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ABSTRACT 

 

Safety-oriented Resilience Evaluation in Chemical Processes. (December 2011) 

Linh Thi Thuy Dinh, B.S., University of Technology, Ho Chi Minh City, Vietnam; 

M.S., Texas A&M University 

Chair of Advisory Committee: Dr. Sam M. Mannan 

 

In the area of process safety, many efforts have focused on studying methods to 

prevent the transition of the state of the system from a normal state to an upset and/or 

catastrophic state, but many unexpected changes are unavoidable, and even under good 

risk management incidents still occur. The aim of this work is to propose the principles 

and factors that contribute to the resilience of the chemical process, and to develop a 

systematic approach to evaluate the resilience of chemical processes in design aspects.  

Based on the analysis of transition of the system states, the top-level factors that 

contribute to Resilience were developed, including Design, Detection Potential, 

Emergency Response Planning, Human, and Safety Management. The evaluation 

framework to identify the Resilience Design Index is developed by means of the multi-

factor model approach. The research was then focused on developing complete sub-

factors of the top-level Design factor. The sub-factors include Inherent Safety, 

Flexibility, and Controllability.  

The proposed framework to calculate the Inherent Safety index takes into account all 

the aspects of process safety design via many sub-indices. Indices of Flexibility and 

Controllability sub-factors were developed from implementations of well-known 

methodologies in process design and process control, respectively. Then, the top-level 

Design index was evaluated by combining the indices of the sub-factors with weight 

factors, which were derived from Analytical Hierarchical Process approach. A case 

study to compare the resilience levels of two ethylene production designs demonstrated 

the proposed approaches and gave insights on process resilience of the designs.  
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UEL  upper explosion limit 
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Variables 

ai  weighting factors 

C  safety criteria limits 

d  design parameter 

D  design limits 

eij  element located in row i and column j 

ekj  element located in row k of any normalized column j 

Ii  index of the factor i 

IC  controllability index 

ICOR  corrosiveness index 

IEX  explosiveness index 

IF  flexibility index 

IFL  flammability index 

IIH  inventory hazard index 

IIS  inherent safety index 

IINT  chemical interaction indec 

IM  material index 

IMH  material hazard index 

IHMR  heat of main reaction index 

IHSR  heat of side reaction index 

IP  process index 

IPC  process condition index 

ICOX  process complexity index 

IPE  process equipment index 

IPR  process pressure index 

IPS  process structure index 

IR  resilience index 

IRD  resilience design index 

IRH  reaction hazard index 
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IT  process temperature index 

ITOX  toxicity index 

K  gain matrix  

M  amount of equipment accessible by the operator 

O  number of measurement readings   

P  number of input and output streams 

Q  the number of interactions in the process 

S  number of degrees of freedom 

wi  eigenvector of the comparison matrix 

λmax  eigenvalue  

λij  relative gain array element 

σi  singular value 

∑  diagonal matrix of singular values 

θ  impact value 

z  control variable 
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CHAPTER I  

INTRODUCTION AND  

LITERATURE REVIEW 

 

1.1 Introduction 

In the operation of an industrial process, three system states can be distinguished: 

normal, upset and catastrophic (Figure 1). The process systems should be maintained in 

the normal-state region. However, unwanted disturbances always exist, and tend to force 

the system state out of the normal-state region. If the system has the ability to detect 

disturbances and manipulate operating variables accordingly (a function of a process 

control system), it is likely to stay in the normal state. But the detection may fail, actions 

may be neglected, and even manipulation may be unable to keep the system state 

normal. These may cause unwanted events which make the system state upset or 

catastrophic. Upset state is the state that can create low impacts (i.e. a product not having 

proper specifications, small spills, and leaks). Catastrophic state is the state that may 

lead to high impact to people, environment or business (i.e. runaway reaction, fire, and 

explosion). From the upset state, the system can be recovered to a normal state through 

effective recovery methods. 

If an upset system is not managed properly and is not able to recover to its normal 

state, then larger events (e.g. massive flammable or toxic material spills, BLEVEs) may 

follow and the system may cross over into a catastrophic state. This state may still be 

recovered to normal if action takes place within a certain reaction time. How fast and 

effective this recovery is will depend not only on recovery plans, but also on the 

resilience of the system design itself. 

Most studies in the area of process safety aims to prevent the system state from 

transitioning downward (the right side of Figure 1). Increasing effort has been spent on 
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process safety, yet incidents still occur (Figure 2). Those incidents may be caused by 

technical and human failures and could cause considerable damage to process plants. 

Moreover, there are always other unmanageable threats to chemical plants. Some of 

these include natural causes (e.g., hurricanes) and intentional human acts (e.g., terrorism 

and sabotage). In large-scale and complex systems, such unexpected situations may 

occur even if risk management is fully carried out. When these situations occur, 

minimizing damages and getting operations back to normal are priorities for operators 

(the left side of Figure 1). This is the idea of the resilience concept in the industrial 

processes. 

 

 

Figure 1. Transition of a system state between normal, upset, and catastrophic regions 

 

 

Resilience engineering helps to recover system states after unwanted events happen 

rather than prevent them from occurring. Incident prevention is a subject of study in 

other process safety areas (e.g., risk assessment). However, it is impossible to foresee 

System 
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region 
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Catastrophic-
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Detect disturbance. 
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and avoid all threats. Therefore, resilience is needed as an additional safety measure. It 

should especially be recognized as an important characteristic of the process industry. 

 

 

 

Figure 2. Number of incidents 1995 – 2005 

 

 

1.2 Literature review 

The concept of resilience has been researched for many years in non-chemical 

disciplines, such as biology, psychology, organizational science, computer science, and 

ecology. In chemical engineering the concept remained relatively unknown. In general it 

is defined as “the ability to bounce back when hit with unexpected demands,” which is 

vague. 

Some researchers tried to derive more focused definitions to support their 

quantification approaches. Only a few publications closely related to process industry 

were found. 

In management system, Carvalho et al.
1
 proposed a qualitative resilience assessment 

of management system using a micro-incident analysis framework and applied it for 

nuclear power plant operation. The framework analysis provides an anticipation of the 

Source: HSEES database
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actions that are needed to improve the resilience and safety of organization. Costella et 

al.
2
 proposed a new method for assessing health and safety management systems from 

the resilience engineering perspective.  Four major principles of resilience engineering 

were identified: flexibility, learning, awareness and top management commitment which 

were used as assessment criteria during the evaluation of health and safety management 

systems. 

In engineering systems, some quantitative methodologies have been developed to 

assess resilience. Slocum
3
 used experimental disturbances to assess resilience along a 

known stress gradient. In this work resilience was measured as the recovery rate of the 

system from a known stress gradient applied. Even though experimental disturbances 

provide important information about the system and can be used as resilience “probes” 

by evaluating the recovery rate, it should not be used as a sole evaluation of the stress 

caused on the system because it also depends on other factors. Mitchell and Mannan
4
 

developed a concept of system resilience which was defined as “the amount of energy a 

system can store before reaching a point of instability”. If the input thermodynamic 

values change, then the absorbed exergy loads change. The authors borrowed this idea 

from material science to construct so-called “exergy stress and strain curves” to track 

those changes. The curves allow system resilience to be displayed, compared, and 

qualitatively assessed. The idea was demonstrated in four simple test systems from 

process engineering, including a steam pipe, water pipe, water pump, and heat 

exchanger.  

Another related research area is flexibility of chemical processes which was 

developed by Morari et al. in the 1980s and Grossman et al. in 1990s. Morari
5
 

categorized process resilience into two categories based on operation modes: steady state 

and dynamic state, and treated them in different ways. In the steady state, process 

resilience is identical to process flexibility 
6
, i.e. the ability of a plant to handle different 

feedstock, product specifications, and operating conditions. Saboo et al.
6
 introduced a 

new resilience index applied to heat exchanger networks to measure the largest 

disturbance that the network can tolerate without becoming infeasible. The index 
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quantification was then extended by Karafyllis and Kokossis
7
 and Skogestad and Wolff 

8
 

as a controllability measure to determine the ability of the system to reject disturbances 

and prevent saturation in the manipulated variables. 

In the dynamic state, process resilience is simply quantified by the quality level of its 

control system.
5,9

 A similar idea is put forward by Morari and Woodcock, but is 

specifically related to the resilience (or flexibility) of heat exchanger networks with 

respect to inlet temperature variations.
6
 

In the industrial processes, specifically chemical processes, resilience is the ability to 

minimize damages and get operations back to normal from adverse events rapidly. The 

more the resilience of an industrial process is, the lower the consequence is, and the 

sooner the recovery is. As a result, the risks (which comprises consequence and 

occurrence frequency) to people, environment and business are decreased. However, the 

resilience concept has not fully been adopted into the process industry, despite its clear 

potential benefits related to safety environment, and costs. There seem to be hurdles 

which limit the application of the concept, and which should be tackled to unveil its 

potential.  

� First, the current difficulty in studying resilience is that it is conceptual. To 

theorize, manage – even engineer – resilience, it is necessary for basic principles 

and contributing factors of resilience be identified.  

� Second, it is difficult to know when a process is designed according to resilience 

principles and measure the effects of changes due to the resilience approach. To 

implement resilience into practice, a method of estimating the resilience of 

different chemical process or design alternatives is needed.  

The objective of this work is to propose the principles and factors that contribute to 

the resilience of a chemical process, and develop a systematic approach to evaluate the 

resilience of chemical process designs for relative comparison purpose. The following 

questions will be addressed: 

� What are the principal features of positive resilience in a process operation when 

it is subjected to unexpected events? 
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� What are the contributing factors that minimize the damages and restore the 

system in a shorter time? 

� How good resilience is this design compared to another? 

The remaining chapters of this dissertation are organized as follows: Chapter II 

describes the problem statement for this research, discusses state transition of systems 

and then proposes an approach for evaluating resilience. Chapter III introduces 

principles to make systems more resilient and factors that contribute to resilience 

evaluations. Chapter IV focuses on sub-factors and quantitative methods of one main 

resilience contribution factor, resilient design. Literature review and proposed 

approaches to quantitatively calculate the sub-indices of resilient Design index are 

shown in Chapter V, VI, and VII. A case study of ethylene production processes 

demonstrates the quantitative approach in Chapter VIII. Last, the closing chapter 

discusses the conclusion, application, and future work. 
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CHAPTER II  

PROBLEM STATEMENT  

AND PROPOSED APPROACH 

 

2.1 Problem statement 

The problem statement for this research work can be described as follows. Given are 

chemical processes either in design or operation stage with information on process flow 

diagram, mass and energy balance, basic control systems, reaction, inventory, chemicals 

involved, safety management and culture and possible disturbances. Although many 

types of information are needed, their required levels of details are low. For example, 

only key control loops that are slow-response and likely significantly affect safety 

criteria and production specifications are needed; only heat of reaction is required for 

reaction information. 

It is desired to develop a conceptual theory of safety-oriented resilience in chemical 

processes and a systematic approach to resilience evaluation of the chemical processes 

by a scalar resilience index. Specifically, the theory development regards to identifying 

resilience principles and contribution factors for better understanding the concept and 

indicating direction to develop the evaluation approach.  

There are different types and ranges of possible disturbances. Some can be 

considered as unexpected input deviations. For example (Figure 3), the situations that 

flow rate of A is disturbed, D is introduced to the reactor instead of A, or cooling water 

is lost (i.e., flow rate of water reduces to 0) can create the unexpected input deviations. 

The above unexpected input deviations may lead to another state of disturbances, 

upset state. One possible outcome is a runaway reaction; that means, the disturbances in 

upset state may create another state of disturbances, catastrophic state. If a runaway 

reaction occurs and cannot be controlled, a reactor can be ruptured. Consequently, an 

explosion or fire can occur. The scope of this research is to apply for all of those 

multilevel disturbances. 
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Figure 3. Examples of unexpected input deviations 

 

 

2.2 Relationship between measures and process resilience 

In an industrial process, at certain conditions even a small disturbance can upset the 

system, which can then become a catastrophic state. A resilient system can prevent such 

highly undesirable transitions through appropriate design, technology, human and 

management activities and well planned emergency procedures, which can reverse an 

incipient mishap and eliminate potential hazardous side effects. Factors or activities 

which can avoid the transition are called measures (which in terms of risk reduction are 

called barriers) because they block cause-consequence chains. The importance of the 

effects of barriers on the safety level has been noted in many studies.
10-13

 In the context 

of resilience, measures will be discussed, because measures can not only stop a 

development, but also reverse it. 

Figure 4 shows the effect of resilience measures on the transition of system states. If 

the measures between disturbance and upset states are effective, the system state goes 

back to normal. If those measures fail and upset still occurs, there will be protective 

measures in place which prevent harm to humans and equipment loss. The modeling 

concept used here is that those measures cannot only prevent loss (as some other process 

safety measures do) but also help the system to bounce back to a state of normal 

operation (which is unique to resilience measures). This model also reveals another new 

concept, resilience, a family of many different measures, not a single one. These 

Chemical A

Chemical B

Chemical C

Cooling 

water
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different measures work and tie together to improve the ability of the system to tolerate 

derailing conditions, and to bounce back from disturbances or unexpected events instead 

of being broken. In general, although there are many different unexpected situations led 

to different consequence levels and response strategies, resilience measures are needed 

to prevent unwanted transitions and accelerate the desired transition back to a normal 

state. 

 

 

 

Figure 4. System bouncing back to normal state with presence of resilience measures 

 

 

2.3 Multi-factor approach 

It is assumed here that the complexity of resilience is derived from the interaction of 

several simple measures.  Then, the evaluation framework is constructed based on a 
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multi-level, multi-factor approach in which the complex (overall) objective (e.g. 

resilience or resilient design) is composed of many objectives and/or factors. Each factor 

contributes a resilience level due to its interaction and combination with other factors. 

For the evaluation framework, all of the factors that contribute to resilience are 

basically arranged in a hierarchical tree (Figure 5). At the bottom of this tree, we desire 

to have one number which represents the resilient degree of a chemical process. It is 

named the “Resilience Index.” The first level of the tree demonstrates the main 

contributing factors/ aspects to resilience, which can be considered resilience variables. 

Each of those aspects is represented by its sub-factors in level 2 of the tree. The value 

evaluation of sub-factors in level 1 is usually not simple because they themselves 

involve many other aspects. Therefore, we may need level 2, 3, or m, to evaluate values 

of the level 1 sub-factors. The upper levels are used as inputs for the lower levels. 

 

 

 

Figure 5. Hierarchical framework of evaluating resilience index 

 

2.4 Proposed methodology to evaluate process resilience 

The algorithm (Figure 6) is developed to capture the above multi-factor approach. To 

obtain one unique resilience index, the following steps need to be performed. 
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� Review the various concepts of resilience in different areas, and decide what 

definition of resilience will be used in this study.  

� Identify strategies in the chemical process which represent the core concepts of 

resilience.  

� Describe the basic resilience principles based on the strategies of resilience found 

in the chemical process.   

� Identify the main factors that contribute to obtain the resilience principles as well 

as the process resilience after identifying the basic principles of resilience.  

� Quantify the indices of each resilience contribution factor for obtaining final 

resilience index since resilience is the product of many process features or 

contribution factors. 

� Identify the weights between the factors or sub-factors on different levels.  

� Obtain the Overall Resilience Index (IR) by adding together the multiplying 

results of the first level indices and their weighting factors (Equation 1).  The 

weighting factors can be directly assigned by the designer to emphasize some 

aspects above others or calculated using Analytic Hierarchy Process (AHP) 

method.  

IR = ∑ (ai * Ii) Eq. 1 

where ai: Weighting factor of the factor i 

  Ii: The index of the factor i 

Resilience index aims to be used as a screening test of a chemical process or plant. It 

is designed to give an indication of the level of resilience for comparison purpose, not 

for estimating resilience level of a single process. In Equation 3, there is an assumption 

of the independence of all resilience factors. 

The resilience index indicates a quantitative assessment of resilience of a process or 

design. This index can be applied for three main purposes:  

� Obtains a score to each chemical process or design, which serve as a tool for 

relative comparison of several processes or alternative designs in terms of 

resilience. 
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� Permits identification of the impact of individual elements to the resilience of a 

chemical process or design. 

� Provides the direction to improve resilience by improving the sub-factors 

 

 

 

Figure 6. Research algorithm 
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CHAPTER III  

RESILIENCE PRINCIPLES AND 

CONTRIBUTION FACTORS 

 

3.1 Strategies and principles of resilience 

Resilience can be viewed as a kind of forward, pro-active defense. From the general 

definition, a resilience strategy can be identified and developed. Resilience strives to 

control the situation by minimizing the probability of failure, the consequences and the 

restoration and recovery time. This can be considered a triple resilience strategy. 

To execute the strategy and achieve resilience, the following basic principles are 

proposed: minimization of failure, early detection, higher flexibility, higher 

controllability, minimization of effects, and better administrative controls and 

procedures (ACP). By analyzing the state transition, it can be shown those principles 

need to be in places and work as layers to perform the resilience strategy (Figure 7). 

 

 

 

Figure 7. Resilience principles 
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To demonstrate how the principles contribute to achieve resilience, a leak of 

flammable gas is exemplified in the following description of the principle. When a 

flammable gas is leaked (i.e., process is in failure state), an explosive cloud can be 

formed. With an ignite source an explosion occurs (i.e., process is in an upset state), 

which may result in other flame and explosion and cause severe consequences to the 

process, operators, and environment 

3.1.1 Minimization of failure 

Failure is a state that does not meet a desired or intended objective, or which potentially 

creates a hazardous situation to people (e.g., toxic-gas release) and damage to equipment 

(e.g., leak, rupture, and suddenly increase of temperature). It is not healthy if safety only 

depends on operational measures and safeguards or mitigation measures. The 

Minimization of Failure principle is to prevent something bad from happening by 

preventive measures.  

Inherently safer design, properly using protective equipment, and appropriate safety 

management should be performed to the maximum extent. In the example, some of 

preventive measures are choosing gaskets that minimize leak rates of hazardous 

substances, minimizing stockpiles of toxic substances, exercising careful maintenance 
14

, 

and replacing the flammable gas by a non-flammable one 

3.1.2 Early detection 

When the preventive measures cannot prevent a failure to occur, the role of principle 

Early Detection comes into place. The most dangerous disruption and most difficult 

situation to bounce back from is when disturbance is not detected until it is too late. No 

corrective actions will be initiated for failures that remain undetected 
15

. Hence, accuracy 

and early detection is desired for all disturbances. In most cases, early response can be 

achieved by early detection resulting in a more effective response since operators have 

more time to consider and respond to the urgent situation.  

Many authors (among others, Frese, 1991
16

; Zapf and Reason, 1994 
17

; Sellen, 1994 

18
; Kontogiannis, 1997 and 1999 

19,20
) have clearly stated detection is necessary before 

the rest of a recovery process can take place. The idea of the detection of the deviation 
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being part of a recovery process was found in the literature.
21

 Early detection of a 

disruption becomes a major determinant of resilience.
22, 23

 The benefits of early detection 

in rapid response have also been mentioned in the area of emergency response 

management system.
24

  

For the example, the leak should be detected as soon as possible to prevent the gas 

cloud formation, which may lead to worse situations. The detection is usually made by 

gas sensors 

3.1.3 Flexibility 

A process is called flexible if output variation can stay in desired range when input is 

changed due to disturbance within a defined range. More details on the flexibility 

concept are discussed in Section 7.1.  

The Flexibility principle for resilience is to design a more flexible process that can 

operate under various disturbances. It is not necessary to return to the previous 

conditions under disturbance as long as the constraints and specifications are met. 

Flexibility was considered as one of the attributes of resilience in previous work of 

Costella et al.
2
, Sheffi

23
, Saboo et al.

6
, Morari

5
. Increasing flexibility can help a process 

not only respond to input fluctuations but also withstand significant disruptions. Some of 

common applications of flexibility are to design a plant producing the same product 

from various types of feedstock, a heat exchange network meeting output temperature 

specifications when input conditions are changed, and construction materials resistant to 

various types of corrosion and a wide range of physical conditions.  

Refer to the gas leak example, a flexible design will allow to bypass the leaked 

equipment segment or to reduce gas pressure to minimize leak rate while production is 

maintained online. Both measures can prevent the hazard situation from escalading to 

cloud formation. 

3.1.4 Controllability 

Controllability is an ability of the system to achieve a specific target state.
25

 A process is 

called controllable if the output parameters to be controlled can be tuned to target points 
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in acceptable time when unexpected input deviate the parameters from the set points. 

More details on the controllability concept are discussed in Section 6.1.  

Flexibility should be distinguished from controllability. The Controllability principle 

for resilience is to design a more controllable process. While the Flexibility principle 

allows processes to operate at various conditions, the Controllability principle allows 

changing the operation from one condition to another. Therefore, both Flexibility and 

Controllability are needed to achieve the resilience strategy. 

Skogestad and Postlethwaite
26

 introduced the term input-output controllability to 

address the ability to achieve acceptable control performance in which the controlled 

outputs and manipulated inputs are kept within specified bounds from their set points 

under any uncertainties. Controllability was also considered as dynamic resilience or as 

an attribute of resilience in the work of Morari.
5,9

 The better the controllability is, the 

better the disturbance rejection capacity of the process is.
27

 

In the gas leak example, the flexible design allows the process to operate in bypassed 

or pressure-reduced conditions. However, whether operators can perform the changes 

and how long to do that depend on controllability of the process. The cloud formation 

can be stopped only when the new condition is obtained. The sooner is new condition 

reached, the less is flammable gas released. 

3.1.5 Limitation of effects 

Despite the low probability of failure, the precise moment when an even may occur 

cannot be known. If it is not possible to rule out failure or to prevent mishaps, it is 

important to limit them from becoming worse. The more severe the consequences are, 

the longer it will take for the process to recover. The Limitation of effects principle is to 

use safeguard or mitigation measures to limit the consequence of an upset event. 

For the example, equipment can be designed in a small volume so that it can leak 

with only low amount, which would be easy to stop or control. Another measure of the 

limitation of effects principle can be a building fire wall between sections to restrict the 

spread of fire. A blast wall to protect control room is necessary in some cases. 
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Figure 8. Development of resilience strategies and principles from resilience definition
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28
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In the example, proper maintain procedure can even prevent leak from happening. 

As other measures, good emergency response plans help to fast stop the leak, isolate the 

unit, shut down the plant, evacuate the community to minimize the consequences to 

equipment damage and human loss. 

In summary, the resilience definition in the context of industrial processes was used 

to develop the resilience strategy which in turn is a basis to develop the resilience 

principles. They are summarized in Figure 8. 

3.2 Resilience contribution factors 

3.2.1 Development of contribution factors 

It is challenging to implement these principles when evaluating a process for its 

resilience because there is a lack of systematic attempts to identify factors that contribute 

to resilience in unexpected situations. Resilience levels of a plant can only be determined 

if the extent to which factors or attributes that contribute to the resilience of the plant are 

validated and exercised.  

There have been many definitions of organizational resilience and, hence, the 

associated factors or attributes. Those definitions were found in numerous studies on 

how organizations dealt with situations that pushed them to the boundaries of 

competence. Woods (2006)
30

 proposed a set of factors which contribute to the resilience 

developed in prior research, including buffering capacity, flexibility, margin, tolerance, 

and cross-scale interaction. These factors have been applied in the electric power and 

telecommunication studies. However, like with other extreme events in chemical 

engineering, these factors are difficult to evaluate. 

In this work, factors or criteria to evaluate the resilience of a process are developed 

from the resilience principles. The factors must affect the associated principles directly. 

The major factors that are essential to resilience in global terms are discussed next.  

From the Flexibility and Controllability principles of the process, the Design factor is 

developed. Process resilience is affected very significantly by the design of the process. 

For example, take the case study in which a batch reactor has a runaway reaction that is 

caused by the inability of the reactor to cool the accelerating rate of heat produced. If 
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protective measures, such as the use of sufficient pressure relief systems and tanks 

designed to withstand high pressure and temperature, are in place, then the tank will not 

rupture or explode, and the system may be back to normal soon after it is cleaned out. 

Other design features known to increase resilience is increasing the range of 

heating/cooling capacity to improve flexibility, and fitting the right instrumentation to 

improve controllability. Several layers of safety systems, whether complementary or 

redundant, should be considered to enhance resilience as well. For example, in the BP oil 

spill disaster in the Gulf of Mexico, in the well there was a blowout preventer that was 

designed to seal off a well in the event of an emergency, but that device had not been 

working properly since the explosion aboard the Deepwater Horizon oil rig on April 20
th

 

2010.
31

 The BP oil spill disaster could have been recovered more quickly if the design 

would have included a redundancy in which the blowout preventer would perform its 

ultimate function of closing the well, or had other layers of timely ultimate protection 

beside this device.  

For implementing the principle Early Detection, Detection Potential factor is 

introduced. Technically, in the run-away example mentioned previously, a special 

sensor, in combination with a suitable signal-processing device, may warn that a 

disturbance is emerging before any temperature or pressure deviation is noticeable. 

However, apart from technical features, here, organizational yardsticks become essential. 

The quality and implementation of a detection system has the crucial role not only to 

detect disturbances in time to activate proper safety measures but also, and perhaps even 

more importantly, to observe the level of resilience improvement or deterioration. 

Moreover, Detection Systems have also been recognized by Sheffi
22

 as significant 

elements in building resilience, more specifically for the resilient enterprise through the 

vigilance concept.
32

 According to Brizon and Wybo, vigilance is one of the key 

processes that participate in the resilience of industrial systems. The research of 

Hollnagel
33

 also agrees with this and mentions “monitoring” as one of the key capacities 

of resilient engineering. The actions in the process industry to install process safety 
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lagging and leading indicators after the 2005 BP Texas City explosion disaster can be 

seen as part of this. 

A dedicated and well-designed detection system is not enough for a positive 

resilience. Without the proper management of the alarm system by operations personnel, 

crucial, quick and accurate detection, assessment and resolution of abnormal operating 

conditions may not be achieved. The human aspect plays an important role in the 

response to emergencies and in recovery processes (i.e., the identification and 

application of appropriate countermeasures).
15, 21

 Operations personnel missing or 

misinterpreting alarms can contribute to a more difficult situation for a process to restore 

and recover from. Operators should be aware of the significance of every stage of the 

process and the safety procedure to be followed. They should be trained to recognize 

abnormal conditions or states that may occur. The Human factor also has an important 

role in detecting the unexpected situation, minimizing the failure and limiting the effects 

which are the resilience principles. 

The final principle of resilience considers Administrative Controls and Procedures 

which is involved because carrying out a process under good safety management and 

good procedures makes the plant more resilient. For example, proper understanding of 

the process chemistry and thermochemistry by management and adequate operational 

procedures, including training, can help the plant recover quickly from incidents 

involving unexpected violent reactions and to prevent more severe consequences. A 

factor used to evaluate this component of resilience is the Safety Management factor. 

Employee training is a core aspect of this factor. Operator training supported by process 

simulation can frequently be improved by showing operators how to respond to upset 

conditions or process deviations. 

Since unexpected situations combine many elements, they are challenging to plan for 

a respond too. Emergency Response Planning is another important factor that contributes 

to the characteristic of resilience. The Emergency Response Planning should be well 

prepared since a rapid and proper response usually results in a shorter recovery time. A 

situation will be mostly unexpected with regard to time and can be unexpected also with 
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regard to nature. In principle it is impossible to have planned actions in the latter case; 

however, thorough planning and preparation for the other cases will lay the foundation 

for a collaborative response. Building joint processes, getting to know all organizations 

involved in a response, and assigning specific roles are necessary to recover quickly. 

Moreover, responding – the ability of knowing what to do and being able to do it –was 

also demonstrated as one of the key capacities of resilient engineering.
33

 Chemical 

Safety and Hazard Investigation Board (CSB) has shown that many communities and 

companies need to be more knowledgeable and better prepared. 

Based on the above discussion, it is clear that resilience is the product of many 

process features covering technical and organizational margins of safety. Five major 

factors including Design, Detection Potential, Emergency Response Planning (ERP), 

Human, and Safety Management, have been selected to contribute to resilience in this 

work (Figure 9).  

 

 

 

Figure 9. Contributing factors of process resilience. 
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employees, and better emergency response procedures. These factors are essential 

elements in determining response time, and also reflect the fact that intrinsic resilience is 

affected by many different factors, including the technological, human and management 

factors. These factors are not sharply defined and tend to intermingle. 

In quantitative viewpoints, Figure 9 means that resilience index of a chemical 

process is achieved if the indices of the factors contributing to resilience are obtained. 

The scope of the remaining chapters of this dissertation is limited to develop and 

demonstrate the evaluation method for Design factor. By just evaluating resilience 

design index, a better resilient design can be chosen by relative comparisons of different 

design alternatives or elements to improve resilience of a design can be identified.  

3.2.2 Example demonstrating contribution factors 

These types of resilience factors can be demonstrated in the following example and case 

study, which support the above selection of the main contributing factors. 

Consider a simple example: a leak in a gas-phase heat exchanger (HX). The accident 

may occur due to a disturbance of the gas flow rate into the heat exchanger. If increased 

to a certain rate, the gas flow causes acoustic noise and unobserved tube vibration. Later 

the tube cracks due to prolonged vibration and fatigue. The gas in the high pressure area 

causes an increase the pressure in the downstream equipment that is connected to the 

tube side fluid. In the down-stream section, a pipe that was designed to operate at 

atmospheric pressure cannot withstand the higher pressure, and explodes. 

In Design aspect, if the system was designed to eliminate or absorb vibration, then 

the failure is prevented. Also, if the down-stream section of the process was designed to 

withstand the higher pressure or to have a relief valve, the operator may have enough 

time to control the gas flow rate back to normal or isolate that HX to replace a new tube 

or fix the cracks. The recovery time will be faster when the explosion does not occur.  

In Detection Potential aspect, if the process was designed with the control system to 

be able to detect abnormal pressure or temperature profiles due to the leak and control 

the pipe pressure, then the explosion can be prevented although leak occurred. The HX 
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can be bypassed and process will continue to be in normal operating condition, rather 

than being shut down due to the explosion.   

Human aspect may play a more important role to early detection for the resilience. If 

the operator can hear the acoustic noise due to vibration in a visual walk and was trained 

to suspect the vibration, then the HX can be bypassed for inspection and maintenance. 

Therefore, leak can be even prevented. 

With a good ERP, operator is trained to respond to the detected issues by changing 

the gas flow (when vibration occurs), limiting the pressure increase in the pipe (when 

leak occurs), safely stopping the blowout flow in the relief valve (when gas is blown 

out), or closing the gas flow after the explosion. 

Safety Management is an integral part to achieve resilience. A regular visual walk 

may result in the human detection on the acoustic noise. A Hazard and Operability 

Analysis (HAZOP) conducted in an earlier stage would have indicated where the 

acoustic noise could potentially come from. Besides, scheduled maintenance activity of 

the safety management may help to reveal the signs of prolonged vibration in the HX 

before leaks occur. 

If any of those contribution factors are effective, the HX will be back to normal 

operation quicker without any leak, or with a leak but without an explosion. The system 

may accept the disturbance (gas flow rate increase), but management can make the HX 

resilient. 

3.3 Case Study 

3.3.1 Problem description 

Consider the case where a release of flammable materials leads to an explosion 

following a runaway reaction and rupture of the reactor as a result of an increase in 

temperature. It is desired to show how the principles and contribution factors can prevent 

the hazard scenario from developing and assist in getting the system back to normal 

quicker, meaning the system is more resilient. 
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Figure 10. Sequence of the reactor run-away and flammable material release event. 
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3.3.2 Measures and factors contributing to resilience 

To analyze the measures and factors that contribute to resilience, the transition of states 

is analyzed. The scenario will be considered at different levels of Disturbance, Upset, 

and Catastrophic consequences. Figure 10 shows the analyzed results of the state 

transition which is, in a simple way, the sequence of the events for this example. 

Above all, the most effective tool to boost resilience is to prevent something bad 

from happening, which is based on the fact that there will be no recovery time if no 

unfortunate incident occurs. In this case study, conditions favorable to possible technical 

and erroneous failures can be prevented by adequate transferring of research 

information, hazard assessments, thorough knowledge of the reaction chemistry and 

thermochemistry, adequate hazard awareness, knowledge of the causes of overpressure, 

adequate operating procedures, including the order of ingredients, and carefully checked 

addition rates. Then, depend on a specific scenario, certain measures and factors can be 

applied to achieve positive resilience for this incident scenario. Those suggested 

measures and factors are summarized in Table 1. 

Analyzing this case study demonstrates that the measures which cut short the chain 

of undesired events of the case study or contribute to a positive resilience of different 

scenarios fall into Design, Detection, Emergency Response Planning, Human, or 

Management categories. 
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Table 1. Measures, principles, and contribution factors for resilience of the case study. 

Disturbance System state Measure Principle Contribution 

Factors 

Erroneous 

actions such as 

an incorrect 

change in the 

feed ratio, an 

operator loading 

too much, 

loading in the 

wrong sequence 

or loading 

incompatible 

materials. 

Upset: 

Reaction heat-

up rate too 

high 

Design processes, equipment and procedures to 

neutralize potential human error using inherently safer 

design e.g. interlocks 

Minimization 

of Failure; 

ACP 

Design; Safety 

Management 

Lock software based on values monitored Controllability Design 

Add chemicals to the vessel at a predetermined rate in 

order to control the rate of the reaction.  

Controllability; 

Flexibility 

Design 

Issue clear and precise process instruction sheets 

covering the action to be taken in the event of 

erroneous actions, e.g., incorrect feeding of reactants, 

delays in processing, under or over-charging, etc. 

ACP Safety 

Management; 

ERP 

Operators check product composition in order to 

recognize abnormal conditions early. 

Early Detection; 

ACP 

Human; 

Safety 

Management 

Technical 

failures such as 

inadequate 

designs 

involving the 

heat/ material 

balance, the 

stopping of 

agitators due to 

electric failures 

and engine 

failures. 

Upset: Water-

cooling 

system unable 

to control the 

heat of the 

reaction 

Design adequate heat transfer systems Minimization 

of Failure 

Design 

Design adequate control and safety back-up systems, 

e.g., a software action linked with heat excess alarms 

in case of power loss, agitator failure, and coolant 

failure. 

Controllability; 

Minimization 

of Failure; 

Early Detection 

Design; 

Detection 

Potential 

Operators recognize abnormal conditions and perform 

proper actions. 

Early Detection; 

ACP 

Human; ERP; 

Safety 

Management 

Issue clear and precise process instruction for 

abnormal conditions, e.g., loss of agitation, loss of 

cooling water. 

ACP Safety 

Management; 

ERP 
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Table 1. (Continued) 

Disturbance System state Measure Principle Contribution 

Factors 

Water-cooling 

system unable 

to control the 

heat of the 

reaction or the 

reaction heat 

rate is up too 

high.  

Upset: Runaway 

reaction: 

Fit a high temperature indicator and alarm system 

(e.g., high pressure alarm) to the vessel in give 

early warnings of potential runaway.  

Use smart signal processing to recognize abnormal 

temperature or pressure conditions. 

Early Detection Detection 

Potential 

Cut off the feed and heating from vessel when a 

predetermined maximum safe temperature or rate 

of temperature rise is reached,  

Controllability;  

 

Design; ERP 

Add chemicals to cancel the effects of the catalyst. 

Neutralize, quench with water or other diluents, or 

dump the contents into a vessel which contains a 

quench liquid programmed to be activated at a 

high pressure threshold. 

Limitation of 

Effects 

Design; ERP 

Issue clear and precise instructions for the 

operators to follow.  

ACP Safety 

Management  

Runaway 

reaction.  

 

Catastrophic: 

Reactor 

ruptured/exploded. 

Provide sufficient relief systems, such as a suitable 

vents and bursting disc/ relief valves to be used 

when the safe working pressure of the vessel is 

exceeded. 

Minimization 

of Failure; 

Design; 

Use a tank designed to withstand high pressures 

and temperatures.  

Flexibility Design 

Recognize abnormal conditions and execute 

appropriate actions. 

Early Detection; 

ACP 

Human 

ERP 

Safety 

Management 

 



 

 

 

2
8
 

Table 1. (Continued) 

Disturbance System state Measure Principle Contribution 

Factors 

Reactor 

ruptured.  

Catastrophic: 

Flammable 

material released. 

Design a suitable catch pot that can collect what is 

released and withstand the pressure of the 

discharge from the reaction vessel. 

Limitation of 

Effects  

Design 

Use a vent scrubber that is designed for treating 

atmospheric emissions in cases of high pressure in 

any catch tank that requires the release of products 

into the environment. 

Limitation of 

Effects 

Design 

Flammable 

material 

released.  

Catastrophic: Fire/ 

Explosion. 

Area and equipment are classified to prevent 

ignition sources 

Limitation of 

Effects 

Design 

Reduce ignition probability by ignition source 

control by restricted access and permit to work  

system 

ACP Safety 

Management 

Install a device, e.g., a water spray, to rapidly cool 

the space above the reactor, so the hot reaction 

products do not self-ignite after mixing with air 

and generate a secondary vapor cloud explosion. 

Limitation of 

Effects 

Design 

Emergency response actions by operation, deluge, 

water spray, and fire brigade 

ACP ERP 

Fire/ Explosion Catastrophic: 

Harm to people. 

Keep the number of people in the vicinity of the 

reactor to a minimum. 

Limitation of 

Effects; ACP 

Safety 

Management 
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3.4 Summary 

Analyzing transitions of system states revealed that resilience is characterized by 

multiple factors or measures. These measures work and interact together to improve the 

ability of chemical processes to bounce back. The principles of resilience were proposed 

to be Flexibility, Controllability, Early Detection, Minimization of Failure, Limitation of 

Effects, and Administrative Controls/ Procedures. These principles act as guidelines to 

help develop the multiple contribution factors for numerically evaluating resilience. The 

first-layer of factors that contribute to resilience was proposed to be Design Factor, 

Detection Potential factor, Emergency Response Planning factor, Human factor, and 

Safety Management factor. 

This section has investigated the resilience concepts in industrial process problems, 

and the roles of different factors to achieve resilience of different processes. In the 

ensuing sections, the scope of the remaining chapters of this dissertation is limited to 

develop and demonstrate the evaluation method for Design factor. The applicability of 

the multi-factor approach (Section 2.3 and 2.4) in evaluating the resilience of different 

chemical design alternatives will be provided. By just evaluating resilience Design 

index, a more resilient design can be achieved or elements to improve resilience of a 

design can be identified. 
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CHAPTER IV  

RESILIENCE DESIGN FACTOR 

 

In Chapter II, multi-level multi-factor approach was proposed to evaluate resilience of a 

chemical process quantitatively. According to this approach, process resilience index can 

be obtained with known indices of resilience contribution factors. Based on literature 

reviews and expert opinions, the specific factors contributing to process resilience 

developed and identified in Chapter III.  

Among five main contribution factors to resilience of a chemical process or plant, 

resilient Design factor is chosen to demonstrate the applicability of the multi-factor 

approach in evaluating resilience index in design aspect. This chapter is a further step in 

identifying sub-factors contributing to resilience of different design alternatives, and 

then developing the equation to calculate resilience Design index. 

4.1 Sub-factors of the Design factor 

A resilient design is a design that has the ability to deal effectively with disturbances. 

Factors that need to be considered include the structure of the design (e.g. how many 

reactors are to be used and of what type they should be, the addition or removal of a 

recycle or heat exchanger 
5
), the parameters (equipment sizing), and the control structure 

(what variables are to be measured, estimated, controlled or manipulated).  

To improve resilience, a process needs to be inherently safe, flexible, and 

controllable. A resilient design is overarching and integrates all of these issues to limit 

undesired consequences of disturbances.  

4.1.1 Controllability 

Controllability, one of resilience principles, is the ability of a system to achieve a target 

state by determining whether it can be controlled effectively, either by feed-back or by 

feed-forward.
25

 

A process should be controlled by the use of physical principles (i.e. the dynamics of 

the process should be favorable). If a process is difficult to control, one should look for 
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ways of changing the process or the principles of control before an investment in 

complex control system is made.  

Effective control is essential to minimize the hazards associated with particular 

reaction systems. Controllability can be attributed to the characteristics inherent in the 

system through the control structure (what variables are to be measured, estimated, 

controlled or manipulated). One problem there is how to select the appropriate set of 

manipulated variables to control a specified set of outputs via feedback.
5
  

The development of measures in the controllability index is also important for the 

synthesis of control structures. Controllability was also considered as dynamic resilience 

or as an attribute of resilience in the work of Morari.
5
  

4.1.2 Flexibility 

Flexibility, another resilience principle, is clearly one of the components needed to be 

considered or integrated in a process design to achieve resilience since it is related to the 

capability of a process to cope with varying conditions and to achieve feasible operation 

over a wide range of uncertain conditions (e.g. different feedstock, product 

specifications, and changes in process parameters). Flexibility was also considered as 

one of the attributes of resilience in the work of Morari.
5
 

4.1.3 Inherent safety 

Although we designed a flexible and controllable system which can withstand in a wide 

range of temperatures, pressures, and flow rates, there are still unexpected situations 

resulting a leak or rupture of a unit/ system or even a control system. For these types of 

problems, to be resilient, flexibility and controllability are not enough. In these 

scenarios, the ability of a plant/ unit to recover quickly may depend on another design 

aspect, inherent safety design. An inherently safer design is a more resilient design, 

because inherently safer designs are created to eliminate hazards and prevent incidents 

from occurring.  

Inherent safety can be considered a proactive approach to resilience because 

eliminating hazards eliminates the time and costs for recovery and restoration. A change 

in the plant design, such as a lower inventory of hazardous materials in the process, use 



32 

 

 

of safer materials, less hazardous processing conditions, or the use of a semi-batch plant 

rather than a batch plant, makes it possible for the plant to avoid or significantly reduced 

hazards and operating problems with fewer opportunities for error.  

Thus, the sub-factors of Design factor are Inherent Safety, Flexibility, and 

Controllability. In other words, a resilient design can be determined by these 3 elements 

(Figure 11). 

 

 

Figure 11. Contribution factors of resilient design. 

 

In qualitative viewpoints, Figure 11 means that a more inherent safety, controllable, 

and flexible design is a more resilient design.  

4.2 Resilience design index 

A quantitative measure of resilience which is useful for design studies and satisfactory to 

both the practicing design engineer and the academic theoretician does not appear to 

exist at present. In seeking to engineer resilience, after identifying the factors that 

contribute to resilience there is a clear need to consider how these factors may be 

measured. Without this measure, it will be virtually impossible to make rational 

decisions on the "best" design in today's complex economic and physical environment.
5
 

4.2.1 Quantitative formulation 

In quantitative viewpoints, Figure 11 means that resilience design index can be obtained 

if the inherent safety, controllability, and flexibility indices can be calculated. Hence, the 

 Resilient Design   

(IRD) 
 

 Flexibility 

(IF) 
 Inherent 

safety 
(IIS) 

Level 1 

Level 2 

 Controllability 

(IC) 
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Resilience Design Index (IRD) is calculated by Equation 2, where the Total Resilience 

Design Index is the sum of the Flexibility Index (IF), the Controllability Index (IC), and 

the Inherent Safety index (IIS).  

IRD = aIS * IIS + aF * IF + aC * IC  Eq. 2 

Where ai is the weighting factors 

This resilience design index aims to be applied in the early stage of a chemical 

process design to choose a more resilient design among different alternatives. Resilience 

design index is not designed to be extremely accurate and can give an indication of the 

level of resilience. In Equation 2, there is an assumption of the independence of all sub-

factors of Design factor. 

4.2.2 Weighting factors 

To represent the relative importance between the sub-indices of the RI, weighting factors 

are introduced in Equation 2. To obtain the weight of each attribute, Analytical 

Hierarchical Process (AHP) can be used.
34

 The main uniqueness of AHP is its inherent 

capability of weighting a great number of different nature factors. Although the purpose 

of this section is to identify the weighting of a few sub-factors of resilience design 

factor, the use of AHP is deemed suitable when considering its potential application for 

the overall resilience factor in the future. It is a multi-attribute evaluation method that is 

capable to extract the comments of experts and uses them as input to calculate the 

quantified weight of each attribute by pair-wise comparison with a nine-point scale. The 

advantages of pair-wise comparison are (1) it is systematic; (2) the results contain a 

greater degree of robustness since each factor is addressed (n-1) times in a set containing 

n factors; and (3) there is a way for consistency control.
35

 

Using Saaty’s AHP technique, the following steps need to be done to obtain the 

weights of contribution factors in Equation 2 after the hierarchy has been structured in 

Figure 11.  

� Construct a pair-wise comparison matrix by asking the experts a series of 

questions (Table 2) to compare each element or sub-factor against one another based on 

a 9-point scale using pair-wise comparison method to indicate their relative importance. 
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The measure of intensity of importance is determined by a scale of 1 as ‘equal 

importance’ to 9 as ‘absolute importance’. The selection of a number is done in 

accordance with the respondent’s experienced opinion depending on the problem at hand 

(i.e. type of process); the purpose and criteria of the process designers; and the company 

policy.  

 

 

Table 2. Questionnaire used to direct pair-wise comparison judgments 

With respect to the overall goal “contribution to resilience of a chemical design”, 

compare each of the following pair of the factors, and mark the place along the 

segment 

Q1. How important is Inherent Safer Design when it is compared to Flexibility? 

 

 

Q2. How important is Inherent Safer Design when it is compared to Controllability? 

 

 

Q3. How important is Flexibility when it is compared to Controllability? 

 

 

 

 

� Calculate the eigenvector of the comparison matrix. An element of the 

eigenvector is as follows:   

�� = 1� . � ��	∑ ��	���
�

	�  
Eq. 3 

Where eij = element located in row i and column j of the comparison matrix, and ekj = 

element located in row k of any normalized column j (i, j, k = 1, 2…n) 

Inherent  

Safety Design 
Controllability 

1 3 5 7 9 

Inherent  

Safety Design 
Flexibility 

1 3 5 7 9 

Flexibility Controllability 
1 3 5 7 9 
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� Obtain relative weights of the factors in Equation 2 with regard to resilience of a 

design. According to Saaty, their weighting factors are the eigenvectors of their 

comparison matrix.
34

 Hence, ai  = wi 

� Calculate the consistency ratio (CR) to measure the consistency of pair-wise 

comparisons since the responders sometimes make judgments inconsistently and 

discrepancies might occur between the results of the comparison. The CR is obtained by 

the following equation: 

CR = ���� 

Where RI is random consistency index provided by Saaty’s method 

 CI, consistency index, is identified by using the eigenvalue, λmax 

CI = ���� − �� − 1  

 Where n is the matrix size 

The CR is acceptable, if it does not exceed 0.10. If it is more, the judgment matrix is 

inconsistent.  

In the case the comments of multiple experts are obtained, there are two different 

mechanisms to evaluate a single weight for each factor: (1) compute the mean weight for 

each factor; (2) compute the “mean” comparison matrix, then compute the weights using 

the routine AHP technique described above. The latter is preferred due to its priority to 

direct expert assessments rather than to inferential assessments, and therefore reflects the 

expert’s judgment more authenticable.
35
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CHAPTER V  

INHERENT SAFETY INDEX 

 

5.1 Inherent safety concept 

Inherent safety approach uses basic design measures to achieve hazard elimination, 

prevention, and reduction.
36

 A plant considered as an inherently safe plant if its material 

and operating condition is harmless or its hazardous materials is in small inventory to 

cause no harm if released.  

However, in the real industry, there always exists large inventory of hazardous 

materials under dangerous operating conditions. It is more practical to think of inherent 

safer processes instead of inherent safe processes. Inherent safer processes carry less 

inherent risk as compared to conventional process.
36

 

5.2 Literature review 

The most widely applicable principles of inherent safety are minimization, substitution, 

moderation, and simplification firstly introduced by Kletz.
28

 These principles are also 

applied for this work, to evaluate an inherent safer design and then inherent safer index.  

Due to the benefits of inherent safer design to remove or reduce hazards, there have 

been several researches in developing a systematic methodology for the evaluation of 

inherent safety index. Some of those methodologies was based on other well-known 

indices such as Dow Fire and Explosion Index, Mond Index and do not attempt the 

aggregation of individual indices under a unique index.
37-39

 Several researchers did 

attempt to obtain an overall index for inherent safety assessment. Lawrence proposed the 

overall inherent safety index for a chemical synthesis route in 1996.
40

 Then, the index 

for chemical route selection was extended and applied for more overall inherent safety 

index for process synthesis by Heikkila.
41

 Khan et al. proposed a risk-based approach for 

inherent safety evaluation in 1998.
42

 In 2003, Gentile et al. proposed the fuzzy-based 

inherent safety index, which used fuzzy logic system to evaluate inherent safety index 

based on if-then rules.
43

 In 2005, Khan and Amyotte
36

 developed an integrated inherent 

safety index which used a structured guideword based approach. Abedi and Shahriari
44
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added some missing important criteria and the consideration of the interactions between 

different factors more explicitly on the basis of Heikkila’s study and Dow F&EI in 2005.  

The methods for assessing inherent safety of chemical processes vary in goal, scope, 

structure and the way the safety aspects are considered. Since the desired results of 

inherent safety evaluation in this research is a unique index. The following paragraphs 

review in detail the advantages and disadvantages of the inherent safety evaluation 

methodologies with the attempts to obtain an overall inherent safety index.  

The first method, Dow F&EI, was designed for identifying of contributed equipment 

in an incident for process or plant involved in processing, and handling flammable 

chemicals. Then, the Mond Index method is a modification of the Dow F&EI method. 

The risks and hazards of a chemical plant can be identified well by the Dow and Mond 

F&EI methods, but the aspects relevant to inherent safety were not evaluated.
44

 

Lawrence’s method was designed for identifying and selecting inherent safety chemical 

synthesis route, which is very reaction oriented and does not consider properly the other 

parts of inherent safety process. To fill the gaps of Lawrence’s method, Heikkila et al. 

proposed a method which considered many other aspects relevant to inherent safety 

process. Heikkila’s method was intended for evaluating inherent safety index of different 

process alternatives. This method is quite suitable for the early design stage of the 

process with low information requirements and subjective process. Some of the 

subjective factors in Heikkila’s method were later improved by Fuzzy logic based index 

developed by Gentile et al. However, this method becomes difficult to apply for the 

problems involving the evaluation of more than one linguistic variable at the same 

time.
44

 The integrated inherent safety index by Khan and Amyotte was identified based 

on hazard potential identification as well as economic evaluation. 

After reviewing the advantages and disadvantages of different methodologies, 

Heikkila’s model
41

 was considered as a basis methodology to evaluate inherent safety 

index in this work since the scope of this work is the same to that of Heikkila (which for 

comparison of two or several alternative processes with low information requirements). 

Heikkila’s method was a development of several common indices such as Dow F&EI, 
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Mond index, Lawrence’s index and based on the principles of inherent safety as well as 

well-accepted engineering knowledge.  

Heikkila’s method
41

 for process synthesis is reviewed in details as follows. The 

method was proposed in 1996..The objective of this index development was to be 

applied during preliminary process design. Heikkila’s index consists of chemical and 

process inherent safety indices. The chemical safety index contains several sub-indices 

of chemical interaction, flammability, explosiveness, and corrosiveness. The process 

inherent safety index has two sub-indices, process conditions including inventory, 

process temperature, process pressure and process system including process equipment, 

process structure. All of the sub-factors in Heikkila’s study are carefully selected based 

on well-accepted engineering knowledge. 

For each one of the selected sub-factors, a possible range of variation is selected and 

divided into several sub-ranges that receive a score between zero and six. The scores 

represent the positive or negative contribution on the inherent safety level. The higher 

the score is, the more hazardous the situation is. 

5.3 Proposed approach 

Figure 12 shows the hierarchical model which is applied to calculate ISI in this work. 

The selection of sub-factors of inherent safety factor was based on the studies by 

Heikkila with the consideration of an additional important criteria, process complexity, 

and the interactions between different factors more explicitly pointed out by Abedi.
44

 

This model is constructed based on a multi-level, multi-attribute approach.  

As Heikkila’s methods, in this model, the inherent safety index is also splited into 

two sub-indices related to material and process. The material index includes the 

inventory hazard index which used to be a sub-factor of process index in Heikkila’s 

method. This modification is performed due to the consideration of the interaction 

between IMH and IIH suggested by Abedi in which the material hazard index is 

compounded by the magnitude of the inventory index.
44

 The process index includes all 

the selected sub-factors in Heikkila’s method with the addition of the complexity index 

involving amount of equipment, number of DOFs, interactions requiring operator 
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invention and number of external disturbances. This complexity index is chosen based 

on the last principles of inherent safety, simplication, and was also suggested as one of 

inherent safety attributes by Abedi and Shsriari.
44

 The detail of this index will be 

discussed more in Section 5.4.2.  

 

 

 

Figure 12. Hierarchical model of Inherent Safety sub-index
44

 

 

 

 

With this evaluation model and its selected sub-factors, four widely inherent safety 

principles have been satisfied. The sub-factor of inventory which is the quantity of the 
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material present in the process has covered the first principle of minimization. If there is 

a fire, explosion, or tank rupture, small inventories are favorable. The sub-factor of 

material hazard including flammability, explosiveness, toxicity, corrosiveness and 

reactivity places an important role to fulfill the second principle, substitution. An 

inherent safer process or more resilient process is a process with less hazardous 

materials. The sub-factors of process condition and process reaction demonstrate the 

third inherent safety principle, moderation. The process condition including process 

temperature and pressure covers the fact that an inherent safer process carries out a 

reaction under less hazardous conditions, or storing or transporting a hazardous material 

in a less hazardous form. The process reaction demonstrates the hazard of the heat 

released by the reaction between materials existing in the process as well as their 

reactivity characteristics which are another moderation concern. An inherent safer 

process carries out a reaction with less heat released. The last principle is simplification. 

The important criterion is the level of complexity of a unit in a chemical process plant. 

When it is not possible to make plants safer by minimization, substitution, 

moderation, or simplification, there is a need to measure the possibility that a piece of 

equipment is unsafe which is demonstrated by process equipment sub-factor in Figure 

12. The selection of safer equipment alternatives is preferred since the type of equipment 

used in a process has an important role for the process safety. This sub-factor considers 

the safety of all major pieces of equipment such as pump and vessels etc. but not piping, 

valves as separate entities, and without interactions through the process with other 

equipment. The effects of those interactions to the safety of the process are reflected 

through the process structure and process complexity sub-factors. The process structure 

describes the inherent safety of the process configuration; in the other words, it describes 

how well certain unit operations and other process items work together in a total process 

perspective.
41

 The complexity factor describes how easy the process can be operated 

from human interaction perspective, and from the equipment / system and their 

interactions. Numbers of components (i.e. equipment), number of input and output 

streams, number of interaction, and number of external disturbances have been 
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considered in the complexity factor. From an operational perspective, other issues such 

as the degree of freedom (DOFs), the number of measurement readings are also assessed 

in the process complexity. It is understood that the operation is less complex when less 

degrees of freedom are available for the operator.
45

 

Since the scope of the quantitative section to obtain resilience index as well as 

inherent safety index is for different alternative process designs, the other issues such as 

process layout, onsite transportation are not considered in the calculation of inherent 

safety index in this work. 

The advantages of this method are well coverage of the risks and hazards as well as 

the aspects relevant to inherent safety existing on a chemical process, low information 

requirement which are suitable in the design stage.  

5.4 Inherent safety index and sub-indices assessment 

The IIS calculations are made on the basis of the worst situation. The approach of the 

worst case describes the most risky situation that can occur. A low index value 

represents an inherently safer process. In the calculations, the greatest sum of the 

flammability, explosiveness and toxic exposure sub-indices are used. For inventory, 

process temperature and pressure, the maximum expected values are used. The worst 

possible interaction between chemical substances or pieces of equipment and the worst 

process structure gives the values of these sub-indices. 

In general, the Inherent Safety index (IIS) is calculated by Equation 4, where the 

Total Inherent Safety index is the sum of the Material Index (IM) and the Process Index 

(IP). 

IIS = IM + IP Eq. 4 

These two indices are calculated for each design alternative and the results can be 

used to compare with each other if desired. The methodology to obtain each sub-index 

value is described in the ensuing sections in detail.  

 

Table 3. Inherent safety sub-indices and their score range.
41

 



42 

 

 

Sub-factors Symbol Score 

Flammability IFL 0-4 

Explosiveness IEX 0-4 

Toxicity ITOX 0-6 

Corrosiveness ICOR 0-2 

Inventory IIH 0-5 

Heat of main reaction IHMR 0-4 

Heat of side reaction IHSR 0-4 

Chemical interaction IINT 0-4 

Process temperature IT 0-4 

Process pressure IPR 0-4 

Process equipment IPE 0-4 

Process structure IPS 0-5 

Process complexity ICOX 0-5 

 

 

Another issue of multi-factor approach is the weighting between sub-indices of 

inherent safety index. In Heikkila’s method, the importance of the specific sub-index 

was reflected by the score ranges which were made on the basis of the expert judgment 

collected by Lawrence.
40

 And in this work, the scoring systems for calculating all 

inherent safety sub-indices (Table 3) are taken from Heikkila’s study.
41

 That means the 

weighting factors have been considered and integrated into the current work to calculate 

inherent safety index by using the scoring systems suggested by Heikkila. Basically, the   

minimum score for each sub-factor is set to zero, while the maximum scores are set in 

order to reflect the importance of the specific sub-index to the process safety. A wider 

range means greater impact for the overall safety evaluation. The most important factor 

on inherent safety are inventory and toxicity with the greatest score range. The one has 

lowest impact to inherent safety is corrosiveness with the score range of 0-2. The most 

other sub-indices had the score range of 0-4. The process structure is also considered as 
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an important factor with the maximum score of 5. The process complexity is a new 

factor which has not been introduced in Heikkila’s method. This factor demonstrates 

how the process’s is constituted and operated easily from the interactions of other 

process equipment together and from operational perspective. The number of potential 

errors increases when the number of connections increases.
45

 The importance of the 

process complexity is considered to be the same as the process structure resulting in its 

score range of 0-5. 

5.4.1 Material index 

The material index is based on the material, inventory, and reaction hazard indices in 

which the material hazard index is compounded by the magnitude of the inventory. 

Therefore, IM is calculated as the addition of reaction hazard index and the product of 

material hazard index and inventory hazard index (Equation 5).
44 

IM = IMH · IIH + IRH Eq. 5 

5.4.1.1 Material hazard index 

The Material Hazard Index is the greatest sum of flammability, explosiveness, toxic 

exposure, and corrosiveness sub-indices.
41 

IMH = (IFL + IEX + ITOX) max + ICOR, max Eq. 6 

The flammability index is identified based on the value of the flash point and the 

sub-ranges from nonflammable up to very flammable (i.e., flash point < 0
o
C and boiling 

point ≤ 35
o
C) 

The Explosiveness index is determined based on the difference between the upper 

and lower flammability limits and the sub-ranges from non-explosive up to the 

difference of UEL and LEL of 70-100vol%.  

The toxicity index is evaluated based on the Threshold Limit Values (TLV) and the 

sub-ranges between lowest toxicity (TLV >10000 ppm) up to really toxicity (TLV ≤ 0.1 

ppm).  

The corrosiveness index is found out on the basis of the required construction 

material. The lowest score of ICOR is for carbon steel, and the highest one is for needed 

material better than stainless steel. 
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5.4.1.2 Inventory hazard index 

The score for the evaluation of inventory index is based on the sub-ranges of process 

vessels from volumes between 0-1 ton up to volumes larger than 1,000 ton. The mass 

flows and residence time in the process are used to estimate the inventory of each design 

alternative.
41

  

5.4.1.3 Process reaction index 

It is important to know how exothermic the reaction is. Hence, the process reaction 

index consists of both the maximum values of indices for the heat of the main and side 

reactions, and the maximum value of chemical interactions, which describes the 

unintended reactions between chemical substances present in the process area studied  

IRH = IHMR, max + IHSR, max + IINT, max Eq. 7 

The values of indices for the heat of main and side reactions are assigned based on 

the heat of reaction and its sub-ranges from endothermic or thermally neutral reactions 

with heat of reaction ≤ 200 J/g up to extremely exothermic reactions with heat 

generation ≥ 3,000 J/g. If there are several main reactions (in a series reaction) or side 

reaction, these indices is determined on the basis of the greatest heat release.
41 

The interaction hazard index evaluated the hazard associated with the consequences 

of chemical incompatibility among chemical substances. It is assumed that fire and 

explosions are most hazardous consequences of an interaction with the score 4.  

5.4.2 Process index 

5.4.2.1 Process condition index 

The process condition index is the sum of process temperature and pressure sub-

indices.
41

  

IPC = (IT + IPR) max Eq. 8 

The process temperature index is identified based on the maximum temperature in 

the process area under investigation and the sub-ranges from the harmless range to 

people of 0-70 
o
C up to the range of larger than 600 

o
C. The temperatures below 0

o
C are 

also considered as a hazard with the assigned IT of 1 due to mechanical problems and 

freezing.   
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The process pressure index is determined based on the maximum pressure in the 

process area under normal operation and the sub-ranges from the lowest range of 0.5-5 

bar for the score of 0 up to 200-1000 bar for the score of 4.   

5.4.2.2 Process equipment index 

This index is assigned based on the score system developed from engineering practice 

and recommendations on layout recommendations, and quantitative accident and failure 

data by Heikkila. Furnaces and fired heaters which have the highest impact to safety of 

the process receive the score of 4, while the equipment that handle nontoxic and 

nonflammable chemicals receive the score of 0. The process equipment index is 

determined on the basis of worst case of different equipment in the process under 

investigation.
41 

5.4.2.3 Process structure index 

The process structure index is evaluated based on the scoring system involving incident 

reports and database, sound engineering practice, accepted engineering standards as well 

as expert knowledge suggested by Heikkila. Basically, this sub-factor falls into one of 

six following groups of equipment and systems. The first group for process and 

equipment solutions recommended by safety standards has the score of 0. Process cases 

selected with basis in sound engineering practice and known reliable are in the second 

group with the score of 1. The third group for the process cases that lacks information 

regarding hazardous operation receives the score of 2. The fourth group receives the 

score of 3 and is for the configurations which are probably questionable on the basis of 

safety even accidents have not occurs yet. The fifth and sixth groups are for the process 

cases with documented minor or major incident respectively.
41

  

While the scoring system is ready, the problem is to identify which group the 

investigation process belongs. With no explicit way, one has to depend on experience 

based data such as incident reports and databases, engineering standards and practice. 

And when problem solving is based on experience which is difficult to define as explicit 

rule, it is possible to apply case-based reasoning (CBR). CBR is a methodology which 

uses directly solutions of old problems to solve new problems.  
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Using this CBR approach, incident reports and databases are analyzed, the process 

cases which are similar to the investigation process in any levels (process, sub-process, 

system, subsystem, equipment, and detail) are retrieved and serve as case-bases to 

compare with the investigation process. Input data using retrieval parameters such as raw 

material, product, reaction type etc. 

The process structure index is determined on the basis of worst case of different 

levels of reasoning.  

5.4.2.4 Process complexity index 

While the process structure index demonstrates which process configurations and 

operations are safe from system engineering point of view on the basis of experience 

based data such as incident reports and databases, engineering standards and practice, 

the process complexity index describes how easy process items work together, how they 

should be connected and controlled together from an operational perspective on the basis 

of process characteristic itself. All the interconnections among different equipment, a 

source for disturbance and interaction, are added to the process complexity. The process 

structure and complexity index seem overlapped, but actually they are different. The 

latter one helps to evaluate new process which does not has experience based data and 

therefore could not evaluate in the process structure index.  

A system is complex when it has many interacting elements of a variety of kinds, in 

such a way that no evidence can be found of the characteristics of single elements in the 

overall result.
46

 The number of components in the technical system,  number of 

connections between the components of the system, number of common modes,  and 

type of component and the connections can affect the process complexity level.
46

 For a 

design or unit in a chemical process, the amount of equipment is an important factor 

indicating the level of complexity in a system. The number of input and output streams 

becomes important when the interaction of different equipment is assessed. Fewer 

degrees of freedom (DOFs) result in more simplified operation, which in practice is 

realized by the introduction of automation (less opportunity for human error).
45
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To evaluate the complexity of a chemical process, Koolen
45

 has suggested a 

complexity value as a function of complexity factors including amount of equipment 

accessible by the operator (M), number of degrees of freedom (DOFs) (S), number of 

measurement readings (O), number of input and output streams including energy streams 

(P), interactions in the process requiring operator intervention (Q), and number of 

external disturbances (for the unit) requiring action from an operator (R). A summation 

of complexity factors with their weighting factors obtains the following formula:  

Complexity value (COX)= m·M+ s·S + o·O + p·P + q·Q + r·R Eq. 9 

where m, s, o, p, q, r are the weighting factors per item. 

Equation 9 is simplified by using 1 as the weighting factor for all terms in this work. 

Thus, the complexity value is now calculated by the following equation:  

Complexity value (COX) = M+ S + O + P + Q + R Eq. 10 

Finally, to obtain a complexity index from the complexity value, a scoring method is 

proposed in this work. This method requires at least two processes for the inherent safety 

or resilience evaluations. Due to the score range of the process complexity index of 0 to 

5 (lower is better), the highest complexity index which is a value of 5 is assigned to the 

highest complexity value. Then, the process complexity index is determined based on 

the scoring system in Table 4. 

After all sub-indices have been identified, the inherent safety index (IIS) can be 

obtained by Equation 4. Then, the inherent safety index of the process k is normalized 

for resilience evaluation as: 

���� =  (���)� ∙ 10114  
Eq. 11 

The factor 10 is involved to normalize the index range from 0 to 10 so that it is 

evaluated at the same scale to the other factors. The factor 114 is appeared in the 

normalized equation since it is the maximum value of IIS which is corresponding to the 

score of 10. 

 

 

 



48 

 

 

Table 4. Determination of the process complexity index ICOX 

Process complexity value (COX) Score of ICOX 

1 − #$%&'()* + 0 

,�-.���6 0 − ,�-.���3 0 
1 

,�-.���3 0 − ,�-.���2 0 
2 

,�-.���2 0 − ,2 �-.���3 0 
3 

,2 �-.���3 0 − ,5 �-.���6 0 
4 

,5 �-.���6 0 − (�-.���) 
5 
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CHAPTER VI  

CONTROLLABILITY INDEX 

In this chapter, an approach to controllability assessment is developed, based on well-

established theory of process control. Under impacts of disturbance, it is desired to 

bounce back the changes by keeping operating conditions at the previous state or at a 

new steady state. The controllability index measures the ability of the process to obtain 

desired operating conditions using control systems. 

6.1 Controllability concept 

Process control has been developed to become an indispensable part of process operation 

for a long time. Some plants have better “built-in” disturbance rejection capabilities than 

others, that is, their controllability with respect to disturbance rejection is better. 

There have been two research areas of controllability: steady–state and dynamic 

control. This work of resilient evaluation is based on steady-state controllability concept. 

Controllability is referred to as an ability of a chemical process to achieve acceptable 

control performance in which the controlled variables (outputs) can steadily reach target 

values by manipulating other variables when disturbance (inputs) occurs. 

 

 

 

 

 

 

 

 

Figure 13. Controllability concept 
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Figure 13 depicts those changes to demonstrate the controllability concept. Suppose 

impacts results in unexpected input deviates from set point with respect to time, 

operators are allowed to tune controllers to cope with the input changes. In general, both 

the inputs and outputs are objects of the control systems such as temperature, pressure, 

and flowrate of process and utility streams. If the outputs can be easily controlled to 

reach target points, the process controllability is considered high (i.e., good). Although 

time t involves, the controllability in this work considers how easy the outputs can be 

steady at desired targets (steady-state control), rather than investigate how long the 

transition can be done (dynamic-control). 

In literature of process system engineering, various controllability definitions and 

expressions have been suggested. For example, some of them are: 

� Controllability was defined as an ability of the process to achieve and maintain 

the desired equilibrium values by Ziegler and Nichols  in the 1940’s.
47

 

� Controllability was referred to as “state controllability” to address the capability 

of a system changing from a given initial state to an arbitrary final state within 

finite time by Kalman in the 1960’s.
26

 

� A more general definition of controllability as the possibility of a system to 

achieve the specified aims of control was introduced by Rosenbrock in1970.
25

In 

the other words, the system is more or less controllable according to the ease or 

difficulty of exerting control. 

� Controllability also introduced under the term dynamic resilience to address the 

input-output controllability of the process without any confusion with state 

controllability.
9
 A drawback with the name “dynamic resilience” is that it does 

not reflect its relation to control.
48

 

� Controllability was mentioned as “input-output controllability” to address the 

ability to achieve acceptable control performance in which the controlled outputs 

and manipulated inputs are kept within specified bounds from their setpoints 

under any uncertainties by Skogestad and Postlethwaite. 
26
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Compared to those definitions, controllability concept in this work is similar to some 

extents. However, the purpose of evaluating controllability for resilience assessment in 

this work is unique. 

6.2 Literature review 

Controllability analysis plays an important role in integrated approaches to design and 

control dynamical systems.
49

 There are two types of controllability evaluation methods. 

One type is based upon linear model analysis, whereas another type needs physical 

chemical insights and thus provides nonlinear information. To evaluate the 

controllability in process design stage, a common controllability analysis is based on 

steady-state consideration or linear model analysis.  By steady-state consideration, one 

can cut through to the essence of some very complex problems and solve them in a 

simple and straightforward manner. The possibility of this method in assessing how easy 

a plant is controlled has been proved in some research.
8,26,50,51

 

There exist several available tools for evaluating linear controllability, including 

right half plane (RHP)-zeros and time delays, RHP-poles, partial disturbance sensitivity, 

relative order and phase lag, disturbance sensitivity, relative gain array, singular value 

analysis and condition number. A review of those tools was done by Wolff et al.
8
 Morari 

and coworkers made significant contribution to this research area with the following 

work: the effect of RHP zeros on dynamic resilience,
52,53

 the effect of dead time on 

dynamic resilience,
54

 the effect of model uncertainty on dynamic resilience,
55

 and the 

relations of pole direction to state controllability.  

In this section, the review is focused on theories of some methods for evaluating 

controllability including relative gain array (RGA), singular value analysis, and 

condition number. These methods are commonly used tools in controllability analysis 

and are the basis of the proposed approach in this work. 

6.2.1 Relative gain array analysis 

Control systems are preferably designed in pairs of controlled variables and manipulated 

variable either in feed-back or feed-forward configurations such that those pairs are 

independent and the relationship of each pair is as less nonlinear as possible. However, 
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the interaction between them is unavoidable because of dependency characteristics of 

process flows. The interaction levels relate to how easy the process is controlled. 

Therefore, interaction analysis is an important way to perform control analysis. 

Among available techniques, Relative Gain Array (RGA) is well developed for 

interaction analysis. It requires little effort in its application but can yield a great deal of 

very useful and practical information.
50

 The relative gain which was first introduced by 

Bristol
56

 is one of the most widespread techniques to appear in the process control 

literature.
50

 One important advantage of the RGA is that it is independent of input and 

output scaling.
27,57

 

Bristol’s relative gain is a systematic approach to the analysis of multivariable 

process control problems. Consider a process of multivariable control systems with n 

manipulated variables (inputs) and n controlled variables (outputs). The ij
th 

element of 

RGA is defined as the ratio of the open loop gain from input j to output i when all other 

loops are open and the closed loop gain from input j to output i when all other loops are 

perfectly controlled.
27,50,58

 

The numerator is a partial derivative with all the manipulated variables held constant 

except xj. The denominator is evaluated with all of the control variables held constant 

except yi. The values of λij provides two important pieces of information:
58

 

� A measure of process interactions. 

� A selection criteria for the most effective pairing of controlled and manipulated 

variables. 

Based on the equation above, relative gain elements (
ijλ )can be quantified by 

calculating all the partial derivatives for all possible pairings. However, a more 

convenient way is to derive from evaluation of process open-loop gain matrix K which is 

defined as 

( )
( ) )(

)(

loopclosedgain

loopopengain

xy

xy

yji

xji

ij
−

−
=

∂∂

∂∂
=λ  

Eq. 12 

y = K · x Eq. 13 
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It was proved that RGA element (λij) is equal to multiplication of the open-loop gain 

matrix element (Kij) and the corresponding element 4�	5�6
 of the inverse transpose matrix 

of the gain matrix.
56

 

To calculate Kij, Nisenfeld and Schultz
59

 proposed an approach based on on-line test. 

Measurement is performed with an assumption that perfect steady-state operation is 

achieved. Only one controlled variable yi of loop i is allowed to change at a time by 

manipulating all variables xj. This measurement is repeated for every loop i. Then the 

gain matrix can be calculated from this relationship: 

Another way is to employ a simulation model. For a multivariable process, a step 

change (∆xj) is set for the input while holding all other input j' ≠ j constant. The resulting 

changes in the controlled variables (∆yi) are recorded. From this information the gain 

matrix element Kij can be obtained by the formula:
26

 

The latter approach can be performed at design stage using simulation model of the 

design while the former operation of existing plant. For this reason, the proposed 

approach will use the idea of the latter one. 

The overall recommendation from RGA analysis is to pair the controlled and 

manipulated variables so that corresponding relative gains are positive and as close to 

one as possible. From the RGA analysis, a decision in pairing the controlled and 

manipulated variables can be made. Particularly, RGA values can fall into five following 

ranges: 

� ��	 = 1.The closed-loop and open-loop gains between yi and xj are identical. So, 

yi and xj should be paired. 

� ��	 = 0. It indicates that xj has no effect on yi and they need not be paired. 

��	 = 4�	 ∙ 4�	5�6
 Eq. 14 

4�	5� =  7∆9�∆:	;<�5=��> ?>@? 
Eq. 15 

4�	 =  7∆9�∆:	;@��A=�?�<� 
Eq. 16 
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� 0 < ��	 < 1. The closed-loop gain is larger than the open-loop gain. Within this 

range, the interaction between the two loops is greater when ��	 = 0.5. 

� ��	 > 1. The pairings with positive RGA-values and closer to one are favorable. 

Plants with large RGA-values are difficult to control.
8
 

� ��	 < 0. This is a case in which the open-loop and closed-loop gains between yi 

and xj have opposite signs. The closed-loop system may become unstable. Hence, 

yi and xj should not be paired 

For the evaluation of resilience, there is a need to represent the controllability in one 

scalar. Hence, condition number which can be derived from K will be used. The 

condition number is calculated via ensuing singular value analysis (SVA). 

6.2.2 Singular value analysis 

One important property of process gain matrix K is its singular values which are 

nonnegative numbers. SVA can be used to analyze the robustness of a control system 

and to determine the best multi-loop control configuration.
26

 A procedure to calculate 

SVA of the gain matrix K is as follows. 

Consider a process model:  y = K · x 

Singular values of K are the positive square roots of the eigenvalues of the matrix 

product K 
T
K. To determine the singular values, K matrix is decomposed.

58
 

K = W ∑ V 
T
 

where W and V are unitary matrices: WW 
T
 = I; and VV 

T
 = I 

          ∑ is the diagonal matrix of singular values;  

 

 ∑  =  DE 00 0F       where 

 

         σ1, σ2… σr are called the singular values of K 

Nowadays, using computer software such as MATLAB, singular values of K can be 

easily computed. The meaning of singular value comes from its condition number which 

is discussed in the next section. 
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6.2.3 Condition numbers 

Condition number of a matrix provides information on sensitivity of the matrix 

properties to the changes of its element values. Condition number is therefore a measure 

of interaction analysis.
26

 To be able to evaluate controllability in one single number as 

early as in design stage, condition number is definitely a suitable measure. 

The condition number is determined from the singular values decomposition of the 

steady – state gain matrix which is the ratio of the largest and smallest nonzero singular 

values:
27,58

 

�G =  H�HI Eq. 17 

where σ1 is the largest and σr is the smallest singular values 

One disadvantage of the condition number (as well as SVA) derived from gain 

matrix is that it dependent of input and output scaling. It is essential to eliminate this 

dependency when it comes to evaluate and compare resilience of more than one process. 

From condition number the controllability of the system is evaluated on how well 

controllable the system is. A system with a small condition number will be more 

controllable than a system with a higher condition number. A large condition number 

indicates an ill-conditioned plant which is believed to be too sensitive to disturbance. 

Plants with a larger condition number are more likely to be more sensitive to 

disturbances, and this result in a poorer resilience performance.
51

 

6.3 Problem statement 

Given process designs with simplified control systems, it is desired to develop an index 

that can indicate how effective the control is. This index is called controllability index of 

the resilience evaluation. 

Because the evaluation is preferred at design stage and there is no plant available for 

testing, simulation software is an integral tool. However, it does not mean the approach 

is not applicable during operation stage where more information about the process is 

available. 

For the purpose of resilience comparison, the controllability index must be 

independent on scaling or unit of measurement. In addition, it can be normalized to a 
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scale that is equal to other Design sub-factors (Inherent Safety and Flexibility) to 

calculate the Resilience index. 

6.4 Proposed approach 

In this section, an approach is developed to address the controllability aspect for the 

resilience evaluation of the plant. The reviewed process control theories are the basis to 

develop an index for quantifying how good the control performance is to bounce back 

effect of disturbances on operating conditions. The key of the proposed approach is to 

combine advantage of scaling independence found in relative gain array and the 

convenient simplification of the condition number. It is important that these tools are 

also independent of the controller in order to reflect the control performance limitations 

of the plant. 

6.4.1 Controllability evaluation 

Although there exist several available tools for evaluating linear controllability
8
, new 

approach to assess controllability needs to be developed in this work based on two 

reasons. First, controllability index is parameter scalar, which is satisfied using condition 

number. Second, it is crucial that the variables of being scaling-independent to make the 

comparison in controllable aspects of different alternatives. RGA with its main 

application of best pairing controlled variables with manipulated variables is 

independent with scale; but it does not meet the first criterion. On the other hand, the 

condition number which derived from gain matrix and its singular values satisfy the first 

criterion only. 

The proposed methodology is structured around a newly define term relative gain 

matrix, different from relative gain array and gain matrix to describe the relationship 

between input and output change. Next, a procedure called Singular Value Analysis is 

applied to determine minimum singular value, maximum singular value. Then, a 

measure of controllability called Condition Number (CN) is obtained for each design. 

Condition numbers indicate more-resilient design in terms of controllability among 

alternatives. 
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6.4.1.1 Definition of proposed relative gain matrix 

To avoid the scaling dependence, the controlled variables and manipulated variables are 

given in dimensionless form  

J� = 9� − 9�,L9�,L  

.	 = :	 − :	,L:	,L  

Eq. 18 

 

Where xj,0 is the steady-state or optimized values of the manipulated variable xj 

     yi,0 is the steady-state or optimized values of the controlled variable yi 

     xj is the changed/ new values of the manipulated variable xj 

     yi is the values of the controlled variable yi with respect to xi obtained while 

holding all other manipulated constant. 

Assume one is dealing with a process with a (multivariable) n-loop control system. 

The input-output relation to address the effect of relative change in manipulated 

variables on relative change of controlled variables can be expressed as 

Y = K·X Eq. 19 

Where Y is an n-element vector of relative change of controlled variables, X is an n-

element vector of relative change of manipulated variables 

M =  
NO
OO
PJ�JQJR…J�TU

UU
V
 ,  W =  

NO
OO
P.�.Q.R….�TU

UU
V
 

K is the n × n relative gain matrix (not relative gain array – RGA – which is 

commonly found in the literature) to address the gain between relative values of Y and X 

X = Y4�� ⋯ 4��⋮ ⋱ ⋮4�� ⋯ 4]]
^ 

6.4.1.2 Determination of relative gain matrix K 

The simulation approach is employed to calculate matrix K. A steady-state model needs 

to be built in simulation software (e.g., Aspen Plus). The simulation model considers all 

mass and energy balances. In the simulation, unit specifications are set up in such a way 
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that control loop is opened. For example, in a heat exchanger heat duty is specified 

instead of process stream outlet temperature. With this way, the outlet temperature is 

calculated accordingly whenever the inlet temperature changes, due to interaction. This 

steady-state scenario is referred to as a base case (Xi0; Yi0).  

Suppose the control loops are paired so that controlled variable Yi is primarily 

controlled with manipulated variable Xj. A step change of only manipulated variable Xj is 

made for loop j while all other manipulated variables are kept constant. The values of 

controlled variables are calculated and recorded from the simulation results. For this 

scenario, the measure is obtained as follows: 

M =  
NO
OO
OO
PΔJ�ΔJQΔJR ⋮ ΔJ�TU

UU
UU
V
 ,  W =  

NO
OO
OO
P 00⋮∆.	⋮00 TU

UU
UU
V
 

Because Y = K · X, a column of the matrix K is calculated: 

NO
OO
OO
OPΔJ�/∆.	ΔJQ/∆.	ΔJR/∆.	

⋮
ΔJ�/∆&a TU

UU
UU
UV

=
NO
OO
OO
OP4�	4Q	4R	

⋮
4�	TU

UU
UU
UV
 

The step changes are repeated for every loop j, then the whole matrix K is derived: 

4�	 = ∆J�∆.	 

If step changes are performed with various levels (e.g., ±0.1%; ±0.2%; ±0.5%…), 

then sensitivity of controllability measure to disturbance impact can be obtained. 

The proposed measure has several important properties: 

� Relative gain matrix takes into account of the interaction of multivariable in 

control system 
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� Relative gain matrix is dimensionless and thus not affected by choice of units or 

scaling of variables 

� Relative gain matrix can be easily and straightforward calculated using 

simulation sensitivity analysis tool. Thus, it requires little effort in its application 

and can yield a great deal of very useful, practical information. Other interaction 

methods require detailed, dynamic models which in turn require a large effort 

6.4.2 Controllability index evaluation algorithm 

This work evaluates steady-state controllability via an analysis of the relative gain 

matrix.  The proposed steps to calculate the controllability index are described in Figure 

14. 

 

 

 

Figure 14. Algorithm to assess the controllability index 

 

 

Simulation of  base cases

Disturbance analysis (sensitivity analysis)

Calculation of relative gain matrix K

Calculation of singular value of the relative gain matrix

Calculation of condition number of the relative gain matrix

Calculation of controllability index
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First, the calculation procedure starts with the simulation of base cases in a process 

simulator (e.g. Aspen Plus, Pro/II, Hysis, etc.). From the simulation, mass balance, 

energy balance, and operating conditions (temperature, pressure, flow rate, 

concentration) are determined. Optimization has been performed to minimize or 

maximize the objective function (e.g. cost) subject to a number of restrictions (called 

constraint) when needed. Then, the “best” scenario with (Yi0; Xjo) from among the set of 

candidate solutions is assigned the base case. 

Second, sensitivity analysis tool of the software is used to simulate interaction by 

changing the values of one manipulated variable (Xj) at a time in small ranges and 

recording the values of other variables (Yi). Only variables of the evaluated control 

systems (including controlled variables and manipulated variables) need to be tracked. 

Third, relative gain matrices K of the control systems are obtained from the 

sensitivity analysis by the following expression. 

4�	 =  (J� − J�L)/J�L(.	 − .	L)/.	< 
Eq. 20 

 

where Kij = element of the i
th

 row and the j
th

 column of the matrix, or the ratio of the 

relative change of controlled variable i to that of manipulated variable j. 

 Yi, Yi0 are dimensionless controlled variables   

 Xj, Xj0 are dimensionless manipulated variables. 

The gain matrix indicated the interaction of the control loops. In this research, 

multivariable control systems are analyzed at a plant-wide level (i.e. not limited to every 

equipment boundary). However, not all of the control loops are analyzed. Pairs of 

controlled and manipulated variables that have a fast response were neglected to 

simplify the interaction analysis. The exclusion of such control loops does not affect the 

conclusion of the controllability evaluation.
50

 In the simulation, the fast-response control 

loops are closed loops and excluded from the controllability analysis while the others 

involved in the relative gain matrix calculation are open loops. 
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Fourth, singular values of the gain matrix are calculated. For practical cases with a 

large number of controlled and manipulated variables, numerical computing software 

(e.g. MATLAB, Maple) can be used for the quick and accurate calculation.  

Next, the condition number of the gain matrix is derived from the maximum and 

minimum of the found singular values using the definition:  

�G = bc:defe Ed�gfhci jchf�bd�defe Ed�gfhci jchf�  
Eq. 21 

Finally, to obtain a controllability index from the condition numbers, a novel scoring 

method is proposed in this work. This method requires at least two processes from the 

resilience evaluations or a standard condition number of a known process for 

comparison. The controllability index, on a scale of 0 to 10 (lower is better), assigned 

the averaged value of the condition numbers CN a value of 5. Considering N condition 

numbers from N processes, the averaged condition number is defined as: 

�G = ∑ �G�]�G  
Eq. 22 

where CNk is the condition number of process k  

A system with a smaller condition number is considered more controllable and 

therefore more resilient. Using a linear scale, the scoring of the controllability index (IC) 

of process k is defined as: 

(�k)� = l10 7 �G�2 ∙ �G;              mni �G� ≤ 2�G
10                               mni �G� > 2�Gp Eq. 23 
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CHAPTER VII  

FLEXIBILITY INDEX 

In this chapter, an approach is developed to measure the ability of a process to 

accommodate impacts. In other words, this chapter evaluates the ability to bounce back 

and keep production online under operation disturbance. 

7.1 Flexibility concept 

There are several different viewpoints of flexibility definitions in different problems 

(e.g., dynamics, steady state, uncertainty design). In this work of resilient evaluation, 

flexibility is referred to as an ability of a chemical plant to satisfy all performance 

specifications and safety criteria while unwelcomed variations of operations occurs due 

to external impacts. The performance specifications are, for example, product 

concentration, production rate, temperature and pressure of output streams. Safety 

criteria are requirements to avoid hazards of equipment failure; for example, operating 

conditions must not exceed design temperature and pressure to avoid mechanical failure 

(crack, leak, and rupture) and potential run-away reactions.  

Figure 15 demonstrates the flexibility concept. Suppose impacts results in input 

changes to a process within a defined range, operators are allowed to tune controllers to 

cope with the input changes. Inputs can be temperature, pressure, flowrate of certain 

process streams and/or utility streams. The outputs are the performance specifications 

and safety criteria. If the output variation stays in desired ranges, the process is 

considered flexible.  

In process system engineering, flexibility has been usually arisen in context of 

process design with uncertainty. For example, some of the flexibility definitions are: 

� Flexibility is an ability of a design to operate at a wide range of operating 

conditions and parameter variations while satisfying product quality and 

quantity.
5
 

� Flexibility of chemical plants is an ability to achieve feasible operation over a 

given range of uncertain variations of external and internal parameters.
60
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Figure 15. Flexibility concept 

 

 

Compared to the definitions of those pioneers, flexibility concept in this work has 

implementation. This work is oriented to process safety. It additionally investigates the 

ability of the process to operate under impacts of safety-related issues such as leak, spill, 

and rupture which may result in loss of stream or utility flow rates. Those types of 

impacts have never been mentioned in literature. Pistikopoulos
61

 categorized impacts (in 

term of uncertainty sources) into four types: model-inherent, process-inherent, external, 

and discrete uncertainties. The safety-related impacts do not perfectly fall into any of 

those categories; therefore, they can be referred to as another category. 

7.2 Literature review 

Flexibility levels of a process design have been quantified in a scalar called 

flexibility index. There are many definitions and determination methods for flexibility 

index. The three approaches of Morari and Grossmann’s groups are systematic and 

commonly cited on the literature. They are best described in graphs of impact 

(uncertainty) space. 

Morari
5
 proposed an index to evaluate flexibility of design of heat exchanger 

networks. The author defined resilient processes as those which satisfy all physical 

constraints (nonnegative exchanger loads) and performance specifications (target T, P, 

product specifications, etc.) for every value of the uncertain variables in the uncertain 

range despite undesired changes to the process (e.g. environmental disturbances in 

supply temperatures, fouling of heat transfer surfaces). Although the author used the 

Input of T, P, F, …

Undesired input change
in expected ranges

Output

Output within 
required ranges

Tune 
controllers
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term “resilience,” that work was actually referred to flexibility aspect. Developed from 

this definition, the index was characterized in some sense of the largest disturbance that 

the network can tolerate without becoming infeasible. In the space of impact variables 

(θ) in Figure 16, the round envelop is an actual flexibility region that cannot be 

determined explicitly. Inside this envelops, all physical constraints and specifications are 

satisfied. The rectangles are varying ranges of the impacts. The flexibility index is 

characterized as the largest rectangle inside the flexibility region. It is a function of the 

distance S between vertex of rectangle and boundary of the region.
6
 

 

 

 

Figure 16. Flexibility index of Saboo and Morari
6
 

 

 

As for the second approach, Swaney and Grossmann
62

 scaled down the investigated 

rectangle range of impact variables (the largest rectangle in Figure 17) until it inscribes 

the flexibility region and at least one of the vertices lies on the flexibility boundary (the 

smaller rectangle in Figure 17). The scaling is based on a fixed nominal point (A) which 

usually corresponds to a base-case operating condition. The flexibility index was defined 

as a ratio between the sides of inscribing rectangle and original rectangle, i.e., the ratio 

of AB/AC. This approach is the basis for the method developed in this work.   

S 

θ1 

θ2 
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In the two previous approaches, the values of impact variables must be given in 

continuous ranges. If they are described in discrete sets, stochastic flexibility index is 

more suitable for those cases. Stochastic flexibility was defined as the probability that 

operation is feasible.
63

 It was quantified by a ratio between the areas of flexibility part 

(the shaded area in Figure 18) and the rectangle of investigated region of impact variable 

values. The rectangle is derived from the upper and lower bounds of the impact values. 

 

 

 

Figure 17. Flexibility index of Swaney and Grossmann
62

 

 

 

 

Figure 18. Stochastic flexibility index
64
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Although their methods are systematic approaches, there are still some limitations. 

They are practically good for a small part of a chemical process (e.g., heat exchanger 

network, reactor unit) but not a whole plant because of the requirement of all process-

modeling equations and the increasing computing costs exponentially with number of 

external impacts. Also, safety related issues were out of their scopes.  

Therefore, a new method is needed for the resilience evaluation problem that 

involves the whole process with a large number of physical constraints. In this research, 

a new approach is proposed to develop based on the integration work of Grossmann with 

a powerful aid of process simulator software (e.g., Aspen Plus). 

7.3 Problem statement 

In a design stage of a process, design parameters such as equipment sizes and process 

structure are to be determined. In a follow-up operation stage, those design parameters 

are not changed (unless the process is retrofitted) because the process is already built. 

Only control parameters such as stream flow rates, temperature, and pressure are 

allowed to change to achieve production objective. The common problem with 

flexibility design in the literature is how to determine the design parameters in the design 

stage under uncertainty of inputs such that the operation is optimum (e.g., profit is 

maximized). 

Different from flexibility design, the objective of this chapter is to develop a method 

to evaluate flexibility of a given design (flexibility analysis). The problem is stated as 

follows: 

A design of a chemical process (d) is given. That means, equipment sizes and 

process structure are known and unchanged. 

Control variables (z) are allowed to vary in given bounded ranges. Flow rate, 

temperature, and pressure are considered control variable because they can be varied to 

control the process. They can be tuned by certain means. For example, flow rates are 

adjusted by control valves; pressure is controlled by throttle valves, pumps, compressors; 

temperatures are controlled using heat exchangers. Flow rates can be changed by 
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adjusting openings of valves; and state variables (temperature and pressures) can be 

indirectly controlled through operating valves.  

These changeable variables are degrees of freedom to accommodate the process with 

unexpected changes of external impacts, such as: environmental conditions, leaks, 

ruptures. Ranges of the impacts are expressed in terms of process flow rates, 

temperatures, and pressures. For example, rupture is described by a zero flow in the 

ruptured pipe. 

The process is flexible when it can be kept in operation under effects of the impacts 

while all the performance specifications and safety criteria are met. The problem is to 

quantify the flexibility of the design in form of one scalar index which is a function of 

ranges of external impacts that the process can tolerate 

7.4 Proposed approach 

7.4.1 Theory 

The following theory is based on the work of Swaney and Grossmann.
62

 A simple 

calculation algorithm will be proposed in the next section. However, the theory behind 

the algorithm is complicated with some assumptions. 

In mathematic view point, the process is described by sets of constraints: 

� Physical constraints :  

 

� Specifications:  

 

Physical constraints are shown in Equation 24, for example, mass and energy 

balance, phase equilibrium, kinetics equations, and so on. Specifications have two types: 

product specifications (e.g., optimum concentration, production rates) and safety criteria 

to avoid safety-related issues such as run-away reactions, leaks, rupture and other 

mechanic failures. The process is feasible operable when all of these constraints and 

specifications are met. 

 

fm(d,z,θ) = 0 Eq. 24 

gn(d,z,θ) ≤ 0 Eq. 25 
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Figure 19. Feasible region and inscribed hyper-rectangles of impact ranges. 

 

 

In the space of impacts θ (Figure 19), the state of process operation is normal if the 

impacts are at nominal values (q�] , qQ]). When impacts values increases or decreases, the 

operating points move away from the nominal value. Assume external impacts vary 

independently of each other. Flexibility index is a measure of a rectangular operating 

region inscribing the feasible region R. 

To quantify the index, the problem must be formulated. Let Region R be the set of 

impact values θ such that there is at least one control state z in which the operation 

satisfies all the constraints and specifications. 

 
Eq. 26 

There are many rectangles inscribing in region R and touches the boundary as shown 

in Figure 19. Hence, the first step is to standardize the way of changing θ such that there 

is only one rectangle touching the boundary, which defines a unique index. 

The largest rectangle in the figure is the given ranges of impact values. If we call T 

the searching rectangle, then the standardization means T is a scale-down of the large 

rectangle based on the nominal point (Figure 20). In other words, when scaling is 

performed, the rectangle vertices are always on the lines connecting the nominal point 

and vertices of the largest rectangle. 
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Figure 20. Scaling standardization of the hyper-rectangles of impact ranges. 

 

 

Let δ be the ratio between sizes of T and the large rectangle. The size of T depends 

on value of parametric δ. T increases as δ increases. When T is largest, touches and 

inscribes the boundary of R, the value of δ is maximum and therefore is the flexibility 

index. Mathematically, flexibility index IF is the solution of the optimization problem rs = ec:δ Eq. 27 

subject to: 

Feasible operating conditions: ∀q ∈ w (x){∃{|}�(~, {, q) = 0 ∩  �� (~, {, q ≤ 0, ∀�, �} Eq. 28 

Parametric region of T: �(x) = {q|(q] −  x∆q5) ≤  q ≤ (q] +  x∆q�) Eq. 29 

Constraint shown in Equation 24 is the feasibility operating conditions. It means that 

for all θ inside T, there is at least one control state z such that all physical constraints and 

specifications are satisfied. 

The above formula is a complete formulation to determine flexibility index. It is very 

difficult to solve. To be solvable, the above logic language is translated into 

conventional optimization formulation by transforming the variable θ to q� with the 

relationship: q = q] + xq�  Eq. 30 
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The formulation above becomes a two-stage optimization programming: �� =  min��∈6� x∗�q��with�� =  �q��−∆q5 ≤  q�  ≤  ∆q�� Eq. 31 

where δ*(θ) is determined from the optimization problems: x∗(q) = maxx Eq. 32 

Subject to   m�(�, �, q) = 0, ∀e Eq. 33 g�(�, �, q) ≤ 0, ∀� Eq. 34 

The idea of this transformation is to introduce vector δθ ̃ which originates from the 

nominal point and always touch the boundary of T (not only vertices of T). The direction 

of the vector is defined by θ ̃ and its length depends on δ. In the inner-stage problem 

(Equations 32 – 34), δ increases to scale up T. When its arrow touch boundary of R (δ is 

maximum), we obtain δ*. In outer-stage problem (Equation 31), the found δ’s from 

various direction q� are compared for the minimum, which is the value of flexibility 

index. 

The problem is now easier to solve but its size is large because we need to 

investigate infinite values of direction q� (0 ≤ q�≤ 360
o
). To reduce the size, an 

assumption that Rectangle T touches boundary of R only at a vertex of T is applied. The 

benefit is the reduction of search space from infinitive to a manageable finite set and 

only q� in the vertex directions to be investigated. In Figure 21, there are four vertices 

because is T is a rectangle. If T is a hyper-rectangle in p-dimension space, the number of 

vertices is 2p. 

The assumption is actually true when Region R is one-dimensional convex (i.e., if a 

vertical or horizontal straight line cuts R boundary at two points or less). The assumption 

is difficult to be verified since we do not explicitly know f functions. However, even the 

conditions are not satisfied, the solution in engineering problems is still very likely to lie 

at a vertex.
62
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Figure 21. Searching direction of transformed impact variables. 

 

 

7.4.2 Implementation 

The final formulation above is not ready to be applied in flexibility analysis for 

resilience evaluation because it is very difficult (if not impossible) to define all physical 

constraint fm(d,z,θ) = 0 for a whole plant. A novel approach is proposed with the 

powerful aid of process simulator (e.g., Aspen Plus) to easily verify these constraints.  

In this work, whole process is simulated in Aspen Plus in various scenarios of 

external impacts and control variables. Those scenarios are generated in systematic way 

to search for the operating condition that associates with the flexibility index. The 

algorithm is shown in next section. 

The benefits of this approach are to eliminate hassle determination of all functions 

fm(d,z,θ) = 0, to obtain rigorous and quick calculations. However, it requires adequate 

knowledge of using process simulation software. 

7.4.3 Flexibility index evaluation algorithm 

Based on the theory (Section 7.4.1) and proposed implementation (Section 7.4.2), a 

calculation algorithm is proposed in Figure 22. 
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Figure 22. Flexibility calculation algorithm 

 

 

First, the whole process is simulated in a base case with determined design parameter 

d and nominal values of control variables z
N
 and impact parameters θN

. There are more 

than one way to specify performance of a unit in the simulation. However, the way to 

allow sensitivity analysis in the next steps should be chosen. For example, to investigate 

the effect of changing utility duty on process stream temperature in a heat exchanger, 

heat duty should be specified in the simulation. Other parameters such as temperature, 

pressure, vapor fraction related to the heat exchanger are calculated accordingly.  
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Second, based on the base-case process model, sensitivity analysis is performed to 

simulate 2
p
 cases with of impact values θK

 being at their bounds. This task can be easily 

performed using the Sensitivity Analysis tool in Aspen Plus.  

The third step is analyzing those simulation results. In every case, if all specifications 

and safety criteria are met, then the index of that case is δ* = 1. For cases where not all 

specifications are met, Sensitivity Analysis tool is employed to simulate scenarios of 

various values of control variables z
n
. Then the specifications and safety criteria are 

verified. If the specifications and criteria are met, the index is still maximum: 

x∗(q�) = |q� − q]|∆q = ∆q∆q = 1. Eq. 35 

If not all specifications are met, vector of impact values θk
 need to be changed 

towards vector θN
 in the next step. Although there may be only one impact violating the 

constraints, all the impact must be reduced at the same scale ratio (rectangle T is scaled 

down). Those steps are repeated until all constraints on specifications and safety are met 

or θk
 reaches θN

 in which index equals to zero (δ* = 0). 

The minimum index found among all simulation scenarios is the flexibility index of 

the process. The index is bounded in the range of 0 and 1.  

For the case that hyper-rectangle T completely inscribes in region R without scaling-

down step, the index is assigned to 1 although T can be scaled up and still inscribes in R. 

the value of flexibility index using this method is dependent on the range of impacts to 

be investigated. 

To evaluate resilience, the flexibility index of process k is converted so that it is in 

the same scale with the other indices and the lower of IF is the better: 

(FI)k = 10·{1 – (IF)k} Eq. 36 

The factor 10 is involved to normalize the index range from 0 to 10 so that it is 

evaluated at the same scale to the other factors (inherent safety index and controllability 

index). 
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7.4.4  Safety criteria 

A process is considered flexible in a scenario when all process specifications and safety 

criteria are satisfied (gn(d,z,θ) ≤ 0). Let rewrite the safety criteria in an equivalent form: 

g’n(d,z,θ) ≤ C (where C is constant). C can be referred to as limits of the safety criteria.  

Importantly, one should understand that C is not limits of design system. Value of C 

is set by evaluators, therefore subjective, and is not necessary equal to design limits (say 

D). For example, a piece of equipment is design to withstand a maximum temperature of 

500
o
 Celsius (i.e., D = 500). But evaluators may specify that the equipment should not 

operate over 300
o
 Celsius (i.e., C = 300) to avoid mechanical failure in flexibility 

analysis. The value of 300
o
 Celsius is a safety criterion in the flexibility analysis. 

If D is increased while C is fixed, operation of the equipment is safer but its 

flexibility level is unchanged because the level is calculated from C. If C is increased 

while D is fixed, the operation is concluded more flexible; however, the operation is 

likely less safe because operating temperature is closer to the limits. Therefore, 

evaluators should choose suitable values of safety criteria. 



75 

 

 

CHAPTER VIII  

CASE STUDY: EVALUATION OF RESILIENCE DESIGN FACTOR IN 

ETHYLENE PRODUCTION ALTERNATIVES 

Ethylene is the most produced organic compound in the world with a global production 

of ethylene expected to reach 162 million tonnes in 2012 including both current and 

planned new construction projects.
65

 Due to the important but hazardous characteristics 

of ethylene product and its production processes, and due to the data availability, 

ethylene production alternatives were chosen in this work to demonstrate the proposed 

methodology in evaluating the Design index.  

There are some criteria to choose case studies for this work. To be able to 

demonstrate the methodology well, the design alternatives in producing the same 

product were preferred to have very different main pathways and different operating 

conditions, and to involve at least typical equipment such as pump, reactor, heat 

exchanger, vessel, column etc. Most importantly, their information or data (i.e.  PFD) are 

available in publications.   

In Eupore and Asia, ethylene is produced mainly from steam cracking naphtha, 

gasoil and condensates. While in US, Canada, and Middle East, ethylene is obtained 

from the steam cracking of ethane. Recently, oxydehydrogenation technology is being 

developed to compete with the conventional steam-cracking technology and attracts 

more attention by a number of researches.
66-71

 In the meantime, another ethylene 

production pathway, bioethanol dehydration, also has the support from the industry and 

researchers motivated by the growth of renewable chemicals and by the low carbon 

footprint of the product obtained.
72-74

 With their satisfaction on the criteria above, they 

were chosen for demonstration of resilience evaluation and comparison. 

In this case study, the quantitative methodology to obtain resilience Design index is 

applied for the two following processes producing ethylene via: 

� Catalytic dehydration of bio-ethanol (Process 1) 

� Oxydehydrogenation of ethane (Process 2) 
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8.1 Process description 

Both of the processes are designed at a capacity of 20,000 tonnes per year ethylene. The 

ethylene product meet chemical grades which requires ethylene molar composition at 

least 95%. The feedstock compositions are given in Table 5. 

 

Table 5. Molar fraction of the two process feedstocks. 

Component Dehydration process Oxydehydrogenation process 

Ethanol 0.990  

Ethane  0.997 

Carbon dioxide 0.010 0.003 

Total 1.000 1.000 

 

 

8.1.1 Catalytic-dehydration of bio-ethanol 

The production of ethylene from bio-ethanol employs some key processing steps as 

shown in Figure 23. First, ethanol is preheated before being converted into the main 

product ethylene in an endothermic dehydration reaction. Then, because the output of 

the reactor contains some impurities, it must go through downstream purification steps, 

including water wash, caustic wash, absorption, and drying, to obtain desired chemical-

grade ethylene. 

 

 

 

 

 

 

Figure 23. Conversion of bio-ethanol to ethylene via dehydration 
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There have been four technologies available for commercialization, including 

Lummus fixed-bed, Lummus fluidized-bed, Syndol
75

 and Petrobras
72

 (APPENDIX B). 

The design of Petrobras (Figure 24) is chosen for this case study investigation as it is the 

latest technology among those available and a plant using the technology has been built 

in Brazil  

 

 

 

Figure 24. Simplified flow diagram of the Petrobras dehydration process.
72

 

 

 

The bio-ethanol feedstock is preheated to the reaction conditions (330 – 380 
o
C) 

through an evaporator, steam mixing, and a furnace. The Petrobras design uses a single 

isothermal reactor for the ethanol-to-ethylene conversion. Bio-ethanol is dehydrated 

using the endothermic reaction as follows: 

C2H5OH � C2H4 + H2O + 46 kJ/mol Eq. 37 

The reaction occurs in an isothermal fixed-bed reactor in which catalysts are packed 

inside multi-tubes. The temperature is maintained by circulation of a heating fluid 

between the reactor shell and the furnace. For this design, it is important to control the 

operating temperature keep reaction rate and selectivity of main product high.   
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After the reactor, the product stream is quenched by water to remove the produced 

water, non-reacted ethanol and some of other by-products such as acetaldehyde and 

acetic acid. Then, the ethylene product with remaining gaseous contaminants (e.g., acid 

acetic, carbon dioxide, water) exits the top of the quench tower and passes the scrubber 

to remove the contaminants. Finally, remaining water vapor in the product stream is 

removed in drying packed-bed columns.  

8.1.2 Oxydehydrogenation of ethane 

The feedstock of this process is ethane which is an important petroleum derivative. 

Oxydehydrogenation of ethane is a technology that is still in research phase focusing on 

development of catalysts. It is expected to be in competition with the conventional 

naphtha steam-cracking technology thanks to its higher yield. The main reaction 

(oxydehydrogenation) is as follows: 

C2H6 + ½O2� C2H4 + H2O - 105 kJ/mol  Eq. 38 

The only commercial technology that is available from the literature is the design 

created by Union Carbide. Figure 25 shows the process blow diagram with its key 

conversion and separation steps. Figure 26 depicts the simplified flow diagram which is 

adapted from Manyik et al.
66

 

 

 

 

 

 

 

Figure 25. Block diagram of ethane to ethylene via oxydehydrogenation. 
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Figure 26. A simplified flow diagram adapted from the Union Carbide 

oxydehydrogenation process 
66

 

 

 

In this process, the ethane and oxygen that is supplied from an air separation unit are 

compressed, mixed, and preheated before fed to the reactors. The oxygen concentration 

must be less than about 6 mole percent of the total input gaseous stream. The 

oxydehydrogenation reaction occurs in a series of reactors in which ethane is introduced 

to the first reactor and oxygen is fed in parallel (to every reactor inlet). In every stage, 

the feed streams are preheated to around 250 °C, converted into ethylene in free-radical 

reactions at 300 – 400 
o
C, and partially condensed to remove acid acetic and water. In 

this case study, a configuration of three reactors in a series is investigated. 

The product stream from the final stage comprises of ethylene, acetic acid, water, 

unreacted ethane, unreacted oxygen, gases produced by side reactions (such as carbon 

monoxide and carbon dioxide), and other gases which are present in commercial ethane. 

The final stage is followed by a scrubber to separate out the remaining aqueous acetic 

acid. Then, the gases from the scrubber go through an amine adsorption system to 

remove carbon dioxide. Next, the gas stream is compressed and introduced to the 

distillation column where ethylene is distillated in the top product; ethane and other 

gases are in the bottom product. The ethane from the distillation column is recycled to 

the reaction system.  
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In this process, the introduction of oxygen into a gaseous stream containing ethane, 

and possibly ethylene, poses a safety issue. To prevent the occurrence of unwanted 

situations (i.e. explosion, fire), the introduction of oxygen into a gaseous hydrocarbon 

must be carried out at a temperature lower than the auto-ignition temperature of the 

mixed gas stream. Based on their study, Manyik et al
66

 suggested that temperature of the 

gaseous stream is less than 250 
o
C and oxygen composition is less than 6% mol.. 

8.2 Results and discussions 

8.2.1 Inherent safety index 

8.2.1.1 Material hazard index 

The chemical substances in both processes are all flammable and/ or toxic in varying 

degrees. The hazards are posed according to the type and quantity of chemicals present.  

Table 6 summarizes the substances potentially presented in the processes.  

 

 

Table 6. Substances involving in the processes 

Pathway Dehydration process Oxydehydrogenation process 

Raw Material Ethanol Ethane 

Main reaction: 2CH3CH2OH � H2C=CH2 + 

2H2O + (CH3CHO by-product) 

CH3CH3 + 1/2O2� H2C=CH2 + 

H2O 

Raw material  Ethanol Ethane, O2 

Desired product  Ethylene Ethylene 

Main by-product  Acetaldehyde and Acetic acid Acetic acid 

Other by-products 

or gases  

 CO and CO2 
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Table 7. Substance characteristics 

Substances  Flash point Boiling point UEL-LEL 

(vol%) 

TLV 

(ppm) 

Ethane  -135.15 °C (-211.3 °F) -88.2 °C (-126.8 °F) 3.0-12.4 1000 

O2  -183.1 °C (-297.6 °F)   

Ethylene  -136 
o
C (-212.8 

o
F) -103.8 

o
C (-154.8 

o
F) 2.7-36 200 

Acetic acid  39°C (102.2°F) 118.1 °C (244.6 °F) 4-19.9 15 

CO  -119°C -312.7 
o
F (-191.5 

o
C) 12.5-74 25 

CO2  -78.55 °C (-109.4 °F)  5000 

Ethanol  16.6°C (61.88°F) 78 °C 3.3-19 1000 

Acetaldehyde  -38°C (-36.4°F) 21 °C (69.8 °F) 4.0-60 25 

 

 

Table 8. The values of sub-factor indices 

Substances  IFL IEX ITOX IFL + IEX + ITOX ICOR 

Ethanol catalytic dehydration 

Ethanol  3 1 2 6  

Ethylene  4 2 2 8  

Acetaldehyde  4 3 3 10  

Acetic acid  2 1 3 6 1 
 

Oxydehydrogenation of ethane 

Ethane  4 1 2 7  

O2   -   

Ethylene  4 2 2 8  

Acetic acid  2 1 3 6 1 
CO  4 3 3 10  

CO2   1 1  

 

 

Based on the flash points and boiling points, the difference between the upper and 

the lower explosion limits, the TLV of the substances in Table 7, the flammability, 

explosiveness, and toxicity indices of each substance are determined, respectively (Table 

8). For the corrosiveness index, the most potential corrosive material of both processes is 
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similar, acetic acid. It is assumed that the need of stainless steel is for both processes. 

Hence, the score of 1 is assigned for the corrosiveness index of both processes. 

Finally, all indices in Table 8 are summed for every substance separately. The 

maximum sum is the sub-index value.  For both processes, the material hazard indices 

are equal:  

                        IMH = (IFL + IEX + ITOX)max + ICOR, max = 10 + 1 = 11 

 

Table 9. Heat release and reaction hazard sub-indices. 

Pathway Dehydration of Ethanol Oxydehydrogenation of ethane 

Main reaction 

∆H   

2CH3CH2OH � H2C=CH2 + 2H2O  

+ 46 kJ/mol (1,000 J/g)  

CH3CH3 + 1/2O2� H2C=CH2 + H2O 

– 105 kJ/mol (-2,283 J/g) 

 

Side reaction 1 

∆H  

CH3CH2OH →CH3CHO + H2  

+ 69 kJ/mol (+1,500 J/g)  

CH3CH3 + 3/2O2� CH3COOH + H2O  

– 591 kJ/mol (-7,577 J/g) 

 

Other side 

reaction  

∆H  

 CH3CH3 + (3/2+x)O2� 2COx + 3H2O 

-1,429 kJ/mol (-10,063 J/g, for CO2)  

-863 kJ/mol (-7,845 J/g, for CO)  

 

     IHMR, max 

     IHSR, max 

IINT, max 

IRH 

0 

0 

0 

0 

3 

4 

1 

8 

 

 

8.2.1.2 Reaction hazard index 

The heat release of the main and possible side reactions are calculated and used to assign 

the scores for IMR and ISR of both processes (Table 9). The chemical interaction 

considers the unexpected reactions among process materials in the process. These 

reactions are not expected to take place in the reactor and hence they are not discussed in 

the side reaction. In the oxydehydrogenation, acid acetic and acetaldehyde which are the 

main by-products can create a potential unwanted reaction. Small amounts of acetic acid 

will cause the acetaldehyde to polymerize, releasing large amounts heat. Since the 
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quantity of by-products could be insignificant, the heat released by this chemical 

interaction may not significant and therefore the chemical interaction sub-index is 

assigned to 1 for the oxydehydrogenation and 0 for the dehydration of ethanol.  

The maximum values of individual indices are summed to obtain the reaction hazard 

index for every process  

Oxydehydrogenation of ethane: IRH = IHRM, max + IHSR, max + IINT, max = 3 + 4 + 1 = 8 

Catalytic dehydration of ethanol: IRH = IHRM, max + IHSR, max + IINT, max = 0 + 0 + 0 = 0 

In these case studies, the reaction hazard index of oxydehydrogenation is high 

because of the exothermic reactions, while that of dehydration case is zero since it 

involves only endothermic reactions. 

8.2.1.3 Inventory index 

The mass flows of the processes are known from the design capacity simulated in Aspen 

simulation. The inventories for each process vessel are estimated based on the maximum 

mass flow among the streams of that vessel and one hour nominal residence time (Table 

10). The total inventory, the sum of inventories of all process vessels, is used to identify 

the inventory index. 

The mass flows of both processes are on the basis of the production capacity of 

20,000 tonnes of ethylene/ year. Since the conversion of ethane to ethylene in the 

oxydehydrogenation reactions (once-through yield in the reaction system is 59%) is 

lower than in the dehydration of ethanol (95%), the oxydehydrogenation process needs 

to recycle a large volume of unreacted ethane. Thus, the inventory of the 

oxydehydrogenation process is significantly larger than that of the dehydration of 

ethanol. This issue can be clearly seen in Table 10 and therefore the inventory hazard 

index of the oxydehydrogenation is 4 while that of the dehydration is 2. 

8.2.1.4 Process condition index 

The process condition index includes the process temperature and pressure indices which 

are identified on the basis of the maximum temperature and pressure in the process. 

Table 11 shows the temperature and pressure for each process vessel obtained in 

publications and Aspen simulations. Later, the process temperature and pressure sub-
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indices which are determined based on the obtained maximum temperature and pressure 

are summed to obtain the process condition indices.  

 

 

Table 10. Process vessel inventories and inventory sub-indices 

Process vessels Mass flow 

(kg/hr) 

Inventory 

(tonnes) 

Inventory Indices 

(IIH) 

Dehydration of Ethanol  

Reactor   

Quench 

Scrubber 

6406 

6406 

4165 

6.5 

6.5 

4.2 

 

Dryer  

Evaporator 

3832 

4604 

3.8 

4.6 

 

Cooler 

Furnace 

6406 

6406 

6.4 

6.4 

 

Total  38.4 2 

  

Oxydehydrogenation of ethane  

Reactor 1 

Reactor 2 

Reactor 3 

20069 

20706 

20461 

20 

21 

20 

 

Scrubber 

Absorber 

20461 

18968 

20 

19 

 

Stripper 

Flash drum 

Distillation column 

Compressor 

Cooler 1 

Cooler 2 

Cooler 3 

Cooler 4 

15312 

18968 

17145 

19376 

21637 

21102 

20856 

14879 

15 

19 

17 

19 

22 

21 

21 

15 

 

Total  249 4 
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Table 11. Process temperature/ pressure and process condition sub-indices 

 Temperature 

(
o
C) 

Pressure 

(bar) 

Process condition 

index (IPC) 

Dehydration of Ethanol    

Reactor 

Quench 

Scrubber 

350 

77 

77 

3 

1 

1 

 

Dryer 

Evaporator 

77 

108 

1 

3 

 

Cooler 

Furnace 

350 to 105 

116 to 350 

3 

3 

 

Process temp./ pres., max 350 3  

Process temp/ pres. indices 3 0 3 

   

Oxydehydrogenation of ethane   

Reactor 1 

Reactor 2 

Reactor 3 

244 

299 

304 

10 

10 

10 

 

Scrubber 

Absorber 

43 

42 

1.5 

45 

 

Stripper 

Flash drum 

Distillation column 

Compressor 

Cooler 1 

Cooler 2 

Cooler 3 

Cooler 4 

93 

20 

-28 

318 

85 

85 

75 

44 

1.3 

44 

43 

44 

10 

10 

10 

1 

 

Process temp./ pres., max 318 44  

Process temp/ pres. indices 3
 

2 5 

 

 

8.2.1.5 Process equipment index 

The process safety also depends on what type of equipment existing in the process. From 

engineering practice and recommendations on layout spacing between the equipment 

and from incident reports and database on the equipment involved in the incidents, 

Heikkila et al. suggested a scoring system to identify the process equipment index based 

on the types of equipment. Table 12 summarizes the main equipment present in the 
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processes. Finally, the process equipment index is determined on the basis of worst case 

of different equipment in the process under investigation. 

 

Table 12. Equipment present in the processes 

Process Type of equipment Process equipment 

indices (IPE) 

Dehydration Reactor, Quench, Scrubber, 4 

 Dryer, Evaporator, Cooler, Furnace  

  

Oxydehydrogenation Reactor 1, 2 and 3, Scrubber 3 

 Absorber, Stripper, Flash drum  

 Distillation column, Compressor 

Cooler 1, 2, 3, and 4 

 

 

 

Among different equipment in the oxydehydrogenation process, compressor is the 

most unsafe equipment since it is subject to vibration, very vulnerable process 

equipment and can release flammable gas in case of failure.
41

 As a result, the process 

equipment of the oxydehydrogenation is assigned to 3, while that of the dehydration of 

ethanol is assigned to 4 due to the furnace in the process. Furnace is a source of ignition 

for flammable leaks from other equipment.  

8.2.1.6 Process structure index 

The process structure index looks at the process from a system engineering point of view 

and therefore it is much more difficult to estimate. One potential approach is to depend 

on experience based data (standards, design recommendations and accident report). 

Hence, firstly, an experience based data which contains the base cases for the ethylene 

production needs to be developed by applying CBR method. CBR is applied in different 

incident databases such as HSEES, RMP, OSHA, MARS as well as many other useful 

websites such as hse.gov.uk, Kolmetz.Com, and csb.gov to retrieve the relevant cases for 

the ethylene production process. Proceedings of the Ethylene Producers Conference also 

provided a good source of information on several safety incidents.  
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According to CBR method, there must be input data and output requirements to 

retrieve the base cases. Due to the lack of the details of the incident itself in the database, 

the base cases are retrieved based on several input variables: the involved substance 

including ethylene (desired product); and ethane or ethanol (required raw material); type 

of industry (ethylene production, not polyethylene process); and type of system (fixed 

facility, not transportation). Despite of limited input variables, a few base cases for CBR 

are found and shown in APPENDIX A.  

All of the base cases in APPENDIX A occurred in ethylene unit or ethylene 

production plant; however, there is no clue to identify if any of them was in the ethanol 

dehydration process. Moreover, the design of Petrobras (Figure 24) chosen for this case 

study is quite new technology. Therefore, no incident has been found for the dehydration 

of ethanol so far. From the reasoning on the process level, the score of 2 (no data or 

neutral) is assigned for the Process Structure Index of the ethanol dehydration process. 

It is also very difficult to conclude if any of the base cases in APPENDIX A 

occurred in the ethane oxydehydrogenation process due to the lack of the details of those 

incident data. Those incidents could happen in a common ethylene production process, 

the dehydrogenation process with the raw materials of ethane, naphtha, or condensate. 

The ethane oxydehydrogenation is a new technology which has a similar flow diagram 

and basic equipment as the naphtha dehydrogenation. Both of them have absorber, 

compressor, flash drum and distillation or purification unit (different in catalyst).
69,76

 

Even incidents could not identify or have not occurred yet; the process configuration of 

the oxydehydrogenation is probably questionable on the basis of safety due to its similar 

process equipment and configuration to the naphtha dehydrogenation process which 

used to have a major incident. Therefore, the score of 3 corresponding to the fourth 

configuration group is assigned for the Process Structure Index of the ethane 

oxydehydrogenation process. 

8.2.1.7 Process complexity index 

To obtain the process complexity index, the complexity values need to be calculated 

from the values of many complexity factors using Equation 10. Most of these values are 
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quite straightforward to estimate since they are i.e. based on the P&ID of the process. 

For instance, degree of freedom is the number of variables that can be controlled. The 

mathematical approach in evaluating the degree of freedom is to subtract the number of 

independent equations from the total number of variables. In practice, to identify the 

degree of freedom for a process, an experienced and easier method is to simply add the 

total number of properly placed control valves. One factor, the interaction in the process 

requiring operator intervention (Q), would require more detail design information to be 

estimated. In this case study, the interactions requiring operator intervention in both 

processes are assumed to be 0 due to the unavailable data. The other parameters 

calculated straightforward based on P&ID are provided in the ensuing paragraphs.  

For the dehydration process, the number of equipment (M) is 8 including evaporator, 

furnace, reactor, cooler, quench, scrubber, 2 dryer. The degree of freedom (S) is 6 since 

there are 6 control valves as evaluated in controllability index for dehydration process. 

The number of measurement readings (O) is 10 (5 temperature, 1 flowrate, 2 

concentration, 1 pressure, and 1 level measurement readings). Number of input and 

output streams (P) is 10 which include energy streams as recommended by Koolen 

(ethanol + steam + fuel + water + NaOH + cooling water in and out + aqueous effluent + 

caustic effluent + ethylene). The number of external disturbances asking for action from 

an operator (R) is 6 (feed stream (ethanol flow), and heating and cooling media (steam 

flow, fuel flow, cooling water temperature, water flow, NaOH flow). So, the complexity 

value for the dehydration process is: COXd = 8 + 6 + 10 + 10 + 0 + 6 = 40.  

For the oxydehydrogenation process, the number of equipment (M) = 17 (3 reactors, 

3 condensers, scrubber, cooler, absorber, compressor, stripper, 2 reboiler, flash drum, 

distillation column, condenser, drum). The degree of freedom is 10 since there are 10 

control valves as evaluated in controllability index for oxydehydrogenation process. The 

number of measurement readings is 28 (9 temperature, 5 flowrate, 3 concentration, 5 

pressure, and 6 level measurement readings). The number of input and output streams is 

30 (ethane + 3 oxygen + water + 5 cooling water in and out + 2 steam in and out + 1 

refrigerant in and out + 3 acetic acid/ water + acetic acid solution + CO2 + CH lights + 
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non-condensibles + ethylene + unreacted ethane). The number of external disturbances 

asking for action from an operator (R) is 13 (feed stream (ethane flow, 3 oxygen flow), 

and heating and cooling media (5 cooling water temperature, water flow, 2 steam 

temperature, 1 refrigerant flow) need the action from an operator if there is any 

disturbance). So, the complexity value for the dehydration process is: COXo = 17 + 10 + 

28 + 30 + 0 + 13 = 98. 

The value of the oxydehydrogenation is higher corresponding to the complexity 

index of 5 resulting in the score system in Table 13. The values of the different terms 

and complexity indices for two processes have been summarized in  

This case study was given only to demonstrate the suggested methodology in 

calculating Complexity Index. In the real industry, equipment complexity, or piping 

complexity should be considered as well. Other equipment such as pumps, blinds, safety 

devices, vents, and drains should be included in evaluating number of equipment. 

Manual/ actuated valves/ switches and set points of control loops can be included in 

Table 14. 

 

 

Table 13. Scoring system for the process complexity index (ICOX) 

Process complexity value (COX) Score of ICOX 

1-16 0 

17-33 1 

34-49 2 

50-65 3 

66-82 4 

83-98 5 
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Table 14. Complexity factor index for both processes 

 Dehydration  Oxydehydrogenation 

Number of equipment 8 17 

Number of DOFs 6 10 

Number of input and output streams (P) 10 30 

Number of measurement readings (O) 10 28 

The interaction in the process requiring an 

operator intervention (Q) 

0 0 

The number of external disturbances asking 

for action from an operator (R) 

6 13 

Complexity values (WFs = 1 for each) 

(COX) 

40 98 

ICOX 2 5 

 

 

8.2.1.8 Discussion 

Table 15 shows the results of all indices of inherent safety index. The results showed 

that the oxydehydrogenation seems to have higher values which contribute negative to 

inherent safety aspect. This observation seems logically since in the dehydration process 

the material in use is less hazardous and the process is simpler and requires more 

moderate conditions. 

All indices in Table 15 are combined to achieve the final inherent safety index as 

follows:  

For the ethanol dehydration process, IIS = 33 

For the ethane oxydehydrogenation process, IIS = 68 

To be able to combine all indices for an overall resilience Design index, inherent 

safety indices of both processes are normalized in the scale of 0 to 10. The normalized 

inherent safety indices (ISI) were calculated as follows:  
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For the ethanol dehydration process 
���� = 33 ∙ 10114 = 2.9 

 

 

Table 15. Inherent safety sub-indices of two ethylene production processes 

Pathway Dehydration of 

Ethanol 

Oxydehydrogenation 

of Ethane 

(IFL + IEX + ITOX)max 10 10 

ICOR, max  1 1 

Material Hazard Index, IMH 11 11 

Inventory Hazard Index, IIH 2 4 

IHMR, max 0 3 

IHSR, max 0 4 

IINT, max 0 1 

Reaction Hazard Index, IRH 0 8 

IM = IMH · IIH + IRH 22 52 

   

Process temperature index 3 3 

Process pressure index  0 2 

Process condition index 3 5 

   

Process equipment index 4 3 

Process Structure Index 2 3 

Process Complexity Index 2 5 

IP 11 16 
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For the ethane oxydehydrogenation process 

���< = *�∙�L��� = 6.0The lower the inherent safety index is, the more resilient the 

process design achieves. Therefore, the ethanol dehydration process is more resilient 

with regard to the inherent safety design perspectives. 

8.2.2 Controllability index 

This section demonstrates how to perform the proposed controllability analysis via 

evaluation of relative gain matrix, its singular value, and condition number. The 

controllability index indicates how easy to control the process in response to 

disturbances 

For the demonstration purpose, the case study only investigates typical feedback 

control configurations (Section 8.2.2.1). Although not all pairs of controlled and 

manipulated variables are considered in the analysis, the variations of the investigated 

pairs significantly affect production specifications and therefore are critical to the control 

performance.  

Simulation models in Aspen Plus were constructed in Section 8.2.2.2. Those models 

are able to simulate not only base-case operations but also sensitivity of the processes to 

variations of manipulated variables. 

The latter advantage allows testing how controlled variables are affected and 

interacted by the variations on manipulated variables. Multiple scenarios of variations 

were simulated. The manipulated variables were varied by ±0.1%, ±0.2%, ±0.5%, ±1%, 

±2%, ±5%, ±10%, ±20%, ±30%. Responses in values of controlled variables were 

recorded to construct the relative gain matrices (Section 8.2.2.3).  

In the next calculation step, singular values of the relative gain matrices were 

determined with the aid of the numerical computing software MATLAB
77

 (Section 

8.2.2.4). The controllability index is scored from the calculated values of the condition 

numbers. 

 

 



 

 

 

9
3
 

Table 16. Analyzed pairs of manipulated and controlled variables in the dehydration process. 

Manipulated variables Controlled variables 

No. Parameter Value No. Parameter Value 

MV1 Evaporator steam flow rate (kg/h) 2,425 CV1 Evaporator outlet temperature of cold stream (kg/h) 108.4 

MV2 Furnace fuel flow rate (kg/h) 66.58 CV2 Furnace outlet temperature of cold stream (
o
C) 350.0 

MV3 Reactor heating fluid flow rate (kg/h) 11,047 CV3 Reactor temperature (
o
C) 350.0 

MV4 Cooler cooling water flow rate (kg/h) 37,041 CV4 Cooler outlet temperature of hot stream (
o
C) 160.0 

MV5 Quench water flow rate (kg/h) 34,000 CV5 Quenched vapor phase temperature (
o
C) 83.1 

MV6 Scrubber caustic inlet flow rate (kg/h) 1,755 CV6 OH
-
molar fraction in scrubber caustic effluent () 0.00112 

 

Table 17. Analyzed pairs of manipulated and controlled variables in the oxydehydrogenation process. 

Manipulated variables Controlled variables 

No. Parameter Value No. Parameter Value 

MV1 Heater steam flow rate 6,611 CV1 Heater outlet temperature of cold stream(
o
C) 149.7 

MV2 Condenser C-1 CW flow rate (kg/hr) 245,737 CV2 Condenser C-1 outlet temperature of hot stream (
o
C) 396 

MV3 Condenser C-2 CW flow rate (kg/hr) 211,529 CV3 Condenser C-2 outlet temperature of hot stream (
o
C) 90 

MV4 Condenser C-3 CW flow rate (kg/hr) 161,025 CV4 Condenser C-3 outlet temperature of hot stream (
o
C) 160 

MV5 Scrubber water flow rate (kg/hr) 34,000 CV5 Scrubbed vapor temperature (
o
C) 71.0 

MV6 Compressor power (kW) 1,140 CV6 Compressed pressure (bar) 46.02 

MV7 Absorber lean stream flow rate (kmol/h) 1,679 CV7 Molar fraction of MDEA in effluent stream 0.0670 

MV8 Flash drum refrigerant flow rate (kg/hr) 133,940 CV8 Flash drum temperature (
o
C) -24.0 

MV9 Deethane reflux flow rate (kmol/hr) 704 CV9 Ethylene concentration in distillate stream (%mol.) 96.7 

MV10 Dethane bottom flow rate (kmol/h) 380 CV10 Ethane concentration in bottom stream (%mol.) 99.3 
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8.2.2.1 Control systems 

Since detailed information on the investigated processes (such as process flow diagrams 

and pipe & instrument diagrams) is not available in the literature, simplified process 

flow diagrams with control systems were developed for this case study based on 

published operating conditions and performance.  

The control systems were designed from the common arrangement of feedback 

control. They did not result from a design optimization which usually involves much 

more effort not related to the objective of this research. Optimization should include, for 

example, alternative evaluation for optimal selection of control type (P, PI, or PID),
26

 

manipulated variables, and controlled variables, and detailed interaction analysis for 

optimal pairing controlled variables with manipulated variables. APPENDIX B sketches 

the control configurations used in the case study of the key processing units. The 

controlled variables are temperature, pressure, flow rate, and concentration of the 

process streams and utility streams. The manipulated variables are flow rates of those 

streams. Some of fast-response control loops (e.g. level control, reflux rate control of 

distillation and absorption units) are excluded to simplify the controllability analysis 

without sacrificing the conclusion because control performance is usually limited by 

slow response. 

In this case study, the analyzed multivariable control configurations are 6×6 (i.e., 

there are 6 controlled variables and 6 manipulated variables) and 10x10 for the 

dehydration and oxydehydrogenation processes, respectively. Those controlled and 

manipulated variables are paired in the chosen designs are shown in Table 16. 

8.2.2.2 Simulation models 

In this work, process controllability evaluation relies on the use of mathematical models 

although it can be performed with online tests on practical plants. These models are 

developed to describe the steady-state operation under various scenarios for both 

controllability and flexibility analyses. 

Optimization was performed in some units, including quench, absorber, stripper, and 

deethanizer to determine the optimal flow rates of supporting streams such as quench 
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water, caustic solution, stripper reboiler steam, deethanizer reflux. It is necessary to 

determine those optimal conditions which are usually close to practical operation and 

fall in transition region of linearity. For example, rate of caustic solution is optimal when 

it is just enough to saturate carbon dioxide in the rich stream; that means, less carbon 

dioxide is absorbed for less caustic rates but no more carbon dioxide is available to react 

with excess sodium hydroxide.  

The models were built in Aspen Plus
78

 The simulation flowsheets, input data 

summary, and specifications are reported in APPENDIX C. Except the Dryer unit of the 

dehydration process is simulated as a “black box”, all other units are simulated with 

thermodynamic models to predict their performance. The global property method is 

NRTL – a non-ideal gas equation of state. Specifically in some units involving ionized 

component, a more appropriate method – ELECTNRTL – was employed. Also in those 

units, multiple equilibrium and dissociation equations were involved in absorbing and 

desorbing reactions. They are simulated using special add-on packages for accurate 

prediction. The equations and associating parameters are shown in APPENDIX C.  

The two plants are designed at a capacity of 20,000 tonnes per year. Product 

concentrations are required not lower than 95% mol ethylene. The simulation results for 

the base cases are given in the Tables 16 and 17. Those results were compared to the 

published data
66,72

 for reasonable conversion, yields, and operating conditions (if 

available).  

8.2.2.3 Controllability analysis 

Scenarios of variations of manipulated variables were investigated without any 

controllers in place (i.e., all loops were open).  It can be referred to as the natural 

response of the process to changes in the manipulated variables. Open-loop tests were 

performed to calculate the relative gain analysis once the manipulated and controlled 

variables are chosen. Those tests were done using Sensitivity Analysis tool of Aspen 

Plus. 



96 

 

 

For open loop tests, disturbances have been made to the process by changing the 

input values of all manipulated variables out of their base-case values (Table 16 and 

Table 17), one at a time.  

The following disturbances ranges were performed: ±0.1%, ±0.2%, ±0.5%, ±1%, 

±2%, ±5%, ±10%, ±20%, and ±30%. Changes in controlled variables were calculated 

accordingly in the Sensitivity Analysis tool.  

Figure 27 plots the effects of manipulated variable disturbances to the values 

controlled variables in the dehydration process when all the control loops were open 

(i.e., no control actions). All the cases are reported in the same scale for comparison. 

Controlled variables that were not affected are represented by horizontal straight lines 

through the origin. From MV1 to MV6, less controlled variables were affected by 

disturbances because the positions of manipulated variables locate more towards the 

back-end of the process which has no recycle loops. 

The most affected controlled variable of MV1 (evaporator steam flow rate) 

disturbances was CV1 (evaporator outlet temperature of the cold stream) as shown in 

Figure 27a. This relationship was partially proportional with positive disturbances 

(+0.1%, +0.2%, +0.5%, and +10%) but it was independent with negative disturbances 

and large positive disturbances (+20% and +30%). The reason is explained as follows. 

The outlet cold stream was at saturated vapor condition in base case operation. When 

more steam was introduced due to the positive disturbances, the vapor is superheated 

and therefore its temperature was proportionally increased. When the vapor temperature 

reaches steam temperature, it does not change due to the second law of thermodynamics 

no matter how much more steam was added. This constant temperature obviously 

resulted in unchanged temperatures in the downstream units, including the tracked 

temperatures of Furnace (CV2), Reactor (CV3), and Cooler (CV4) (Figure 27a). When 

the steam rate was shortened due to the negative disturbances, the saturated vapor was 

condensed at a constant temperature. 
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Figure 27. Relative changes of controlled variables in open-loop with respect to 

disturbances of manipulated variables in the dehydration process. a) Evaporator steam 

flow rate (MV1); b) Furnace fuel flow rate (MV2); c) Reactor heating fluid flow rate 

(MV3) d) Cooler cooling water flow rate (MV4); e) Quench water flow rate (MV5); and 

f) Scrubber caustic flow inlet rate (MV6). 
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Figure 27. (Continued) 

 

Similarly, the reactor temperature (CV3) reached associating heating utility 

temperature at the +20% disturbance (Figure 27c). That resulted in unchanged 

temperature in the downstream cooler (CV4).  

The Cooler temperature (CV4) was significantly affected by the heat duty 

perturbation due to the disturbances on upstream manipulated variables (MV1 – MV4). 

Positive disturbances of MV1 – MV3 (on heating utility) result in more heat supply to 

the process streams while positive disturbance of MV4 (on cooling utility) results in less 

heat supply. Therefore, CV4 changes with respect to MV4 are in opposite direction to 

those with respect to MV1 – MV3 (Figure 27a – d). In all of the cases, the CV4 lines 

turned horizontal for because of isothermal condensation at large negative disturbances 

of MV1 – MV3 and at large positive disturbance of MV4. 

Controlled variable CV5 in general did not change much compared to other 

controlled variables. Its changes were within the range of -0.1% and 0.1%.  

Molar fraction of ion OH
- 
(CV6) which corresponds to pH of scrubber effluent was 

sensitive to all manipulated variable disturbances, especially for MV5 (Quench water 
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rate) and MV6 (Caustic inlet rate). Quench water rate directly and linearly affects 

amount of CO2 physically absorbed in liquid phase of the quench vessel, and therefore in 

the stream going to the absorber. Caustic soda reacts with CO2. If caustic rate is reduced, 

unreacted CO2 amount increased until it reached the inlet CO2 concentration 

corresponding to certain pH, which represents by a horizontal line between -10% and -

30% in Figure 27f. However, if caustic rate increases, the pH keeps increase because 

more base is introduced to the column. There is also an upper limit of the pH; however, 

it has not been reached in the investigated disturbance ranges. 

 

 

 

Figure 28. Relative changes of controlled variables in open-loop with respect to 

disturbances of manipulated variables in the oxydehydrogenation process. a) Heater 

steam flow rate (MV1); b) Condenser C -1 CW flow rate (MV2); c) Condenser C-2 CW 

flow rate (MV3); d) Condenser C-3 CW flow rate (MV4); e) Scrubber water flow rate 

(MV5); f) Compressor power (MV6); g) Absorber lean stream flow rate (MV7); h) Flash 

drum CW flow rate (MV8); i) Deethane reflux flow rate (MV9); and j) Dethane bottom 

flow rate (MV10). 
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Figure 28. (Continued) 

c) d)
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Figure 28. (Continued) 

 

 

Figure 28 shows the effects of manipulated variable disturbances to controlled 

variables in the oxydehydrogenation process. Similar to the dehydration process, the 

upstream MVs interacted with more CVs than the downstream MVs did.  

In general, the i
th

 MV affected most on the i
th

 CV, which indicates that the controlled 

and manipulated variables were reasonably paired. One exception was found for MV10 
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disturbance where CV9 was affected most (Figure 28j) because they both were part of 

the distillation column – highly integrated equipment. 

The line of CV1-MV1 is not straight at -30% disturbance of MV1 (Figure 28a) as the 

feed stream was partially condensed. The condensation was not at constant temperature 

because the stream contained multiple components. 

The disturbance of cooling water rate in Cooler 1 (MV2) linearly affected the hot 

stream outlet temperature (CV2) and other controlled variables downstream until the rate 

reached +20% disturbance (Figure 28b). At the disturbance of +20% or more, the outlet 

temperature was close to the cooling water temperature; therefore, it was independent on 

the cooling water rate. 

The line of CV3-MV3 (Figure 28c) is not straight because multiple-component 

condensation occurred in the whole investigated range of MV3 disturbance. This is 

different from the straight line CV4-MV4 (Figure 28d) where the condensation only 

occurred at cooling water rate disturbance of +20% or more. 

In Figures 28e – i, the CVs shows their nearly dependence on their paired MVs.  

Figure 28j shows special relationships of ethylene molar fraction in distillate (CV9) 

and ethane molar fraction in bottom stream (CV10) with respect to bottom rate (MV10). 

They all belonged to control system of the distillation column. When bottom rate was 

reduced (from 0 to -30%), composition of main component in bottom stream was 

unchanged (i.e., it reached its separable limit by distillation), and composition of main 

component in distillate was decreased because other components were additionally 

recovered. O the other side, when the bottom rate was increased (from 0 to 30%), a 

reverse observation was expected, i.e., the components were more directed to the bottom 

stream, which decreased CV10 and kept CV9 unchanged. However, the ethylene 

composition (CV9) was reduced at +30% disturbance of MV10 because too much 

ethylene was lost in the bottom while the light component carbon monoxide stayed in 

the distillate and diluted the ethylene. 

The special relationships in Figure 28j showed two insightful facts about the design 

of the oxydehydrogenation process. Firstly as a result of the steady-state optimization 

mentioned earlier, the distillation reflux rate (MV9) and bottom rate (MV10) were 
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optimal because both of the compositions reached their limits at the base case. Secondly, 

the design would be better (more controllable) if a vapor outlet was added in the top 

section of the column to remove light carbon monoxide and keep the ethylene 

concentration at its best. This shows the benefits of the controllability analysis to the 

ability of the process to bounce-back the disturbance. 

8.2.2.4 Relative gain matrices and condition numbers 

The tracked values of controlled variables (CV) and manipulated variables (MV) 

obtained from the simulation results in the previous section were used to construct the 

relative gain matrices. Using Equation 22, the components of the gain matrices were 

calculated straightforward for every disturbance scenario. Table 18 is an example of 

what the relative gain matrices are. Elements zero indicate no interaction between the 

associating controlled and manipulated variables.  

The property of those relative gain matrices was investigated by calculating their 

singular values and condition numbers, the results are reported in Tables 19 and 20. The 

singular values were calculated using the command “svd([matrix name])” in the Matlab 

software while the condition numbers for various disturbance scenarios were derived 

using  Equation 17. 

Figure 29 plots the values of condition numbers with respect to different disturbance 

ranges for both processes. The ranges of the disturbances do affect the values of the 

relative gain matrices, and therefore condition numbers, which has been confirmed by 

McAvoy.
50

 Larger condition number  indicates the matrix is more poorly conditioned and 

hence the process is more difficult to control with the chosen controlled and manipulated 

variables.
26

 The results show that the dehydration process was very sensitive to small 

negative changes of the manipulated variables; that means, it is difficult to control the 

process. In other words, it requires a very large change in one or more manipulated 

variables, or controlled variables change largely for a small variation of one or more 

manipulated variables. The condition numbers in those scenarios were up to more than 

8,000 which were much higher than those in other scenarios. The condition numbers in 

the positive disturbances for both processes were low and generally stable, indicating 

that it is easy to control the processes. 



 

 

 

1
0
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Table 18. Relative gain matrix of dehydration process for disturbance +10% 

 Controlled variables (VC) 

  CV1 CV2 CV3 CV4 CV5 CV6 CV7 CV8 CV9 CV10 

M
an

ip
u

la
te

 v
ar

ia
b

le
s 

(M
V

) 

MV1 1.93925067 1.15263493 1.11960915 0.44405069 0.71895047 -0.39082861 -0.03576057 -0.20344217 -0.19838619 -0.00010760 

MV2 0.00000000 -2.30721881 -2.19013841 -0.88214812 -1.01128644 0.64508695 0.05328795 0.49790787 0.25304046 -0.07438346 

MV3 0.00000000 0.00000001 -2.01106659 -0.82738129 -0.93833223 0.52210988 0.04842960 0.27116078 0.25104524 -0.00357882 

MV4 0.00000000 0.00000000 -0.00000112 -1.59718163 -0.66283796 0.29294880 0.03306556 0.00301303 -0.00133990 0.00001744 

MV5 0.00000000 0.00000000 0.00000007 0.00000000 -0.38827866 0.17622991 0.02382504 0.00455842 -0.00060204 0.00002276 

MV6 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 1.57476704 0.00383629 -0.00182854 0.00275811 -0.00001653 

MV7 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.05458784 0.01948252 -0.01517357 0.00017238 

MV8 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 3.73112881 -0.17729597 0.00458663 

MV9 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000129 0.01285987 0.00387143 

MV10 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.22394831 -0.83785975 
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Table 19. Singular values (SV) and condition numbers of the dehydration process with manipulated variable disturbances 

MVs Changes -30% -20% -10% -5% -2% -1% -0.5% -0.2% -0.1% 

Maximum SV 3.736 5.090 9.122 14.293 16.319 16.530 16.619 16.651 16.657 

Minimum SV 0.003 0.003 0.002 0.002 0.002 0.002 0.002 0.002 0.002 

CN 1167.469 2036.160 3966.130 6806.095 7770.857 8265.000 8309.550 8325.700 8328.400 

          

MVs Changes 0.10% 0.2% 0.5% 1% 2% 5% 10% 20% 30% 

Maximum SV 16.644 16.651 16.651 16.650 16.625 16.406 15.858 14.683 13.624 

Minimum SV 0.165 0.165 0.162 0.163 0.163 0.163 0.164 0.165 0.164 

CN 100.688 100.731 102.528 102.462 102.310 100.587 96.754 89.040 83.326 

Table 20. Singular values (SV) and condition numbers of the oxydehydrogenation process with manipulated variable 

disturbances. 

MVs Changes -30% -20% -10% -5% -2% -1% -0.5% -0.2% -0.1% 

Maximum SV 4.718 4.186 4.176 4.232 4.291 4.319 4.331 4.342 4.365 

Minimum SV 0.009 0.007 0.006 0.005 0.005 0.005 0.005 0.005 0.004 

CN 512.804 589.549 732.614 829.784 893.938 899.708 941.522 943.935 992.000 

          

MVs Changes 0.10% 0.2% 0.5% 1% 2% 5% 10% 20% 30% 

Maximum SV 4.356 4.360 4.362 4.359 4.380 4.485 4.711 5.471 4.518 

Minimum SV 0.003 0.005 0.005 0.006 0.010 0.014 0.013 0.011 0.005 

CN 1405.194 927.702 948.217 751.517 429.441 327.387 365.186 511.346 1405.194 
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Figure 29. Condition numbers with respect to disturbance ranges 

 

Most of the investigated manipulated variables were utility flow rate. Hence, the 

results also indicate that both processes are vulnerable to reduction of either heating or 

cooling utility flow rates as the condition numbers were high in negative disturbance. 

The effects of utility rate reduction will be further investigated in Section 8.2.3 in the 

viewpoint of flexibility. 

8.2.2.5 Calculation of controllability indices 

In the last step, the controllability index was quantified. The indices are based on values 

of the condition numbers which were varied in different scenarios as shown in the 

previous section. To evaluate the general controllability of the processes, it was desired 

to use averaged values of those condition numbers. 

For the dehydration process, the averaged valued of the condition numbers from the 

18 scenarios of manipulated variable disturbance is: 

CNd = 3,103 

For the oxydehydrogenation, the averaged condition number is: 

CNo = 800 
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�G = �G� + �G<2 = 1952 

Using Equation 23, the controllability indices of the dehydration and 

oxydehydrogenation are, respectively: 

(Ic)d = 8.0 

(Ic)O = 2.0 

The final results show that the oxydehydrogenation process is significantly more 

controllable than the dehydration process. That result implies a relative difference in 

controllability between the two processes rather than whether the control systems are 

acceptable or not. However, the controllability analyses indicate some insights on the 

processes.  

8.2.3 Flexibility index 

To evaluate the flexibility indices of the two processes, many impacts should be 

investigated to make reliable conclusions. However, only one impact is considered in 

this case study for the purpose of demonstrating the approach. A rupture is assumed to 

occur on a supply pipeline of the utility systems. The rupture may make the flow rate 

through the pipe reduce to zero due to loss or local shut-down. 

For simplification, only utility systems that can cause significant consequences under 

the impact are considered. Particularly, dehydration is an endothermic reaction; 

therefore, heating utility is critical to keep high conversion of the reaction of the 

dehydration process to satisfy production specifications. Scenarios of losing steam, 

heating oil, and quench water flow rates are evaluated for this process.  

On the other hand, the process using oxydehydrogenation which is an exothermal 

reaction is vulnerable to the lack of cooling utility. Uncontrolled exothermic reaction can 

lead to severe violation of safety criteria such as run-away reactions, overheated and 

overpressure reactors. Mixture of ethane and oxygen in the feed stream can be 

overheated and violate its flammability limits. This process is investigated in scenarios 

of losing cooling water and quenching water. 
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8.2.3.1 Flexibility index of the dehydration process 

Four pieces of equipment using steam, heating oil, or boiling feed water are affected by 

the impact of the pipeline rupture. The effects of impact are transformed into the flow 

reduction of those utility streams. Their ranges are given in Table 21. 

 

Table 21. Ranges of impact utility flow rates in dehydration process. 

Impact utility Equipment using 

the utility supply 

Lower limit 

(kg/h) 

Nominal rate 

(kg/h) 

Upper limit 

(kg/h) 

Steam Evaporator 0  2,425  2,425  

Heating oil Reactor  0  35,578 35,578 

Boiler feed water Boiler  0  1,136  1,136  

Steam Mixer  0  1,802  1,802  

 

 

Under the impact, all the control system can be used to tune operating conditions to 

bounce back the effect. However, assume only three following control variables are 

effective to tackle the impact: furnace fuel rate, valve opening position, and water for the 

quench unit. For controllable flow rates, they are assumed to be able to vary from zero to 

a maximum of 130% of the nominal values. For throttle valve, it can be adjusted all the 

way of position. Their values are shown in Table 22. 

 

Table 22. Ranges of adjustable control variables in the dehydration process. 

Variables (unit)  Lower bound (by %)  Nominal value  Upper bound (by %)  

Furnace fuel (MCal/h)  0 (-100%)  732 952 (+30%)  

Valve opening (%)  0 (-100%) 46.3  100 (+116%)  

Quenching water(kg/h)  0 (-100%) 30,000  39,000 (+30%)  
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The product specifications are ethylene purity (minimum purity level: 95% mol) and 

production rate (minimum flow rate of ethylene: 80% of nominal value). Because the 

dryer can not be simulated in Aspen Plus, it was assumed that dryer can process satisfied 

purity from a wide range of inlet purity. It was further assumed that the reaction 

conversion is assumed too low and therefore production rate is not met if reactor 

temperature is lower than 100
o
C. For this reason, reactor temperature was the only 

specification of the simulation. The process specifications are given in Table 23. 

 

Table 23. Production specifications of the dehydration process. 

Parameter Minimum value 

Product (ethylene) purity 95% mol. 

Production rate 80% of nominal value 

Reactor temperature 100
o
C 

 

 

Table 24. Safety criteria of the dehydration process. 

Equipment Tnominal (
o
C) Tdesign  (

o
C) Pdesign (bar) 

Pump 25 120 10 

Evaporator 108 250 10 

Mixer 116 250 10 

Furnace 350 700 10 

Reactor  350 700 10 

Boiler  350 500 10 

Throttling valve 160 250 10 

Quench  83 250 10 

Scrubber  81 150 10 
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Safety criteria are the ranges of operating temperature and pressures not to cause 

mechanic failure of equipment. Highest normal operating pressure of the process is 3 

bar. All pieces of equipment were designed to withstand a maximum pressure of 10 bar. 

Table 24 lists the design temperatures and design pressures which are specified as upper 

limits of the safety criteria. 

The simulation results are reported in APPENDIX E. The calculation procedure was 

performed as follows: 

� First, the base case was simulated. It is referred to as Scenario 1 in the report. 

� Second, the Sensitivity Analysis tool in Aspen Plus was used to simulate 16 

cases corresponding to the combination number of two extreme values of the 

four external impact parameters. Those simulation results are marked as Scenario 

2-17 in the report. 11 cases out of them were converged and met all the 

specifications and criteria. The flexibility indices for those 11 cases were 1. 

� Third, the control variables were adjusted in the remaining 5 cases (Scenarios 7 

and 10 – 13) violating the minimum temperature requirement of reactor or 

yielding unreasonable simulation results. Because their linear relationships, 

furnace fuel duty was preferred maximized to increase reactor temperature. There 

was no need to adjust valve openings and quench water rate as the related units 

operated within accepted specifications and criteria. With the furnace duty 

adjustment, 3 out of the 5 cases satisfied the constraints; therefore, their 

flexibility index is 1. 

� Next, the remaining 2 cases still violating reactor temperature limits need 

reduction of impact levels. The search for the threshold level was performed until 

reactor temperature is at 100
o
C. The result shows that the minimum mixer steam 

the plant can withstand is 487 kg/h, i.e., if the steam is lost more then reactor 

temperate can not be met for any values of the control variables. The flexibility 

index of this case is 

x∗(q�) = |q� − q]|∆q = |487 − 1802||0 − 1802| = 0.73 
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Compared all the found indices, the flexibility index of the dehydration process is 

0.73, which is the smallest of indices from all cases. Figure 30 tracks the number of 

cases in the calculation steps. 

 

 

 

 

Figure 30. Tracking number of cases in calculation of dehydration flexibility index. 
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8.2.3.2 Flexibility index of the oxydehydrogenation process 

As discussed at the beginning of Section 8.2.3 the oxydehydrogenation process is 

vulnerable to loss of cooling utility because of its highly exothermic reaction and oxygen 

presence in the feed mixed streams. In this case study, it was assumed that three pieces 

of equipment using cooling water are affected by the impact of the pipeline rupture. 

Their ranges of the impact are given in Table 25. 

 

Table 25.Ranges of impact utility flow rates in oxydehydrogenation process. 

Impact utility Equipment using 

the utility supply 

Lower limit 

(kg/h) 

Nominal rate 

(kg/h) 

Upper limit 

(kg/h) 

Cooling water Reactor 1 cooler 0  245,737 245,737 

Cooling water Reactor 2 cooler 0  211,529 211,529 

Cooling water Recycle amine 0  161,025 161,025 

 

 

Among the control variables, assume only two following control variables are 

effective to tackle the loss of the cooling utility: steam rate of the heater, and water for 

the scrubber unit. (Process flow diagram with the control systems is shown in 

APPENDIX B.) As in the other process, controllable flow rates are assumed to be able to 

vary from zero to a maximum of 130% of the nominal values, which are shown in Table 

26. 

 

Table 26. Ranges of adjustable control variables in the oxydehydrogenation process. 

Variables (unit)  Lower bound (by %)  Nominal value  Upper bound (by %)  

Heater HP steam (kg/h)  0 (-100%)  6,611 8,594 (+30%)  

Quenchingwater(kg/h)  0 (-100%) 34,000  43,000 (+30%)  
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The product specifications are ethylene purity and production rate. Minimum flow 

rate of the product stream is 80% of the nominal value). The process specifications are 

given in Table 27. They can be checked directly from Aspen simulation results. 

 

Table 27. Production specifications of the oxydehydrogenation process. 

Parameter Unit Nominal value Minimum value 

Product purity % mol. 96.7 95.0 

Production rate kg/h 3,301 2,641 

 

 

Safety criteria in this process are not only equipment design temperature and 

pressures but also temperature of the reactor feeds to reduce flammability hazards. The 

reactor inlet stream is a mixture of ethane, ethylene, and oxygen. Flammability limits of 

a mixture of ethane and oxygen at atmosphere pressure is 3-12.4%, while that of 

ethylene and oxygen is 2.7-36%. These flammability limits are affected by the 

temperature and pressure of the ethane and ethylene stream. Higher temperature results 

in lower LFL and higher UFL, while greater pressure increases both values. As 

recommended in the patent
66

, to avoid the flammability region under high temperature 

and pressure operating condition, the conversion of ethane to ethylene was divided into 

three stages (three reactors in series). Oxygen was introduced to the inlet of every stage 

such that the oxygen content is less than 6%mol.
66

  The temperature of that inlet gaseous 

stream is also limited at 250
o
C.

66
 

Because pressure-changing valve was not involved in this analysis, the criteria on 

maximum pressures were not considered. In the simulation, pressures were specified 

inputs.  

To avoid the excess vaporization of water in the scrubber which may result in failure 

of the following compressor, the scrubber temperature must be less than 95
o
C. The 

maximum temperature of compressor outlet is 300
o
C to avoid upset and failure in the 

absorber. Table 28 lists the safety criteria.  
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Table 28.Safety criteria of the oxydehydrogenation process. 

Equipment and stream Tnominal (
o
C) Tmaximum (

o
C) 

Reactor 1 cooler 396 500 

Reactor 2 mixed inlet 90 250 

Reactor 2 cooler 368 500 

Reactor 3 mixed inlet 90 250 

Reactor 3 cooler 375 500 

Scrubber temperature 71 95 

Compressor temperature 193 300 

 

 

The simulation results are reported in APPENDIX E. Similar to the dehydration 

calculation procedure, the calculation procedure was performed as follows: 

� First, the base case was simulated. It is referred to as Scenario 1 in the report. Its 

operation satisfied all the requirements. 

� Second, the Sensitivity Analysis tool in Aspen Plus was used to simulate 8 cases 

corresponding to the combination number of two extreme values of the four 

external impact parameters. Those simulation results are marked as Scenarios 1 – 

8 in the report (One of the scenarios is identical to base case). Only two of those 

8 cases (Scenarios 1 and 2) met all the specifications and criteria. The flexibility 

indices for those 2 cases were noted as 1. The violated safety criteria were 

temperatures of Reactor 2 feed, Reactor 3 feed and cooler, and Scrubber. The 

specification of product concentration was also not met. 

� Third, the control variables were adjusted in the violating 6 cases (Scenarios 9 – 

14). Because their linear relationships, heater duty was minimized and quench 

water is maximized to reduce the violated temperatures. With those adjustments, 

all the 6 cases still did not satisfied the constraints; therefore, their impact ranges 

must be reduced. 
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Figure 31. Tracking number of cases in calculation of oxydehydrogenation flexibility 

index. 
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index of this case is  
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x∗(q�) = |q� − q]|∆q = |90,925 − 245,737||0 − 245,737| = 0.63 

Compared all the found indices, the flexibility index of the oxydehydrogenation 

process is 0.63, which is the smallest of indices from all cases. Figure 31 tracks the 

number of cases in the calculation steps. 

The methodology leads to the higher the obtained flexibility index is, the more 

resilient the process design achieves. As a result, the ethanol dehydration process is more 

resilient with regard to the flexibility perspectives. Then, to evaluate an overall resilience 

index, flexibility index needs to be in the same scale and consistent with other indices 

which are in the score of 0 to 10 and in the form that the lower is the better. Therefore, 

the obtained flexibility indices of both processes were normalized as below: 

For the ethanol dehydration process: (FI)d = (1-0.73) ·10 = 2.7 

For the ethane oxydehydrogenation process: (FI)O = (1-0.63) ·10 = 3.7 

8.2.4 Weighting factors 

The AHP method in Section 4.2.2 was applied for this case study to obtain the 

relative weights of inherent safety, controllability, and flexibility sub-factors with regard 

to the resilience factor of the ethylene production design. The questionnaire in  

Table 2 was sent to a safety expert who has a lot of years of working experience in 

process safety and knowledge about resilience in chemical processes. The answers or the 

selection of a number shown in Table 29 was done in accordance with the expert’s 

experienced opinion. 

The above preferences or priority of each factor in terms of how contributes to 

resilience of a design is demonstrated into the following comparison matrix: 

 

¡ 1 7 31/7 1 11/3 1 1¡ 
     Column sums:  1.48    9     5 

The following steps were performed to obtain the weighting factors of Inherent 

Safety, Controllability, and Flexibility to the resilience of a design. 

  IS     F    C 

IS 

F  

C 
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Table 29. The expert’s judgments on pair-wise comparison 

 Questions Answers 

Q1. How important is Inherent Safer Design when it is compared to 

Flexibility? 

 

 

7 

Q2. How important is Inherent Safer Design when it is compared to 

Controllability? 

 

 

3 

Q3. How important is Flexibility when it is compared to Controllability? 

 

 

1 

 

 

� Normalizing the pair-wise comparison matrix is performed by dividing each cell of 

the matrix by is column total. 

 

¡0.677 0.778 0.6000.097 0.111 0.2000.226 0.111 0.200¡ 
                  Column sum:       1.00       1.00       1.00 

� Obtain the eigenvector by averaging the normalized scores of all the cells in the 

same row to determine the final score of an alternative  

¡0.6850.1360.179¡ 

  IS          F           C 

IS 

F  

C 

Inherent  

Safety Design 
Flexibility 

1 3 5 7 9 

Inherent  

Safety Design 
Controllability 

1 3 5 7 9 

Flexibility Controllability 
1 3 5 7 9 

IS 

F  

C 
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� Estimate the consistency ratio to check the consistency of the pair-wise comparison 

matrix to check whether the responder’s comparison were consistent or not. 

Consistency ratio is estimated through several steps as follows: 

� Obtain the weighted sum matrix: 

0.685Y 11/71/3^ + 0.136 Y711^ + 0.179 Y311^ = Y2.1740.4130.543^ 

� Dividing all the elements of the weighted sum matrices by their respective 

eigenvector element, we obtain: 

2.1740.685 = 3.174; 0.4130.136 = 3.037; 0.5430.179 = 3.034 

� Then, computing the average of the above values to obtain λmax 

���� = 3.174 + 3.037 + 3.0343 = 3.082 

� Calculating the consistency index, CI, as follows 

�� =  ���� − �� − 1 = 3.082 − 33 − 1 = 0.041 

� From the work of Saaty, the appropriate value of random consistency ratio, 

RI, for a matrix size of three is 0.58. The consistency ratio, CR, for this case 

is:  

�� = ���� =  0.0410.58 = 0.071 

� As the value of CR is less than 0.1, the judgment on the weights of the contribution 

factors is acceptable.  

� Hence, the relative weights of inherent safety, controllability, and flexibility are 

0.685, 0.179 and 0.136, respectively. 

Since the contribution of Flexibility to Design was assessed as being inferior to that 

of Inherent Safety by a value of 7 i.e., Inherent Safety is favored very strongly over 
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Flexibility, this factor also has the lowest computed weight 0.136. The contribution of 

Controllability was assessed as being inferior to that of Inherent Safety by a factor of 3 

i.e., the latter are favored slightly, and its weight computed as 0.179. It is evident that 

with 68.5%, Inherent Safety is leading sub-factors of the Design factor. 

8.2.5 Discussions 

The indices of each contribution factors to a resilience design including Inherent Safety, 

Controllability, and Flexibility as well as their important weights have been calculated. 

The final resilience design index is obtained by adding the products of the normalized 

indices and their weighting factors. Table 30 summarizes all indices in a scale of 0 to 10 

and the final resilience design indices of two processes.   

 

Table 30. Normalized values of all indices to scale of 0 to 10 

Contribution factors Ethanol 

dehydration 

Ethane 

dehydrogenation 

Weighting 

factors (%) 

Normalized Inherent 

Safety index 

2.9 6.0 68.5 

Normalized 

Controllability index (CI) 

8 2 17.9 

Normalized Flexibility 

index (FI) 

2.7 3.7 13.6 

Overall resilience Design 

index (IRD) 

3.8 5.0  

 

 

The final results show that the ethanol dehydration process design is more resilient 

than the ethane oxydehydrogenation process design. This index methodology can also be 

used to compare each individual index for the resilience improvement purpose. For 

instance, the ethanol dehydration process is more resilient with regard to the inherent 
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safety and flexibility perspectives. In the other hand, the ethane oxydehydrogenation 

process is more resilient with regard to the controllability perspectives. That means, the 

dehydration process has a wider operation range (more flexible) but it is more difficult to 

change the operation from one state to another (lower controllability index). To improve 

overall resilience for the oxydehydrogenation, the inventory should be reduced by 

finding a way to increase the product yield.  
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CHAPTER IX  

CONCLUSIONS AND RECOMMENDATIONS 

FOR FUTURE RESEARCH 

9.1 Conclusion 

This work revealed the importance of resilience characteristics in the chemical process, 

an undeveloped research area. The aim of this work is to develop new principles and 

contributing factors that constitute resilience, and propose a new method for resilience 

evaluation of the chemical processes.  

In the pursuit of the first objective, analyzing transitions of system states unveiled 

that resilience is characterized by multiple factors or measures. These measures work 

and interact together to improve the ability of chemical processes to bounce back. In 

developing this area of research, the principles of resilience were proposed to be 

Flexibility, Controllability, Early Detection, Minimization of Failure, Limitation of 

Effects, and Administrative Controls/ Procedures. These principles act as guidelines to 

help develop the multiple contribution factors for numerically evaluating resilience. The 

first layer of factors contributing to resilience was proposed to include Design factor, 

Detection Potential factor, Emergency Response Planning factor, Human factor, and 

Safety Management factor. 

As for the second objective, multi-level multi-factor approach was proposed to 

quantify resilience of a chemical process. Among five main contribution factors to 

resilience, the Design factor was further developed to demonstrate the applicability of 

the multi-factor approach in evaluating Design index. Its sub-factors were proposed to be 

Inherent Safety, Controllability, and Flexibility.  

� The Inherent Safety index accounted for the effects of material and process 

design on the process’ resilience from an inherent safety viewpoint. The 

proposed framework showed that the Inherent Safety index takes into account all 

the aspects of process safety design via various sub-indices.  

� The calculation procedure of the Controllability index, using proposed relative 

gain matrix analysis, is systematic and applicable for controllability evaluations. 
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The index values indicate a reliable comparative conclusion on the controllability 

between two or more processes.  

� New approach was developed to quantify flexibility of chemical process. The 

theory is based on optimization programming. With a few assumptions on the 

function characteristics, the solution approach can be performed in a process 

simulator like Aspen Plus. 

The proposed quantification methodology was demonstrated in a case study of 

evaluating and comparing resilience of two processes producing ethylene via 

dehydration of bio-ethanol and oxydehydrogenation of ethane. It was found in the results 

that the dehydration process was inherently safer and more flexible yet less controllable 

in the viewpoints of safety-oriented resilience. At the bottom line, the dehydration 

process design has index values that are more positive to resilience characteristics than 

those of the oxydehydrogenation process.  

The case study results for resilience Design factor showed the applicability of the 

propose method for assessment and comparison of resilience levels of chemical 

processes, and at the same time to guide effort to achieve a more resilient design. The 

method can be further developed at different levels including process, sub-process, 

subsystem level, or sub-levels of the factors in order to find least resilient points in the 

design.  

It is also very important to understand that process may be resilient with respect one 

criteria, but not resilient in another point of view or the other criteria. Two processes 

may seem equally resilient in terms of the final index, but the scores of the sub-indices 

can be significantly different. By this way, the improvement opportunities can be 

identified to increase the resilience of chemical processes by modify early the process 

designs. 

It should be noted that this method is not designed for estimating resilience level for 

a single process because no zero-absolute resilience was established. In that case, a 

reference level which refers to a standard similar process can be used. In addition, the 

proposed method is applicable for different types of unexpected situations. 
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9.2 Recommendations for future work 

The proposed methodology can be further improved. The proposed multi-level multi-

factor approach has been developed to evaluate the resilience index in terms of the 

design aspect. Evaluation of other sub-indices including Emergency Response Planning 

factor, Human factor, and Safety Management factor in terms of resilience point of view 

should be studied and developed to have better understanding resilience in chemical 

processes.  

The approach to assess controllability is simple but lacks full insights on the control 

system. It may not hinder many other aspects of process control.  

To achieve a higher resilient design, it may require to invest more equipment, piping, 

interconnections (which lead to complexity) and oversized equipment (which leads to 

operational problems) and resulting in more capital with none or very limited pay-back. 

In economic view point, the whole plant should be analyzed not only from the process 

viewpoint but also from the capital and operating cost viewpoint to understand where 

and how resilience has been reduced (or increased) and the economic impact of the 

changes.  

 

 

 

Figure 32. Expected curve of a resilience level Ψ and cost. 

 

 

Cost

Ψ
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Figure 32 shows an expected relationship of a resilience level Ψ and process costs. In 

general, cost increases as more resilient is gained. From this expectation, the following 

problems arise to incorporate costs into resilience optimization problem. 

� Maximize resilience index and impose a cost limitation (i.e., COST ≤ Budget). 

The solution will be the most resilience design within a budget. 

� Replace object by a minimization of COST which is a function of resilience 

index. The solution is a least costly design with an acceptable resilience level. 

Specifically, the process complexity of inherent safety factor can be done in more 

details if additional data is available. For instance, the factors of equipment complexity 

can be different when detailed designs of heat exchangers are considered (spiral heat 

exchanger can be scored more complex than sign-pass steel-tube heat exchanger.) Piping 

is the other issue needs to be considered in complexity term when possible since it can 

make the overall system complicated, and affect the inherent safety of the process. 

Fewer lines and connections improve safety because it can lead to less operational 

errors. The piping complexity factors can be number of lines plant, number of 

connections modeling, number of piping items. The relationship between complexity 

and weighting factors can also be done to address more accurately. 
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APPENDIX A 

INCIDENT DATABASE FOR CBR METHOD 

Table 31.Incident database for CBR 

Outlet components Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 

In
p
u
t 

d
at

a Database MARS RMP RMP RMP HSEES HSEES HSEES 

Type of 

industry 

Ethylene 

Production 

Plant 

Ethylene unit Ethylene Unit Ethylene 

Producer 

 2869 

ethylene 

production 

2869, mfg 

ethylene 

SYSTEM Fixed facility    Fixed 

facility 

Fixed facility Fixed facility 

 Substance 

involved 

Ethylene, 

Propylene, 

Ethylene Ethylene Ethylene Ethylene 

Ethane 

Ethylene Ethylene 

        

O
u
tp

u
t 

d
at

a ID  9122 7678 6510 4871 LA20011807 LA20020828 

Location  Sunoco, Inc. 

Marcus Hook 

Refinery, Marcus 

Hook, PA 

Sunoco, Inc. 

Marcus Hook 

Refinery, Marcus 

Hook, PA 

Westlake 

Petrochemic

als, Sulphur, 

LA 

Calcasieu, 

LA 

LA Baton rouge, 

LA 

 Date 18/01/1985 May 17 2009 Aug 18 2000 Jan 05 2002 2001 12/2/2001 6/26/2002 

 Incident Release and 

explosion 

   Air 

Emission 
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Table 31. (Continued) 

 Cause  Unused by-

pass failure  

Equipment 

failure 

Equipment 

failure 

Equipment 

failure 

System 

startup 

and 

shutdown 

Equipment 

failure 

Deliberate 

damage/inten

tional 

 Consequences 43 people 

injured 

      

 Details The accident 

occurred 

during normal 

operation in a 

distillation 

unit of the 

Ethylene 

Production 

Plant in a 

petrochemical 

industry. 

 10lbs 1,300lbs 

ethylene 

released 

  System start-

up.  

Release 

amount 

unknown. 

Exact end 

time 

unknown. 
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APPENDIX B 

PROCESS DIAGRAMS 

 

B.1 Commercial ethylene production process diagrams 

 

Figure 33. Petrobras process for ethanol dehydration.
72

 

 

 

Figure 34. Lummus fixed-bed process for ethanol dehydration.
75
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Figure 35. Lummus fluidized-bed process for ethanol dehydration.

75
 

 

Figure 36. Halcon SD process for ethanol dehydration.
75
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B.2 Typical control system investigated in the case study 

 

    

(a) Flowrate control     (b) Reactor temperature control  

 

   

(c) Flash drum control     (d) Cooler control 

 

   

(e) Evaporator control     (f) Condenser control 

 

Figure 37. Typical feedback control systems. 
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(g) Furnace control 

 

  

 

(h) Distillation column control 

 

Figure 37. (Continued) 
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B.3 Ethylene process diagram with control systems 

 

 

 

Figure 38.Dehydration of bioethanol to ethylene process with designed control systems 
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Figure 39. Dehydration of bioethanol to ethylene process with the slow and fast response pairs of control. 
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Figure 40. Oxydehydrogenation of ethane to ethylene process with designed control systems. 
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Figure 41. Oxydehydrogenation of ethane to ethylene process with the slow and fast response pairs of control. 
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APPENDIX C 

ASPEN MODELS AND INPUT DATA FOR THE CASE STUDY OF ETHYLENE PRODUCTION PROCESSES 

C.1 Aspen model 

Equipment Aspen model Property method Equilibrium package Specified parameter 

Pump PUMP NRTL (none) Outlet pressure 

Evaporator, cooler, 

condenser 

HEATER NRTL (none) Outlet pressure 

Heat duty 

Furnace HEATER NRTL (none) Outlet pressure 

Heat duty 

Reactor RSTOIC NRTL (none) Conversion 

Outlet pressure 

Heat duty 

Flash drum, , quench FLASH NRTL (none) Pressure drop 

Heat duty 

Valve  VALVE NRTL (none) Outlet pressure 

Scrubber FLASH ELECNRTL CAUSTIC Pressure drop 

Heat duty 

Dryer Separation NRTL (none) Split fractions 

Absorber RADFRAC ELECNRTL KEMDEA Pressure profile 

Stripper RADFRAC ELECNRTL KEMDEA Pressure profile 

Bottom rate 

Distillation RADFRAC NRTL (none) Bottom rate 

Reflux rate 

Compressor COMPRESSOR NRTL (none) Duty 
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C.2 Aspen flowsheets 

 

Figure 42. Aspen flowsheet of the dehydration process. 

 

Figure 43. Aspen flowsheet of the oxydehydrogenation process. 
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C.3 Input summary in Aspen Plus 

C.3.1 Dehydration process 

DYNAMICS 
    DYNAMICS RESULTS=ON 
 
IN-UNITS MET VOLUME-FLOW='cum/hr' ENTHALPY-FLO='Gcal/hr'  & 
        HEAT-TRANS-C='kcal/hr-sqm-K' PRESSURE=bar TEMPERATURE=C  & 
        VOLUME=cum DELTA-T=C HEAD=meter MOLE-DENSITY='kmol/cum'  & 
        MASS-DENSITY='kg/cum' MOLE-ENTHALP='kcal/mol'  & 
        MASS-ENTHALP='kcal/kg' HEAT=Gcal MOLE-CONC='mol/l' PDROP=bar  
 
DEF-STREAMS CONVEN ALL  
 
SIM-OPTIONS OLD-DATABANK=NO  
 
DESCRIPTION " " 
 
DATABANKS 'APV72 PURE24' / 'APV72 AQUEOUS' / 'APV72 SOLIDS' /  & 
        'APV72 INORGANIC' / 'APV72 ASPENPCD' / 'APV72 PURE856' 
 
PROP-SOURCES 'APV72 PURE24' / 'APV72 AQUEOUS' / 'APV72 SOLIDS' & 
         / 'APV72 INORGANIC' / 'APV72 ASPENPCD' /  'APV72 PURE856' 
 
COMPONENTS  
    ETHANOL C2H6O-2 / ETHYLENE C2H4 / H2O H2O / ACETAL C2H4O-1 /  
    HYDROGEN H2 / ACETIC C2H4O2-1 / ETHYLACE C4H8O2-3 /  
    ACETONE C3H6O-1 / METHANOL CH4O / METHANE CH4 / ETHANE C2H6 /  
    PROPANE C3H8 / PROPYLEN C3H6-2 / N-BUTANE C4H10-1 /  
    I-BUTANE C4H8-5 / CO CO / CO2 CO2 / NH3 H3N / H2S H2S /  
    NAOH NAOH / NA+ NA+ / H3O+ H3O+ / NH4+ NH4+ / OH- OH- /  
    HCO3- HCO3- / CO3-2 CO3-2 / HS- HS- / S-2 S-2 / NH2COO- NH2COO- /  
    CH3COO- CH3COO- / NA2CO3 NA2CO3 / NAHCO3 NAHCO3  
 
HENRY-COMPS ESOURO NH3 H2S CO2 ETHYLENE  
 
SOLVE  
    PARAM  
 
CHEMISTRY CAUSTIC  
 
CHEMISTRY ESOURO  
 
FLOWSHEET  
    BLOCK EVAPORAT IN=1 OUT=2  
    BLOCK MIXER IN=2 3 OUT=4  
    BLOCK FURNACE IN=4 OUT=5  
    BLOCK REACTOR IN=5 OUT=6  
    BLOCK BOILER IN=6 OUT=7  
    BLOCK PUMP IN=ETHANOL OUT=1  
    BLOCK VALVE IN=7 OUT=8  
    BLOCK QUENCH IN=8 9 OUT=11 10  
    BLOCK SCRUBBER IN=11 12 OUT=14 13  
    BLOCK DRYER IN=14 OUT=15 16  
PROPERTIES NRTL TRUE-COMPS=YES  
    PROPERTIES ELECNRTL / PENG-ROB  
 
STREAM 3  
    SUBSTREAM MIXED PRES=3. VFRAC=1. MOLE-FLOW=100.  
MASS-FRAC H2O 1. 
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STREAM 7B  
    SUBSTREAM MIXED TEMP=105. PRES=3.  
    MOLE-FLOW ETHANOL 1.98 / ETHYLENE 94.05 / H2O 194.05 /  & 
ACETAL 2.97 / HYDROGEN 2.97 / ACETIC 0. / ETHYLACE 0. /  

ACETONE 0. / METHANOL 0. / METHANE 0. /  ETHANE 0. /  
PROPANE 0. / PROPYLEN 0. / N-BUTANE 0. / & 

I-BUTANE 0. / CO 0. / CO2 1.  
 
STREAM 9  
    SUBSTREAM MIXED TEMP=35. PRES=1.2 MASS-FLOW=30000.  
MOLE-FRAC H2O 1. 
 
STREAM 12  
    SUBSTREAM MIXED TEMP=25. PRES=1.15 MOLE-FLOW=95.  & 
        SOLVENT=H2O FREE-WATER=NO NPHASE=1 PHASE=L  
    MOLE-CONC NAOH 1.19 <kmol/cum> 
 
STREAM ETHANOL  
    SUBSTREAM MIXED TEMP=25. PRES=1. MOLE-FLOW=100.  
    MOLE-FRAC ETHANOL 0.99 / CO2 0.01  
 
BLOCK MIXER MIXER  
 
BLOCK DRYER SEP  
    FRAC STREAM=16 SUBSTREAM=MIXED COMPS=ETHANOL ETHYLENE H2O  & 
        ACETAL HYDROGEN ACETIC ETHYLACE ACETONE METHANOL  & 
        METHANE ETHANE PROPANE PROPYLEN N-BUTANE I-BUTANE CO  & 
        CO2 NH3 H2S NAOH NA+ H3O+ NH4+ OH- HCO3- CO3-2 HS-  & 

S-2 NH2COO- FRACS=0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.  

 
BLOCK BOILER HEATER  
    PARAM PRES=0. DUTY=-0.615275  
    HCURVE 1 INDEP-VAR=VFRAC LIST=0. 0.1 0.2 0.3 0.4 0.5  & 
0.6 0.7 0.8 0.9 1. PROPERTIES=HXDESIGN  
    UTILITY UTILITY-ID=CW  
 
BLOCK EVAPORAT HEATER  
    PARAM PRES=0. DUTY=1.16584412  
    UTILITY UTILITY-ID=HPSTEAM  
 
BLOCK FURNACE HEATER  
    PARAM PRES=0. DUTY=0.73236908  
    UTILITY UTILITY-ID=N-GAS  
 
BLOCK QUENCH FLASH2  
    PARAM PRES=0. DUTY=0.  
 
BLOCK SCRUBBER FLASH2  
    PARAM PRES=0. DUTY=0.  
    PROPERTIES ELECNRTL HENRY-COMPS=ESOURO CHEMISTRY=CAUSTIC  & 
        FREE-WATER=STEAM-TA SOLU-WATER=3 TRUE-COMPS=YES  
 
BLOCK REACTOR RSTOIC  
    PARAM PRES=0. DUTY=1.10470283  
    STOIC 1 MIXED ETHANOL -1. / ETHYLENE 1. / H2O 1.  
    STOIC 2 MIXED ETHANOL -1. / ACETAL 1. / HYDROGEN 1.  
    CONV 1 MIXED ETHANOL 0.95  
    CONV 2 MIXED ETHANOL 0.03  
    UTILITY UTILITY-ID=HEAT-OIL  
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BLOCK PUMP PUMP  
    PARAM PRES=3. NPHASE=2  
    PROPERTIES PENG-ROB FREE-WATER=STEAM-TA SOLU-WATER=TRUE-COMPS=YES  
    BLOCK-OPTION FREE-WATER=NO  
 
BLOCK VALVE VALVE  
    PARAM P-OUT=1.1  
 
BLOCK VALVE-B VALVE  
    PARAM CALC-CV=YES P-OUT=1. CHECK-CHOKE=NO  
    VALVE-DEF VAL-TYPE="GLOBE" MFGR="NELES-JAMESBURY" SERIES= & 
        "V500_EQUAL_PERCENT_FLOW" SIZE="10-IN"  
    VAL-PARAM VP-DAT=10 CV-DAT=17 XT-DAT=0.79 FL-DAT=0.97 /  & 
        VP-DAT=20 CV-DAT=29 XT-DAT=0.79 FL-DAT=0.97 / VP-DAT=30  & 
        CV-DAT=42 XT-DAT=0.79 FL-DAT=0.97 / VP-DAT=40 CV-DAT=62  & 
        XT-DAT=0.79 FL-DAT=0.97 / VP-DAT=50 CV-DAT=98  & 
        XT-DAT=0.78 FL-DAT=0.96 / VP-DAT=60 CV-DAT=170  & 
        XT-DAT=0.76 FL-DAT=0.95 / VP-DAT=70 CV-DAT=293  & 
        XT-DAT=0.74 FL-DAT=0.94 / VP-DAT=80 CV-DAT=566  & 
        XT-DAT=0.71 FL-DAT=0.92 / VP-DAT=90 CV-DAT=840  & 
        XT-DAT=0.69 FL-DAT=0.91 / VP-DAT=100 CV-DAT=950  & 
        XT-DAT=0.68 FL-DAT=0.9  
 
UTILITY CW GENERAL  
    COST PRICE=0. <$/kg> 
    PARAM UTILITY-TYPE=WATER PRES=1. PRES-OUT=1. TIN=90. <F>& 
        TOUT=120. <F> CALOPT=FLASH  
 
UTILITY HEAT-OIL GENERAL  
    COST PRICE=0. <$/kg> 
    PARAM UTILITY-TYPE=OIL COOLING-VALU=100.  
 
UTILITY HPSTEAM GENERAL  
    COST PRICE=0. <$/kg> 
    PARAM UTILITY-TYPE=STEAM PRES=10. PRES-OUT=10. VFRAC=1.  & 
        VFR-OUT=0. CALOPT=FLASH  
 
UTILITY N-GAS GENERAL  
    COST PRICE=0. <$/kg> 
    PARAM UTILITY-TYPE=GAS COOLING-VALU=11000.  
 
EO-CONV-OPTI  
 
CONV-OPTIONS  
    PARAM TOL=1E-010  
 
STREAM-REPOR MOLEFLOW MOLEFRAC  
 
PROPERTY-REP NOPARAM-PLUS 
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C.3.2 Oxydehydrogenation process 

DYNAMICS 
    DYNAMICS RESULTS=ON 
 
IN-UNITS MET VOLUME-FLOW='cum/hr' ENTHALPY-FLO='Gcal/hr'  & 
        HEAT-TRANS-C='kcal/hr-sqm-K' PRESSURE=bar TEMPERATURE=C  & 
        VOLUME=cum DELTA-T=C HEAD=meter MOLE-DENSITY='kmol/cum'  & 
        MASS-DENSITY='kg/cum' MOLE-ENTHALP='kcal/mol'  & 
        MASS-ENTHALP='kcal/kg' HEAT=Gcal MOLE-CONC='mol/l' PDROP=bar  
 
DEF-STREAMS CONVEN ALL  
 
SIM-OPTIONS  
    IN-UNITS MET MASS-FLOW='tonne/hr' MOLE-FLOW=MMscmh  & 
        VOLUME-FLOW='cum/hr' ENTHALPY-FLO='Gcal/hr'  & 
        HEAT-TRANS-C='kcal/hr-sqm-K' MASS=tonne PRESSURE=bar  & 
        TEMPERATURE=C VOLUME=cum DELTA-T=C HEAD=meter  & 
        MOLE-DENSITY='kmol/cum' MASS-DENSITY='kg/cum'  & 
        MOLE-ENTHALP='kcal/mol' MASS-ENTHALP='kcal/kg'  & 
        MOLE-VOLUME='cum/kmol' MOLES=MMscm HEAT=Gcal  & 
        MASS-CONC='kg/cum' MOLE-CONC='kmol/cum' PDROP=bar  & 
        VOL-HEAT-CAP='kcal/cum-K'  
    SIM-OPTIONS OLD-DATABANK=NO  
 
DESCRIPTION "" 
 
DATABANKS 'APV72 PURE24' / 'APV72 AQUEOUS' / 'APV72 SOLIDS' /  & 
        'APV72 INORGANIC' / 'APV72 ASPENPCD' / 'APV72 PURE856' 
 
PROP-SOURCES 'APV72 PURE24' / 'APV72 AQUEOUS' / 'APV72 SOLIDS' & 
         / 'APV72 INORGANIC' / 'APV72 ASPENPCD' /  'APV72 PURE856' 
 
COMPONENTS  
    C2H6 C2H6 / O2 O2 / CO2 CO2 / C2H4 C2H4 / ACETIC C2H4O2-1 /  
    H2O H2O / CO CO / N2 N2 / CH4 CH4 / MDEA C5H13NO2 / H2S H2S /  
    HCO3- HCO3- / MDEA+ / CO3-2 CO3-2 / HS- HS- / S-2 S-2 /  
    H3O+ H3O+ / OH- OH-  
 
HENRY-COMPS C2 C2H6 C2H4  
 
HENRY-COMPS CO O2 CO  
 
HENRY-COMPS KEMDEA CO2 H2S C2H6 C2H4  
 
CHEMISTRY KEMDEA  
 
FLOWSHEET  
    BLOCK COOLER1 IN=PRODUCT1 OUT=FEED2 CONDEN1  
    BLOCK SCRUBBER IN=WATER 3 OUT=4 CONDEN3  
    BLOCK COMPRESS IN=4 OUT=5  
    BLOCK COOLER2 IN=PRODUCT2 OUT=FEED3 CONDEN2  
    BLOCK REACTOR1 IN=OXYGEN-1 2 OUT=PRODUCT1  
    BLOCK ABSORBER IN=5 7 OUT=9 RICH  
    BLOCK COOLER3 IN=PRODUCT3 OUT=3  
    BLOCK VALVE-2 IN=RECYCLE OUT=RECYCL-B  
    BLOCK STRIPPER IN=RICH-HT OUT=6 8  
    BLOCK COOLER4 IN=13 OUT=LEAN-B  
    BLOCK FLASH IN=9 OUT=10 11  
    BLOCK DEETHANE IN=11 OUT=ETHYLENE RECYCLE  
    BLOCK MIXER IN=RECYCL-C ETHANE OUT=1  
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    BLOCK REACTOR2 IN=OXYGEN-2 FEED2 OUT=PRODUCT2  
    BLOCK REACTOR3 IN=OXYGEN-3 FEED3 OUT=PRODUCT3  
    BLOCK VALVE-1 IN=RICH OUT=RICH-LP  
    BLOCK PUMP IN=LEAN OUT=7  
    BLOCK HEATER IN=1 OUT=2  
    BLOCK HX IN=8 RICH-LP OUT=13 RICH-HT  
 
PROPERTIES ELECNRTL HENRY-COMPS=KEMDEA CHEMISTRY=KEMDEA  & 
        TRUE-COMPS=YES  
    PROPERTIES NRTL / PENG-ROB  
 
PROP-SET XAPP XAPP SUBSTREAM=MIXED COMPS=MDEA CO2 PHASE=L  
 
STREAM ETHANE  
    IN-UNITS MET VOLUME-FLOW='cum/hr' ENTHALPY-FLO='Gcal/hr'  & 
        HEAT-TRANS-C='kcal/hr-sqm-K' PRESSURE=bar TEMPERATURE=C  & 
        VOLUME=cum DELTA-T=C HEAD=meter MOLE-DENSITY='kmol/cum'  & 
        MASS-DENSITY='kg/cum' MOLE-ENTHALP='kcal/mol'  & 
        MASS-ENTHALP='kcal/kg' HEAT=Gcal MOLE-CONC='mol/l'  & 
        PDROP=bar  
    SUBSTREAM MIXED TEMP=25. PRES=10. MOLE-FLOW=162.9  
MOLE-FLOW C2H6 140. / CO2 0.37  
 
STREAM LEAN  
    SUBSTREAM MIXED TEMP=44. PRES=5. MOLE-FLOW=1679.22357  
MOLE-FLOW C2H6 0. / O2 0. / CO2 0.00025556 / C2H4 0. /  & 
ACETIC 1.15403682 / H2O 1555.20467 / CO 0. / N2 0. / & 

CH4 0. / MDEA 122.310958 / H2S 0. / HCO3- 0.1515002 / & 
MDEA+ 0.28377867 / CO3-2 0.0139036 / HS- 0. / S-2 0. / & 
H3O+ 6.8626E-009 / OH- 0.10447126  

 
STREAM OXYGEN-1  
    SUBSTREAM MIXED TEMP=80. PRES=10. MOLE-FLOW=41.76  
    MOLE-FLOW O2 6.6  
 
STREAM OXYGEN-2  
    IN-UNITS MET VOLUME-FLOW='cum/hr' ENTHALPY-FLO='Gcal/hr'  & 
        HEAT-TRANS-C='kcal/hr-sqm-K' PRESSURE=bar TEMPERATURE=C  & 
        VOLUME=cum DELTA-T=C HEAD=meter MOLE-DENSITY='kmol/cum'  & 
        MASS-DENSITY='kg/cum' MOLE-ENTHALP='kcal/mol'  & 
        MASS-ENTHALP='kcal/kg' HEAT=Gcal MOLE-CONC='mol/l'  & 
        PDROP=bar  
    SUBSTREAM MIXED TEMP=80. PRES=10. MOLE-FLOW=41.76  
    MOLE-FLOW O2 6.3  
 
STREAM OXYGEN-3  
    SUBSTREAM MIXED TEMP=80. PRES=10. MOLE-FLOW=41.76  
    MOLE-FLOW O2 6.3  
 
STREAM RECYCL-C  
    SUBSTREAM MIXED TEMP=-30.7 PRES=45. MOLE-FLOW=432.4  
    MOLE-FRAC C2H6 0.86 / C2H4 0.034 / H2O 0.105  
 
STREAM RICH  
    SUBSTREAM MIXED TEMP=36.44 PRES=1.  
    MOLE-FLOW C2H6 0.00152307 / O2 0.00083602 / CO2  & 
        0.0005689 / C2H4 0.00098885 / ACETIC 0.05490114 /  & 
H2O 85.0982413 / CO 0.00650914 / N2 0. / CH4 0. /  & 
        MDEA 5.75716338 / H2S 9.3059E-029 / HCO3- 0.75922157 /  & 
        MDEA+ 1.17264905 / CO3-2 0.20666536 / HS- 9.3059E-029 / & 
        S-2 1.3176E-018 / H3O+ 1.5075E-009 / OH- 9.6746E-005  



148 

 

 

 
STREAM WATER  
    SUBSTREAM MIXED TEMP=25. PRES=10. MASS-FLOW=34000.  
MOLE-FRAC H2O 1. 
 
BLOCK MIXER MIXER  
    PROPERTIES NRTL FREE-WATER=STEAM-TA SOLU-WATER=3 TRUE-COMPS=YES  
 
BLOCK COOLER3 HEATER  
    PARAM PRES=0. DUTY=-2.3549519  
    UTILITY UTILITY-ID=CW  
 
BLOCK COOLER4 HEATER  
    PARAM TEMP=44. PRES=0.  
    PROPERTIES NRTL FREE-WATER=STEAM-TA SOLU-WATER=3 TRUE-COMPS=YES  
    UTILITY UTILITY-ID=CW  
 
BLOCK HEATER HEATER  
    PARAM PRES=0. DUTY=2.83188741  
    UTILITY UTILITY-ID=HPSTEAM  
 
BLOCK COOLER1 FLASH2  
    PARAM PRES=0. DUTY=-4.0771789  
    PROPERTIES NRTL FREE-WATER=STEAM-TA SOLU-WATER=3 TRUE-COMPS=YES  
    UTILITY UTILITY-ID=CW  
 
BLOCK COOLER2 FLASH2  
    PARAM PRES=0. DUTY=-3.5096161  
    PROPERTIES NRTL FREE-WATER=STEAM-TA SOLU-WATER=3 TRUE-COMPS=YES  
    UTILITY UTILITY-ID=CW  
 
BLOCK FLASH FLASH2  
    PARAM PRES=0. DUTY=-1.3736872  
    HCURVE 1 INDEP-VAR=VFRAC LIST=0. 0.1 0.2 0.3 0.4 0.5  & 
0.6 0.7 0.8 0.9 1. PROPERTIES=VLE  & 
        PRES-PROFILE=CONSTANT  
    PROPERTIES NRTL HENRY-COMPS=CO FREE-WATER=STEAM-TA  & 
        SOLU-WATER=3 TRUE-COMPS=YES  
    UTILITY UTILITY-ID=PROPANE  
 
BLOCK SCRUBBER FLASH2  
    PARAM PRES=0. DUTY=0.  
    PROPERTIES NRTL HENRY-COMPS=C2 FREE-WATER=STEAM-TA  & 
        SOLU-WATER=3 TRUE-COMPS=YES  
 
BLOCK HX HEATX  
    PARAM T-COLD=110. U-OPTION=PHASE F-OPTION=CONSTANT  & 
        CALC-METHOD=SHORTCUT  
    FEEDS HOT=8 COLD=RICH-LP  
    PRODUCTS HOT=13 COLD=RICH-HT  
    HOT-SIDE DP-OPTION=CONSTANT  
    COLD-SIDE DP-OPTION=CONSTANT  
 
BLOCK ABSORBER RADFRAC  
    PARAM NSTAGE=21 ABSORBER=NO MAXOL=200  
    COL-CONFIG CONDENSER=NONE REBOILER=NONE  
    PROP-SECTION 1 21 ELECNRTL HENRY-COMPS=KEMDEA CHEMISTRY=KEMDEA  
    FEEDS 5 21 ON-STAGE / 7 1 ON-STAGE  
    PRODUCTS 9 1 V / RICH 21 L  
P-SPEC 1 650.<psig> 
    COL-SPECS  
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    REAC-STAGES 1 21 KEMDEA  
    HOLD-UP 1 21 MOLE-LHLDP=0.  
 
BLOCK DEETHANE RADFRAC  
    PARAM NSTAGE=40  
    COL-CONFIG CONDENSER=TOTAL  
    RATESEP-ENAB CALC-MODE=EQUILIBRIUM  
    FEEDS 11 25  
    PRODUCTS ETHYLENE 1 L / RECYCLE 40 L  
P-SPEC 1 43. 
    COL-SPECS MOLE-B=380. MOLE-L1=704.036282  
    PROPERTIES NRTL FREE-WATER=STEAM-TA SOLU-WATER=3 TRUE-COMPS=YES  
 
BLOCK STRIPPER RADFRAC  
    PARAM NSTAGE=21 MAXOL=200  
    COL-CONFIG CONDENSER=NONE  
    FEEDS RICH-HT 1 ON-STAGE  
    PRODUCTS 6 1 V / 8 21 L  
    P-SPEC 1 18.5 <psig> 
    COL-SPECS B:F=0.975  
    REAC-STAGES 1 21 KEMDEA  
UTILITIES REB-UTIL=LPSTEAM  
 
BLOCK REACTOR1 RSTOIC  
    PARAM PRES=10. DUTY=0.  
    STOIC 1 MIXED C2H6 -1. / O2 -0.5 / C2H4 1. / H2O 1.  
    STOIC 2 MIXED C2H6 -1. / O2 -1.5 / ACETIC 1. / H2O 1.  
    STOIC 3 MIXED C2H6 -1. / O2 -2.5 / CO 2. / H2O 3.  
    STOIC 4 MIXED C2H6 -1. / O2 -3.5 / CO2 2. / H2O 3.  
    EXTENT 1 34.8  
    EXTENT 2 6.98  
    EXTENT 3 3.336  
    EXTENT 4 1.108  
    PROPERTIES NRTL FREE-WATER=STEAM-TA SOLU-WATER=3 TRUE-COMPS=YES  
 
BLOCK REACTOR2 RSTOIC  
    PARAM PRES=10. DUTY=0.  
    STOIC 1 MIXED C2H6 -1. / O2 -0.5 / C2H4 1. / H2O 1.  
    STOIC 2 MIXED C2H6 -1. / O2 -1.5 / ACETIC 1. / H2O 1.  
    STOIC 3 MIXED C2H6 -1. / O2 -2.5 / CO 2. / H2O 3.  
    STOIC 4 MIXED C2H6 -1. / O2 -3.5 / CO2 2. / H2O 3.  
    EXTENT 1 34.8  
    EXTENT 2 6.98  
    EXTENT 3 3.336  
    EXTENT 4 1.108  
    PROPERTIES NRTL FREE-WATER=STEAM-TA SOLU-WATER=3 TRUE-COMPS=YES  
 
BLOCK REACTOR3 RSTOIC  
    PARAM PRES=10. DUTY=0.  
    STOIC 1 MIXED C2H6 -1. / O2 -0.5 / C2H4 1. / H2O 1.  
    STOIC 2 MIXED C2H6 -1. / O2 -1.5 / ACETIC 1. / H2O1.  
    STOIC 3 MIXED C2H6 -1. / O2 -2.5 / CO 2. / H2O 3.  
    STOIC 4 MIXED C2H6 -1. / O2 -3.5 / CO2 2. / H2O 3.  
    EXTENT 1 34.8  
    EXTENT 2 6.98  
    EXTENT 3 3.336  
    EXTENT 4 1.108  
    PROPERTIES NRTL FREE-WATER=STEAM-TA SOLU-WATER=3 TRUE-COMPS=YES  
 
BLOCK PUMP PUMP  
    PARAM PRES=45.9 NPHASE=2  
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    PROPERTIES ELECNRTL FREE-WATER=STEAM-TA SOLU-WATER=3 TRUE-COMPS=YES  
    BLOCK-OPTION FREE-WATER=NO  
 
BLOCK COMPRESS COMPR  
    PARAM TYPE=ISENTROPIC POWER=1140.52832  
    PROPERTIES NRTL FREE-WATER=STEAM-TA SOLU-WATER=3 TRUE-COMPS=YES  
 
BLOCK VALVE-1 VALVE  
    PARAM CALC-CV=YES P-OUT=5.  
    VALVE-DEF VAL-TYPE="GLOBE" MFGR="NELES-JAMESBURY" SERIES= & 
        "V500_EQUAL_PERCENT_FLOW" SIZE="4-IN"  
    PROPERTIES NRTL FREE-WATER=STEAM-TA SOLU-WATER=3 TRUE-COMPS=YES  
 
BLOCK VALVE-2 VALVE  
    PARAM CALC-CV=YES P-OUT=10.1 CHECK-CHOKE=NO  
    VALVE-DEF VAL-TYPE="GLOBE" MFGR="NELES-JAMESBURY" SERIES= & 
        "V810_EQUAL_PERCENT_FLOW" SIZE="0.5-IN"  
    PROPERTIES NRTL FREE-WATER=STEAM-TA SOLU-WATER=3 TRUE-COMPS=YES  
 
UTILITY CW GENERAL  
    COST PRICE=0. <$/kg> 
    PARAM UTILITY-TYPE=WATER PRES=20. PRES-OUT=20. TIN=90. <F>& 
        TOUT=120. <F> CALOPT=FLASH  
 
UTILITY HPSTEAM GENERAL  
    COST PRICE=0. <$/kg> 
    PARAM UTILITY-TYPE=STEAM PRES=30. PRES-OUT=30. VFRAC=1.  & 
        VFR-OUT=0. CALOPT=FLASH  
 
UTILITY LPSTEAM GENERAL  
    COST PRICE=0. <$/kg> 
    PARAM UTILITY-TYPE=STEAM PRES=3. PRES-OUT=3. VFRAC=1.  & 
        VFR-OUT=0. CALOPT=FLASH  
 
UTILITY PROPANE GENERAL  
    COST PRICE=0. <$/kg> 
    PARAM UTILITY-TYPE=REFRIGERATIO COOLING-VALU=10.256 CALOPT=DUTY  
 
EO-CONV-OPTI  
 
CONV-OPTIONS  
    PARAM TOL=1E-010  
 
STREAM-REPOR MOLEFLOW MASSFLOW MOLEFRAC PROPERTIES=GASPROPS XAPP  
 
REACTIONS MDEA-ACI REAC-DIST  
    IN-UNITS SI MOLE-ENTHALP='cal/mol' VFLOW-RPM='cuft/hr/rpm'  & 
        F-FACTOR='(lb-cuft)**.5/hr'  
    DESCRIPTION "LIQUID PHASE REACTION"  
    REAC-DATA 1 EQUIL PHASE=L KBASIS=MOLE-GAMMA  
    REAC-DATA 2 EQUIL PHASE=L KBASIS=MOLE-GAMMA  
    REAC-DATA 3 EQUIL PHASE=L KBASIS=MOLE-GAMMA  
    REAC-DATA 4 KINETIC PHASE=L CBASIS=MOLAR  
    REAC-DATA 5 KINETIC PHASE=L CBASIS=MOLAR  
    REAC-DATA 6 EQUIL PHASE=L KBASIS=MOLE-GAMMA  
    REAC-DATA 7 EQUIL PHASE=L KBASIS=MOLE-GAMMA  
    K-STOIC 1 A=-9.41650 B=-4234.980 C=0.0 D=0.0  
    K-STOIC 2 A=132.8990 B=-13445.90 C=-22.47730 D=0.0  
    K-STOIC 3 A=216.0490 B=-12431.70 C=-35.48190 D=0.0  
    K-STOIC 6 A=214.5820 B=-12995.40 C=-33.54710 D=0.0  
    K-STOIC 7 A=-9.7420 B=-8585.470 C=0.0 D=0.0  
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    RATE-CON 4 PRE-EXP=4.31520E+13 ACT-ENERGY=13249.0  
    RATE-CON 5 PRE-EXP=3.74860E+14 ACT-ENERGY=25271.560  
    STOIC 1 MDEA+ -1.0 / H2O -1.0 / MDEA 1.0 / H3O+ 1.0  
    STOIC 2 H2O -2.0 / H3O+ 1.0 / OH- 1.0  
    STOIC 3 HCO3- -1.0 / H2O -1.0 / H3O+ 1.0 / CO3-2 1.0  
    STOIC 4 CO2 -1.0 / OH- -1.0 / HCO3- 1.0  
    STOIC 5 HCO3- -1.0 / CO2 1.0 / OH- 1.0  
    STOIC 6 H2O -1.0 / H2S -1.0 / HS- 1.0 / H3O+ 1.0  
    STOIC 7 H2O -1.0 / HS- -1.0 / S-2 1.0 / H3O+ 1.0  
    POWLAW-EXP 4 CO2 1.0 / OH- 1.0  
    POWLAW-EXP 5 HCO3- 1.0  
 
REACTIONS MDEA-CO2 REAC-DIST  
    IN-UNITS SI MOLE-ENTHALP='cal/mol' VFLOW-RPM='cuft/hr/rpm'  & 
        F-FACTOR='(lb-cuft)**.5/hr'  
    DESCRIPTION "LIQUID PHASE REACTION"  
    REAC-DATA 1 EQUIL PHASE=L KBASIS=MOLE-GAMMA  
    REAC-DATA 2 EQUIL PHASE=L KBASIS=MOLE-GAMMA  
    REAC-DATA 3 EQUIL PHASE=L KBASIS=MOLE-GAMMA  
    REAC-DATA 4 KINETIC PHASE=L CBASIS=MOLAR  
    REAC-DATA 5 KINETIC PHASE=L CBASIS=MOLAR  
    K-STOIC 1 A=-9.41650 B=-4234.980 C=0.0 D=0.0  
    K-STOIC 2 A=132.8990 B=-13445.90 C=-22.47730 D=0.0  
    K-STOIC 3 A=216.0490 B=-12431.70 C=-35.48190 D=0.0  
    RATE-CON 4 PRE-EXP=4.31520E+13 ACT-ENERGY=13249.0  
    RATE-CON 5 PRE-EXP=3.74860E+14 ACT-ENERGY=25271.560  
    STOIC 1 MDEA+ -1.0 / H2O -1.0 / MDEA 1.0 / H3O+ 1.0  
    STOIC 2 H2O -2.0 / H3O+ 1.0 / OH- 1.0  
    STOIC 3 HCO3- -1.0 / H2O -1.0 / H3O+ 1.0 / CO3-2 1.0  
    STOIC 4 CO2 -1.0 / OH- -1.0 / HCO3- 1.0  
    STOIC 5 HCO3- -1.0 / CO2 1.0 / OH- 1.0  
    POWLAW-EXP 4 CO2 1.0 / OH- 1.0  
    POWLAW-EXP 5 HCO3- 1.0  
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APPENDIX D 

GAIN MATRICES, SINGULAR VALUES 

AND CONDITION NUMBERS 

Table 32. Singular values and condition numbers of dehydration process with manipulated variable disturbances. 

MVs Changes -30% -20% -10% -5% -2% -1% -0.5% -0.2% -0.1% 

S
in

g
u
la

r 
V

al
u
es

 (
S

V
) Max SVs 3.736 5.090 9.122 14.293 16.319 16.530 16.619 16.651 16.657 

 2.294 2.904 4.264 4.256 4.241 4.236 4.233 4.231 4.230 

 0.967 0.856 0.762 0.759 0.758 0.757 0.757 0.757 0.757 

 0.589 0.555 0.407 0.409 0.410 0.410 0.410 0.410 0.410 

 0.143 0.152 0.158 0.161 0.162 0.162 0.162 0.164 0.164 

Min SVs 0.003 0.003 0.002 0.002 0.002 0.002 0.002 0.002 0.002 

CNs 1167.469 2036.160 3966.130 6806.095 7770.857 8265.000 8309.550 8325.700 8328.400 

          

MVs Changes 0.10% 0.2% 0.5% 1% 2% 5% 10% 20% 30% 

S
in

g
u
la

r 
V

al
u
es

 (
S

V
) Max SVs 16.644 16.651 16.651 16.650 16.625 16.406 15.858 14.683 13.624 

 6.621 6.584 6.556 6.534 6.500 6.410 6.278 4.091 3.301 

 2.859 2.853 2.848 2.844 2.837 2.817 2.787 2.503 1.962 

 0.536 0.536 0.536 0.536 0.535 0.535 0.534 0.526 0.490 

 0.401 0.401 0.401 0.401 0.401 0.402 0.402 0.395 0.299 

Min SVs 0.178 0.178 0.175 0.175 0.174 0.175 0.176 0.176 0.161 

CNs 100.688 100.731 102.528 102.462 102.310 100.587 96.754 89.040 83.326 
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Table 33. Singular values and condition numbers of oxydehydrogenation process with manipulated variable disturbances. 

MVs Changes -30% -20% -10% -5% -2% -1% -0.5% -0.2% -0.1% 
S

in
g
u
la

r 
V

al
u
es

 (
S

V
s)

 

Max SVs 4.718 4.186 4.176 4.232 4.291 4.319 4.331 4.342 4.365 

 3.018 3.178 3.371 3.460 3.519 3.541 3.553 3.558 3.561 

 1.881 1.954 2.397 2.716 2.948 3.032 3.075 3.102 3.108 

 1.637 1.815 1.845 1.850 1.855 1.857 1.858 1.862 1.861 

 1.317 1.293 1.354 1.390 1.423 1.438 1.445 1.450 1.455 

 1.184 1.195 1.312 1.371 1.399 1.406 1.410 1.412 1.413 

 1.146 0.769 0.890 0.960 1.006 1.023 1.031 1.037 1.042 

 0.399 0.363 0.361 0.358 0.362 0.361 0.360 0.359 0.359 

 0.084 0.074 0.066 0.063 0.061 0.060 0.060 0.060 0.060 

Min SVs 0.009 0.007 0.006 0.005 0.005 0.005 0.005 0.005 0.004 

CNs 512.804 589.549 732.614 829.784 893.938 899.708 941.522 943.935 992.000 

          

MVs Changes 0.10% 0.2% 0.5% 1% 2% 5% 10% 20% 30% 

S
in

g
u
la

r 
V

al
u
es

 (
S

V
s)

 

Max SVs 4.356 4.360 4.362 4.359 4.380 4.485 4.711 5.471 4.518 

 3.569 3.571 3.577 3.545 3.548 3.594 3.666 3.777 3.726 

 3.127 3.135 3.157 2.543 1.862 1.868 1.885 1.962 1.816 

 1.861 1.860 1.858 1.859 1.510 1.535 1.612 1.766 1.727 

 1.454 1.454 1.460 1.464 1.431 1.454 1.498 1.622 1.438 

 1.414 1.415 1.417 1.422 1.369 1.129 1.232 1.354 1.099 

 1.041 1.043 1.048 1.056 1.074 0.938 0.866 0.800 1.054 

 0.358 0.358 0.353 0.353 0.352 0.349 0.343 0.325 0.292 

 0.060 0.060 0.060 0.059 0.059 0.058 0.056 0.052 0.048 

Min SVs 0.003 0.005 0.005 0.006 0.010 0.014 0.013 0.011 0.005 

CNs 1405.194 927.702 948.217 751.517 429.441 327.387 365.186 511.346 982.152 
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APPENDIX E 

SIMULATION RESULTS FOR CALCULATION OF FLEXIBILITY INDICES 

Table 34. Simulation results of the dehydration process. 

Variable 

type 
Variables and parameters Unit 

Scenarios 

1 2 3 4 5 6 7 8 9 
Impact 

variables 

Evaporator steam kg/h 2,425 2,425 2,425 2,425 2,425 2,425 2,425 2,425 2,425 
Reactor heating oil kg/h 35,578 0 0 0 0 35,578 35,578 35,578 35,578 
Boiler feed water kg/h 1,136 0 0 1,136 1,136 0 0 1,136 1,136 
Mixer steam kg/h 1,802 0 1,802 0 1,802 0 1,802 0 1,802 

            

Control 

variables 

Furnace duty Gcal/h 0.732 0.732 0.732 0.732 0.732 0.732 0.732 0.732 0.732 
Valve opening % 46.3 46.3 46.3 46.3 46.3 46.3 46.3 46.3 46.3 
Quench water kg/h 30,000 30,000 30,000 30,000 30,000 30,000 30,000 30,000 30,000 

            

Specified 

parameters 

Pump temperature C        25.2 25.2 25.2 25.2 25.2 25.2 25.2 25.2 25.2 
Evaporator outlet temperature C        108 108 108 108 108 108 108 108 108 
Mixer outlet temperature C        116 108 116 108 116 108 116 108 116 
Furnace outlet temperature C        350 418 350 418 350 418 350 418 350 
Reactor temperature C        350 102 117 102 117 419 350 419 350 
Boiler outlet temperature C        160 102 117 63 110 419 350 170 160 
Quench outlet temperature C        83.1 55.9 76.9 39.3 66.2 77.7 -68.1 67.0 83.1 
Scrubber outlet temperature C        81.3 53.2 74.6 39.4 63.3 75.5 -65.5 64.2 81.3 
Dryer inlet temperature C        81.3 53.2 74.6 39.4 63.3 75.5 -65.5 64.2 81.3 
Boiler pressure BAR     3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 
Valve outlet pressure BAR     1.9 2.7 2.2 2.8 2.5 2.3 0.0 2.6 1.9 
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Table 34. (Continued) 

Variable 

type 
Variables and parameters Unit 

Scenarios 

10 11 12 13 14 15 16 17 
Impact 

variables 

Evaporator steam kg/h 0 0 0 0 0 0 0 0 
Reactor heating oil kg/h 0 0 0 0 35,578 35,578 35,578 35,578 
Boiler feed water kg/h 0 0 1,136 1,136 0 0 1,136 1,136 
Mixer steam kg/h 0 1,802 0 1,802 0 1,802 0 1,802 

           

Control 

variables 

Furnace duty Gcal/h 0.732 0.732 0.732 0.732 0.732 0.732 0.732 0.732 
Valve opening % 46.3 46.3 46.3 46.3 46.3 46.3 46.3 46.3 
Quench water kg/h 30,000 30,000 30,000 30,000 30,000 30,000 30,000 30,000 

           

Specified 

parameters 

Pump temperature C        25.2 25.2 25.2 25.2 25.2 25.2 25.2 25.2 
Evaporator outlet temperature C        20 20 20 20 20 20 20 20 
Mixer outlet temperature C        20 110 20 110 20 110 20 110 
Furnace outlet temperature C        108 112 108 112 108 112 108 112 
Reactor temperature C        -54 97 -54 97 100 117 100 117 
Boiler outlet temperature C        -54 97 -130 52 100 117 53 109 
Quench outlet temperature C        22.6 54.0 4.0 37.8 54.4 76.0 37.5 65.0 
Scrubber outlet temperature C        29.5 51.3 22.8 38.3 51.8 73.6 38.2 62.1 
Dryer inlet temperature C        29.5 51.3 22.8 38.3 51.8 73.6 38.2 62.1 
Boiler pressure BAR     3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 
Valve outlet pressure BAR     2.9 2.6 3.0 2.8 2.7 2.3 2.9 2.5 
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Table 34. (Continued) 

Variable type Variables and parameters Unit 
Scenarios 

18 19 20 21 22 23 24 25 
Impact 

variables 

Evaporator steam kg/h 2,425 2,425 0 0 0 0 659 655 
Reactor heating oil kg/h 0 35,578 0 0 0 0 9,667 9,606 
Boiler feed water kg/h 1,136 0 0 0 1,136 1,136 309 829 
Mixer steam kg/h 0 1,802 0 1,802 0 1,802 490 487 

           

Control 

variables 

Furnace duty Gcal/h 0.952 0 0.952 0.952 0.952 0.952 0.952 0.952 
Valve opening % 46.3 46.3 46.3 46.3 46.3 46.3 46.3 46.3 
Quench water kg/h 30,000 30,000 30,000 30,000 30,000 30,000 30,000 30,000 

           

Specified 

parameters 

Pump temperature C        25.2 25.2 25.2 25.2 25.2 25.2 25.2 25.2 
Evaporator outlet temperature C        108 108 20 20 20 20 103 103 
Mixer outlet temperature C        108 116 20 110 20 110 108 108 
Furnace outlet temperature C        494 116 108 113 108 113 158 157 
Reactor temperature C        108 120 -11 104 -11 104 101 100 
Boiler outlet temperature C        85 120 -11 104 -107 76 94 76 
Quench outlet temperature C        45.5 81.8 29.4 59.1 9.7 43.9 50.8 43.1 
Scrubber outlet temperature C        44.1 79.9 33.1 56.2 24.4 42.7 48.6 42.2 
Dryer inlet temperature C        44.1 79.9 33.1 56.2 24.4 42.7 48.6 42.2 
Boiler pressure BAR     3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 
Valve outlet pressure BAR     2.8 2.1 2.9 2.6 3.0 2.7 2.7 2.8 
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Table 35. Simulation results of the oxydehydrogenation process. 

Variable 

type 

Variable and parameter Unit Scenarios 

1 2 3 4 5 6 7 8 
Impact 

variables 

Cooler 1 Cooling water rate kg/h 245,737 245,737 245,737 245,737 0 0 0 0 

Cooler 2 Cooling water rate kg/h 211,529 211,529 0 0 211,529 211,529 0 0 

Cooler 4 Cooling water rate kg/h 161,025 0 161,025 0 161,025 0 161,025 0 

           

Control 

variables 

Heater steam rate kg/h 6,611 6,611 6,611 6,611 6,611 6,611 6,611 6,611 

Quench water rate kg/h 34,000 34,000 34,000 34,000 34,000 34,000 34,000 34,000 

           

Specified 

parameters 

Reactor 1 cooler temperature C 396 396 396 396 396 396 396 396 

Reactor 2 mixed inlet temperature C 90 90 90 90 396 396 396 396 

Reactor 2 cooler temperature C 368 368 368 368 586 586 586 586 

Reactor 3 mixed inlet temperature C 90 90 368 368 343 343 586 586 

Reactor 3 cooler temperature C 375 375 570 570 538 538 750 750 

Scrubber temperature C 71 71 122 122 126 126 148 148 

Compressor temperature C 193 193 223 223 223 223 226 226 

Product concentration %mol 96.7 96.7 94.1 94.1 90.7 90.7 89.7 89.7 

Production rate kg/h 3,301 3,301 3,409 3,409 3,550 3,550 3,579 3,579 
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Table 35. (Continued) 

Variable 

type 

Variable and parameter Unit Scenarios 

9 10 11 12 13 14 15 
Impact 

variables 

Cooler 1 Cooling water rate kg/h 245,737 245,737 0 0 0 0 90,925 

Cooler 2 Cooling water rate kg/h 0 0 211,529 211,529 0 0 78,268 

Cooler 4 Cooling water rate kg/h 161,025 0 161,025 0 161,025 0 59,578 

          

Control 

variables 

Heater steam rate kg/h 0 0 0 0 0 0 0 

Quench water rate kg/h 43,000 43,000 43,000 43,000 43,000 43,000 43,000 

          

Specified 

parameters 

Reactor 1 cooler temperature C 152 152 152 152 152 152 152 

Reactor 2 mixed inlet temperature C -33 -33 152 152 152 152 78 

Reactor 2 cooler temperature C 1,479 1,479 394 394 394 394 364 

Reactor 3 mixed inlet temperature C 1,479 1,479 123 123 394 394 251 

Reactor 3 cooler temperature C 1,244 1,244 374 374 581 581 479 

Scrubber temperature C 30 30 92 92 132 132 95 

Compressor temperature C 30 30 92 92 132 132 95 

Product concentration %mol 0.0 0.0 91.3 91.3 90.7 90.7 95.8 

Production rate kg/h 10,909 10,971 3,526 3,526 3,551 3,551 3,342 
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