1 or V2 that have more neigh-

bors in the opposite cluster than the number of neighbors in their current cluster or

the cluster of desired size is obtained. The resulting two subgraphs are recursively

partitioned through the same procedure until all the size of each cluster is less than

or equal to the desired value.

Figure 25 shows histograms of coding advantage for 100 experiments. In each

experiment we generated 150 clients with random “has” and “wants” sets. Then,

we divided the clients to subsets of at most seven clients each. For each subset,

the optimal number of transmissions was found through the SAT-based approach

described in Section IV.A.
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Fig. 25. Histogram of the coding gain values for 150 clients with 100 experiments using

sparsest set clustering.

3. Using Color Saving Heuristic

This approach optimizes the number of transmissions saved by Index Coding, and

results in constant factor approximation guarantee. In this section we are working on

the same auxiliary graph G(V,E) as as described in Section IV.B.2.

The heuristic we used is based on the approximation algorithms for maximizing

the number of unused colors where the number of unused colors is the difference

between the number of vertices in the graph and number of colors required to color

the graph. Though graph coloring and color saving are very related problems, it is not

possible to have a constant factor approximation solution for graph coloring, whereas

constant factor approximation solutions exist for color saving [37].

Some of the notations used in this section are: Let χ be the minimum number of

cliques required to cover graph G(V,E) (an optimal solution to the clique partition
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problem [18]), where G(V,E) is the same auxiliary graph as described in Section

IV.B.1.

We have used following two different techniques to solve the color saving.

a. Greedy Color Saving

The following greedy algorithm is based on approximation solution for the color saving

due to Hassin et.al [38].

The algorithm performs the following steps:

1. Construct an undirected graph G(V,E) as described in Section IV.B.1;

2. While there exists a clique of size 3 in G(V,E) do:

(a) Find a clique {vi, vj, vk} of size 3 in G(V,E);

(b) Create a packet that satisfies all clients in {vi, vj, vk};

(c) V := V \ {vi, vj, vk};

3. Compute a maximum matching of G(V,E);

4. For each pair {vi, vj} in the matching create a packet that satisfies all clients in

{vi, vj};

5. Create a new packet for each one of the remaining vertices of V .

Our results show that this algorithm is very fast, can work with a very large

number of clients and has a very good performance in terms of minimizing the overall

number of transmissions. Figure 26 depicts the comparison of the color saving and

sparsest set clustering techniques and shows that the color saving technique clearly

outperforms sparsest set clustering, though for very large number of clients sparsest

set clustering is the only option giving results in a reasonable amount of time.
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Fig. 26. Comparison of average coding gain between the sparsest set clustering and

color caving techniques.

b. Reduction to Set Cover

The color saving problem can be reduced to the set cover problem. For solving the

color saving problem using 3-set cover, the algorithm in [37] proposes an approxima-

tion solution which is guaranteed to be within a factor of 5
6

of the optimal solution.

The approximation uses the idea of semi-local optimization in which solution is im-

proved iteratively in each step until no more improvements can be achieved. Formally

in each step 3-sets is selected for partial cover and then the remainder of universe

is covered optimally by computing maximum matching on 2-set and 1-sets of un-

covered elements. A semi local(s,t)-improvement step which is carried out only on

3-sets means insertion of up to s 3-sets and deletion of up to t 3-sets. Quality of

improvement is the measure of number of sets i.e. a cover with less number of sets is

better and for the covers of same size the one with lesser number of 1-set is better.
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Fig. 27. Comparison of average coding gain between the greedy color saving technique

and color saving using (2,1)semi-local optimization.

The authors in [37] show that best choice for (s, t) is (2,1).

The algorithm performs the following steps:

1. Construct an undirected graph G(V,E) as described in Section IV.B.1;

2. Let universe U be the set of all nodes in the graph, i.e., U = V

3. Let the Set system S consist of all cliques of size at most 3 in graph G. Note

that set system is monotone i.e. is set s is in S then s′ is also in S, for s′ ⊂ s

4. Find a greedy solution for the disjoint k-set cover

5. Find Set Cover using (2, 1)semi-local optimization given in [37]

6. Number of colors=|setCover|;
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C. Numerical Results

Figure 24 depicts the comparison of the average coding gain for SAT-based, graph

coloring and color saving solutions to the Index Coding problem. It shows that when

the number of clients is very small all techniques yield almost same average coding

gain as there are very few coding opportunities. However, if the number of clients

is large, then the SAT-based solution (which is the optimal method) yields a much

larger gain as compared to the other techniques. The graph coloring and color saving

techniques yielded almost the same coding gain. We also observed that average

coding gain increases with the number of clients. The comparison of average coding

gain between the greedy color saving technique and color saving using (2,1)semi-local

optimization is shown in Figure 27.

SAT-based solution can identify the solution efficiently for instances with up to

nine clients. For instances with a larger number of clients, graph coloring is a more

efficient technique as shown in Table III.

D. Conclusion

In this chapter we presented efficient solutions to the Index Coding problem. Our

algorithms minimize the number of transmissions necessary for satisfying the requests

of all clients. We presented an optimal solution using a SAT solver and several efficient

heuristic solutions using the graph coloring, sparsest set clustering and color saving

techniques and studied their performance through extensive simulations.
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Table II. CPU Time (in Seconds) Required by SAT-based, Graph Coloring and Color

Saving Techniques.

No. of Clients SAT-based Graph Coloring Color Saving

2 0.63 0.03 0.00506

3 0.91 0.06 0.07654

4 0.7341 0.06942 0.01524

5 0.9391 0.07914 0.01492

6 0.9622 0.1043 0.0454

7 3.579 0.1618 0.1285

8 11.93 0.2637 0.09848

9 82.97 0.7654 0.05246

Table III. CPU Time (in Seconds) Required for Sparsest Set Clustering and Color

Saving Techniques.

No. of Clients Sparsest Set Clustering Color Saving

6 0.5636 0.03013

10 0.7807 0.0552

20 1.587 0.14

40 3.28 0.514

80 6.764 5.829

100 9.375 15.719

160 15.656 143.188
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CHAPTER V

COMPLEMENTARY INDEX CODING∗

In this chapter, we consider a complementary problem whose goal is to maximize

the number of saved transmissions, i.e., the number of transmissions that are saved

by combining packets compared to the solution that does not involve coding. We

refer to this problem as the Complementary Index Coding problem. It turns out

that the complementary problem can be approximated in certain cases of practical

importance.

We consider the multiple unicast and multiple multicast scenarios. In the multi-

ple unicast scenario, each packet is requested by a single client; while in the multiple

multicast scenario, each packet can be requested by several clients. For the mul-

tiple unicast scenario, we present approximation algorithms for finding scalar and

vector linear solutions. For the multiple multicast scenario, we show that finding an

approximation solution is NP-hard.

A. Introduction

In this part of dissertation we focus on the Complementary Index Coding (CIC)

problem. In this problem, instead of minimizing the number of transmissions µ,

our goal is to maximize the number of “saved” transmissions, i.e., n − µ, where n

is the number of packets that need to be delivered to the clients. Thus, the CIC

problem seeks to maximize the benefit obtained by employing the coding technique,

e.g., for the problem instance shown in Figure 22, two transmissions can be saved

∗Parts of this chapter are reprinted with permission from “On the Complementary
Index Coding Problem” by M. A. R. Chaudhry, Z. Asad, A. Sprintson, and M. Lang-
berg in the proceedings of the 2011 IEEE International Symposium on Information
Theory (ISIT), St. Petersburg, Russia, 2011, pages 244-248.
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by using coding. Note that, if OPTIC is the optimum of the Index Coding problem

and OPTCIC is the optimum of the Complementary Index Coding problem, then it

holds that |OPTCIC | = n − |OPTIC |. This implies that the CIC problem is also

NP-hard. However, as we show in this chapter, the CIC problem can be successfully

approximated in many cases of practical importance.

There are several well-known optimization problems which are complementary to

one another. Examples include the Vertex Cover and Independent Set problems [18]

and the problems of coloring (finding the minimum chromatic number of a graph)

and that of color saving (see e.g., [37]). In the context of approximation, complemen-

tary problems may have a significantly different behavior as a good approximation

algorithm to one of the problems does not imply one for its companion (e.g., [39]).

In this chapter we study scalar and vector linear solutions for the Complemen-

tary Index Coding problem. In a vector-linear solution, each packet can be split into

smaller sub-packets, such that sub-packets originated from different packets can be

combined together. In the scalar-linear solution, the packets cannot be split. We

consider two scenarios for Complementary Index Coding, i.e., the Multiple Unicast

scenario and the Multiple Multicast scenario. In the multiple unicast scenario, each

packet is requested by a single client; in the multiple multicast scenario, each packet

can be requested by more than one client. For the multiple unicast scenario, we

present approximation algorithms for finding scalar and vector-linear solutions that

achieve approximation ratios of Ω(
√
n · log n · log log n) and Ω(log n · log log n), respec-

tively. For the multiple multicast scenario, we show that finding an approximation

solution is NP-hard.

Our algorithms for multiple unicast strongly build on the notion of a dependency

graph G(V,E) that captures the combinatorial properties of the IC and CIC problems

(the dependency graph G(V,E) shall be defined later in this chapter and is slightly
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different from the auxiliary graph defined in Section IV.2.). Loosely speaking, we

show that any cycle in this graph G enables to save a single transmission. Thus,

by finding many such disjoint cycles, via the algorithms presented in [40] and [41],

one may save several transmission and obtain an approximation to Problem CIC. To

quantify the amount of transmissions saved in this manner we tie the value of the

optimal coding scheme to the feedback vertex set of G(V,E). For multiple multicast,

we show a reduction from the CIC problem to the Independent Set problem, implying

hardness of approximation in this case.

The rest of this chapter is organized as follows. Section V.B introduces the

notion of the dependency graph and related problems. Sections V.C and V.D focus

on multiple unicast and multiple multicast cases, respectively. Section V.E presents

the simulation study.

B. Preliminaries

We start by introducing a notion of the Dependency Graph. The dependency graph

is defined for the multiple unicast case, in which each packet is requested by a single

client.

Definition 10 (Dependency Graph) Given a multiple unicast instance of the CIC

problem we define a graph G(V,E) as follows:

• For each client ci ∈ X there is a corresponding vertex vci in V

• There is a directed edge from vci to vcj if and only if it holds that wi ∈ H(cj).

Figure 28 depicts the dependency graph that corresponds to the instance of the

CIC problem depicted in Figure 22.
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Fig. 28. Dependency graph for the instance of the CIC problem depicted on Figure

22.

We proceed to define the notion of the Maximum Induced Acyclic Subgraph

(MAIS) [4].

Definition 11 (Maximum Induced Acyclic Subgraph (MAIS)) For a given graph

G(V,E), we define Maximum Induced Acyclic Subgraph (MAIS(G)) as the maximum

acyclic induced subgraph of G. We denote by |MAIS(G)| the number of vertices in

MAIS(G).

It was shown in [4] that in the multiple unicast case the optimal solution to the

Index Coding problem is larger or equal to MAIS(G).

Other related problems are the minimum Feedback Vertex Set (FVS) and the

minimum Feedback Edge Set (FES) of a graph.

Definition 12 (Problems FVS and FES) For a given graph G, find the least num-

ber of vertices (edges) whose removal makes the graph acyclic. We denote the opti-

mal integral solution to the FVS ( FES) problem for a graph G(V,E) by |FV S(G)|,

|FES(G)|.
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Note that, for a given graph G, by definition of the Feedback Vertex Set, it holds

that |MAIS(G)| = n− |FV S(G)|.

Both the FVS and FES problems can be formulated as integer programs. By

relaxing the integrality constraints on the decision variables, we can get fractional

version of these problems. The fractional feedback vertex set (FV Sf (G)) for the

graph G(V,E) is a function t : V → [0, 1] such that every cycle, c, is covered by t, i.e.,∑
v∈c t(v) ≥ 1. The fractional feedback edge set (FESf (G)) for the graph G(V,E) is a

function t : E → [0, 1] such that every cycle, c, is covered by t, i.e.,
∑

e∈c t(e) ≥ 1. An

optimum feedback vertex (edge) set has minimizes
∑

v∈V t(v). The values of optimal

fractional solutions to these problems are denoted by |FV Sf (G)| and |FESf (G)|,

respectively.

Proposition 13 |OPTCIC | ≤ |FV S(G)|

Proof: In [4] it was shown that |OPTIC | ≥ |MAIS(G)|. Since |MAIS(G)| =

n − |FV S(G)|, we get n − |OPTIC | ≤ |FV S(G)|. Furthermore, by the definition of

the CIC problem |OPTCIC | = n− |OPTIC |. Hence, |OPTCIC | ≤ |FV S(G)|.

In our work we also use a notion of the Vertex Split Graph, defined as follows:

Definition 14 (Vertex Split Graph) Given a graph G(V,E) we construct a cor-

responding Vertex Split Graph G′(V ′, E ′) as follows: (1) For each node v ∈ V : (a)

create two nodes vin, vout in V ′ (b) create an edge (vin, vout) in E ′; (2) For each edge

(u, v) ∈ E create an edge (uout, vin) in E ′.

Note that the size of the Feedback Vertex Set of G is equal to the size of Feedback

Edge Set of its vertex split graph G′, i.e., |FV S(G)| = |FES(G′)|.

We proceed to describe Edge-disjoint Cycle Packing (ECP) and Vertex-Disjoint

Cycle Packing (VCP) problems. Problems ECP and VCP ask for the largest set of di-

rected edge (node) disjoint cycles in a given graph G(V,E). We denote the maximum
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number of edge (vertex) disjoint cycles in a graph G by |ECP (G)| (|V CP (G)|). We

can also define fractional versions of these problems as follows. Let C be a set that

includes all cycles in the graph and let ψ,C → R be a function that maps each cycle

c ∈ C to a real number. Our goal is to find a function ψ that maximizes
∑

c∈C ψ(c)

subject to the following constraints:

• For each v ∈ V , it holds that
∑

v∈c,c∈C ψ(c) ≤ 1 (for node-disjoint case);

• For each e ∈ E, it holds that
∑

v∈c,c∈C ψ(c) ≤ 1 (for edge-disjoint case).

We denote by |ECP f (G)| (|V CP f (G)|) the optimal value of the fractional edge-

disjoint (node-disjoint) cycle packing problem.

C. Multiple Unicast Case

In this section we first present an approximation algorithm for the scalar version of

the Complementary Index Coding (CIC) problem. Then, we present an algorithm for

the vector version of this problem.

1. An Approximation Algorithm for Finding Scalar-Linear Solution

The main idea of our algorithm is to find a vertex disjoint cycle packing in the

dependency graph. Note that for each vertex-disjoint cycle in the dependency graph

we can save at least one transmission. To see this, consider the example depicted in

Figure 30. In this example, we have a cycle that involves five clients, such that client

ci requires packet pi. For i = 2, . . . , 5 it holds that the client ci has the packet required

by client ci−1. It is easy to verify that all clients can be satisfied by four transmissions:

p1 + p2, p2 + p3, p3 + p4, and p4 + p5 (all operations are over GF (2)). Indeed, the

client c2 will be satisfied by the transmission p1 + p2, the client c3 will be satisfied by
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Algorithm sCIC ()
1 From the given instance of the CIC problem, construct the Dependency Graph
G(V,E);
2 From the given dependency graph construct the Vertex Split Graph G′(V ′, E ′)
3 C ′ = ∅
4 While there exists a directed cycle in G′(V ′, E ′) do:
5 Find a cycle c′ of minimum length
6 Add c′ to C ′

7 Delete all the edges of c′ from G′(V ′, E ′)
8 For each cycle c′ ∈ C ′ do:
9 Identify the corresponding cycle c in G(V,E);

10 Transmit a set of |c| − 1 transmissions that satisfy all clients in c
11 For each vi ∈ G(V,E) not included in any cycle c, transmit the packet required
by the corresponding client ci

Fig. 29. Algorithm sCIC

transmission p2 + p3, and so on. The client c1 will add all the transmissions to obtain

p1 + p5, which will allow it to decode packet p2.

Thus, a vertex-disjoint cycle packing of size k will allow to find a solution that

saves k transmissions. We summarize our result by the following lemma.

Lemma 15 Let α be a set of vertex disjoint cycles in the dependency graph G(V,E).

Then, it is possible to construct a feasible solution to the CIC problem that saves at

least |α| transmissions, where |α| is the size of α.

For convenience, we convert the problem of finding vertex-disjoint cycle packing

in the dependency graph G(V,E) to the problem of finding edge-disjoint cycle packing

in the vertex split graph G′(V ′, E ′) of G(V,E). As mentioned above, the size of the

edge-disjoint cycle packing in graph G′(V ′, E ′) is equal to the size of vertex-disjoint

cycle packing in G(V,E).

Our algorithm, referred to as Algorithm sCIC, performs the following steps.

First, the algorithm constructs the dependency graph G(V,E) for the problem at
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Fig. 30. The dependency graph of a cycle and corresponding optimal set of transmis-

sions.

Fig. 31. A sample execution of the Algorithm sCIC on the instance of the CIC problem

shown in Figure 22.

hand. Next, the vertex split graph G′(V ′, E ′) of G(V,E) is constructed. Finally, we

apply the approximation algorithm due to Krivelevich et al. [41] to find an approx-

imate cycle packing in G′(V ′, E ′). Next, we identify the set of vertex-disjoint cycles

in G(V,E) that correspond to edge-disjoint cycles in G(V,E). Finally, for each cycle

in the dependency graph we identify the set of encoding vectors such that one trans-

missions are saved per cycle. The formal description of Algorithm sCIC is presented

in Figure 29. Figure 31 shows a sample execution of the Algorithm sCIC for the

instance shown in Figure 22.
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We proceed to analyze the correctness of Algorithm sCIC.

Lemma 16 Algorithm sCIC finds a scalar-linear solution to the Complementary In-

dex Coding problem with approximation ratio of Ω(
√
n · log n · log log n).

Proof: By Proposition 13, OPTCIC ≤ |FV S(G)|. As discussed above, |FV S(G)| =

|FES(G′)|, where G′ is the vertex split graph of G, hence OPTCIC ≤ |FES(G′)|.

By [42], the integrality gap of the Feedback Edge Set problem is bounded by log n ·

log log n, hence |FES(G′)| ≤ |FESf (G′)| log n·log log n. Hence, OPTCIC ≤ |FESf (G′)| log n·

log log n. The algorithm due to [41] yields an edge disjoint cycle cover C ′, whose size

is at least |FESf (G′)|/
√
n. Since for each cycle we save a transmission, the total

number of saved transmissions is at least

|FESf (G′)|√
n

≥ |FES(G′)|√
n · log n · log log n

≥ OPTCIC√
n · log n · log log n

.

2. An Approximation Algorithm for Finding Vector-Linear Solution

In this section we present an algorithm, referred to as Algorithm vCIC, for finding

vector-linear solutions for the CIC problem. The algorithm achieves the approxi-

mation ratio of Ω(log n · log log n). As mentioned in the model, with a vector-linear

solution, each packet can be divided into several smaller-size subpackets and the server

can transmit linear combinations of these subpackets.

The algorithm includes the following steps. Given an instance of the CIC prob-

lem, we first construct the dependency graph G(V,E), and the corresponding Vertex

Split Graph G′(V ′, E ′). Then, we apply the algorithm due to Yuster and Nutov [40]

to find the fractional cycle packing in G′(V ′, E ′), which, in turn, yields a fractional

vertex-disjoint cycle packing ψ : C → R in G(V,E). Then, we find the minimum
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integer number k that satisfies that kψ(c) is an integer for any c ∈ C. Such number

exists because for each c ∈ C, ψ(c) is a rational number. Next, we divide each packet

pi ∈ P into k smaller size subpackets p1
i , . . . , p

k
i .
†

Next, we create an auxiliary dependency graph Ĝ(V̂ , Ê). This graph is con-

structed similarly to the regular dependency graph, but for subpackets, instead of the

original packets. Specifically, graph Ĝ(V̂ , Ê) is defined as follows:

• For each subpacket pji of a packet pi ∈ P there is a corresponding vertex vji in

V̂

• There is a directed edge from vji and vhl if and only if it holds that pi ∈ H(cl),

cl is a client requesting packet pl.

Graph Ĝ(V̂ , Ê) has the following property. For each fractional cycle packing ψ

of graph G(V,E) of size α, there exists a set of vertex-disjoint cycles Ĉ in Ĝ(V̂ , Ê)

of size αk. The integer cycle packing Ĉ in Ĝ(V̂ , Ê) can be identified through the

following procedure. For each cycle c ∈ C for which ψ(c) > 0 we can identify k ·ψ(c)

vertex-disjoint cycles in Ĝ such that for node vi ∈ C, each of the corresponding cycles

use one of the nodes in {v1
i , . . . , v

k
i }. We then remove k · ψ(c) vertex-disjoint cycles

from Ĝ and repeat the procedure for the next cycle in C.

Now, for each cycle ĉ ∈ Ĉ we generate |ĉ| − 1 linear combinations that satisfy

the demands for packets that correspond to vertices in ĉ. Each such cycle will save

one subpacket, so in total αk subpackets will be saved. This corresponds to saving α

original packets.

†This can be done assuming that each packet is sufficiently large and the size
of each packet in P is a multiple of k. Thus, in practice, a fractional solution can
be suitable for large packets. This assumption is standard for vector-linear network
coding schemes.



75

A sample execution of the Algorithm vCIC on the instance of the CIC prob-

lem is shown in Figure 32. This Figure shows the auxiliary graph Ĝ(V̂ , Ê) and the

corresponding 5 cycles packed in the auxiliary dependency graph. Therefore the cor-

responding transmissions are: p1
1 + p1

2, p2
2 + p1

3, p2
3 + p1

4, p2
4 + p1

5, and p2
5 + p2

1.

We proceed to analyze the correctness of the Algorithm vCIC.

Lemma 17 Algorithm vCIC finds a vector-linear solution to the Complementary

Index Coding problem with approximation ratio of Ω(log n · log log n).

Proof: Let OPT fCIC be the value of the optimal vector-linear solution to the CIC

problem. It is easy to verify that, similar to the integer case, OPT fCIC ≤ |FV S(G)|.

This follow from the fact that the optimal vector-linear solution to IC is greater or

equal than the size of MAIS(G).

Since |FV S(G)| = |FES(G′)|, it holds that OPT fCIC ≤ |FES(G′)|. By [42],

the integrality gap of the Feedback Edge Set problem is bounded by log n · log log n,

hence |FES(G′)| ≤ |FESf (G′)| log n · log log n. Hence, OPT fCIC ≤ |FESf (G′)| log n ·

log log n. As discussed above, our solution saves |FESf (G′)|k subpackets, which is

equivalent to saving |FESf (G′)| packets for the CIC problem. Thus, the total number

of saved transmissions is at least
OPT f

CIC

logn·log logn
and the lemma follows.

D. Multiple Multicast Case

In this section we allow multiple clients to require the same packet i.e., m ≥ n,

and show that in this case Complementary Index Coding (CIS) problem is not only

NP-hard but is also hard to approximate.

We prove the results by reducing the Independent Set (IS) problem (where the
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Fig. 32. A sample execution of the Algorithm vCIC on the instance of the CIC prob-

lem shown in Figure 22.

objective is to find the Independent Set of maximum cardinality) into Problem CIC.

We denote the value of the optimal solution of the IS problem by OPTIS. The

instance of the IS problem is given by a graph G(V,E).

Given an instance of the IS problem we define an instance of the CIC problem

as following:

• For each vertex v ∈ V , we define a packet pv, and for each edge e = (u, v) ∈ E,

we define packet pe, i.e, we define a total of |V |+ |E| packets.

• For each edge e = (u, v) ∈ E we define the following three clients ce1 , · · · , ce3

such that

1. Client ce1 requires packet pu and has packet pe;

2. Client ce2 requires packet pv and has packet pe;

3. Client ce3 requires packet pe and has packets pu and pv.

i.e., we define a total of 3 · E clients.

This construction is similar to that used in our previous work [35].
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Lemma 18 OPTIS = OPTCIC.

Proof: We proceed to prove that OPTIS = OPTCIC. Let OPTV C be value of

the minimum Vertex Cover in G(V,E). In [35] it was shown that

OPTV C + |E| = OPTIC (5.1)

Since a set of vertices in G that do not belong to a vertex cover constitute an

independent set, it holds that

OPTV C +OPTIS = |V | (5.2)

Also, since the total number of packet in our instance of Problem CIC is equal

to |V |+ |E|, it holds that

OPTCIC = |V |+ |E| −OPTIC (5.3)

By combining Equations 5.1-5.3 we get OPTIS = OPTCIC .

By Lemma 18, the optimal value of Problem CIC is equal to the maximum size of

the independent set in G(V,E). Thus, our reduction implies that the Complementary

Index Coding is NP-hard. Furthermore, since it is NP-hard to approximate the

independent set problem within a ratio of n1−ε [43] the same holds for Problem CIC.

We conclude our discussion by the following theorem.

Theorem 19 The Complementary Index Coding is NP-hard, and it is NP-hard to

approximate within a ratio of n1−ε for any constant ε > 0.

E. Performance Evaluation

In this section we evaluate the performance of the proposed scalar-linear solution

for the Complementary Index Coding problem in unicast settings. More specifically,
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we evaluate the performance of the algorithm sCIC described in Figure 29, and the

algorithm Imp-sCIC described in Figure 33.

The experimental setup is as follows. We consider n clients, where each client

ci requires packet pi. The has set H(ci) for each client ci is chosen randomly. More

specifically, for a given cardinality of H(ci) say `, for each client ci, we randomly

choose ` packets for H(ci) out of n packets {p1, · · · , pn} . Throughout this section

each value in the simulation plots represents an average over 100 experiments.

The improved algorithm for the scalar version of the CIC problem, i.e., the

Algorithm Imp-sCIC consists of two phases. In Phase 1 we use the Color Saving

based heuristic given in Section IV.B.3, i.e., in the Dependency Graph G(V,E) we first

find as many 3-cliques as possible, and then find all possible 2-cliques. After finding

each clique we delete the corresponding vertices. Note that the cliques involve only bi-

directed edges. A bi-directed edge (vi, vj) in G(V,E) shows that for clients ci and cj,

wj ∈ H(ci), and wi ∈ H(cj). Note that a set of clients forming a clique can be served

in a single transmission which is equal to the summation of their wants set. Then in

Phase 2, we invoke the Algorithm sCIC on the graph left after phase 1 (which does

not have any bi-directed edges left). The intuition lies in the fact that the number of

the transmissions saved for a clique of size k is k−1 whereas only one transmission can

be saved for each cycle. Therefore packing as many cliques as possible will increase

the overall number of transmissions saved. The formal description of the Algorithm

Imp-sCIC is given in Figure 33.

Figure 34 shows the comparison of the algorithms sCIC and Imp-sCIC for the

average percentage of the transmissions saved versus the cardinality of the has set

for 100 clients. Figure shows that with the increased cardinality of the has set the

number of transmissions saved increases. This can be intuitively explained as follows:
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Algorithm Imp-sCIC ()
1 Phase 1:
2 As long as there exist any 3-clique in the Dependency Graph G(V,E),
3 Find 3-clique {vi, vj, vk} and delete the corresponding vertices i.e., V :=
V \ {vi, vj, vk}
4 The server transmits the packet pi + pj + pk for the 3-clique
{vi, vj, vk}
5 Find all the 2-cliques in G(V,E) using maximum matching
6 For each 2-clique {vi, vj} delete the corresponding vertices i.e., V :=
V \ {vi, vj}
7 The server transmits the packet pi + pj for the 2-clique {vi, vj}
8 Phase 2:
9 Apply the algorithm sCIC on G(V,E).

Fig. 33. Algorithm Imp-sCIC

increased cardinality of the has set indicates more side information available to the

clients, so the number of edges in the Dependency Graph increase, that results in

more number of cliques and cycles and hence more savings. Figure also shows that

the Algorithm Imp-sCIC results in more saved transmissions as compared to the

Algorithm sCIC. Furthermore, for each point in the plot a 90% confidence interval is

also shown.

Figure 35 shows the average percentage of the transmissions saved using the

Algorithm Imp-sCIC by varying the number of clients. In this set of experiments

the cardinality of the has set is selected randomly. The increase in the number of

transmissions saved is due to the fact that the number of edges in the graph increases

with the increase in the number of the clients which results in larger number of cliques

and cycles. Furthermore, a 90% confidence interval is also shown.

Figure 36 shows the result of two sets of experiments for the average percentage of

the transmissions saved versus number of the clients using the Algorithm Imp-sCIC.
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Fig. 34. Average percentage savings in the number of transmission using the algo-

rithms sCIC, and Imp-sCIC. Plot shows the average percentage of savings

versus the cardinality of the has set for 100 clients. Plot also shows the 90%

confidence interval for both settings.

Fig. 35. Average percentage of the number of the transmissions saved versus the num-

ber of clients using the Algorithm Imp-sCIC. Plot shows the average percent-

age of the savings versus the number of clients for random cardinality of the

has set for each client. Plot also shows the 90% confidence interval.
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Fig. 36. Percentage of the transmissions saved using the Algorithm Imp-sCIC. Plot

shows the average percentage of savings versus the number of clients with

cardinality of the has set fixed to the value 5 and 15. Plot also shows the 90%

confidence interval for both settings.

In the first set we fixed the cardinality of has set to 5, while in the second set we

fixed the cardinality of has set to 15. As mentioned before, the has sets were chosen

randomly, and average was taken over 100 experiments. Plot also shows confidence

interval of 90%.

Figure 37 shows the breakup of both phases of the Algorithm Imp-sCIC for the

average percentage of the transmissions saved versus the number of clients, for a fixed

cardinality of has set. Figure shows that when the cardinality of the has is comparable

to the number of clients then Phase 1 of the Algorithm Imp-sCIC contributes more

towards saving of transmissions, but as the cardinality of the has becomes smaller

compared to the number of clients the advantage of the Phase 1 keeps on decreasing

and Phase 2 starts contributing more towards saving of transmissions. The reason

behind this observation is that when the cardinality of the has set is comparable to

the number of clients then the Dependency Graph is more dense and there exits more
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Fig. 37. Breakup of the percentage of the transmissions saved using the Algorithm

Imp-sCIC. Plot shows the average percentage of savings versus the number of

clients with the cardinality of has set equals to 5.

bi-directed edges and so the Algorithm Imp-sCIC can find more cliques in the Phase

1. But when the cardinality of the has set is small as compared to the number of

clients the Dependency Graph is sparse and it contains lesser number of cliques, so

the Algorithm Imp-sCIC can pack more cycles in the Phase 2, and hence the Phase

2 saves more transmissions as compared to the Phase 1.

F. Conclusion

In this chapter, we focused on the complementary problem of the Index Coding prob-

lem (referred to as the Complementary Index Coding (CIC) problem). The goal of

the CIC problem is to maximize the number of saved transmissions, i.e., the number

of transmissions that are saved by using the Index Coding technique compared to the

traditional solution that does not involve coding.

We considered two scenarios for the CIC problem, i.e., the multiple unicast sce-

nario and the multiple multicast scenario. In the multiple unicast scenario, each
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packet is requested by a single client; whereas in the multiple multicast scenario, each

packet can be requested by more than one client. We also considered scalar and vec-

tor linear solutions for the problem at hand. In the scalar linear solution, the packets

cannot be split. In a vector-linear solution, each packet can be split into a smaller

sub-packets, such that sub-packet originated from different packets can be combined

together. For the multiple unicast scenario, we presented approximation algorithms

for finding scalar and vector-linear solutions. The approximation ratios of the scalar

and vector-linear solutions are Ω(
√
n · log n · log log n) and Ω(log n · log log n), respec-

tively. For the multiple muticast scenario, we showed that finding an approximate

solution within ratio n1−ε is NP-hard.
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CHAPTER VI

SPARSE SOLUTIONS TO INDEX CODING PROBLEM∗

In this chapter, we focus on finding sparse solutions to the Index Coding problem. In a

sparse solution each transmitted packet is a linear combination of at most two original

packets. We focus both on scalar and fractional versions of the problem. For the

scalar case, we present a polynomial time algorithm that achieves an approximation

ratio of 2− 1√
n
. For the fractional case, we present a polynomial time algorithm that

identifies the optimal solution to the problem. Our simulation studies demonstrate

that our algorithms achieve good performance in practical scenarios.

A. Introduction

The previous works on the Index Coding problem considered the general setup where

the server can encode as many packets as necessary. In this chapter, we are focusing

on a practically important special case, in which a server can mix at most two packets

in any single transmission. We refer to this problem as the Sparse Index Coding (SIC)

problem. Consider an instance of the IC problem shown in Figure 38 in which a server

needs to deliver three packets p1, p2, p3 to three clients. Each client wants one packet

and has other two packets. An optimal solution to the IC problem can satisfy all

clients by transmitting a single packet p1 + p2 + p3. Note that in the case of the SIC

problem where the server is restricted to encode at most two packets, the optimal

scalar-linear solution can save 1 transmission by transmitting two packets p1 + p2,

∗Parts of this chapter are reprinted with permission from “Finding Sparse Solu-
tions for the Index Coding Problem” by M. A. R. Chaudhry, Z.asad, A. Sprintson, and
M. Langberg to appear in the proceedings of the 2011 IEEE Global Communications
Conference (GLOBECOM), Houston, U.S.A., 2011.
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Fig. 38. An instance of the Index Coding.

and p2 + p3. However in the case of the vector-linear solution to the SIC problem the

optimal can save 1.5 transmissions by transmitting the packets p1
1 + p1

2, p2
2 + p1

3, and

p2
3 + p2

1, where each packet pi is divided into two half packets p1
i , and p2

i . With sparse

network coding, the encoders and decoders can be implemented very efficiently which

makes it attractive for practical applications. Furthermore, sparse Index Coding can

be implemented over a small field (GF (2)), which allows to significantly reduce the

size of the packet headers and associated overhead.

In Chapter V we presented the concept of the Complementary Index Coding

(CIC) problem. In the CIC problem, instead of minimizing the number µ of trans-

missions, the goal is to maximize the number of “saved” transmissions, i.e., n − µ,

where n is the number of packets that need to be delivered to the clients. The CIC

problem seeks to maximize the benefit obtained by employing the coding technique,

e.g., for the instance shown in Figure 38, the number of transmissions saved is 2.

Note that, if OPTIC is the optimum of the Index Coding problem and OPTCIC
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is the optimum of the Complementary Index Coding problem, then it holds that

|OPTCIC | = n − |OPTIC |. This implies that finding the scalar-linear solution for

the CIC problem is also NP-hard. However, as shown in the Chapter V the CIC

problem can be successfully approximated in many cases of practical importance as

compared to the Index Coding problem which has been proven to be hard to approx-

imate. More specifically, the Chapter V presents algorithms with the approximation

ratios of Ω(
√
n · log n · log log n) and Ω(log n · log log n), for the scalar and vector linear

solutions for the CIC problem, respectively.

In this chapter we investigate the Sparse Index Coding problem, and consider

scalar and vector linear solutions. In the scalar-linear solution, the packets cannot be

split. In a vector-linear solution, each packet can be split into a smaller sub-packets,

such that the sub-packets originated from different packets can be combined together.

First, we establish a connection between the sparse scalar Index Coding problem and

the problem of finding the maximum number of vertex-disjoint cycles (i.e., the cycle

packing problem). Thus connection implies that the sparse Index Coding problem is

NP-hard. Second, for we present an algorithm that achieves an approximation ratio of

2− 1√
n

for the scalar-linear case, i.e., with our algorithm the number of transmissions

is at most 2 − 1√
n

times the optimum. We note that for the sparse Index Coding,

the approximation ratio of 2 can be achieved by using the standard approach (which

does not include network coding). However, our solution allows to avoid (“save”)

at least 1√
n

transmissions compared to the standard solution. Next, we present an

algorithm that identifies an optimal vector-linear solution in polynomial time. Finally,

we present an experimental study showing the advantage of the proposed algorithms.
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B. Finding Efficient Scalar-linear Solution

In this section, we focus on scalar-linear solutions of the SIC problem. The key idea

is to establish a connection between Problem SIC and the problem Problem Vertex

Cycle Packing in the corresponding dependency graph G(V,E) given in Section V.B.

Problem Vertex Cycle Packing (VCP) asks for the largest set of vertex-disjoint

cycles in the graph G(V,E). We denote the optimal solution to Problem VCP by

OPTV CP .

The main idea is to show that for each vertex-disjoint cycle in the dependency

graph we can save at least one transmission. To see this, consider the example

depicted in Figure 30. In this example, we have a cycle that involves five clients, such

that client ci requires packet pi. For i = 2, . . . , 5 it holds that the client ci has the

packet required by client ci−1. It is easy to verify that all clients can be satisfied by

four transmissions: p1 + p2, p2 + p3, p3 + p4, and p4 + p5. Indeed, the client c2 will

be satisfied by the transmission p1 + p2, the client c3 will be satisfied by transmission

p2 + p3, and so on. The client c1 will add all the transmissions to obtain p1 + p5,

which will allow it to decode packet p1.

Our algorithm, referred to as Algorithm sSIC, performs the following steps. First,

the algorithm constructs the dependency graph G(V,E) for the problem at hand.

Next, the vertex split graph G′(V ′, E ′) of G(V,E) is constructed. The vertex-split

graph G′(V ′, E ′) is formed from G(V,E) by substituting each vertex vi ∈ V by two

vertices v′i and v′′i and an edge (v′i, v
′′
i ) that connects v′i and v′′i ; and by substituting each

edge (vi, vj) ∈ E by an edge (v′′i , v
′
j). Finally, we apply the approximation algorithm

due to Krivelevich et al. [41] to find an approximate cycle packing in G′(V ′, E ′).

Next, we identify the set of vertex-disjoint cycles in G′(V ′, E ′) that correspond to

edge-disjoint cycles in G(V,E). Finally, for each cycle in the dependency graph we
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Algorithm sSIC ()
1 From the given instance of the IC problem, construct the dependency graph
G(V,E);
2 From the given dependency graph construct the Vertex Split Graph G′(V ′, E ′)
3 C ′ = ∅
4 While there exists a directed cycle in G′(V ′, E ′) do:
5 Find a cycle c′ of minimum length
6 Add c′ to C ′

7 Delete all the edges of c′ from G′(V ′, E ′)
8 For each cycle c′ ∈ C ′ do:
9 Identify the corresponding cycle c in G(V,E);

10 Transmit a set of |c| − 1 transmissions that satisfy all clients in c
11 For each vi ∈ G(V,E) not included in any cycle c, transmit the packet required
by the corresponding client ci

Fig. 39. Algorithm sSIC

identify the set of encoding vectors such that one transmissions is saved per cycle.

Algorithm sSIC has a running time of O(n3).

The formal description of Algorithm sSIC is presented in Figure 39.

We proceed to analyze the correctness of Algorithm sSIC. In the following two

lemmas we prove that n−OPT s = OPTV CP .

Lemma 20 n−OPT s ≥ OPTV CP .

Proof: Let S = {s1, s2, . . . , sm} be a packing of vertex-disjoint cycles in G(V,E).

Then, we construct an solution to Problem SIC that includes, for each cycle si =

{vi1 , vi2 , . . . , vil , vi1} packets pij + pij+1
for j = 1, . . . , l − 1, where l is the size of the

cycle. It is easy to verify that the total number of transmitted packets is equal to

n − m, i.e., for each cycle, one transmission is “saved.” Also, it is easy to see that

this is a valid solution to Problem CIS. Indeed, each client cij , 2 ≤ j ≤ l can recover

its required packets wij directly from transmitted packet pij−1
+ pij . We note that
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l−1∑
j=1

pij + pij+1
= pil + pi1 .

Thus, client ci1 can also recover the packet it requires.

Next, we show that OPTV CP ≥ n−OPT s.

Lemma 21 n−OPT s ≤ OPTV CP .

Proof: Let Γ = {γ1, γ2, . . . , γOPT s} be an optimal solution to Problem SIC.

Note that each γi ∈ Γ is a combination of at most two packets in P , these packets are

referred to as the support of γi. First, we define a set P1 ⊆ P that includes all packets

pi ∈ P for which it holds that pi belong to the span of Γ. We define P2 = P \P1. We

say that two packets pi ∈ P2 and pj ∈ P2 are connected if a linear combination of pi

and pj belongs to the span of Γ. Note that the connectivity is a transitive property,

hence P2 can be divided to equivalence classes P 1
2 , P

2
2 , . . . , such that each equivalence

class includes connected packets. Note that the number of equivalence classes is equal

to n−OPT s.

Let V 1
2 , V

2
2 , . . . be subsets of vertices of V that correspond to equivalence classes

P 1
2 , P

2
2 , . . . . We show that for each V i

2 it holds that the subgraph of G induced by

V i
2 contains at least one cycle. Since the subsets V 1

2 , V
2

2 , . . . are disjoint, this will be

sufficient to show that G(V,E) contains at least n−OPT s disjoint cycles.

Let V i
2 be a subset that includes two or more nodes and let Gi be a subgraph of

G induced by V i
2 . We show that the in-degree of each node vj ∈ Gi is at least one.

Indeed, let vj be a node in V i
2 and let cj be the client that corresponds to vj. Let γ̂

be a vector in span of Γ used by cj to decode packet wj in its wants set. It is easy

to see that γ̂ includes at least one packet, say vl in P i
2. Then, there exists an edge

(vl, vj) in Gi and the lemma follows.

For example, consider an instance of the IC problem as shown in Figure 22. The
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optimal solution to the Problem SIC is given by: Γ = {p1 + p2, p3 + p4, p5}. In

this example: P1 = {p5}, and P2 = {p1, p2, p3, p4}. The corresponding equivalence

classes are as follows: P 1
2 = {p1, p2} and P 2

2 = {p3, p4}, with V 1
2 = {v1, v2} and

V 2
2 = {v3, v4} respectively. The subgraph corresponding to V 1

2 consists of two arcs

(v1, v2) and (v2, v1), and hence corresponds to a cycle between v1 and v2. Similarly

the subgraph corresponding to V 2
2 contains a cycle between v3 and v4.

Lemma 22 Sparse Index Coding (SIC) problem is an NP-Complete problem. Fur-

thermore, it is quasi-NP-hard to approximate the number of transmissions “saved ”,

i.e., n−OPT s, within a factor of O(log1−ε n) for any constant ε > 0.

Proof: By combining lemmas 20 and 21 we get n − OPT s = OPTV CP . Then,

by using the inapproximability result of the VCP problem [41], the lemma follows.

We conclude with the following theorem:

Theorem 23 Algorithm sSIC finds a scalar-linear solution to the Sparse Index Cod-

ing problem with approximation ratio of 2− 1√
n

. The algorithm also allows to “save”

at least a factor of 1√
n

times the optimum saving.

Proof: Let OPT s be the optimal solution for Problem SIC. By lemmas 20 and

21, the maximum number of vertex-disjoint cycles that can be packed in G(V,E) is

OPTV CP = n−OPT s. Then, by using the approximation algorithm due to Krivele-

vich et al. [41] we can identify at at least OPTV CP√
n

cycles. Thus, our algorithm requires

at most

n− OPTV CP√
n

= n− n−OPT s√
n

(6.1)
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transmissions. This implies that the algorithm achieves an approximation ratio

of

1√
n

+
n−
√
n

OPT s
. (6.2)

Since OPT s ≥ n
2
, Equation (6.2) implies that the approximation ratio is bounded

by 2− 1√
n
.

By Equation (6.1), the algorithm “saves” at least n−OPT s
√
n

transmissions com-

pared the standard solution that does not use coding. Since the optimal solution to

Problem SIC saves n−OPT s transmissions, that algorithm allows to save at least a

factor of 1√
n

times the optimum saving.

C. Finding Efficient Vector-linear Solution

In this section, we present an algorithm, referred to as Algorithm vSIC, that finds an

optimum vector-linear solution to Problem SIC. The algorithm exploits the connection

between Problem SIC and the problem of finding an optimal fractional solution for

the cycle packing problem, defined as follows. Let C be a set that includes all cycles

in the graph G(V,E) and let ψ,C → R be a function that maps each cycle c ∈ C to

a real number. Our goal is to find a function ψ that maximizes
∑

c∈C ψ(c) such that

for each v ∈ V , it holds that
∑

c∈C ψ(c) ≤ 1. We denote by OPT fV CP the optimum

fractional solution to the vertex-disjoint cycle packing.

The algorithm includes the following steps. Given an instance of Problem IC,

we first construct the dependency graph G(V,E). Then, we apply the algorithm due

to Yuster and Nutov [40] to find an optimal vertex-disjoint cycle packing ψ : C → R

in G(V,E).† Then, we find the minimum integer number k for which it holds that

†The algorithm due to [40] finds an optimal fractional edge-dijoint cycle packing,
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kψ(c) is an integer for any c ∈ C. Such number exists because for each c ∈ C, ψ(c) is

a rational number. Next, we divide each packet pi ∈ P into k smaller size subpackets

p1
i , . . . , p

k
i .

Next, we create a fractional dependency graph Ĝ(V̂ , Ê). This graph is con-

structed similarly to the dependency graph for the scalar case, with the difference that

the nodes in V̂ correspond to subpackets, and not to the original packets. Specifically,

graph Ĝ(V̂ , Ê) is defined as follows:

• For each subpacket pji of a packet pi ∈ P there is a corresponding vertex vji in

V̂

• There is a directed edge from vji and vhl if and only if it holds that pi ∈ H(cl),

where ci are cl are clients requesting packets pi and pl, respectively.

Graph Ĝ(V̂ , Ê) has the following property. For each fractional cycle packing ψ

of graph G(V,E) of size α, exists a set of vertex-disjoint cycles Ĉ in Ĝ(V̂ , Ê) of size

αk. Given a fractional cycle packing ψ in G(V,E), the integer cycle packing Ĉ in

Ĝ(V̂ , Ê) can be identified through the following procedure. For each cycle c ∈ C for

which it holds that ψ(c) > 0 we can identify k · ψ(c) vertex-disjoint cycles in Ĝ such

that for each node vi ∈ C, each of the corresponding cycles use one of the nodes in

{v1
i , . . . , v

k
i }. We then remove k · ψ(c) vertex-disjoint cycles from Ĝ and repeat the

procedure for the next cycle in C.

Now, for each cycle ĉ ∈ Ĉ we generate |ĉ|−1 linear combinations of the subpackets

{pji} that correspond to vertices in ĉ. Each such cycle will save one subpacket, that

is for a cycle that includes l vertices in Ĝ(V̂ , Ê) (that correspond to l clients), we

transmit l− 1 packets that satisfy all l clients. In total, αk subpackets will be saved,

however, it is possible use this algorithm to find optimal vertex-disjoint cycle packing
by applying it to the vertex-split graph (as explained in Section B).
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i.e., the total number of transmission is equal to (n−α)k. This corresponds to saving

α original packets. For each vji ∈ V̂ not included in any cycle in Ĉ, transmit the

corresponding subpacket pji .

We proceed to establish the correctness of Algorithm vSIC.

Lemma 24 n−OPT f = OPT fV CP .

Proof: First, we show that n−OPT f ≤ OPT fV CP . Consider an optimal vector-

linear solution to Problem SIC. Let k be the number of subpackets in each packet

with this solution. We note that the vector-linear solution with respect to the original

packets is equivalent to the scalar-linear solution with respect to the subpackets.

Then, by Lemma 21, it holds that k(n−OPT f ) is less or equal to the maximum size

of integer cycle packing in the fractional dependency graph described above. This, in

turn implies that k(n−OPT f ) ≤ k(OPT fV CP ) or n−OPT f ≤ OPT fV CP .

We proceed to show that n−OPT f ≥ OPT fV CP . Consider an optimal fractional

cycle packing ψ(c) in the Dependency Graph (as defined in Definition 10, Section B).

Let k be the minimum integer number for which it holds that kψ(c) is an integer

for any c ∈ C. As we discussed above, this implies that there exists a integer cycle

packing of size k · OPT fV CP in the fractional dependency graph. By Lemma 20 this

implies that k(n−OPT f ) ≥ k ·OPT fV CP or n−OPT f ≥ OPT fV CP and lemma follows.

Theorem 25 Algorithm vSIC finds, in polynomial time, an optimal vector-linear

solution to Problem SIC.

Proof: By Lemma 24 it holds that OPT f = n − OPT fV CP . Then, the theorem

follows from the fact that the algorithm due to [40] finds an optimal solution to

fractional cycle packing problem.
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Fig. 40. Average Coding Gain versus number of clients for both the Optimal solution

and the solution using algorithm sSIC

D. Performance Evaluation

In this section we evaluate the performance of the proposed scalar-linear solution for

the Sparse Index Coding problem. More specifically, we evaluate the performance

of the Algorithm sSIC presented in Figure 39, and compare it with the optimal

linear solution to the Index Coding problem over GF (2). Throughout this section the

Optimal solution refers to the SAT-based time-efficient scalar-linear optimal solution

over GF (2) for the Index Coding problem as presented in Section IV.A.

The experimental setup is as follows. We consider n clients, where each client

ci requires packet pi. The has set H(ci) for each client ci is chosen randomly. More

specifically, the cardinality `i of the has set H(ci) for each client ci is selected from a

uniform random distribution on integers 1, . . . , n − 1. Then, we randomly choose `i

packets for H(ci) out of n packets {p1, · · · , pn}. Throughout this section each value

in the simulation plots represents an average over 100.
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Fig. 41. Average Coding Gain versus number of clients for the solution using algorithm

sSIC

Figure 40 shows the comparison of the algorithm sSIC and the optimal solution

for the average coding gain versus the number of clients, where the Coding Gain is

defined as the ratio between the minimum number of transmissions needed to satisfy

all clients without encoding to the minimum number of transmissions required when

scalar-linear coding is used. For example, for the instance of the IC problem shown in

Figure 22 coding gain is 5
3
. The results show that on average the ratio of the average

coding gains given by the Optimal solution and the algorithm sSIC differ by a factor

less than 1.5. Hence, the presented solution is expected to perform well in practice

as well. Table IV shows the comparison of the running time for the algorithm sSIC

and the optimal solution. The comparison was performed over a Pentium 4 machine

with 2.8 GHz processor. The results show that computing the optimal solution takes

considerably more time than the proposed algorithm. Note that while finding the

Optimal solution requires significant running time even for nine clients, the solution

using the algorithm sSIC can be efficiently computed for hundred clients. Figure 41

shows the plot of the average coding gain versus number of clients for the solution
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Table IV. Average CPU Time (in Seconds) Required by the Optimal Solution, and

the Algorithm sSIC.

No. of Clients Optimal Solution Algorithm sSIC

3 0.91 0.0026

4 0.7341 0.0034

5 0.9391 0.0042

6 0.9622 0.0049

7 3.579 0.0061

8 11.93 0.0071

9 82.97 0.0078

computed using the algorithm sSIC. The plot shows that for a large number of clients

the proposed solution on average saves 49% of the transmissions compared to the

solution without encoding.

E. Conclusion

In this chapter, we consider the Sparse Index Coding (SIC) problem. In this problem,

each transmitted packet is a linear combination of at most two packets over a small

field (GF (2)). This problem is important in practical settings due to low complexity

of encoding and decoding.

We present both scalar and vector linear solutions for Problem SIC with provable

performance guarantees. In particular, our algorithm yields a scalar-linear solution

which has at most 2− 1√
n

more transmissions than the optimal. For the vector-linear

case, we present an algorithm that yields an optimal solution. In addition, we show

that finding an optimal solution for the scalar-linear case is an NP-complete problem.
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We also present an extensive simulation study that demonstrate the advantages of

the proposed solution in practical settings.
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CHAPTER VII

DISTRIBUTED DATA RETRIEVAL∗

In this chapter we consider the problem of accessing large data files stored at multiple

locations across a content distribution, peer-to-peer, or massive storage network. We

assume that the data is stored in either original form, or encoded form at multiple

network locations. Clients access the data through simultaneous downloads from

several servers across the network.

The central problem in this context is to find a set of disjoint paths of minimum

total cost that connect the client with a set of servers such that the data stored

at the servers is sufficient to decode the required file. We refer to this problem as

the Distributed Data Retrieval (DDR) problem. We present an efficient polynomial-

time solution for this problem that leverages the matroid intersection algorithm. Our

experimental study shows the advantage of our solution over alternative approaches.

A. Introduction

In many practical settings, clients need to access large data files stored at multiple

locations across the network. For example, in content distribution networks the data

is stored across multiple geographical locations to enable efficient access by multiple

clients. Similarly, in peer-to-peer networks clients retrieve popular files such as movies

from their peers. In mass storage systems, the data is distributed throughout the

network to increase the reliability and resilience to failures. When a client needs to

obtain a copy of a large data object, it initiates simultaneous downloads from multiple

∗Parts of this chapter are reprinted with permission from “An Optimal Solution
to the Distributed Data Retrieval Problem” by M. A. R. Chaudhry, Z. Asad, and A.
Sprintson in the proceedings of the 2010 IEEE Global Communications Conference
(GLOBECOM), Miami, U.S.A., 2010, pages 1-6.
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servers.

In this chapter, we consider the problem of accessing large data objects (such

as multimedia files, datasets, etc.) stored at multiple network locations. We assume

that each data object is divided into a number of fixed-size blocks, which are stored

at servers across the network.

There are three major approaches for distributing the data across the servers.

The first approach uses data replication or mirroring. With this approach, several

copies of each block are stored on different servers across the network. A client needs

to identify a subset of the nearby servers that collectively store all the required blocks

and obtain one copy of each block through simultaneous downloads.

The second approach uses erasure correcting codes to generate parity check

blocks. With this approach, k original blocks are encoded into n blocks using a

Maximum Distance Separable (MDS) code, such that any k out of n blocks are suf-

ficient for decoding the content of the file. A client needs to locate k nearby servers,

and initiate simultaneous downloads to obtain k different coded blocks. The blocks

are then decoded to obtain the content of the required file.

The third approach is to use a general linear coding scheme, which is not nec-

essarily an MDS coding scheme. Such schemes are used, for example, in distributed

storage systems [2]. In such schemes, a client needs to identify a subset of servers

that collectively store enough data to be able to obtain the content of the original

file. More specifically, suppose that the original file is divided into k blocks and that

each block stored at a server is a linear combination of k original blocks. Thus, a

client needs to simultaneously download data from k servers that store k linearly

independent combinations of the original blocks. The contents of the original file can

then be decoded by performing linear operations on the obtained data. Note that the

general linear coding scheme includes the first two approaches as special cases.
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In this chapter, we focus on the general linear coding setting and consider the

problem of minimizing the total cost of downloading the contents of a file from mul-

tiple servers. We assume that each link in the network is associated with certain cost

and has capacity constraints. Our goal is to find a set of k paths of minimum total

cost that connect a subset of data servers with the client. The k paths should satisfy

the following constraints:

1. Each path connects a data server and the client;

2. Each path is used for downloading a single data block;

3. The k downloaded data blocks are linearly independent;

4. The number of paths that share a single link cannot exceed the capacity of that

link.

Note that the problem includes choosing a subset of data servers and the corre-

sponding paths to the client through which the data will be downloaded. We refer to

this problem as the Distributed Data Retrieval (DDR) problem.

Figure 42 demonstrates three approaches for storing three original blocks, a,

b, and c across four servers and the corresponding instances of Problem DDR. Fig-

ure 42(a) shows a replication based approach. With this approach a client needs to

find three disjoint paths, one originating at a server that stores block a, second at

a server that stores block b, and third at a server that stores block c. Figure 42(b)

demonstrates the approach where the data is stored using an MDS code (here, all op-

erations are performed over GF (2)). With this approach, the client needs to find three

disjoint paths of the minimum total cost to any three distinct servers. The general

coding approach is depicted in Figure 42(c). In this scheme, the paths must originate
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Fig. 42. Storage schemes considered in this chapter. (a) Replication-based approach.

(b) An approach based on MDS codes. (c) An approach based on general

linear codes. For each scenario, the optimal set of paths to retrieve packets a,

b, and c is shown by thick lines.

at servers that store linearly independent combinations. In all figures, disjoint paths

of minimum total cost are shown by thick lines.

Related Work. In [44] Suurballe and Tarjan presented a polynomial time

algorithm for finding a set of edge disjoint paths of minimum total cost. The algorithm

due to [44] can be used for solving Problem DDR in special cases. For example, if the

data is encoded using an MDS code and each link has a unit capacity, the problem

reduces to finding a minimum cost set of edge disjoint paths between any subset

of storage nodes and the destination node (the size of the subset is equal to the

number of blocks in the file). This can be accomplished by adding an auxiliary node

s, connecting it to each storage node by an edge, and finding a set of disjoint paths

between s and the destination node. Similarly, the algorithm due to [44] can be

employed for solving Problem DDR when the mirroring or data replication approach

is used. However, the algorithm [44] cannot be applied directly for the general case

of Problem DDR.
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Network coding solutions for the data retrieval problem were investigated by

Dimakis et. al. [2]. The goal of this work is to minimize the total amount of data that

need to be transferred to repair a failed storage server. References [45,46] focused on

network coding based content distribution, and considered the problem of minimizing

the joint cost of transmission and storage for uncoded an coded cases. However, these

works do not address the issue of selecting paths to transfer the data, which is the

focus of this work.

Contributions. We introduce Problem DDR and present algorithms for its

solution. First, in Section VII.D we consider a special case in which the network has

a specific three-tier structure. Then, in Section VII.E we present a polynomial time

algorithm for the general case. We also perform an experimental study that shows

the advantage of our algorithms over alternative solutions.

B. Model

The communication network N is modeled by a directed graph G(V,E) with the node

set V and the edge set E. The network has n source (server) nodes S = {s1, . . . , sn}

and a terminal node t. Without loss of generality, we assume that the sources nodes

in S do not have incoming edges, while the terminal node t does not have outgoing

edges.

We assume that terminal t needs to download a large file. The file is partitioned

into h blocks B = {b1, b2, . . . , bh}, each block is an element of finite field Fq = GF (q).

Each server node si ∈ S stores a single linear combination xi of blocks in B, i.e.,

xi =
∑
bj∈B

αijbj,

where {αij} are elements of GF (q). We also assume that the capacity of each edge
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is one unit, i.e., it can transmit a single block per time unit. Note that this does not

result in a loss of generality since a node of higher capacity can be represented by

multiple nodes and an edge of higher capacity can be represented by multiple parallel

edges.

We say that an edge e(v, u) is incident to nodes v and u, and nodes v and u

are incident to e. Each edge e ∈ E is associated with a cost c(e) which captures the

cost of using this edge for transmitting a single block. The total cost of a path P in

G(V,E) is defined as the sum of the costs of its edges:

C(P ) =
∑
e∈P

c(e).

We consider the Distributed Data Retrieval (DDR) problem, defined as follows.

Problem DDR (Distributed Data Retrieval) Find h edge-disjoint paths P̂1, P̂2 . . . , P̂h

that connect a set of servers {si1 , si2 , . . . , sih} ⊆ S with the terminal node t that satisfy

the following conditions:

1. All the blocks in the set {xi1 , xi2 , . . . , xih}, stored at servers si1 , si2 , . . . , sih, are

linearly independent;

2. The total cost of paths P̂1, P̂2 . . . , P̂h is less than or equal to any other set of

paths that satisfy Condition (1).

C. Preliminaries

Definition 26 A matroidM(X, I) is an ordered pair formed by a ground set X and

a collection I of subsets of X, that satisfy the following three conditions:

1. ∅ ∈ I;

2. If Y ∈ I and Y ′ ⊆ Y , then Y ′ ∈ I;
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3. If Y1 ∈ I, Y2 ∈ I, |Y1| > |Y2|, then there exists x ∈ Y1\Y2 such that Y2∪{x} ∈ I.

Each Y ∈ I is referred to as an independent set. A maximal independent subset

of X (with respect to inclusion) is referred to as a base. All bases of M have the

same cardinality, referred to as the rank of M.

Elements of X can be associated with a weight function w : X → Q. The weight

of a subset Y of X is defined as the sum of weights of its elements:

w(Y ) =
∑
x∈Y

w(x).

One of the basic problems in matroid theory is to find the minimum-weight

common base of two matroids M1(X, I1) and M2(X, I2), i.e., the subset Y of X of

minimum weight such that Y is a base of both M1 and M2. The problem can be

solved efficiently, in polynomial time. For a detailed description of matroid intersec-

tion algorithms see e.g., [47–49].

In our algorithms, we use concept of integral network flows.

Definition 1 (Integral Flow) A integral (Ŝ, t)-flow f is a binary function f : E →

{0, 1} that satisfies the following two properties:

1. For all e(u, v) ∈ E, it holds that fe ∈ {0, 1};

2. For all v ∈ V \ {S ∪ {t}}, it holds that

∑
(u,v)∈E

f(u,v) =
∑

(v,u)∈E

f(v,u).

The value of a flow f is defined as follows:

|f | =
∑

(v,t)∈E

f(v,t) (7.1)



105

An (Ŝ, t)-flow is referred to as a maximum flow if it has the maximum value

among all feasible (Ŝ, t)-flows. An (Ŝ, t)-flow of value |f | can be decomposed into |f |

disjoint paths that connect nodes in Ŝ with t [50].

D. Algorithm for Three-tier Networks

In this section, we discuss a special case of Problem DDR in which the communica-

tion network G(V,E) has a three-tier structure. This special case demonstrates the

applications of the matroid intersection algorithm. We will generalize this approach

in Section VII.E for general network topologies.

More specifically, the first tier consists of the set of source nodes S = {s1, . . . , sn},

the second tier consists of set of intermediate nodes V \ {S ∪ {t}}, and the third tier

consists of the terminal t. Each edge in E either connects a tier 1 node and a tier

2 node, or a tier 2 node and the terminal t. An example of a three-tier network is

shown in Figure 43.

We enumerate all paths {P1, P2, . . . , Pl} that connect sources {s1, . . . , sn} to the

terminal t. For each path Pj we denote by x(Pj) the block stored at the source node

of Pj.

We define two matroids, M1(P , I1) and M2(P , I2) as follows:

• P = {P1, . . . , Pl} is the ground set of two matroids;

• I1 ⊆ 2P is the collection of subsets of P which carry linearly independent blocks

over GF (q);

• I2 ⊆ 2P is the collection of subsets of P such that each subset contains edge-

disjoint paths.
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Note that the above mentioned sets capture the basic constraints of Problem DDR,

i.e., the constraint of selecting sources that host h linearly independent blocks is cap-

tured by I1, and the constraint on finding h edge-disjoint paths is captured by I2.

Then, the set of h edge-disjoint paths, with least total cost that belongs to both I1

and I2, can be found using the minimum-weight common base algorithm [47,48]. The

algorithm starts with a set P̄ := ∅ and iteratively augments it, such that at any time

it holds that P̄ = I1 ∩ I2. For the sake of completeness we describe the weighted

matroid intersection algorithm, as presented in [48] below.

1. P̄ := ∅

2. Define a directed graph H with the node set P , and the edge set as following.

For any Pi ∈ P̄ and Pj ∈ P \ P̄ add edges as follows:

• If (P̄ \ {Pi}) ∪ {Pj} ∈ I1 add an edge (Pi, Pj);

• If (P̄ \ {Pi}) ∪ {Pj} ∈ I2 add an edge (Pj, Pi).

3. Define sets:

P1 = {Pi ∈ P \ P̄ | P̄ ∪ {Pi} ∈ I1}

P2 = {Pi ∈ P \ P̄ | P̄ ∪ {Pi} ∈ I2}

4. For any node Pi ∈ P define its cost l(Pi) by:

l(Pi) = −c(Pi) if Pi ∈ P̄

l(Pi) = c(Pi) if Pi /∈ P̄



107

The cost of a path m in H, denoted by c(m), is equal to the sum of the costs

of the nodes traversed by m.

5. We consider two cases:

Case 1: There exists a directed path m in H from a node in P1 to a node in

P2

• Choose the path m so that c(m) is minimal and it has a minimum number

of edges among all minimum cost paths from a node in P1 to a node in P2

• Let the path m traverse the nodes y0, z1, y1, . . . , zg, yg of H, in this order.

P̄ := (P̄ \ {z1, . . . , zg}) ∪ {y0, . . . , yg}

• Go to Step 2

Case 2: There is no directed path in the graph H from a node in P1 to a node

in P2. Then, return P̄ .

Note that the set P̄ returned by the algorithm is a maximum-cardinality common

independent set.

Figure 43 demonstrates the execution of the algorithm on a three-tier instance

of Problem DDR.

Proof of Correctness

First we show that M1(P , I1) and M2(P , I2) are valid matroids over ground set P .

Then, the correctness of our algorithm follows from that of the matroid intersection

algorithm (see e.g., [48]).

First, we note that M1 is a vector matroid defined on the ground set P [51].

Next, we show that M2 is a matroid. We prove it by showing that it satisfies all
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the properties of a matroid, as specified in Definition 26. The first condition follows

from the fact that ∅ ∈ I2. A subset of a set of disjoint paths also contains disjoint

paths, which implies the second condition. To show the third condition, consider two

sets, Y1 ⊆ P and Y2 ⊆ P , such that |Y1| ≥ |Y2|. Note that the paths in Y2 use |Y2|

intermediate nodes, while paths in Y1 use more than |Y2| intermediate nodes. Thus,

there exists at least one path P ′ in Y1 that uses a different intermediate node than

the paths in Y2. This path does not share edges with any path in Y2. Thus, it holds

that Y2 ∪ {P ′} is a set of edge-disjoint paths in I2

E. Algorithm for General Networks

In this section, we describe our algorithm for Problem DDR in general networks. Our

algorithm includes the following steps:

1. Construct an auxiliary bipartite graph H(V̂1, V̂2, Ê) such that a flow of value h

between nodes in S and terminal t corresponds to a maximum matching in H.

2. Construct two matroids, M1(Ê, I1) and M2(Ê, I2). The matroids capture the

matching constraints as well as the linear independence constraints imposed on

the source nodes.

3. Find the minimum-weight common base Ê ′ of the matroids M1(Ê, I1) and

M2(Ê, I2). The set Ê ′ ⊆ Ê is a maximum matching in H(V̂1, V̂2, Ê).

4. Find a set of h disjoint paths {P̂1, P̂2 . . . , P̂h} in G(V,E) that corresponds to

matching Ê ′ inH(V̂1, V̂2, Ê). Paths {P̂1, P̂2 . . . , P̂h} connect h sources {si1 , si2 , . . . , sih}

in S to the destination node t.
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1. Constructing the Bipartite Graph H(V̂1, V̂2, Ê)

We use a reduction from flow network described by graph G(V,E) to an instance

H(V̂1, V̂2, Ê) of the bipartite matching problem [20,52].

Given a graph G(V,E), source nodes S = {s1, . . . , sn} and the destination node

t we construct the auxiliary graph H(V̂1, V̂2, Ê) as follows. First, for each edge e ∈ E,

we add node v̂1
e to V̂1 and a node v̂2

e to V̂2. Next, for each source si ∈ S we add a

corresponding node ŝi to V̂2. Next, we add h destination nodes t̂1, . . . , t̂h to V̂1. Thus,

V̂1 = {v̂1
e | e ∈ E} ∪ {t̂1, . . . , t̂h}

and

V̂2 = {v̂1
e | e ∈ E} ∪ {ŝ1, . . . , ŝn}.

Next, we construct the edge set Ê of H as follows:

1. For each edge e ∈ E, we add an edge (v̂1
e , v̂

2
e) of zero cost.

2. For each node v ∈ V , do:

• For each pair of edges e′ and e′′ such that e′ is an incoming edge of v and e′′

is an outgoing edge of v we add an edge ({v̂2
e′ , v̂

1
e′′) of cost (c(e′) + c(e′′))/2.

3. For each outgoing edge e′ of a source node si ∈ S add an edge (ŝi, v̂
1
e′) of cost

c(e′)/2.

4. For each incoming edge e′ of t add an edge (ŝi, v̂
1
e′) of cost c(e′)/2.

Figure 44(a) demonstrates the construction of graph H(V̂1, V̂2, Ê).

Karp et. al. [52] showed that a maximum matching in H(V̂ , Ê) yields a maximum

flow in G(V,E) according to the following rule: edge e carries a flow of value one if

and only if one of the the following conditions hold:
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• Node v̂1
e is matched with some node v̂2

e′ such that e′ is an incoming edge of the

head node of e;

• Node v̂2
e is matched with some node v̂1

e′′ , such that e is an incoming edge of the

head node of e′′.

Lemma 27 A flow of size h between a subset of nodes in S and a destination node

t corresponds to a maximum matching in H(V̂ , Ê) of the same cost. Furthermore,

a maximum matching in H(V̂ , Ê) yields a corresponding flow in G(V,E) of value h

between a subset of S and t of the same cost.

Proof: Follows from the construction of graph H(V̂ , Ê).

2. Matroid Definition

We proceed to define two matroids, M1(Ê, I1) and M2(Ê, I2). Both matroids are

defined over the ground set of edges in Ê. We define I1 be a collection of subsets

I ⊆ Ê such that for each node v̂ ∈ V̂1 at most one edge incident to v̂ belong to I.

Next, we define I2 be a collection of subsets I ⊆ Ê that satisfy the following

constraints:

1. For each node v̂ ∈ V̂2 at most one edge incident to v̂ belongs to I.

2. Let S ′ = {ŝi1 , . . . , ŝil} be a subset of {ŝ1, . . . , ŝn} such that each node ŝi ∈ S ′ has

an edge in I incident to it. Then, the set of linear combinations {xi1 , . . . , xil}

stored at S ′ = {ŝi1 , . . . , ŝil} is of rank l.

Lemma 28 Matroids M1(Ê, I1) and M2(Ê, I2) are valid matroids of rank |E|+ h.

Proof: It is easy to verify that set I1 satisfies the three conditions of Defini-

tion 26. The rank of M1 is equal to the cardinality of V̂1, i.e., |E|+ h.
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Similarly, it is easy to see that I2 satisfies that first two conditions of Defini-

tion 26. To show the third condition, we divide set V̂2 into two sets V̂ 1
2 = {v̂1

e | e ∈ E}

and V̂ 2
2 = {ŝ1, . . . , ŝn}. Let Y1 and Y2 be two elements of I2 such that |Y1| > |Y2|.

Then, at least one of the following two statements hold:

• The number of edges in Y1 incident to nodes in V̂ 1
2 is strictly larger than the

number of edges in Y2 incident to nodes in V̂ 1
2 . In this case, one of the edges e

in Y1 incident to a node in V̂ 1
2 can be added to Y2, such that Y2 ∪ {e} ∈ I2.

• The number of edges in Y1 incident to nodes in V̂ 2
2 is strictly larger than the

number of edges in Y2 incident to nodes in V̂ 2
2 . Then, the set of linear combi-

nations stored at nodes in V̂ 2
2 incident to Y1 has a higher rank than the set of

linear combinations stored at nodes in V̂ 2
2 incident to Y2. Thus, in this case,

one of the edges e in Y1 incident to a node in V̂ 2
2 can be added to Y2, such that

Y2 ∪ {e} ∈ I2.

3. Finding Disjoint Paths

The next step is to find the minimum-weight common base Ê ′ of two matroids

M1(Ê, I1) and M2(Ê, I2). This can be done efficiently, in polynomial time, us-

ing a standard matroid intersection algorithm (see e.g., [48, 53]). Note that Ê ′ ⊆ Ê

is a matching of H(V̂ , Ê). This is due to the matching constraints are imposed by

matroids M1 and M2. Also, the size of Ê ′ is equal to the size of the set V̂1, hence

Ê ′ is a maximum matching. Note also, that exactly h nodes in {ŝ1, . . . , ŝn} have an

edge in Ê ′ incident to them. We denote these nodes by {ŝi1 , . . . , ŝih}.

The final step is to transform the maximum matching Ê ′ of H(V̂ , Ê) into a set of

h edge-disjoint paths {P̂1, P̂2 . . . , P̂h} that connect a subset of sources {si1 , si2 , . . . , sih}
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in S to the destination node t by using the method described in Section VII.1.

We summarize our discussion by the following theorem.

Theorem 29 The algorithm described above finds, in polynomial time, an optimal

solution to Problem DDR.

Proof: Follows from lemmas 27 and 28 and the correctness of the matroid

intersection algorithm.

F. Numerical Results

In order to evaluate the performance of the proposed solution, we have used six

practical ISP topologies of the backbone networks from the Rocketfuel project [22].

For the purpose of simulations each backbone ISP map is transformed into a graph

where each backbone router is represented by a node, and a link between any pair of

backbone routers is represented by an edge. The cost assigned to each edge is equal

to the corresponding link weight inferred by Rocketfuel. The approximation of link

weights is based on end-to-end measurements [54].

In each experiment we start by choosing a random set of n sources and a terminal

node from an ISP topology. Then we create a file that contains r blocks. We assign a

random linear combination of these blocks to each source. We then find a solution to

Problem DDR by using two different techniques. First technique uses the algorithm

presented in Section VII.E. The second technique relies on the following greedy

solution.

1. Let S be the set of all subsets of r sources,

2. For each set Si ∈ S in an arbitrary order:

• If rank of the blocks assigned to Si is r then:
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– Find r edge disjoint paths. If paths exist, return these paths, other-

wise, go to Step 2.

We define the performance metric, referred to as gain, as the ratio of the cost of

the solution obtained through the heuristic and the cost of the solution presented in

Section VII.E. We performed 1000 random experiments on each of six ISP topologies.

The results in Figure 45 show an average gain of about 1.6. Furthermore, Figure 46

shows the number of attempts that the greedy heuristic makes in order to get first

feasible solution is on average about 3. Note that algorithm presented in Section VII.E

always finds the least cost optimal solution in one attempt.

G. Conclusion

This chapter focus on the problem of distributed data retrieval where the data is

distributed across different servers using a combination of replication and coding.

The objective is to connect the terminal with the subset of sources hosting linearly

independent packets using the least cost paths. We present a simple and intuitive al-

gorithm to find an optimal solution for DDR based on matroid intersection algorithm

that works for a subclass of networks. The algorithm requires an explicit knowledge

of the paths from the sources to the terminal. In addition to this, we present an effi-

cient polynomial time algorithm for the DDR problem that does not need an explicit

knowledge of paths and works for general networks. Our experimental study show

the advantage of the presented algorithm over greedily selecting data sources for data

retrieval.
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Fig. 43. Execution of the algorithm for three-tier networks (a) A three-tier instance of

Problem DDR with five sources s1, . . . , s5 hosting blocks x1=a, x2=b, x3=a+b,

x4=a+c, x5=a+b respectively. There are six paths from the sources to the ter-

minal: P1={s1, u, t}, P2={s1, v, t}, P3={s2, w, t}, P4={s3, v, t}, P5={s4, w, t},
P6={s5, w, t} with the corresponding costs as c(P1)=12, c(P2)=4, c(P3)=6,

c(P4)=10, c(P5)=10, c(P6)=10, and the corresponding blocks x(P1)=x1,

x(P2)=x1, x(P3)=x2, x(P4)=x3, x(P5)=x4, x(P6)=x5 respectively. (b) Path

P̄={P2, P3} selected in the second iteration (shown in bold). (c) The directed

graph H constructed in the third iteration of the proposed algorithm. (d) The

minimum cost path m = {P5, P3, P4, P2, P1} from P1={P5} to P2={P1}
(shown in bold), c(m) = 22. (e) The optimal solution P̄={P1, P4, P5} (shown

in bold).
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Fig. 44. Execution of the algorithm for general networks. (a) A general instance for

Problem DDR. (b) Construction of an auxiliary graph H(V̂1, V̂2, Ê) (nodes

in V̂1 are black and nodes in V̂2 are shown in white). (c) Bi-partite graph

H(V̂1, V̂2, Ê). (d) Maximum matching inH(V̂1, V̂2, Ê). (e) An optimal solution

to Problem DDR.
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Fig. 45. Simulation results for Gain for six ISP backbone topologies given by Rocket-

fuel [22].

Fig. 46. Simulation results for number of iterations taken by heuristic to find a feasible

solution for six ISP backbone topologies given by Rocketfuel [22].
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CHAPTER VIII

EFFICIENT REROUTING ALGORITHMS FOR CONGESTION MITIGATION∗

In the advent of smaller devices, a significant increase in the density of on-chip com-

ponents has raised congestion and overflow as critical issues in VLSI physical design

automation. In this chapter, we present novel techniques for reducing congestion and

minimizing overflows. Our methods are based on ripping-up nets that go through the

congested areas and replacing them with congestion-aware topologies.

Our contributions can be summarized as follows. First, we present several effi-

cient algorithms for finding congestion-aware Steiner trees, i.e., trees that avoid con-

gested areas of the chip. Next, we show that the novel technique of network coding

can lead to further improvements in routability, reduction of congestion, and overflow

avoidance. Finally, we present an algorithm for identifying efficient congestion-aware

network coding topologies. We evaluate the performance of the proposed algorithms

through extensive simulations.

A. Introduction

In almost any VLSI design flow, global routing is an essential stage that determines

the signal interconnections. Therefore, the capability of the global router may signifi-

cantly affect the design turn-around time. Moreover, the results of the global routing

stage impact many circuit characteristics, such as power, timing, area, and signal

integrity. Global routing poses major challenges in terms of the efficient computation

of quality routes. In fact, most of the global routing problems, even special cases,

∗Parts of this chapter are reprinted with permission from “Efficient Congestion
Mitigation Using Congestion-Aware Steiner Trees and Network Coding Topologies”
by M. A. R. Chaudhry, Z. Asad, A. Sprintson, and J. Hu VLSI Design, vol. 2011,
Article ID 892310, 9 pages, 2011.
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tend to be NP-complete [55], [56].

In the advent of smaller devices, a significant increase in the density of on-chip

components results in a larger number of nets that need to be routed, which, together

with more stringent routing constraints, results in increasing congestion and overflow.

In this chapter, we propose novel techniques for congestion avoidance and overflow

reduction. Our methods are designed for the rip-up-and-reroute phase of the global

routing stage. At this stage, all the nets have already been routed using a standard

pre-routing technique, however some of the nets need to be rerouted due to high

congestion and overflow. Our methods are based on ripping-up nets that go through

congested areas and replacing them with congestion-aware topologies. The proposed

techniques facilitate even distribution of the routing load along the available routing

areas. We propose efficient algorithms for finding congestion-aware Steiner trees that

favor uncongested routes. In addition, we use the novel technique of network coding

for further reduction of congestion and overflow avoidance.

1. Congestion-aware Steiner Trees

The major goal of congestion-aware Steiner tree routing is to find a tree that connects

the required set of nodes (pins of a net) while avoiding congested areas with a min-

imum penalty in terms of the total wirelength. In addition, the running time of the

routing algorithm should scale well with the growing number of nets. These require-

ments pose several challenges in terms of the algorithm design. The first challenge

is to select a cost function that adequately captures the local congestion conditions

at the edges of the routing graph. Next, the algorithm should find a minimum cost

tree within acceptable running time. Since finding a Steiner tree is an NP-complete

problem, the algorithm needs to use an approximation scheme or employ a heuristic

approach. Finally, the proposed algorithm should ensure that the overall performance
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of the rip-up-and-reroute phase is satisfactory in terms of congestion mitigation and

overflow reduction. In this chapter we evaluate several cost functions which take into

account various factors such as wire density, overflow, and congestion history. We

propose several efficient algorithms for Steiner tree routing and compare their per-

formance. Our algorithms are based on known approximations for the Steiner tree

problem, heuristic methods, and artificial intelligence techniques.

2. Network Coding

The basic idea of the network coding technique [1] is to enable the intermediate nodes

to generate new signals by combining the signals arriving over their incoming wires.

This is in contrast to the standard approach, in which each node can only forward or

duplicate the incoming signals.

For example, consider a routing instance depicted in Figure 47(a). In this exam-

ple, we need to route two nets, one connecting source s1 with terminals t1, t2, and t3,

and the other connecting source s2 with the same set of terminals. The underlying

routing graph is represented by a grid as shown in Figure 47(a). Suppose that due

to congestion each edge of this graph has a residual capacity of one unit, i.e., each

edge can accommodate only a single wire. It is easy to verify that using traditional

Steiner tree routing only one net can be routed without an overflow. For example,

Figure 47(b) shows a possible routing of a net that connects s1 with terminals t1, t2, t3.

In contrast, Figure 47(c) shows that routing of both nets results in an overflow. In

this example, two nets transmit different signals, a and b, over separate Steiner trees.

Figure 47(d) shows that the network coding approach allows to route both nets with-

out overflows. With this approach, the terminal t1 creates a new signal, a⊕ b, which

is delivered to terminals t2 and t3, while the signals a and b are delivered to terminals

t2, and t3 directly. It is easy to verify that each terminal can decode the two original
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symbols a and b.

The network coding technique offers two distinct advantages. First, it has a

potential of solving difficult cases that cannot be solved using traditional routing.

For example, for the routing instance shown in Figure 47 the traditional routing

results in an overflow of value 1 whereas with the network coding technique there are

no overflows. Second, the network coding technique can decrease the total wirelength.

For example, in the routing instance shown in Figure 47 the total wirelength for the

traditional routing solution is 8 whereas for the network coding solution the total

wirelength is 7.

3. Previous Work

In the past decades, researchers have strived to improve the performance of global

routing algorithms (see e.g., [57], [58], [59], and references therein). To handle the

complexity of large scale global routing, multilevel routing techniques are proposed

in [60] and [61]. Recently proposed BoxRouter [62,63] is based on progressive Integer

Linear Programming (ILP) and rip-up-and-reroute techniques. A fast routing method

is presented in [64]. Reference [65] proposes an approach based on the Lagrangian

multiplier technique. An effective edge shifting technique is presented in [66]. Most

of these previous works adopt the rip-up-and-reroute strategy. However, they usually

reroute one path (i.e., a 2-pin connection) at a time. In contrast, our method reroutes

entire multi-pin nets. We also propose to use network coding techniques to further

reduce congestion and eliminate overflows.
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Fig. 47. (a) The underlying routing graph with two source nodes s1, s2, and three

terminals t1, t2, t3. (b) A rectilinear Steiner tree that connects source s1 to all

terminals. (c) Two rectilinear Steiner trees that connect sources s1 and s2 to

all terminals. (d) A network coding solution.

4. Contribution

The chapter makes the following contributions. First, we propose several algorithms

for finding efficient congestion-aware Steiner trees. Second, we show that the novel

technique of network coding can lead to further improvements in routability, reduc-

tion of congestion, and overflow minimization. Finally, we provide an algorithm for

identifying efficient congestion-aware network coding topologies. We evaluate the

performance of the proposed algorithms through extensive simulations.
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B. Model

In this chapter, we adopt the most commonly used global routing model. The routing

topology is represented by a grid graph G(V,E), where each node v ∈ V corresponds

to a global routing cell (GCell) [63,65] and each routing edge e ∈ E corresponds to a

boundary between two adjacent GCells. A set S = {n1, n2, . . . , n|S|} of nets are to be

routed on this graph. Each net ni ∈ S connects a source node si with terminal nodes

Ti = {t1, t2, . . . , t|Ti|}. If there is a wire connection between two adjacent GCells,

the wire must cross their boundary and utilize the corresponding routing edge. Each

routing edge e ∈ E has a certain routing capacity c(e) which determines the number

of wires that can pass through this edge. We denote by η(e) the number of wires that

are currently using edge e.

1. Global Routing Metric

The goal of a global router is to minimize congestion. Some of the important metrics

for a global router are defined as follows:

• Overflow: For each edge e ∈ E, the overflow ov(e) of e is defined as

ov(e) =

 η(e)− c(e) if η(e) > c(e)

0 otherwise.

The maximum overflow ovmax is defined as

ovmax = max
e∈E

ov(e).

Total overflow ovtot is defined as

ovtot =
∑
e∈E

ov(e).
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• Wirelength: Total wire-length wlen is defined as

wlen =
∑
e∈E

η(e).

• Density: The density d(e) of edge e ∈ E is defined as

d(e) =
η(e)

c(e)
.

2. Cost Functions

Our algorithms associate each edge e ∈ E in the graph with a cost function ρ(e)

which captures its congestion and overflow. The cost of the tree is defined as the sum

of the costs of all of its edges. Our goal is to identify trees that go through congested

areas and replace them by Steiner trees or network coding topologies that go through

areas with low congestion.

In this work we consider several cost functions, described below.

Polynomial Cost Function. We propose a cost assignment function where

the cost of an overflowed edge is a polynomial function of the sum of its density and

overflow. Formally, our proposed cost function is defined as follows:

ρ(e) = (d(e) + ov(e))α, (8.1)

where α is a constant which determines the relative penalty for the congested edges.

Exponential Cost Function. We use the cost assignment function proposed

by [65]. With this cost assignment, the cost of an edge is an exponential function of

its density:

ρ(e) =

 Exp(β · (d(e)− 1)) if d(e) > 1

d(e) otherwise,
(8.2)

where β is a constant which determines the penalty for overflowed edges.
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History-based Cost Function. This cost function assigns cost to an edge

based on its congestion history [63, 65]. Specifically, each edge is associated with a

parameter he that specifies the number of times the edge has been overflowed during

the previous iterations of the algorithm. That is, each time the edge with an overflow

is used, the parameter he is incremented by one. Then, the modified cost ρ′(e) of the

edge is defined as follows:

ρ′(e) = 1 + he · ρ(e). (8.3)

Here, ρ(e) is either the polynomial cost function (Equation (8.1)) or exponential

cost function (Equation (8.2)). If the density of the edge is less than or equal to one,

the parameter he is initially set to zero.

Since we focus on the rerouting phase, we assume that for each net ni ∈ S there

exists a Steiner tree φi which connects all nodes in ni. Given a set of trees {φ |ni ∈ S}

we can determine the values of ov(e), η(e) for each edge e ∈ E and identify the set

of congested nets S ′ ⊆ S. A net ni ∈ S ′ is referred to as congested if its Steiner tree

φi has at least one edge with overflow.

We propose a two-phase solution for rerouting congested nets using congestion-

aware topologies. In the first phase we iteratively rip-up each net ni ∈ S ′ and reroute

it using a congestion-aware Steiner tree with the goal of minimizing the maximum

overflow ovmax and the total overflow ovtot. In second phase we deal with the nets

that remain congested at the end of the first phase and rip-up-and-reroute pairs of

congested nets using congestion-aware network coding topologies to further reduce

congestion and minimize the number of overflows. Note that the nets considered in

phase two correspond to the difficult cases where congestion avoidance was not possi-

ble even after several attempts of ripping-up and rerouting individual nets. Therefore

in the second phase we consider the pairs of congested nets for further improvement.
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Example given in Figure 47 shows the advantage of using network coding topologies

for routing pairs of nets over using standard routing techniques that handle each net

separately.

C. Congestion-Aware Steiner Trees

In this section we present several techniques for finding congestion-aware Steiner

trees. Our goal is to find Steiner trees that minimize congestion with a minimum

penalty in terms of the overall wirelength. We would like to achieve better trade-

offs between congestion mitigation and total wirelength. These tradeoffs are useful

for practical applications, as in some cases congestion mitigation is preferable to

wirelength reduction, whereas in other cases the wirelength reduction is of higher

priority.

1. Previous Work on Steiner Tree Routing

The Steiner tree problem is a well studied NP-complete problem [18]. There is a

wealth of heuristic and approximate solutions that have been developed for this prob-

lem. The best known approximation algorithm has an approximation ratio of 1.55

(i.e., the cost of the tree returned by the algorithm is less than 1.55 times the op-

timum) [67]. The best known approximations require significant computation time

so we focus on computationally feasible and easy to implement approximation and

heuristic solution for constructing Steiner trees.

2. Algorithms for Finding Congestion-Aware Trees

As mentioned above, our goal is to rip-up and reroute nets that use congested edges

of G(V,E). For each net ni ∈ S which has been ripped up, we need to find an



126

alternative Steiner tree that uses uncongested routes. In this section we describe five

algorithms for finding congestion-aware Steiner trees. The first three algorithms use

combinatorial techniques (see e.g., [68], [55], [69]) while the last two are based on the

intelligent search techniques [70]. The performance of the algorithms is evaluated in

Section E.

a. Algorithm stTree1

This algorithm approximates a minimum cost Steiner tree by using a shortest path

tree. A shortest path tree is a union of the shortest paths between source si and a

set of terminals Ti. A shortest path tree can be identified by a single invocation of

Dijkstra’s algorithm. However, the cost of the tree may be significantly higher than

the optimum.

b. Algorithm stTree2

This algorithm constructs the tree in an iterative manner. We iteratively process the

terminals in Ti in the increasing order of their distance form si. More specifically, we

first find a shortest path P1 between source si and terminal t1. Then, we assign a zero

cost to all edges that belong to P1 and find a shortest path P2 between s and t2 with

respect to modified costs. The idea behind this algorithm is to encourage sharing of

the edges between different paths. That is, if an edge e belongs to P1, it can be used

in P2 with no additional cost. In general, when finding a shortest path to terminal t,

all edges that belong to paths of previously processed terminals are assigned a zero

cost. This algorithm requires |T |−1 iterations of Dijkstra’s algorithm, but it typically

returns a lower cost tree than Algorithm stTree1.
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c. Algorithm stTree3

This is a standard approximation algorithm with the approximation ratio of 2 (i.e.,

the cost of the tree returned by the algorithm is at most two times higher than the

optimal cost). Specifically, with this algorithm we find a shortest path between each

pair of nodes in the set T̄ = {T ∪ {si}}. Then, we construct a complete graph G′

such that each node in G′ corresponds to a node in T̄ . The weight of an edge e ∈ G′

is equal to the minimum length of the path between two corresponding nodes in T̄ .

The algorithm then finds a minimum spanning tree φ in G′. Next, each edge in φ

is substituted by the corresponding shortest path in G which results (after removing

redundant edges) in Steiner tree in G that connects source si with terminals in Ti.

d. Algorithm stTree4

Algorithm stTree4 is an intelligent search based algorithm. Our approach is inspired

by Algorithm A∗. Algorithm A∗ is a shortest path algorithm that uses a heuristic

function λ(v) to determine the order of visiting nodes of the graph, in order to improve

its running time. Specifically, for each node v we define λ(v) to be the maximum

distance between node v and a terminal t ∈ Ti which has not yet been visited. The

distance between v and t ∈ Ti is defined as the minimum number of hops that separate

v and t in G. The Algorithm stTree4 follows the same steps as Algorithm stTree1

but it uses Algorithm A∗ with heuristic function λ(v) to find shortest paths.

e. Algorithm stTree5

Algorithm stTree5 is also based on Algorithm A∗. It follows the same steps as

Algorithm stTree2, but it uses Algorithm A∗ with the same heuristic function λ(v)

as in Algorithm stTree4.
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D. Network Coding Techniques

In this section, we use the network coding techniques in order to achieve further

improvement in terms of minimizing congestion and reducing the number of overflows.

The network coding technique enables, under certain conditions, to share edges that

belong to different nets. For example, in the graph depicted in Figure 47(c) there

are two minimum Steiner trees, one transmitting signal a from source s1 and the

second transmitting signal b from source s2. These two trees clash at the middle

edge (emanating from t1), resulting in an overflow. This conflict can be resolved by

coding at node t1, which effectively allows two trees to share certain edges. Similarly,

our algorithm will identify pairs of nets that share terminals and then apply network

coding techniques to reduce overflow.

1. Previous Work on Network Coding

The problem of routing of multiple nets with shared terminals is related to the prob-

lem of establishing efficient multicast connections in communication networks. The

network coding technique was proposed in a seminal chapter by Ahlswede et al. [1]. It

was shown in [1] and [17] that the capacity of the multicast networks, i.e., the number

of packets that can be sent simultaneously from the source node s to all terminals

is equal to the minimum size of a cut that separates s from each terminal. Li et.

al. [17] proved that linear network codes are sufficient for achieving the capacity of

the network. In a subsequent work, Koetter and Médard [10] developed an algebraic

framework for network coding. This framework was used by Ho et al. [11] to show that

linear network codes can be efficiently constructed through a randomized algorithm.

Jaggi et al. [12] proposed a deterministic polynomial-time algorithm for finding feasi-

ble network codes in multicast networks. An initial study of applicability of network
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coding for improving the routability of VLSI designs appears in [71]. In [72] Gulati et

al. used network coding for improving the routability of FPGAs, focusing on finding

nets that are suitable for network coding. To the best of our knowledge, this is the

first work that proposes efficient algorithms for finding the congestion-aware network

coding topologies for VLSI circuits.

2. Network Coding Algorithm

We proceed to present the algorithm we use for constructing congestion-aware coding

networks that reduce congestion and overflow.

The algorithm includes the following steps. First, we identify the subset S ′ of S

that includes nets that go through edges with overflow. Second, we identify pairs of

nets in S ′ that share at least three common terminals. Next, we check, for each such

pair of nets (ni, nj) whether we can replace the Steiner trees for ni and nj by a more

efficient routing topology with respect to congestion and overflow.

More specifically, let (ni, nj) be a pair of nets in S ′ that share at least three

terminals. Let si and sj be the source nodes of these nets. We denote the set of

terminals shared by ni and nj by Tij. We also denote by T ′i the set of terminals in

Ti that do not belong to Tij, i.e., T ′i = Ti \ Tij. Similarly, we denote by T ′j the set

of terminals in Tj that do not belong to Tij, i.e., T ′j = Tj \ Tij. Next, we find two

congestion-aware Steiner trees φi and φj that connect si to T ′i and sj to T ′j . These

trees can be identified by one of the algorithms presented in Section C. The parameter

η(e) for each e ∈ G is updated after finding φi and φj.

Finally, we find a congestion-aware network coding topology φ̂ that connects si

and sj to the common set of terminals Tij in an iterative manner. First, we let φ̂ to

be a Steiner tree with source si and terminals Tij. All edges of φ̂ are always assigned

zero cost. We then sort the terminals Tij in the increasing order of their distance
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(in the original graph) from sj and process them in that order. For each terminal

t ∈ Tij, we reverse all the edges in the path Pi,t between source si and terminal t

and find a shortest path Pj,t between source sj and terminal t. Then, for each link

e(v, u) ∈ Pj,t we perform the following procedure. If there exists a link e′(u, v) in φ̂,

we remove e′(u, v) from φ̂, otherwise, we add e(v, u) to φ̂. A sample execution of this

procedure is shown in Figure 49. It is easy to verify that the algorithm produces a

feasible network coding topology, i.e., a topology that ensures that for each terminal

t ∈ Tij there are two edge disjoint paths that connect si and sj with t. The formal

description of algorithm for identifying the network coding topology, referred to as

Algorithm NC, is given in Figure 48.

After the execution of the algorithm, we determine whether the total cost of φ̂,

φi, and φj is less than the total cost of the original Steiner trees for nets ni and nj.

If there is a reduction in terms of cost, the two original Steiner trees are replaced by

φ̂, φi, and φj.

Our experimental results presented in Section E, show that the number of coding

opportunities is relatively small. However, by applying the network coding technique

on a limited number of nets we can achieve a significant reduction in the number of

overflows. Also, since the network coding technique is applied to a limited number

of nets, the overhead in terms of the number of additional required gates is relatively

small.

E. Performance Evaluation

We have evaluated the performance of our algorithms using the ISPD98 routing bench-

marks [73]. All the experiments are performed on a 3.2 GHz Intel Xeon dual-core
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Algorithm NC (G, si, sj, Tij, T
′
i , T

′
j)

1 Find a Steiner tree φi connects si to terminals in T ′i
2 Find a Steiner tree φj connects sj to terminals in T ′j
3 For each link e ∈ T ′i ∪ T ′j update η(e)

4 Find a Steiner tree φ̂ that connects si to terminals in Tij

5 Assign zero cost to all edges in φ̂
6 For each terminal t ∈ Tij let d(t) be the shortest distance between sj and t
7 For all terminals t ∈ Tij in the increasing order of d(t) do:
8 Let G′(V ′, E ′) be a graph formed from G(V,E) by reversing all edges in
Pi,t,

where Pi,t is a path from si to t in φ̂
9 Find shortest path Pj,t from source sj to terminal t in G′(V ′, E ′)

10 Assign zero cost to all edges of Pj,t
11 For each edge e(v, u) ∈ Pj,t do

12 If there exists an edge e′(u, v) ∈ φ̂, remove e′(u, v) from φ̂

13 Otherwise, add e(v, u) to φ̂

14 Return φ̂, φi, and φj

Fig. 48. Algorithm NC

machine. In all experiments, we first run the Steiner tree tool Flute [74] in order

to determine the initial routing of all nets in the benchmark. Next, we perform an

iterative procedure, referred to as Phase 1, which processes each net with overflows

and checks whether an alternative Steiner tree of lower cost and with smaller number

of overflows exists and if yes, rips up the existing tree and replaces it with an alter-

native one. This phase uses one of the algorithms described in Section C. Phase 1

terminates when four subsequent iterations yield the same cost and the number of

overflows, indicating that further reduction in the number overflows is unlikely.

Next, we check whether the application of the network coding technique can

further reduce the number of overflows. This phase is referred to as the Phase 2. We

first identify pairs of nets that have overflowed edges and share at least there terminals.

We then apply Algorithm NC, presented in Section D, to find an alternative network
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Fig. 49. Steps for finding network coding topology using Algorithm NC. (a) A graph

G with two nets ni and nj that connect nodes si and sj to terminals

T1 = T2 = T12 = {t1, t2, t3}. (b) A Steiner tree φ̂ connecting sj to T2. (c)

Modified graph in which the costs of all edges found in φ̂ are set equal to

zero and the edge connecting si to t1 is reversed. A shortest path from sj to

t1 is shown. (d) Modified graph in which the edges connecting si are t2 are

reversed. A shortest path from sj to t2 is shown. (e) Modified graph in which

the edges connecting si to t3 are reversed. A shortest path from sj to t3 is

shown.
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coding topology and perform rip-up and reroute if such a topology is beneficial in

terms of reducing congestion and reducing overflows.

The experimental results are shown in Figures 50, 51, 52. Figures present average

performance over all ten benchmarks. The cost function for this set of experiments

was set according to Equation (8.1) with α ≥ 10. We have observed that larger values

of α yield fewer overflows, but result in larger running times and increased wirelength.

We also note that for Phase 1, Algorithm stTree3 shows the best performance in terms

of reducing the total number of overflows as well as reducing the maximum overflow.

In fact, Algorithm stTree3 eliminates all overflows in all benchmarks, except for ibm4

as given in Table V. We also note that Algorithms stTree4 and stTree5 yield Steiner

trees with a smaller total wirelength. This is due to the fact the intelligent search

algorithms favor paths that have small hop count.

We observe that the network coding technique results in a considerable reduction

of the total number of overflows as well as reduces the maximum overflow. Further-

more, for each pair of nets for which we perform network coding, the number of

required gates is small. Moreover, in all cases that we have encountered the network

coding operations can be performed over finite field GF (2), i.e., each encoding node

can be implemented with a single XOR gate. Such gates incur minimum overhead

because they can serve as buffers for long wires. An example of how network coding

can help in reducing the wirelength of two nets in the ibm1 benchmark is shown in

Figure 54.

Figure 53 compares the running times of the different Algorithms for Phase 1

and Algorithm NC for Phase 2. As expected Algorithm stTree4 is one of the fastest

algorithms, whereas Algorithm stTree1 and stTree5 have running times comparable

to Algorithm stTree2. Moreover, Algorithms stTree4 and stTree5 are faster than

their counterparts (Algorithms stTree1 and stTree2, respectively). This is due to the
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Fig. 50. Comparison of the average total overflow for five different algorithms for

Phase 1 and Algorithm NC for Phase 2 on ISPD98 benchmark files using

the polynomial cost function. Results present average over 10 ISPD98 bench-

mark files.

fact that intelligent search methods speed up the search by preferring nodes closer to

the destination.

In the second set of experiments we evaluated the performance of three cost

functions mentioned in Section 2 on the ISPD98 benchmarks using Algorithm stTree3

for Phase 1 and Algorithm NC for Phase 2. For cost function given by Equation (8.1)

we used α ≥ 10 , whereas for cost function given by Equation (8.2) we used β ≥ 50

and for cost function given by Equation (8.3), ρ(e) was a polynomial cost function

with α ≥ 10. The results are shown in Table VI. Polynomial cost function showed
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Table V. Performance Evaluation Using Algorithm stTree3 for Phase 1 and Algo-

rithm NC for Phase 2 on ISPD98 Benchmarks with Polynomial Cost Func-

tions.

Phase 1 Phase 2
ovtot ovmax wlen ovtot ovmax wlen

ibm1 14 1 81058 6 1 80727
ibm2 0 0 216299 0 0 216299
ibm3 0 0 188391 0 0 188391
ibm4 125 2 196106 93 2 195949
ibm5 0 0 415681 0 0 415681
ibm6 0 0 336105 0 0 336105
ibm7 0 0 466381 0 0 466381
ibm8 0 0 477404 0 0 477404
ibm9 0 0 508661 0 0 508661
ibm10 0 0 711201 0 0 711201

Table VI. Performance Evaluation of Different Cost Functions (using Algo-

rithm stTree3 for Phase 1 and Algorithm NC for Phase 2) on ISPD98

Benchmarks.

Polynomial Cost Exponential Cost History Based Cost
ovtot ovmax ovtot ovmax ovtot ovmax

ibm1 0 0 117 1 0 0
ibm2 0 0 79 2 0 0
ibm3 0 0 0 0 0 0
ibm4 31 1 834 7 439 4
ibm5 0 0 0 0 0 0
ibm6 0 0 54 2 0 0
ibm7 0 0 82 1 0 0
ibm8 0 0 37 1 0 0
ibm9 0 0 15 1 0 0
ibm10 0 0 95 3 0 0
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Table VII. Performance Evaluation Using Algorithm stTree3 for Phase 1 and Algo-

rithm NC for Phase 2 on Modified ISPD98 Benchmarks (Decreased Both

Horizontal and Vertical Capacity by 1 Unit) with Polynomial Cost Func-

tion.

Flute Phase 1 Phase 2 Number of XOR Gates

ovtot ovmax wlen ovtot ovmax wlen ovtot ovmax wlen
ibm1 3257 14 60209 362 4 78161 184 3 77231 5
ibm2 5678 22 166193 18 1 217673 4 1 217737 12
ibm3 2308 16 145777 1 1 183395 0 0 183391 2
ibm4 4833 15 162844 550 6 193832 440 6 193131 52
ibm5 5 4 410038 0 0 476251 0 0 473265 70
ibm6 5492 27 276012 3 1 334165 1 1 334163 0
ibm7 4665 15 363678 1 1 473743 0 0 473743 2
ibm8 5400 13 403502 3 1 476880 0 0 476864 0
ibm9 8545 14 411524 16 1 496563 9 1 496409 24
ibm10 7103 20 574743 4 1 713569 1 1 713553 18

Table VIII. Improvement Over MaizeRouter for Modified (Congested) IBM Bench-

marks Using Algorithm stTree3 for Phase 1 and Algorithm NC for

Phase 2, Using Polynomial Cost Function.

Ver. Cap Hor. Cap MaizeRouter Phase 1 + Phase 2
ovtot ovmax ovtot ovmax

ibm1 11 13 43 1 34 1
ibm5 21 31 45326 25 45151 25
ibm8 17 28 649 9 641 9
ibm9 10 24 4006 9 3989 9
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Fig. 51. Comparison of the average maximum overflow for five different algorithms for

Phase 1 and Algorithm NC for Phase 2 on ISPD98 benchmark files using the

polynomial cost function. Results present average over 10 ISPD98 benchmark

files.

the best performance in terms of overflows.

In another set of experiments we worked on slightly modified ISPD98 benchmark

files. The modification included reducing the vertical and horizontal capacity by one

unit. For Phase 1 we used Algorithm stTree3 and then applied Algorithm NC in

Phase 2. Polynomial cost function given by Equation (8.1) was used to check the

performance on these more congested cases. The results are given in Table VII.

We have also conducted the same experiment on several selected benchmarks

on the output of MaizeRouter [66]. In these experiments, we iteratively reduced the

vertical and horizontal capacity of the ISPD98 benchmarks until we got overflows

while running them through MaizeRouter. Then, we used the output of MaizeRouter

as input to Phase 1 using Algorithm stTree3 and after that we have applied Algo-

rithm NC in Phase 2. The cost function used was polynomial with α = 10. The

results are shown in Table VIII. The results demonstrate that Algorithms stTree3
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Fig. 52. Comparison of the average total wirelength for five different algorithms for

Phase 1 and Algorithm NC for Phase 2 on ISPD98 benchmark files using the

polynomial cost function. Results present average over 10 ISPD98 benchmark

files.

combined with Algorithm NC perform well and can contribute to further reduction

of the number of overflows.

F. Conclusions

In this chapter we presented several efficient techniques for rip-up-and-reroute stage

of the global routing process. Our techniques are based on ripping-up nets that

go through highly congested areas and rerouting them using efficient Steiner tree

algorithms. We have considered several efficient Steiner tree algorithms as well as

several cost functions that take into account congestion and overflow. We have also

studied the application of the novel technique of network coding and showed that it

can efficiently handle difficult routing cases, facilitating reduction in the number of

overflows.
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Fig. 53. Comparison of the average running time for five different algorithms for

Phase 1 and Algorithm NC for Phase 2 on ISPD98 benchmark files using

the polynomial cost function. Results present average over 10 ISPD98 bench-

mark files.
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Fig. 54. A network coding topology for benchmark ibm1 for pair of nets ni = 66

and nj = 1531 computed using Algorithm NC. There are two nets ni and

nj with sources si = (60, 55), sj = (60, 57) and set of common terminals

Tij = (59, 55), (60, 54), (57, 55). Part(a) shows routing layout without Net-

work Coding. Part(b) shows routing layout with Network Coding. Exam-

ple shows that network coding has helped to reduce congestion on edges

(60, 54)-(60, 53)-(59, 53)-(58, 53).
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CHAPTER IX

CONCLUSION

The network coding has been shown to improve throughput, resilience and fault toler-

ance, and other quality of service parameters in communication networks as compared

to the traditional techniques. The basic idea of the network coding techniques is to

relish the ”mixing” nature of the information packets, i.e., many algebraic operations

can be performed over the data packets, whereas in traditional approaches informa-

tion packets are treated as physical commodities (e.g., cars) over which algebraic

operations (e.g., addition, subtraction etc) can not be performed, e.g., two cars can

not be added together. The network coding has many applications including data

communication, networking, and distributed storage. Since very first paper on the

network coding in 2000 there has been a lot of work done on the network coding

techniques, but many important questions are still unanswered. In this dissertation

we try to answer some of the important open questions dealing with algorithms and

application of the network coding. We study algorithms and applications of the net-

work coding for dynamic networks, wireless networks, distributed storage, as well as

other applications of the network coding technique. Our contributions can be divided

into following four major parts.

In the first part of the dissertation we investigate the network coding for the

dynamic networks, i.e., the network with frequently changing topologies and fre-

quently changing sets of users. We focus on the network code design for dynamic

networks. We first analyze the problem of maintaining the feasibility of a network

code by minimizing the encoding coefficients that need to be modified (after a change

in the network) to keep the network code feasible. Second, we present lower and

upper bounds on the number of modifications required in case of an addition of a new
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user or a failure of an edge. Third, we analyze the computational complexity of the

problem in hand, and prove it to be NP-complete. Fourth, we present an algorithm

for the network code design, and propose a new path-based assignment of encoding

coefficients to construct a feasible network code. Fifth, we present a new method

for assignment of encoding coefficients which is based on the prime numbers. The

presented assignment scheme is distributed in nature, and does not require the full

knowledge of the network topology. Sixth, we present an extensive simulation study

on practical networks to show the advantage of the proposed schemes in practical

scenarios.

In second part of the dissertation, we investigate the network coding problems

in wireless networks. More specifically we focus on the Index Coding problem. The

Index Coding problem has been proven to be NP-hard, and NP-hard to approximate.

First, we propose an efficient exact, and several heuristic solutions for the Index Cod-

ing problem. Our numerical study suggests that the exact solutions can be efficiently

identified for small instances, while the heuristic solutions with small computation

time can achieve near optimal performance for larger instances. We then focus on

finding approximate polynomial time solutions for the Index Coding problem with

mathematically proven guarantees. Noting that the Index Coding problem has been

proven to be NP-hard to approximate, we look at it from a different perspective and

define the Complementary Index Coding problem. The goal of the Complementary

Index Coding problem is to maximize the number of saved transmissions, i.e., the

number of transmissions that are saved by employing encoding compared to the solu-

tion that does not involve coding. Second, we prove that the Complementary Index

Coding problem can be approximated in several cases of practical importance. We

investigate both the multiple unicast and multiple multicast scenarios for the Com-

plementary Index Coding problem. In the multiple unicast scenario, each packet is
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requested by a single client; while in the multiple multicast scenario, each packet can

be requested by several clients. Third, we present approximation algorithms for find-

ing scalar and fractional linear solutions for the multiple unicast scenario. Fourth,

we show that for the multiple multicast scenario finding an approximation solution

is NP-hard, and the multiple multicast scenario is NP-hard to approximate as well.

Fifth, we focus on finding sparse solutions to the Index Coding problem with mathe-

matically provable guarantee. In a sparse solution each transmitted packet is a linear

combination of at most two original packets. We analyze both scalar and fractional

versions of the problem, and provide polynomial time solution. For the scalar case, we

present a polynomial time algorithm that achieves an approximation ratio of 2− 1√
n
.

For the fractional case, we present a polynomial time algorithm that provides the op-

timal solution to the problem. Sixth, we perform extensive experimental study which

demonstrate that our algorithms achieve good performance in practical scenarios.

In third part of the dissertation we consider the Distributed Data Retrieval prob-

lem i.e., the problem of accessing large data files stored at multiple locations across

a content distribution, peer-to-peer, or massive storage network. The data can be

stored in either original form, or encoded form at multiple network locations. We

present a novel efficient polynomial-time solution for this problem that leverages the

matroid theory. Experimental study on practical networks shows the advantage of

our solution over alternative approaches.

In fourth part of the dissertation, we study the applications of the network cod-

ing for congestion mitigation and overflow avoidance in the global routing stage of

Very Large Scale Integration (VLSI) physical design. We present novel techniques for

reducing congestion and minimizing overflows. Our methods are based on ripping-up

nets that go through the congested areas and replacing them with congestion-aware

topologies. Our contributions can be summarized as follows. First, we present sev-
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eral efficient algorithms for finding congestion-aware Steiner trees, i.e., trees that

avoid congested areas of the chip. Second, we show that the novel technique of

network coding can lead to further improvements in routability, reduction of conges-

tion, and overflow avoidance. Thirdly, we present an algorithm for identifying efficient

congestion-aware network coding topologies. We evaluate the performance of the pro-

posed algorithms through extensive simulations using the International Symposium

on Physical Design (ISPD) routing benchmarks.
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[37] R. Duh and M. Fürer, “Approximation of k-set cover by semi-local optimiza-

tion,” in Proceedings of the twenty-ninth annual ACM symposium on Theory of

computing, ser. STOC ’97, El Paso, Texas, United States, May 1997, pp. 256–264.

[38] R. Hassin and S. Lahav, “Maximizing the number of unused colors in the vertex

coloring problem,” Information Processing Letters, vol. 52, no. 2, pp. 87–90,

1994.

[39] V. V. Vazirani, Approximation Algorithms. Springer, 2004.



150

[40] R. Yuster and Z. Nutov, “Packing directed cycles efficiently,” in Proceedings of

the 29th International Symposium on Mathematical Foundations of Computer

Science, Aug. 2004, pp. 1–15.

[41] M. Krivelevich, Z. Nutov, M. R. Salavatipour, J. V. Yuster, and R. Yuster,

“Approximation algorithms and hardness results for cycle packing problems,”

ACM Transaction on Algorithms, vol. 3, no. 4, pp. 1–22, Nov. 2007.

[42] P. Seymour, “Packing directed circuits fractionally,” Combinatorica, vol. 15,

no. 2, pp. 281–288, 1995.

[43] D. Zuckerman, “Linear degree extractors and the inapproximability of max clique

and chromatic number,” in Proceedings of the thirty-eighth annual ACM sympo-

sium on Theory of computing.

[44] J. Suurballe and R. Tarjan, “A quick method for finding shortest pairs of disjoint

paths,” Networks, vol. 14, no. 2, pp. 325–336, 1984.

[45] S. Huang, A. Ramamoorthy, and M. Medard, “Minimum cost content distribu-

tion using network coding: Replication vs. coding at the source nodes,” Arxiv

preprint arXiv:0910.2263, 2009.

[46] A. Jiang, “Network coding for joint storage and transmission with minimum

cost,” in Proceedings of 2006 IEEE International Symposium on Information

Theory, Seattle, Washington, july 2006, pp. 1359–1363.

[47] J. Edmonds, “Matroid intersection,” Annals of Discrete Mathematics, vol. 4, pp.

39–49, 1979.

[48] A. Schrijver, Combinatorial Optimization: Polyhedra and Efficiency. Springer

Verlag, 2003.



151

[49] E. Lawler, Combinatorial optimization: networks and matroids. Dover Pubns,

2001.

[50] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Networks Flows. Prentice-Hall,

1993.

[51] J. Oxley, Matroid Theory. Oxford University Press, 2006.

[52] R. Karp, E. Upfal, and A. Wigderson, “Constructing a perfect matching is in

random nc,” Combinatorica, vol. 6, no. 1, pp. 35–48, 1986.

[53] J. Lee and J. Ryan, “Matroid applications and algorithms,” INFORMS Journal

on Computing, vol. 4, no. 1, pp. 70–98, 1992.

[54] R. Mahajan, N. Spring, D. Wetherall, and T. Anderson, “Inferring link weights

using end-to-end measurements,” in Proceedings of the 2nd ACM SIGCOMM

Workshop on Internet measurment, Nov. 2002, pp. 231–236.

[55] T. Lengauer, Combinatorial Algorithms for Integrated Circuit Layout. New

York, NY, USA: John Wiley & Sons, Inc., 1990.

[56] N. Sherwani, Algorithms for VLSI physical design automation. Kluwer Academic

Publishers, 1995.

[57] J. Hu and S. S. Sapatnekar, “A survey on multi-net global routing for integrated

circuits,” Integration: the VLSI Journal, vol. 31, no. 1, pp. 1–49, 2002.

[58] R. Kastner, E. Bozorgzadeh, and M. Sarrafzadeh, “Predictable routing,” in Pro-

ceedings of the 2000 IEEE/ACM international conference on Computer-aided

design. San Jose, California: IEEE Press, Nov. 2000, pp. 110–114.



152

[59] C. Albrecht, “Provably good global routing by a new approximation algorithm

for multicommodity flow,” in Proceedings of the 2000 international symposium

on Physical design, Apr. 2000, pp. 19–25.

[60] J. Cong, J. Fang, and Y. Zhang, “Multilevel approach to full-chip gridless

routing,” in Proceedings of the 2001 IEEE/ACM international conference on

Computer-aided design, Nov. 2001, pp. 396–403.

[61] Y. W. Chang and S. P. Lin, “Mr: a new framework for multilevel full-chip

routing,” IEEE Transactions on Computer-Aided Design, vol. 23, no. 5, pp.

793–800, May 2004.

[62] M. Cho and D. Pan, “Boxrouter: a new global router based on box expan-

sion and progressive ilp,” in Proceedings of 43rd ACM/IEEE Design Automation

Conference, San Francisco, California, Jul. 2006, pp. 373–378.

[63] M. Cho, K. Lu, K. Yuan, and D. Z. Pan, “Boxrouter 2.0: architecture and imple-

mentation of a hybrid and robust global router,” in Proceedings of IEEE/ACM

International Conference on Computer-Aided Design, San Jose, California, Nov.

2007, pp. 503–508.

[64] M. Pan and C. Chu, “Fastroute 2.0: A high-quality and efficient global router,”

in Proceedings of Asia and South Pacific Design Automation Conference, Pacifico

Yokohama, Yokohama, Jan. 2007, pp. 250–255.

[65] J. Roy and I. Markov, “High-performance routing at the nanometer scale,” in

Proceedings of IEEE/ACM International Conference on Computer-Aided Design,

San Jose, California, Nov. 2007, pp. 496–502.

[66] M. Moffitt, “Maizerouter: Engineering an effective global router,” in Proceedings



153

of Asia and South Pacific Design Automation Conference, Seoul, Korea, Mar.

2008, pp. 226–231.

[67] G. Robins and A. Zelikovski, “Improved steiner tree approximation in graphs,” in

Proceedings of 11th ACM-SIAM Symposium on Discrete Algorithms, San Fran-

cisco, California, Jan. 2000, pp. 770–779.

[68] S. Voß, “Steiner’s problem in graphs: Heuristic methods,” Discrete Appl. Math.,

vol. 40, no. 1, pp. 45–72, 1992.

[69] M. P. D. Arag ao and R. F. Werneck, “On the implementation of mst-based

heuristics for the steiner problem in graphs,” in Proceedings of 4th International

Workshop on Algorithm Engineering and Experiments, San Francisco, California,

Jan. 2002, pp. 1–15.

[70] R. Dechter and J. Pearl, “Generalized best-first search strategies and the opti-

mality of a∗,” Journal of the ACM, vol. 32, no. 3, pp. 505–536, 1985.

[71] N. Jayakumar, K. Gulati, S. Khatri, and A. Sprintson, “Network coding for

routability improvement in vlsi,” in Proceedings of IEEE/ACM International

Conference on Computer-Aided Design, San Jose, California, Nov. 2006, pp.

820–823.

[72] K. Gulati and S. P. Khatri, “Improving FPGA routability using network cod-

ing,” in Proceedings of the 18th ACM Great Lakes symposium on VLSI, Orlando,

Florida, May 2008, pp. 147–150.

[73] C. J. Alpert, “The ISPD98 circuit benchmark suite,” in Proceedings of the 1998

international symposium on Physical design, Monterey, California, Apr. 1998,

pp. 80–85.



154

[74] C. Chu, “Flute: Fast lookup table based wirelength estimation technique,” in

Proceddings of IEEE/ACM International Conference on Computer Aided Design,

San Jose, California, Nov. 2004, pp. 696–701.



155

VITA

Mohammad Asad Rehman Chaudhry received his B.Sc., and M.Sc., degrees both

in Electrical Engineering from The University of Engineering and Technology, Lahore

in 2001 and 2004 respectively. He received his Ph.D., in Electrical and Computer

Engineering from Texas A&M University in 2011.

He may be reached at 214 Zachry Engineering Center, College Station, TX,

U.S.A. 77843-3128. His email is masadch@gmail.com.




