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ABSTRACT

Using Novel Image-based Interactional Proofs and Source Randomization for Prevention

of Web Bots. (December 2011)

Shardul Vikram, B.Tech, National Institute of Technology Silchar

Chair of Advisory Committee: Dr. Guofei Gu

This work presents our efforts on preventing the web bots to illegitimately access web

resources. As the first technique, we present SEMAGE (SEmantically MAtching imaGEs),

a new image-based CAPTCHA that capitalizes on the human ability to define and com-

prehend image content and to establish semantic relationships between them. As the sec-

ond technique, we present NOID - a “NOn-Intrusive Web Bot Defense system” that aims

at creating a three tiered defence system against web automation programs or web bots.

NOID is a server side technique and prevents the web bots from accessing web resources

by inherently hiding the HTML elements of interest by randomization and obfuscation in

the HTML responses.

A SEMAGE challenge asks a user to select semantically related images from a given

image set. SEMAGE has a two-factor design where in order to pass a challenge the user is

required to figure out the content of each image and then understand and identify semantic

relationship between a subset of them. Most of the current state-of-the-art image-based

systems like Assira only require the user to solve the first level, i.e., image recognition.

Utilizing the semantic correlation between images to create more secure and user-friendly

challenges makes SEMAGE novel. SEMAGE does not suffer from limitations of tradi-

tional image-based approaches such as lacking customization and adaptability. SEMAGE

unlike the current Text based systems is also very user friendly with a high fun factor.

We conduct a first of its kind large-scale user study involving 174 users to gauge and com-

pare accuracy and usability of SEMAGE with existing state-of-the-art CAPTCHA systems



iv

like reCAPTCHA (text-based) and Asirra (image-based). The user study further reinstates

our points and shows that users achieve high accuracy using our system and consider our

system to be fun and easy.

We also design a novel server-side and non-intrusive web bot defense system, NOID,

to prevent web bots from accessing web resources by inherently hiding and randomizing

HTML elements. Specifically, to prevent web bots uniquely identifying HTML elements

for later automation, NOID randomizes name/id parameter values of essential HTML el-

ements such as “input textbox”, “textarea” and “submit button” in each HTTP form page.

In addition, to prevent powerful web bots from identifying special user-action HTML ele-

ments by analyzing the content of their accompanied “label text” HTML tags, we enhance

NOID by adding a component, Label Concealer, which hides label indicators by replac-

ing “label text” HTML tags with randomized images. To further prevent more powerful

web bots identifying HTML elements by recognizing their relative positions or surround-

ing elements in the web pages, we enhance NOID by adding another component, Element

Trapper, which obfuscates important HTML elements’ surroundings by adding decoy el-

ements without compromising usability.

We evaluate NOID against five powerful state-of-the-art web bots including XRumer,

SENuke, Magic Submitter, Comment Blaster, and UWCS on several popular open source

web platforms including phpBB, Simple Machine Forums (SMF), and Wordpress. Ac-

cording to our evaluation, NOID can prevent all these web bots automatically sending

spam on these web platforms with reasonable overhead.
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1. INTRODUCTION

New web applications and services emerge everyday in all areas of life. More people

are getting used to having online services, such as email services, forums and specialized

interest groups. The web experience of a typical user consists of searching, browsing, so-

cial networking, web games etc. In all of these activities at some point involve information

submission to the server. This happens invariably by clicking on a HTML element (nor-

mally a link or a button) to achieve the final effect. Each HTML element in a web page

is has a unique name and/or id and most of the server-side logic is based on it. However,

this fact is utilized by the hackers to create bots which automate the web experience for

financial or personal gains. We focus on bots which automate tasks on a web page initially

meant for the user to carry out manually. For the service providers, one important aspect

to consider is to make sure that the services and resources are allocated to the targeted

customers. Malicious usage of services, such as using ‘bot’ to register legal accounts [1],

can take up valuable resources and distribute malicious information thereafter. Thus it is

important for the service provider to be able to distinguish a bot from human users, and

the use of an explicit barrier like a CAPTCHA is the primary way of preventing web bots

from accessing online resources. But use of a complicated text based CAPCTHA is user

unfriendly and leads to decreased usability.

CAPTCHA stands for “Completely Automated Public Tests to tell Computers and

Humans Apart” [1–5]. The idea is to introduce a difficult AI problem as a CAPTCHA

so that either the purpose of distinguishing bots and legitimate users is served, or that an

AI breakthrough is achieved [2, 3]. The robustness of CAPTCHA systems rely not on the

secrecy of the database, but on the intrinsic difficulty of the problem. The difficulty of

solving a CAPTCHA problem for a bot and for a human, often increase in similar curves.

This thesis follows the style of IEEE Transactions on Dependable and Secure Computing.
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As CAPTCHA systems are rarely stand-alone and are often integrated as an auxiliary

part for applications such as online registration, it is unrealistic to ask for the user’s con-

centration for longer than a few seconds. Hence a complicated challenge requiring the

humans to devote more time would make it unrealistic to be deployed on real world sys-

tems. However with the increasing advances in the field of computer vision, bots have

been known to break in Text CAPTCHAs using techniques like OCR (Optical Character

Recognition) technology and segmentation [6–10]. Increasing the complexity of the text

based systems by introducing more noise and distortion to make the challenge difficult for

bots also makes them less user friendly and less usable to normal users.

Other works in the area of preventing the web bots from using web resources like

blogs/forums focus on the analysis of submitted content. Shin et. al. [11] developed a real

time classification system to weed out forum and blog spam from bots. They manually

inspected the bot posts on a research blog and came up with a set of features which could

be used to train a classifier to detect bot postings on forums and blogs. Features used

such as anatomy of the post, commenting activity may vary considerably from forum to

forum and also as the bots evolve and try to mimic normal human interactions. Moreover,

defining an effective feature set requires considerable human effort and cannot be used in

fast deployment and detection.

Our work on a novel Image based CAPTCHA - SEMAGE aims at prevention of web

bots without hampering usability. Image-based systems were proposed to increase the

usability of CAPTCHA systems [12–19]. However, many current state-of-the-art image

based systems such as Asirra [12] suffer from lack of flexibility and adaptability. All

Assira challenges are just based upon image recognition, requiring the user to identify all

cats among a series of images of cats and dogs. Specialized attacks using machine learning

techniques have achieved a high rate of success against systems like Asirra, as shown by

Golle [20]. Moreover the inherent choice presented to the bot is always binary - an image

either a cat or a dog, making it more susceptible to template fitting attacks. We discuss

more about template fitting attack in Section 5.2. We propose SEMAGE, a novel image-
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based CAPTCHA system, which has a two-factor model requiring the user to recognize

the image and identify images which share a semantic relationship. The introduction of

semantic correlation makes SEMAGE safe from similar machine learning attacks. Other

image-based systems like ESP-PIX [13] and SQ-PIX [17] are language dependent and

have usability concerns. We survey more CAPTCHA systems and their limitations in

Section 2. As we would see, SEMAGE aims to defeat web bots by presenting challenges

which are considerable harder for bot to solve but come intuitively to humans.

Web bots have also been widely used by attackers to generate web spam. Many web

bots such as XRumer, Magic Submitter and SENuke have been developed for creation of

backlinks in Blackhat Search Engine Optimization (SEO) technique, automated content

creation on web services or bulk registration of free services through identifying mean-

ings and functions of special HTML elements. Current most common ways of defending

web bots are utilizing CAPTCHA. However, CAPTCHAs requires users to solve some

explicit challenges, which is typically interactive and intrusive. As these challenges have

to become more complex to defense evolved web bots, it has become difficult as well for

legitimate users to solve them, resulting in decreased usability.

NOID is also completely accessible since it is completely passive in nature and hence

poses no burden on part of the visually impaired. Mobile and touch based hand-held

devices where its traditionally difficult to type would also be greatly benefited.

NOID is a novel, one of its kind solution which has the potential to completely replace

CAPTCHAs and prevent bots from spoiling the user experience for normal users. The

novelty of NOID lies in the fact that it works behind the scene to create challenges for the

bot whilst the letting the normal user to carry out his own tasks. The challenge for the bot

is to identify the correct HTML input element/parameter to automate a request. We would

present and discuss details of NOID design and its important components in Section 8.

We also implemented NOID on a proxy and evaluated its effectiveness against state of the

art bots like XRumer, UWCS on popular open source forum and blogging platforms like

PhpBB and Wordpress. We present the implementation details and evaluation in Section
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9. We give a proper threat model in Section 7.1 and discussion limitations and futurework

in Section 11.
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2. RELATED WORK

CAPTCHA systems, text-based in particular, have been in widespread use as the first

line of defence against bots on the web. Recently, with the improvements in Computer

vision technology text based systems have become susceptible to bot attacks with a high

success rate [6–10,21]. Hence a lot of work has been put on alternate CAPTCHA systems

like image-based [12–19] and audio-based systems [22–25].

2.1 Text Based CAPCTHA Systems

Generally, text-based CAPTCHA systems ask the user to discern letters or numbers.

GIMPY is one classic example [26]. Attacks on text-based systems mostly employ OCR

(optical character recognition) algorithms. These algorithms first segment the images into

small blocks each containing only one letter, and use pattern recognition algorithms to

match the letters in each block to standard letter template features [6–8]. The later task

is considered a well solved AI problem. In counter-attack to these algorithms, text-based

CAPTCHA systems employ the following techniques to enhance robustness [5, 10]:

• Adding noises in the form of scattered lines and dots to the background to counter-

attack segmentation algorithms.

• Characters are connected or overlapped so that attacking algorithms cannot correctly

segment image into correct blocks.

• Characters are twisted to increase difficulty in character recognition.

Fig. 2.1.: A text-based CAPTCHA example.

However, all the above techniques increase the difficulty level for humans too. Con-

necting characters together makes the task harder for humans e.g. characters‘r’ and ‘n’

when connected appear the same as character ‘m’. Twisted characters not only gnaw on
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user’s nerves, but are sometimes impossible to identify correctly. Figure 2.1 shows one

such difficult to solve text based challenge.

Text-base system faces one inevitable situation, humans find the CAPTCHA challenge

unpleasant as CAPTCHA gets more complicated. This is probably why popular websites

such as MSN hotmail opted for simple and clean CAPTCHA , which could be attacked

with a rate over 80% [6]. Some systems use distinctive color for each character and add

colored background using non-text colors, both of these additions can be easily removed

by an automated program, which add no more difficulty for the bot [27].

Popular systems such as ‘reCAPTCHA’ [28] uses dictionary words that are labelled as

unrecognizable by real automatic OCR programs running on real tasks digitizing books,

and evaluate correctness by other user’s input. However reCAPTCHA too suffers from

decreased usability and user satisfaction due to high distortion and noise in the challenge.

2.2 Audio Based CAPCTHA Systems

Audio based CAPTCHA systems [22–25] remedy the fact that visual CAPTCHA sys-

tems are not accessible to visually-impaired people. In a typical audio CAPTCHA system,

letters or digits are presented in randomly spaced intervals, in the form of audio pronunci-

ation. To make the test more robust against bots, background noises are added to the audio

files. These systems are highly dependent on the audio hardware and the user only has a

certain small amount of time to identify each character. In some sense, audio CAPTCHA

systems can be considered as the acoustic version of text-based systems. Although the

visual cues are replaced with acoustic cues and the algorithms vary, the underlying idea

of attacking is the same - features are extracted and classified to recognize the letters [29].

The difficulty curve for bot and humans are similar. Thus audio CAPTCHA systems pro-

vided neither more user-friendly interface for visually accessible users, nor more robust-

ness against bots.
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2.3 Image Based CAPTCHA Systems

Image-based CAPTCHA systems emerged in effort to replace text-based CAPTCHA

systems which were growing more complex for humans to solve easily. Security is not

the only concern is a good CAPTCHA design. All CAPTCHA systems are a form of HIP

(Human Interactional Proofs) and require the users involvement. This also makes usability

a key issue too in CAPTCHA design. Tygar et. al. [14] propose the following requirements

for a good CAPTCHA system,

• The task should be easy for humans.

• The task should be difficult for computer algorithms.

• The database should be easy to implement and evaluate.

The general basis of image-based CAPTCHA is that images contain more information

than texts. It is intuitive for human to catch visual cues but hard for AI algorithms to do

visual recognition. ESP-PIX [13] presents a set of images and asks the user to choose

a word from a list of words that describes all images. This approach suffers from two

drawbacks such as it still depends on text to convey meaning and since all words are

written in English, the users success depends on his/her proficiency in English(or any

other particular language it migrates to). It is not only language dependent but hard to

operate too; a user needs to scan through the whole list of words to find the most proper

answer. SQ-PIX [17] also presents user with an image set, but asks the user to select an

image of a given object name, and also trace the object in the image. This is also language

dependent and the act of tracing around an object with a pointer operated from a hand-held

device like mouse cannot be assumed to be easy for all users.

Google’s image CAPTCHA “what’s up” [15] asks the user to adjust the orientation of

an image. This system is language independent, but the adjustment requires a lot of atten-

tion and subtle mouse (or other hardware) movement. Some images also have ambiguity

as it can be correctly oriented in multiple ways.

Microsoft’s Asirra [12] utilizes an existing database on petfinder.com and presents the

user with images of cats and dogs and asks the user to identify all images of cats out of 12
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pets. This platform is language independent, and requires user to scan through 12 images

and click 6 times on average to be correct. Figure 2.2 shows a sample Assira challenge.

Fig. 2.2.: An Assira challenge: A user is always required to select all cats from images of
cats and dogs.

Asirra partners with petfinder.com and gets access their huge database of cats and

dogs. But the inherent difficulty for the bot boils down to only recognising classifying

each image in either of the two classes: cats and dogs. This makes Assira more vulnerable

to machine learning attacks [20] and template fitting attacks. SEMAGE on the other hand

has a two-factor design where in order to pass a challenge the user is required to recognize

each image and then understand and identify the semantic relationship between a subset

of them. Assira only requires the user to solve the first level (i.e., image recognition).

Utilizing the semantic correlation between images to create more secure and user-friendly

challenges makes SEMAGE more robust.

2.4 Analysis of Inputs

Shin et. al. [11] examined the characteristics of 286 days of forum spam posted at a

research blog and developed light-weight features based on spammers’ IP, commenting

activity and the anatomy of their posts. They then used a SVM classifier trained on these

features to detect and weed out spam postings on that blog. Mishne [30] proposed detect-

ing link spam (common in blog comments) by comparing the language models used in the

blog post, the comment, and pages linked by the comments. Bhattarai et. al. [31] also
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used content analysis to characterize spam in blogs. However, content analysis is often

application/platform centric (blogs in these cases) and does not apply to web bots doing

bulk registrations and logins on other web sites. The features seemingly effective for the

mentioned research blog may still need to be validated on multiple other platforms such

as discussion boards and forums. For the anatomy of the posts, they could be changed

easily by the botmasters to pass detection. Also devising such a set of features requires

considerable amount of human effort ruling out fast and dynamic deployment. Schluessler

et. al. [32] analyzed input data events such as keystrokes and mouse clicks to detect a bot,

which was complementary to our approach. Brewer et. al. [33] used link obfuscation to

detect and counter web bots which mimic human clicks by walking random links. This

approach though effetive in stopping bots from navigation via random links in the web

site, it does not deter bots which know the url of the page they want to go to and generate

bulk data processing requests.
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3. SEMAGE - A NOVEL IMAGE BASED CAPTCHA

As out first technique, we propose SEMAGE (Semantically Matching Images), a better

CAPTCHA system. In SEMAGE, we present the user with a set of candidate images, out

of which a subset of them would be semantically related. The challenge for the user is to

identify the similar images based on the context defined by the system. Users are asked to

pick up the correct answer set. Note that the images in the correct set need not be images

of the same object, a set of semantically related images may be images of entities with

different physical attributes but sharing the same meaning in the defined context. Consider

for example the user being asked to identify similar images with the context being similar

images should have the same origin; the candidate set could contain images of a wooden

log, a wooden chair, a matchstick, an electronic item, an animal, a human etc. with the

chair, matchstick and log being the similar set.

The challenge in solving a SEMAGE CAPTCHA system is two-fold: (1) a user has to

figure out the content of the individual images, i.e., image recognition, (2) and understands

the semantic relationships between them and correctly identify the matching images. This

challenge solving ability comes naturally to humans as human automatically employ their

cognitive ability and common sense without even realizing the inherent difficulty of the

task. The same challenge would be difficult for a bot to solve as it would require both

understanding images and identifying relationships between them constituting a difficult

AI problem. Our two-factor design aims at increasing the difficulty level for a bot and

improving usability for humans, without sacrificing the robustness of the system.

What makes SEMAGE novel is the idea of presenting the user with a two-factor chal-

lenge of “identifying images with similar semantics under the given context”. The idea of

choosing images exhibiting semantic similarity has a much broader scope than simple se-

lection of images of animals of the same species (cats in case of Assira). This differentiates

SEMAGE from all the other state of the art image-based CAPTCHAs which only require
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the user to solve the first level which is image recognition. Computers cannot comprehend

and identify the semantic content of an image making SEMAGE very robust to bots.

We also implement one very simplified sample instance of SEMAGE using real and

cartoon images of animals. The relationship query asks the user to pick up images (real

and cartoon) of the same species. This has two immediate benefits: (1) Adds fun factor

for the user without adding burden on the recognition part since a human can easily make

a connection between a real image of an animal and a cartoon image; (2) Scales up the

difficulty level for bots as the cartoon images need not even resemble the real physical

attributes of the animal. Moreover, SEMAGE provides an easy to operate interface to

indicate correct answers making it an ideal choice for touch based systems and smart-

phones where typing is more difficult.

A sample simplified SEMAGE challenge is shown in Figure 3.1 which illustrates the

idea. A human can easily identify the images marked in a circle as similar but a bot would

not be able to relate the real and cartoon images due to difference in shape and texture.

Note that this is just one way of creating a SEMAGE challenge. Any other semantic

relationship can be used as the identifying factor apart from our particular simplified im-

plementation.

Fig. 3.1.: Sample SEMAGE challenge, the encircled images are similar.
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The main contributions of this work are as follows:

• We propose SEMAGE, a new image-based two-factor CAPTCHA that has several

unique features. The design of a SEMAGE allows easy tuning of the security level

and usability level depending on the nature and popularity of the website. The im-

ages of the SEMAGE challenges can vary to suit the needs of different websites.

In fact in most cases given a labelled database its very easy and intuitive to come

up with a defining “semantic relationship” and SEMAGE implementation. We also

provide an in-depth security analysis and show how SEMAGE is more robust to

many attacks than existing systems.

• We further conduct a large-scale user study with 174 participants using a simple

sample SEMAGE implementation. We compare our system with state-of-the-art

text-based CAPTCHA system reCAPTCHA [28] and image-based system Asirra

[12] on the metrics of usability and fun factor. As discussed in details in section 6.2,

results show that our system is easy to use and participants reported a high level of

‘fun’ factor.
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4. SEMAGE DESIGN

We propose SEMAGE, “SEmantically MAtching ImaGEs”, a novel image-based two-

factor CAPTCHA system which is built upon the idea of semantic relationship between

images. The use of semantic meaning of a query has been applied in other fields like

web search [34]. We formulate definitions for semantic similarity of images and design a

system that uses these concepts to develop a user friendly and secure CAPTCHA system.

4.1 Intuitive Idea

All image-based CAPTCHA systems have two main components: a database of images

and a “concept” which uses the database to create challenges. The inherent concept may be

as simple as PIX [35] which displays different images of the same object from the database

and asks the users to assign an appropriate label or a complex one like Cortcha [19] which

uses the database to create inpainted and candidate images and asks the users to place the

correct candidate image in the inpainted image.

The idea behind SEMAGE is to use semantic relationships among images as the con-

cept and keep the task of the user to simply identify the semantically similar/related im-

ages. The semantic relationship is a concrete description which would bind the simi-

lar images. The freedom of choosing the semantic relationship for one’s application and

database give it the much required customization flexibility. For example, for an electronic

e-commerce site, SEMAGE challenge could be formed from the images of the products

(an ipod, a zune, tv, heater, refrigerator etc) where the concept would be to ask the users to

choose products which do the same thing (ipod and zune in this case, both portable music

devices).

SEMAGE presents a set of candidate images with a subset of them sharing an implicit

connection or relationship with each other. The challenge for the users is to correctly

identify all images in the semantically related subset.
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4.2 Defining the Semantic Relationship

We now present the conditions for choosing the “semantically similar” relationship

which forms the ‘concept’ for challenge creation. A “Semantic label” could be a term or

a relationship which identifies/labels the object. Semantic labels can be directly used to

label the database for challenge creation. Let SL(x) denote the function that returns the

semantic label of an object x. We consider two images to be “Semantically Matching” if

they satisfies any of the following conditions:

• Condition (1): if both images can be identified with the same semantic label. Given

two images A and B. A and B are said to be semantically related if SL(A) =

SL(B). For example, an image of a computer and a television set can be defined

with a semantic label(SL) ‘electronics’.

• Condition (2): both images can be classified under the same semantic label. Given

two imagesA andB, they are semantically related if ∃T s.t. SL(A) ⊂ T &&SL(B) ⊂

T , here T denotes some semantic label. For example an image of a lion and a deer

can be classified under the semantic label ‘four legged animals’. Similarly, an im-

age of a television set and a computer can be classified under the semantic label

‘electronics’.

• Condition (3): when both images put together they express a uniquely identifiable

concept. Given two imagesA andB and some semantic label C that denotes a set of

requirements, A and B are said to be semantically matching if {A∪B} |= C where

“|=” denotes that the left hand side satisfies the requirements of right hand side. For

example, an image of a printer and paper can be defined with a identifiable concept

‘printing’ which becomes the semantic label.

The requirements for a “semantic relationship” gets more generic and the semantic cor-

relation increases as we move from condition item (1) to (3). In order to form a SEMAGE

challenge, the images have to be chosen such that only one subset meets any one of the

above conditions with preference given to the least generic label. That is, if a set of im-

ages contain images which satisfy more than one of the above conditions, the least generic
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match is the solution required to pass the challenge. Thus, given a set of images where a

small subset of images is of fishes and the rest of the images are of other unique animals,

the solution to the challenge would be selecting all images of fishes.

The mechanism may seem complicated but as we show below, a system designed to

create challenges where all solutions satisfy only one chosen condition is relatively easy

to implement. Also the user study in Section 6.2 supports our claim that such a system is

intuitive and easy for the normal user to solve. The important thing after one has decided

upon the “semantic relationship” is to label the images accordingly. We discuss database

generation in Section 4.4.

4.3 Challenge Creation

We develop a simple algorithm to create SEMAGE challenges. First we present the

definitions and requirements of the involved parameters as follows.

Let n be the number of images in the challenge and m be the number of similar/related

images. Let U be the superset of all image sets in the database. Each challenge set is

denoted as S where num(S) = n. There exists a ‘semantically similar’ subset of images

R such that every image in R has the same semantic label, i.e., ∀ ri, rj ∈ R, SL(ri) =

SL(rj)&&num(R) = m. A set of images D with num(D) = n−m, and each image in

D has a different semantic label than R. Now each challenge set becomes S = R ∪D.

We now present a simple algorithm to implement the challenge set as shown in Al-

gorithm 1 . The database would be a collection of semantically labelled images. The

algorithm starts with empty sets R and D. We then pick a semantic label at random from

the database and populate R with images having the picked semantic label. Then we pop-

ulate D with images such that each image has a different semantic label than any of the

images chosen before. The number of images in the R and D depends on the values of

n and m and is customizable. The images in set RandD are then presented in a random

tabular order to the user.
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Algorithm 1 : An algorithm to generate SEMAGE challenges from a labelled database

R← φ
D ← φ
A← Pick an Semantic label at random
while num(R) 6= m do
X ← (pick unique image with label A)
R = R ∪X

end while
Y ← φ
while num(D) 6= (n−m) do
Z ← Pick a label at random which is not A ∪ Y
Y ← Y ∪ Z
D = D∪ (pick unique image with label Z)

end while
S ← R ∪D
Randomize(S)

4.4 Database

For our implementation, we developed a semi-automated mechanism that populates

the database by crawling the internet. One can also consider taking frames from movies

and short videos. Both of the above approaches can be considered as semi-automatic and

require some manual work to weed out irrelevant images. The drawback of such methods

is that an attacker can venture to spend enough time and manual work to reproduce the

whole database.

SEMAGE, however, does provide great room to adapt to existing database where tag-

ging already exist. One possible application lies in the e-commerce area. Vendors in

e-commerce usually have multiple images of the same product (such as pictures from dif-

ferent angles), multiple styles of the same product (same product of different color, size,

packages), and multiple products of the same category. Images are tagged with the prod-

uct information, and product info is categorized into different classes. Multiple relations

can be established among these images and used as the ‘relation question’. With the abun-

dance of existing tagging information, we can implement the ‘matching’ algorithm by
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adding simple logical changes. Furthermore, some database actually have implemented

more sophisticated relations such as ‘relative products’ as a recommendation for users

when they browse certain products, thus more sophisticated relationship questions can be

implemented based on such information. Using these images not only achieve the security

purpose, but also serve as a good form of advertisement.
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5. SEMAGE ANALYSIS

5.1 Design Analysis

Usability: Usability with security is the primary focus of SEMAGE. The images con-

tain content that cognitively make sense to the users, and are easy to discern. By drawing

on human’s vast storage of common-sense knowledge, our design help user spend mini-

mum effort solving the challenge. Moreover, it fits a humans way of thinking - it is natural

for human at first sight to see what an image is about, much better than dealing with any

details (orientation, certain feature image, etc.). Establishing relationships among objects

is another ability humans are natural at, and humans almost automatically dissolve any

ambiguity they need to resolve. For example, if a red car is presented with other colored

cars, human immediately notice the color difference. However, if the same red car is pre-

sented with red buckets, red clothes etc. humans notice the difference in object category.

For a computer, both of the steps pose a difficult AI problem. It first needs to do image

recognition to determine what the image contains, and tag the image in a pre-determined

category. To solve the ‘relationship’ answer, the computer would not only need vast cor-

rectly labelled database, but also complex AI intuition. This creates a great gap in the

difficulty level for human and bots.

In addition, SEMAGE provide an easy to operate interface for users to indicate correct

answers. Only a few mouse clicks is required to pick up the correct images, this makes

SEMAGE to be a good choice of touch based systems and smart-phones where typing is

more difficult. This is much easier than tracing an outline of objects (as in SQ-PIX [17])

and typing in letters from a keyboard, especially on mobile platforms.

Language Independence: Our design utilizes the fact that a picture transcends the

boundaries of languages. Some CAPTCHA systems also use semantic clues, such as ESP-

PIX [13]. However it asks the user to find the right word among a list of English words

that describes the content of the image. This limits the audience to people with decent

proficiency in the language. Our design is language independent and can used by people



19

across the world. This is especially beneficial for people who are not comfortable using

English as a daily language, but access websites in English.

Customization Flexibility: Our design offers several ways to customize the challenge

on content, security level and usability level. The image database can be customized to

suit the needs and style of the hosting website. For example, for special interest groups,

the database can be objects of the theme of the group, such as movie screenshots for a

movie rental site or specific products for a e-commerce site. This provides possibility of

advertisement of content or fun in the traditionally boring test of CAPTCHA.

It is also easy for web administrators to customize on the security level. The adminis-

trator can decide on the size of the candidate image pool, and the size of the correct answer

set. For a scheme that present n candidate images and ask the user to pick up k matching

images, the success rate of random guessing is 1/C(n, k). The increase of the size of an-

swer set does not necessarily decrease the chance of success of a random guessing success

when n is small, but as n increases, the probability of a random guess attack goes down.

As for the user experience, the time user spent on the CAPTCHA task increases as the size

of candidate image pool increase, but the effect of an increased size of answer set on users

time is not obvious. We think the optimum choice of n and k might depend on particular

content of the images used, and specialized user study can be conducted if such data is

desired.

5.2 Security Analysis

We consider an adversary model wherein a bot has access to the unlabelled and uncate-

gorised database of images from which we form our challenges. It is to be noted that given

ample time and resources some of the attacks discussed below could succeed but taking a

long time defeats the primary purpose of the bot. Our goal as in any CAPCTHA system

is to make any attack using the current state of the art as difficult as possible, so that any

successful attack would need a major step forward in technology. We now identify and

analyse possible ways of attack against our system and how it fares against them.
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Attacks using machine learning techniques: Similar techniques used to attack Asirra

[20] can be used to attack our system too. The attack on Assira was an attack on the first

level of our model namely simple “Image Recognition”. In essence, attackers try to get

a certain number of correctly labelled images, and train on several different classifiers,

either based on color information or texture information. However, solving a SEMAGE

challenge not only requires image recognition but also identifying the “semantic relation-

ship”. The identification of “semantic relationship” among images is a unsolved AI prob-

lem. Moreover, even if the semantic correlation is weak and the semantic label is just the

object name, SEMAGE accommodates much more object classes than Asirra (which had

only 2), and the attacker will need to build many more types of classifiers accordingly.

Now let us consider a very simple example of “semantic relationship”, e.g., “real and

cartoon” images of the same animal (as used in Section 6.2). The color and texture data

between a cartoon specie and real animal specie varies much more than in between car-

toons and real animals, as illustrated in Figure 5.1. While attackers might attempt to train

classifier of real animal and cartoon animal independently, the performance decreases as

the number of classifiers increase which could be huge for a respectable size database.

Thus success rate of attacks using this sort of algorithm is likely to be very low.

Fig. 5.1.: Showing limitations of the texture-based machine learning attack, (a) shares
more commonality with (b) than with (c) , while (a) and (c) are of the same type rabbit.

Attacks using template fitting techniques: In image recognition, one developed area

is to fit objects into (visual) feature templates. For example, a chair can be identified

if given the template of ‘four legs and a horizontal top’. Accordingly, for a rabbit, the
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feature should probably be ‘upwards pointing long ears’. However, it is much harder to

define ‘long’ than ‘upwards’. A deer, with pointy upward ears and would be classified into

the ‘rabbit’ template. Furthermore, not all objects have such uniquely identifiable simple

feature.

Random guess attack: For a SEMAGE scheme that present n candidate images and

ask the user to select k matching images, the success rate of random guessing is 1/C(n, k).

As shown in Figure 5.2, choosing a low value of n and k could make the system more

vulnerable to random guess attacks. On the other hand a low n, k makes the system more

user friendly and less frustrating for the user. In case a low n, k system is deployed like

our implementation, multiple rounds of SEMAGE could constitute one challenge, such

technique is already in use current systems such as reCAPCTHA. A SEMAGE system

could also be complemented with other techniques like the Partial Credit Algorithm in

[12], which would allow a large n, k and a ‘almost right’ answer can be defined as missing

one image in the answer set. Token buckets [12] can also be implemented to prevent brute-

force attackers from making a number of continuous random guess attacks.

Fig. 5.2.: Random guess attack success rate with respect to k and n.

Attack using the static image name in source: If the source code of the HTML page

hosting the challenge uses image names, an attacker could potentially use those names to

identify similar images. However, this sort of attack is easily defeated by randomizing

the images name in the source. In our system implementation, names of the images in

the challenge are in no way exposed to the user. The image names in the html source is

randomized when sent to the user.
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By creating an attack database using the general relationships used in the system:

The attacker might manually identify the general “semantic relationship” used in the sys-

tem and then search and build an image repository to create an attack database. Using the

labelled images of the attack database, a brute force search against the candidate set might

yield him a correct ‘similar’ set. However comparing each image of the challenge with all

the images in the attacker’s image archive would take lots of time and resources than what

would constitute a feasible attack; also this might exceed the maximum time allowed to

take a challenge.

Attack by mining textual description of images: Potentially a attacker by using

systems like google’s goggle1, an image based search system, might uncover textual de-

scriptions of the candidate image set and then can use the textual descriptions to identify

relationships among images. We argue that first of all image recognition or search is still

not mature enough for now (very hard problem for unknown images). In addition, identi-

fying relationships among objects even with textual descriptions is a complex AI problem

to solve, especially since the correct similar images depend on the context. Such a attack

would potentially defeat most the present Image based systems such as Assira, PIX, SQ-

PIX but because of the two level design of SEMAGE, the bot would still need to understand

and identify the semantic correlation. Having a textual description only possibly solves the

problem of image recognition. There may exist images with overlapping descriptions but

which are not a part of the ‘semantic similar’ image set in the context. Consider for exam-

ple a candidate image set wherein the context is identifying ‘four legged’ animals among

images of insect, deer, lion, human, electronics item and other unrelated objects. Now

even with accompanying textual descriptions such a relationship is hard for a bot to find

and relate to lion and deer.

1http://www.google.com/mobile/goggles/
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6. SEMAGE EVALUATION

We conducted a large scale user study to evaluate the usability of SEMAGE as com-

pared to Assira and reCAPTCHA. For this purpose, we firstly built a website which would

present the users with sample SEMAGE challenges.

6.1 Sample Implementation of SEMAGE

In our sample implementation, each challenge consists of a set of images (the num-

ber of images is configurable) where a subset of images would share a distinct relation-

ship/feature with each other. The images are furthermore randomly distorted by intro-

ducing noise and changing the texture. Our implementation was carried out in PHP with

MySQL being used as the database. Figure 6.1 gives a high level design of the implemen-

tation.

Choosing the “semantic relationship”: In our particular implementation, the chal-

lenge set consists of real and cartoon images of animals with the relationship defining

the ‘similar’ subset being “real and cartoon images” of the same animal. The advantages

of choosing the ‘real and cartoon’ relationship to define “semantic relationship” between

images are:

• The relationship between real and cartoon images of the same animal in most cases

is subtle and variable. The reason being that the animals may completely differ in

visual characteristics such as size, shape and outline in real and cartoon representa-

tions

• Humans with inherent capability to relate visibly dissimilar objects would be able

to pass the challenge easily whereas the current state of the art bots cannot. We test

this assumption of ours in the user study we conduct, discussed in details in section

6.2
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Fig. 6.1.: Overall implementation illustration.

Fig. 6.2.: Screenshot of sample SEMAGE implementation with images 2 and 5 being
similar, both snakes.

• Generating a large database is easier. A simple search for an animal on images.google.com

yields millions of entries, hence we have a fast and easy way to build up a large

database.

Figure 6.2 shows a sample SEMAGE challenge of our simple implementation. The

total number of images in one challenge is six with the “semantically similar” set of two

images, one a real image and the other a cartoon image of the same animal.

Database Generation: The first step for SEMAGE implementation after defining the

semantic relationship between the “similar” images is database generation. An image

search and download tool was implemented shown as Image Retriever in Figure 6.1, which

searches and downloads the required images from the web. The tool would take in the
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search keywords (to search for real or cartoon images of the animals), image dimensions,

and number of images to download and the label tags. It then automatically downloads the

images and stores the local path and concerned labels in the database. A simple search for

an animal on images.google.com yields millions of entries, hence we have a fast and easy

way to build up a large database. In reality, since the automated search does not always

yield relevant results, we manually weed out the irrelevant images from the collection.

Dynamic Noise Addition: To make machine learning attacks based on image clas-

sifiers difficult, we randomly introduce noise in the images of the challenge set at each

challenge creation phase. We introduce noise in the form of random shapes and color

scale alteration in the image with the help of the ImageMagick library. The position of in-

serting the random shapes varies from the center of the images to its edges. Also scale of

color adjustment is also randomly varied to prevent the bot classifiers from easily weeding

out the noise. Such random noise introduction makes sure that each image appears with

different noise levels. Figure 6.3 shows a SEMAGE challenge after the introduction of

noise.

Fig. 6.3.: Example of noise addition in our implementation, here we can clearly see noise
but still identify images 2 and 5 being similar, both lions. The changes in color scale are
not visible due to the black and white nature of images.

Interface: As shown in Figures 6.2 and 6.3, each challenge appears as a tabular strip of

images. The title of the tabular strip presents the challenge and then the user needs to click



26

on the similar images and press submit to send the response to the server for verification.

We experimented with different layouts e.g. the images being apart from one another,

images in a single straight strip, and found that its much easier to identify similar images

if they are bunched together in a tabular format.

6.2 User Study Methodology

A comprehensive IRB approved user study was then conducted to gather data about

how user friendly SEMAGE is, which is one of the most essential criterion for a CAPTCHA

to be deployed in real systems. We also incorporated reCAPTCHA, a text based system

and Asirra, an image based system from Microsoft in the user study to carry out a compar-

ative analysis. Both Asirra and ReCAPTCHA are available as a free web service allowing

us to easily integrate them in our study. The volunteers took the study remotely and were

given a brief 1 page pictorial description of what they need to do to pass a challenge for

all the systems. We logged the time taken to complete each challenge as the difference

in time between when the test first appears on the screen and the time user clicks on the

‘submit’ button to submit his attempt. The users were let known of whether they passed

or failed the previous challenge before presenting a new one.

A total of 174 volunteers took the study and the population was a mix of graduate

and under-graduate students. The subject pool was diverse with most of the users from

a non-computer science discipline, with a mix of native and non-native English speakers.

The subject pool consisted of 66 females and 108 males. The subject pool were in no

way made aware of the fact that SEMAGE is our system. We collected the time taken by

each user to complete a challenge for each of the system as described earlier. We monitor

the time taken for all attempts irrespective of whether it was successful or not. We also

collected number of successful and failed attempts to solve a challenge.

6.2.1 User Study Layout

The user study was carried out via an website with the following sections:
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• An initial questionnaire asking the users to rate their familiarity with CAPTCHAs,

proficiency in english language and other demographic questions such as sex, age.

• A 1 page pictorial description each of SEMAGE, Assira and reCAPTCHA, showing

users how to solve the challenge.

• 5 different challenges from SEMAGE.

• 5 different challenges from Asirra.

• 5 different challenges from ReCAPTCHA.

• A final short questionnaire asking users to rate SEMAGE for Fun factor and ease of

use as compared to Assira .

We believe a pictorial description of each of the systems was necessary for fair us-

age statistics on the Image recognition systems. It was user’s first time seeing an Image

based CAPCTHA whereas all the users had invariably taken a text based challenge before.

Presenting a brief description of what they need to do to pass a challenge would prepare

them about each system and allow us to collect even handed usage data. The study took

an average of 8.7 minutes to complete.

We divide the usability evaluation in different sections presented below according to

the following metrics:

• How fast can a user complete a challenge?

• How many times does the user pass the challenge successfully?

• Does the user consider the system to be fun and easy?

6.2.2 Timing Statistics

As we see in Table 6.1, users complete text based and SEMAGE challenges faster than

Asirra. Each user takes an average of 6 seconds more to complete a Assira challenge.

The distribution plots in Figures 6.4 clearly show that most of the users of SEMAGE

finished each challenge in about 11.647 seconds or less, whereas this number is compar-

atively high for Asirra with most of the users taking around 17.355 seconds. Consistency

and uniformity in majority of the data points of the plots show that the timing average was
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Table 6.1: Average time taken per challenge for each of the systems in seconds.

Semage Asirra recaptcha
Time Taken in seconds 11.64 17.35 11.05

not largely affected by some isolated edge cases and it represents the general behavior of

the users.

(a) SEMAGE Timing (b) Assira Timing (c) reCAPTCHA Timing

Fig. 6.4.: Timing distribution of each system for all users.

We notice that the average time taken by the users to solve a challenge from SEMAGE

is almost same as reCAPTCHA, we think this may be due to the fact that text based

CAPTCHA have been in use for a long time and users have gotten used to it whereas users

were seeing our system for the very first time.

We concede that an Assira challenge consists of more images than a SEMAGE chal-

lenge leading to more time spent on completing each challenge. However, Assira needs

more images in each challenge set to be secure because of the limited set of differentiating

classes of objects (two to be precise, just cats and dogs) whereas there can be theoretically

thousands of differentiating classes in our SEMAGE implementation. Moreover, presence

of just two differentiating given classes should have made the challenge easier for humans

as they simply need to place each image in one of the two categories. SEMAGE on the

other hand requires the user to relate two or more images, making it potentially more time
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consuming. However the timing data clearly shows that taking SEMAGE challenges is

easier than it seems because of the natural cognitive ability of humans.

6.2.3 Accuracy Statistics

Simply speaking, the total number of correct attempts for SEMAGE is higher than

Asirra, indicating that users are able to correctly solve more challenges of SEMAGE.

Figure 6.5a shows a graphical representation of the difference in correct attempts between

Assira and SEMAGE. We had also asked the users to rate their familiarity and comfort

level with Captchas on the scale of 1 to 5 (with 5 being very comfortable) in the initial

questionnaire. As we see in Figure 6.5b all participants, as well as those who voluntarily

identified themselves as ‘less comfortable’ (rated 3 or less) with CAPTCHA systems in

general, also show high accuracy with SEMAGE and reCAPTCHA than with Asirra.

(a) Total correct attempts out of
815 attempts

(b) Total correct attempts from
132 users who rated them-
selves as less comfortable with
CAPTCHA

Fig. 6.5.: Accuracy achieved on individual systems.

In order for the system to be deployed in the real world, it should have a high ‘Correct

Attempts ratio’ for humans. The ‘Correct Attempts ratio’ (C.A.R) is simply the number of

correct attempts divided by the total attempts. It signifies how many times a human passes

the challenge. Hence closer the ratio is to 1, the better the system is in terms of usability.

The user study data shows us that our system has a higher C.A.R (0.94) than Asirra

(0.91). Users had been familiar with text based CAPTCHA systems, so we expected them
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to do very well in the reCAPCTHA system. But again, the difference between SEMAGE

and the traditional text-based system is almost negligible. This along with the timing data

shows that our system likely has a higher usability factor than the current state-of-the-art

image-based system (Asirra).

6.2.4 Fun Factor and Ease of Use

After the completion of challenges from the three systems, the users were then asked

to compare and rate SEMAGE and Assira on the criterion of Fun and Easiness. There

were two separate questions: one for Fun factor and the other for Easiness, which asked

them to choose a rating as follows:

• 1, if they found Assira to be way more fun or easy.

• 3, if they found Assira and SEMAGE to be equal on the Fun or Easiness factors.

• 5, if they found SEMAGE to be way more fun or easy.

• 2 or 4, if they were slightly inclined towards Assira or SEMAGE respectively.

These factors gave us a more subjective indicator of usability.

(a) Users rating the Fun factor (b) Users rating the Easiness

Fig. 6.6.: We asked users to comparatively rate SEMAGE and Assira on the metrics of fun
and easiness, Rating 1,2 indicate Assira to be more fun and easy, rating 3 indicate both
systems are equal and rating 4,5 indicate SEMAGE to be more fun and easy.

We can clearly see from Figure 6.6a that majority of the users (58.92 %) choose rating

4 and 5 indicating a high fun factor with SEMAGE. Only 16.07% choose rating 1 and 2

indicating Assira was better while the rest considered them to be equally fun. This clearly
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supports that more users found SEMAGE to be a system which was more fun to solve than

Assira.

Figure 6.6b shows the rating distribution for the Easiness factor. 72.61% of the users

rated 4 and 5 indicating SEMAGE to be easier than Assira. Only 10.72% of the users rated

1 and 2 indicating Assira to be more easy while 16.66% of the users rated 3 indicating

they considered both systems to be equally easy. These metrics as well as the timing and

accuracy results shown previously clearly demonstrate that SEMAGE is a highly user-

friendly CAPTCHA.
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7. NON-INTRUSIVE WEB BOT DEFENSE SYSTEM

Many websites have successfully attracted users’ great attention, through providing

favorable web services such as information searching, social networking, online blogs,

web-based games and so on. These services enable user interaction with remote servers

through receiving users’ requests and sending back corresponding responses. However,

through masquerading real human users’ requests, attackers have also designed and uti-

lized web bots to launch attacks on the websites such as illicitly registering accounts [1]

and automatically posting web spam [36].

In fact, many web bots such as XRumer, Magic Submitter, and SENuke have been

developed for creation of backlinks in Blackhat Search Engine Optimization (SEO) tech-

nique, automated content creation on web services or bulk registration of free services

through identifying meanings and functions of special HTML elements. As one of the

most powerful and popular forum spam bots, XRumer can be directly used to automati-

cally register forum accounts and send spam with the aim of boosting search engine rank-

ings [11, 37]. Popular online social networking websites such as Twitter and Facebook

have also become web bots’ attacking targets. Figure 7.1 shows a real example that at-

tackers can automatically send spam through Facebook Message Box by utilizing a web

debugger, named Fiddler to identify HTML elements and to submit bulk HTTP requests.

Current most common ways of defending against web bots are utilizing CAPTCHA

(Completely Automated Public Tests to tell Computers and Humans Apart) to distin-

guish bots from real human users [1–5]. However, CAPTCHA requires users to solve

some explicit challenges, which is typically interactive and intrusive. Also, the robustness

of CAPTCHA system highly relies on the intrinsic difficulties of artificial intelligence

challenges, which could be compromised through achieving artificial intelligence break-

throughs [2,3]. As those challenges have to become more complex to defend evolved web

bots, they have become more difficult as well for legitimate users to solve, resulting in de-

creased usability. Other machine learning technique based approaches to defend web bots
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Fig. 7.1.: An example of using Fiddler to automatically send spam through Facebook
Message Box.

are usually time-consuming to implement and error-prone. This kinds of work identify

web bots through investigating bot behaviors and designing distinguishable features [11].

However, finding and designing an effective feature set require considerable time and hu-

man efforts to obtain bots’ behavioral characters. Even an effective feature set is achieved,

false positives are still difficult to avoid, leading to bad user experience. In addition, bots

could still evade those detection features by better mimicing of real human users’ behavior.

In this work, we design a novel server-side and non-intrusive web bot defense system,

named NOID, to prevent web bots from accessing web resources. Specifically, NOID

focuses on defending against web bots that can automatically submit bulk requests to

remote servers by imitating real users’ actions of filling out HTML forms and clicking

submission buttons. The basic intuition of NOID is to leverage the fact that web bots need

to pre-identify HTML elements to obtain corresponding parameters to fabricate normal

users’ requests. If the web server randomizes HTML element parameters in each session,

web bots would fail in sending bulk automated requests based on hard coded parameters.
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Thus, to prevent web bots from uniquely identifying HTML elements for later automa-

tion, NOID randomizes name/id parameter values of essential HTML elements such as

“input textbox”, “textarea” and “submit button” in each HTTP form page. In addition, to

prevent powerful web bots from identifying special user-action HTML elements by ana-

lyzing the content of their accompanying HTML Label tags – the “label text”, we enhance

NOID by adding a component, named Label Concealer, which hides label indicators

by replacing “label text” in Label tags with randomized images.Also, to further prevent

more powerful web bots from identifying HTML elements by recognizing their context

(e.g., relative positions or surrounding elements in the DOM structures) of the webpages,

we enhance NOID by adding another component, named Element Trapper, which ob-

fuscates important HTML elements’ surroundings by adding “decoy elements” (duplicate

HTML elements) without compromising usability. These decoy elements are hidden from

human eyes (or easy for human to skip) but make it difficult for bots to identify correct

elements.

In this way, while NOID can defend against web bots at least as robust as CAPTCHA,

it is totally transparent to end users and does NOT require normal users to validate them-

selves as human via explicit actions.

The main contributions of this work are as follows:

• We propose NOID, a novel server-side and non-intrusive web bot defense system.

Due to NOID’s flexibility, it can be deployed either as a proxy, middleware, or a

server side component according to web administrators’ goals.

• Through analyzing possible evolving techniques that can be utilized by powerful

web bots to bypass NOID, we design an enhanced version of NOID by adding image

labels and decoy HTML elements.

• We implement a proxy-based NOID system and evaluate it against five current state-

of-the-art web bots on four popular open source web platforms on popular free plat-

forms. According to our evaluation, NOID can prevent all these web bots from

automatically sending spam on these web platforms with very reasonable overhead.
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7.1 Threat Model

In our work, we focus on defending against those web bots that can automatically

submit data submission requests to remote web servers through imitating real human users’

browsing behavior. We define data submission requests as those requests which contain

users’ submitted data through filling out HTML forms (e.g., a user authentication request

containing values of username and password).

We next briefly introduce the operation mechanism of this types of web bots. In order

to fabricate data processing requests to remote servers as real human, those web bots have

to first recognize submission requests sent by real users through using their web browsers

to fill out HTML forms. Particularly, each input HTML element of a HTML form such

as a textbox, textarea, checkbox, submit buttons are uniquely identifiable in the HTML

source of the web page by a “name/id” attribute. Then, when a real user submits data

through filling out a form, the browser generates HTTP requests containing parameters

with key-value pairs, which will be process by remote servers. The keys are “name/id”

attributes of input elements and the values are users’ input data. Thus, through parsing

and identifying unique and invariable “name/id” attributes of those input HTML elements,

web bots can be programmed to fabricate and submit requests containing customized data.

As Figure 7.1 shows, a facebook message request can be fabricated through identifying

message body parameter“body” and recipient parameter “recipients[0]”.

7.2 Web Bots’ Threats

Through automating HTTP requests, attackers can utilize web bots to create more in-

links to a particular web site to improve its search ranking, to post spam or malicious links,

to illicitly vote, and to automate online game tasks. In this section, we summarize several

major web bots’ threats.

Comment Form Spamming: Attackers can utilize web bots to customized information

on the comment sections in forums, blogs or online social networks [11, 38–41]. These

information may be spam, malicious links or other websites’ links for the purpose of SEO.
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Actually, it leads to bad user experience and has become a big security issue for many web

services.

Email Field Spamming: Email spam bots have been traditionally used by attackers to

send email spam through harvesting email addresses. The effectiveness of those bots is

highly restricted by email spam filter systems, which detect email spam by analyzing the

reputation of senders or mail content. However, through utilizing web bots to automati-

cally submit content in the email field in the “Feedback” or “Contact us” forms, attackers

can send spam to victims through targeted websites’ mail servers. We next introduce two

prominent types of email form spamming: spam injection and spam source hijacking.

(1)Spam injection. As seen in Figure 7.2(a), many web sites create “Feedback” or

“Contact Us” forms to communicate with their users through email. Typically, once users

fill out their email address in email forms contained in such webpages, the websites will set

users’ email addresses in the “reply to” header of emails. However, through inserting email

header “bcc:” and spam content with email addresses in the email fields, attackers can

utilize websites’ email servers to forward spam emails to victims [36,42]. This threat may

both bring potential safety hazard to other users and damage the reputation of websites’

mail servers.

(2)Spam source hijacking. Many websites design hidden email fields such as “send to”

in the “Feedback” or “Contack Us” forms to directly send emails to aforementioned ad-

dresses through their email servers. However, web bots could automatically fill out those

hidden forms with victims’ email addresses to send spam to victims through websites’

email servers without websites’ approval. For example, Figure 7.2(a) shows a real Feed-

back form used in some university’s official website. From Figure 7.2(b), we observe that

the form has hidden fields such as “mail to”, “mail from”, “subject”, which can be easily

utilized by web bots to send spam to victims with the identity of the website’s email server.

Actually, such attacks are fairly dangerous, since those spam emails sent from a trusted

sender may affect more users.
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(a) Feedback form (b) Hidden email fields

Fig. 7.2.: A case study of email filed spamming.

Online Vote Cheating: Poll bots, a special type of web bots with an aim at skewing

poll results, can be easily obtained through Internet [43]. A particular example of bots

cheating a poll is about the question “which is best graduate school in computer science?”

on the website named Slashdot.com [3]. It turns out to be a battle of bots between CMU

and MIT rather than a fair voting. Needless to say, poll bots violate the sanctity of the poll

and render it practically useless.

Web-based Game Automation: With the emergence of many popular web-based games,

many web bots are developed to automate certain repetitive tasks in the games. This be-

havior essentially violate the policy of fair competition of online games. In addition, al-

though most of advanced games such as “Lord of Ultima” and “Mafia wars” are based

on Ajax requests, the underlying idea of sending requests by submitting values in certain

distinct“id/name” parameters still remains.



38

8. NOID DESIGN

In this section, we present the system design of NOID.

8.1 System Overview

As described in Section 7, the intuition behind NOID is that web bots need to pre-

identify those unique id/name parameter values of the HTML elements to automatically

interact with remote servers. The name/id parameter of a HTML element is a unique

value in the web page and is generally constant, since it is used by the server-side logic as

well. However, if NOID could hide correct name/id parameter values of those “critical”

elements in the webpages, it will be difficult for web bots to identify those elements.

(The “critical” HTML elements refer to elements such as “textbox”, “textarea”, “submit

button” or other input elements in a HTML form, which can submit users input to the

remote server.)

In fact, NOID hides the name/id parameter values of such elements by randomiz-

ing them in the source. In this way, it is impossible for web bots to simply use pre-

programmed/hardcoded name/id attribute values to fabricate requests. In order to avoid

adding complexity to the server-side logic of the web applications, NOID could be im-

plemented as a middleware between the server and client. The NOID may reside on the

server itself or be a proxy, acting as an interceptor proxy and catching and relaying all

communication between the server and client. This independence of the NOID from the

server and client allows it be universally applicable to different server technologies as a

plugin, which can be switched on and off. Thus, it will be transparent to end users and

need few server-side modifications.

With this intuition, NOID is designed with three major components: Element Tag-

ger, Randomizer and De-randomizer. As illustrated in Figure 8.1, once the remote server

replies to the client any response of webpage source code that is related to HTML forms

such as HTML, Javascript and CSS, NOID will intercept the response and utilize the com-

ponent of Element Tagger to tagging those “critical html elements” in the source. These
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elements are usually used to achieve web service functions, such as posting content on

specific webpages (comments, posts, blogs etc), collecting users’ email addresses and so

on. Then, the randomizer replaces parameter values of those tagged elements in the source

with newly randomized values, and reply the randomized HTTP form page to the client.

Once the client receives the randomized form page and submits back their data processing

requests, the de-randomizer restores original parameter values of those R-tagged elements

and send back to the server. We next describe the design of each element in details.

Fig. 8.1.: The system architecture of NOID.

8.2 Tagging Critical Elements

It is true that NOID can randomize all html elements in the webpage source to better

defend web bots. However, complex webpages normally contains many HTML elements

and most of them, such as navigation elements (buttons and links), are difficult to be

explored by attackers to launch attacks. Thus, in order to more efficiently randomize

server response, NOID can be used to randomize those “critical elements” rather than all

HTML elements. Thus, to tag critical elements, Element Tagger will first identify critical

HTML elements and then annotate those elements.
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Identify Critical HTML Elements: To identify critical html elements, we give our

definition of “Critical HTML elements”. We define any HTML element (including hidden

elements or Ajax request parameter) as cortical, if it meets at least one of the following

conditions: a) it allows users to post content in the webpages; b) it is used by remote

servers in forming email headers; c) it is used by the server to modify/update other server

resources such as a database, a file, or in-memory states; d) The value of the element forms

part of the parameters of a request to the server.

Then, those critical html elements in the webpage source can be either selectively

identified by webpage developers or automatically identified through a program according

to their functions1.

Annotate Critical HTML elements: After knowing which elements are critical, we

need to annotate the parameter values of those elements in the webpage source, which will

be randomized later. This could be done either by adding a unique and specific prefix with

those parameters or specifying totally new parameter values.

In our work, we choose the first approach, i.e., we annotate “name/id” parameter val-

ues of critical elements by adding a unique and specific prefix string, named as “R-tag”.

Specifically, in our implementation, we use the unique and special string of RaNmE

as R-tag, which is not normally used in the webpage source, aiming at prevent any un-

warranted errors. For example, if a submission button with an id value of “submit” (e.g.,

“< button type = button id = submit >”) is identified as critical, Element Tagger

will annotate this element as “< button type = button id = RaNmE submit >”.

Since the parameters of those elements can also be used in the presentation code such as

javascript and CSS, NOID will also annotate critical elements in those presentation code

with R-tags.

1In our preliminary work, we choose the first approach to implement and leave the second approach in our
future work. We also note that if a webpage has very few critical elements, NOID can selectively choose
some non-critical elements to tag to increase security robustness.



41

8.3 Randomization

After tagging critical elements, the randomizer will randomize those elements with

R-tags. In order to guarantee NOID to be stateless (i.e., NOID does not need to save

original values to de-randomize), the randomizer uses a symmetric encryption scheme to

randomize the parameters. As seen in Figure 8.2, the entire process of randomization

can be divided into four main steps. (The details of Randomization algorithm can be

referenced in Appendix A.)

Generate Master Key. The system periodically generates a master key in every “T”

time slots, which is used to encrypt those annotated parameters. The master key generation

should be fast and efficient, since a busy web server may service millions of requests per

day. Thus, we adopt Xorshift random number generator [18], which generates sequences

of random numbers basically by applying the “xor” operation on a seed number with a bit

shifted version. The seed number could be a random counter or a specific system state

value of the server such as system time and number of current processes. Whenever a new

master key is generated, the randomizer uses the same master key for the entire session.

This ensures that longer sessions do not break due to the change of the master key, since the

change of the master key during each session may cause errors for the de-randomization.

Generate Client Session Key. After generating the master key, for each session, the

randomizer transforms the master key to a specific client session key. This client session

key is generated by hashing the string of the combination of the master key and some spe-

cific client-side identifiers such as IP address, tcp port number or session ID. The hashing

algorithm can be SHA1 or MD5.

Generate Randomized Parameter Values. After obtaining the client session key, the

randomized parameter values can be calculated by using the symmetric “XOR” cipher on

the R-tagged parameter value and the client session key. We adopt the simple “XOR”

cipher, due to its simplicity and high efficiency.
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Append R-tag. The randomizer will finally append R-tags again with randomized

parameter values and send them to the client. This step aims at providing the indicator that

which elements need to be de-randomized by the de-randomizer.

Fig. 8.2.: System flow of the Randomizer.

In this way, NOID does not need to keep any temporary data to carry out the randomization/de-

randomization. The stateless nature of NOID ensures that it is lightweight and efficient.

We next present how NOID de-randomizes users’ submission according to their received

randomized source.

8.4 De-randomization

Once users send a submission request2 to the server according to their received ran-

domized webpage source, the De-randomizer will analyzes reverse those “name/id” pa-

rameter values with R-tag prefix back to original parameter values. Figure 8.3 shows the

system flow of the De-randomizer, which mainly contains four steps. (The details of De-

Randomization algorithm can be referenced in Appendix A.)

Find R-tagged Parameter Values. When the De-randomizer receives users’ requests,

it will find out all parameter values of the HTML elements that have R-tag prefix. These

values will be de-randomized later.
2The request can be an ajax call, a submitted form, or a HTTP GET request with randomized parameters.
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Fig. 8.3.: System flow of the De-randomizer.

Remove R-tags. Since the randomizer will append R-tag prefix to those randomized

parameter values before sending them to the client. To de-randomize, the De-randomizer

will remove those R-tag prefix in the parameter values first.

Calculate Client Session Key. Then, the De-randomizer will retrieve current master

key and use client identifier information to calculate client session key. The way to calcu-

late this client session key is similar to the one that used in the Randomizer. Thus, since

both the master key and those identifier information will not change during the session,

we can obtain the same client session key that is used to randomize parameter values.

Generate Original Parameter Values. In this step, the De-randomizer will generate

original parameter values with R-tag prefix by using the “XOR” cipher on the randomized

parameter values and the client session key. Then, the De-randomizer will remove R-tag

prefix to generate original parameter values and send them back to the sever.

It is very important to realize that though this component on its own cannot prevent

advance bots, this component is paramount for the success of the Obfuscation component.

In its absence, the bot master can easily manually identify the critical elements and use the

corresponding name parameter in automating requests. The randomization subsystem en-

sures that the values of the name/id parameters of the critical elements differ from session

to session and are hard to predict. In fact the success of the entire system thus depends on

the robustness and security of this subsystem.
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8.5 Enhancing NOID

However, bots do not always use hardcoded name/id parameters of the HTML ele-

ments, advanced bots can retrieve the name/id parameters of the important HTML ele-

ments from the page source by parsing the source. In all, there can be three possible ways

by which a bot identifies an HTML element of concern specially in a form.

Directly using a hardcoded (previously identified) name/id parameter value. The

botmaster manually determines the name/id parameter values of the important elements

and programs the bot to use them in bulk data processing requests. This is already defeated

by the basic NOID.

Content Analysis of the source. Each HTMl form has label HTML elements to in-

form the end user about the purpose of input HTML elements in the form. The bots can

then identify the correct input HTML elements in form by the content description in the

label associated with the input element. We cannot randomize the label text because its

visible and of importance to the end user.

Via context hints present in the source. A bot may be made aware of the relative

location of the HTML element with respect to other elements in the page by the botmaster.

Hence, identifying and retrieving the correct name/id parameter boils down to moving

through the DOM structure along a pre-identified path.

In this section, we present techniques which enhance the basic NOID and make it more

robust and secure. (The details of Label Concealer and Element Trapper algorithms can

be referenced in Appendix A.)

8.5.1 Label Concealer

Insertion of Image Labels in Original Elements. A label text is a string inside

“<label></label>” HTML tags associated with a HTML element where the string spec-

ifies the purpose of the element to the end user. The association is made by either setting

the “for” attribute of the label tag “< label for=id>” to the id of the element or by placing

the element between the label start and end tags. For example, in a typical login form,
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the label texts “Username” and “Password” are placed near the corresponding textbox to

facilitate the user to fill up the login form correctly. NOID cannot change the content of

the label text as its visible and of importance to the end user. A bot on the other hand

could use this label text to figure out the name/id attributes of the original HTML element.

NOID uses Image substitutions to render this mode of bot operation ineffective.

The image label are created in real time, in our implementation we use ImageMag-

ick - a free Image processing library to create image labels. The overhead from image

generation is small and we discuss it further in the Evaluation Section 9. The label text

is substituted by an image of the label text with random noise addition. This introduces

another hard AI problem for the bot, which now has to use state of the art computer vision

techniques to figure out its content.

8.5.2 Element Trapper

Creation of Decoy Elements. Decoy elements are nothing but duplicates of the orig-

inal element with a random name/id attribute, introduced randomly near the original el-

ement in the source. In order to prevent confusion among the normal users these decoy

elements are either hidden or have an accompanying label image indicating its decoy na-

ture. Decoy elements can be hidden from the web page by setting the “display” or “po-

sition” property via css statements in the source. A bot could potentially still parse the

css of the web page for all candidates (original and decoy) to determine the original one.

Hence, NOID also introduces decoy elements which would be visible to the normal user

but with an accompanying label image indicating its decoy nature. A visible decoy ele-

ments with an accompanying image label would indicate to the normal user that he does

not need to interact with it. The decoy image label could either have a text saying “Do not

fill this”, “invalid”, “decoy” etc. or it may simply be a symbol. There are different ways

of indicating this to the user and may vary with web sites and geography.

Identifying the decoy image labeled elements is an easy cognitive task for humans but

a tough AI challenge for the bots. A simple task of identifying even a single element

of interest would require the bot to solve multiple CAPTCHA-like problems increasing
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the cost of filling up a simple form manifold and hence unsustainable. Moreover, by

introduction of noise and randomly changing the decoy label text/symbol NOID could

make the challenge even more difficult for bots. In our design, NOID uses both Hidden

and Image Labeled decoy elements, with each of them configurable to be on/off. Figure

8.4 shows phpBB pages where NOID obfuscates the element location by decoy element

insertion and conceals label text with images.

(a) Concealing label text (b) Decoy element insertion

Fig. 8.4.: NOID inserting decoy elements with accompanying image labels and concealing
original labels.

8.5.3 Effectiveness of Enhanced NOID

The continuing success of the text based CAPTCHA’s have proved that it is a difficult

problem to solve. NOID, with the use of its decoy element and label concealer insertions,

multiplies the complexity and cost of submitting a web form for bots. A bot now has to

solve multiple CAPTCHA-like challenges instead of just one. Moreover, since a normal

user does not need to explicitly solve a CAPTCHA, it improves usability. In case of a

normal CAPTCHA, both the bots and humans have to explicitly pass a test to be considered

human. Whereas with NOID, we present challenges only for the bots. The challenges are

implicit and do not warrant a written solution from the end user.
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9. NOID EVALUATION

In this section, we evaluate our designed techniques of defending against web bots by

implementing a prototype system of NOID. We next present our implementation, experi-

ment setup and evaluation methodology.

9.1 Implementation

NOID is designed to be incorporated to existing web sites without any major changes.

Most of the web sites behind a proxy can be stacked on the proxy without making any

substantial infrastructure changes. Thus, we implement our prototype of NOID as an

intercepting proxy, which sits in the middle between the server and the client and relays

HTTP communications between them. As presented in Section 8, aiming at providing

flexibility, each component of NOID - Randomizer/De-randomizer, Element Trapper and

Label Concealer can be configured on/off dynamically.

To achieve this goal, we modify the source code of a powerful web proxy called

Privoxy [44] to create a NOID enabled proxy. Privoxy is an open source and non-caching

web proxy with advanced filtering capabilities, allowing modifications of web pages and

HTTP headers. It is primarily meant to be designed as a client side proxy, which is used

to filter out banners and ads from the web page. It still has the capability to be run in an

intercepting mode. And all of Privoxy’s actions of filtering ads and banners are defaultly

turned off. The source code is modified to include a module for NOID. We use Pcre [45]

module in the Privoxy to search, replace and substitute content, through implementing perl

compatible regular expressions in C. The pcre module allows us to use regular expressions

to search for R-tag annotated parameters and to replace them with randomized values. The

enhanced components of NOID is implemented by using ImageMagick’s C API, which al-

lows for creating small thumbnail type label images and introducing noise. The decoy ele-

ments and image labels are added to HTTP form pages by issuing substitution commands

through Pcre. We then hooked NOID in Privoxy’s request/response processing module.



48

The HTTP form pages are buffered, modified and then sent to the client. For evaluation,

the web servers incorporating with our prototype are setup in a Virtual Machine.

9.2 Experiment Setup

To evaluate our prototype of NOID, we incorporate it as a simple intercepting proxy

in local installations of four popular web platforms: phpBB, Simple Machine Forums

(SMF) and Wordpress and Buddypress [46]. PhpBB and SMF are two of the most popular

open-source forum/discussion platforms [47]. Wordpress starts as a blogging service but

has evolves to be a powerful platform to design websites and content management system

[48–50]. BuddyPress is a open source endeavour to provide easy setup of websites with

social networking features, which is built upon Wordpress. Since its debut in 2008, it

has been adopted by a number of websites such as Solo Practice University and hMag

[36]. However, web bots have misused those free services offered by these open-source

platforms and have targeted on those websites built upon these platforms and caused great

displeasure among to legitimate users [40, 41]. These four web platforms are chosen with

an aim at representing most popular, state-of-the-art and open-source systems, which have

a history of being plagued by bots.

For web bots, we evaluate our prototype of NOID according to five state-of-the-art

web bots: XRumer, Magic Submitter, Ultimate Wordpress Comment Submitter (UWCS),

SENuke and Comment Blaster. XRumer is one of the most effective and widely used free

web bot [37]. Magic Submitter allows users for automatically submitting bulk messages

on blogs and Online Social Networks such as Facebook and Twitter [51]. Particularly,

Table 9.1 shows specific types of web platforms that are targeted those web bots, respec-

tively. Ultimate Wordpress Comment Submitter and SENuke are two commercial web

bots mainly designed for the purpose of SEO. Comment Blaster is a tool that allows users

to automatically send bulk comments or messages on the web platforms.

After setting up the experiments, we evaluate our prototype of NOID according to its

Security Effectiveness and Performance Overhead.
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Table 9.1: Experiment setup of web bots and their targeted web platforms.

Platform Platform Type Web Bot

PHPBB Forum, Content Management XRumer, Magic Submitter, SENuke

Simple Machine Forums (SMF) Forum, Content Management XRumer, Magic Submitter, SENuke

WordPress Blogs, Websites XRumer, Magic Submitter, SENuke, UWCS, Comment Blaster

BuddyPress Social Networking Addon to Wordpress XRumer, Magic Submitter, SENuke, UWCS, Comment Blaster

9.3 Security Effectiveness

NOID is evaluated on forum and blogging instances of popular open source systems

against six state-of-the-art web bots. The settings on these created web site instances are

liberal, allowing guest/unregistered users to create threads and to post comments. The web

bots XRumer, Magic Submitter, UWCS, Comment Blaster and SENuke can run against

these instances to establish effectiveness. All of the above bots succeeded in creating new

posts/comments automatically.

As describe in Section 9.2, NOID is then incorporated as an intercepting proxy in the

server side for the web sites. The source code of important web pages such as Login page,

Thread Posting page, Comment page and Registration page of these instances are modified

to annotate critical HTML elements with R-tags. We then run these bots to register, login

and post threads/comments on NOID enabled instances of the web sites. As seen in Table

9.2, NOID is able to completely defend agaisnt all of the above bots. Particularly, UWCS

and Comment Blaster target blogs and hence could not be evaluated on forum platforms.

Table 9.2: The effectiveness of using NOID to defend against different web bots on differ-
ent web platforms. “Yes” implies that NOID can successfully defend against the specific
bot on that platform. “N/A” implies that the specific bot does not target on the respective
platform.

Web Platform Type XRumer Magic Submitter SENuke UWCS Comment Blaster

phpBB Forum, Content Management Yes Yes Yes N/A N/A

SMF Forum, Content Management Yes Yes Yes N/A N/A

WordPress Blogs, Websites Yes Yes Yes Yes Yes

BuddyPress Social Networking Addon to WordPress Yes Yes Yes Yes Yes
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To validate that NOID without enhanced components would be effective enough to

counter most of current bots, we present a component wise evaluation on Xrumer. Figure

9.1 shows XRumer’s status according to different NOID configurations. Figure 9.1(a)

shows a successful attempt by XRumer on a unmodified phpBB3 thread creation page with

NOID OFF. XRumer first issues a request and then verifies that the post was successful.

The lower inset of each figure shows the request body captured in privoxy. Figure 9.1(b)

then shows that with NOID turned on and R-tag appended to the thread creation form

elements, XRumer fails to identify the html elements. This results in an empty request

body as shown in the lower inset of Figure 9.1(b). The status unknown signifies that

XRumer had reached an unknown page which it cannot identify. We then turned off the

Label Concealer feature of the Obfuscation subsystem of NOID and tried to create a thread

using XRumer. With only the Randomization and Element Trapper components, NOID

was able to defeat XRumer as we can see from Figure 9.1(c). We then turned off the entire

Obfuscation subsystems of NOID (i.e., Label Concealer and Element Trapper) and with

only randomization active, NOID was again successful in defeating XRumer as seen in

Figure 9.1(d).

9.4 Performance Overhead

Page Loading Time. We first examine time overhead of NOID by quantifying the

metric of “Page Loading Time (PLT)”, which is the time interval (in seconds) between

the timestamp of sending the request and the timestamp of completely loading a webpage

by the browser. Specifically, we use Mozilla Firefox’s addon LORI [52] to calculate the

time used to load and display an entire page. Thus, a higher PLT increased by using

NOID implies a bigger overhead. Table 9.3 shows PLT used for loading different types of

webpages on three web platforms, when NOID (without Label Concealer) is off and on.

NOID without Label Concealer contains only the Randomization and Element Trapper

(hidden decoy element) components. This table also records the number of elements that

are R-tagged, which may affect the values of PLT.
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(a)Success (b)Unknown

(c)Unknown (d)Unknown

Fig. 9.1.: Snapshots of requests from XRumer sent to the server to post a new phpBB
thread. (a) shows a successful post when NOID is OFF, (b) shows a failed attempt when
NOID (with enhanced components) is ON, (c) shows a failed attempt, when Label Con-
cealer is OFF and (d) shows a failed attempt when NOID (without enhanced components)
is ON.

Table 9.3: PLT for different types of pages, when NOID is off/on. (Time is in seconds.)

Platform Page R−tag PLT (Off) PLT (On)

phpBB

New Thread 6 2.554 3.012

Post Reply 6 2.536 3.206

User Login 5 1.036 1.96

Wordpress

Comments 5 0.8 1.412

Register 3 0.799 0.991

Login 4 0.785 0.921

Buddypress
Login 4 0.75 0.9

Comment 5 0.891 1.521

We can see that the average overhead per page caused by NOID is acceptable, which is

0.47 seconds. In fact, the number of R-tagged elements affects the times of randomizing

parameter values, inserting decoy elements, and concealing label elements. Thus, the
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number of R-tagged elements will have a direct impact on the PLT. From Table 9.3, we

can also calulate that the average overhead per R-tagged element is around 0.08 seconds.

We next evaluate PLT overhead of complete NOID with and without Label Concealer.

We acknowledge that the more images inserted by NOID, the more time is needed to

create/process images at server side, download additional image bits from the server and

load them into the browser at the client. This overhead is again linear to the number of

R-tagged elements. Table 9.4 shows Page Loading Times (PLT) that are used for different

types of pages, when NOID is enhanced without/with inserting images.

Table 9.4: PLT for different types of pages, when Label Concealer OFF and ON. (Time in
seconds.)

Platform Page R−tags PLT (Off) PLT (on)

phpBB

New thread 6 3.012 3.699

Post Reply 6 3.206 3.869

User Login 5 1.96 3.463

Wordpress

Comment 5 1.412 1.920

Register 3 0.991 1.779

Login 4 0.921 1.785

Buddypress
Login 4 0.9 1.750

Comment 5 1.521 2.810

We find that the average overhead of enhanced NOID with image insertions (Label

Concealer) is 0.894 seconds, which is still relatively acceptable. Especially, our imple-

mentation is based on a virtual machine with limited processing capability. We expect the

performance to be better on a real server. In addition, since each PLT is collected using

the browser with empty cache, the time overhead can decease even more in a real-world

communication session with cache information.

WebPage Size. Since enhanced NOID inserts decoy elements and image labels in the

webpages, we next examine the increased sizes of webpages by using enhanced NOID.

Specifically, we also use Mozilla Firefox’s addon LORI [52] to measure the webpage

size. It is noted that the number of R-tagged elements will affect the number of increased

webpage size. Table 9.5 shows the sizes of different types of pages on phpBB3, when
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NOID is off and on. (All these webpages have the same number of R-tagged elements,

which is 6.)

Table 9.5: The sizes of different types of pages on phpBB3, when NOID is Off/On.

Page Size (Off) Size (On)

New Thread 60.94KB 129.79KB

Post Reply 62.24KB 128.56KB

User Login 29.69KB 95.30KB

Register 22.57KB 93.73KB

We find that the average increased size of these web pages with 6 R-tagged elements

is 67.99 KB, which is also acceptable, especially with the consideration that the size of

a typical label image is round 8 to 15 KB. In addition, the page size overhead of NOID

would not increase, due to the increased size of original web page source.
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10. CONCLUSION

In this work, we present SEMAGE (semantically matching images) and a Source Ran-

domization and Obfuscation engine to prevent web bots from illegitimately accessing web

resources. We propose SEMAGE as an improvement on robustness and usability from the

current CAPCTHA systems. With NOID, we introduce a new mechanism to defeat bots,

build entirely around the operating mechanics of bots. Our threat model includes every

possible way a bot could issue an automated request by analysing the web page and NOID

aims to defeat all of the operating modes.

SEMAGE aims to be a effective and user friendly barrier and presents a set of candi-

date images and asks user to choose a set of images that fit a certain relation. The challenge

is layered in that both knowledge about semantic meaning of images and relationship be-

tween the subjects of images is required. The challenge comes naturally to humans as

it incorporates light-weighted visual and cognitive task. However, the layering scheme

provides double protection against bot attacks. It is easy to understand and the interaction

interface is simple and efficient. CAPTCHA systems constantly seek an optimum trade-

off point on security and usability. SEMAGE provides great room for customization by

the website administrators. They can tune on various factors such as the size of candidate

images size, answer size to adjust the usability and security level according to the need

of particular website. Moreover SEMAGE can be targeted towards touch based smart-

phones and devices where typing to solve a text based CAPCTHA is difficult. Website

administrators can also determine the content of the images and cater towards their pro-

motional needs. The database can be populated especially for SEMAGE, or adapted from

existing database. E-commerce is one area where SEMAGE database can be easily built

and SEMAGE can be utilized for both security and advertisement purposes.

In this work, we also introduce a novel server-side and non-intrusive web bot defense

system, named NOID. It is designed to pose implicit challenges to web bots and not to re-

quire legitimate users to explicitly solve a challenge as a CAPTCHA does. We also provide
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enhanced NOID by adding two more components aiming at defeating more powerful web

bots to automatically send bulk requests to the web servers. To be more flexible, NOID’s

components can be customized and turned on/off dynamically according to the require-

ments of a particular website. Our evaluation results show that NOID can defeat current

state-of-the-art web bots on popular web platforms. Also, the performance overhead of

NOID is acceptable for better security protection and usability.
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11. LIMITATIONS AND FUTURE WORK

Generating a vast and correct database is always a challenge for image-based CAPTCHA

systems. In our simple SEMAGE implementation we crawl the web to automatically

gather and label images. However not all images returned by the crawler were relevant,

some were even objectionable. We then manually weeded out the irrelevant images. Such

manual labor is time consuming and would pose a big problem when the database content

is regularly updated. There can also be legal issues in directly using the crawled images.

SEMAGE by the virtue of its design though, does not require the database to be built

in such a way. Websites like e-commerce services, movie rental services can easily use the

available image database with a suitable “semantic relationship”. However, further work is

required to create a large, correct database automatically to allow widespread deployment

in real world.

In this work we introduced the concept and technique of creating CAPTCHAs us-

ing “semantic relationships” between objects and then implemented a simple system for

demonstration. Our implementation does not reach the full potential of SEMAGE and we

plan to build a more robust, high semantic correlation based SEMAGE systems as future

work.

Web frameworks are complicated and enabling NOID for a specific web page and

identifying critical HTML elements might need thorough understanding of the framework.

We plan to develop an Automated Critical Element Identifier and Tagger as one future

work. In this work, we did not consider accessibility properties of an HTML element

such as tabindex which allow the user to use the tab key to navigate among the elements.

Potentially an attacker can establish one to one relationships between tabindex value and

HTML elements. Either tabindex can be disabled or its values could be randomly changed

to deter such approaches.

The probability of random guess attack is seemingly high for pages with only one or

two r-tagged elements. The alternative is for the developer to r-tag other non-critical (or
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all) elements in the page. Also, with all the components of NOID turned on, multiple

insertions of decoy elements further decrease the success probability of random guess

attacks.

The page size overhead from NOID may look substantial for small pages but with the

increasing network capacity and speed we believe that a 60 − 70 KB overhead is totally

acceptable. With image label insertions being the main source of Page Load Time as well

as page size overhead, we propose two possible ways of improving upon it: (1) To improve

timing performance, developers can always choose to create images in advance and NOID

could just insert noise. (2) NOID is highly configurable; we could only use image label

insertions when necessary (e.g., for suspicious users).
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APPENDIX A

NOID ALGORITHMS

Algorithm 2 : Algorithm for Randomization.

response← HTTP response body
if response contains r-tag then
listParameters← r-tag annotated parameters from response

else
Return response

end if
{/* Create the final key */}
masterKey ← Retrieve current Master Key
tmpKey ← masterKey+ client specific ipaddr/port/sessionid
finalKey ← hash(tmpKey)
{/* Randomize the r-tagged parameters, substitute in response and send to client */}
i← 0
randomizedParam← ””
while num(listParameters) 6= i do
i← i+ 1
param← listParameters[i]
randomizedParam← param⊕ finalKey
{/* Prefix the r-tag again so as to let the de-randomizer know what to re-randomize
*/}
randomizedparam← r-tag +originalparam
substitute listParameter[i] in response with randomizedParam

end while
Return response
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Algorithm 3 : Algorithm for De-randomization.

request← HTTP request body
if request contains r-tag then
listParameters← r-tag annotated parameters from request

else
Return request

end if
{/* Recreate the final key */}
masterKey ← Retrieve current Master Key
tmpKey ← masterKey+ client specific ipaddr/port/sessionid
finalKey ← hash(tmpKey)
{/* De-randomize the r-tagged parameters to get the originals, substitute in request and
send to server */}
i← 0
originalParam← ””
while num(listParameters) 6= i do
i← i+ 1
param← listParameters[i]
param← strip r-tag from param
originalParam← param⊕ finalKey
{/* Assuming that the server logic is not r-tag annotated, NOID need to send the
actual parameter */}
originalparam← strip r-tag from originalparam
substitute listParameter[i] in request with originalParam

end while
Return request



64

Algorithm 4 : Algorithm for Element Trapper and Label Concealer.

response← HTTP response body
if response contains r-tag then
listParameters← r-tag annotated parameters
listElements← parse response and get strings of HTML input elements containing
r-tags with label tag

else
Return response

end if
i← 0
decoyElem← ””
element← ””
decoyParam← []
while num(listElements) 6= i do
i = i+ 1
while element in listElements do
decoyElem← copy(element)
decoyParam ← (r − tag + random(string)) {Add the r-tag prefixed decoy
parameter to list}
decoyElem←(Replace the r-tagged parameter in decoyElem with decoyParam)
response←(Insert decoyElem in response randomly above or below the original
element)

end while
while param in decoyParam do

if < RandomCondition > then
response ← (Insert CSS command to hide element with id param and remove
corresponding label tag)

else
response←Replace label text of element with decoyParamwith invalid image

end if
end while
while realParam in listParam do
response← Replace label text of element with realParam with image

end while
end while
Return response
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