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ABSTRACT

Collage Sculptures. (December 2011)

Elizabeth Grace Nemmert Muhm, B.S., University of Washington

Chair of Advisory Committee: Dr. Ergun Akleman

In this thesis, I develop a program to automatically assemble collage sculptures,

sets of arbitrary, non-overlapping elements arranged to fill out a recognizable target

shape according to a set of procedural rules. A user provides the target and element

shapes and the program procedurally places the elements in spherical holes in the

target space. A signed distance function defined over the target space keeps track of

the remaining holes to fill. Elements are preprocessed to determine the size of their

smallest enclosing bounding sphere. They are placed in holes based on the radius of

their bounding sphere. After each placement, the signed distance function is efficiently

updated to account for the newly added element. Elements are placed from largest to

smallest, filling the space to a predefined threshold. To demonstrate this program, I

generated a number of collage sculptures. In accordance with our procedural rules, the

elements in the resulting collage sculptures recognizably represent the target shape,

do not overlap, are not deformed from their original shape, and display variety in

size, position, and orientation.
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CHAPTER I

INTRODUCTION

The goal of this work is to create collage sculptures, 3D computer graphics sculptures

composed of arbitrary objects pieced together in a non-overlapping arrangement ac-

cording to a set of procedural rules. We present a new method for automatically

assembling user-given elements into a user-given shape to create such a collage sculp-

ture. The process relies on a voxel-based discretization of the target space to keep

track of open positions in which to place elements. Elements are added to the sculp-

ture one by one, and with each addition, the data structure describing the space is

efficiently updated. The resulting collage sculptures recognizably represent the tar-

get shape, and this is achieved without deforming the elements or allowing overlap of

elements.

I.1. Motivation

In the world of fine art, we see many examples of collage structures, one shape com-

prised of unique elements, such as the paintings of Arcimboldo and the sculptures of

Heather Jansch [2], [19]. See Fig. 1. Assemblage art in particular combines found

objects, elements not originally intended as art materials, into artistic compositions.

Work of Jean Dubuffet and Pablo Picasso exemplifies this style [7], [27], [29]. Other

collage examples include the work of illustrator Hanoch Piven who creates caricatures

using found objects to suggest facial features, as well as the work of Ergun Akleman

who assembles found internet images to create caricatures [1], [28]. See Fig. 2. Ad-

The journal model is IEEE Transactions on Visualization and Computer
Graphics.
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(a) Vertumnus, 1590 (b) Apollo, 2005 (c) Unknown

Fig. 1. Examples of collage art in fine art: (a) A collage image by Giuseppe Arcim-

boldo [2]. (b) A collage sculpture by Heather Jansch [19]. (c) A collage sculpture

from India.

(a) George Bush, 2011 (b) George Bush, 2011 (c) Barbra Streisand, 1994

Fig. 2. Caricature collage art: (a), (b) Caricature collages made by Ergun Akleman

[1]. (c) Caricature collage by Hanoch Piven [28].
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ditionally, George Hart creates geometric sculptures out of interesting elements such

as plastic forks and spoons [14]. In all these varied examples, the composite work

takes on a new meaning derived from the form and juxtaposition of its elements.

Following suit, in the realm of computer graphics, artists have created 3D collage

objects, often painstakingly modeling them by hand. Fitting the elements together

is a difficult challenge. For, it is time consuming to plan the best location for each

element and tedious to position them without overlap. Fig. 3 provides examples of 3D

collage sculptures from computer graphics [25], [5]. To create both examples, artists

modeled the characters by hand, planning each with detailed concept art.

More recently, researchers have developed algorithms to automatically place el-

ements in target shapes [3], [10], [12], [16], [18], [22], [24], [26]. Here, we present an

alternate algorithm that efficiently creates non-overlapping arrangements and offers

a new aesthetic for the collage sculptures created.

(a) Salad, 2006 (b) A character from ShapeShifter, 2010

Fig. 3. Examples of collage art in computer graphics, modeled by hand: (a) A collage

sculpture by Till Nowak [25]. (b) A collage character by Charlex Studio [5].
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I.2. Introduction

Our algorithm for automatically assembling elements into a target shape is driven

by the following aesthetic rules. (1) Visually clarify target shape. The arrangement

captures enough detail of the target shape to be recognizable. (2) Avoid element

overlap. The arranged elements will not overlap at any point. (3) Avoid element

deformation. In the tradition of assemblage art, the algorithm uses the elements as

they are found. It will not deform the objects. (4) Display variety. The arranged

elements will display variety in element size, orientation, and position.

To create a collage sculpture, users must only specify the target shape and a

set of element shapes. The program then automatically positions and orients those

element shapes to best fill out the target shape. The program keeps track of empty

space left to be filled and adds elements one at a time based on the amount of space

available. The space filled by the target shape is discretized into a voxel structure

over which a signed distance function is defined. Since each signed distance function

value represents the distance to the closest surface point from that voxel, a sphere

with a radius equal to the signed distance function value could be centered at that

voxel and just touch the closest surface point.

Using the idea of packing tangent spheres to avoid overlap, the elements are

preprocessed to find their smallest containing bounding sphere. One at a time, el-

ements are added into the collage sculpture and centered at a voxel whose current

signed distance function value is greater than or equal to the sphere’s radius. After

each element is added, the signed distance function values are efficiently updated to

account for the new element, and the process repeats. Originally, the signed distance

function measures the distance from each voxel to the surface of the target shape.

As each element is added, the surface definition is expanded to include the surface of
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the newly added element. Thus each voxel stores the nearest distance either to the

original target surface or the nearest element depending on whichever is closer.

The rest of this thesis is organized as follows: Chapter II summarizes related

work. Chapter III explains the process for creating collage sculptures. Chapter IV

details the element placement algorithm. Chapter V describes the implementation

and results, and Chapter VI concludes and discusses future work.
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CHAPTER II

RELATED WORK

With his composite head paintings, Guiseppe Arcimboldo (1527-1593) introduced the

idea of using collages of elements to represent a greater form. “No other artist before

him had ever thoroughly explored the possibilites of the subject and composition

techniques that were to create his so-called ‘composed heads’” [8]. Collage resurfaced

in the assemblage art of the 20th century. Artists such as Picasso, Dubuffet, and

Duchamp incorporated found objects into their compositions [29]. Now researchers

have taken this inspiration to the realm of computer science and used it to generate a

new body of work, taking advantage of computers to process the difficult task of as-

sembling elements to fit a space. This chapter summarizes work related to our Collage

Sculptures process and helps explain the progression of ideas that lead to this thesis.

It is divided into four sections, each of which covers a different category of influence

on the work. Section II.1 highlights the 2D image placing methods that preceded

the 3D element placing methods described in Section II.2. Section II.3 describes the

sphere packing problem, and II.4 summarizes shape description methods.

II.1. 2D Image Placing Methods

Computer algorithms have been explored as a means to creating collage art. Their

processing power can be leveraged to solve the difficult challenge of placing elements

while maintaining the essence of the larger form. A number of computer graphics

methods have been developed for creating 2D mosaics from tile elements. Jigsaw

Image Mosaics takes a database of input images of arbitrary shapes and sizes to

use as tiles to fill an arbitrary target shape [21]. The problem statement of Collage



7

Sculptures is nearly the 3D analog of that of Jigsaw Image Mosaics. However, their

solution allows small element deformations and overlap which violates two of our

procedural placing rules. Their algorithm relies on shape descriptions of the tiles

and target that are achieved with active contours. It then uses a best first search

for fitting tiles in open spaces that minimize an energy function accounting for color,

overlap, gaps, and optional deformations. Unlike this algorithm, our algorithm does

not spend as much time preprocessing each element because we use a more simplified

shape descriptor to match each element to its hole.

In contrast to Jigsaw Image Mosaics, Photomosaics deals with creating mosaics

from uniformly shaped rectangular tiles on a grid [9]. Tiles are placed based on

their color and form. Then, they are color corrected to better represent the target

image as a whole. Unlike Photomosaics, we use the physical shape of the element

to determine its location in the collage, we and do not alter the elements at all.

Simulating Decorative Mosaics builds mosaics out of uniform square tiles [15]. Using

Voronoi diagrams to arrange tiles, it ensures the tiles’ orientation preserves edges in

the target image. By using a signed distance function defined over the target shape,

we also keep track of boundaries and use this information to place elements, so they

do not protrude beyond the boundary of the target shape. Simulating Decorative

Mosaics suggests using smaller tiles in areas of more detail, and we similarly rely on

small elements to fill in details of the target shape. Another work, Escherization, takes

an arbitrary closed 2D shape and determines a similar shape that can be regularly

tiled to fill the space [20]. To create a tileable image shape, it often must deform

the input image to some degree. Diverging from Esherization, our method can use a

variety of elements in one collage rather than a single tiled element.
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II.2. 3D Element Placing Methods

The problem of automatically generating a collage generalizes to the problem of filling

a target space with discrete, non-overlapping elements. In the realm of computer

science, a number of methods for covering target surfaces or filling target shapes with

discrete elements have been developed. Our paper relates most closely to this body

of work.

An early work, Cellular Texture Generation, developed a method for synthesizing

repetitive discrete elements on a surface [10]. This method simplifies the modeling of

surface details like scales, feathers, and thorns. Like our work, their process automati-

cally places discrete elements in a constrained space. However, their process performs

a biologically-informed simulation to place its discrete “cells”, implemented as par-

ticles. Each cell keeps track of a vector of state information including its position

and orientation as well as a variety of simulation-related parameters. This algorithm

models biological behaviors influencing the cells as first order differential equations

which they term “cell programs.” Solving this system of equations yields the final

state of each cell. The final particle states are converted into the geometry of the

discrete elements which can then be rendered. In contrast, our element placement

algorithm is a procedural process that places elements in order of their size, filling

the target shape from the inside out.

Stereological Techniques for Solid Textures addressed the problem of creating

realistic-looking 3D textures for materials with discrete elements embedded within

them [18]. Such materials include concrete aggregates, asphalt, igneous rock, as well

as sponges which have discrete volumetric voids. Traditional stereological techniques

look at 2D slices of 3D materials and draw conclusions from the slices about the

volume as a whole. This work presents an approach for using stereological methods
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to gain statistical information about the density of the discrete elements within the

material. Once the density of the elements is known, elements are placed in the

volume and simulated annealing is used to resolve collisions. The simulated annealing

processes iteratively adjusts the element positions until a certain allowed collision

threshold is achieved. Our method, in contrast, places each element so that there is

never a collision to be resolved. We do not have the same concern of recreating an

existing distribution of elements. For this reason, we have more freedom in placing

each element and can guarantee no collisions at all.

Stroke Pattern Analysis and Synthesis presented a method for filling either 1D

paths or 2D regions with discrete stroke elements informed by a user-supplied input

stroke pattern [3]. From the input pattern, they identify discrete elements, either

single strokes or combinations of strokes close in proximity and continuation. They

calculate a bounding volume for each element. To synthesize a new pattern, they

initialize the target region with a distribution of the elements similar to the input

pattern. Then, they iterate through each placed element and analyze its neighborhood

of elements to find the most similar neighborhood in the input pattern. They use the

properties of the matching input neighborhood to update the synthesized element. In

contrast, our method is not influenced by an input example collage. We identify the

rules to procedurally generate our collages, and place elements one by one. Once our

elements are placed, they are fixed rather than iteratively revisited for adjusting.

Procedural Generation of Rock Piles Using Aperiodic Tiling developed a method

for generating piles of rocks in arbitrary target shapes in a way that avoids unrealistic

repetitive patterns [26]. They modify the corner cube algorithm to create a set of

256 different cubic tiles. Each tile has a set of points distributed randomly within it.

Using these points, they construct a Voronoi diagram with a closed Voronoi cell for

each point. Each Voronoi cell corresponds to one rock. To generate the rock geometry



10

from a cell, they randomly choose contact points on each edge and erode the cell away

everywhere except at the contact points. This yields a realistic pile of rocks where

each touches but does not overlap its neighbors. They ensure consistency across

corner cube boundaries by strategically repeating the placement of the Voronoi cell

center points in corresponding regions of certain corner cubes. We also try to avoid

free-floating elements by orienting each placed element such that one point either

touches or is close to touching its nearest neighbor. However, we cannot guarantee

that all elements will be contiguous. We rely on a close arrangement of small elements

to appear as a contiguous form.

Scales and Scale-like Structures also relies on a Voronoi diagram to place elements

in its solution for automatically synthesizing user-defined scales over a surface mesh

[22]. A user specifies a direction for the scales with a line to indicate their main

orientation. The algorithm generates both a vector field for the scale orientation as

well as a Voronoi tessellation for the scale positions over the surface. Using a user-

defined scale proxy model, the algorithm merges an instance of the scale onto each

Voronoi cell on the model’s surface. Unlike this work and others, we do not use a

Voronoi diagram to place our elements. Instead, we use procedural rules to place

elements, filling the space from the center outward and packing small elements in

between.

The use of the Voronoi diagram to place elements within tiles works well for

Procedural Generation of Rock Piles Using Aperiodic Tiling [26] as well as for Scales

and Scale-like Structures [22] because they generate or modify the element geometry

(rocks and scales, respectively) to neatly fill each cell. In our case, using a Voronoi al-

gorithm to divide up the target space then filling each Voronoi cell with a user-defined

element would be much more cumbersome. First, the Voronoi cells are more com-

plicated shapes than the spherical holes we consider when placing elements. Thus,
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using a Voronoi algorithm would necessitate a more sophisticated shape description

method for matching our elements to the Voronoi cells. Second, since we place pre-

defined element shapes in holes rather than generating geometry to perfectly fill the

holes, there would be unavoidable gaps when an element is smaller than the hole it

most closely fits. Further, it would be difficult to place the initial Voronoi sample

points to ensure a variety of hole sizes corresponding to the sizes of the user-defined

elements.

Piles of Objects describes a physically-based simulation method for building 3D

piles with arbitrary elements [16]. Their target shape is a general conical pile or

adjoining conical piles. They present a solution for efficiently filling piles of arbitrary

angles of repose with large numbers of elements. They simulate the elements falling

onto a growing pile of elements with which they collide. Physically-based methods

offer the benefit of realistic element arrangements. However, they are usually limited

by long simulation times. This work presents a solution to speeding up long simulation

times caused by using many simulated elements. They set elements inside the growing

pile to “sleep” so that those unseen elements are no longer considered for simulation.

This not only speeds the simulation but controls the shape of the pile. Our aesthetic

goal differs from that of Piles of Objects in that we do not aim to create physically-

plausible stacks of elements. If the target shape of a collage sculpture were a conical

pile, the elements would fill it but not look like they were lying at rest. The elements

would be close to each other, but they would most likely be touching at corner points

instead of contacting on flat edges the way gravity settles elements.

3D Collage: Expressive Non-Realistic Modeling developed a method for filling a

user-defined target shape with user-defined element shapes [12]. While our aesthetic

goals resemble those of the 3D Collage algorithm, we present a different algorithm

to build collages. The following aesthetic goals drive the 3D Collage algorithm: to
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resemble the target shape, to maximize the visibility of each element, and to restrict

overlap and scaling of the elements. Our procedural rules that drive element place-

ment and determine the look of the sculptures differ in that we place less emphasis

on the visibility of each element. Further, we completely restrict overlap and more

strictly control protrusions beyond the target surface. The 3D Collage method relies

on precomputing geometric moments, partial shape descriptors for each element and

the target shape, then matching the best fit elements to certain regions of the target.

In their work, the p, q, r−moment of shape S is: Mp,q,r(S) =
∑

xpyqzr where the sum

is over all surface points. A vector of moments V up to some order d describes each

shape. V (S) = (M0,0,0,M1,0,0, ...,Mi,j,k, ...,Mp,q,r), such that i + j + k ≤ d. They

compare an element shape’s vector of moments to a target region’s vector of mo-

ments and find best fit matches. Our method requires much less preprocessing of

the elements. We use bounding spheres to categorize our element shapes instead of

more sophisticated shape descriptors, and we rely on our constantly updated signed

distance function to provide descriptions of open spaces to be filled. We add elements

to a collage based on the size of hole remaining to be filled, starting with the largest

hole. Thus, the first element will be the biggest and fill the center of the object. Since

3D Collage places more emphasis on the visibility of each object, its elements will be

placed mostly on the surface, and its collages will grow in a very different fashion.

In contrast to the procedural collage generation method in both 3D Collage

and our own work, Discrete Element Textures presents a data-driven method for

synthesizing collages of discrete elements [24]. Users specify an input exemplar, a

small combination of elements whose characteristics are mimicked in the output. By

allowing users to specify this exemplar, Discrete Element Textures gives the user more

control over the output collage than does our procedural method. Our algorithm aims

for a more specific aesthetic. In Discrete Element Textures, the user also specifies an
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output domain, analogous to our target shape, which the algorithm will fill with its

collage of discrete elements. They simplify the representation of discrete elements by

reducing them to one or more sample points. Each sample records its position and

other attributes. We similarly simplify the representation of our elements by using

bounding spheres to represent them during placement. Their synthesis algorithm

relies on a neighborhood similarity metric that measures the similarity between two

patches of elements. Two neighborhoods are similar if they contain many “matching”

elements. Elements match if their relative position in the neighborhood and other

attributes are similar. They develop an energy formulation to express the desired

output collage based on the input exemplar and the output domain, and iteratively

minimize this energy formulation to generate a desirable output. Each iteration

improves the similarity between each sample’s neighborhood in the output and its

most similar neighborhood in the exemplar. Other conditions like restricting elements

to lie within the domain shape can also be handled in the energy formulation.

II.3. Sphere Packing

In our process, elements are placed into holes based on the size of their bounding

sphere. An element will be centered at a point in the target shape if the radius of its

bounding sphere is smaller than the closest surface to that point. To achieve our goal

of a space-filling arrangement, it is relevant to look at the sphere packing problem.

The sphere packing problem seeks the largest number of non-overlapping spheres that

can fit in a target space. Uniform spheres packed in a face-centered cubic arrangement

are known to fill about 74% of the volume of their target space [32]. The face-centered

cubic packing, a regular packing of uniform spheres, resembles the stacking of oranges

at a fruit stand. While the Kepler Conjecture, which states that this arrangement
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is the most dense packing of spheres, has been widely believed for centuries, it was

not proven until a 1998 upper-bound proof by Hales [6]. To achieve densely packed

elements, it is important to approximate these dense sphere packings.

II.4. Shape Descriptors

Our method uses bounding spheres as a simple and efficient shape descriptor for

matching our elements to their holes. Spheres are efficient to calculate, and they

achieved our aesthetic goals for our collage sculptures. However, many more so-

phisticated shape description methods have been developed. This section explains a

number of these shape descriptors. Our method for keeping track of the remaining

holes in the target space closely resembles one such method, namely a shape diameter

function as developed by Shapira, Shamir, and Cohen-Or [30]. It is described below.

The shape diameter function is a scalar function defined over a mesh that de-

scribes the diameter of the object near each point on the surface [30]. It was developed

as an expression of volume and thus a consistent descriptor over pose and topology

changes for use in mesh partitioning and skeletonisation algorithms. To calculate the

shape diameter function, rays are sent in a cone from a surface point in the direction

of the inverted normal at that point. The shape diameter value at that point is a

weighted average of all the ray lengths for rays that intersected the inside of the mesh.

We adapt this idea of a shape diameter function to be defined over a volume instead

of over a surface. The idea of a shape diameter function contributed to our represen-

tation of the empty volume in a growing collage sculpture as a constantly updated

signed distance function. Instead of sending rays to update the distance from a point,

though, we use a method to find the exact shortest distance. This way, each point in

our target space “knows” the open volume around it.
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Many other shape descriptors exist, and a number of them have been compared

by testing on the Princeton Shape Benchmark [31]. The Princeton Shape Benchmark

is a large database of polygonal models with categorized testing and training sets for

comparing different shape description and matching algorithms.

Modeling by Example uses a shape descriptor for performing both partial and

whole shape matching in an interactive modeling application [11]. In their application,

a user creates a model by selecting components from similar existing models in a

database. Components are classified as similar via similar shape signatures. For each

model A in the database, there are two voxel-based representations of the model: the

first is a rasterization of the boundary with a value of 1 in voxels that intersect the

boundary and 0 otherwise, RA; the second is a squared Euclidean Distance Transform

of the boundary, EA. To compare two shapes, the voxel representations are used to

capture the distance between corresponding points on the two shapes. Those with a

smaller overall difference are more similar. The distance between two shapes A and

B is computed as follows: d(A,B) = RA • EB + EA •RB.

Fully Automatic Registration of 3D Data Sets uses shape descriptions and partial

shape matching to reconstruct a 3D shape by piecing together portions of the model

created by 3D scans from different but overlapping viewpoints [17]. It relies on

visibility consistency or the similarity of two surfaces along the line of sight from

two different viewpoints to match surfaces.

Multi-scale Features for Approximate Alignment of Point-based Surfaces intro-

duces a method for extracting salient points from 3D scan data [23]. Since 3D scanner

data is so complex, it is important to have a smaller subset of reliable points to com-

pare between shapes. Then, shape descriptions can be computed using these points

to compare two partial shapes.

Salient Geometric Features for Partial Shape Matching and Similarity describes
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a means of calculating a small number of salient features on a triangulated mesh

to enable partial matching of meshes. It uses a hierarchical approach as it first

calculates local descriptors to represent patches of the surface. Then salient features

are calculated to represent groups of the local descriptors. Curvature of the surface

is one of the main factors in determining features. Areas of high curvature have more

descriptors and thus features. These descriptors are precomputed for a database of

objects, then geometric hashing is used to find matches [13].

While we chose bounding spheres as a simplified shape descriptor, a large number

of more sophisticated shape descriptors exist. Chapter VI suggests possible future

work that could benefit from using a different shape descriptor in our Collage Sculp-

ture process.
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CHAPTER III

PROCESS

III.1. Process Overview

Here we present the three steps in our process for creating a collage sculpture.

1. Preprocessing. To enable element placement, this step calculates a signed dis-

tance function for the user-defined target shape and calculates the radius of an

enclosing bounding sphere for each user-defined element shape. Section III.2

provides further description.

2. Element Placement. To assemble an arrangement of elements into a collage

sculpture, this step selects and positions each element in the target shape. This

represents the main body of the thesis work. Section III.3 provides further

description. This step consists of two procedures.

(a) Placement. This procedure takes care of selecting, placing, and orienting

an element in the target space.

(b) Updating. In response to the placement of each element, this procedure

updates the signed distance function for the next placement.

3. Export and Render. To save and view the final collage sculpture, this step

records the arrangement of elements and creates an image of the result. Sec-

tion III.4 provides further description.
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III.2. Preprocessing

The first step of the collage sculpture process is preprocessing the user-defined target

and element shapes. Here we prepare the user-defined shapes for use in the Element

Placement step.

To place elements in the target shape, we need to know the distance to the nearest

surface from each point. This way, we know the size of element we can place at each

point to avoid overlapping the nearest surface. To keep track of these distances, we

define a signed distance function over a volume enclosing the target shape. This

makes it possible to keep track of empty space waiting to be filled by elements. The

signed distance function value at a given point is equal to the size of element that

could be centered at that point.

Fig. 4. Signed distance function.
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Fig. 4 shows a hypothetical 2D example of a signed distance function defined

over a target shape. Example signed distance function values are depicted in red and

white. At any point with a signed distance function value S, there is a sphere of

open space with radius S. An element of size S centered at that position will not

overlap another surface. For our needs, it is enough that the signed distance function

be defined at discrete points over the target volume. We store one signed distance

value per voxel corresponding to a point within that voxel. This point is either the

exact center of the voxel, or, optionally, a point jittered from the voxel’s center to

break up the grid-based regularity of the voxel samples. If the voxel’s sample point

is jittered, all signed distance values are calculated from that offset sample point to

ensure accuracy.

Fig. 5. “Holes” in target space.
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Unless a point is filled by an element, it correlates to a “hole” in the target space.

A “hole” in the target space is a sphere of empty space. The radius of the hole is

the value of the signed distance function at the hole’s center point. Fig. 5 identifies

three holes in this particular target space. The radius of each is the distance from its

center to the nearest surface. In other words, the radius of each is the signed distance

function value at its center.

Fig. 6. Element placed by “size.”

To select an element to fill a hole in the target shape, we need to know the

“size” of the element. The “size” of an element is the radius of its smallest enclosing

bounding sphere. Given an element’s size, we know which holes we can fill with it.

An element will fit in a hole whose radius is greater than or equal to the element’s

size. Fig. 6 illustrates an element with size S fitting exactly in a hole of radius S.

Thus, in Preprocessing, we calculate the radius of the smallest enclosing bounding

sphere for each element as well as the target space signed distance function.
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III.3. Element Placement

Once we have the size of each element and the target space signed distance function

to understand the holes, we can place elements. We identified four aesthetic rules to

govern the Element Placement step. Each element will be placed in such a way to

abide by all rules.

• Visually clarify the target shape. The element arrangement must recognizably

represent the target shape. To this end, our elements will adequately fill the

target space and not protrude beyond its boundaries.

• Avoid element overlap. The arranged elements must not overlap each other at

any point.

• Avoid element deformation. The elements must not be deformed to fill a hole

in the target space. They must be used as found.

• Increase variety. The element arrangement must display variety in element size,

orientation, and position.

Using these rules to guide Element Placement guarantees collage sculptures that meet

our desired aesthetic. Element Placement consists of two procedures.

1. Placement. This procedure selects holes in a specific order and chooses the

elements to fill those holes. It places elements in a specific orientation.

2. Updating. This procedure updates the target space signed distance function

to account for each newly added element. After updating, the signed distance

function accurately represents the remaining open space.
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III.3.1. Placement

To incorporate the largest variety of element sizes, we place elements starting with the

largest that fits in the target space and continuing with increasingly smaller elements.

Once an element is placed, it fragments the remaining space so that progressively

smaller spaces are available. By placing elements biggest to smallest, we are able

to put big elements in large blocks of contiguous space. Smaller elements fill in the

remaining space. Fig. 7 depicts our element placement from largest to smallest. We

stop placing elements when the largest hole left is smaller than a certain cutoff size.

Fig. 8 illustrates the space fragmentation that can occur if elements are added

in the reverse order of smallest to largest. Contiguous blocks of space are divided so

that larger elements no longer fit.

(a) First placement (b) Next placements (c) Last placements

Fig. 7. Elements added in order of large to small allow a variety of element sizes.

To accomplish placing elements from largest to smallest, we choose holes in order

from biggest to smallest and fill each with the largest element that fits. Now that we

have the target space signed distance function, we can locate the largest hole. This
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corresponds to the point with the greatest signed distance function value. Since we

have preprocessed each element to determine its largest enclosing bounding sphere,

we can select the element with the largest size less than or equal to the radius of the

hole. This way, no element overlaps an already-placed element. Similarly, no element

protrudes beyond the boundary of the target shape.

Fig. 8. Space fragmentation if small elements are placed first. Larger elements cannot

be placed.

To incorporate a variety of element orientations, we orient each element in its hole

so that one point of it just touches, or comes close to touching, its nearest neighboring

surface when it is placed. If all elements were exactly as large as the hole in which

they were placed, all elements would be touching at least one neighbor. Without

scaling the user elements, however, this will not always be the case. Nonetheless, this

procedure ensures a variety of orientations. Also, it discourages “floating” elements

that break up the continuity of the target shape.
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III.3.2. Updating

For the signed distance function to accurately represent the remaining holes, we must

recalculate it after each element is placed. This way, each subsequent element is

guaranteed to not overlap a previous one.

To have an accurate measure of space between and among each newly placed

element, we update the definition of the “surface” to which the signed distance func-

tion measures. Initially, the signed distance function measures the distance from each

point to the target shape surface. With each new element, “surface” is expanded to

include the new element’s surface as well. We update the signed distance function at

those points whose new closest surface is the new element. This occurs for each new

element. This way, the signed distance function accounts for filled holes. It constantly

represents the open space left in the growing collage sculpture.

To eliminate filled positions from consideration for later placement, the Updating

procedure begins by flagging all points that lie inside a new element. After flagging

interior points, it proceeds to update the signed distance function for points whose new

closest surface is the new element. So, we loop through each position and determine

if the new element now brings the surface closer than the signed distance function

previously recorded. We can quickly eliminate points that do not need updating by

calculating the distance from each point to the new element’s bounding sphere. If the

distance to the bounding sphere is greater than or equal to the point’s current signed

distance function value, that point is too far from the new surface to need updating.

Then, for each position not eliminated by the bounding sphere distance test, we find

the nearest point on the new element surface. If the distance to this point is smaller

than the position’s current signed distance function, we update that signed distance

function value.
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Placement and Updating repeat in turn until the largest hole left is smaller than

a certain cutoff size. Once that cutoff size is reached, we proceed to the Export and

Render step.

III.4. Export and Render

In this step, we record all the placed elements together with their positions and

orientations in a format we can use to render the final collage sculpture. We render

the final collage sculpture, and the process is complete.
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CHAPTER IV

ELEMENT PLACEMENT ALGORITHM

The Element Placement step in the collage sculptures process is responsible for se-

lecting and placing the elements in a collage sculpture. It consists of two procedures:

(1) Placement, (2) Updating. The structure of the algorithm is shown in Fig. 9. It is

detailed in this chapter.

preprocessing;

r; {maximum radius of the bounding sphere of next element}

p; {position of the center of next element}

o; {orientation of next element}

r, p, o = find voxel with largest signed distance function;

while r ≥ threshold do

find element with closest radius to r, such that radius ≤ r;

position element at p;

orient element with o;

updating;

r, p, o = find voxel with largest signed distance function;

end while

export;

Fig. 9. Main collage sculpture process algorithm.
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IV.1. Placement

After preprocessing, the program enters the main loop of the Element Placement

algorithm which places an element on each iteration. To place elements in order from

biggest to smallest, it looks for the largest remaining hole to fill. The largest remaining

hole is centered at the voxel with the largest signed distance function value. Thus,

the program continues to place elements until the largest remaining signed distance

function value is smaller than the cutoff, threshold. The choice of threshold affects the

look of the collage sculpture: too large, and details remain unrepresented; too small,

and every little hole is filled in an extremely dense collage.

For the largest signed distance function value found on each iteration, there is

a hole to be filled. The program selects the element to place based on its bounding

sphere radius. It centers the element at the voxel’s effective center, filling the hole.

To orient the element, the program aligns the element’s stored direction from

its center to farthest point with the voxel’s direction to nearest neighbor. This way,

at least one point on the new element touches, or reaches near, its nearest neighbor

when it is placed.

Fig. 10. Assembling a collage sculpture. Teacup elements placed in teapot target.
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Fig. 10 captures a collage sculpture at three stages during its assembly. The

elements consist of teacups in a wide range of sizes while the target is a teapot. First

the largest teacups are placed in the center. Gradually smaller and smaller elements

are placed with no intersections. No more teacups are added when the remaining

holes are smaller than the threshold. If the threshold were larger, the sculpture might

look like either of the first two stages. Fig. 11 shows the resulting collage sculpture

with the target shape overlaid. No teacups protrude beyond the target boundaries.

Fig. 11. Collage sculpture within target boundaries.

IV.2. Updating

The Updating procedure addresses and recomputes the signed distance function at

each voxel that might be affected by a newly placed element. Fig. 12 outlines the

structure of this algorithm.
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flag interior voxels;

for v in all voxels do

if v is not inside an element then

d = distance from v to new element’s bounding sphere;

if d < (v’s signed distance function value) then

calculate closest distance from v to new element;

update v’s signed distance function value;

update v’s closest direction vector;

end if

end if

end for

Fig. 12. Updating procedure algorithm.

IV.2.1. Flag Interior Voxels

Updating begins by setting the signed distance function to zero at each voxel that lies

inside the new element. It loops through voxels in a bounding volume around the

new element. For each voxel it performs the classic inside/outside test.

1. Send a ray in a given direction.

2. Count the number of faces it hits.

3. Even number ⇒ outside; odd number ⇒ inside

To reduce error arising from a ray hitting the edge of two faces, we sent two rays.



30

• First ray: sent in the direction of one face’s normal.

• Second ray: sent in a random direction.

We ensure the number of hits for each ray is the same. If not, we take the least

number of hits because rays that intersect the edge of multiple faces erroneously

add all intersected faces to the hit count. For our application, this test performed

adequately.

IV.2.2. Compute Closest Surface Point

Once the interior voxels are flagged, all voxels whose closest surface point is now

the new element need updating. To quickly eliminate voxels too far from the new

element to need updating, we compute the shortest distance from each voxel to the

new element’s bounding sphere.

1. Calculate shortest distance, d, from voxel to bounding sphere:

d = |pe − pv| − r,

pe: position of the element

pv: position of the voxel

r: bounding sphere radius

2. If d <(voxel’s signed distance function) ⇒ voxel may need updating

3. Else ⇒ voxel doesn’t need updating

For each voxel that may still need updating, we compute the closest point on

the new element surface. If the distance to that point is less than the voxel’s current

signed distance function, it is updated. To compute the closest point, we search for

the closest point among all the vertices, edges, and faces of the polygonal element.
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The closest among these is the overall closest point to the voxel. Refer to Fig. 13 for

the structure of this algorithm. It is important that each face is a plane, and for this

reason, we require the element OBJ shapes to be triangulated.

To find the closest vertex to a given voxel, we calculate the squared distance

to each vertex. The equation to find the squared distance D between points p1 =

(x1, y1, z1) and p2 = (x2, y2, z2) is below.

D(p1, p2) = (x1 − x2)
2 + (y1 − y2)

2 + (z1 − z2)
2 (4.1)

Continuing with the computation of the closest surface point on an element, we

check each of the edges and faces for a closer point. For each edge (face), we calculate

the closest point p on the infinite line (plane) on which that edge (face) lies. If p

is within the edge (face), it is a candidate for the closest surface point. If it is a

candidate, we compute D from the voxel to p. If D is less than the currently saved

best D, we update the best D. Figs. 14 and 15 show the edge and face cases.

Below are the equations for calculating the closest point p on an edge.

• Let p1 and p2 be the vertices of the edge.

• Let p3 be the voxel point from which we are calculating.

p = p1 + u(p2 − p1) (4.2)

(p3 − p) • (p2 − p1) = 0 (4.3)

Equation 4.2 defines the infinite line on which the edge lies. u is a parameter along

that line. u is 0 at p1 and 1 at p2, so if u ∈ [0, 1] then p is in the line segment between

p1 and p2. Equation 4.3 states that p3 − p, is perpendicular to p2 − p1. This holds

because the closest direction from a point to a line (p3 - p) is always perpendicular

to the line direction (p2 - p1). To calculate p on an edge:
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pt; {point from which to measure shortest distance}

e; {polygonal element}

d = MAX FLOAT; {shortest distance from pt to e}

for vert in vertices of e do {compute distance to vertices}

tempD = squared distance from pt to vert;

if tempD < d then

d = tempD;

end if

end for

for edge in edges of e do {compute closest distance to edges}

p = closest point on line to pt;

if p in edge then

tempD = squared distance from pt to p;

if tempD < d then

d = tempD;

end if

end if

end for

for face in faces of e do {compute closest distance to faces}

p = closest point on face to pt;

if p in face then

tempD = squared distance from pt to p;

if tempD < d then

d = tempD;

end if

end if

d =
√
d;

end for

Fig. 13. Algorithm to compute shortest distance from a point to an element’s surface.
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(a) Closest point within edge (b) Closest point outside edge

Fig. 14. Two cases for the shortest distance between a point and an edge.

(a) Closest point within face (b) Closest point outside face

Fig. 15. Two cases for the shortest distance between a point and a face.
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1. Solve for u. Substitute Equation 4.2 into Equation 4.3.

u =
(p3 − p1) • (p2 − p1)

(p2 − p1) • (p2 − p1)
(4.4)

2. If u ' [0, 1] ⇒ p not within the edge. Go to next edge.

3. Else ⇒ p within edge, calculate D.

4. If D < (previous best D) ⇒ update best D.

Once the closest point among vertices and edges is found, continue to faces.

Below are the equations for calculating the closest point p on a face.

• Let p0, p1, and p2 be the vertices of the face.

• Let p3 be the voxel point from which we are calculating.

n • (p− p0) = 0 (4.5)

p = p3 + n3u (4.6)

Equation 4.5 is the equation for a plane with normal n in which the vertex p0

lies. This is the plane in which our triangular face lies. Equation 4.6 is the definition

of a ray that begins at point p3 and travels in the direction of n3. u is a parameter

along that ray. The point on a plane that is closest to p3 will be a projection of p3

onto the plane in the opposite direction of the plane’s normal. Thus, n3 = n. In

other words, the direction from p3 in which we are looking for an intersection on the

face is the negative of the face’s normal. If u is positive, the point along the ray it

describes is in the direction of n3 from p3. If u is negative, the point is behind p3. To

calculate p on a face:



35

1. Solve for u. Substitute Equation 4.6 into Equation 4.5.

u =
n • (p0 − p3)

n • n3
(4.7)

2. If u < 0 ⇒ plane is parallel to ray or plane is behind ray. Go to next face.

3. Else ⇒ calculate p.

4. Determine if p is within the face.

5. If p is within the face ⇒ calculate D.

6. Else ⇒ Go to next face.

7. If D < (previous best D) ⇒ update best D.

(a) Closest point within face (b) Closest point outside face

Fig. 16. Determining if point on a plane is within a triangular face.
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To determine if p lies within the triangular face formed by p0, p1, and p2, we look

at the relationship between the areas of the triangles formed by each of the edges and

p. Refer to Fig. 16 for illustration. v1 and v2 are the vectors defining two edges of

the face.

v1 = p1 − p0 (4.8)

v2 = p2 − p0 (4.9)

The area of a triangle is the half the magnitude of the cross product of the edge

vectors.

A =
1

2
|v1 × v2| (4.10)

We define an area vector, !A for the triangle face that is the cross product of v1 and

v2.

!A = v1 × v2 (4.11)

Likewise, we define area vectors for the triangles formed by each of the edges and p,

the intersected point in the plane.

!A0 = (p1 − p)× (p2 − p) (4.12)

!A1 = (p2 − p)× (p0 − p) (4.13)

!A2 = (p0 − p)× (p1 − p) (4.14)

To determine if p lies inside the face, we compare the direction of the area vectors

!A, !A0, !A1, !A2. If they all face the same direction, p is within the face. Otherwise,

p is outside the face. We can test that all area vectors face in the same direction
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by comparing the signs of the same non-zero component of each. If the signs are all

matching, p is inside the face. Then, we use Equation 4.1 to calculate the squared

distance from p3 to p. If this squared distance is shorter than the previous saved

shortest distance to the element, we replace the shortest distance. After we have

looped through all vertices, edges, and faces of an element, we know the shortest

squared distance from the voxel to the element.

Finally, given the shortest squared distance from a voxel to the element, we take

the square root to get the absolute shortest distance d. If d is less than the voxel’s

signed distance function value, we update it.

To summarize, the Element Placement algorithm fills holes in the target space

from largest to smallest updating the target space signed distance function after each

placement. When updating the signed distance function, the algorithm first flags

interior voxels using a variation of the classic inside test. Then, it updates the signed

distance function values for voxels near the new element. A voxel is considered “near”

the new element based on its distance to the element’s bounding sphere. For all near

voxels, the exact distance to the new element is calculated by finding the shortest

squared distance among the distances to the element’s vertices, edges, and faces. The

computed shortest distance is compared to the voxel’s signed distance function value.

If the new distance is smaller, the signed distance function value is updated.
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CHAPTER V

IMPLEMENTATION AND RESULTS

For this thesis, I developed a C++ program and procedures for interacting with both

Houdini 10 and Maya, two 3D animation packages, to implement the collage sculpture

process. I used Houdini in the Preprocessing and Maya in the Export and Render steps

of the process. I implemented the Element Placement step completely using C++.

In this chapter, I describe the implementation of each of the three process steps: (1)

Preprocessing, (2) Element Placement, (3) Export and Render.

V.1. Preprocessing

My preprocessing implementation combines Houdini and C++. I leverage Houdini’s

exisiting tools to compute the initial signed distance function for the target shape.

Using Python within Houdini, I output these values to a text file, and load them into

my C++ program which initializes data structures to handle both the target and

element shapes.

V.1.1. Houdini Signed Distance Function Calculation

To compute the initial signed distance function for the target shape, I import the user-

specified target shape into Houdini. I use triangulated OBJ format files to specify

the target and element shapes. In Houdini, an isoOffset node computes the signed

distance function values. Refer to Fig. 17 for the node network. The upper left (green)

node represents the OBJ mesh for the target shape. The upper right (blue) node

represents the rectangular bounding volume to define the target space. The bottom

(yellow) node is the isoOffset node which calculates the signed distance function. In
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this node, I set the sample size for the target space which determines the discretization

of the sample space. Houdini discretizes the bounding volume space into cubic voxels

and calculates a signed distance function value at the center of each voxel. Using

Python within Houdini, I output a text file with the dimensions of the voxel space

and the signed distance function value for each voxel. I then load this text file into

my C++ program.

Fig. 17. Houdini node network for computing target shape’s signed distance function.

V.1.2. C++ Preprocessing and Data Structures

At startup, the C++ program takes both a text file with the target shape signed

distance function values and a collection of OBJ files for the element shapes. The

element shapes are triangulated polygonal meshes.

The preprocessing for the target space uses Houdini’s discretization of the tar-
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get space, and creates a cubic voxel for each signed distance function sample point.

Each voxel stores its signed distance function value, its position in the voxel space, a

direction vector to the closest surface, and a jitter vector which defines an offset from

the actual center of the voxel to a jittered center point at which the signed distance

function will be defined. By jittering the voxel center points, we break up the grid-

based regularity of the voxel structure, so elements are placed with more positional

variety.

V.2. Element Placement, Export and Render

After preprocessing, the C++ program proceeds directly to the element placement

main loop. This is described in detail in Chapter III.3. The program arranges the

elements in the target shape. Then, a user can interactively view the generated collage

sculpture. I used OpenGL to draw the elements to a screen. This aided development

and debugging. To export the final sculptures, I wrote out all the arranged elements

as a single OBJ file.

To render the OBJ files, I imported them into Maya and set up an environment

image for performing final gather. I used Mental Ray to render the final images.

V.3. Results

We created several collage sculptures to demonstrate the capabilities of this program,

and they are shown in Figs. 18, 19, 20, 21, and 22. The C++ program was developed

and tested on a 2.4 GHz Intel Core 2 Duo computer. The times to assemble the collage

sculptures shown here ranged between less than a minute to about 45 minutes. Table I

compares the specifications of each collage sculpture.



41

Fig. 18. “Collage” collage sculpture.

In Fig. 18, each letter of the word “Collage” is an individual collage sculpture.

The elements comprising each letter are models of that letter in three different fonts.

There are three unique elements in each collage sculpture letter. For example in

the letter “C”, the yellow elements are small 3D models of a “c” in a first font, the

magenta elements a second, and the blue a third.

Fig. 19. Cereal collage sculpture.
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To make the cereal collage sculpture in Fig. 19, I modeled a variety of different

cereal pieces as well as the target shape that resembles the inside of the bowl. Since

the program uses the elements without modifying them, relative scale is an important

consideration in modeling the elements and target shape. A collage sculpture like

this might be a good way to initialize elements for a physically-based simulation. See

Chapter VI for a further discussion of this as future work.

(a) TopMod1 (b) TopMod2 (c) TopMod3

Fig. 20. Collage sculptures with TopMod shapes.

Fig. 20 shows three different collage sculptures, each modeled using target and

element shapes created by the program TopMod (Topological Mesh Modeling). This

illustrates how both the element and target shapes can be arbitrary models built from

any modeling application.

With the chair, teapot, and bunny sculptures (Figs. 21 and 22), we aimed to fill

the target space as densely as the algorithm would allow. To this end, we relaxed the

procedural rule forbidding element deformation and allowed scaling of the elements

in these cases. To do this without deforming the elements, theoretically, we would
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Fig. 21. Chair collage sculpture.

(a) Teapot (b) Bunny

Fig. 22. Teapot and Bunny collage sculptures.
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input a collection of elements in an infinite range of scales. However, to practically

implement this, we input just the unique element shapes and scaled the them during

the Placement procedure so that their size exactly aligned with that of the hole in

which they needed to be placed. The chair elements in the chair collage sculpture

are scaled versions of a model taken from the Princeton Shape Benchmark database

[31]. I modeled the target chair. The Utah teapot is composed of teacups while

the Stanford bunny is composed of a combination of carrots and top hats. I modeled

their elements. For the bunny, composed of two unique shapes, we alternated between

placing the two shapes (hat, carrot, hat, carrot, etc.). This way, we achieved a nearly

even distribution of each element shape. Fig. 23 distinguishes the two element shapes

in the bunny sculpture.

Fig. 23. Bunny sculpture breakdown.

Due to our choice of using bounding spheres as the element shape descriptors,

elements whose form is more similar to a sphere pack the target space more densely

than elements whose form diverges from a sphere. Note how the rounded teacups
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pack closely into their teapot target. By comparison, note the sparser packing of the

carrots in the bunny’s ears. Lowering the threshold value would increase the carrot

density. However, if the same threshold were used in packing a target shape with

nearly spherical elements versus long thin elements, the spherical elements would

better fill out the target. Fig. 23 makes this very apparent. Notice it is much harder

to distinguish the bunny shape from the carrot arrangement than it is from the top

hat arrangement though the sizes and number of carrot elements corresponds nearly

equally to the top hat elements.

Table I. Result Comparisons

Collage Voxel Dimensions Total Elements Faces Per Element Assembly Time

Teapot 100×100×100 1433 300 10.00 min

Bunny 100×100×100 2049 208, 288 18.08 min

Cereal 100×55×100 565 108 – 248 12.25 min

Chair 100×100×100 3499 1144 44.88 min

TopMod1 100×100×100 2614 72 – 480 2.92 min

TopMod2 100×100×100 2303 72 – 480 2.23 min

TopMod3 100×100×100 2905 72 – 480 5.75 min

Collage–C 100×100×50 1584 156, 172, 236 3.62 min

Collage–O 100×100×50 452 128, 128, 144 1.23 min

Collage–L 100×100×50 323 12, 52, 188 0.87 min

Collage–A 100×100×50 585 84, 304, 320 2.55 min

Collage–G 100×100×50 1574 304, 348, 452 8.20 min

Collage–E 100×100×50 1128 92, 192, 224 2.15 min

The specifications for each collage sculpture are compared in Table I. In each

case, we used cubic voxels with 100 voxels along the longest dimension of the target
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shape. A finer grid would create collage sculptures that better represent the finer

details of the target shape. However, increasing the number of voxels increases the

number of holes searched in the Placement procedure and the number of voxels up-

dated in the Updating procedure. The assembly times represent the runtime for the

Element Placement step of the collage sculpture process. Thus, they account for the

time taken for every placement and signed distance function update in the assembly

of a collage sculpture. On average for our collage sculptures, the Updating procedure

took 93.13% of the listed assembly time. Placement accounted for the other 6.87%.

Increasing the number of faces per element leads to more detailed element shapes, but

it also increases the updating time. Nonetheless, our method for calculating the exact

distance to each element during Updating is much more efficient than a ray tracing

alternative where ray intersections are used to sample distances to the element.

Since Updating is the most expensive procedure, we considered the speedup we

could achieve by abbreviating the computation of the closest surface point to only

the closest vertex search. In doing this, we update signed distance function values to

reflect the closest vertex and ignore the edges and faces. This is an approximation that

will lead to some overlap among elements. For element models with a large number

of vertices, this approximation is reasonable. However, for elements with large faces,

like a cube whose vertices only lie at its eight corner points, there will be noticeable

overlap. Nonetheless, we computed the time to assemble each collage sculpture with

this approximate updating method to compare the assembly times. We used the same

cutoff values for each sculpture, but since the elements overlap with the vertices-only

method, more elements were placed in each of these sculptures. This made it difficult

to directly compare the assembly time. However, when we looked at the assembly

time per element for each of the collage sculptures, the vertices-only method gives

an average speedup of 1.32. Additionally, when using the vertices-only method, on
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average, the Updating procedure took 90.04% of the assembly time with Placement

taking the remaining 9.96%.

Further, we analyzed the density to which our placed elements fill the target

volume. The collage sculpture process does not aim to achieve an optimally dense

packing, but it is interesting to consider the density of elements required to construct

a recognizable target shape. We calculated the density of each collage sculpture by

dividing the number of voxels flagged as interior to the elements by the number of

voxels inside the target shape. The results are displayed in Table II. Again, elements

that more closely approximate their bounding sphere better fill their target space.

The Chair collage sculpture with chair elements that have long, thin legs and backs

is only 1.44% filled. Similarly, the “l” in the “Collage” collage sculpture also consists

of very long and thin elements that fill just 7.39% of the target. To contrast with

spherical elements, we filled the teapot target shape with spheres (see Fig. 24). The

spheres fill 72.87% of the target volume.
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Table II. Density Comparisons

Collage Percent Filled

Teapot–teacups 11.04

Bunny 10.90

Cereal 14.34

Chair 1.44

TopMod1 13.82

TopMod2 13.50

TopMod3 14.73

Collage–C 9.28

Collage–O 14.33

Collage–L 7.39

Collage–A 14.55

Collage–G 8.84

Collage–E 16.71

Teapot–spheres 72.87
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Fig. 24. Sphere elements fill 72.87% of the target volume.



50

CHAPTER VI

CONCLUSION AND FUTURE WORK

Our collage sculpture process has potential both as an artistic tool as well as a volume

sampling algorithm. First, as we demonstrated, it can be used to make interesting

3D sculptures. However, its effectiveness as an artistic tool could be improved by a

more intuitive user interface. Currently, the user must have a good understanding of

the program to use it to generate a collage sculpture. However, minimally, the user

only needs to interact with the collection of element shapes, the target shape, and

the cutoff threshold. If a graphical user interface were hooked up to control these

features, the tool could be used by a wider audience.

To further improve usability as an artistic tool, the program could be parallelized

to run faster and give quicker user feedback. Both the Placement and Updating

procedures loop through all the voxels and perform calculations on each independent

of the rest of the system. The voxel space could be split up and handled by different

parallel processes. These are the most computation-intensive steps, so parallelizing

them would lead to a significant improvement in the run time of the program.

Fig. 25. Linked elements, future work.
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To build on the collage sculpture process itself, one might address the issue of

placing linked elements. Currently, our program will never be able to place separate

elements that are connected like two links in a chain as illustrated in Fig. 25. We can

place elements inside each other like a small teacup in a larger one. However with

chain links, even though the interior portions of the two pieces would not overlap, the

algorithm requires a contiguous sphere of open space in which to place an element,

so it would not allow such a placement. This might be achieved by using more

sophisticated shape descriptors for matching elements to holes.

Another limitation of the bounding sphere shape descriptors is that they do not

take into account the main orientation of elements when matching them to a hole.

For example, consider the head of the model in Fig. 3a. A long thin eggplant shape

has been oriented to match the desired head shape. However, if our algorithm were

given those elements and that target shape, the vegetables in the head would be

much smaller–their length could be no more than the width of the head since their

bounding sphere would have to fit entirely in the target space. Using ellipsoids instead

of spheres could address this issue. An ellipsoid is directionally dependent and would

require more consideration for placing in the target space. They, however, would allow

for placing elements like the long thin eggplant in a matching hole. To incorporate

ellipsoidal shape descriptors into our current framework, we would need to store more

information in each voxel. For each voxel to store the size of ellipsoid that could be

centered there, it would need to store the length and width of possible ellipsoidal

holes in each direction from it. Widths of the ellipsoids at each voxel could still be

calculated from the spherical holes determined by the signed distance function values.

However, to calculate lengths, the updating step may need to traverse neighboring

voxels to update length information.

Beyond the direct application of generating collage sculptures, our Element
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Placement algorithm is a volume sampling method. It nicely distributes the ele-

ment center points throughout the target volume. We can imagine this being useful

for a number of possible computer graphics applications.

First, because the program distributes elements like the cereal pieces in Fig. 19

fairly uniformly, it could be used to place elements in an initial state for physically-

based simulations. The elements are non-overlapping, so the system has a nice start-

ing point for performing a simulation with gravity and collisions that might pack the

elements together or animate them in a different way.

Bowers et al. points out a number of uses for surface sampling algorithms that

exhibit a uniform and random distribution [4]. Since our algorithm distributes el-

ements throughout the target volume so they appear randomly placed, we suggest

our volume sampling method may be useful for these applications as well. These

include volume texturing, remeshing volumetric data, subsurface scattering, global

illumination, non-photorealistic rendering, and point-based rendering.

In conclusion, we have developed a process for generating collage sculptures by

procedural rules. We implemented our process with a C++ program that assebles

user-defined element into a user-defined target shape. The elements (1) visually

resemble the target shape, (2) do not overlap, (3) are not deformed from their original

shape, and (4) display variety in size, orientation, and position.
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