
TOWARDS LOW-COST FEATURE-RICH WEB USER INTERFACES

A Thesis

by

WONSEOK KIM

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

December 2011

Major Subject: Computer Science

TOWARDS LOW-COST FEATURE-RICH WEB USER INTERFACES

A Thesis

by

WONSEOK KIM

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Approved by:

Chair of Committee, Jaakko Järvi
Committee Members, Frank Shipman

Byung-Jun Yoon

Head of Department, Duncan M. H. Walker

December 2011

Major Subject: Computer Science

iii

ABSTRACT

Towards Low-Cost Feature-Rich Web User Interfaces. (December 2011)

Wonseok Kim, B.S., Seoul National University

Chair of Advisory Committee: Dr. Jaakko Järvi

Web-based user interfaces are used widely. They are replacing conventional desktop-

based user interfaces in many domains and are emerging as front-ends for online busi-

nesses. The technologies for web user interfaces have advanced considerably to support

high-quality user interfaces. However, the usability of web interfaces continues to be an

issue. We still encounter web forms where basic interactive features are missing or work

unexpectedly. User interface is a costly and error-prone area of software construction. This

is particularly true for web user interfaces. They are typically implemented with fewer

reusable components on programmers’ toolboxes than conventional user interfaces built

using user interface frameworks such as Windows Forms, Cocoa, and Qt. Consequently,

web interface programmers tend to struggle with low productivity, or low quality and high

defect rates. This thesis focuses on property models, a declarative approach to program-

ming user interfaces. In this approach, common user interface behaviors are automatically

derived from the specifications of the data manipulated by user interfaces. The approach

aims to reuse user interface algorithms that are common across interfaces and allow the pro-

grammers to focus on application-specific concerns. This thesis work is a part of project

“hotdrink,” a JavaScript implementation of the property model system, which has the goal

of providing the benefits of property models for web interfaces. This thesis builds on previ-

ous work on property models, and adds to it three reusable help and convenience features,

which can be especially useful for web forms. In particular, this thesis describes the generic

mechanisms of the following user interface features: (1) validating data coming from a user

and presenting useful messages that help the user to fix errors, (2) controlling the flow of

iv

data through “pinning,” and (3) canceling the user’s previous actions through undoing. The

main contributions of the thesis are the mechanisms and the software architecture that en-

able implementing these behaviors in a reusable manner. This thesis also presents several

examples to illustrate the benefits of the proposed mechanisms.

v

To my lovely wife: Suja Kim

vi

ACKNOWLEDGMENTS

I would like to thank my advisor Dr. Jaakko Järvi. In addition to providing his

insightful idea for my research, he has given me thorough reviews of this thesis and valuable

feedback for improving this thesis. He has also been very understanding and patient with

my struggles along the way. Without his patient guidance this thesis would not be possible.

I would also like to thank Dr. Frank Shipman and Dr. Byung-Jun Yoon for giving me

valuable comments as my committee members.

I take this opportunity to thank John Freeman and Xiaolong Tang. I built my knowl-

edge on my research topic with help from John. The discussions with him helped me form

the technical foundation of my research and proceed to the goal of this thesis. Xiaolong

also gave me technical directions when I was implementing the parsers for the languages

used in the research.

Finally, I would like to gratefully acknowledge my wife, Suja Kim, for her support and

sacrifice. I would not have been able to start pursuing a Master’s degree and successfully

finishing it without her continuous encouragement and support. I feel blessed to have the

most amazing spouse of my life. Also, I thank my son, Sunghoon. He has been a source of

joy that has kept me going through tough times.

vii

TABLE OF CONTENTS

CHAPTER Page

I INTRODUCTION . 1

II BACKGROUND . 5

A. Property model systems: a programmer’s view 5
B. Property model constraint system 9

1. Multi-way dataflow constraint systems 10
2. Constraint graph . 11
3. Solution graph . 11
4. Evaluation graph . 14
5. Evaluation . 14

C. User interface algorithms based on the property model con-
straint system . 19

D. Related work . 20

III VALIDATION OF USER INPUT 22

A. Introduction . 22
B. Validation and error reporting with property models 22
C. Pinpointing the source of an error using property model

constraint system . 27
D. Related work . 32
E. Conclusion . 32

IV PINNING . 34

A. Introduction . 34
B. Pinning mechanism . 36
C. Example scenario involving pinning 39
D. Related work . 42
E. Conclusion and future work 43

V UNDO . 45

A. Introduction . 45
B. Background . 46
C. Undoing set command . 46

viii

CHAPTER Page

D. Example scenario involving undoing 51
E. Related work . 54
F. Conclusion and future work 56

VI EVALUATION . 58

VII CONCLUSION . 63

REFERENCES . 64

VITA . 70

ix

LIST OF FIGURES

FIGURE Page

1 A web form for saving an image file. 6

2 The property model specification for the form in Figure 1. 7

3 The layout and bindings specifications for the form in Figure 1. 8

4 The constraint graph, a solution graph, and an evaluation graph for the
property model described in Figure 2. 12

5 The evaluation rules for obtaining a value of a variable in a property
model and effecting the consequent state changes to the variable and
edge valuation. 17

6 A user registration form that deactivated its command button. 23

7 A user registration form that displays error messages for invalid inputs. . . 24

8 The layout and bindings specifications for the form in Figure 7. 25

9 The property model specification with invariant descriptions for the
form in Figure 6. 26

10 A user registration form that displays each error message below the
widget it pertains to. 27

11 A hotel-booking form with an error message complaining about “Nights”
value. 28

12 The property model specification for the form in Figure 11. 29

13 A hotel-booking form that shows a generated pop-up hint indicating
the responsible values for the error. 30

14 A trip budget planning form with a pinning feature. 35

15 Multi-way dataflow constraints defined for the data in Figure 14. 35

x

FIGURE Page

16 A hotel-booking form with a pinning feature. 39

17 The model specification for the form in Figure 16. 40

18 The constraint graph and solution graph when the variables are edited
in the order: (1) checkin, (2) checkout, and (3) nights. 41

19 The constraint graph and solution graph after pinning ci. 41

20 The constraint graph and solution graph after unpinning ci. 42

21 A linear undo/redo history of commands. 47

22 A series of configuration transitions of a property model, where Cn
is the previous configuration, Cn+1 is the current configuration after
en+1 command, and Cn+2 is the configuration after undoing the pre-
ceding command. 48

23 An image resize form with undo/redo features. 51

24 The property model specification for the web form in Figure 23. 52

25 The solution graph, strength assignment, and values of the configu-
ration C1, C2, and C3, where r is the variable result in Figure 24;
likewise, wa is absolute width, wi initial width, wr relative width, ha
absolute height, hr relative height, and pr preserve ratio. 53

26 An online survey form with widget enablement, validation and undo
behaviors. 59

27 The number of code lines in two implementations, one using “hot-
drink,” the other using “jQuery,” of the user interface shown in Figure 26. 60

28 The number of code lines in two implementations, one using “hot-
drink,” the other using “jQuery,” of the user interface shown in Figure 14. 62

1

CHAPTER I

INTRODUCTION

Web-based user interfaces are in wide use. They are replacing conventional desktop-based

user interfaces in many domains and are emerging as front-ends for online businesses. The

technologies for web user interfaces (WUI) have advanced considerably to support high-

quality user interfaces despite the limitations stemming from their document-centric orien-

tation on layouts and event handling. However, the usability of a web interface continues

to be an issue [1]. We still encounter web forms where basic interactive features, such as

validating inputs and canceling the last action, are missing or work unexpectedly.

User interface is a costly and error-prone area of software construction [2]. Software

reuse is one way to address the issue as reuse has become recognized as a key in many areas

to improve productivity [3]. Although user interface programmers usually reuse widgets,

such as textboxes, buttons, and dialogs, they hardly reuse algorithms that implement certain

user interface behaviors which handle events and manipulate data and visual components

accordingly. Those algorithms are usually scattered across event handlers, and they are

too specialized for specific user interfaces to be reused. The complexity of them is often

high and the size of them is not ignorable. It is, thus, not surprising that event handling

code has been reported to account for 30–50% of applications’ code [2, 4] and generate a

high portion of all known defects [4]. Understanding the ad-hoc event handling code also

imposes a significant maintenance burden, up to 50–90% of maintenance cost [3].

Though the above cited studies were conducted in the context of constructing conven-

tional user interfaces, the observations apply to web-based user interfaces as well, possi-

bly even more. Conventional user interfaces, typically built using graphical user interface

The journal model is Science of Computer Programming.

2

(GUI) frameworks such as Windows Forms, Cocoa, and Qt [5, 6, 7], have a large number of

reusable components in their toolboxes with numerous resources helping the programmers

to implement common user interface features. Web interface programmers, on the other

hand, have relatively fewer reusable components at their disposal. Thus, more effort is re-

quired to implement even common user interface features. Adding them repetitively across

user interfaces with little reuse is also laborious. Consequently, web interface programmers

tend to struggle with low productivity, or low quality and high defect rates.

For example, even a seemingly simple interactive web form, such as a user registration

form, may require complex program logic to be expressed in event handlers. Features

expected of a modern high-quality user interface might include validating the length of the

suggested password as the user is typing it in, reporting precise reasons of user errors and

suggesting possible fixes, automatically updating some parts of the address when a zip code

is entered, disabling irrelevant widgets depending on the entered country, and activating a

submit button only if data in the user interface widgets satisfies a set of validity criteria.

Web programmers have to struggle with the complexity to encode these functionalities

within event handling code, usually in JavaScript. Although similar user registration forms

with these functionalities are quite commonly used, web programmers seldom reuse the

code of these behaviors across web sites. The logic for the behaviors can be formed into

some algorithm, but it is not generic enough to be reused.

To reduce the effort to build high-quality feature-rich user interfaces, Järvi et al. have

introduced property models, a declarative approach to programming user interfaces [8, 9].

In this approach, common user interface behaviors are derived from the specifications of the

data manipulated by user interfaces. The approach aims to reuse user interface algorithms

that are common across interfaces and allow the programmers to focus more on application-

specific concerns. The authors have shown how ad-hoc event handling code can be replaced

with library routines that codify user interface features as reusable algorithms. In particular,

3

they have demonstrated reusable mechanisms for propagating values between user interface

elements, recording the user’s intentions, enabling and disabling of user interface widgets,

and activating and deactivating of widgets that launch commands.

This thesis builds on the above work on property models and adds to it three reusable

help and convenience features, which can be especially useful for web forms. This thesis

work is a part of project “hotdrink” [10], a JavaScript implementation of the property model

system, which has the goal of providing the benefits of property models for web interfaces.

In particular, this thesis describes the generic mechanisms of the following user interface

features:

1. validating data coming from a user and generating useful messages that help the user

to fix errors;

2. controlling the flow of data through “pinning”; and

3. canceling the user’s previous actions through “undoing.”

This thesis expands the portfolio of user interface algorithms that can be packaged

into reusable software components using the property models approach. We conjecture

that providing the behaviors at little cost will increase the richness and usability of web

user interfaces.

The main contributions of the thesis are the mechanisms and the software architecture

that enable implementing these behaviors in a reusable manner, applicable to a large num-

ber of user interfaces. These behaviors build on the property models approach, in which the

data that a user interface manipulates and the relationships between the data are modeled

as a dataflow constraint system. The underlying constraint system is the key for realizing

the reusable behaviors.

This thesis is organized as follows: Chapter II explains the background of the property

models approach. Chapter III gives the details about validating user input and generating

4

useful error diagnostic messages based on the state of the property model constraint system.

Chapter IV describes the generic mechanism of pinning that can be used for controlling the

flow of data in a web user interface. Chapter V presents the generic mechanism of undo

in dialogs and forms. Chapter VI evaluates the work presented in the thesis. Chapter VII

concludes the thesis and summarizes its contributions.

5

CHAPTER II

BACKGROUND

This chapter presents the relevant background of property models, paraphrased from the

presentation in the earlier papers on property models [8, 9]. We first give the “programmer’s

view” to the property models approach, describing what specifications need to be written

and how they are used to give rise to a user interface. Next, we explain the property model

constraint system, which is the foundation that enables generic user interface algorithms.

Finally, we briefly discuss some reusable user interface algorithms presented in the earlier

papers [8, 9], and related work.

A. Property model systems: a programmer’s view

In the property models system, a user interface and its complete behavior is derived from

three specifications: the model of the data manipulated through the user interface, the visual

elements and their layout, and the connections between the visual elements and the data.

We call these three specifications the property model, layout, and bindings, respectively.

• A property model is essentially a constraint system with a set of variables and a set

of relations that exist between variables. We provide a declarative domain-specific

language (DSL) for specifying property models.

• A layout is a set of visual user interface elements, i.e., widgets, provided by a graph-

ical user interface (GUI) library and their positions. We provide a simple declarative

language for specifying layouts, but a layout can be expressed in any other layout

language, such as HTML, or through library APIs.

• Bindings connect one or more widgets with one or more variables in the property

6

Fig. 1. A web form for saving an image file.

model. In our current system, the specifications of bindings are embedded in the

layout specification.

Consider a simple web form for saving an image file, as shown in Figure 1. It con-

sists of a text field for entering a file name, a menu of file types, and two interrelated text

fields for the user to configure compression. The two compression-related text fields are

tied together by some relationship expressing the trade-off between compression ratio and

image quality, each on a scale from 1–100%. The property model for this form is shown in

Figure 2, and the layout and bindings are in Figure 3.

The specification of a property model is written in the domain specific declarative

language Adam [10, 11]. The interface, logic, output, and invariant sections, shown in

Figure 2, declare the variables, or properties, and relations among variables of the property

model. Interface variables in the interface section are usually bound to widgets and ma-

nipulated by a user. The logic section defines the dependencies and computational rules

between variables. These computations, we call them methods, are expressed in what we

call the expression language. JavaScript calls are valid subexpression of the expression

language. Thus, full expression power of JavaScript is available. The task of the applica-

tion programmer is to define the computations, but when and which of them are executed is

controlled by the property model system. Output variables in the output section represent

7

model save image file {
interface: {

file name : ””;
file type : ”bmp”;
compression ratio : 100;
image quality : 100;
}
logic: {

relate {
compression ratio <== 100 − 4 ∗ (100 − image quality);
image quality <== 100 − (100 − compression ratio) / 4;
}
}
output: {

result <== (file type == ”jpeg”) ?
{ type: file type, name: file name, ratio: compression ratio } :
{ type: file type, name: file name };

}
invariant: {

check name <== file name != ””;
}
}

Fig. 2. The property model specification for the form in Figure 1. A property model defini-
tion consists of four sections— interface, logic, output, and invariant sections. The
interface section declares interface variables with initial values. Interface variables
are bound to widgets, and thus they can be manipulated by a user. The logic sec-
tion defines one constraint representing a relation between compression ratio and
image quality. Each method in the constraint gives one possible dataflow satisfying
the constraint. Here, data can flow either from image quality to compression ratio,
or compression ratio to image quality. The output section has an output variable,
result, which has a conditional expression. The output variable collects compres-

sion ratio value only if the file type is “jpeg.” The invariant section defines condi-
tions that should hold true for all valuations of the variables; a false invariant is an
indication that the model is in an invalid state.

8

1 view {
2 text (label : ”File name”, value : file name);
3 dropdown (
4 label : ”Save as type”,
5 items : [
6 { name : ”Bitmap (.bmp)”, value : ”bmp” },
7 { name : ”JPEG (.jpeg)”, value : ”jpeg” }
8],
9 value : file type

10);
11 number (
12 label : ”Compression ratio”,
13 units : ”%”,
14 value : compression ratio
15);
16 number (
17 label : ”Image quality”,
18 units : ”%”,
19 value : image quality
20);
21 commandButton (label : ”OK”, value : result);
22 }

Fig. 3. The layout and bindings specifications for the form in Figure 1. The view contains
widget specifications, such as text and dropdown. Widgets that the specifications
represent will be displayed on the screen in the order their specifications appear
in the view. Each widget specification defines the attributes of its widget using
name/value pairs. The text widget specification in line 2 defines the “file name” text
field and its label. The value attribute in this definition designates a variable of the
model specification, here file name, to which the text field is bound. The dropdown

widget specification in lines 3–10 defines the drop-down menu for the “file type.”
The items for the menu are supplied as a list in the items attribute. Each item has a
name for its descriptive text and a value that will be passed to the bound variable of
the drop-down widget when the item is selected. The number widget specification
in lines 11–15 defines the “compression ratio” text field. The units attribute defines
the text to be displayed on the right of the text field. Line 21 defines the “OK” button.
The button is bound to the result variable of the model specification, so when the
button is clicked, the value of result will be supplied to the on-click event handler
of the button.

9

the result of the form. They contain the values to be supplied to a command of the form.

The (Boolean) value of an invariant variable in the invariant section indicates whether a

set of variables satisfies a stated condition.

In addition, a complementary language, named Eve, can be used to specify the layout

and presentation qualities of interface elements, as well as bindings between these elements

and variables in the property model. The layout specification for the form in Figure 1

appears in Figure 3. Further details on the Adam and Eve languages are given in their

documentation [10, 12].

To launch a user interface, the programmer needs to pass the property model and

layout specifications to a JavaScript open dialog function provided by the property models

library. Omitting some details, such a call looks roughly like this:

open dialog(model, layout, initial values);

Initial values in our system are dictionaries of labeled values, and they are used to initialize

the variables in the property model.

B. Property model constraint system

A property model encapsulates the values of a set of variables manipulated by a user in-

terface, defines the functional dependencies among them, and manages the application of

those dependencies. We can represent the network of dependencies as a hierarchical multi-

way dataflow constraint system [13]. More concretely, in the property model constraint

system, a property model is represented as a graph. The vertices of this constraint graph

are the variables and methods of a property model and the edges are input or output con-

nections between variable and method vertices. For a particular state of a user interface,

we compute a candidate set for the currently active dependencies: this set is represented

by a solution graph, a subgraph of the constraint graph. Evaluating the methods of the

10

solution graph gives a valuation for the variables in the model. The evaluation yields, as

a by-product, a third graph—the evaluation graph—that represents the currently active

functional dependencies, and is a subgraph of the solution graph. When discussing these

graphs, we use the subscripts c, s, and e to denote whether a graph is a constraint, solution,

or evaluation graph (e.g., Gc, Gs, and Ge).

The earlier papers on property models [8, 9] described the constraint system represen-

tation of property models, including computing solution graphs and evaluation graphs. We

summarize the topics here.

1. Multi-way dataflow constraint systems

A multi-way dataflow constraint system is formally represented as a tuple S = 〈V,C〉,

where V is a set of variables and C a set of constraints. Each constraint in C is a tuple

〈R, r,M〉, where R ⊆ V ; r is some n-ary relation between variables in R, where n = |R|;

and M is a set of constraint satisfaction methods, or just methods. If the values of variables

in R satisfy r, we say that the constraint is satisfied. A method m in M computes values

for some subset of R using another subset of R as inputs, and it satisfies the relation r, i.e.,

enforces the constraint. It is the programmer’s responsibility to ensure that the constraint is

enforced no matter which of the methods is evaluated.

The constraint satisfaction problem for a constraint system S = 〈V,C〉 is to find a

valuation of the variables in V such that each constraint in C is satisfied. We can find such

a valuation by executing exactly one method from each constraint, such that a variable is

not written by more than one method, and the methods are executed in an order where a

variable is assigned a value before another method uses it as an input. An order of methods

satisfying these conditions is called a plan.

11

2. Constraint graph

A multi-way dataflow constraint system can be represented as an oriented, bipartite graph,

the constraint graph, Gc = 〈V +M,E〉, where vertex sets V andM represent the variables

and methods of the system, respectively, andE the directed edges that connect each method

to its input and output variables. If v, u ∈ V and m ∈M , the edge (v,m) indicates that the

variable v is an input of the method m, and (m,u) that m outputs to the variable u. We call

this type of graph the constraint graph. An example of a constraint graph from our image

saving model in Figure 2 appears in Figure 4(a).

3. Solution graph

A plan for a constraint system can be explicitly represented as a subgraph of the constraint

graph, called a solution graph. Let Gc = 〈V +M,E〉 be a constraint graph and M ′ ⊆ M

the set of methods in the plan. The solution graph of the plan is Gs = Gc[V +M ′], the

vertex-induced subgraph ofGc. A solution graph is acyclic and the in-degree of all variable

nodes is at most one. A plan corresponds to a topological ordering of the method nodes

of a solution graph. The solution graph for the constraint graph in Figure 4(a) appears in

Figure 4(b)

If more than one solution graph exists, we call the constraint system under-constrained.

To deal with the under-constrained constraint systems that arise from user interfaces we

employ constraint hierarchies and stay constraints [14]. Each variable in the system is

given a stay constraint, represented by a rectangle with double frames in Figure 4. A stay

constraint consists of a single method (stay method) with one output and no inputs—it is

thus a constant function. Every time the valuation of a variable changes, the stay method

of that variable’s stay constraint is constructed anew, so that the constant function has the

current value of the variable. Thus, executing a stay method of a variable keeps the variable

12

r q

c

ftfn

ch m1m2m3

mi

2 1

3

465

��

��

QQ

AA

�� �� ww

��

��

��

�� xx

qq

iijj

OO

r q

c

ftfn

ch m1m3

mi

2 1

3

��

��

�� �� ww

��

��

��

�� xx

qq

(a) (b)

r q

c

ftfn

ch m1m3

mi

2 1

3

��

��

�� ��

��

��

��

�� xx

qq

(c)

Fig. 4. The constraint graph (a), a solution graph (b), and an evaluation graph (c) for the
property model described in Figure 2. In all of the graphs, the variable r is the
variable result, q quality, c compression ratio, fn file name, ft file type, and ch
check name. The relate clause in the model gives rise to the constraint consisting of
the methodsm1 andm2, and the method in the output section of the model gives rise
to the constraint consisting of the method m3. The constraint graph (a) contains all
stay methods (rectangles with double frames), all user-defined methods (rectangles
with single frames), and all variables (circles). The stay methods 4, 5, 6, and method
m2 and the edges connected to them are not part of the solution graph (b). The
evaluation of method m3 does not consider the variable c, thus the edge from c to m3

is irrelevant: this edge is not included in the evaluation graph (c).

13

unchanged.

Since not all stay constraints and user-defined constraints can be satisfied simultane-

ously, the solution of this over-constrained system is defined as the solution to the “best”

satisfiable constraint system that retracts some of the constraints. To decide which con-

straints to retract, each constraint is assigned a strength and the best system is the one that

retracts the fewest and weakest constraints. The “locally-predicate-better” criterion [15]

defines this precisely: if one solution enforces a constraint that the other does not, and ev-

ery stronger constraint is either retracted in both solutions or enforced in both solutions,

then the former solution is locally-predicate-better than the latter.

We assign the highest strength, we call it must, to the user-defined constraints, so that

no solution will retract them. We arrange all stay constraints to be weaker than the must

constraints. Strengths of stay constraints are totally ordered. The ordering is determined

by the editing history of user interface elements bound to the variables: stay constraints of

the variables bound to the most recently-edited widgets will be strongest, indicating that

the values of those variables (and thus the values of the user interface widgets bound to the

them) should be preserved. This heuristic approximates the “least surprising” behavior for

user interfaces based on property models. We refer to the ordering between variables that

a property model maintains as the priority order.

A total order of stay constraints guarantees that the solution to the best satisfiable

constraint system is unique [16], if there is an admissible solution. We call the unique

solution graph of the best system the most preferred solution graph.

As explained in [8, 9], we employ a derivative of Zanden’s Quickplan algorithm [13]

to find the most preferred solution graph for a particular strength assignment. Adapting

Zanden’s analysis of Quickplan, it can be shown that the worst-case time complexity for

finding the most preferred solution graph is O(n2), where n is the number of constraints in

the system [16].

14

4. Evaluation graph

Executing the methods in the plan according to a topological ordering of the vertices of the

solution graph will give the system’s variables a valuation that satisfies all its constraints.

This “execution phase” produces an evaluation graph that contains exactly the functional

dependencies between variables that are active for the current priority order and variable

valuation. The evaluation graph may differ from the solution graph because a method may

not need all of its inputs in computing its result. We pass input variables to a method

by name: to obtain a value of one of its input variables, a method has to explicitly ask

for it. Only if a method m asks for the value of its input variable v during execution

of the method is the edge (v,m) included in the evaluation graph. We call these edges

relevant and say that the variable v is relevant to the method m. Assuming a solution

graph Gs = 〈V + M,EV + EM〉, where EV are the edges whose target vertex is in V ,

and EM the edges whose target vertex is in M , the evaluation graph Ge is the subgraph

of Gs induced by the edges EV + Er where Er ⊆ EM are the relevant edges. That is,

Ge = 〈V +M,EV + Er〉. Figure 4(c) shows an example of an evaluation graph for the

solution graph in Figure 4(b).

5. Evaluation

The basic requests to a property model are requesting the value of a variable (get), assigning

a new value to a variable (set), and changing the priority of one of the variables. The request

for the priority change of a variable is not made explicitly for a property model, but it is

made implicitly when assigning a value to the variable. The property model component

processes a set query by computing a new valuation of its variables.

Consider a constraint graphGc = 〈V +M,E〉, where V andM represent the variables

and methods of the system, and E the directed edges. We can define the state of a property

15

model, the current configuration, as a tuple C = 〈Gs, s, ν〉. Gs is a solution graph of

Gc, s is a strength assignment (defines the priority order among the variables), and ν a

valuation of variables in V and edges in E. The valuation ν maps a variable to the tuple

〈t, c, h〉, where t is the current value of the variable; c a flag indicating whether the value of

the variable is “computed,” i.e., up-to-date; and h a flag indicating whether the value was

changed from a previous evaluation round. For clarity, instead of Boolean values, c can

have values uncomputed and computed, and h the values unchanged and changed. Further,

ν maps all edges e = (v,m) ∈ E to one of the values relevant or irrelevant. The former

signifies that when the code of the method m was executed, the value of the variable v was

requested, the latter that it was not. Consequently, ν is overloaded so that the expressions

ν(v) and ν(e) are both valid. We use the notation [v 7→ val]ν for the valuation function

identical to ν, except that the variable v maps to val; the analogous notation applies for

edges.

Assuming a current configuration C = 〈Gs, s, ν〉, an invocation of set to assign a new

value, say t, for some variable v has the following effect on C:

1. A new strength assignment s′ is computed from s, such that the stay constraint of v

will become the strongest of the stay constraints, and the relative order of other stay

constraints remains the same. Thus, variable v is given the highest priority.

2. Some changes to the strength assignment are such that the most preferred solution

graph is known to remain the same. In particular, the solution graph will not change

if v is a source in the current solution graph [16]. If necessary, the solver algorithm

is run to produce a new solution graph G′s, otherwise G′s = Gs.

3. A new valuation ν ′ is computed from ν as follows: the value of v is set to t; the

computed-flag of every variable is set to uncomputed; the changed-flag is set to

changed for v and to unchanged for all the other variables; and the relevancy-flag

16

is set to relevant for all edges (v′,m′) from variables to methods, such that (v′,m′) is

not an edge in Gs but is an edge in G′s. A method is not executed if it can be seen that

its relevant inputs have not changed. The above treatment of relevancy-flags makes

sure that all new methods of G′s that were not included in Gs will be executed during

evaluation.

4. The eval function, shown in Figure 5 and described in detail below, is applied to each

variable in V . A call to eval may change the valuation, so the current valuation ν ′ is

“threaded through” these calls, producing a new valuation ν ′′.

The result of the above steps is a new current configuration 〈G′s, s′, ν ′′〉. As discussed in the

previous section, the current evaluation graph G′e is obtained as the subgraph of G′s where

the edges that ν ′′ indicates to be irrelevant have been removed. Widgets that are notified

that their values might have changed send get requests that consult ν ′′ to obtain their new

values.

In the definition of the eval function we use the following metavariables, using primes,

subscripts, and superscripts as appropriate: Gs for solution graphs; V for sets of variables;

u and v for variables; m for methods (· is a special value form that indicates “no method”);

t for values of variables; h for values of the changed-flag; ν for valuation functions; µ for

mapping a method to the code of the method, and to two sequences of variables indicating

the input and output variables of the method; and f for the code of a method. We use the

underscore symbol “ ” as a variable that binds to anything, similarly to how it is used in,

say, Haskell or ML.

Figure 5 defines the function that evaluates a new value of a variable. We use the

notation func | ν → t | ν ′ with the following meaning: the function func (either eval or

evalmany) is evaluated within the context of the current valuation ν, which produces a new

valuation ν ′ and the result t. The symbol “·” indicates that the function has no result.

17

EVAL-COMPUTED
ν(v) = 〈t, computed, 〉 m 6= ·

eval(v,m,Gs) | ν → t | [(v,m) 7→ relevant]ν

EVAL-COMPUTEDNOMETHOD
ν(v) = 〈t, computed, 〉

eval(v, ·, Gs) | ν → t | ν

EVAL-INPUTS
ν(v) = 〈 , uncomputed, 〉 {m′} = insGs (v) V in = insGs (m

′)

v′ ∈ V in ν(v′) = 〈 , uncomputed, 〉 evalmany(V in, Gs) | ν → · | ν′ eval(v,m,Gs) | ν′ → t | ν′′

eval(v,m,Gs) | ν → t | ν′′

EVAL-UNCHANGED
ν(v) = 〈 , uncomputed, 〉

{m′} = insGs (v) {vin1 , . . . , vinn} = insGs (m
′) ν(vin1) = 〈 , computed, 〉 · · · ν(vinn) = 〈 , computed, 〉

ν((vin1 ,m
′)) = relevant =⇒ ν(vin1) = 〈 , , unchanged〉 · · · ν((vinn ,m′)) = relevant =⇒ ν(vinn) = 〈 , , unchanged〉
{vout1 , . . . , voutl , . . . , voutk } = outsGs (m

′) v = voutl ν(vout1) = 〈t1, , h1〉 · · · ν(voutk) = 〈tk, , hk〉
ν′ = [vout1 7→ 〈t1, computed, h1〉, . . . , voutk 7→ 〈tk, computed, hk〉]ν eval(v,m,Gs) | ν′ → t′ | ν′′

eval(v,m,Gs) | ν → t′ | ν′′

EVAL-CHANGED
ν(v) = 〈 , uncomputed, 〉 {m′} = insGs (v) {vin1 , . . . , vinl , . . . , v

in
n} = insGs (m

′)

ν(vin1) = 〈 , computed, 〉 · · · ν(vinn) = 〈 , computed, 〉 ν((vinl ,m
′)) = relevant ν(vinl) = 〈 , , changed〉

ν′ = [(vin1 ,m
′) 7→ irrelevant, . . . , (vinn ,m

′) 7→ irrelevant]ν µ(m′) = 〈f, (uin1 , . . . , uinn), (uout1 , . . . , uoutk)〉
f(ν′, λν.(eval(uin1 ,m

′, Gs) | ν), . . . , λν.(eval(uinn,m′, Gs) | ν)) → (t′1, . . . , t
′
k) | ν

′′

ν(3) = [uout1 7→ 〈t′1, computed, changed〉, . . . , uoutk 7→ 〈t′k, computed, changed〉]ν′′ eval(v,m,Gs) | ν(3) → t′ | ν(4)

eval(v,m,Gs) | ν → t′ | ν(4)

EVALMANY-EMPTY
evalmany(∅, Gs) | ν → · | ν

EVALMANY
eval(v, ·, Gs) | ν → · | ν′ evalmany(V ′, Gs) | ν′ → · | ν′′

evalmany({v} t V ′, Gs) | ν → · | ν′′

Fig. 5. The evaluation rules for obtaining a value of a variable in a property model and ef-
fecting the consequent state changes to the variable and edge valuation. We overload
the insGs and outsGs functions for both methods and variables, so that they return
the sets of incoming and outgoing vertices in Gs.

18

The evalmany function, defined by the rules EVALMANY and EVALMANY-EMPTY,

simply invokes eval for each variable in a set in some order. Each call to eval traverses the

dependencies in the solution graph upwards and evaluates all variables that are necessary

for determining the value of the current variable, and then executes the method of the

current variable. Along the way, the relevancy information is collected and maintained to

compute the evaluation graph and to avoid recomputing a method if its inputs are known

not to have changed.

The eval function defines how to obtain the value of a single variable. Besides the

variable whose value should be obtained, eval has two other parameters: the method m

that requested the value of the variable and the current constraint graph Gs. The method

parameter accepts the value “·”, which indicates that the value of a variable is not requested

by any method.

The rules EVAL-COMPUTED and EVAL-COMPUTEDNOMETHOD define the course of

action in the case where the computed-flag of the requested variable is set. This indi-

cates that the value of the variable is up-to-date and its value is returned immediately.

The EVAL-COMPUTED applies when some method is asking for the value of a variable and

thus it additionally sets the relevancy-flag of the “variable to method” edge.

The EVAL-COMPUTEDNOMETHOD matches when the evaluation request comes from

evalmany, rather than from executing a method.

The rules EVAL-INPUTS, EVAL-UNCHANGED, and EVAL-CHANGED define what to

do when the value of a variable has not yet been computed. Assume we are evaluating the

value of the variable v. All these three rules examine the method m′ that outputs to v in the

current solution graph, and the input variables of m′.

EVAL-INPUTS matches if any input variable of m′ is still uncomputed. The rule in-

vokes evalmany to evaluate the input variables, then invokes eval for v again.

EVAL-UNCHANGED matches when all the input variables of m′ are computed and all

19

the input variables that are relevant to m′ are unchanged. In this case, it is not necessary

to execute the method m′ again. The new valuation marks all of the output variables of m′

as computed, but does not change their values or changed-flags. Finally, eval is invoked

again for v to effect the possible update of the relevancy-flag for an edge from v to some

method m. Note that the premise v = voutl in EVAL-UNCHANGED is redundant; we include

it to make it obvious that v is one of the output variables of m′. We further remark that if

m′ is a stay method, it has no inputs, and thus EVAL-UNCHANGED applies and retains v’s

valuation unchanged.

EVAL-CHANGED matches when all the input variables ofm′ are computed and at least

one input variable ofm′ has changed. If this is the case, the code ofm′ needs to be executed.

This entails (1) retrieving the code f of m′, (2) constructing a callback function for each

input variable of f that will obtain the value of the input variable by another call to eval,

(3) passing the callbacks to f , and (4) executing f . If the code of a method invokes any of

its callbacks, a new call to eval results, where the method requesting the value of a variable

is m′. This call will eventually reach EVAL-COMPUTED, which will set the corresponding

relevancy-flag of the edge to m′, and thus establish one piece of the evaluation graph. Once

the method f returns, the values in the tuple it returns are written to the output variables of

m′ (v is one of them) and the computed and changed-flags of these output variables are set

as well.

C. User interface algorithms based on the property model constraint system

The earlier papers [8, 9] on property models introduced three user interface algorithms

derived from the property model constraint system. They are value propagation algorithm,

command activation algorithm, and widget enablement algorithm.

The value propagation algorithm is naturally achieved through the property model

20

constraint system. As described in earlier sections, solving the constraint system and eval-

uating the plan find an admissible valuation for the constraint system. This process takes

care of propagating values according to functional dependencies, resulting in the value

propagation algorithm.

The command activation algorithm deactivates a command when the command’s pre-

conditions, which are expressed as invariants, are not satisfied. If a command is bound to

an output variable that is reachable from an ancestor of a false invariant in the evaluation

graph, the command button is deactivated to prevent using the “poisoned” output variable.

The widget enablement algorithm disables widgets that do not affect any output vari-

able. Disabling widgets that are not relevant to the output prevents a possible confusion of

a user by eliminating irrelevant choices. The algorithm checks if there exists a currently ac-

tive dependency between an interface variable bound to a widget, and some output variable,

or if it is possible that a editing the value of the widget could create such a dependency.

The constraint system underneath makes the dependencies among data explicit, and

packages them in a well-defined data structure, for which algorithms can be written. We

track three kinds of dependencies: those that could be active at some point in the life of

a user interface, those that are active for current editing order, and those that are active

for current editing order and values. Each of these three sets of dependencies can be rep-

resented as a graph. All of these graph representations are necessary for the algorithms

described in this section, as well as the new algorithms presented in this thesis.

D. Related work

Constraint systems have been extensively applied to user interfaces, mostly for automated

widget layout. A large number of declarative, constraint-based GUI systems have been pro-

posed. Sketchpad [17], Amulet [18], Garnet [19], as well as ThingLab I and II, DeltaBlue,

21

and SkyBlue [20] serve as examples. Regarding web user interfaces, some prior work [21,

22] presents constraint-based style sheets which extends cascading style sheets (CSS)

to employ constraints for more flexible layout. More recently, XUL [23], XAML [24],

Flex [25], and OpenLaszlo [26] support (one-way) dataflow constraints for the layout spec-

ifications of web user interfaces.

What distinguishes the property model approach from other earlier uses of constraint

systems for user interface programming is that constraints are utilized to give program-

mers a method to explicitly model functional dependencies among data; this explicit model

serves as a basis for generic algorithms for user interface behaviors.

22

CHAPTER III

VALIDATION OF USER INPUT

A. Introduction

To support users well, a user interface must provide good error messages. However, pro-

gramming error handling for a user interface is usually laborious, and, perhaps even worse,

the resulting code is not reusable. One reason for this is that error handling logic is typ-

ically mingled within all other, often widget-specific, event handling code. In particular,

the validation of user input, which is a commonly required behavior in dialogs and web

forms, increases the complexity of event handling logic. User interface programmers may

not extend enough effort to implement the validation logic correctly for all possible error

scenarios, and, similarly, they may not invest enough on producing helpful error diagnos-

tics for the user. As a result, we often encounter web interfaces with missing or erroneous

support for diagnosing errors.

Property models allow programmers to write validation conditions with error mes-

sages in a declarative manner, and the property models system takes care of applying those

rules when appropriate, and acting appropriately when the conditions are not satisfied. In

this approach, the programmers can focus on the validation conditions without being dis-

tracted by event handling code around them. Furthermore, property model systems contain

additional analytic information on errors, which can be relayed to the user to help in recov-

ering from an invalid state that resulted from an erroneous input.

B. Validation and error reporting with property models

As explained in [9], property model systems can automatically deactivate a command wid-

get when certain preconditions to the command, launched by the command widget, do not

23

hold. The preconditions for a command are defined by the programmer as invariants. As

explained in Section A of Chapter II, invariants are Boolean expressions that encode valida-

tion conditions in property models. They can represent either simple validation conditions

that check individual interface variables, or complex validation conditions concerned with

derived values or relationships between variables.

The basic mechanism that the property model system uses to handle invariants is as

follows. When an invariant evaluates to false, the variables that contribute to that violation

are marked, or “blamed,” for being responsible. If any blamed variable contributes to the

command’s parameters (i.e., the evaluation graph contains a path from any blamed variable

to the output variable bound to the command) the command is deactivated. However, in

a high quality user interface, more than deactivating a command, say, by “graying out,” is

needed. Without being offered a proper reason, a user may not understand why a command

button is deactivated. Figure 6 shows a case where a user may be left puzzled over why the

“Register” command is grayed out.

Fig. 6. A user registration form that deactivated its command button. The “Register” com-
mand button is grayed out because the “user name” does not meet the minimum
length and the “confirm password” is different from “password.” However, the user
may have no idea why the command button is disabled.

We can overcome the limitation by exploiting property models further, i.e., having

them include error descriptions that identify the failed invariants in an easily understand-

able form. The key idea is that programmers provide slightly structured texts to describe

invariants, and the property model system takes care of constructing informative error mes-

24

sages that pinpoint the reasons accurately, based on the state of the constraint, solution,

and evaluation graphs. More specifically, we allow an invariant to be annotated with a

@description annotation that contains a natural language description of the invariant. For

example: the following invariant shows the description attached to it.

@description(”Confirm password must be the same as Password.”)
password match <== password1 == password2;

As explained above, a failed invariant may lead to deactivating command buttons. To

inform the user of the reasons for these actions, the system collects the descriptions of

all failed invariants. These descriptions can then be shown to the user, as illustrated in

Figure 7.

Fig. 7. A user registration form that displays error messages for invalid inputs.

The description can include references to variables. Prior to displaying the description,

each reference is translated to the label of the widget that the referenced variable is bound

to. This helps avoiding hard-coding the labels of referenced widgets. Hard-coding the

labels may be problematic since they may need to be altered later as the appearance of the

form changes.

A variable name is referred to with the syntax of ${variable}. Consider again the

description above:

25

@description(”${password2} must be the same as ${password1}.”)
password match <== password1 == password2;

When displaying the description to the user, a layout module retrieves the bindings between

variables and widgets, and substitutes the labels for the variable names. Figure 8 shows

the layout specification that has the labels and bindings of the widgets in Figure 7. The

layout module can pick up the corresponding labels for the referred variables from the

specification. The full property model specification of the user registration form, including

validation conditions, is given in Figure 9.

view {
text (label : ”User Name”, value : username);
password (label : ”Password”, value : password1);
password (label : ”Confirm password”, value : password2);
errors ();
row {

commandButton (label : ”Register”, value : result);
commandButton (label : ”Cancel”);
}
}

Fig. 8. The layout and bindings specifications for the form in Figure 7. The widget that is
manipulated by a user can have a label attribute for the label for the widget. The
value attribute of a widget declares a binding to a variable of the property model.
Based on the bindings between widgets and variables, the layout module can find the
corresponding “labels” of the widgets that variables are bound to. The errors widget,
which is added in the middle, is a message pane for displaying error messages. Our
prototype is using the widget to display all validation error messages in one place.

Our prototype displays all error messages in a separate area, as shown in Figure 7.

This is one among many possible choices. In practice, web user interfaces employ various

presentations for displaying validation error messages, as shown in the showcases for web-

form validation [27]. For example, user-registration forms might display error messages

26

model register {
interface : {

username;
password1;
password2;
}

output : {
result <== {username: username, password: password1};
}

invariant : {
@description(”${username} is required.”)
username required <== NotEmpty(username);

@description(”${password1} is required.”)
password required <== NotEmpty(password1);

@description(”${username} must be 3−20 characters.”)
username size <== Size(username, 3, 20);

@description(”${username} must start with alphabet
and only consists of alphabet and digit.”)

username pattern <== Pattern(username, ”ˆ[a−zA−Z][a−zA−Z0−9]∗$”);

@description(”${password1} must be at least 6 characters.”)
password size <== Size(password1, 6);

@description(”${password2} must be the same as ${password1}.”)
password match <== password1 == password2;
}
}

Fig. 9. The property model specification with invariant descriptions for the form in Figure 6.
In the invariant section, the invariants are boolean expressions written using the
property model expression language, which can contain calls to JavaScript functions.
Here, for example, we make calls to the JavaScript functions such as NotEmpty,
Size, and Pattern; these functions provide primitive validations.

27

below or beside the widgets that have invalid values, or highlight them with red outlines.

The presentation of error messages is orthogonal to the validation of preconditions.

The generic validation mechanism of property models described in this section is the same

regardless of how the user interface presents error messages. The validation mechanism

provides the validation results, a collection of error messages indexed by invariants, to the

layout module, and it is the role of the layout module to determine how to present them.

To demonstrate the orthogonality of the presentation of error messages, Figure 10 shows

another presentation, implemented in our prototype. The experiment with our prototype

demonstrates that adopting different visualizations for displaying error messages does not

affect the validation mechanism presented in this section.

Fig. 10. A user registration form that displays each error message below the widget it per-
tains to.

C. Pinpointing the source of an error using property model constraint system

When the validation condition of an invariant has only variables that contain the values

directly entered from a user, e.g., the username variable of the registration form in Fig-

ure 9, the description of the invariant directly identifies the variables, and their values, to

blame, in case of a failed invariant. Sometimes, however, an invariant may fail due to vari-

ables that the invariant does not refer to directly; other variables that the user alters can

28

contribute to the invariant according to the functional dependencies in the property model.

In such a case, the provided error message does not give precise information that pinpoints

exactly the values that contribute to the error. The information about the values can be only

obtained from the currently active dataflow, which changes dynamically.

For example, the hotel-booking form in Figure 11 displays a validation error com-

plaining about the “nights” value. The invariant of the failed validation, which is from the

model in Figure 12, is as follows:

@description(”The ${nights} must be at least two nights.”)
at least two nights <== nights >= 2;

Although the invariant fails when the “nights” value is not at least two, the failure may

be due to the “check-in” or “check-out” value that the user just entered (from which the

“nights” value was computed by the system). In this case, the error message that blames

the “nights” value may not be enough for the user to know the cause.

Fig. 11. A hotel-booking form with an error message complaining about “Nights” value.

Property model systems can provide information about which variables are respon-

sible for a failed invariant. Responsible variables are the variables that may affect the

invariant according to the current dataflow. This information can help the user to figure out

the reason for the error and how to fix it. Figure 13 shows an example how this information

could be presented to the user. Hovering the mouse over an error message shows a pop-up

29

model hotel {
interface: {
checkin : today();
nights: 1;
checkout;
}

logic: {
relate {

checkout <== add days(checkin, nights);
checkin <== remove days(checkout, nights);
nights <== day difference(checkin, checkout);
}
}

invariant: {
@description(”The ${nights} must be at least two nights.”)
at least two nights <== nights >= 2;
}

output: {
result <== {checkin: checkin, checkout: checkout};
}
}

Fig. 12. The property model specification for the form in Figure 11.

30

hint that directs the user to the widgets bound to the responsible variables.

Fig. 13. A hotel-booking form that shows a generated pop-up hint indicating the responsible
values for the error.

Variables can be responsible to a failed invariant in three different ways: directly re-

sponsible variables, contributing variables, and possibly responsible variables. These no-

tions can be useful for users as well.

First, directly responsible variables are the interface variables that directly appear in

the invariant condition. They directly contribute to the value of the invariant. We only

consider interface variables that are bound to widgets; it would be meaningless to identify

variables that are not visible to the user. In our hotel-booking form’s property model,

shown in Figure 12, the invariant condition is checking the nights variable, so this variable

is directly responsible if the invariant fails. The set of directly responsible variables can

be statically determined by looking at the constraint graph. For each invariant, we analyze

its method node. The interface variable nodes that are input to the method node are the

set of directly responsible variables. For example, the first sentence of the pop-up hint in

Figure 13, saying “‘Nights’ value is directly responsible for this error,” presents the directly

responsible variable to the user.

Second, contributing variables are the interface variables that are used to evaluate

the invariant, excluding the directly responsible variables of the invariant. Contributing

31

variables exist if the values of directly responsible variables are derived from the values

of other variables according to the currently active dataflow. For example, in the hotel-

booking form, the nights value is derived from the checkin and checkout values, if the user

edited them more recently than the nights value. In this case, the checkin and checkout

variables are the contributing variables to the nights value.

Contributing variables are dynamically determined from the evaluation graph. For

each invariant, they are the set of ancestor nodes of the invariant node, excluding the set of

the nodes of the directly responsible variables. Figure 13 shows an example that displays

the contributing variables in the pop-up hint, saying “Note that ‘Nights’ value is currently

affected by ‘Check-in’ and ‘Check-out’ values,” in the second sentence.

Finally, possibly responsible variables are the interface variables that may be used

to evaluate the invariant. These variables include all interface variables that may affect

the validation result; these include directly responsible variables and all the possible set

of contributing variables. For example, in the hotel-booking form, the nights, checkin,

and checkout variables can possibly contribute to the invariant. Thus, these variables are

possibly responsible variables for the invariant. To determine these variables, we look at

the constraint graph which has all the possible dataflows. For each invariant, they are the

set of interface variable nodes that reach the invariant node. These variables give the user

the candidates that can be edited to fix the error. The third sentence of the pop-up hint in

Figure 13, saying “You might be able to fix this error by editing the ‘Nights’, ‘Check-in’,

and ‘Check-out’ values,” presents the possibly responsible variables to help the user to fix

the error.

32

D. Related work

Preconditions were first used for user interface design by [28] as a part of a formal specifica-

tion, but they were not used to control widgets or generate help text at runtime. User Inter-

face Design Environment (UIDE) used preconditions to control the enabling of individual

menu items [29]. The initial UIDE only allowed a set of predefined expressions on its pre-

conditions. Daniel F. Gieskens and James D. Foley later extended the UIDE to allow arbi-

trary predicates to control the visibility and enabling of arbitrary widget [30]. Their system

supported only one-way dependencies between pieces of data. Other work [31, 32, 33, 34]

that extended UIDE used postconditions to generate help text indicating how to enable a

disabled widget. Property model systems do not provide the sequence of actions to enable a

disabled widget like the earlier work, but they enumerate a list of widgets that can possibly

affect the disabled widget.

Bigwig project [35] provides a high-level DSL for building interactive web interfaces.

It employs a domain-specific sublanguage, called PowerForms [36], for form field vali-

dation. PowerForms allows a validation condition to check complex interdependencies

between form fields. Our system and PowerForms both provide a client-side validation of

web forms by generating JavaScript code from DSLs. PowerForms needs to compile the

validation conditions on the server-side, whereas our system works as a client-side library.

Another difference is that our system supports a flexible expression language for validation

conditions where calls to external JavaScript functions are possible.

E. Conclusion

A considerable effort in web programming is spent on validating user input, that is, check-

ing whether the data supplied by the user is valid, and when it is not, producing error

messages to help the user fix the data. Although validation of user input is a common

33

behavior across web user interfaces, it is still not easy for web programmers to reuse the

behavior. This chapter explores a generic validation mechanism based on property models.

We extend the original property model system to be able to report validation errors when

a command button is disabled due to failed validation conditions. In addition, our system

generates additional analytic information on validation errors, which includes responsible

values that may affect the failed validation conditions.

We have implemented the validation mechanism within hotdrink. Our prototype demon-

strates the benefits of reusing the validation behavior. With the prototype, web program-

mers do not need to add a custom event handling code for validating user data, reporting

the errors of the data, or constructing help messages in case of errors.

34

CHAPTER IV

PINNING

A. Introduction

Property models allow implementing an interactive user interface that supports complex

“multi-way” dependencies. A property model system automatically coordinates the flow of

data when a user interacts with the interface. The system may change some variables’ val-

ues to enforce constraints. Selecting a particular dataflow is determined through a heuristic:

try to keep the more recent changes from being overwritten. This is a reasonable heuristic

and it works well often, but sometimes the system behavior may look unexpected to the

user if it does not match the user’s intention in a particular situation. In such a case, the

user may struggle to figure out the system’s behavior.

Pinning provides a user with means to control the preferred dataflow. It allows the user

to “lock in” certain values, guaranteeing that the system does not override the values while

it maintains the relationships between values. It does not prevent the user from further

editing the pinned values; it only affects the flow of data.

Pinning can be offered as a reusable user interface feature. The property model con-

straint system provides a way to fix a specific variable by only admitting dataflows where

the variable’s stay constraint is enforced. In this chapter, we introduce a generic pinning

mechanism based on the property model constraint system.

Pinning is useful for the user interfaces that have to support multi-way dataflow con-

straints. Those interfaces can employ the pinning mechanism to provide the control feature.

Consider a budget planning form, shown in Figure 14, which provides a flexible interface

with several multi-way constraints. Thanks to these multi-way constraints, a user can

experiment easily: editing any value will lead to other related values being automatically

35

Fig. 14. A trip budget planning form with a pinning feature. Clicking on the pin checkbox
next to each textbox widget will pin or unpin the value of the widget. The check-
box remains checked if the value is pinned. The interface may reject pinning if the
system is not able to enforce the pinning. In this instance, “budget,” “hotel check-
-in,” “hotel rate,” and “rental car rate” are pinned. Thus, if the user modifies the
“nights” value, “hotel check-out” value will be newly computed according to the
constraint (1), and “hotel cost” value, according to the constraint (2), “rental car
cost” value, according to the constraint (3), and “misc expense” value, according to
the constraint (4), will be newly computed as well. These constraints are defined in
Figure 15.

(1) [nights] = day diff([hotel check−in], [hotel check−out])
(2) [hotel cost] = [nights] ∗ [hotel rate]
(3) [rental car cost] = [nights] ∗ [rental car rate]
(4) [budget] = [hotel cost] + [rental car cost] + [misc expense]

Fig. 15. Multi-way dataflow constraints defined for the data in Figure 14. In this pseu-
do-code, each line defines an equality relation between the variables which are
expressed using square brackets. In the first relation, day diff is a function that
computes the number of days between two dates.

36

computed to satisfy the constraints shown in Figure 15. When the user updates a value,

there may be different dataflows, that is, solution graphs that could be used to satisfy the

relations in the constraint system. Without pinning, the property model system chooses a

dataflow solely based on the editing history. When there are complex relationships, as is

the case here, the default heuristic can lead to surprising results and the user may not be

able to predict the dataflow and which values will be overwritten. In this kind of a situation,

pinning lets the user control which values should be fixed and which allowed to change by

the property model system. Figure 14 shows an example situation where pinning is used to

force a particular dataflow.

B. Pinning mechanism

Pinning can be realized as a generic mechanism based on a property model constraint sys-

tem. In the constraint system, a solution graph provides a candidate dataflow. As explained

in Section 3 of Chapter II, the solution graph is determined by the strength assignment of

stay constraints. Each enforced stay constraints of a variable in the graph keeps the vari-

able unchanged. Thus, pinning a variable naturally translates to requiring that the variable’s

stay constraint will be enforced—guaranteeing that the pinned variable is not overwritten

by any method.

To make the system always enforce the stay constraints of pinned variables, we need

a slightly modified strength assignment scheme. We assign the highest strength, must,

to all the stay constraints of pinned variables, and we assign lower strengths to the other

stay constraints than the must constraints. The stay constraints of variables that are not

pinned are ordered according the editing history—the stay constraint of a more recently

edited variable is stronger. Even after taking pinning into consideration, the resulting order

of all stay constraints is still a total order. Therefore, the most preferred solution graph

37

is guaranteed to be unique [16]. This is important, as other generic algorithms for user

interface behaviors, such as a widget enablement algorithm [9], rely on the uniqueness for

their correctness.

Adding “must” stay constraints may lead to an over-constrained system that does not

have an admissible solution anymore. Thus, pinning should fail if adding a must stay

constraint for the pinned variable makes the constraint system unsolvable.

Clearing the pinned status of a variable is done through unpinning. Unpinning a

pinned variable is achieved through demoting the stay constraint of the variable to a regu-

lar (non-must) stay constraint. The stay constraint of the just-unpinned variable becomes

strongest among unpinned variables. With this heuristic, the stay constraint will still re-

main enforced. The important consequence is that unpinning a variable does not change

the current dataflow. Therefore, when unpinning a variable, the user will not be surprised

by a sudden change of dataflow.

We present the pinning mechanism more formally in terms of a state transition. The

current configuration, the state of a property model, was described in Section 5 of Chap-

ter II. We add a set of pinned variables to the state, redefining the current configuration to

be a tuple C = 〈Gs, s, p, ν〉, where Gs is a solution graph, s a strength assignment, p a set

of pinned variables, and ν a valuation. We define two requests, pinning and unpinning, to

the property model as pin and unpin, respectively.

Assuming a set of variables V and a current configuration C = 〈Gs, s, p, ν〉, an invo-

cation of pin to pin a variable v, where v /∈ p, has the following effect on C:

1. A new pinned set p′ is computed, such that p′ ← p ∪ {v}.

2. A strength assignment s′ is computed from s, such that the stay constraint of v has a

“must” strength, and the relative order of other stay constraints remains the same.

3. A solution graphG′s is produced by the solver algorithm. In some cases, the change to

38

the strength assignment leaves the most preferred solution graph the same asGs [16].

If v is a source in the current solution graph Gs, the solution graph will not change,

resulting in G′s = Gs. If the solver algorithm cannot find a solution, pinning fails and

the system restores the pinned set from p and the strength assignment from s; and

does not proceed further.

4. A new valuation ν ′ is computed from ν as follows: the computed-flag of every vari-

able is set to uncomputed; the changed-flag of every variable is set to unchanged; and

the relevancy-flag is set to relevant for all edges (v′,m′) from variables to methods,

such that (v′,m′) is not an edge in G′s but is an edge in G′′s .

5. The eval function, shown in Figure 5, is applied to each variable in V . A call to eval

may change the valuation, so the valuation v′ produces a new valuation v′′.

The result of the above procedure is a new current configuration C ′ = 〈G′s, s′, p′, ν ′′〉. The

evaluation (in the step 5) may produce the values of variables identical to the previous state

C. However, the evaluation must still run to update the relevancy-flags of variables and to

obtain an up-to-date evaluation graph. The correctness of some existing algorithms for user

interface behaviors, such as a widget enablement algorithm, relies on the evaluation graph.

Another request to the property model is unpinning. An invocation of unpin to unpin

a variable v, where v ∈ p, has the following effect on C = 〈Gs, s, p, ν〉:

1. A new pinned set p′ is computed, such that p′ ← p− {v}.

2. A strength assignment s′ is computed from s, such that the stay constraint of v be-

comes the strongest among the non-must stay constraints, and the relative order of

other stay constraints remains the same.

The result of the above procedure is a new current configuration C ′ = 〈Gs, s
′, p′, ν〉.

39

Fig. 16. A hotel-booking form with a pinning feature.

Pinning also affects the set operation, which is a request to assign a new value to

a variable and/or change the priority of the variable (the original procedure of set is de-

scribed in Section 5 of Chapter II). The first step of set has to employ the modified strength

assignment scheme that we used for pinning as follows:

1. A strength assignment s′ is computed from s, such that the stay constraint of v be-

comes the strongest among the non-must stay constraints, and the relative order of

other stay constraints remains the same. That is, variable v is given the highest pri-

ority among the variables that are not in the pinned set p.

C. Example scenario involving pinning

To illustrate the pinning mechanism, we present a simple hotel-booking form, shown in

Figure 16. The form has only one user-defined constraint as specified in Figure 17. Con-

sider the following sequence of events: the user enters a “check-in” date, and then enters

a “check-out” date; the system automatically updates the “nights” value computed from

those two values according to the user-defined constraint in Figure 17. If the user increases

the “nights” value thereafter, the “check-in” value will be overwritten by the value com-

puted from the “nights” and “check-out” values. The reason for this is that the system tries

to keep values from the most-recent edits, “check-out” value in the above case, overwriting

the value of a variable with a lower priority, i.e., “check-in” value. Figure 18(a) shows the

40

model hotel {
interface: {
checkin : today();
nights: 2;
checkout;
}

logic: {
relate {

checkout <== add days(checkin, nights);
checkin <== remove days(checkout, nights);
nights <== day difference(checkin, checkout);
}
}

output: {
result <== {checkin: checkin, checkout: checkout};
}
}

Fig. 17. The model specification for the form in Figure 16. One user-defined constraint
among checkin, checkout, and nights variables is defined in the model.

constraint graph of the property model with a strength assignment matching this scenario.

The solution graph, shown in Figure 18(b), yields the data flow where the “check-in” value

is derived from other values.

In this scenario, let us assume that the user wants to keep the “check-in” date un-

changed when altering the “nights” value. If the user pins the “check-in” value, the system

will promote the stay constraint of the “check-in” variable to a must constraint, resulting

in a strength assignment shown in Figure 19(a). The new data flow, shown in Figure 19(b),

now derives the “check-out” value when the user updates the “nights” value, keeping the

original “check-in” value unchanged.

Now if the user unpins the “check-in” value that was pinned earlier, the stay constraint

41

ci co

n

C1

3 2

1

// oo

oo

ci co

n

C1

2

1

OO

��

[[
oo

oo

(a) constraint graph (b) solution graph

Fig. 18. The constraint graph and solution graph when the variables are edited in the or-
der: (1) checkin, (2) checkout, and (3) nights. The labels ci, co, and n stand
for the checkin, checkout, and nights variables, respectively. C1 represents the
user-defined constraint, defined in Figure 17.

ci co

n

C1

0 2

1

// oo

oo

ci co

n

C1

0

1

OO

��

CC
//

oo

(a) constraint graph (b) solution graph

Fig. 19. The constraint graph and solution graph after pinning ci.

42

ci co

n

C1

1 3

2

// oo

oo

ci co

n

C1

1

2

OO

��

CC
//

oo

(a) constraint graph (b) solution graph

Fig. 20. The constraint graph and solution graph after unpinning ci.

of the variable will no longer be a must constraint. As we explained earlier, we give the

strongest strength to the constraint among unpinned variables, as shown in Figure 20(a).

This will result in the solution graph in Figure 20(b), which is the same as the previous

solution graph in Figure 19(b). This strength assignment makes the system preserve the

previous dataflow, giving the least surprise to the user.

D. Related work

The Heracles system [37] shares the motivation of pinning with us, citing potentially un-

clear dataflows and inadvertently overwritten values. It provides checkboxes for locking

and unlocking certain values, which are equivalent to pinning and unpinning in our system,

respectively. Heracles supports only one-way dataflow constraints, and unpinning works

differently from our system. In Heracles, unpinning a value triggers recomputation that can

result in a new dataflow, overwriting the just-unpinned value, whereas our system keeps the

existing dataflow to not confuse the user.

Although Heracles included a pinning feature, the authors of the system did not pro-

vide the details of how they implemented pinning and whether pinning was implemented in

a reusable manner. The main contribution of our approach is providing the generic pinning

mechanism.

43

E. Conclusion and future work

Currently, a pinning facility does not frequently appear in many web user interfaces. One

reason for this is that it is expensive to add this, seemingly simple, feature. This chapter

explores a generic pinning mechanism which can be incorporated into web user interfaces

with almost no cost. The property model constraint system enables keeping a variable

unchanged simply by rejecting solutions that do not enforce the stay constraint of that

variable. We provide a pinning algorithm by modifying the original strength assignment

scheme of the property model system.

We have implemented the pinning mechanism within hotdrink. Our prototype demon-

strates that a pinning facility can be easily incorporated into the user interfaces that need

to support multi-way dependencies. We expect that our work lowers the entry barrier of a

pinning feature.

For future work it would be interesting to find a way to prevent pinning failure. As

mentioned earlier, after enough variables are pinned, pinning a variable can fail if the prop-

erty model constraint system becomes over-constrained. In this case, it is better to prevent

the possible failure by making the pin option unavailable for the variable. Pinning such

a variable would indeed be senseless. A variable that cannot be pinned is always derived

in all possible plans. Any new value that is put into the variable will be overwritten. To

prevent the confusion, the widget should be disabled (read-only).

Checking if a variable is “pinnable” is possible through a single run of the constraint

solver. However, the system needs to check every unpinned variable whenever the set of

pinned variables changes, i.e., when pinning or unpinning is requested. This repetitive

computation may affect the performance of a user interface. Experiments would be needed

to assess its feasibility.

Another related but orthogonal area of research is the presentation of the pinning/un-

44

pinning feature to the user. For the sake of simplicity, our prototype is using checkboxes to

provide a pinning facility, but a large number of checkboxes may make the user interface

look cluttered. It might be better to provide pin/unpin commands in the context menu of

the widget, and make the border of a pinned widget highlighted when it is pinned. Finding

better pinning interfaces would require user studies as well.

45

CHAPTER V

UNDO

A. Introduction

A 1976 research report by Lance A. Miller and John C. Thomas noted that “It would be

quite useful to permit users to ‘take back’ at least the immediately preceding command (by

issuing some special undo command)” [38]. Undo enables a user to cancel his/her previous

actions. This facility is especially important for graphical user interfaces because it is so

easy for a user to click a wrong widget that leads to an undesired effect, e.g., resetting an

important data by clicking a wrong checkbox. The undo feature allows the user to revert the

system state with ease when he/she recognizes that a wrong action has been made. Undo

also encourages explorative learning, which is especially important on the web where users

encounter new interfaces frequently.

Although desktop user interfaces usually include an undo feature, currently web-based

user interfaces rarely support it. Like other convenience interface features, implementing

undo imposes an additional burden to programmers.

This chapter introduces an undo mechanism that reverts the state of a property model

to its previous state. Restoring the previous state includes recovering the previous values of

variables, solution graph, strength assignment, valuation, and others which are the elements

of a property model system state. The recovery process also has to coordinate with other

behaviors such as enabling/disabling widgets to maintain the whole system in a consistent

state after undoing. In this chapter, we take a partial checkpoint strategy [39]: store a part

of the system state, enough to be able to reverse the effect of the immediately preceding

command.

46

B. Background

Researchers have explored several undo models for many years [39, 40, 41]. Linear model

is the simplest model and it is extensively used in practice. In the linear model, a linear

history is a chain of commands where commands can be undone one by one in a sequential

order, or undone commands redone, similarly one command at a time.

Although the linear model can provide long undo-histories, it does not allow undoing

arbitrary commands without undoing all commands that follow them. In contrast, non-

linear models allow the user to undo arbitrary actions in isolation. There are several types

of non-linear models, such as the script model [40] and the selective undo model [39]. The

history structure of non-linear models, however, can become very complicated; a user may

struggle understanding the history unless a good visualization of the history is provided.

Conceptually a linear undo model consists of two lists of commands: the undo and

redo lists, as shown in Figure 21. When a command that changes the state of the system is

executed, it is placed as the last element of the undo list. If the undo list is not empty, an

invocation of undo extracts the last command from the undo list and reverses its effect—

and places the command as the first element of the redo-list. Whenever the redo list is not

empty, one can redo the previously undone command. An invocation of redo extracts the

first element of the redo list, executes the command, and appends the command to the end

of the undo list. In addition to the commands, the undo and redo lists need to store enough

state of the system that the effects of commands can be reversed or redone.

C. Undoing set command

When a user interface is implemented using the property models approach, the entire state

of the UI is stored in the property model. Implementing a generic undo behavior thus

requires us to maintain the undo and redo lists, where the commands are change requests to

47

e1 • e2 • e3 • e4 • e5 • e6 •
C1 C2 C3 C4 C5 C6

undo list
current state

redo list
��

Fig. 21. A linear undo/redo history of commands. e1, e2, · · · , e6 are commands (or events),
and C1, C2, · · · , C6 are the system states. In this case, the current state is C3 with
undo list = [e1, e2, e3] and redo list = [e4, e5, e6].

the property model and where the state consists of the property model’s variables’ values,

the editing history of the variables, the current solution graph, and the current evaluation

graph.

In the property model system, a basic modification command is set, which assigns a

new value to a variable. pin and unpin are also modification commands that are undoable.

In this thesis we focus on undoing a set command.

As explained in Section 5 of Chapter II, the state of a property model, the current

configuration, is defined as a tupleC = 〈Gs, s, ν〉, whereGs is a solution graph, s a strength

assignment, and ν a valuation. The set command may change the strength assignment s as

well as the solution graph Gs. The command will also produce a new valuation and a new

evaluation graph, which is obtained with the relevancy information in the valuation.

Undo list could store all elements in the configuration (full checkpoint strategy [40]).

However, a lot of information is computed from other information, so alternatively we can

store only the information that is not derived (partial checkpoint strategy [40]). We take

the latter approach to reduce storage overhead. In this approach, reverting is a bit more

complex than just restoring a snapshot.

In this section, we present an undo mechanism, which involves re-running evaluation.

The undo command we implement can be seen as a set command that reverses the effect of

the immediately preceding command. It performs a process that is similar to the process for

set. The process for set can be summarized: (1) set a new strength assignment s′, (2) com-

48

Cn−1
en +3 Cn

en+1 +3 Cn+1
undo +3 Cn+2

previous

OO

current

OO

Fig. 22. A series of configuration transitions of a property model, where Cn is the previous
configuration, Cn+1 is the current configuration after en+1 command, and Cn+2 is
the configuration after undoing the preceding command.

pute a new solution graph G′s if necessary, (3) compute a new valuation ν ′ by setting a new

value and initializing computed-flags, changed-flags, and relevancy-flags (pre-evaluation

stage), and (4) finally run evaluation functions, resulting in a new configuration (the details

are described in Section 5 of Chapter II).

Figure 22 illustrates the working of our undo command. Assuming the system is at the

state Cn+1 where the previous state was Cn, and the previous command was set, undoing

the set command invokes the following steps: (1) restore the strength assignment of Cn,

(2) restore the solution graph of Cn, (3) restore the valuation of the pre-evaluation stage

that existed right before the system state becomes Cn, and (4) run evaluation functions to

resurrect the valuation of Cn. The result of the procedure is a new configuration Cn+2

which is identical to Cn except for the changed-flags of variables (we will describe the

difference between the two configurations in more detail below). For this, a modification

command needs to save certain elements of the previous configuration such as a strength

assignment and the values of variables before making changes.

More specifically, a set command appends an event object, which represents the com-

mand, to the history. The event object contains data that represent the change and that are

necessary to undo the command. The event object for set includes the following: the target

variable to set a value, the previous strength assignment (of Cn), and the list of variable

49

and value pairs that will be used to resurrect the valuation of the previous configuration Cn.

The latter list includes the values collected at the pre-evaluation stage during the transition

from Cn−1 to Cn. The values enable us to restore the valuation of the pre-evaluation stage

and reach to the valuation of Cn after running evaluation.

We present the undo mechanism more formally in terms of a state transition. Assume

the following things: the current configuration is Cn+1, the previous configuration is Cn,

and the previous configuration of Cn is Cn−1; the valuation at the pre-evaluation stage that

existed during the transition from Cn−1 to Cn is ν ′n−1; the strength assignment, solution

graph, and valuation of Cn are s,Gs, and νn, respectively; the strength assignment, solution

graph, and valuation of Cn+1 are s′, G′s, and νn+1, respectively; the previous command is

set that sets t′ to a variable v; and the event object of the command contains v, s, and rv

which is the list of variable and value pairs from ν ′n−1. Invoking undo has the following

effect on the current configuration Cn+1:

1. A strength assignment s′′ is computed, such that s′′ ← s. This restores the strength

assignment of Cn.

2. A solution graph G′′s is computed, such that G′′s = Gs. Although we did not save Gs,

we can reconstruct Gs. If s = s′ or v is a source in G′s, the solution graph G′s is the

same as Gs. In this case, we can use G′s. Otherwise, G′s may be different from Gs.

In this case, the solver algorithm is run to produce a new solution graph G′′s , where

G′′s = Gs (because the most preferred solution graph is unique [16]).

3. A new valuation ν ′n+1 is computed from νn+1 as follows: for each variable and value

pair (k, u) in rv, if u 6= νn+1(k), k is set to u, an old value, and the changed-flag of k

is set to changed; the changed-flag is set to unchanged for all the other variables; the

computed-flag of every variable is set to uncomputed; and the relevancy-flag is set to

relevant for all edges (v′,m′) from variables to methods, such that (v′,m′) is not an

50

edge in G′s but is an edge in G′′s .

4. (Evaluation round) The eval function, shown in Figure 5, is applied to each variable

in V . A call to eval may change the valuation, producing a new valuation νn+2.

The result of this transition is a new current configuration Cn+2 = 〈G′′s , s′′, νn+2〉.

If we assume that the methods executed during the evaluation round are “regular”

functions [42], i.e., functions that always produce the same outputs for the same inputs,

Cn+2 is identical to Cn except the changed-flags in the valuation. In the step 1 and 2 of the

above procedure, the strength assignment and solution graph are reverted such that s′′ = s

andG′′s = Gs. In the step 3, the valuation ν ′n+1 is computed such that the values of variables

in the valuation are identical to the ones in ν ′n−1, the valuation of the pre-evaluation stage

during the transition from Cn−1 to Cn. This is realized by overwriting the values with

the ones in rv, which holds the very values of variables of ν ′n−1. The evaluation in the

step 4 will make all the variables have the values identical to the values of variables of

Cn if the executed methods are regular. The computed-flags of variables do not matter

since they are all set to uncomputed before evaluation, and they all become computed after

evaluation. The changed-flags of variables in Cn+2, however, may be different from those

of Cn because the variables that are set to changed in ν ′n+1 may be different from those in

ν ′n−1 (step 3), and the difference may result in different changed-flags after evaluation.

In our mechanism, we do not recover the changed-flags of variables. This is intentional

to guarantee the correctness of existing implementations of user interface behaviors. One

of the implementations is that for the widget enablement algorithm. Whenever the state of

a property model changes, the implementation is run with the information on the changed

variables. Therefore, the configuration that is produced by undo needs to reflect the actual

changes of variables in their changed-flags.

We implemented the undo mechanism within hotdrink. The implementation fits well

51

into the existing framework. The addition of undo had no impact on the implementation of

other generic user interface behaviors.

D. Example scenario involving undoing

Consider an image resize web form, shown in Figure 23. This example originally appeared

in an earlier property models paper [8]. Four text fields are editable: absolute width, ab-

solute height, relative width, and relative height. The interface allows the user to either

set the image’s absolute sizes or scale it in proportion to the initial width and height. The

initial sizes are visible in the interface, but not editable. In addition, the form contains a

checkbox, preserve proportions, that sets or clears a flag that ensures that the height and

width retain the same aspect ratio as that between the initial height and width. The vari-

ables that comprise the interface and the relationships between the variables are defined as

the property model in Figure 24.

Fig. 23. An image resize form with undo/redo features. The user can use the undo button
to revert his or her change on a text field or a checkbox. The undo action can be
canceled by using the redo button.

Assuming that the system is at some stateC1, which is shown in Figure 25(a), consider

the following scenario: the user (1) sets 60 to the “relative height,” then (2) sets 50 to the

“absolute width,” and (3) undoes the last set command. The first set command results in the

configuration C2, which is shown in Figure 25(b), and the second set command produces

52

model image resize {
input: {

initial height : 5 ∗ 300;
initial width : 7 ∗ 300;
}

interface: {
absolute height : initial height;
absolute width;
relative height;
relative width;
preserve ratio : true;
}

logic: {
relate {

absolute width <== relative width ∗ initial width / 100;
relative width <== absolute width ∗ 100 / initial width;
}
relate {

absolute height <== relative height ∗ initial height / 100;
relative height <== absolute height ∗ 100 / initial height;
}
relate {

relative width <== (preserve ratio) ? (relative height) : (relative width);
relative height <== (preserve ratio) ? (relative width) : (relative height);
}
}

output: {
result <== { height: absolute height, width: absolute width };
}
}

Fig. 24. The property model specification for the web form in Figure 23. Three constraints
are defined by the user: c1 is between absolute width, relative width, and ini-

tial width; c2 between absolute height, relative height, and initial height; and c3
between relative width, relative height, and preserve ratio.

53

wa
1001

ha

50 4

wr
50

2 hr
50

3

wi
200

hi
100

pr
false

5

r

c1 c2

c3

c4
&& xx

// oo

[[

��
// //

//

��

��
oo

OO

OO

OO

// oo wa
1002

ha

60 4

wr
50

3 hr
60

1

wi
200

hi
100

pr
false

5

r

c1 c2

c3

c4
&& xx

// oo

[[

��
oooo

//

OO

OO
oo

OO

OO

OO

// oo

(a) C1 (b) C2

wa
501

ha

60 4

wr
25

3 hr
60

2

wi
200

hi
100

pr
false

5

r

c1 c2

c3

c4
&& xx

// oo

[[

��
// //

//

��

��
oo

OO

OO

OO

// oo

(c) C3

Fig. 25. The solution graph, strength assignment, and values of the configuration C1, C2,
and C3, where r is the variable result in Figure 24; likewise, wa is absolute width,
wi initial width, wr relative width, ha absolute height, hr relative height, and pr
preserve ratio. c1, c2, and c3 are user-defined constraints defined in the property
model in Figure 24. c4 is a single-method constraint generated by the system to
compute the result value. The double-framed rectangles are stay constraints with
strength values. The values of variables are displayed either above or below each
variable. The system goes from C1 to C2 when the user sets 60 to hr. At C2

the changed-flags of hr, ha, and r are changed, whereas the changed-flags of the
other variables are unchanged. Next, if the user set 50 to wa, the system goes to
another state C3, where the changed-flags of wa, wr, and r become changed, and
the changed-flags of the other variables are unchanged.

54

the configuration C3 as shown in Figure 25(c).

For recovery, the event object of the second set command that resulted in C3 contains

the previous priority order, [hr, wa, wr, ha, pr, · · ·], and the values of variables, [(hr, 60),

(wr, 50), (pr, false)], which are collected at the pre-evaluation stage of the first set com-

mand that resulted in C2,

In this case, at the pre-evaluation stage, we collected only the values of hr, wr, and

pr variables that may be referred during evaluation. The values of the other variables are

derived during evaluation (the solution graph indicates which variables, such as wa, ha, and

r, will be derived), or constant (input variables such as wi and hi), so we do not need to

keep their values.

Undoing the second set command will go through the following steps:

1. Restore the priority order of C2: p← [hr, wa, wr, ha, pr, · · ·].

2. Run the solver algorithm to get the previous solution graph of C2.

3. Restore the valuation of pre-evaluation stage: ν(wr)← 〈50, , changed〉. The values

of hr and pr are the same as the ones of C3, thus, those variables are not modified.

4. Run eval function for each variable, resulting in a new valuation.

The resulting configuration isC4 where the values of variables are the same as Figure 25(b),

and the changed-flags ofwr, wa, and r are changed. C4 has the same priority order, solution

graph, values of variables, and relevancy-flags as C2. The changed-flags of variables are,

though, different from C2.

E. Related work

Systems that support undo/redo are common in desktop applications. It is not hard to

find the recovery feature in desktop productivity tools such as word processors and spread-

55

sheets. They are also commonly found in design applications like Adobe Photoshop [43]. A

design-level mechanism called Memento pattern [44] provides an implementation-independent

mechanism for undo in application development. We discuss a few more generic frame-

works that help implementing the undo facility below.

GINA [45] is an application framework and a class library to facilitate the construction

of interactive graphical user interfaces. It provides an object-oriented framework for im-

plementing linear undo models and selective undo models (undoing arbitrary commands)

using command objects. This early system enables application programmers to add the

undo facility by implementing undo/redo functions for each command object they provide.

GINA also provides the common features such as undo/redo menu entries and a history

scroller, which enables the user to go back and forth in the history. However, GINA does

not reduce the programmer’s burden to program the reverse operations for common actions.

Amulet [18], a user interface development environment for C++, provides an undo

mechanism similar to that of GINA. It utilizes command objects like GINA, but its selective

undo mechanism adds the ability to repeat previous commands and to undo selections and

scrolling. Like our system, Amulet supports multi-way dataflow constraint systems and the

actions of their basic widgets are undoable without any extra code.

Undo facility is not very common in web-based user interfaces. In certain web appli-

cations, a “back” button, which is provided by most web browsers, often fulfills the need

for going back to the previous state, or canceling the last action [46]. However, even in

feature-rich web applications, the back button does not always play the role of undo. Un-

der certain circumstances, web forms provide a “reset” button. However, the reset button

does not satisfy what people expect from undo since it can only empty or initialize all fields

in the form.

An early web-based ontology system [47], which enables collaboration on the web,

demonstrates the usefulness of undo/redo capabilities on the web environment. The au-

56

thors of the system argue that the undo/redo features allow the user to repair any mistakes,

so the features improve the reliability and trustworthiness that are essential to the multi-

user shared systems on the web. However, the authors do not provide any detail about

implementing the undo/redo on the web environment.

Tecnicia’s web-based MIS systems [48] support undo, motivated by the added value

of the feature—undo provides a suitable tool to easily correct human errors. The authors

of the systems argue that undo is a basic feature of recovery-oriented computing (ROC),

which aims to increase system’s dependability by reducing repair and recovery time. Like

our system, their undo mechanism is based on a partial checkpoint strategy, re-updating the

data using a normal update process. The main difference is that the MIS systems provide

a persistent undo function, which can recover data that users have changed or deleted in

past sessions. To this ends, the MIS systems have implemented the undo function on their

database servers, duplicating data upon modification.

Cappuccino, a web application framework using Objective-J, supports undo/redo [49].

This framework provides a programming model for application programmers to support

undo for some actions on web applications. Cappuccino only provides programming inter-

faces with which the programmers have to implement the reverse operations by themselves.

F. Conclusion and future work

Human errors are pegged as the root cause of roughly 20–50% of system errors [50]. There-

fore, interactive user interfaces should provide a facility for users to recover from their er-

rors. Although a lot of desktop user interfaces provide an undo command to go back to a

point before things went wrong, few user interfaces on the web provide a similar conve-

nience feature.

This chapter explores an undo mechanism which can be incorporated into web user

57

interfaces based on property models. We take a partial checkpoint and re-run strategy

to provide an efficient linear undo mechanism. To add undo/redo facilities to the existing

property models system, we abstract a user action as an event object which contains the data

for recovery. When undo is initiated, we restore the partial state with the values of variables

and re-run the evaluation round to produce a complete previous state. This strategy enables

us to add an undo facility without a major change on the existing system.

We have implemented the undo prototype as part of our hotdrink project. Our proto-

type demonstrates that an undo facility can be reused across several user interfaces without

having to write any user interface specific code.

Our work extends property models with a reusable recovery feature. Experience with

this feature suggests several avenues for future research. We currently do not offer any

way to inspect the undo history, but a good visualization feature would likely be helpful

for users. In addition, we have not considered pinning behavior in this chapter. Undoing

pinning or unpinning operations can be done in a mechanism similar to undoing a set

operation. The mechanism will have to recover the strength assignment as well as the

pinned set.

58

CHAPTER VI

EVALUATION

This thesis proposes three reusable user interface behaviors. We have not conducted user

studies for their usefulness, but we rely on our knowledge and experience with user inter-

faces in advocating them as beneficial to the user. Further, there are studies in the computer-

human interaction (CHI) research community that support our view [33, 30, 32]. Thus, this

evaluation section is not about assessing the usefulness of the user interface behaviors, but

rather about assessing their implementation effort. The main point of the thesis is that the

implementation of these behaviors should be practically free. In this chapter, we provide

small experiments that quantify the savings in implementation effort.

We have implemented the prototype of the proposed mechanisms for three help and

convenience behaviors, and we have applied it in constructing several user interfaces, web

forms and dialogs in particular. The results have been positive, demonstrating increased

productivity and reusability.

The property models approach is reported to significantly reduce defect rates and

vastly increase productivity of programmers when applied to implementing user interfaces

for a desktop application [9]. Although we have not conducted the same evaluation for

web-based user interfaces, we believe that the results apply to web user interfaces. Our

small-scale evaluation serves as supporting evidence.

To evaluate our approach in terms of productivity, we constructed two web forms,

which support the behaviors presented in this thesis, using two alternative approaches—

one using our prototype and another using a popular JavaScript library, jQuery [51]—and

compared them in terms of their code sizes and programming experiences.

The web form we first constructed for evaluation is an online survey form shown in

Figure 26. The survey form automatically enables and disables choices of answers de-

59

Fig. 26. An online survey form with widget enablement, validation and undo behaviors.

60

hotdrink jQuery

Widget enablement 6 33

Validation 19 69

Undo 0 41

Total code 55 261

Fig. 27. The number of code lines in two implementations, one using “hotdrink,” the other
using “jQuery,” of the user interface shown in Figure 26. We show the line counts of
code related to three different features: widget enablement, validation, and undo. In
the hotdrink implementation, the code counted for widget enablement and undo are
the logic and invariant sections of the property model definition. The row labeled
“total code” represents all code except for the layout code (Eve specification and
HTML code).

pending on the answers to related questions (widget enablement behavior). In particular,

it supports the two behaviors discussed in this thesis: (1) validation and generating error

messages; and (2) undo and redo.

The three behaviors can be easily provided when using property models. A program-

mer simply has to define the property model, which consists of variables, each representing

a piece of data, the relationships between the variables, and validation conditions with error

message templates. In the implementation that used jQuery, the declarative model specifi-

cation is not needed. Instead, the programmer writes event handlers that react to the update

events of widgets, enable and disable widgets, validate the values of widgets, generate error

messages, and undo/redo user actions.

Figure 27 shows the number of code lines in two implementation versions. The im-

plementation that used jQuery required more than five times as many code lines as the

implementation that used property models. Most of the code (45 lines out of 55) in the

property model version is to define the property model. In the property model version, the

61

lines counted for each behavior are to define the relationships between variables and the

invariants in the property model. No event handling code is needed to provide widget en-

ablement, validation, and undo behaviors. They are enabled simply by “turning them on”

in the layout specification. In the jQuery version, the lines counted for each behavior are

event handling code that is required to provide each behavior.

The result shows that the jQuery version, which was implemented in a more tradi-

tional way using event handlers, required the programmer to put more programming effort

in terms of code lines. In addition to being much longer, the code in the event handler

implementation was clearly not reusable in other web forms.

The second web form we constructed is a trip budget planner shown in Figure 14

in Chapter IV. The trip budget planner form takes advantage of multi-way dataflow con-

straints, and it thus has to support value propagation and support for pinning is desirable.

These are the behaviors we implemented in both versions of the planner form. Again, in the

property model version, these behaviors are simply enabled by turning them on, whereas

in the jQuery version, the behaviors are encoded as event handlers.

Figure 28 shows the line counts of the two versions. We use line counts as an indi-

cation of how much effort goes into implementing a user interface, and thus as a measure

of programmer productivity. Again, we observe that the jQuery version is considerably

longer—reassuring us that the traditional way gives lower productivity than our approach.

We further note that the jQuery version does not implement all the dependencies that the

property model version implemented. The reason for this is that adding code for satisfying

all the multi-way dependencies was too much complicated. In the property model version,

the multi-way constraint solver takes care of the multi-way dependencies.

We have so far applied our approach mostly to web forms and dialogs. We have not yet

applied it to large, complex real-world user interfaces. While a more thorough evaluation

remains as future work, we nevertheless interpret the results of the experiments reported in

62

hotdrink jQuery

Value propagation 17
168

Pinning 0

Total code 87 276

Fig. 28. The number of code lines in two implementations, one using “hotdrink,” the other
using “jQuery,” of the user interface shown in Figure 14. We show the line counts
of code related to two different features: value propagation and pinning. In the
hotdrink version, the code counted for value propagation is the logic section of the
property model definition. In the jQuery version, the code for value propagation
and pinning behaviors was mingled, so we counted them together. The row labeled
“total code” represents all code except for the layout code (Eve specification and
HTML code).

this chapter as very positive.

63

CHAPTER VII

CONCLUSION

Entry to implementing web-based user interfaces is relatively low. HTML and JavaScript

tutorials abound, and it is easy to get some web user interface implementations up and

running quickly. The vast amount of web-sites with forms of all kinds is the proof of this.

Many of those forms also serve as a proof that the entry level programming capabilities only

go so far. Low-quality interfaces are almost a norm, rather than an exception. Implementing

feature-rich user interfaces, supporting, e.g., value propagation, pinning, undo and redo,

and guiding the user with precise error messages—all this with no or very few defects—is

difficult and laborious.

This thesis builds on the promising approach of property models, which make com-

mon user interface features reusable components of a software library, considerably less-

ening the task of implementing a feature-rich user interface, and implementing it correctly.

In particular, this thesis describes three help and convenience features that can be gener-

ically implemented based on property model systems. The behaviors of validating user

data, generating precise, helpful error diagnostics, and allowing users to undo actions can

significantly improve the usability of web forms. Pinning gives users an explicit control

of dataflow—a feature that is particularly useful in user interfaces that represent pieces of

data with complex dependencies.

This thesis expands the range of user interface behaviors that can be packaged into

reusable software components and algorithms, and in doing so practically removes the

implementation cost of adding support for those behaviors in new user interfaces. In the

future, these results have the potential of improving the user experience of countless web

applications.

64

REFERENCES

[1] K. Scoresby, Win consumers with better usability, e-Business Advisor, June 2000.

http://www.scoresby.com/resources/article.php?a=0.

[2] B. A. Myers, M. B. Rosson, Survey on user interface programming, in: CHI ’92:

Proceedings of the SIGCHI Conference on Human Factors in Computing Systems,

ACM, New York, NY, USA, 1992, pp. 195–202.

[3] T. A. Standish, An essay on software reuse, IEEE Transactions on Software Engineer-

ing 10 (1984) 494–497.

[4] S. Parent, A possible future for software development, Keynote talk at the Workshop

of Library-Centric Software Design 2006, at OOPSLA’06, Portland, OR, USA, 2006.

[5] Microsoft, System.Windows.Forms, 2009. http://msdn.microsoft.com/

en-us/library/system.windows.forms.aspx.

[6] Apple, Apple developer connection: Cocoa, 2009. http://developer.apple.

com/cocoa/.

[7] Nokia, Qt: A cross-platform application and UI framework, 2009. http://qt.

nokia.com/.

[8] J. Järvi, M. Marcus, S. Parent, J. Freeman, J. N. Smith, Property models: From in-

cidental algorithms to reusable components, in: Proceedings of the 7th International

Conference on Generative Programming and Component Engineering, GPCE ’08,

ACM, New York, NY, USA, 2008, pp. 89–98.

65

[9] J. Järvi, M. Marcus, S. Parent, J. Freeman, J. Smith, Algorithms for user interfaces,

in: Proceedings of the 8th International Conference on Generative Programming and

Component Engineering, GPCE ’09, ACM, New York, NY, USA, 2009, pp. 147–156.

[10] J. Freeman, W. Kim, J. Järvi, Hotdrink: Library for building user interfaces on the

web, 2011. http://code.google.com/p/hotdrink/.

[11] S. Parent, Adobe Property Model Library, 2005. http://stlab.adobe.com.

[12] Adobe Systems, Adobe Source Libraries, 2005. http://stlab.adobe.com.

[13] B. V. Zanden, An incremental algorithm for satisfying hierarchies of multiway

dataflow constraints, ACM Transactions on Programming Languages and Systems

18 (1996) 30–72.

[14] A. Borning, R. Duisberg, B. Freeman-Benson, A. Kramer, M. Woolf, Constraint hi-

erarchies, SIGPLAN Notices 22 (1987) 48–60.

[15] B. N. Freeman-Benson, J. Maloney, A. Borning, An incremental constraint solver,

Communications of the ACM 33 (1990) 54–63.

[16] J. Freeman, J. Järvi, J. Smith, M. Marcus, S. Parent, Properties of con-

straint systems of property models, Technical Report TR09-001, Parasol Lab-

oratory, Department of Computer Science and Engineering, Texas A&M

University, 2009. http://parasol.cs.tamu.edu/groups/pttlgroup/

property-models/pm-tr-1.pdf.

[17] I. E. Sutherland, Sketchpad: A man-machine graphical communication system, in:

DAC ’64: Proceedings of the SHARE Design Automation Workshop, ACM, New

York, NY, USA, 1964, pp. 6329–6346.

66

[18] B. A. Myers, R. G. McDaniel, R. C. Miller, A. S. Ferrency, A. Faulring, B. D. Kyle,

A. Mickish, A. Klimovitski, P. Doane, The Amulet environment: New models for

effective user interface software development, Software Engineering 23 (1997) 347–

365.

[19] B. Myers, D. Giuse, R. Dannenberg, B. Zanden, D. Kosbie, E. Pervin, A. Mickish,

P. Marchal, Garnet: Comprehensive support for graphical, highly interactive user in-

terfaces, Computer 23 (1990) 71–85.

[20] M. Sannella, Skyblue: A multi-way local propagation constraint solver for user in-

terface construction, in: UIST ’94: Proceedings of the 7th Annual ACM Symposium

on User Interface Software and Technology, ACM, New York, NY, USA, 1994, pp.

137–146.

[21] A. Borning, R. K.-H. Lin, K. Marriott, Constraint-based document layout for the web,

Multimedia Systems 8 (2000) 177–189.

[22] G. J. Badros, A. Borning, K. Marriott, P. Stuckey, Constraint cascading style sheets

for the web, in: Proceedings of the 12th Annual ACM Symposium on User Interface

Software and Technology, UIST ’99, ACM, New York, NY, USA, 1999, pp. 73–82.

[23] Mozilla Foundation, XML user interface language (XUL) 1.0, 2006. http://www.

mozilla.org/projects/xul/xul.html.

[24] Microsoft, XAML: Extensible application markup language, Microsoft De-

veloper Network (MSDN), 2008. http://msdn.microsoft.com/en-us/

library/ms747122.aspx.

[25] Adobe Systems, Flex, 2004. http://www.adobe.com/products/flex.

html.

67

[26] OpenLaszlo project, 2005. http://www.openlaszlo.org.

[27] C. Watson, Web form error message design showcase - examples, 2008. http://

www.smileycat.com/miaow/archives/001411.php.

[28] M. Green, The design of graphical user interfaces, Technical Report CSRI-170, Com-

puter Systems Research Institute, University of Toronto, 1985.

[29] J. Foley, W. C. Kim, S. Kovacevic, K. Murray, Defining interfaces at a high level of

abstraction, Software, IEEE 6 (1989) 25 –32.

[30] D. F. Gieskens, J. D. Foley, Controlling user interface objects through pre- and post-

conditions, in: Proceedings of the SIGCHI Conference on Human Factors in Com-

puting Systems, CHI ’92, ACM, New York, NY, USA, 1992, pp. 189–194.

[31] R. Moriyon, P. Szekely, R. Neches, Automatic generation of help from interface de-

sign models, in: Proceedings of the SIGCHI Conference on Human Factors in Com-

puting Systems: Celebrating interdependence, CHI ’94, ACM, New York, NY, USA,

1994, pp. 225–231.

[32] P. Sukaviriya, J. J. de Graaff, Automatic generation of context-sensitive “show and

tell” help, Technical Report GIT-GVU-92-18, Georgia Institute of Technology, 1992.

[33] P. Sukaviriya, J. D. Foley, Coupling a UI framework with automatic generation of

context-sensitive animated help, in: Proceedings of the 3rd Annual ACM SIGGRAPH

Symposium on User Interface Software and Technology, UIST ’90, ACM, New York,

NY, USA, 1990, pp. 152–166.

[34] P. N. Sukaviriya, J. Muthukumarasamy, A. Spaans, H. J. J. de Graaff, Automatic

generation of textual, audio, and animated help in UIDE: The User Interface Design,

68

in: Proceedings of the Workshop on Advanced Visual Interfaces, AVI ’94, ACM, New

York, NY, USA, 1994, pp. 44–52.

[35] C. Brabrand, A. Møller, M. I. Schwartzbach, The bigwig project, ACM Transactions

on Internet Technology 2 (2002) 79–114.

[36] C. Brabrand, A. Møller, M. Ricky, M. I. Schwartzbach, PowerForms: Declarative

client-side form field validation, World Wide Web 3 (2000) 205–214.

[37] C. A. Knoblock, S. Minton, J. L. Ambite, M. Muslea, J. Oh, M. Frank, Mixed-

initiative, multi-source information assistants, in: Proceedings of the 10th Interna-

tional Conference on World Wide Web, WWW ’01, ACM, New York, NY, USA,

2001, pp. 697–707.

[38] L. A. Miller, J. C. Thomas, Behavioral issues in the use of interactive systems, in:

IBM Germany Scientific Symposium Series, 1976, pp. 193–216.

[39] T. Berlage, A selective undo mechanism for graphical user interfaces based on com-

mand objects, ACM Transactions on Computer-Human Interaction 1 (1994) 269–294.

[40] J. E. Archer, Jr., R. Conway, F. B. Schneider, User recovery and reversal in interactive

systems, ACM Transactions on Programming Languages and Systems 6 (1984) 1–19.

[41] Yiya, Yang, Undo support models, International Journal of Man-Machine Studies 28

(1988) 457 – 481.

[42] A. Stepanov, P. McJones, Elements of Programming, 1st Edition, Addison-Wesley

Professional, 2009.

[43] Adobe Systems, Adobe Photoshop, 1990. http://www.adobe.com/

products/photoshop.html.

69

[44] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns: Elements of Reusable

Object-Oriented Software, Professional Computing Series, Addison-Wesley Long-

man Publishing Co., Inc., 1995.

[45] M. Spenke, C. Beilken, An overview of GINA—the generic interactive application,

in: Proceedings of the Workshop on User Interface Management Systems and Envi-

ronments on User Interface Management and Design, UIMS, Springer-Verlag New

York, Inc., New York, NY, USA, 1991, pp. 273–293.

[46] Google, Gmail, 2004. http://mail.google.com/.

[47] J. Rice, A. Farquhar, P. Piernot, T. Gruber, Using the web instead of a window system,

in: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems:

Common Ground, CHI ’96, ACM, New York, NY, USA, 1996, pp. 103–110.

[48] N. Serrano, F. Alonso, J. Sarriegi, J. Santos, I. Ciordia, A new undo function for web-

based management information systems, Internet Computing, IEEE 9 (2005) 38–44.

[49] 280 North, Cappuccino project, 2008. http://cappuccino.org.

[50] D. Oppenheimer, A. Ganapathi, D. A. Patterson, Why do internet services fail, and

what can be done about it?, in: Proceedings of the 4th Conference on USENIX Sym-

posium on Internet Technologies and Systems - Volume 4, USITS’03, USENIX As-

sociation, Berkeley, CA, USA, 2003, pp. 1–1.

[51] J. Resig, jQuery, 2006. http://www.jquery.com/.

70

VITA

Wonseok Kim received his Bachelor of Science degree in Computer Science and Engi-

neering from Seoul National University in 2005. He entered the Computer Science program

at Texas A&M University in September 2009, and received his Master of Science degree

in December 2011. His research interests include programming languages and web-based

user interfaces.

Wonseok can be reached at Parasol Lab, Department of Computer Science and Engi-

neering, Texas A&M University, College Station, TX 77843-3112. His email address is

guruwons@gmail.com.

