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ABSTRACT 

 

Evaluation of the Dairy/Yeast Prebiotic, GroBiotic®-A, in the Diet of 

Juvenile Nile Tilapia, Oreochromis niloticus. (December 2011) 

Anjelica Maria Peredo, B.S., Texas A&M University 

Co-Chairs of Advisory Committee: Dr. Delbert M. Gatlin III
                                                  Dr. Alejandro Buentello 

 

Two different feeding trials were conducted to evaluate the effects of dietary 

supplementation with the dairy/yeast prebiotic GroBiotic®-A (GBA) to Nile tilapia diets.  

A nutritionally complete basal diet was supplemented with GBA at either 1 or 2% of dry 

weight, and all three diets were fed to triplicate groups of juvenile fish in two 

consecutive trials.  Trial 1 continued for 8 weeks, while Trial 2 was conducted for 5 

weeks to more specifically assess immunological responses, intestinal characteristics and 

disease resistance of tilapia.  At the conclusion of Trial 1, there were no differences in 

weight gain (WG) or feed efficiency (FE) among fish fed the three diets.  However, fish 

fed the diet with GBA at 2% had significantly increased survival and noticeably elevated 

levels of plasma lysozyme compared to fish fed the basal diet or the diet with GBA at 

1%.  Similarly, at the conclusion of Trial 2, WG and FE were unaffected by GBA 

supplementation; however, fish fed the diet with GBA at 2% also exhibited elevated 

plasma lysozyme as well as significantly (P < 0.05) increased levels of extracellular 

superoxide anion production (EX-SOAP) by macrophages.  Dendrogram analysis of 

denaturing gradient gel electrophoresis (DGGE) images detected a significantly different 
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microbial community within the intestine of fish fed the diet with GBA at 2% compared 

to fish fed the basal diet and diet with GBA at 1%.  None of the experimental diets 

resulted in significant improvements to survival after exposure to Streptococcus iniae 

due to within treatment variability.  However, fish fed the diet with GBA at 2% did tend 

to experience reduced mortality (12.5%) as compared to fish fed the basal diet (35%).  

Thus, supplementation of GBA at 2% of diet did alter the gut microbiota of tilapia and 

enhanced immunological responses and disease resistance to S. iniae. 
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INTRODUCTION 

Over the past decade, as the world’s population has continued to increase 

exponentially, aquaculture has played an integral role in providing a safe and sustainable 

seafood alternative to commercial capture fisheries.  According to the United Nations’ 

Food and Agriculture Organization (FAO), capture fisheries’ production levels have 

remained relatively static over the past several decades; whereas, aquacultural 

production has continued to increase to meet the world’s growing seafood demand, and 

now contributes over half of the total (FAO 2010).  Tilapia, one of the most commonly 

farmed species of fish, is among the top contributors to the overall production in finfish 

aquaculture.  As of 2008, world aquaculture production of Nile tilapia, alone, was at 

2,334,432 tonnes (FAO 2005-2010). 

As the demand for seafood from aquaculture continues to grow, production 

systems will need to become increasingly efficient.  However, several factors currently 

constrain aquaculture production with the single most costly problem being the loss of 

fish due to disease, which is facilitated by high stocking densities, poor water quality 

conditions, and improper nutrition.  In the past, the heavy and indiscriminate use of 

antibiotics to combat various diseases in aquaculture led to increased concerns regarding 

resistant strains of bacterial fish pathogens as well as drug-resistance in microorganisms 

present in the natural environment.  Also worrisome was the escalating presence of 

antibiotic residues in fish tissues (Alderman & Hastings 1998; Cañada-Cañada et al. 

2009) 

____________ 
This thesis follows the style of the journal Aquaculture Nutrition. 
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In response to these concerns, significant progress has been made over the past 

several years regarding the dietary inclusion of various immunomodulators.  A variety of 

feed additives, including non-nutritive immunostimulatory compounds such as microbial 

cells or cellular fractions from brewer’s yeast, β-glucans, peptidoglycans, chitin and 

oligonucleotides, as well as probiotics or live microbial dietary supplements, also have 

received more extensive evaluation with fish in recent years (Nakagawa et al. 2007; 

Gatlin & Li 2008).  One specific group of non-nutritive compounds that has gained 

considerable notoriety is that of prebiotics.  These substances were first described as 

non-digestible food ingredients that beneficially affect the host by selectively stimulating 

the growth and/or activity of one or a limited number of beneficial bacteria in the 

gastrointestinal tract (GIT, Gibson & Roberfroid 1995).  Due to the increasing amount of 

prebiotic research conducted in recent years, the definition has been upgraded to 

distinguish a prebiotic as a selectively fermented ingredient that fosters specific changes, 

both in the composition and/or activity of the GIT microbiota, which confer benefits 

upon host well-being and health (Gibson et al. 2004). 

Commonly used prebiotics that have been evaluated in various aquatic species 

include inulin, mannanoligosaccharides (MOS), fructooligosaccharides (FOS), short-

chain fructooligosaccharides (scFOS), GroBiotic®-A (GBA), and to a lesser extent, 

galactooligosaccharides (GOS), xylooligo-saccharides (XOS), 

arabinoxylooligosaccharides (AXOS), and isomaltooligosaccharides (IMO).  Table 1 

summarizes several studies in which prebiotics have been evaluated with aquacultured 
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organisms.  RingØ et al. (2010) and Yousefian & Amiri (2009) also have recently 

provided comprehensive reviews of prebiotic use in aquaculture.  

 
 
 

Table 1  Summary of prebiotic use in aquaculture 
Prebiotic Dose (g kg

-1
); 

duration of 

trial 

Species Initial  

Wt. (g) 

Response
a
 Reference 

Inulin 150; 4 weeks Arctic charr 
(Salvelinus 

alpines L.) 

218 Intestinal cell damage Wang & Wang 
(1997) 

 75; 3 weeks Atlantic salmon  
(Salmo salar L.) 

218 → Intestinal cell 
damage; ↑ Intestinal 

growth and relative 
mass of the 
gastrointestinal tract 

Refstie et al. 
(2006) 

 5 and 10; 1 
week 

Gilthead 
seabream (Sparus 

aurata L.) 

175 Significant inhibition 
of phagocytosis and 
respiratory burst in 
leucocytes 

Cerezuela et al. 
(2008) 

 20; 1 month Turbot  larvae 
(Psetta maxima)  

n/a ↑ Growth rate; Effects 

on gut microbiota 
(Bacillus and Vibrio) 

Mahious et al. 
(2006b) 

MOS 10; 4 months Atlantic salmon  200 ↓ Oxygen 
consumption; ↓ Protein 

and ↑ energy 

concentration in the 
whole body 

Grisdale-Helland 
et al. (2008) 

 2; 4 weeks Channel catfish 
(Ictalurus 

punctatus) 

16.0 → Growth 
performance, 
hematology, or 
immune function 

Welker et al. 
(2007) 

 20 and 40; 67 
days 

European sea 
bass 
(Dicentrarchus 
labrax) 

33.7 ↑ Growth; → Feed 

conversion; ↓Lipid 

vacuolization; ↓ 
Presence of Vibrio 

alginolyticus on head 
kidney 

Torrecillas et al. 
(2007) 

 2; 90 days Rainbow trout 
(Oncorhynchus 

mykiss) 

30.0 ↑ Growth and survival; 
↑ Antibody titer and 
lysozyme activity  

Staykov et al. 
(2007) 

 2; 8 weeks Rainbow trout n/a ↑ Absorptive surface in 

the posterior gut 
region; ↑ Microvilli 

density and length 

Dimitroglou et 

al. (2008) 

 

 



 

 
 

4 

Table 1 continued 
Prebiotic Dose (g kg-

1
); 

duration of 

trial 

Species Initial  

Wt. (g) 
Response

a
 Reference 

MOS, 

contin. 

0 and 4; 12 
weeks 

Rainbow trout 13.2 ↑ Growth; ↑ 

Hemolytic and 
phagocytic activity; ↑ 

Mucus weight; 
↑Survival against 

Vibrio anguillarum 

Rodrigues-
Estrada et al. 
(2008) 

 0, 2 and 6; 58 
days 

Hybrid tilapia 
(Oreochromis 

niloticus × O. 

aureus)  

8.1 → Growth rate; ↑ 

Survival; ↑ Non-
specific immunity 

He et al. (2003) 

 10; 4 weeks Red drum 
(Sciaenops 

ocellatus) 

10.9 ↑ Feed efficiency; ↑ 

survival following 
parasitic challenge; ↑ 

Non-specific 
immunity 

Buentello, et al. 
(2010) 

FOS 10; 4 months Atlantic salmon  200 → Feed intake, 
growth or digestibility 

Grisdale-
Helland et al. 
(2008) 

 10; 4 weeks Red drum 
 

10.9 ↑ Non-specific 
immunity 

Buentello, et al. 
(2010) 

 0, 2 and 6; 58 
days 

Hybrid tilapia  57.0 → Growth rate; ↑ 

Survival; ↑Non-
specific immunity 

He et al. (2003) 

 20; 1 month Turbot larvae  n/a ↑ Growth rate; Effects 

on gut microbiota 
(Bacillus and Vibrio) 

Mahious et al. 
(2006b) 

 2.5; 100 days Soft-shell turtle 
(Triortyx 

sinensis) 

n/a ↑ Growth rate; ↑ SOD 
activity; ↓Lysozyme 

activity 

Ji et al. (2004) 

scFOS 0.8 and 1.2; 8 
weeks 

Hybrid tilapia  5.6 ↑ Growth rate, feed 

intake, feed 
conversion; → 

Survival  

Hui-Yuan et al. 
(2007) 

GBA 10 and 20; 4 
(Trial 1) and 7 
(Trial 2) 
weeks 

Hybrid striped 
bass (Morone 

chyrsops × M. 

saxatilis) 

91.4 
(Trial 1) 
and 19.7 
(Trial 2) 

↑ Feed efficiency; ↑ 

Respiratory bursts; ↑ 

Resistance against 
Streptococcus iniae 

Li & Gatlin 
(2004) 

 10; 6 weeks Red drum 2.4 → WG or FE; → 
Intestinal microbiota 

Burr et al. 
(2009) 

 10; 4 weeks Red drum 10.9 ↑ Feed efficiency; 

enhanced WG; ↑ 

survival following 
parasitic challenge; ↑ 

Non-specific 
immunity 

Buentello et al. 
(2010) 
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Table 1 continued 
Prebiotic Dose        

(g kg-1); 

duration 

of trial 

Species Initial  

Wt. (g) 

Response
a
 Reference 

GBA, 

contin. 

20; 16 
weeks 

Hybrid striped 
bass 

64.5 ↑ Growth 

performance, ↑ 

Resistance against 
Mycobacterium 

marinum 

Li & Gatlin 
(2005) 

 20; 16 
weeks 

Golden shiner 
(Notemigonus 

crysoleucas) 

1.06 ↑ Resistance against 

Flavobacterium 

columnare 

Sink et al. 
(2007) 

 20; 10 
weeks 

Golden shiner  0.46 → Survival; 

↑Resistance against 

Flavobacterium 

columnare 

Sink & 
Lochmann 
(2008) 

 10; 3 
weeks 

Red drum  500 ↑ Protein, lipid and 

organic ADC values 
Burr et al. 
(2008) 

 10; 4 
weeks 

Red drum  10.9 ↑ FE; ↑ enhanced 
weight gain; ↑ 

Survival following 
Amyloodinium 

ocellatum; ↑ non-
specific immune 
responses 

Burr et al. 
(2009) 

 10 and 20; 
8 weeks 

Hybrid striped 
bass 

34.4 → WG or FE Burr et al. 
(2010) 

 20 ; 9 Rainbow trout 14.3 → WG or FE; 
→antibody levels 

Sealey et al. 
2007 

XOS 0, 0.15, 2.1 
and 3.2; 45 
days 

Crucian carp 
(Carassius 

auratus gibelio) 

17.0 ↑ Growth; → Survival; 
↑ Enzymatic activity 

 Xu et al. (2009) 

aArrows indicate an increase (↑), decrease (↓), or no change (→) in the response 
 
 
 
Previous studies with various fish species in our laboratory revealed that 

prebiotics have the capacity to afford a range of beneficial effects including improved 

performance indices (Li & Gatlin 2005; Buentello et al. 2010; Zhou et al.2010), 

increased immunological responses (Buentello et al. 2010; Zhou et al.2010), changes to 

the intestinal morphology (Zhou et al.2010), and, most notably, enhanced survival 

following disease challenge against various bacterial (Li & Gatlin 2005) and parasitic 
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(Buentello et al. 2010) pathogens.  In addition to the previously stated prebiotic benefits, 

these compounds may also favor the proliferation of beneficial bacteria (in lieu of 

potentially pathogenic microorganisms) within the intestine.  Such effects have been 

demonstrated in various animals, including poultry (Spring et al. 2000; Patterson & 

Burkholder 2003), swine (Smiricky-Tjardes et al. 2003; Konstantinov et al. 2004), and 

various fish species (Burr et al. 2008; 2010).   

Additionally, GBA supplementation has been shown to improve the nutrient 

value of plant feedstuffs, enhance non-specific immune responses and increase disease 

resistance in fish (Li & Gatlin, 2004; 2005; Sealey et al. 2007; Burr et al. 2008; 

Buentello et al. 2010).  Therefore, the objective of the current study was to evaluate the 

responses of Nile tilapia (Oreochromis niloticus) to graded levels of the dairy/yeast 

prebiotic GBA, with respect to performance indices, selected non-specific immune 

responses, intestinal microbiota and histology, as well as disease resistance following a 

controlled bacterial challenge. 
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MATERIALS AND METHODS 

 An initial 8-week feeding trial (Trial 1) and a 5-week follow-up trial (Trial 2) 

were conducted at the Texas A&M University Aquacultural Research and Teaching 

Facility (ARTF).  Prior to the start of both feeding trials, all fish were fed a conditioning 

diet twice daily (a.m. and p.m.) for 2 weeks.  During this conditioning phase the fish 

became acclimated to the culture system and other environmental conditions.   

 Diet Formulation   

A nutritionally complete basal diet was formulated to contain approximately 35% 

crude protein on a dry-matter basis.  Experimental diets were formulated by 

supplementing the basal diet with GBA at 1% or 2% of dry weight in place of cellulose 

(Table 2).  The resulting three diets were evaluated in both trials. 

 All diets were prepared at the ARTF as previously described by Li and Gatlin 

(2004).  Dry ingredients were mixed in a V-mixer followed by the blending of oil and 

water with the dry ingredients in a food mixer.  Then 3-mm pellets were prepared using 

a commercial blender with a meat grinding attachment.  Each diet was crumbled to a 

size small enough to be consumed by the fish.   

Culture System and Feeding Trials 

 Both feeding trials were conducted in a closed, recirculating system consisting of 

110-L glass aquaria.  Salinity was maintained at 2 ppt by mixing a synthetic sea salt 

blend and sodium chloride with well water.  Water quality was maintained within 

acceptable levels for tilapia using mechanical and biological filtration, and supplemental 

aeration was provided to each aquarium via an airstone to achieve oxygen levels near air 
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saturation.  Water temperature was maintained at 26 + 1°C by conditioning ambient air, 

and a 12-h light:12-h dark photoperiod was achieved with fluorescent lights controlled 

by timers. 

 

 

 
Table 2  Composition of experimental diets (% dry weight) 

 
Diet 

Ingredient (%) Basal 1% GBA 2% GBA 

Menhaden fish meal1 10.0 10.0 10.0 

Soybean meal, dehulled2 45.0 45.0 45.0 

Dextrin3 25.0 25.0 25.0 

Menhaden oil1 2.0 2.0 2.0 

Vitamin premix4 3.0 3.0 3.0 

Mineral premix4 4.0 4.0 4.0 

Carboxymethyl cellulose3 2.0 2.0 2.0 

CaPO4, dibasic5 1.0 1.0 1.0 

Corn oil3 1.4 1.4 1.4 

Casein3 4.6 4.6 4.6 

Celufil3 2.0 1.0 0.0 

GroBiotic-A6 0.0 1.0 2.0 

Proximate composition (%)7 
   Dry matter 88.3 86.2 87.8 

Crude protein 38.2 38.7 39.3 
Crude lipid 5.9 5.7 6.2 
Ash 8.7 8.6 8.9 

1 OmegaProtein Corporation, Houston, TX, USA 
2 Rangen Inc., Angleton, TX, USA 
3 US Biochemical Corporation, Cleveland, OH, USA 
4 Same as Moon and Gatlin (1991) 
5 Fisher Scientific, Pittsburgh, PA, USA 
6 International Ingredient Corp., St. Louis, MO, USA 
7 Means of two replicate analysis per sample expressed on a dry-matter basis 
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Trial 1.  For Trial 1, fish were obtained from Til-Tech Aquafarm in Robert, LA.  This 

company produces all-male progeny of genetically male tilapia (GMT) using the “Y-Y 

male technology” developed by Fishgen Ltd. at the University of Swansea in Wales.   A 

total of 225 fish with an initial weight of 4 to 5 g/fish were randomly divided into nine 

tanks.  Twenty-five individuals were then graded by size and stocked into each aquarium 

such that their collective weight differed by ≤ 5%.   

Each diet was randomly assigned to three replicate tanks, with fish in each 

aquarium receiving their respective diet initially at a rate of 6% of body weight (BW) per 

day divided into two feedings.  The feeding rate was gradually reduced equally among 

all treatments over the course of the trial to 4% BW to maintain a rate close to apparent 

satiation without overfeeding.  Fish in each aquarium were collectively weighed once 

every week to monitor weight gain and adjust the feed ration accordingly.  This feeding 

trial continued for an 8-week period following the methodologies established by similar 

studies conducted with tilapia (He et al. 2003; Hui-Yuan et al. 2007). 

 

Trial 2.  Trial 2 was conducted to more specifically evaluate the immunological 

responses and disease resistance of tilapia fed the same experimental diets.  Mixed sex 

fish for Trial 2 were obtained from Simaron Freshwater Fish, Inc., Hempstead, TX.  A 

total of 270 (6 to 7 g/fish) disease-free juvenile fish were randomly divided into nine 

aquaria.  Similar group weights were achieved by sorting the fish so as to ensure limited 

variation among aquaria (≤ 5%).  Each experimental diet was provided to fish in three 

randomly assigned aquaria and weekly weight gain was monitored as previously 
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described.  After 5 weeks of feeding, fish were subjected to a controlled challenge with 

Streptococcus iniae.  This time interval was chosen based on previous studies conducted 

with GBA (Li & Gatlin 2004) and Nile tilapia (Samrongpan et al. 2008) which included 

a disease challenge component.   

 

Bacterial challenge.   Prior to the actual challenge, a previously obtained isolate of 

Streptococcus iniae was propagated in brain-heart infusion (BHI, Becton, Dickinson and 

Company, Sparks, MD) and passed through two fish to assure virulence.  A preliminary 

LD50 was conducted in order to ascertain the proper concentration of colony forming 

units (CFU) needed to achieve 50% survival 1 week after disease exposure.  Following 

the 5-week feeding period in Trial 2, 40 fish from each dietary treatment were randomly 

selected and subjected to the pathogenic challenge.  These fish received an 

intraperitoneal injection (~0.6 mL/10 g BW) of BHI broth inoculated with virulent 

bacteria.  After injection, fish were transferred to an isolated recirculating system and 

stocked at a rate of 20 fish/tank, with two replicate aquaria per dietary treatment.  Based 

on the LD50 assay, the concentration of S. iniae was targeted to be approximately 5.37 

x107 CFU/mL and this concentration was confirmed via replicate plate counts.  Fish 

mortality was then monitored for 21 days following the injection. 

 

Immune responses.  At the end of Trial 1 three fish from each tank were humanely 

euthanized using tricaine methane sulfonate (MS-222, 200 mg/mL; Western Chemical 

Inc., Ferndale, WA, USA) to collect various biological samples.  Blood was collected 
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from the caudal vasculature using heparinized 1-mL syringes in order to assay selected 

non-specific immune responses which would indicate the state of immune system 

function at the time of sampling.  A portion of the whole-blood was used to determine 

neutrophil oxidative radical production with nitro blue tetrazolium (NBT) as described 

by Siwicki et al. (1994).  Plasma was then separated by centrifuging the remaining blood 

at 3,000 × g for 10 min and then kept at -80°C until lysozyme activity was determined 

according to the assay of Jorgensen et al. (1993).  The same procedures were undertaken 

following the conclusion of Trial 2, but only two fish per aquarium were sampled.   

At the conclusion of Trial 2, in addition to the two immunological assays 

described above, superoxide anion production from kidney macrophages also was 

determined as described by Secombes (1990) with modifications in order to further 

assess the level of immune system function.  Head and trunk kidneys from all remaining 

fish in each treatment (7 to 10 fish per aquaria) were dissected and placed into separate 

15-mL vials containing 5-10 mL of Leibovitz (L-15) media with L-glutamine (Sigma-

Aldrich Co., St. Louis, Mo).  Macrophage isolation and estimation (Buentello & Gatlin 

1999) as well as the detection of extracellular and intracellular superoxide anion 

production (Sealey & Gatlin 2002) were then assessed. 

 

Denaturing gradient gel electrophoresis.  Following the conclusion of Trial 1, digesta 

from the intestines of three fish per tank was pooled into a sterile, DNase-free 

microcentrifuge tube and immediately frozen in liquid nitrogen.  The digesta was then 

used to determine possible differences in the microbial communities within the GIT 
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according to the procedures described by (Hume et al. 2003).  Genomic DNA was 

isolated from ~0.2 g of thawed digesta with QIAGEN’s QIAamp
® DNA Mini Kit 

(Valencia, CA, USA), and 250 ng of template DNA per sample were combined   

Polymerase Chain Reaction (PCR) was conducted by combining bacteria-specific PCR 

primers (Burr et al. 2010) targeting the conserved regions flanking the variable V3 

region of 16S rDNA, with Jump Start Red-Taq Ready Mix (Sigma Chemical Company, 

St. Louis, MO, USA), bovine serum albumin, to help stabilize the reaction, and 250 ng 

of template DNA, per sample collected, and run according to the following thermocyler 

(PTC-200 Peltier Thermal Cycler; MJ Research, MJ Research, Inc., Waltham, MA) 

program: 1) denaturation at 94.9 C for 2 min; 2) subsequent denaturation at 94.0 C for 

1 min; 3) annealing at 67.0 C for 45 sec; -0.5 C per cycle (touchdown to minimize 

spurious by-products (Don et al. 1991; Wawer & Muyzer 1995)); 4) extension at 72.0 C 

for 2 min; 5) repeat steps 2 to 4 for 17 cycles; 6) denaturation at 94 C for 1 min; 7) 

annealing at  58.0 C for 45 sec; 8) repeat steps 6 to 7 for 12 cycles; 9) extension at 72.0 

C for 7 min; 10) 4.0 C holding temperature.  Denaturing gradient gel electrophoresis 

(DGGE) was conducted using the following modification: 1 µL of PCR product from 

each of three tanks per treatment was pooled accordingly and added to 3 µL of 2X 

loading buffer, then loaded onto a corresponding well of an 8% polyacrylamide gel 

[(vol/vol) acrylamide-bisacrylamide ratio of 37:5:1 (Bio-Rad, Richmond, CA, USA) 

with a 35% to 60% urea-formamide gradient (100% was 7 M urea and 40% deionized 

formamide) using a DCode System (Bio-Rad, Hercules, CA, USA) with 0.5x TAE 

buffer (20 mM Tris (pH 7.4), 10 mM sodium acetate, 0.5 M EDTA) at 59 C for 17 h at 



 

 
 

13 

60 V.  Gels were stained with SYBR Green I (Sigma).  The same techniques were 

applied at the conclusion of Trial 2 pooling the digesta of two fish per aquarium. 

The analysis of band pattern relatedness was determined with Molecular 

Analysis Fingerprinting software (v 1.6; Bio-Rad, Hercules, CA).  This analysis is based 

on the Dice similarity coefficient (SC) and the un-weighted pair group method using 

arithmetic averages for clustering.  Comparisons between sample band patterns was 

expressed as a percentage SC (SC > 95% means two populations are identical; SC ≤ 95 

and  ≥ 80 means two populations are similar; SC < 80 means two populations are 

significantly different). 

 

Histology.  After the conclusion of Trial 1, a single intestine from one fish per tank was 

injected with Davidson's fixative solution (acetic acid:95% ethanol:formaldehyde:H2O at 

a 1:3:2:3 ratio) and fixed for 24 h, after which it was transferred to a 70% ethanol 

solution for long-term storage.  Segments (~1 cm length) of proximal, middle and distal 

intestine were sliced, embedded in paraffin and transverse sections were processed to 4-

μm slides and stained with hematoxylin and eosin.  The slides were examined under a 

light microscope (Olympus, Bx60, Center Valley, PA, USA) equipped with a digital 

camera (Donpisha, XC-003P) and VGA 460 Osteomeasure software (Osteometrics, 

Decatur, GA) for image acquisition.  Electronic images were further analyzed using 

Image J software (National Institutes of Health, Bethesda, MD, USA) for assessing 

dimensions of intestinal folds, enterocytes and microvilli in different enteric sections (10 
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measurements per section per fish).  The same technique was applied to fish from Trial 

2, using the intestines of two fish from each aquarium. 

 

Statistical analysis.  Analysis of variance (ANOVA) was used to determine significant 

(P < 0.05) dietary effects with regard to the performance indices, immunological assays 

and histological measurements.  All statistical analyses were performed using JMP 9 

(SAS Institute Inc., Cary, NC, USA). 
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RESULTS 

Trial 1 

Performance indices.  Weight gain and feed efficiency values of juvenile Nile tilapia 

were similar across all three dietary treatments (Table 3); however, at the end of the 8-

week feeding trial, fish fed the diet containing 2% GBA showed significantly (P < 0.05) 

increased survival. 

 

Immunological responses.  Selected non-specific immune responses are shown in Table 

3.  Neutrophil oxidative radical production (NBT) was not significantly (P > 0.05) 

affected by prebiotic supplementation.  Lysozyme activity in plasma tended to increase 

with dietary GBA supplementation, although statistical significance was not achieved.   

 

 

 
Table 3  Performance indices and non-specific immune responses of Nile tilapia fed 
experimental diets for 8 weeks (Trial 1)* 

Diet 
WG

§ 

(%) 

FE 

(g gain/g fed) 

Survival 

(% ) 
NBT

‡ 
(U mg

-1
 protein) 

Lysozyme
‡
 

(U ml
-1

) 

Basal 670 0.66 90.7ab 5.08 79.0 
1% GBA 704 0.65 86.9b 4.94 90.0 
2% GBA 669 0.65 98.7a 5.06 111.7 

P> F
†
 0.95 0.98 0.04 0.81 0.26 

PSE 87.6 0.03 2.56 0.16 12.81 
* Values represent the means of three replicate aquaria unless otherwise noted. Values in the same    

column with different superscript letters are significantly different (P < 0.05) 
§ Weight gain (WG) as a percent of initial weight 
† Significance probability associated with the F statistic 
‡Means of nine fish per dietary treatment 
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Intestinal microbial analysis.  Dendrogram analysis (Figure 1) showed that the 

microbial communities found within fish fed the experimental diets were very similar 

(SC = 94.7%), being almost identical to each other.  The microbial composition of 

digesta from fish fed the basal diet was very similar to that obtained from fish fed both 

of the GBA-supplemented diets (SC = 91.0%), indicating that GBA supplementation did 

not significantly affect the microbial composition within the GIT of juvenile Nile tilapia 

at the time of sampling.   

 

 

 

 
Figure 1  Dendrogram analysis of the microbial community in the intestine of tilapia fed experimental 
diets in Trial 1 

 

Histology.  An overview of the histological measurements from Trial 1 is shown in 

Table 4.  Fish fed the basal diet had significantly increased fold height in the proximal 

intestine.  Fish fed diets supplemented with 1% GBA experienced significantly increased 

total enterocyte height in the middle section of the intestine and significantly increased 

microvilli height in the distal intestine when compared to fish fed the basal and 2% GBA 

diets.  Fish fed 2% GBA diets experienced significantly increased fold height in the 

distal section of the intestine when compared to the other diets.   

 

 
 

94.7 

91.0 
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Table 4  Histomorphometric measurements (m) of the proximal, middle and distal sections of 
intestine (Trial 1)* 
Diets Basal   1% GBA   2% GBA   ANOVA   

Proximal 

 

P> F PSE 

Fold height 334.1a 
 

295.6b 
 

307.2b 
 

0.02 9.55 
Total enterocyte height 40.3 

 
42.9 

 
44.2 

 
0.13 1.35 

Microvilli height 1.9 
 

2.0 
 

2.2 
 

0.06 0.09 

         Middle 

        Fold height 191.7 
 

168.0 
 

159.0 
 

0.12 11.56 

Total enterocyte height 32.5b 
 

37.9a 
 

34.5b 
 

0.01 1.18 
Microvilli height 2.1 

 
2.4 

 
2.1 

 
0.08 0.10 

         Distal 

        
Fold height 112.4b 

 
119.7b 

 
177.7a 

 
0.00 11.04 

Total enterocyte height 42.9 
 

43.6 
 

41.7 
 

0.45 1.07 

Microvilli height 1.7b   2.1a   1.9ab   0.01 0.07 
* Data represent means of 10 independent measurements from one fish per aquarium (three per dietary     
treatment).  Values in the same row with different superscript letters are significantly different (P < 
0.05) 

 
 
 

Trial 2 

Immunological responses.  At the end of the 5-week period in Trial 2, values for 

neutrophil oxidative radical production were relatively similar for fish fed the different 

diets (Table 5).  Lysozyme production tended to increase with the amount of GBA in the 

diet, with fish fed the 2% GBA diet having the highest numerical value, although 

statistical significance was not reached (Table 5).  Extracellular super oxide anion 

production (EX-SOAP) of fish fed the diet containing 2% GBA was significantly higher 

than that of fish fed the basal diet.  Intracellular superoxide anion (IN-SOAP) was 
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numerically highest in fish fed the diet with GBA at 2%, but no statistical significance 

was attained.   

 

Intestinal microbial analysis.  The dendrogram analysis (Figure 2) of samples obtained 

from fish in Trial 2 showed two distinct groups of microbial communities brought about 

by the different experimental diets.  The microbiota found in the digesta of fish fed the 

basal and 1% GBA diets were remarkably similar (SC = 92.5%).  However, fish fed the 

2% GBA diet showed a very different microbial community based on the DGGE 

analysis (SC = 71.9%).   

 

Histology.  Histological measurements from Trial 2 are summarized in Table 6.  Fish fed 

the basal diet experienced significantly increased microvilli height in the proximal 

intestine, as well as significantly increased fold height in the middle section of the 

intestine.  Fish fed the 1% GBA diet experienced significantly increased total enterocyte 

height in the middle section of the intestine as well as significantly increased fold height 

in the distal intestine.  Fish fed the 2% GBA diet only experienced statistically 

significant increases in fold height in the proximal intestine.  

 

Bacterial challenge.  Fish fed the diet supplemented with 2% GBA experienced 

noticeably higher survival during the bacterial challenge when compared to fish fed the 

basal and 1% GBA diets (Figure 3).  However, due to within treatment variability, a P-

value of only 0.33 was achieved.   
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Table 5  Selected non-specific immune responses of tilapia fed experimental diets for 5 weeks 
(Trial 2) 

Diet  

NBT
*
 

(U mg
-1

 protein) 

Lysozyme
*
 

(U ml
-1

) 

EX-SOAP
‼
 

(nmol O2
-
) 

IN-SOAP
†
 

(OD)
 

Basal 7.16 61.7 0.29b 0.18 
1% GBA 6.67 76.7 0.63ab 0.19 
2% GBA

 6.83 81.7 0.75a 0.24 

P> F 0.87 0.81 0.04 .20 
PSE 0.67 22.49 0.09 .02 

* Means of two fish from each of the three replicate aquaria per dietary treatment.  Values in the  
   same column with different superscript letters are significantly different (P < 0.05) 
‼ Extracellular superoxide anion production 
†
 Intracellular superoxide anion production, optical density at 620 nm  

 

 

 
 

 

 

 
 

 

Figure 2  Dendrogram analysis of the microbial community in the intestine of tilapia fed experimental 
diets in Trial 2 
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Table 6  Histomorphometric measurements (m) of the proximal, middle and distal sections of 
intestine (Trial 2)*  

Diet Basal   1% GBA   2% GBA   ANOVA   

Proximal 

 

P> F PSE 

Fold height 321.2a 
 

315.2a 
 

272.9b 
 

0.00 8.30 
Total enterocyte height 38.1 

 
37.6 

 
36.5 

 
0.29 0.71 

Microvilli height 1.9a 
 

1.8ab 
 

1.7b 
 

0.03 0.05 

         Middle 

        
Fold height 227.4a 

 
182.3b 

 
180.0b 

 
0.00 8.07 

Total enterocyte height 29.6a 
 

33.2b 

 
32.2a 

 
0.00 0.71 

Microvilli height 2.0 

 
2.0 

 
2.0 

 
0.81 0.07 

         Distal 

        
Fold height 150.3b 

 
174.4a 

 
148.0b 

 
0.01 6.51 

Total enterocyte height 36.3a 
 

32.7b 
 

35.6a 
 

0.01 0.93 
Microvilli height 2.4   2.3   2.3   0.69 0.08 

* Data represent means of 10 independent measurements from 2 fish per aquarium (six per dietary 
treatment).  Values in the same row with different superscript letters are significantly different 
(P < 0.05) 

 

 
 

Figure 3  Survival of fish challenged with Streptococcus iniae 
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DISCUSSION 

In the current study, GBA supplementation into a 35% crude protein diet was 

unable to significantly affect WG or FE of Nile tilapia.  These results are in stark 

contrast to a recently published study also supplementing GBA to Nile tilapia where a 

significant increase in both WG and FE were reported for fish fed a diet containing 29% 

crude protein and GBA (Zheng et al. 2011).  The higher protein concentration in the 

former trial may have negated any beneficial effects on WG and FE, since Zheng et al. 

(2010) failed to see any difference in the WG or FE of fish fed diets containing GBA 

when compared to another control diet used in that study with a higher crude protein 

level (33%).   

Nevertheless, such intraspecific, as well as interspecific discrepancies are fairly 

common in prebiotic studies (RingØ et al. 2010) and may be largely attributed to initial 

differences in the composition of intestinal microbiota, although this has not been tested 

in most studies.  Certain members of the microbiota are more apt to utilize certain 

prebiotic substrates over others (Cummings et al. 2001; Sanz et al. 2006) and the initial 

presence or absence of these bacteria will affect the overall outcome.  Differences in the 

size or age of fish (Li & Gatlin 2004; 2005) used in prebiotic studies may also have an 

impact due to the degree of establishment, or lack thereof, with respect to a stable 

microbiota (Burr et al. 2009; Nayak 2010).  Differences in dietary ingredients across 

studies may also be responsible for the differences observed.  Despite the variation in 

and between trials, prebiotic supplementation has been proven to increase WG (Mahious 

et al. 2006a; 2006b; Zhou et al. 2007; Rodrigues-Estrada et al. 2008; Xu et al. 2009) and 
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FE (Li & Gatlin 2004; Hui-Yuan et al. 2007; Li et al. 2007; Zhou et al. 2007) in several 

species of aquatic organisms.  In contrast to the reported inconsequential impact GBA 

had on the survival of hybrid striped bass (Li & Gatlin 2004) and red drum (Buentello et 

al. 2010), in the current study, fish fed the diet containing 2% GBA had significantly 

higher trial survival than the other two dietary treatments (Table 3).  Similar increases in 

survival throughout the length of the trial have been demonstrated in hybrid tilapia (He 

et al. 2003), and rainbow trout (Staykov et al. 2007) fed diets supplemented with FOS 

and MOS, respectively.  It is important to point out the majority of research regarding 

GBA has been conducted on carnivorous, rather than herbivorous or omnivorous fish 

(Table 1; RingØ et al. 2010) 

The most notable outcome of prebiotic supplementation, in general, is changes 

brought about to the intestine, both morphologically and microbiologically.  Changes to 

the morphology of the intestine may be attributed to the production of short-chain fatty 

acids through the microbial fermentation of prebiotic substances.  A study in which 

short-chain fatty acids were added to the media resulted in the inhibition of epithelial 

cell proliferation of caecal tissue in vitro (Sakata 1987), while in vivo studies have 

demonstrated stimulated intestinal cell proliferation in rats and pigs (Sakata 1984; Kien 

et al. 2007).  This led to the implication that the proliferative effects of short-chain fatty 

acids are indirect (Sakata 1987).  Proof of short-chain fatty acids production from GBA 

has been demonstrated by Burr et al. (2010) in red drum, but no such data exists for Nile 

tilapia.  The ambiguous histological data (Tables 4 & 6) may point to the fact that short-

chain fatty acid production, or the undefined indirect mechanism, is limited or non-
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existent, particularly in the distal intestine which is the primary site of prebiotic action 

(Gibson & Roberfroid 1995).  However, what is clear is that dietary supplementation of 

GBA at 2% did not result in the expected increase in microvilli height seen in other 

prebiotic studies involving different fish species (Yilmaz et al. 2007; Salze et al. 2008; 

Zhou et al. 2010).  In fact, it seems that GBA supplementation had marginally 

detrimental effects (Tables 4 & 6).  However, further research is warranted in order to 

establish a volatile fatty acid profile and attempt to elucidate the indirect mechanisms 

that may affect intestinal morphology of Nile tilapia fed diets supplemented with GBA.   

Despite the inconclusive morphological data seen in this study as a whole, and 

the lack of change in microbial community seen in the initial trial, inclusion of GBA at 

2% in the follow-up trial was the only dietary treatment able to significantly alter the 

intestinal microbiota (Figure 2).  Although the exact nature of this shift was not 

identified, it may be safe to assume, as a preliminary hypothesis, that it was towards the 

accumulation of more beneficial bacteria, rather than pathogenic, based on the overall 

results of the study.  Similar beneficial shifts have been reported with this prebiotic, 

inulin, MOS, and GOS in hybrid striped bass (Burr 2007) and with GBA in red drum as 

well (Burr et al. 2008).  A possible explanation for the lack of change demonstrated in 

the initial trial may be due to an initially high level of beneficial bacteria already being 

present in the intestine of these fish.  This is plausible, considering the fact that when the 

microbial communities of the control treatments from both trials were run on a single gel 

and then analyzed using DGGE, they shared a similarity coefficient of < 80%, signifying 

that the two different populations of fish used in each trial did not start off with the same 
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microbial community composition.  Differences within species, such as this is not 

unfathomable, considering that the initial colonization and subsequent establishment 

process of the enteric microbiota can be greatly affected by the initial rearing conditions, 

which in the two populations of fish used in this study where geographically different 

(Nayak 1990).   

In the current study, fish fed the diet containing GBA at 2% exhibited 

significantly increased EX-SOAP.  Increases in lysozyme and IN-SOAP were generally 

seen as the percent inclusion of GBA increased, but no statistical significance was 

reached.  The significant increase in EX-SOAP is not surprising, given that GBA 

contains constituents of dairy ingredient components, dried fermentation products, and 

autolyzed brewers’ yeast.  The brewers’ yeast component contains β-glucans and 

nucleotides, which have been shown to induce immunological responses in fish (Li & 

Gatlin 2006; Dalmo & Bogwald 2008).  Previous studies involving prebiotic 

supplementation to fish also have been shown to enhance similar aspects of the non-

specific immune system, such as plasma lysozyme activity, neutrophil oxidative radical 

production, IN-SOAP, and EX-SOAP (Li & Gatlin 2004; 2005; Buentello et al. 2010; 

Zheng et al. 2011).   

What might have the greatest impact, in terms of increasing aquaculture 

production, is how each of the above components may have worked in concert to 

increase the ability of Nile tilapia to ultimately resist disease.  Fish fed the diet 

containing GBA at 2% experienced noticeably higher survival than fish fed either of the 

other two diets in feeding Trial 1and after the controlled disease challenge in Trial 2.  
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Since lysozyme is most effective against gram-positive bacteria and readily increases 

when bacteria is present, the elevated levels seen in this study (Table 5) may have 

allowed the lysozyme to increase to such a level as to partially control S. inaie when 

introduced into the fish (Saurabh & Sahoo 2008).  However, since lysozyme activity was 

not assayed following the conclusion of the challenge, this hypothesis cannot be verified.  

The significant increase associated with the production of EX-SOAP would have likely 

been another aspect of the immune system working to keep the infection under control 

and reduce mortality, especially because S. iniae has been shown to display anti-

phagocytic properties which would render IN-SOAP of macrophages useless  (Agnew & 

Barnes 2007).   

The drastic difference in challenge survival in the current study could indicate 

that GBA inclusion above 1% is required to evoke any noticeable change in survival.  

This theory is supported by the research conducted by Zheng et al. (2011), where GBA 

included at a level over 1% resulted in the highest survival following a disease challenge 

with Aeromonas hydrophila.  Numerous other studies have demonstrated the ability of 

GBA to increase survival following bacterial challenges with golden shiners exposed to 

Flavobacterium columnare (Sink et al. 2007; 2008; 2010), and hybrid striped bass 

exposed to Aeromonas hydrophila and Streptococcus iniae (Li and Gatlin 2004; 2005).  

Supplementation of GBA into the diet of rainbow trout has also proven to be effective in 

increasing survival when challenged with infectious hematopoietic virus (Sealey et al. 

2007).  Further research is warranted in order to continue characterizing the effects of 



 

 
 

26 

GBA supplementation in the diets of various fish species commonly cultured in 

aquaculture production systems. 
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SUMMARY 

The link between gut health and the overall well-being and disease resistance of 

an animal is now starting to inundate the aquaculture industry as a possible solution to 

increased mortality associated with a decrease in optimal environmental conditions and 

subsequent disease outbreaks.  Through numerous studies, both in vitro and in vivo, 

prebiotics have been shown to trigger a beneficial shift in intestinal microbiota, leading 

to the cascade of advantageous effects previously mentioned.   

The present study highlighted the ability of GBA supplementation to beneficially 

affect several aspects of host physiology when supplemented into the diet of juvenile 

Nile tilapia.  Although GBA supplementation was unable to increase the weight gain or 

feed efficiency in the current study, it resulted in the establishment of a significantly 

different microbial community within the intestine, coupled with the up regulation of 

several immune responses; ultimately resulting in considerably decreased mortality 

following a bacterial challenge with the aquatic pathogen S. iniae.  Other studies 

supplementing GBA have reported similar findings, but further research is required 

regarding the microbial characterization of tilapia intestine and other fish species in 

order to gain a better understanding of the direct and indirect effects garnered by GBA 

supplementation.   
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