
S.IM.PL SERIALIZATION:

TYPE SYSTEM SCOPES ENCAPSULATE CROSS-LANGUAGE,

MULTI-FORMAT INFORMATION BINDING

A Thesis

by

NABEEL SHAHZAD

Submitted to the O�ce of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

December 2011

Major Subject: Computer Science

S.IM.PL Serialization: Type System Scopes Encapsulate

Cross-Language, Multi-Format Information Binding

Copyright 2011 Nabeel Shahzad

S.IM.PL SERIALIZATION:

TYPE SYSTEM SCOPES ENCAPSULATE CROSS-LANGUAGE,

MULTI-FORMAT INFORMATION BINDING

A Thesis

by

NABEEL SHAHZAD

Submitted to the O�ce of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Approved by:

Chair of Committee, Andruid Kerne
Committee Members, Bjarne Stroustrup

Jaakko Järvi
Philip Galanter

Head of Department, Duncan Walker

December 2011

Major Subject: Computer Science

iii

ABSTRACT

S.IM.PL Serialization:

Type System Scopes Encapsulate Cross-Language, Multi-Format Information

Binding. (December 2011)

Nabeel Shahzad, B.S., National University of Computer and Emerging Sciences

Chair of Advisory Committee: Dr. Andruid Kerne

Representing data outside of and between programs is important in software that

stores, shares, and manipulates information. Formats for representing information,

varying from human-readable verbose (XML) to light-weight, concise (JSON), and

non-human-readable formats (TLV) have been developed and used by applications

based on their data and communication requirements. Writing correct programs that

produce information represented in these formats is a di�cult and time-consuming

task, as developers must write repetitive, tedious code to map loosely-typed serialized

data to strongly-typed program objects.

We developed S.IM.PL Serialization, a cross-language multi-format information

binding framework to relieve developers from the burdens associated with the se-

rialization of strongly-typed data structures. We developed type system scopes, a

means of encapsulating data types and binding semantics as a cross-language ab-

stract semantics graph. In comparison to representing data binding semantics and

information structure through external forms such as schemas, configuration files, and

interface description languages, type system scopes can be automatically generated

from declarations in a data binding annotation language, facilitating software engi-

neering. Validation is based on use in research applications, a study of how computer

science graduate students use the software to develop applications, and performance

iv

benchmarks. As a case study, we also examine the cross-language development of a

Team Coordination (TeC) game.

v

To Ammi, Papa, Mona, Fariha, Yumna, and my lovely fianceé Marium

vi

ACKNOWLEDGMENTS

I would like to thank my advisor, Dr. Andruid Kerne, for his continuous support,

commitment, and encouragement. I have acquired valuable skills and intellectual

knowledge under his guidance, which will benefit me in years to come.

I would also like to thank my committee members, Jaakko Järvi, Bjarne Strous-

trup, and Philip Galanter for their suggestions and feedback during the course of this

research.

Thanks to my mixed-reality lab mates Zachary O. Toups and William A. Hamil-

ton for their help, suggestions and support in every aspect of my research. Special

thanks to my friend, Sashikanth Damaraju, for invaluable discussions, ideas, and use

cases that refined my research. I wish great success to every member at the Interface

Ecology Lab.

Finally, thanks to my parents, who have always shown confidence in me and

supported me whenever I required. Everything that I have achieved in life was not

possible without your unconditional love and support.

vii

TABLE OF CONTENTS

CHAPTER Page

I INTRODUCTION . 1

II S.IM.PL SERIALIZATION . 4

A. Example Walkthrough . 5

B. Source and Target Languages 9

C. S.IM.PL Type System . 9

1. Scalar Types . 10

2. Composite Types . 11

3. Collection Types . 12

4. Inheritance and Polymorphic Types 12

D. Data Binding Annotation Language 13

1. Individual Field Augmentation 13

2. Collection Field Augmentation 16

3. Polymorphic Fields Augmentation 18

4. Custom Tags . 18

5. Limiting the Scope of Translation 19

III TYPE SYSTEM SCOPES . 20

A. Type System Scope Sub-structures 21

1. Class Descriptors . 22

2. Field Descriptors . 23

B. Runtime DBAL Interpretation 25

1. Interpretation during Type System Scope Declaration 25

2. Interpretation during Serialization 27

3. Interpretation during Deserialization 28

C. Data Binding Mechanism 30

1. Serialization . 30

2. Deserialization . 32

D. Type System Scope Augmentation 34

E. Handling Graph Data Structures 36

IV MULTI-FORMAT SUPPORT 40

A. Supported Formats . 41

viii

CHAPTER Page

B. Fine-grained Control . 42

C. BibTeX Support . 43

D. Conclusion . 45

V CROSS-LANGUAGE SUPPORT 48

A. Supported Types and Mappings 49

B. Cross-Language Class Translation 49

1. Documentation Translation 52

C. Portable Type System Scopes 55

D. Conclusion . 55

VI MULTI-FORMAT AND CROSS-LANGUAGE LIMITATIONS . 59

A. Format Specific Limitations 59

1. BibTeX with Composite Objects 59

2. JSON with Polymorphic Collections 60

B. Cross-Language Limitations 61

1. Keywords in Programming Languages 62

2. Data Types and Mappings 62

3. Use of Generics . 63

VII VALIDATION - RESEARCH FRAMEWORKS 64

A. Object Oriented Distribute Semantics Services 65

1. Polymorphic Message Architecture 65

2. Flexible Data Binding 67

3. Platform-Independent and Multi-Format Approach . . 68

B. Meta-Metadata Language and Architecture 70

1. Meta-Metadata Type System 71

2. Metadata Definition Language 74

3. Compile-time Module 78

4. Run-time Module . 81

C. Preferences Management System 83

1. Meta-Preferences System 85

D. Conclusion . 86

VIII VALIDATION - RESEARCH APPLICATIONS 88

A. combinFormation . 89

1. Launch Configuration and User Settings 91

2. Information Extraction from the Web 92

ix

CHAPTER Page

3. Saving an Information Composition 94

B. Team Coordination Game 97

1. Message Communication Architecture 98

2. Data Binding TeC Entities 99

a. Static Game Data 102

b. Dynamic Game Data 104

3. Recording and Replaying Game Sessions 106

C. Cross-Language Use Case: TeC iPhone Client 107

1. Why Migrate TeC Client? 108

2. Cross-Language Implementation 109

D. Conclusion . 111

IX PERFORMANCE BENEFITS AND DEVELOPER EXPE-

RIENCE . 113

A. Performance Evaluation 114

1. Serialization Benchmarks 115

2. Deserialization Benchmarks 116

3. Discussion on Benchmark Reports 117

B. Development Experience 118

1. Human Centered Computing 119

2. Senior Capstone Design 121

C. Applications Developed by Students 122

1. Sketch Recognition Application 122

2. Multi-Modal Rummy Game 123

D. Conclusion . 124

X RELATED WORK . 126

A. Document-Centric Approaches 126

B. Object-Centric Approaches 127

C. Cross-Language Information Binding 128

D. XML Programming Languages 129

XI CONCLUSION . 130

A. S.IM.PL Serialization . 131

B. Type System Scopes . 132

1. Cross-Language Type System 132

C. Multi-Format Support . 133

D. Cross-Language Support 134

x

CHAPTER Page

E. Validation . 134

1. Data Binding Architecture and Extensibility 134

2. Real-World Software Applications and Robustness . . 136

3. Performance Benefits 137

4. Development Experience 137

F. Ongoing Work . 138

1. Pull Parsers . 138

2. Extend ElementState? 138

G. Future Work . 139

1. Languages without Reflection 139

2. Generic Parsers . 140

3. Data Representation Protocols 141

REFERENCES . 142

APPENDIX A . 148

APPENDIX B . 149

APPENDIX C . 155

VITA . 156

xi

LIST OF TABLES

TABLE Page

I Shows the categorization of source and target languages based

on their reflection and annotation features. S.IM.PL Serialization

supports data bindings in Java, C#, and Objective-C 10

II Shows the metadata in FieldDescriptors derived from field

types. This metadata is used by de/serialization processes to

determine the abstract type of a field and execute specific

functionality . 24

III Shows advantages and disadvantages of data representation for-

mats supported by S.IM.PL Serialization 41

IV The @simpl hints annotation accepts an array of the following

enumerated parameters, allowing specification of hints for multi-

ple formats. 42

V Annotations specific to BibTeX data representation format. 44

VI The primitive data types in Java and their equivalent data types

in C# and Objective-C . 50

VII Shows the non-primitive/complex data types in Java and their

equivalent data types in C# and Objective-C 51

VIII Types of TeC messages and their size, depth, and count. Size is

calculated in bytes, which denotes the amount of data contained in

the message. Depth is the level of nesting when serialized. Count

is an approximate measure of the number of times the messages

are sent in a single game session. 101

IX Serialization time required using di↵erent serialization. S.IM.PL

Serialization outperforms other frameworks in all scenarios. 115

xii

TABLE Page

X Deserialization time required using di↵erent serialization frame-

works. S.IM.PL Serialization outperforms other frameworks in all

scenarios, except small XML files compared to JiBX. 116

XI De/serialization time normalized with the smallest value for each

size of XML document. 117

XII Interview groups of student developers. Each group developed a

research grade software application using S.IM.PL Serilialization

independently or as part of other research frameworks, such as

OODSS and meta-metadata. 119

xiii

LIST OF FIGURES

FIGURE Page

1 An XML document, which is a serialized representation of

GameData instance. Class and field declarations are bound to

specific tags and attributes in XML. Data is represented as

values of these tags and attributes. 5

2 Class declarations of a polymorphic base type Threat and derived

sub-types. Subclasses override tag names of the base class through

@simpl tag annotation. Additional fields can also be added and

annotated in sub-types. 6

3 Static accessor/factory get() method is invoked to create a type

system scope instance. A unique identifier threatTypes is used

for registering/finding the instance. 7

4 Invoking the serialize() method on an instance of GameData

serializes it to the output stream. The format of the serialized

representation is specified as an argument to the method call. 8

5 Static accessor/factory get() method is invoked to create an in-

stance of type system scope. Invoking deserialize() method

on gameTypesScope deserializes data from input stream into an

instance of GameData. Format of the input data is specified as an

argument to the method call . 8

6 Formal grammar of Data Binding Annotation Language. An aug-

mented subset of BNF-style grammar for Java. (1 of 2) 14

7 Formal grammar of Data Binding Annotation Language. An aug-

mented subset of BNF-style grammar for Java. (2 of 2) 15

8 The type system scope ASG, generated from augmented class def-

inition of the GameData (see Figure 1) type. ClassDescriptors

create tag-field mappings to FieldDescriptors. For the polymor-

phic field threats, the FieldDescriptor creates tag-class map-

pings to other ClassDescriptors. 21

xiv

FIGURE Page

9 The sequence of operations during interpretation of DBAL dec-

larations when a user specifies a type system scope. Resolved

instances of ClassDescriptors are mapped by class tag name in

type system scopes. 26

10 The sequence of operations during interpretation of DBAL

declarations when the framework serializes data. Instances of

ClassDescriptors and FieldDescriptors are created. 27

11 The sequence of operation in interpretation of DBAL

declarations when the framework deserializes data.

Un-resolved FieldDescriptors are resolved, evaluating

@simpl scope declaration and creating tag-class mappings in

FieldDescriptors. 29

12 Serialization algorithm overview: Serializing instance of an object.

ClassDescriptors and FieldDescriptors objects are used to

serialize data into a structured representation. 31

13 Deserialization algorithm overview using SAX parser: Parsing

data from a structured representation, utilizing type system scope

to create a corresponding typed object model. 33

14 Augmentation algorithm overview: Recursive algorithm that com-

putes the transitive closure of an input type system scope. For

each ClassDescriptor mapped in type system scope, the algo-

rithm recursively performs a depth-first search of ASG, adding

ClassDescriptors that are not present in the input type system scope. 35

15 Class definitions of ClassA and ClassB, which produces cyclic

references. Serialized represented of an instances of ClassB and

ClassA make use of simpl:id and simpl:ref attributes that fa-

cilitates representation of cyclic references. 37

16 Resolve Graph Algorithm: The first-pass that populates

requiringSimplId map in TranslationContext. The map

contains references to ElementState objects that were referenced

more than once with their corresponding simpl id as key. Later

in second-pass, TranslationContext facilitates graph handling. . . . 38

xv

FIGURE Page

17 An example of data binding BibTeX data. A publication’s Bib-

TeX entry in mapped to a Java class, utilizing BibTeX specific

annotations for specifying BibTeX key, type, and alternative tags. . . 43

18 Multi-Format Translation Overview: A class definition of Circle

containing a composite object of type Point. We generate the

SimplTypesScope for DBAL-augmented fields. The abstract se-

mantics graph encapsulate data bindings that facilitate transla-

tion of an instance of type Circle to supported data formats. 47

19 The GameData class in C#. S.IM.PL code-generation facility gen-

erated code with equivalent DBAL declarations and documenta-

tion from the Java source code. 53

20 The GameData class in Objective-C produced by S.IM.PL code-

generation facilities. Field declaration, annotations, and docu-

ment comments are all appropriately translated from Java source

code. 54

21 GameData type system scope serialized through S.IM.PL Serial-

ization. This XML representation is utilized by S.IM.PL code

generation facilities to generate code in target programming lan-

guages and data binding in Objective-C. 56

22 Cross-Language Translation Overview: A class definition of type

Circle is translated to Objective-C. Code comments are also

translated. Objective-C does not support annotations. Data

binding is facilitated through SimplTypesScope declaration in XML. 58

23 The representation of the GameData object as JSON, containing

non-polymorphic threats collection as wrapped and unwrapped. . . 60

24 The representation of the GameData object in XML and JSON,

containing polymorphic collection threats. 61

25 The communication flow and de/serialization of messages in

OODSS. A shared type system scope encapsulates the subtypes

of request and response message. Based on the polymorphic

subtype of the message, invocation of performService() and

processResponse() methods are dynamically dispatched. 66

xvi

FIGURE Page

26 An instance of ClientAvatar as serialized through S.IM.PL

Serialization, SOAP, and XML-RPC. Serialized representation

through OODSS and S.IM.PL Serialization is significantly

smaller in size as compared to other protocols. 69

27 A flickr.com author tagged photos web page and its correspond-

ing HTML. The web page contains a collection of thumbnails of

the images uploaded by the user. Images are hyper-links that

refer to more details of the particular image. 72

28 The definition of meta-metadata wrapper for flickr.com author

web pages. The flickr link wrapper specifies the structure

of links, while flickr author wrapper specifies a collection of

flickr links and semantics actions. 75

29 The data binding between a meta-metadata wrapper and DBAL-

augmented class definitions in Java. S.IM.PL Serialization’s sup-

port for polymorphic types enables the nested structure of meta-

data type declarations and semantic actions. 77

30 Di↵erent components involved in compiling a meta-metadata

wrapper repository. S.IM.PL Serialization and type system

scopes are used to deserialize wrappers and generate metadata classes. 79

31 Generated metadata classes for flickr.com author-tagged photos

information source. FlickrLink is used as collection of links in

FlickrAuthor class definition. 80

32 Runtime module: shows how metadata objects are populated from

an information resource. S.IM.PL Serialization is used for dese-

rializing meta-metadata wrappers, creating metadata instances,

direct binding, and information extraction. 82

33 The data binding between a configuration XML file and Java

classes. The PrefSet class contains a polymorphic map of prefer-

ences. The @simpl scope annotation specifies the types of pref-

erences, such as integer and boolean. 84

xvii

FIGURE Page

34 An information composition made from combinFormation, which

presents software technologies and research related to S.IM.PL

Serialization, in a form that provokes thinking. Image and text

clippings are extracted from web resources and scholarly articles. . . 90

35 The data flow in combinFormation. S.IM.PL Serialization is used

for configuring interface, specifying information sources, extract-

ing information through meta-metadata, and persisting an infor-

mation composition . 91

36 As a user hovers over a clipping, its nested metadata is displayed

through in-context details on demand tool. A user can modify

metadata, express interest in a specific term, or navigate to the

actual resource. 93

37 The mappings between Java classes and a serialized represen-

tation of an information composition. The @simpl scope and

@simpl classes annotations are used to represent polymorphic types. 95

38 The communication architecture of TeC, utilizing OODSS.

A shared type system scope encapsulates 9 di↵erent types of

messages that modify client state. 100

39 Data binding of an InitializeGame message class with its XML

representation. Seekers and goals are entities that can of di↵erent

sub-types. they are represented by polymorphic collections in

StaticGameData. 103

40 Data binding of an EnhancedGameTerrain map class with its

XML representation. It extends SimpleTerrain; a base class for

di↵erent types of maps. 104

41 Data binding of an EnhancedGameTerrain map class with its

XML representation. It extends SimpleTerrain; a base class for

di↵erent types of maps. 105

42 The TeC seeker client running on iPhone. Entities shown, such as

seeker, threat, goal, and map are represented by S.IM.PL-objects

in program. 110

1

CHAPTER I

INTRODUCTION

In the current age of dense interconnectivity among diverse computer systems, there is

an intense interest in developing software systems that communicate, share, and inter-

operate with each other. As more and more data are produced every day, software

engineers are burdened with the task of writing software programs that process this

data as information (data that informs). We categorize such software applications

as information-centric. A crucial part of writing information-centric applications

is to serialize and deserialize complex data structures. By serializing/deserializing

information, we refer to the ability of a software program to convert data into an

external representation so that it can be stored, transmitted over the network, and

stored among software systems without losing the meaning or structure of data.

As part of object-oriented programming, writing correct programs that export

and import structured representations of information is a di�cult and time-consuming

task. Developers must write repetitive, tedious code to map serialized data to typed

program objects. The burden on software engineers increases, as data can be repre-

sented in multiple formats such as XML (Extensible Markup Language) [1], JSON

(JavaScript Object Notation) [2], or YAML (YAML Ain’t Markup Language) [3]. The

problems are further multiplied when information is shared across platforms such as

Java [4], .NET [5], and Objective-C [6]. Developers are burdened with writing sep-

arate serialization code in each platform for applications operating upon the same

information. As a code base increases to cater to multiple formats and/or platforms,

maintenance and documentation also adds to the burden on software engineers.

The journal model is IEEE Transactions on Automatic Control.

2

Programming languages such as C# and Java provide built-in capabilities for

object serialization and deserialization. However, their serialization processes remain

highly opaque to programmers, as they cannot completely control which fields are

serialized and how. The serialized data itself is platform-dependent and obfuscated.

Prior data binding frameworks o↵er some transparency by providing mechanisms for

connecting program objects with serialized representations such as XML. However,

the overhead of such frameworks, in terms of configuration during development and

maintenance, and CPU runtime, may be prohibitive.

An example of a relatively high-level framework is JiBX [7], which o↵ers XML-

Java translation through requirement of writing XML binding definitions. These

definitions are verbose, external to the source code and managed separately by the

programmer. JiBX also uses a binding compilation step to augment Java byte-code

for handling mappings, which must be managed by the programmer. These extra

steps and external parallel definitions increase the burden on programmers, while

reducing software maintainability.

We need e�cient data binding frameworks that facilitate software maintenance

and enable software engineers to specify a variety of data structures for de/serial-

ization in di↵erent formats and across multiple platform. We present S.IM.PL seri-

alization, a flexible, maintainable, cross-language, multi-format information binding

framework hewn with object-oriented software design principles. It serves as a build-

ing block of a broader goal to integrate Support for Information Mapping in Program-

ming Languages (S.IM.PL). The S.IM.PL initiative develops languages, architectures,

and frameworks that integrate closely with popular programming languages to facil-

itate the development of object-oriented applications. S.IM.PL Serialization’s goal is

to reduce the burden on software engineers developing information-centric applica-

tions.

3

At the heart of S.IM.PL Serialization is the type system scope data structure,

which we invented to encapsulate data bindings as abstract semantics graphs. Type

system scopes are runtime data structures that cache reflection accessor objects to op-

timize serialization and deserialization processes. They are automatically generated

from declarations in Data Binding Annotation Language (DBAL); no o↵-line compila-

tion step is required. DBAL declarations reside within the source code with class and

field declarations; therefore, its structural co-existence facilitates code maintenance

and documentation.

Type system scopes are the key to S.IM.PL Serialization’s support for multiple

formats of data representation. They abstract translation semantics, enabling bind-

ings to multiple serialization formats, such as XML, JSON, TLV (type-length-value)

[8], and BibTeX [9]. Type system scopes also facilitate cross-language de/serialization.

Currently data binding is supported across Java, C#, and Objective-C programming

languages.

In the next chapter, we introduce S.IM.PL Serialization by examining a simple

data binding example and explaining DBAL constructs. Then, we introduce type

system scopes, describing their structure and processes that create instances of type

system scopes. We also describe serialization and deserialization algorithms that

leverage type system scopes. Later, Chapters IV and VI describe how type system

scopes facilitate multi-format and cross-language data binding. Chapters VII, VIII,

and IX present bottom-up validation of S.IM.PL Serialization. We validate design

and features through research frameworks that builds on S.IM.PL Serialization. Ro-

bustness, flexibility, and error-handling is validated through S.IM.PL Serialization’s

application in real-world software systems. Ease-of-use and overall development ex-

perience is measured through feedback from student developers. Finally, we validated

runtime performance benefits of S.IM.PL Serialization through benchmarking.

4

CHAPTER II

S.IM.PL SERIALIZATION

When building distributed applications, information is repeatedly serialized and de-

serialized across processes. Changing requirements can result in changes to structure

of information, platform dependency, and the addition of new messages. Software en-

gineers can benefit from an object-oriented flexible framework that requires minimal

changes in code to cope with changing requirements.

S.IM.PL Serialization extends the prior open-source, Java-based, XML data bind-

ing framework Ecologylab•xml [10] [11]. In comparison to Ecologylab•xml, S.IM.PL

Serialization provides a more precise annotation language and cross-language and

multi-format translation. Currently, cross-language support is provided for Java,

C#, and Objective-C programming languages. XML, JSON, and TLV formats com-

prise multi-format support. S.IM.PL Serialization is distributed as an open-source

framework with complete source code, documentation, and guide publicly available

on its website [12].

We begin with an example, using S.IM.PL Serialization for data binding of a

class definition with an XML document in a multi-player game. Then, we catego-

rize programming languages based on their reflection and annotation features, which

are important for implementing de/serialization functionalities. We also define cat-

egories of data types based on the restrictions they impose when represented in a

serialized form. Throughout this document, we will refer to these categories instead

of a specific programming language or data type. Finally, we formally present an

annotation language for expressing relationships between data objects and serialized

representations.

5

A. Example Walkthrough

S.IM.PL Serialization is designed to simplify the process of serializing and deserial-

izing data. We developed Data Binding Annotation Language (DBAL) (II, D) to

enable software engineers to specify bindings between a class declaration and a se-

rialized representation within programming language source code. Using language

constructs, software engineers can specify which fields are de/serialized and how they

are represented. We present an example of the syntax and semantics of translation of

a simplified XML document from a multi-player application, the Team Coordination

(TeC) game. TeC is a distributed application, in which a server serializes the runtime

state of the game world, which in turn is subsequently deserialized by the game client.

The client uses deserialized objects to render entities that comprise the game. In real-

ity, a TeC game state consists of a large set of types of in-game data objects; however,

<game_data
 timestamp="1234399958508"
 cyc_rem="8078"
 score="28.066665835678577">
 <threats>
 <nt m_id="_t1" ord="1" />
 <nt m_id="_t11" ord="11" />
 <ot m_id="_t14" ord="14" />
 <ot m_id="_t15" ord="15" />
 <pt m_id="_t18" ord="18" />
 <pt m_id="_t19" ord="19" />
 </threats>
</game_data>

public class GameData<T extends Threat>
extends ElementState
{
 @simpl_scalar
 protected long timestamp;

 @simpl_scalar
 protected int cycRem;

 @simpl_scalar
 protected double score;

 @simpl_scope("threatTypes")
 @simpl_collection
 protected ArrayList<T>
 threats = new ArrayList<T>();
}

Fig. 1.: An XML document, which is a serialized representation of GameData instance.

Class and field declarations are bound to specific tags and attributes in XML. Data

is represented as values of these tags and attributes.

6

in this example, we only examine a subset of the actual data. An XML document

that represents an instance of the game state, binds with class definitions in Java, as

shown in Figure 1. By augmenting Java classes with declarations in DBAL, we can

seamlessly de/serialize data without any handwritten parsing code.

@simpl_inherit
@simpl_tag("t")
public class Threat extends Entity
{
 @simpl_scalar
 protected String m_id;

 @simpl_scalar
 protected int ord;
}

@simpl_inherit
@simpl_tag("nt")
public class RepellableThreat extends Threat
{}

@simpl_inherit
@simpl_tag("pt")
public class PatrollingThreat extends Threat
{}

@simpl_inherit
@simpl_tag("ot")
public class OrbitingThreat extends Threat
{}

Fig. 2.: Class declarations of a polymorphic base type Threat and derived sub-types.

Subclasses override tag names of the base class through @simpl tag annotation. Ad-

ditional fields can also be added and annotated in sub-types.

We declared a top-level class GameData that encapsulates the information of an

instance of a game state. Note that GameData extends ElementState and each field

that binds to the XML document is augmented with annotations starting with ”@”

symbol. ElementState is the building block that provides methods for serialization;

7

subclasses function as program objects containing augmented fields that map to serial-

ized representation. The GameData instance is serialized with a root tag <game data>

in XML. The tag name is derived automatically through camel-case conversion of the

class name. We can also override automatic camel-case conversion by specifying a tag

name using annotations explained in II, D, 4. Timestamps, cycles remaining, and

score are scalar fields (II, C, 1) inside the GameData object. By default, these fields

are serialized as attributes of the parent <game data> tag. This default behaviour can

be overridden by annotations explained in IV, B, such that these fields are serialized

as leaf, text, or CDATA nodes in XML.

Later, we declared a polymorphic collection of threats. Threats in TeC can be

orbiting, repellable, or patrolling types depending on their behaviour in the game.

They are declared as sub-types of the common base class Threat (Figure 2). A

polymorphic collection as declared in GameData can contain objects of any of the

sub-types of Threat. The @simpl collection annotation specifies a one-to-many

relationship of a field with objects of the same base type. The @simpl scope annota-

tion specifies the types of objects the collection may contain at runtime. We defined

a SimplTypesScope (see Chapter III) object in Figure 3 that specifies which Java

classes functions as targets for translation within the collection. We also specified

threatTypesScope = SimplTypesScope.get("threatTypes",
 Threat.class,
 OrbitingThreat.class,
 RepellableThreat.class,
 PatrollingThreat.class);

Fig. 3.: Static accessor/factory get() method is invoked to create a type system

scope instance. A unique identifier threatTypes is used for registering/finding the

instance.

8

gameData.serialize(outputStream, FORMAT.XML);

Fig. 4.: Invoking the serialize() method on an instance of GameData serializes it

to the output stream. The format of the serialized representation is specified as an

argument to the method call.

an identifier for the declared type system scope object. This identifier can be used

at runtime to reference the previously created SimplTypesScope object, instead of

constructing a new instance. When serialized, the parent tag for the objects in a

collection is serialized as <threats>; derived from field name of the collection. The

tags for the child nodes in a collection are derived from tag names specified on each

class by class-level @simpl tag annotation.

gameTypesScope = SimplTypesScope.get("gamedata",
 threatTypesScope,
 GameData.class);

gameData = (GameData) gameTypesScope.deserialize(inputStream, FORMAT.XML);

Fig. 5.: Static accessor/factory get() method is invoked to create an instance of type

system scope. Invoking deserialize() method on gameTypesScope deserializes data

from input stream into an instance of GameData. Format of the input data is specified

as an argument to the method call

To serialize, we call the serialize method on the GameData object (Figure 4).

The serialize method is inherited from ElementState superclass. To deserialize,

we declared a SimplTypesScope object, which inherits from threatTypesScope and

adds the GameData class (Figure 5). The resultant gameTypesScope object contains

specifications of all the required classes that binds to the serialized representation.

Next, we call the deserialize method that populates the GameData object from data

9

in an XML document.

We presented a data binding example using an XML document and Java class

definitions. S.IM.PL Serialization also supports similar data bindings in C# and

Objective-C with XML, as well as JSON and TLV. In the next section, we define

categories of programming languages and data types, based on how they restrict

and/or support data binding.

B. Source and Target Languages

Di↵erent programming languages provide di↵erent features and constraints that de-

fine how binding semantics are expressed. S.IM.PL Serialization categorizes languages

with support for reflection and annotations, such as Java and C#, as source program-

ming languages. Programming languages without reflection and annotation language

support, such as Objective-C [6], JavaScript [13] and C++ [14], are categorized as

target programming languages. Table I shows the categorization of source and target

programming languages.

C. S.IM.PL Type System

The goal of S.IM.PL Serialization is to facilitate the development of information-

centric object-oriented software applications. Therefore, we only consider data types

and structures associated with object-oriented programming languages. Di↵erent

data structures define how they can be represented in a serialized form. We categorize

data structures in the following sub-sections and present how their structure maps

with a serialized representation.

10

Table I.: Shows the categorization of source and target languages based on their

reflection and annotation features. S.IM.PL Serialization supports data bindings in

Java, C#, and Objective-C

Language Category Support

Java source supports both annotations and reflection for inspect-

ing the runtime object model

C# source supports both annotations and reflections; annota-

tions are referred to as attributes

Objective-C target no support for annotations; reflection is supported by

objective-c runtime

Python target no support for annotations; reflection is supported

through introspection

JavaScript target no support for annotations; reflection is supported

through introspection

C++ target no support for annotations and reflection

1. Scalar Types

A scalar is a single unit of data. In serialized form, the value is represented as a String

in cases of XML or JSON, and as a sequence of bytes in TLV. S.IM.PL Serialization

categorizes data types that can be mapped onto a single unit of data, as scalar types.

Enumerated types are also considered as scalar types. For enumerated types, their

string constants specify their scalar values. Certain complex data types, such as

Color, can also be considered as scalar types based on the general convention of their

formatted representations as string. A color is commonly represented as a formatted

11

string of its hexadecimal value of RGB color space. However, alternate formats, such

as an HSV representation, are also possible.

S.IM.PL Serialization provides an extensible scalar type system that supports

de/serialization for all primitive data types as well as commonly used complex types

such as String, StringBuilder, File, Color, Date and URL (or, alternatively, our conve-

nient wrapper class, ParsedURL, which provides features such as lower case, domain

identification, and su�x extraction by lazy evaluation). Software programmers can

easily extend and override methods in ScalarType base class to provide alternate

behaviours for representing complex data types or add new complex data types as

scalars.

2. Composite Types

A complex unit of data consists of scalars and/or more complex units of data. Data

in this form is best represented as a hierarchy or tree structure. Tree-structured

data representation formats, such as XML, provide constructs for defining such a

hierarchy. In object-oriented programming languages, object models are graphs. By

making an exception with regard to cyclic and back references, we can consider object

models as tree structures, forming a one-to-one mapping with a tree-structured data

representation format. Cyclic and back references can be supported through addition

of new constructs in the data representation format.

In the S.IM.PL type system, we refer to such complex data types as composite,

meaning they are composed of one or more composite or scalar types. In practice,

composite types are user-defined classes

12

3. Collection Types

Collections are an important kind of data structure in programming languages, as

they enable co-allocation of multiple objects of the same base type. These objects

can either be of scalar or composite types. Commonly used types of collections are

List that hold multiple objects in order and Map that hold multiple objects relative

to a unique key or hash code.

S.IM.PL Serialization supports data binding of collection objects, such as

ArrayList(Java), List(C#), NSMutableArray(Objective-C), HashMap(Java),

Dictionary(C#), and NSMutableDictionary(Objective-C) data structures.

4. Inheritance and Polymorphic Types

A key concept in object-oriented programming is Inheritance. A subclass inherits

properties from its parent classes based on inheritance modifiers. A data binding

framework must look up the type hierarchy to include properties from superclasses

for data binding. However, in some cases, superclasses do not contain fields that need

to be serialized. In S.IM.PL Serialization, software programmers limit the scope of

lookup using annotations (II, D, 5) to avoid redundant processing.

Polymorphism is another key concept of object-oriented programming supported

through inheritance. A polymorphic object can be of any data type with the same

base class. The serialized representation of subclasses of the base type can be di↵er-

ent. They can only be determined at runtime. The framework should also implement

a mechanism to instantiate the correct subtype from a serialized representation. In

S.IM.PL Serialization, data bindings of polymorphic objects and collections are han-

dled through special annotations (II, D, 3).

13

D. Data Binding Annotation Language

In this section, we formally present the Data Binding Annotation Language (DBAL)

for defining the semantics of translation between data objects and serialized represen-

tations. Using the DBAL constructs, software engineers can augment class definitions

by specifying which fields are serialized and how they are represented. Later, instances

of augmented classes can seamlessly be serialized and deserialized. Since declarations

in DBAL reside within the source code, their structural co-existence with class and

field declarations facilitate documentation and readability of the source code. As

opposed to defining data bindings through external files, annotations are easier to

maintain through refactoring and code completion features natively supported by

integrated development environments such as Eclipse [15] or Visual Studio [16] .

Figure 6 and 7 presents a formal grammar of the Java definition of DBAL. This

grammar is an augmented subset of the BNF-style grammar for Java presented in The

Java Language Specification [4]. Sections 1-5 explain di↵erent types of annotations,

describing their specific roles in defining the semantics of translation. A complete

reference with examples is presented in Appendix B. Section 1 describes SIMPLIndi-

vidualAugmentation, which specifies a one-to-one mapping of scalar/composite fields

and serialized representation. Section 2 describes SIMPLCollectionAugmentation,

which specifies a one-to-many mapping between a collection field and serialized el-

ements. Finally, additional constructs are discussed that enable polymorphism and

flexibility in data bindings.

1. Individual Field Augmentation

SIMPLIndividualAugmentation functions as a constituent of a field declaration de-

fined by FieldDecl production rule in Figure 6. The Type of the declared field can be

14

[x] denotes zero or one occurrences of x.
{x} denotes zero or more occurrences of x.
x | y means one of either x or y.

ClassBody:
 { {ClassBodyDeclaration} }

ClassBodyDeclaration:
 ;| [static] Block
 | {OtherModifier} MemberDecl

OtherModifier:
 OtherAnnotation | public | protected | private
 | static | abstract | final | native | synchronized
 | transient | volatile | strictfp

MemberDecl:
 | GenericMethodOrConstructorDecl
 | MethodDecl
 | FieldDecl
 | void Identifier MethodDeclaratorRest
 | Identifier ConstructorDeclaratorRest
 | ClassOrInterfaceDeclaration

ClassOrInterfaceDeclaration:
 ModifiersOpt (ClassDeclaration | InterfaceDeclaration)

ClassDeclaration:
 class
 [@simpl_inherit]
 [@simpl_tag("TagName")]
 [SIMPLOtherTags]
 Identifier [extends Type] [implements TypeList] ClassBody

Type:
 Identifier [TypeArguments]{ . Identifier [TypeArguments]} {[]}
 | BasicType

TypeArguments:
 < TypeArgument {, TypeArgument} >

TypeArgument:
 Type
 | ? [(extends | super) Type]

Fig. 6.: Formal grammar of Data Binding Annotation Language. An augmented

subset of BNF-style grammar for Java. (1 of 2)

15

FieldDecl:
 [@simpl_tag("TagName")]
 [SIMPLOtherTags]
 [SIMPLClasses]
 SIMPLIndividualAnnotation Type Identifier MethodOrFieldRest |
 SIMPLCollectionAnnotation Identifier MethodOrFieldRest

SIMPLIndividualAnnotation:
 @simpl_composite [SIMPLClasses] | [SIMPLScope]
 | @simpl_scalar
 | @simpl_hints({HintName {, HintName }})
 | @simpl_filter(regex = "Expression")

SIMPLCollectionAnnotation:
@simpl_wrap | @simpl_nowrap
 @simpl_collection(["TagName"])
 [SIMPLClasses] | [SIMPLScope]

 Identifier TypeArguments
 | @simpl_map(["TagName"])

 [SIMPLClasses] | [SIMPLScope]
 Identifier TypeArguments

SIMPLClasses:
 @simpl_classes({ClassName.class{, ClassName.class}})

SIMPLScope:
 @simpl_scope(["SimplTypesScope"])

SIMPLOtherTags:
 @simpl_other_tags({"TagName"{, "TagName"}})

TagName:
 any allowed tag name

ClassName:
 name of any existing class

SimplTypesScope:
 the identifier of the type system scope

HintName:
 XML_ATTRIBUTE, XML_LEAF,
 XML_LEAF_CDATA, XML_TEXT,
 XML_TEXT_CDATA, or UNDEFINED

!Fig. 7.: Formal grammar of Data Binding Annotation Language. An augmented

subset of BNF-style grammar for Java. (2 of 2)

16

a composite or a scalar field.

The @simpl scalar annotation declares that a scalar-typed field should be de/se-

rialized. In programming languages, a class can be composed of scalar type fields and

objects of user-defined classes. Similarly, composite elements in a serialized form can

be recursively composed of composite elements and multiple scalar elements. The

@simpl composite annotation is used to declare a one-to-one mapping between a

field of typed user defined class, and its serialized representation. A field declared as

@simpl composite must be declared with a Type that is a subclass of ElementState.

The ElementState base class is provided by S.IM.PL Serialization. It contains meth-

ods for serialization; instances of ElementState subclasses function as program ob-

jects that binds to serialized representation.

The @simpl hints annotation is used for fine-grained control over serialized rep-

resentation, specific for each format (IV, B). It is often necessary to write code for

removing unwanted characters when deserializing data from the wild, such as XML

from an RSS feed. The @simpl filter annotation accepts a regular expression string

that can be used to filter incoming data, as per the programmer’s requirement.

2. Collection Field Augmentation

It is common that structured serialized representations contain nodes with a one-

to-many relationship to its constituent child nodes. In programming languages, a

similar relationship is represented by ArrayList (Java), List (C#), HashMap (Java),

or Dictionary (C#) data structures. The SIMPLCollectionAugmentation production

specifies a one-to-many relationship between fields and data. This annotation is used

in conjunction with Collection classes, provided by a programming language Software

Development Kit (SDK).

Within the SIMPLCollectionAugmentation production, the @simpl collection

17

annotation declaration specifies one-to-many mapping of child objects to a parent,

with sequential access to collection members. The generic Type declaration for such

a field can either be of a composite or scalar type. The optional TagName parameter

to @simpl collection enables further flexibility in defining these mappings. The

developer-specified tag name is required for non-polymorphic collections, as this tag

name specifies the mapping between child nodes and parent nodes. For polymorphic

collections, the developer should omit this parameter.

When deserializing data, it is often necessary for collections to be quickly and

randomly accessed, based on the data they contain, rather than an ordinal index. The

framework provides support for automatically generating keyed or hashed data struc-

tures directly from serialized representations. The @simpl map annotation construct,

in conjunction with a key-value data structure, can be used to specify deserialization

a collection typed field. The elements of this collection should be of composite type,

implementing the framework provided Mappable interface. The Mappable interface

requires a simple implementation of method key() to identify the field that should be

used for random access. When the implementation of method key() is specified, the

framework can automatically establish e�cient data structures such as Dictionary or

HashMap.

We categorize collections as wrapped or unwrapped, based on how they are seri-

alized. Elements of a wrapped collection are children of a parent collection element,

while elements of unwrapped collections lacks this intermediate parent. When a

collection is declared with @simpl wrap annotation, elements of the collection are

serialized as child of a parent collection element. The tag name of parent element is

derived from the camel case conversion of the collection field name or overridden by

@simpl tag annotation (II, D, 4). When declared with @simpl nowrap, the parent

element of the collection is not serialized, thus collection objects are serialized directly

18

as children of the composite element.

3. Polymorphic Fields Augmentation

S.IM.PL Serialization supports polymorphic composite and collection types. For poly-

morphic collections the @simpl classes annotation construct statically specifies a set

of classes that an object might be of Type at runtime. An associated tag-class map-

ping is generated. The elements of the serialized representation are directly bound to

an unqualified class name through camel case conversion. Tag-class mapping enables

deserialization of polymorphic subclasses of a common type.

For additional flexibility, the @simpl scope annotation allows developers to dy-

namically specify a polymorphic set of classes through a type system scope. The

parameter to the @simpl scope annotation specifies a unique identifier of a regis-

tered type system scope data structure (see Chapter III). @simpl scope annotation

is resolved through lazy-evaluation at runtime (III, B).

4. Custom Tags

The @simpl tag annotation construct (FieldDecl, and ClassDeclaration productions)

enables the programmer to explicitly specify a tag name for a given field or class.

The @simpl tag annotation overrides automatic camel case conversion of tag names.

It handles names outside the possible scope of translation, enabling the characters to

be used that are not allowed in class fields in a programming language, such as those

including a dash (”-”) or colon (”:”), or names that collide with reserved words (such

as abstract in Java). When @simpl tag is used for a field declaration, as in the

FieldDecl production, it remaps the serialized node name for the field. When used

as part of a class declaration, as in the ClassDeclaration production, @simpl tag

overrides the name conversion for objects of the given class, when they are trans-

19

lated based on class name (as with the root element of a document, or polymorphic

objects). @simpl tag also allows the programmer to compress custom serialized doc-

uments as desired. Field names can be of arbitrary length (and readability), while

the resulting serialized document (which may not be meant for human eyes) can be

as small as possible. Compressing reduces bandwidth, which can be a shortcoming of

verbose formats such as XML. These flexible mechanisms of specifying tag names pro-

vides maximum control over the output serialized representation, and enables reading

messages from the wild.

Support for compatibility with old versions of serialized representations is pro-

vided by the @simpl other tags directive. This directive takes one or more strings

as its argument. It can be applied to either a class or field declaration. The result cre-

ates extra one-way mappings from serialized representation to a class or field. These

mappings will only be used when deserializing data. For serialization the primary tag

names (camel case conversion or tag name from @simpl tag) will be used.

5. Limiting the Scope of Translation

Translating to and from serialized representations is not computationally free, so

it is useful for the programmers to be able to specify limits on its scope. The

@simpl inherit construct (ClassDeclaration production), by its presence in a class’s

declaration, indicates that the fields of the class’s superclass should be translated.

Otherwise, fields from the superclass and subsequent superclasses are not resolved

at runtime. This construct requires programmers to consider streamlining execution

of their code. Super classes that contain needed functionality but not needed for

serialization are omitted from translation.

20

CHAPTER III

TYPE SYSTEM SCOPES

Type system scopes are at the heart of data binding in the S.IM.PL Serialization

framework. They encapsulate translation semantics between run-time objects and

their serialized representations as an abstract semantics graph (ASG). Type system

scopes are immutable objects, which are automatically generated only once from

runtime interpretation of declarations in Data Binding Annotation Language (DBAL)

(II, D); therefore, no o✏ine compile-step is required. Type system scopes are cached

using e�cient data structures, such as HashMap (Java) or Dictionary (C#) data

types to improve runtime performance.

Type system scopes facilitate fine-grained control and flexibility over serialized

representation. They create an abstraction with specific information about the se-

mantics of translation, thus providing connection-points between object models and

di↵erent forms of serialized representations. Through the structural abstraction pro-

vided by type system scopes, back and forth translation between a class’s runtime

object and serialized representation becomes a seamless process.

In the next section, we explain the data structures that constitute a type system

scope. Then, we examine the runtime scenarios in which type system scopes are

derived from interpretation of DBAL. Later, we present the data binding algorithms

of serialization and deserialization that leverage type system scopes. Finally, we

present features utilizing type system scopes to facilitate data binding.

An ASG is like an abstract syntax tree (AST), with embedded semantic informa-
tion and the ability to make non-hierarchical references. Specifically, in an AST, a
reference to an entity is represented by an edge pointing to a leaf node. In an ASG,
reference is represented by an edge pointing to the root of the sub-graph in the ASG
that represents the declaration of the entity.

21

GameData

Threat

OrbitingThreat

RepellableThreat

PatrollingThreat

SCALAR<int>
cycRem

SCALAR<long>
timestamp

SCALAR<double>
score

COLLECTION
<polymorphic>

threats

SCALAR<String>
m_id

SCALAR<int>
ord

ClassDescriptors
ClassDescriptors

FieldDescriptorsType System Scope
gameTypesScope

Sub-types

defining

ta
g-

cl
as

s

ta
g-

fie
ld

ta
g-

fie
ld

Fig. 8.: The type system scope ASG, generated from augmented class definition of

the GameData (see Figure 1) type. ClassDescriptors create tag-field mappings to

FieldDescriptors. For the polymorphic field threats, the FieldDescriptor creates

tag-class mappings to other ClassDescriptors.

A. Type System Scope Sub-structures

Processing for de/serialization uses introspection of the object model through reflec-

tion operations, which can be computationally expensive; resulting in ine�ciencies

during de/serialization. We improve e�ciency by having type system scopes cache

reflection accessor objects and translation semantics expressed by declarations in

DBAL. Thus, subsequent requests for reflection accessor objects or translation se-

mantics avoid repeated introspection of the object model.

22

Reflection accessor objects and translation semantics are encapsulated in the

type system scope sub-structures ClassDescriptor and FieldDescriptor. A

ClassDescriptor encapsulates the translation semantics of a class definition, while

a FieldDescriptor encapsulates translation semantics of a field declared inside

a class. Figure 8 shows the referential structure of the example gameTypesScope.

Note that the FieldDescriptor of the collection threats contains a reference to

the ClassDescriptor of its defining type, forming a backward edge. We refer to

the type system scope as abstract semantics graph because it is constituted from

ClassDescriptors and FieldDescriptors that abstract translation semantics and

also contain backward and cyclic references to capture the structure of an object

model.

1. Class Descriptors

A ClassDescriptor object explicitly describes the translation semantics of a class

definition augmented with DBAL. An immutable instance of a ClassDescriptor is

only created once per class, when required. Since, runtime introspection is computa-

tionally expensive, ClassDescriptors cache reflection objects such as Class (Java),

Type (C#), and Class (Objective-C) objects.

The framework maintains a set of tag-class mapping of ClassDescriptors in

each type system scope. Tag-class mappings are essential to e�ciently find the cor-

rect ClassDescriptor from tag names when parsing a serialized representation. Fig-

ure 8 shows the tag name for GameData class. The game data tag, which was com-

puted from camel case conversion of the class name, is used to map the GameData

ClassDescriptor. If the @simpl other tags annotation is used, additional tag-class

mappings are created in the type system scope. When working with binary repre-

sentations, such as TLV, ClassDescriptors are also mapped by a unique integer id,

23

which is computed from a hash function that operates on the tag name.

For each constituent field, augmented with DBAL, a ClassDescriptor holds

a mapping of its constituent FieldDescriptors by their tag names and unique

integer ids. Figure 8 shows the tag-field mappings between ClassDescriptors

and FieldDescriptors. These mappings are essential to finding the correct

FieldDescriptor when parsing a serialized representation. Tag names for

FieldDescriptors are optionally computed from field-level @simpl tag and

@simpl other tags annotations.

2. Field Descriptors

For each class field augmented with DBAL, an associated immutable

FieldDescriptor is generated. Like ClassDescriptors, each FieldDescriptor

also contains tag names and a unique integer id for creating tag-field mappings in a

ClassDescriptor. Tag-field mappings enables binding to serialized representations.

Using the associated tags, the deserialization process can find the correct

FieldDescriptor, and hence instantiate the correct data type.

FieldDescriptors derived from scalar type fields contain generic methods for

de/serialization utilizing the ScalarType (II, C, 1) system. The ScalarType system

ensures the instantiation of the correct data type, while generating an appropri-

ate error/warning if the data is invalid. A ScalarType base class provides generic

methods for de/serialization, which developers can override to provide a type-specific

implementation, enabling easy addition of new data types as scalars. For compos-

ite or collections of composite types, a FieldDescriptor maintains a reference to

its defining ClassDescriptor, as shown in Figure 8. A reference to the defining

ClassDescriptor, enables the deserialization algorithm (see III, C, 2) to refer to the

correct ClassDescriptor in the type system scope, during parsing of deeply nested

24

data nodes.

For polymorphic fields, FieldDescriptors maintain tag-class mappings of all

valid types. The tag-class mapping refers to associated ClassDescriptors for the

valid types. As shown in Figure 8 the FieldDescriptor of the threats collection

contains references to sub-types of Threat. Again, tag-class mappings are used to

find the correct ClassDescriptor during deserialization, as polymorphic fields are

serialized by their class’s tag name, instead of the field’s tag name. The valid runtime

types are specified through @simpl classes or @simpl scope annotations. In case

of @simpl classes, tag-class mappings are immediately resolved when an instance

of a FieldDescriptor is created. In case of @simpl scope, tag-class mappings are

lazily-resolved during deserialization (see III, B, 3).

Table II.: Shows the metadata in FieldDescriptors derived from field types. This

metadata is used by de/serialization processes to determine the abstract type of a

field and execute specific functionality

Field Types Semantics

scalar describes scalar serializable field

composite element describes composite field with nested scalar/non-scalar fields

collection element describes collection field of composite objects

collection scalar describes collection field of scalar elements

map element describes map/dictionary data structure composite elements

wrapper describes a wrapper tag for a collection or map

pseudo field descriptor describes a place holder tag in a serialized document

ignored attribute error handling fields not bound with a serialized document

25

In addition to tag information, FieldDescriptors also contain metadata about

the type of the field, which guides the serialization and deserialization processes.

Table II shows the metadata a FieldDescriptor can contain and it’s meaning in

the context of serialization. During de/serialization the framework inspects metadata

contained in FieldDescriptors instead of using computationally expensive reflection

operations to determine the contextual type of an object.

B. Runtime DBAL Interpretation

Earlier, we explained that type system scopes are created from interpretation of

DBAL declarations. In this section, we describe three distinct runtime invocation

scenarios in which DBAL declarations are interpreted: (1) Specifying type system

scope (2) Serialize (3) Deserialize. In the following sub-sections, we present details

of each scenario explaining construction of type system scopes and constituent data

structures.

1. Interpretation during Type System Scope Declaration

The user creates an instance of a type system scope by declaring a name and set

of classes, each augmented with DBAL. The instance is created through a static

accessor/factory method, instead of the constructor, as introduced earlier (II, A). The

accessor/factory method creates an internal GlobalSimplTypesScopeMap (Figure 9)

that maps type system scopes, with their names as identifiers. Repeated calls with

the same name will not construct a new type system scope, but instead finds the

previously constructed instance. This allows programmers to avoid concerns about

ine�ciencies associated with potential re-instantiations, without having to coordinate

initialization sequencing control flows across modules.

26

if not exist

for each
class annotation

interpretation

identifier-
type system scope

map by
class name

Construct
Type System Scope

Resolve Type System
Scope

if not exist

Global
ClassDescriptors Map

Resolve
ClassDescriptor

Global Type System
Scope Map

create
tag-class
mapping

Fig. 9.: The sequence of operations during interpretation of DBAL declarations when

a user specifies a type system scope. Resolved instances of ClassDescriptors are

mapped by class tag name in type system scopes.

If a type system scope object does not exists for a given name, the

runtime resolves the ClassDescriptors for each specified class. An associated

ClassDescriptor for a given class is looked-up in the GlobalClassDescriptorMap,

which maps all instances of generated ClassDescriptors by qualified class name.

Annotations are only interpreted when an associated ClassDescriptor does not

exists in the GlobalClassDescriptorMap. Instances of resolved ClassDescriptors

are mapped with class tag name in type system scope. In this scenario, all class and

field-level annotations are resolved, except @simpl scope, which is lazily evaluated

during a deserialize invocation scenario (see III, 3).

27

Serialize

Global
ClassDescriptors Map

Resolve
ClassDescriptor

Resolve
FieldDescriptor

if not exist

annotation
interpretation

find
ClassDescriptor

for each
field

map by
class name

resolve
@simpl_classes

create
tag-class mapping

UnResolved
FieldDescriptor

@simpl_scope

Fig. 10.: The sequence of operations during interpretation of DBAL declara-

tions when the framework serializes data. Instances of ClassDescriptors and

FieldDescriptors are created.

2. Interpretation during Serialization

In S.IM.PL Serialization, a user can serialize an object without specifying a type

system scope, as it is required only in deserialization for mapping tags in data

to ClassDescriptors and FieldDescriptors. However, ClassDescriptors

and FieldDescriptors contain essential information, such as tag names, which

are useful for serializing an object. Therefore, during serialization, instances of

28

ClassDescriptors and FieldDescriptors are created.

When serializing an object, the framework tries to find its associated

ClassDescriptor in the GlobalClassDescriptorMap (Figure 10). If an associated

ClassDescriptor does not exist, the framework resolves the ClassDescriptor for

that object. The runtime interpreter utilizes reflection operations to inspect the

class definition of the object, resolving class and field-level annotations. If a class

definition contains the @simpl inherit annotation, it implies that the parent

class also contains fields required for binding to the serialized representation. The

framework then recursively resolves the ClassDescriptor of the parent class.

When resolving field-level annotations, FieldDescriptors are generated. Asso-

ciated mappings in ClassDescriptors are also created. If a field is declared with

@simpl classes annotation, it implies that the field is polymorphic; therefore, it can

be of any type specified by the @simpl classes declaration. Thus, the runtime in-

terpreter resolves ClassDescriptors of all classes specified in @simpl classes decla-

ration, mapping ClassDescriptors in GlobalClassDescriptorMap by class name and

creating tag-class mapping in FieldDescriptors. If a polymorphic field is declared

with the @simpl scope annotation, it is marked as unresolved for lazy evaluation

during deserialization.

3. Interpretation during Deserialization

When deserializing data, a user has already specified a type system scope and conse-

quently all class and field-level annotations are resolved, except for any @simpl scope

annotations that are encountered. The FieldDescriptor of each field declared with

@simpl scope is marked as unresolved. During deserialization, the @simpl scope an-

notation is resolved as shown in Figure 11. This lazy-interpretation is necessary, as

the @simpl scope annotation is specified with an identifier to a type system scope,

29

if not exist

annotation
interpretation

lazy annotation
interpretation

map by
class name

Completely Resolve
FieldDescriptor

resolve
@simpl_scope

Resolve
UnResolvedFieldDescriptors

Deserialize

Global
ClassDescriptors Map

Resolve
ClassDescriptor

tag-class

for each
FieldDescriptor

Simpl Types Scope
ClassDescriptorsMap

create
tag-class mapping

Fig. 11.: The sequence of operation in interpretation of DBAL declarations when the

framework deserializes data. Un-resolved FieldDescriptors are resolved, evaluating

@simpl scope declaration and creating tag-class mappings in FieldDescriptors.

which may not exist when the user specifies a type system scope (B, 1) or serializes

data (B, 2).

The framework identifies the FieldDescriptor that is marked as unresovled.

Using the identifier to a type system scope from the @simpl scope annotation, the

framework finds all ClassDescriptors in the GlobalClassDescriptorMap associated

with the unresolved FieldDescriptor. The framework then creates tag-class map-

pings in FieldDescriptors. Lazy-interpretation of @simpl scope annotation sup-

ports self-referential graphs, enabling software engineers to specify a type system

scope identifier in the @simpl scope declaration and later specify a type system scope

with the same identifier, without worrying about potential access to an unspecified

30

type system scope.

C. Data Binding Mechanism

We earlier explained the runtime interpretation of declarations in DBAL, which

results in automatic creation of the type system scope ASG and its constituent

ClassDescriptor and FieldDescriptor objects. Instead of utilizing reflection func-

tions for the derivation of de/serialization semantics from annotations, S.IM.PL Se-

rialization inspects encapsulated data in ClassDescriptors and FieldDescriptors

for data binding.

In this section, we explain how type system scopes and their constituent

ClassDescriptor and FieldDescriptor objects drive serialization and

deserialization algorithms.

1. Serialization

The serialization process is straightforward, as type information and object hierarchy

are available through introspection in programming languages that support reflection

operations. The serialization process performs a depth-first traversal of the object

model using type system scopes (Figure 12). Cyclic references are handled di↵er-

ently, which we will explain later, in Section E. A FieldDescriptor of the root

element provides the tag information. For the starting tag in a serialized document,

the FieldDescriptor contains an associated ClassDescriptor, which provides ac-

cess to all containing FieldDescriptors. In XML, a scalar field can be serialized as

an attribute or child leaf node of the defining tag element. In ClassDescriptors,

attributes are indexed among AttributeFieldDescriptors and leaf nodes are indexed

among ElementFieldDescriptors. This categorization is ignored in formats where

31

Root Object
FieldDescriptor

ClassDescriptor

Attribute
FieldDescriptors

Element
FieldDescriptors

Serialize

type

for-each

for-each
SCALARCollection or

Map

containing

for-each
COMPOSITECOMPOSITE

SCALAR

for-each

associated

Fig. 12.: Serialization algorithm overview: Serializing instance of an object.

ClassDescriptors and FieldDescriptors objects are used to serialize data into

a structured representation.

scalar fields can only be serialized as attributes (e.g. JSON and TLV). The serializa-

tion process inspects the metadata information in the FieldDescriptors as it iterates

through scalar and collection elements and recursively resolves composite elements,

avoiding use of reflection functions to determine the type of each field.

Scalar fields are serialized immediately by traversing through the list of

FieldDescriptors. For non-scalar fields such as composite fields, the serialization

process recursively moves deeper into the object model, serializing objects until

scalar elements are encountered. In the case of collection of scalars the framework

can iterate through each element in collection, serializing it. Collections of composite

elements are serialized by recursively resolving each composite element.

32

2. Deserialization

As opposed to serialization, deserialization is not straightforward, as type system

scopes must map data nodes to the typed, language-specific object model. Further,

deserialized objects must form an equivalent object model to that represented by the

serialized data. Tag-class mappings in type system scopes help in instantiating the

correct data type for each associated data node, while the type system scope ASG

facilitates construction of a corresponding equivalent object model.

Figure 13 shows the control flow of the deserialization algorithm. For the root

element tag, the framework looks up the tag-class mappings in the type system scope

to find the associated ClassDescriptor. The framework then instantiates the cor-

responding root composite object. Later, for every child element tag, the framework

finds the defining ClassDescriptor and instantiates its composite type. For poly-

morphic fields, the framework looks up tag-class mappings within a FieldDescriptor

to find the correct ClassDescriptor corresponding to the child element tag. Using

the ClassDescriptor, the framework instantiates the data type corresponding to

the tag from the serialized representation. An instantiated composite type can either

be added to a containing composite object or to a collection. For scalar fields, the

framework resolves the associated ScalarType object. Sub-types of ScalarType de-

fines translation semantics of a particular type of scalar field. Using the functionality

provided by the sub-type, the framework deserializes the data and assigns it to its

containing composite object or collection.

The programmer calls TranslationScope’s deserialize() method, specifying

the format of the input data. The framework internally uses a format specific parser

to parse the data. Currently the framework uses sequential access, and event-driven

parsers. Such parsers are generally fast, as compared to other technologies such as

33

tag-class

tag-field

primtive
type

reference
type

tag-class
polymorphic

COLLECTION

current

associated
ClassDescriptor

defining

assign
primitive to field

root element

ClassDescriptor

Type System
Scope

instantiate
Composite

FieldDescriptor associated
ScalarType

instantiate
object

instantiate
primitive type

child element

add object to
Collection

add object to
field

attribute

Composite
instance

Document

Fig. 13.: Deserialization algorithm overview using SAX parser: Parsing data from

a structured representation, utilizing type system scope to create a corresponding

typed object model.

34

DOM (Document Object Model) parsers for XML. However, programmers are not

restricted to using a specific parser type. Programmers can implement a deserializa-

tion system on top of any data parser, as they are executed independently of the type

system scope declaration.

D. Type System Scope Augmentation

In an iterative application development [17] model, where requirements are frequently

changing, maintaining type system scopes can be cumbersome, as they are statically

defined in the code. As new classes are defined and deprecated classes are removed

from the code base, type system scope definitions are also required to be updated

to handle de/serialization of new messages. The framework implements a runtime

abstract semantics graph augmentation functionality that eases management of type

system scopes in such cases.

The augmentation algorithm (Figure 14) performs a depth-first search on each in-

stance of a ClassDescriptor mapped in the input type system scope. From the root

ClassDescriptor, edges extend to its constituent FieldDescriptor objects. For

every FieldDescriptor, the algorithm utilizes meta-information to determine if the

described field is of a composite, collection, or scalar type. Scalar types are ignored.

In case of composite or collection of composite types, the algorithm find the associated

ClassDescriptor and recursively augments the new ClassDescriptor instance. In

case of polymorphic types, the FieldDescriptor contains a list of classes that a field

can bind to, specified by @simpl classes or @simpl scope annotations. In case of the

@simpl classes annotation, the algorithm finds the ClassDescriptors for the spec-

ified classes and recursively augments each ClassDescriptor. Since, @simpl scope

annotation is used to dynamically specify the set of classes, the algorithm first re-

35

gameDataSimplTypesScope.augment();

false

augment
ClassDescriptor

extends
ElementState

for-each
FieldDescriptor

Collection
or

Composite
Polymorphic

add to
Type System

Scope

exists in
Type System

Scope

resolve
@simpl_scope

false

true

false

true

false

for-each
ClassDescriptor

ignore
scalar type

true

for-each
ClassDescriptor

Fig. 14.: Augmentation algorithm overview: Recursive algorithm that computes the

transitive closure of an input type system scope. For each ClassDescriptor mapped

in type system scope, the algorithm recursively performs a depth-first search of ASG,

adding ClassDescriptors that are not present in the input type system scope.

solves the @simpl scope declaration to find the set of classes and their associated

ClassDescriptors.

As new classes are encountered, their ClassDescriptors are mapped augmenting

the input type system scope. The algorithm ensures that every ClassDescriptor

node in the type system scope is reachable from the root ClassDescriptor node,

thus it e↵ectively calculates the transitive closure [18] of the input type system scope.

36

Software engineers can augment a type system scope with a simple method call. This

feature allows for easy maintenance of code, as the framework automatically manages

bindings.

E. Handling Graph Data Structures

Object models are graph structures. They can contain back references to parent

nodes. This may result in cyclic references. In comparison to in-memory object mod-

els, serialized data representations are tree-structured. No recursive back references

or cycles can directly be represented. A data binding framework maps object graphs

to tree structured representations. During serialization back references are resolved

by recursively evaluating the serialized representation of the parent object. A cycle in

the object graph would result in an infinite recursion during serialization, as resolv-

ing the parent object results in resolving a child, which again will resolve the parent

object and so on. We needed an e↵ective mechanism for handling graphs, as cyclic

data structures are very common in object models.

To transform graphs into tree-structured representations, we introduced the

simpl:id and simpl:ref special tags into serialized representations. Using these

special tags, S.IM.PL Serialization ensures that an object is serialized only once. Fur-

ther requests for serializing the same object will serialize a reference of the object, as

a value of the simpl:ref tag, pointing to the unique id of the object, previously spec-

ified by the simpl:id tag. Using these special tags, the framework binds data graphs

to textual representations. Figure 15 shows the definition of two classes, ClassA and

ClassB. ClassA contains a reference to an object of ClassB, and also a reference to

an object its own type. ClassB contains a reference to an object of ClassA. Creating

an instance of ClassA and assigning its reference to an instance variable in ClassB,

37

Java class definition Java object instance

Serialized XML file

serialize to XML

public class ClassA
extends ElementState
{
 @simpl_scalar private int x;
 @simpl_scalar private int y;

 @simpl_composite
 private ClassA classA;

 @simpl_composite
 private ClassB classB;
 ...
}

public class ClassB
extends ElementState
{
 @simpl_scalar private int a;
 @simpl_scalar private int b;

 @simpl_composite
 private ClassA classA;
 ...
}

ClassB test = new ClassB();

<class_b a="4" b="5" simpl:id="1602830078">

 <class_a x="1" y="2" simpl:id="932143669">

 <class_a simpl:ref="932143669" />

 <class_b simpl:ref="1602830078" />

 </class_a>

</class_b>

Fig. 15.: Class definitions of ClassA and ClassB, which produces cyclic references.

Serialized represented of an instances of ClassB and ClassA make use of simpl:id

and simpl:ref attributes that facilitates representation of cyclic references.

while also assigning the reference of ClassB’s instance to the instance variable in

ClassA produces a cyclic reference.

S.IM.PL Serialization uses a two-pass algorithm to serialize graphs that contain

cyclic references. The first pass performs a depth first search from the root node and

recursively moves deeper into the object graph. Every visited node is added to a

visitedElements hash table while generating a unique id for the object. For every

node object, the algorithm determines if it has been visited by checking its entry

in visitedElements . If an object has already been visited, the algorithm marks

these objects as requiring simpl:id, and halts further recursive calls. The second

38

Translation Context

ElementState
object

associated
ClassDescriptor

FieldDescriptor
Type

simpl_id ElementState
object

visitedElements

Collection of
Composite

simpl_id ElementState
object

requiringSimplId

for-each
COMPOSITE

COMPOSITE

add-to

already
existsfor-each

FieldDescriptor

SCALAR

Fig. 16.: Resolve Graph Algorithm: The first-pass that populates requiringSimplId

map in TranslationContext. The map contains references to ElementState objects

that were referenced more than once with their corresponding simpl id as key. Later

in second-pass, TranslationContext facilitates graph handling.

pass serializes the root object, and recursively, the objects it is composed of. Each

object marked as requiring simpl:id is serialized with an extra attribute: the unique

id as the value of simpl:id attribute. Once serialized, these objects are marked

as serialized. Subsequent references to these objects are only serialized by their tag

name, with the unique id as the value of the simpl:ref attribute. Thus, recursive

calls for back references are avoided.

The serialized document contains referential information so it can

subsequently be deserialized. When deserializing, the framework maintains a map

(deserializedObjects) of objects that contain a simpl:id attribute using the

39

value specified by the attribute. When a simpl:ref tag is encountered, it means

that the specified object has already been deserialized. It can thus be accessed by

its unique id from deserializedObjects. The framework finds an already created

instance from the mapping using the unique id specified by simpl:ref attributed,

instead of creating a new instance of the object. The deserialization process is thus

able to create a correct object model, which contains cyclic or back references.

Handling graphs is computationally expensive as the framework needs to perform

an extra pass on the object model before serialization. This could decrease perfor-

mance of serialization. In cases, where developers can guarantee the absence of cyclic

references, they can turn-o↵ graph handling for better performance. In such cases,

the framework will recognize and report an error when serialization detects a cyclic

reference.

40

CHAPTER IV

MULTI-FORMAT SUPPORT

Data can be represented in multiple formats. Some formats are more readable, while

others are more concise. Concise formats require less communication bandwidth.

Due their conciseness, human-readability is reduced, which a↵ects debugging. As

software engineers, we choose data representation formats that best address soft-

ware requirements, such as available bandwidth, ease of development and debugging,

and integration with other software systems. However, choosing the right format is

di�cult, as software requirements may be unclear in the early stages of software devel-

opment. In addition, readable formats are easy to debug, but verbose and ine�cient

in the production phase of a software application. Therefore, we are often faced with

requirement of incorporating, switching, or migrating to another data representation

format, which increases project cost in terms of development and testing time.

S.IM.PL Serialization addresses the problem of investing additional development

and testing time in software applications that require transitioning to a di↵erent data

representation format, by supporting multiple formats and allowing seamless switch-

ing between them. Type system scopes play a crucial role in supporting seamless

switching, as they provide a format-agnostic abstraction, which is used by format-

specific de/serialization methods.

In the next section, we describe the formats supported by S.IM.PL Serialization:

XML, JSON, and TLV; explaining their advantages and disadvantages. Later, we

describe the @simpl hints annotation that enables fine-grained control over a specific

data representation format. Finally, we examine support for de/serializing objects in

BibTeX format.

41

A. Supported Formats

XML is a portable, extensible, human-readable, and document-oriented format for

communication. XML is widely used by most distributed and web applications. How-

ever, XML is generally considered as verbose. In applications, such as on the Internet,

where network bandwidth is a limited resource, software engineers may be more in-

clined to use less verbose data representation formats. JSON, a close alternative of

XML, is popularized by dynamic programming languages, mainly JavaScript, due

to its simplified syntax and key-value notations. JSON is a concise, non-extensible,

data-oriented format. JSON is generally considered as lightweight and fast, but it is

less readable.

Table III.: Shows advantages and disadvantages of data representation formats sup-

ported by S.IM.PL Serialization

Format Advantages Disadvantages

XML extensible, human-readable format verbose

JSON concise, light-weight, readable non-extensible, less readable

than XML

TLV very concise binary format non-readable

BibTeX concise, used as databases of bibli-

ographies, third party tools can eas-

ily utilize

domain-specific, cannot sup-

port composite objects

The focus of the XML and JSON is readability, which facilitates debugging and

integration with di↵erent software systems. Often, readability becomes less important

in a closed distributed software system, when it is functionally stable and does not

42

require integration with any third party software system. A concise binary format,

such as TLV is non-readable, but addresses better performance and reduced band-

width requirements. Table III summarizes the advantages of data representation

formats supported by S.IM.PL Serialization. Support for further data representation

formats, such as YAML is planned.

B. Fine-grained Control

Flexibility in representing information is crucial for building scalable applications.

As software engineers, we want to write application components that can be re-used

in other software systems. S.IM.PL Serialization provides flexibility in data binding

through annotations. Annotations discussed earlier (II, D) are generic. They are not

specific to any particular data representation format. However, software engineers

require control over specific elements in a particular data representation format. This

fine-grained control over a particular serialized representation is provided through a

special @simpl hints annotation.

Table IV.: The @simpl hints annotation accepts an array of the following enumer-

ated parameters, allowing specification of hints for multiple formats.

Hints Semantics

HINT.XML ATTRIBUTE translate field as an XML attribute

HINT.XML LEAF translate field as an XML leaf node

HINT.XML LEAF CDATA translate as CDATA in XML leaf node

HINT.XML TEXT translate field as text node in XML

HINT.XML TEXT CDATA translate field as CDATA in XML text node

43

The @simpl hints annotation accepts parameter of enumerated type, which fur-

ther specifies how an augmented field is represented in a particular format. For ex-

ample, to serialize a scalar field, the @simpl scalar annotation defines the field as

scalar serializable. However, there are multiple ways to serialize a scalar field in XML:

as an attribute, or as a single text field value in an element. Further, in the later

case, the value may be optionally quoted as CDATA. Thus, one can add an additional

annotation to the declaration: Table IV. The default is Hint.XML ATTRIBUTE. The

@simpl hints can take an array of arguments, in case di↵erent hints for di↵erent

formats need to be specified in a single declaration.

C. BibTeX Support

In addition to supporting serialization and deserialization in XML, JSON and TLV,

the framework also implements support for serialization in the BibTeX [9] format.

@inproceedings{Kerne:2008:CXB:1410152,
 title = {A concise XML binding
 framework facilitates
 practical object-oriented
 document engineering},

 author = {Kerne, Andruid and
 Toups, Zachary O. and
 Dworaczyk, Blake and
 Khandelwal, Madhur},
 ...
 }

@bibtex_type("inproceedings")
public class Entry extends ElementState
{
 @bibtex_key
 @simpl_scalar
 private String citationKey;

 @bibtex_tag("title")
 @simpl_scalar
 private String title;

 @bibtex_tag("authors")
 @simpl_nowrap
 @simpl_collection("author")
 private ArrayList<String> authors;
 ...
}

Fig. 17.: An example of data binding BibTeX data. A publication’s BibTeX entry in

mapped to a Java class, utilizing BibTeX specific annotations for specifying BibTeX

key, type, and alternative tags.

44

Table V.: Annotations specific to BibTeX data representation format.

Annotation Semantics

@bibtex type defines the type of BibTeX entries represented by

the class definition

@bibtex key defines a scalar field as BibTeX key

@bibtex tag defines an additional tag mapping for a field when

serialized in BibTeX format

@simpl composite as scalar defines a scalar field as a scalar value for a compos-

ite element. This annotation can also be used for

other formats that do not support the representa-

tion of composite elements

BibTeX is a widely used format for storing bibliography of scholarly articles and

publications. BibTeX is a very limited format of representation and lacks hierarchy

as represented by composite elements. Thus, BibTeX support is limited to scalars

and collections of scalars. For BibTeX, composite elements can make use of an addi-

tional @simpl composite as scalar annotation, which specifies a scalar field inside

a composite element as its scalar value. Figure 17 shows an example of a Java class

serialized in BibTeX.

Some BibTeX specific annotations (Table V) have been added to DBAL for use

in conjunction with other S.IM.PL-annotations. @bibtex type annotation defines

the type of a BibTeX entry. Even though the bibtex database management utilities

work with only a specific set of BibTeX types, a set of valid values is not enforced

by the BibTeX language specifications. Thus, any string value can be passed as

parameter for this construct. It is up to the developer to pass a BibTeX type that

45

will be handled correctly by external management utilities. @bibtex key annotation

specifies a Java field as key for a BibTeX entry. A BibTeX key uniquely identifies

each entry in a BibTeX database. @bibtex tag is an optional annotation, which

specifies an alternate tag name in-case of BibTeX serialization. If this annotation

is not present, the framework automatically utilizes the tag-name specified through

@simpl tag annotation or camel-case conversion of the field name. Again, the possible

values for the tag names are not enforced by the language specification and developers

should ensure that these tag names are correct for external tools. Table V summarizes

these annotations.

Support for BibTeX serialization has enabled software engineers to develop soft-

ware applications that allow users to export sets of store references of articles and

publications to third party citation management tools, such as BibDesk [19] for Mac

OSX.

D. Conclusion

Type system scopes enable multi-format support in S.IM.PL Serialization, as they

abstract data binding semantics, which are independent of any particular format.

Utilizing the abstract data binding semantics encapsulated in type system scopes,

S.IM.PL Serialization implements de/serialization functionalities in di↵erent formats.

Figure 18 presents an overview of translation of data into multiple formats.

Fine-grained control over a particular format is provided through DBAL con-

structs that further specifies how a particular field is represented in a particular

format.

Switching between formats is seamless. Software engineers can specify the data

format through parametrized de/serialization functions. This enables applications to

46

easily translate data from one format to another, integrate with third party software,

and facilitates debugging, as software engineers can switch from non-readable format

to readable format and identify errors in data.

S.IM.PL Serialization comes with built-in support for XML, JSON, TLV, and

BibTeX formats of data representation. We plan to integrate support for other for-

mats, such as YAML, an alternative to XML that is gaining popularity in web appli-

cations.

47

Java class instance

Point center = new Point();
center.setX(2);
center.setY(3);

Circle circle = new Circle();
circle.setRadius(10);
circle.setCenter(center);

<circle radius="10">
 <center x="2" y="3" />
</circle>

{
 "circle": {
 "radius": "10",
 "center": {
 "x": "2",
 "y": "3"
 }
 }
}

ae ec bc d0 00 00 00 24
c8 0e 6c 92 00 00 00 02
31 30 ae b2 cc 55 00 00
00 12 00 00 00 78 00 00
00 01 32 00 00 00 79 00
00 00 01 33

circle.serialize
(outStream, FORMAT.TLV);

Type Definition
 metadata tree SimplTypesScope

abstract semantics graph

 Circle Point

 center x y

 circle

 area center

 radius

 x y

ClassDescriptor ClassDescriptor

FieldDescriptorsFieldDescriptors

 radius

runtime object model

generated

defining

public class Circle extends ElementState
{
 @simpl_scalar private int radius;
 @simpl_composite private Point center;
 private int area;
...
public class Point extends ElementState
{
 @simpl_scalar private int x;
 @simpl_scalar private int y;
...

Java class definitions

Serialize

bindings

augmented
SimplTypesScope

Create SimplTypesScope

SimplTypesScope.get(
"circleScope",
Circle.class, Point.class);

circle.serialize
(outStream, FORMAT.XML);

circle.serialize
(outStream, FORMAT.JSON);

Fig. 18.: Multi-Format Translation Overview: A class definition of Circle containing a composite object of type Point.

We generate the SimplTypesScope for DBAL-augmented fields. The abstract semantics graph encapsulate data bindings

that facilitate translation of an instance of type Circle to supported data formats.

48

CHAPTER V

CROSS-LANGUAGE SUPPORT

As software engineers, we are often faced with requirements of building distributed

software applications that rely on message passing across di↵erent platforms. Work-

ing with same information in di↵erent platforms is cumbersome as developers write

platform-specific for parsing and manipulating data.

Various tools and techniques have been introduced to ease the burden on soft-

ware engineers writing cross-language distributed software applications. However,

these technologies have certain shortcomings. For example, the Component Object

Resource Broker Architecture (CORBA) [20] standard is a widely used technology

that enables cross-language information exchange. It requires software engineers to

learn an Interface Description Language (IDL) that is used to specify the structure of

messages. In addition to learning a new language, IDL files are maintained external

to the source code, where they are di�cult to manage, as changes in the source code

requires changes in external files. Also, developers have no control over how informa-

tion is serialized and represented. Therefore, integration with third party software

systems and debugging are di�cult.

S.IM.PL Serialization addresses shortcomings of prior technologies and eases the

burden on software engineers. In S.IM.PL Serialization, software engineers are only

required to write classes in one source programming languages (as of now, Java is sup-

ported as source programming language). Type system scopes are used to generate

code in target programming languages (C# or Objective-C). This relieves software

engineers from the burden of writing platform-specific object declaration code in mul-

tiple programming languages. The consistent structure of serialized representations

49

specified through Data Binding Annotation Language (DBAL) (II, D), which has

simple specifications in comparison to IDL. DBAL declarations are within the source-

code, therefore, they are easier to maintain. Software engineers also gain complete

control over how information is serialized and represented through DBAL constructs.

In the next section, we present the supported data types and mappings in

S.IM.PL Serialization. Then, we describe the code generation facilities that utilize

type system scopes and data type mappings to generate code including documenta-

tion in target programming languages. Finally, we di↵erentiate how cross-language

data binding is supported in programming languages that support and do not support

annotation features.

A. Supported Types and Mappings

An important aspect in providing cross-language support is the mapping of data

types from one programming language to another. All primitives, as well as some

complex scalar types, such as Date, URL, StringBuilder have one-to-one mappings

between supported programming languages. S.IM.PL Serialization maintains map-

ping between language-specific data types, which are used used by code generation

facilities (VI, B). Table VI shows the mappings between primitive data types, Ta-

ble VII shows the mappings between non-primitive/complex data types. These data

types are all a developer would use in many cases. However, new scalar types and

their corresponding mappings can be easily added.

B. Cross-Language Class Translation

S.IM.PL Serialization currently supports cross-compilation from Java to C# and

Objective-C. The process of cross-compiling Java code is closely integrated with type

50

Table VI.: The primitive data types in Java and their equivalent data types in C#

and Objective-C

Java / size (bits) C# / size (bits) Obj-C / size (bits) Java Default

int (32) Int32 (32) int (32) 0

float (32) Single (32) float (32) 0.0f

double (64) Double (64) double (64) 0.0d

byte (8) Byte (8) char (8) 0

char (16) Char (16) char (8) \u0000

boolean (1) Boolean (1) bool (1) false

long (64) Int64 (64) long long (64) 0L

short (16) Int16 (16) short (16) 0

system scopes. Since, type system scopes completely represent the abstract data types

with ClassDescriptors and FieldDescriptors containing the appropriate metadata

about each field and class, code translation is a straightforward process. The frame-

work traverses through the type system scope ASG once, calculating dependencies of

each class, and a second time to generate code for each class in the target program-

ming language. Developers can also augment the type system scope (III, D) before

generating code to ensure all dependencies are included.

While generating code, the framework utilizes the above mentioned data type

mappings to generate an equivalent class. Certain limitation do apply during cross-

language code translation. For example, variable names in the source programming

language might be keywords in target programming language, such as in and id,

which can be used as variable names in Java, but are keywords in Objective-C. The

51

Table VII.: Shows the non-primitive/complex data types in Java and their equivalent

data types in C# and Objective-C

Java C# Objective-C

Date DateTime NSDate

StringBuilder StringBuilder NSMutableString

Url Uri NSURL

ParsedURL ParsedURL ParsedURL

Class Type Class

Field FieldInfo Ivar

enum enum not-supported

File FileInfo NSFileHandle

Color Color UIColor

ArrayList List NSMutableArray

HashMap Dictionary NSDictionary

HashMapArrayList DictionaryList DictionaryList

cross-compilation utility issues appropriate warnings in such cases, which a software

developer must correct. In addition to these limitations, a developer must also ac-

count for the di↵erence in type mappings from one programming language to an-

other. For example, the size of a Java char is 16 bits as compared to the 8 bit char

in Objective-C. Such di↵erences can lead to error or loss of information in trans-

lating across platforms. Cross-compilation also supports framework provided classes

such as HashMapArrayList and ParsedURL, as alternatives to optimization the basic

52

HashMap and URL classes. Also note that enumerated types are not cross-compiled

to Objective-C. Their de/serialization is not supported by the Objective-C version

of the framework, due to lack of Objective-C runtime introspection capabilities for

enumerated types.

Generic data types are also recursively resolved to appropriate data types in

target programming languages. In the case of Objective-C, which supports polymor-

phism, but does not support generic class definitions, generic types are ignored. This

does not a↵ect functionality in Objective-C, as correct data types will be instanti-

ated at runtime through type system scopes. In the case of C#, the framework will

generate generic type definitions, as well as generic classes with correct parameters.

Figures 19 and 20 present cross-compiled GameData class (example walkthrough II, A)

in C# and Objective-C.

1. Documentation Translation

An important aspect of building reusable software components is code documenta-

tion. When translating Java class files to a target programming language, Javadoc

comments are preserved. The cross-compilation utility parses through the source

code, extracting field and class level comments. The comments are mapped to com-

ment styles in translated programming language. In addition to mapping comments,

DBAL declarations are also inserted in comment descriptions for reference in tar-

get programming language. Javadoc comments are mapped to XML comments for

C# and header doc comments for Objective-C. .NET documentation utilities such

as NDoc [21], can e↵ectively parse XML comments from C# class definitions, while

HeaderDocs [22] can be used to parse comments in Objective-C header files.

53

///"<summary>
///"Encapsulates"the"run"time"state"of"the"game
///"</summary>
public"class"GameData":"ElementState
{
"""///"<summary>
"""///"time"stamp"value.
"""///"</summary>
"""[simpl_scalar]
"""private"Int64"timestamp;

"""///"<summary>
"""///"number"of"game"cycles"remaining
"""///"</summary>
"""[simpl_scalar]
"""private"Int32"cycRem;

"""///"<summary>
"""///"current"score"in"the"game
"""///"</summary>
"""[simpl_scalar]
"""private"Double"score;
"""""""
"""///"<summary>
"""///"objects"containing"information"on"threat"entities
"""///"</summary>
"""[simpl_scope("threatTypes")]
"""[simpl_collection]
"""private"List<Threat>"threats;

"""..
}

Fig. 19.: The GameData class in C#. S.IM.PL code-generation facility generated code

with equivalent DBAL declarations and documentation from the Java source code.

54

@interface GameData : ElementState
{
 /*!
 @var timepstamp
 @abstract annotated as : @simpl_scalar
 @discussion time stamp value
 */
 long timestamp;

 /*!
 @var cycRem
 @abstract annotated as : @simpl_scalar
 @discussion number of game cycles remaining
 */
 int cycRem;

 /*!
 @var score
 @abstract annotated as : @simpl_scalar
 @discussion current scope in the game
 */
 double score;

 /*!
 @var threats
 @abstract annotated as : @simpl_scope("threatScope")
 annotated as : @simpl_collection
 @discussion objects containing information on threat entities
 */
 NSMutableArray *threats;
}

@property (nonatomic,readwrite) long timestamp;
@property (nonatomic,readwrite) int cycRem;
@property (nonatomic,readwrite) double score;
@property (nonatomic,readwrite, retain) NSMutableArray *threats;

Fig. 20.: The GameData class in Objective-C produced by S.IM.PL code-generation fa-

cilities. Field declaration, annotations, and document comments are all appropriately

translated from Java source code.

55

C. Portable Type System Scopes

For languages that support annotations, such as C#, S.IM.PL produces equivalent

DBAL. The cross-compiler generates the correct declarations of DBAL for each field

from the source programming language. This enables type system scopes to be auto-

matically generated in target programming languages. Figure 19 shows the equivalent

C# class definition, which make use of similar language constructs.

Type system scopes are data structures defined within S.IM.PL Serialization

framework, augmented with DBAL. Thus they themselves can also be serialized.

Target languages such as Objective-C, which do not support annotations, rely on data

binding from serialized type system scopes. In S.IM.PL Serialization, a type system

scope is serialized as XML or JSON, which can be parsed in a target programming

language to create an equivalent type system scope that drives the de/serialization

processes. Figure 21 shows a serialized type system scope XML for the example

gameDataSimpTypesScope.

D. Conclusion

Cross-language support in S.IM.PL Serialization is facilitated through type system

scopes, as they describe data structures in a language-independent type system and

specify how objects bind with serialized representations.

Equivalent specification of type system scopes in particular programming lan-

guages, either through DBAL augmented class definitions or serialized type system

scopes, enables cross-language data binding.

We provide code generation utilities that facilitate cross-language data binding.

The code generation utility uses type system scopes to generate code in any supported

target programming language. Code comments used for documentation of the source

56

<simpl_types_scope name="gamedata">
 <class_descriptor described_class="GameData" tag_name="game_data">
 <field_descriptor field="timestamp" tag_name="timestamp" type="18"
 scalar_type="LongType" xml_hint="XML_ATTRIBUTE"/>
 <field_descriptor field="cycRem" tag_name="cyc_rem" type="18"
 scalar_type="IntType" xml_hint="XML_ATTRIBUTE"/>
 <field_descriptor field="score" tag_name="score" type="18"
 scalar_type="DoubleType" xml_hint="XML_ATTRIBUTE"/>
 <field_descriptor field="score" tag_name="score" type="18"
 scalar_type="DoubleType" xml_hint="XML_ATTRIBUTE">
 <polymorph_class_descriptors>
 <class_descriptor described_class="Threat" tag_name="t"
 simpl:ref="1480462011">
 <field_descriptor field="m_id" tag_name="m_id" type="18"
 scalar_type="StringType" xml_hint="XML_ATTRIBUTE" />
 <field_descriptor field="online" tag_name="online" type="18"
 scalar_type="BooleanType" xml_hint="XML_ATTRIBUTE" />
 <field_descriptor field="m_in" tag_name="m_in" type="18"
 scalar_type="BooleanType" xml_hint="XML_ATTRIBUTE" />
 <field_descriptor field="safe" tag_name="safe" type="18"
 scalar_type="BooleanType" xml_hint="XML_ATTRIBUTE" />
 <field_descriptor field="ord" tag_name="ord" type="18"
 scalar_type="IntType" xml_hint="XML_ATTRIBUTE" />
 </class_descriptor>
 <polymorph_class_descriptor described_class="PatrollingThreat"
 simpl:ref="841752171">...
 </polymorph_class_descriptor>
 <polymorph_class_descriptor described_class="OrbitingThreat"
 simpl:ref="429405933">...
 </polymorph_class_descriptor>
 <polymorph_class_descriptor described_class="RepellableThreat"
 simpl:ref="107251772"> ...
 </polymorph_class_descriptor>
 <polymorph_class_descriptor described_class="PatrollingThreat">
 simpl:ref="1584946533"> ...
 </polymorph_class_descriptor>
 </polymorph_class_descriptors>
 </field_descriptor>
 </class_descriptor>
 <class_descriptor simpl:ref="1480462011" />
 <class_descriptor simpl:ref="841752171" />
 <class_descriptor simpl:ref="429405933" />
 <class_descriptor simpl:ref="107251772" />
 <class_descriptor simpl:ref="1584946533" />
</simpl_types_scope>

Fig. 21.: GameData type system scope serialized through S.IM.PL Serialization. This

XML representation is utilized by S.IM.PL code generation facilities to generate code

in target programming languages and data binding in Objective-C.

57

code are part of the type system scope enabling parsing by third party documentation

utilities. Figure 22 shows an overview of cross-language translation of data objects

between a source and target programming language.

Presently, cross-language support is provided between Java, C#, and Objective-

C programming languages. Support for JavaScript as target programming language

is currently under development. Support for further programming languages, such as

C++ and Python, is planned.

58

defining

automatically
generated

bindings in
target language

cross-language
class translation

DBAL-augmented class definition

class Circle extends ElementState
{
 /**
 * radius of circle
 */
 @simpl_scalar
 private int radius;
 private int area;

 @simpl_composite
 private Point center;

So
ur

ce

Pr
og

ra
m

m
in

g
La

ng
ua

ge
Objective-C class definition

Ta
rg

et

Pr
og

ra
m

m
in

g
La

ng
ua

ge

serialize

@interface Circle : ElementState
{
 /*!
 @var radius
 @abstract Annotated as : @simpl_scalar
 @discussion radius of circle

*/
int radius;
Point *center;

}

SimplTypesScope (abstract semantics graph)

ClassDescriptorClassDescriptor ...

FieldDescriptorFieldDescriptor ...

Serialized SimplTypesScope
<class_descriptor described_class="Circle" tag_name="circle">
 <field_descriptor field="radius" tag_name="radius" type="18"
 scalar_type="IntType" xml_hint="XML_LEAF">
 </field_descriptor>
 <field_descriptor field="center" tag_name="center" type="3"
 element_class="Point"></field_descriptor>
 <field_descriptor field="area" tag_name="area" type="18"
 scalar_type="IntType" xml_hint="XML_LEAF"></field_descriptor>
 </class_descriptor>
...

Fig. 22.: Cross-Language Translation Overview: A class definition of type Circle is translated to Objective-C.

Code comments are also translated. Objective-C does not support annotations. Data binding is facilitated through

SimplTypesScope declaration in XML.

59

CHAPTER VI

MULTI-FORMAT AND CROSS-LANGUAGE LIMITATIONS

In supporting multiple formats and programming languages, S.IM.PL Serialization

must address limitations imposed by a particular data format or programming lan-

guage. Similarly, developers writing cross-language or multi-format software, must

account for such limitations.

In this section, we describe limitations in using multiple formats and program-

ming languages and how they impact software development.

A. Format Specific Limitations

As mentioned earlier, S.IM.PL Serialization supports XML, JSON, TLV, and Bib-

TeX data formats. Data formats are tree structured. How this tree hierarchy is rep-

resented, di↵ers between formats and their syntax enables certain structures, which

cannot be supported in other formats. In this section, we describe limitations specific

to a particular format.

1. BibTeX with Composite Objects

The BibTeX data format allows one level of nesting, where the initial node must

always be the BibTeX type. This limitation restricts BibTeX format to be able to

represent an object containing scalars or collection of scalars, but greatly simplifies the

data format. During serialization, composite objects are ignored by S.IM.PL Serial-

ization unless the developer has specified @simpl composite as scalar annotation,

which specifies a scalar value of a collection.

60

2. JSON with Polymorphic Collections

The JSON data format allows multiple level of nesting, similar to XML, enabling rep-

resentation of deeply nested composite objects. It provides additional syntax struc-

tures for representing collections, which enables concise representation of collections.

Figure 23 shows wrapped and unwrapped collection of threats. Note that using the

array syntax (’[’ delimiter), the format assigns the tag to the collection, instead to

each element in the collection. We utilize the array to determine the correct type of

objects in the collection. If the collection is wrapped, the collection becomes the child

of the threat object, which is associated to the collection field in the GameData class.

This structure is useful to concisely represent collections that are not polymorphic,

as the array tag is su�cient to determine the type of all objects in the collection.

In case of polymorphic collections, we must declare inner tags to specify how to

{
 "game_data": {
 "timestamp": "1234399958508",
 "cyc_rem": "8078",
 "loaded": "true",
 "running": "true",
 "threat": [
 {
 "ord": "12"
 },
 {
 "ord": "13"
 }
],
 "score": "-28.066665835678577"
 }
}

{
 "game_data": {
 "timestamp": "1234399958508",
 "cyc_rem": "8078",
 "loaded": "true",
 "running": "true",
 "threats": {
 "threat": [
 {
 "ord": "12"
 },
 {
 "ord": "13"
 }
]
 },
 "score": "-28.066665835678577"
 }
}

(1) JSON non-polymorphic (unwrapped) (2) JSON non-polymorphic (wrapped)

Fig. 23.: The representation of the GameData object as JSON, containing non-

polymorphic threats collection as wrapped and unwrapped.

61

<game_data timestamp="1234399958508"
 cyc_rem="8078" loaded="true"
 running="true">
 <threats>
 <nt ord="12" />
 <ot ord="13" />
 </threats>
 <score>-28.066665835678577</score>
</game_data>

{
 "game_data": {
 "timestamp": "1234399958508",
 "cyc_rem": "8078",
 "loaded": "true",
 "running": "true",
 "threats": [
 {
 "nt": {
 "ord": "12"
 }
 },
 {
 "ot": {
 "ord": "13"
 }
 }
],
 "score": "-28.066665835678577"
 }
}

<game_data timestamp="1234399958508"
 cyc_rem="8078" loaded="true"
 running="true">
 <nt ord="12" />
 <ot ord="13" />
 <score>-28.066665835678577</score>
</game_data>

(2) XML polymorphic (wrapped)(1) JSON polymorphic

(3) XML polymorphic (unwrapped)

Fig. 24.: The representation of the GameData object in XML and JSON, containing

polymorphic collection threats.

correctly map collection element object representations to their correct data types.

In Figure 24 the GameData object contains a polymorphic collection of threats. The

inner-tag determines the type of the object. Since, the array tag (threats) cannot

be empty, we are limited to serializing polymorphic collection as wrapped.

B. Cross-Language Limitations

Programming language features, keywords, native data types, and language-specific

development frameworks are not consistent among programming languages. When

writing cross-language software we must account for such di↵erences. In S.IM.PL

Serialization, such di↵erences impose limitations on how its cross-language support

is utilized.

62

1. Keywords in Programming Languages

The set of keywords di↵ers among programming languages. As S.IM.PL

code-generation facilities generates code in multiple programming languages, a valid

identifier in one programming language might be a keyword in another programming

language, which will produce compile errors in generated code. Therefore, when

writing cross-language software with S.IM.PL, developers are limited to not

using identifies that are keywords in another programming language. We provide

mechanisms for software developers to identify and correct such issues, if they occur.

2. Data Types and Mappings

Data type mappings, their runtime memory size, and how they function in one pro-

gramming language may di↵er from another programming language. The char data

type in Objective-C is 8 bits as compared to 16 bit char in Java and Objective-C,

which may result in loss of information during cross-language data exchange.

The mappings of data types from one programming language to another is devel-

oped based on our experience as software developers. Some developers may disagree

with the provided mappings. For example, the Java HashMap data type represents

a hash table data structure. An exact equivalent of HashMap is not provided by

C# or Objective-C programming language. The closest data type in functionality is

Dictionary (C#) or NSMutableDictionary (Objective-C). The S.IM.PL code gen-

eration facilities will map HashMap to Dictionary, or NSMutableDictionary. It is

up to the developers to manage di↵erences in use of the mapped data type.

63

3. Use of Generics

The use of generics di↵ers between Java and C#. In Objective-C, generic parameters

are ignored, as they are not supported. Java supports wildcards (’?’) for generic

parameter declaration of types unknown at compile-time. A user can declare a generic

collection in Java, as ArrayList<?>, which implies that the collection can be of

any generic type or specify a constraint, as ArrayList<? extends Threat>, which

implies that the collection is of any sub-type of the Threat class. In comparison, C#

does not allow wildcards.

The S.IM.PL code generation ignores ambiguous generic parameters when trans-

lating code to C#. For example, the ArrayList<?> declaration will be translated as

List and ArrayList<? extends Threat> is translated as List<Threat>.

64

CHAPTER VII

VALIDATION - RESEARCH FRAMEWORKS

We developed software frameworks that build on S.IM.PL Serialization by extend-

ing type system scopes and utilizing data binding features. By examining how these

frameworks function, we validate S.IM.PL Serialization’s extensible design and mo-

tivate the value of its data binding architecture. In this chapter, we examine soft-

ware frameworks: Object-Oriented Distributed Semantics Services (OODSS), meta-

metadata language and architecture, and Preferences Management System. These

frameworks utilize multi-tiered capabilities of S.IM.PL Serialization.

OODSS utilizes flexible data binding and support for binding polymorphic data

types to implement an object oriented and flexible framework for network communi-

cation and remote method invocation. The meta-metadata language and architecture

utilizes the abstraction provided by type system scopes to develop a type-system for

describing information found in digital repositories and on the Internet. The Prefer-

ences Management System utilizes support for binding polymorphic fields to develop

an XML-based type-system that enables software engineers to easily specify and gain

quick access to configuration settings in software applications.

The source code of these frameworks is available as open-source. They are used

in research software applications, which we will examine in Chapter VII. Students in

undergraduate and graduate courses in Department of Computer Science and Engi-

neering at Texas A&M University have benefited from these frameworks to develop

software applications for course assignments and research softwares.

65

A. Object Oriented Distribute Semantics Services

OODSS [23] is a research framework that focuses on facilitating software engineering

principles in writing information-centric distributed software applications. It uti-

lizes key S.IM.PL Serialization features such as flexible data binding, data binding

polymorphic objects, and type system scopes to implement a framework for network

communication and remote method invocation. The OODSS framework is utilized in

research software applications: Team Coordination (TeC) game (VIII, B) and com-

binFormation (VIII, A). It is also used by students developing software applications

for course assignments.

In the next section, we examine the role of S.IM.PL Serialization in OODSS’s

implementation of service call and return functionality. Later, we show how flexible

data binding results in concise messages. Finally, we present how OODSS services

can function across platforms in multiple formats through S.IM.PL Serialization’s

cross-language multi-format support.

1. Polymorphic Message Architecture

OODSS implements novel semantics for service call and returns in distributed ap-

plications utilizing the command pattern [24]. In the command pattern, an object

encapsulates the complete information required to call a method at a later time.

In OODSS, a message is represented by a class definition annotated with decla-

rations in Data Binding Annotation Language (DBAL). The instance of the message

class encapsulates information required to invoke the remote method. Through sub-

classing messages take the form of request or response types. Request messages are

sent by client applications to invoke the service method on the server; the reply from

server is sent as a response message that invokes the response method on the client.

66

s
e
n
d

R
e
q
u
e
s
t
M
e
s
s
a
g
e

Up
da

te
Cl

ie
nt

Av
at

ar

s
e
n
d

R
e
s
p
o
n
s
e
M
e
s
s
a
g
e

Re
sp

on
dW

it
hG

am
eS

ta
te

Response Message

Request Message

O
O

D
SS

 C
lie

nt
re

sp
on

se
Me

ss
ag

e.
pr

oc
es

sR
es

po
ns

e(
);

public class UpdateClientAvatar
extends RequestMessage
{
 @simpl_composite
 private ClientAvatar clientAvatar;

 public ResponseMessage
 performService()
 {...}
}

public class RespondWithGameState
extends ResponseMessage
{
 @simpl_composite
 private GameData gameData;

 public void processResponse()
 {...}
}

S.IM.PL Shared Type System Scope

O
O

D
SS

 S
er

ve
r

re
qu

es
tM

es
sa

ge
.

pe
rf

or
mS

er
vi

ce
()

;

C
lie

nt
 A

pp
lic

at
io

n
re

sp
on

dW
it

hG
am

eS
ta

te
.

pr
oc

es
sR

es
po

ns
e(

);

Se
rv

er
A

pp
lic

at
io

n
up

da
te

Cl
ie

nt
Av

at
ar

pe
rf

or
mS

er
vi

ce
()

;

s
e
r
i
a
l
i
z
e
s

i
n
s
t
a
n
c
e
-
o
f

s
e
r
i
a
l
i
z
e
s

i
n
s
t
a
n
c
e
-
o
f

d
e
s
e
r
i
a
l
i
z
e

i
n
s
t
a
n
c
e
-
o
f

d
e
s
e
r
i
a
l
i
z
e

i
n
s
t
a
n
c
e
-
o
f

Fig. 25.: The communication flow and de/serialization of messages in OODSS. A

shared type system scope encapsulates the subtypes of request and response message.

Based on the polymorphic subtype of the message, invocation of performService()

and processResponse() methods are dynamically dispatched.

Therefore, the subtype of a request or a response message specifies an implementation

of a service or response method.

Figure 25 shows a request/response communication architecture in the multi-

player Team Coordination (TeC) game. The client updates a player’s location on the

server, and the server responds by sending an updated state of the game object back

to the client application. The client creates an instance of the UpdateClientAvatar

request message, which is serialized and transported over the network to the server

where S.IM.PL Serialization deserializes it. The server calls the performService()

method on the object. Request messages extend a common RequestMessage base

67

class, therefore, the implementation of performService() is dynamically dispatched

and executed on the server. Similarly, the service method creates an instance of

RespondWithGameState response message, which is transported to the client. The

client executes the processResponse() method, which is dynamically dispatched, as

instances of response messages inherit from a common ResponseMessage base class.

The example shows that OODSS services rely on polymorphism to execute

the overridden implementations of performService and processResponse meth-

ods. Therefore, instantiation of the correct subtype is crucial for executing the right

implementation.

Type system scopes in S.IM.PL Serialization ensure the instantiation of the cor-

rect subtype from a serialized representation. In Figure 25, the service provider and

consumer share a common type system scope. Sharing a common type system scope

means that the provider and consumer can understand the messages exchanged be-

tween them. On a lower-level, this means that the service provider can deserialize

messages, which are serialized and transmitted by service consumer and vice-versa.

Therefore, type system scopes function as objects of mutual understanding be-

tween the server and client applications. Serialized messages that do not conform to

the bindings specified in the shared type system scope are rejected, with appropriate

error reporting by OODSS.

2. Flexible Data Binding

An important facility that promotes polymorphic message architecture is the ability

to bind only the required fields and specify how they are represented. In OODSS,

message classes can contain local state variables, which dispatched methods utilize

for executing application specific logic. These fields are omitted from serialization

and sent over the network.

68

The ability to flexibly specify data bindings enables software engineers to specify

their own message structures, instead of conforming to lengthy specifications enforced

by message representation protocols such as SOAP [25] and XML-RPC [26]. Flexi-

bility, fine-grained control over message representation, and the specification of the

messages defined by a type system scope result in concise messages, as shown in

Figure 26. An instance of ClientAvatar, from the UpdateClientAvatar request

message, is serialized by OODSS using S.IM.PL Serialization and SOAP and XML-

RPC protocols. The XML message produced by OODSS is significantly smaller in

size and more readable as compared to SOAP or XML-RPC messages.

3. Platform-Independent and Multi-Format Approach

S.IM.PL Serialization enables OODSS services to work across platforms. The OODSS

approach to cross-language distributed services has advantages over prior Interface

Description Language (IDL)-based approaches. In IDL-based frameworks, such as

CORBA [20], DCOM [27], and Mockingbird [28], programmers define message struc-

tures by writing specifications in IDL. Later, from IDL definitions, programmers can

generate platform specific code for de/serialization of messages. Software development

with this approach is cumbersome to maintain, as IDL-definitions are maintained in

external files. In OODSS, message structure is specified by augmenting data type

definitions with DBAL. This is easier to maintain through refactoring. The DBAL

declarations also serve as means of documentation of source code. Software program-

mers can easily identify which fields are de/serialized and how they are represented.

Due to the inherent support of multiple-formats (XML, JSON, and TLV) in

S.IM.PL Serialization, OODSS services can utilize these formats. For developing ap-

plications that integrate with third party software systems, the readability of messages

is crucial in expediting processes of integration and debugging. Therefore, during de-

69

Java class definition S.IM.PL Serialization

SOAP

XML-RPC

<soapenv:Envelope
 xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <soapenv:Body>
 <performService xmlns="http://service">
 <clientAvatar>
 <ns1:id xmlns:ns1="http://entity">vbush</ns1:id>
 <ns2:pos xmlns:ns2="http://entity">
 <ns2:x>10.12</ns2:x>
 <ns2:y>42.42</ns2:y></ns2:pos>
 </clientAvatar>
 </performService>
 </soapenv:Body>
</soapenv:Envelope>

<struct> <member>
 <name>id</name>
 <value>vbush</value></member>
 <member>
 <name>pos</name>
 <value><struct><member>
 <name>y</name>
 <value><double>42.42</double></value>
 </member>
 <member>
 <name>x</name>
 <value><double>10.12</double></value>
 </member>
 </struct></value>
</member></struct>

<client_avatar id="vbush">
 <pos x="42.2" y="10.12" />
</client_avatar>

public class ClientAvatar
extends ElementState
{
 @simpl_scalar
 private String id;

 @simpl_composite
 private Vector2d pos;
}

Fig. 26.: An instance of ClientAvatar as serialized through S.IM.PL Serialization,

SOAP, and XML-RPC. Serialized representation through OODSS and S.IM.PL Seri-

alization is significantly smaller in size as compared to other protocols.

70

velopment software engineers use more human-readable but verbose format such as

XML. Later, when integration is complete and debugging is no longer required, sup-

port for multiple-formats allow software engineers to switch to a concise format, such

as TLV to reduce bandwidth requirements.

B. Meta-Metadata Language and Architecture

Metadata is used to describe published information resources in a structured way.

Kerne et al. conceived of information semantics as the integration of a document and

its metadata, including data structures for representing metadata internally, rules for

extracting instances of metadata types from particular published information sources,

presentation to users, and operations supported by applications [29].

The meta-metadata language and architecture builds on S.IM.PL Serialization,

comprising a type-system for describing wrappers that represent data derived from

information sources. These wrappers are authored in metadata definition language

and can be re-used to describe multiple information resources that publish data with

the same structure.

Information sources are heterogeneous, as there are many types of metadata

needed to describe real world entities ranging from scholarly articles to commercial

products. By an information source, we mean a data source that publishes informa-

tion with a consistent structure, such as an RSS feed, set of search engine results, or

templated web pages. An information resource is an instance of a particular informa-

tion source, typically associated with a specific URL.

Next, we demonstrate the use of S.IM.PL Serialization in developing the meta-

data type-system that forms the basis of metadata definition language for author-

ing metadata wrappers. Then, we examine the role of S.IM.PL Serialization in

71

facilitating meta-metadata compile-time and run-time modules. The compile-time

module extends S.IM.PL Serialization’s cross-language code generation facilities to

derive language-specific metadata class definitions; instances of which function as

typed-containers of data extracted from information resources. The run-time module

extracts data from information resources to populate instances of metadata classes

according to the rules specified by the developer and executes semantic actions that

specify how information is acted-on by software tools and presented to users. In-

stances of meta-metadata wrappers and metadata associated with particular informa-

tion resources are of course conveniently de/serializable using S.IM.PL Serialization.

1. Meta-Metadata Type System

Consider a flickr.com author-tagged photos web page as an information resource

(Figure 27). It shows the collection of all photos uploaded by a user, associated with

a particular tag. The Hypertext Markup Language (HTML) of the web page contains

a list of hyper links of image thumbnails and image titles.

We want to extract metadata from information resources into abstract data type

in multiple programming languages, such that collection representation applications

can operate-on metadata and present information to the users. Therefore, information

extraction can be considered as a sophisticated process of deserializing data, with

certain rules. For example, we are interested in specific data within particular tags

in HTML instead of the whole web page, which also contains presentation-specific

data. A standard method of accessing particular information from within a specific

tag in an XML document is to use XPath path expressions [30], which are a syntax

for defining parts of XML document, enabling navigation and selection of nodes or

sets of nodes in the document.

In some cases, such as web services, the data is provided for applications to

72

Fig. 27.: A flickr.com author tagged photos web page and its corresponding HTML.

The web page contains a collection of thumbnails of the images uploaded by the user.

Images are hyper-links that refer to more details of the particular image.

consume rather than for presentation. Such information sources provide data as for-

matted XML or JSON. We provide a mechanism called direct binding that directly de-

serializes data into metadata instances using S.IM.PL deserialization. Direct-binding

is computationally less expensive in comparison to XPath information extraction, as

it does not require creation of a Document Object Model (DOM) to support executing

73

XPath queries.

The meta-metadata type system provides a mechanism for describing the struc-

ture of metadata contained in information resources. For example, the structure of

metadata in Figure 27 is a collection of links. Links are composed of scalar fields:

image detail URL and image title. The image detail URL refers to another informa-

tion resource that provides more specific information about the particular image. The

ability to describe the structure of metadata enables software engineers to organize

information sources as metadata types and promotes re-usable code in applications

that work with information resources.

The structure of metadata in meta-metadata type system is represented by

S.IM.PL basic types: scalar, composite, and collection. A composite type further

contains scalars, composites, or collection types. Furthermore, a collection is either

of type scalar or composite. These basic types are identical to the S.IM.PL types

specified through type system scopes, which we presented earlier in Chapter II. The

meta-metadata type system is an augmented super-set of type system scopes, provid-

ing a platform-independent, alternative syntax for specifying types in the S.IM.PL

type system. The augmentation adds functionalities that are relevant to specifying

metadata types, information extraction, presentation, and how software applications

will operate-on metadata.

Declarations in the meta-metadata type system can be translated to

extended type system scopes. The extended type system scopes are composed of

MetadataClassDescriptors and MetadataFieldDescriptors that extend the

ClassDescriptors and FieldDescriptors types to store additional information,

derived from metadata-specific annotations. For example, the @mm name

annotation on a metadata field, binds it to its corresponding meta-metadata

field declaration. The interpretation of the @mm name annotation is stored in the

74

MetadataFieldDescriptor type, which is utilized by compile-time (VII, B, 3) and

runtime (VII, B, 3) modules.

Declarations in the meta-metadata type system form the metadata type system,

comprising of authored metadata types that describe information sources, and

built-in types that function as base types for authored metadata types. Base classes,

such as metadata, document, compound document, image, gps location, and

scholarly article are used to organize sets of polymorphic metadata subtypes.

Through meta-metadata type system, users have defined atleast 148 types in

the metadata type system. These metadata types describe 85 di↵erent information

sources, which includes scholarly articles, publications, search engine results, RSS

feeds, and online photo albums, newspapers, and product stores.

2. Metadata Definition Language

The metadata type-system forms the basis of the metadata definition language,

S.IM.PL Serialized language that software engineers use to write wrappers that specify

types in the metadata type system. Figure 28 shows two wrappers for the flickr.com

author-tagged photos web page. Utilizing the metadata type-system, the wrapper

specifies the structure of metadata objects and how information is extracted through

XPaths and regular expressions.

Information resources from a particular information source publishes informa-

tion with consistent structure, a meta-metadata wrapper binds with an information

source, specified by the selector element. In this case, we specify URL pattern for

flickr.com author web pages. Multiple author web pages or information resources

will utilize the same wrapper for information extraction. Meta-metadata types are

extensible. Wrapper authors can re-use or extend existing wrappers. For example, the

flickr link wrapper is re-used in flick author to describe a collection of links in

75

<meta_metadata name="flickr_link" extends="metadata">

 <scalar name="link" hide="true" scalar_type="ParsedURL" />
 <scalar name="title" navigates_to="link" scalar_type="String" />

</meta_metadata>
<meta_metadata name="flickr_author" extends="document" parser="xpath">
 <selector url_regex="http://www.flickr.com/photos/(?!tags)[A-z0-9_@-]+/$" />

 <semantic_actions>
 <get_field name="flickr_link_set" />
 <for_each collection="flickr_link_set" as="result">
 <get_field object="result" name="link" />
 <get_field object="result" name="title" />
 <parse_document now="true" >
 <arg value="title" name="anchor_text" />
 <arg value="link" name="container_link" />
 </parse_document>
 </for_each>
 </semantic_actions>

 <collection name="flickr_link_set" xpath="//div [@class='Photo']"
 child_type="flickr_link">
 <scalar name="link" xpath="./span/a/@href" />
 <scalar name="title" xpath="./span/a/@title">
 <filter regex="by \w*" replace="" />
 </scalar>
 </collection>

</meta_metadata>

Fig. 28.: The definition of meta-metadata wrapper for flickr.com author web pages.

The flickr link wrapper specifies the structure of links, while flickr author wrap-

per specifies a collection of flickr links and semantics actions.

the document. Similarly, further types can be declared, which extends flick author

or re-use flickr author type to describe another type of another information source.

In addition to specifying metadata structure, wrapper authors also specify se-

mantic actions and presentation rules on metadata and metadata fields. Semantic

actions allows software engineers to procedurally specify how collection representa-

tion applications will operate on metadata objects. Semantic actions are of three

76

kinds: variable declaration, control flow statements, and bridge functions. Variable

declarations are made through get field, def var, and loop statements. They are

used to pass arguments to bridge functions. Control flow statements specify the or-

der of execution of semantic actions. These structures include loops and conditional

statements. Bridge functions enable flow of metadata from meta-metadata wrapper

into specific application functions.

For example, in the wrapper in Figure 28, the semantic action iterates over each

flickr link in the collection and invokes parse document function with arguments,

title and link. The parse document is a special kind of semantic action used by web

crawlers that uses the provided web-link to fetch additional documents for metadata

extraction.

Wrappers authored in metadata definition language are, of course, deserialized

using S.IM.PL. Constructs of metadata definition language are represented by pro-

gramming language classes annotated with DBAL. The semantics of abstract data

types augmented with DBAL provides a paradigm for structuring the meta-metadata

definition language. Figure 29 shows the data binding of the meta-metadata wrapper

with Java classes.

Polymorphism plays a crucial role in de/serializing meta-metadata wrappers. For

example, a nested type, such as collection or composite can contain a list of scalars or

more nested elements. Therefore, an abstract base class MetadataNestedField con-

tains a polymorphic list (kids) of MetaMetadataField type; an abstract base class

from which all meta-metadata types inherit. This enables nested structure in meta-

data definition language. The @simpl classes annotation is used for databinding of

the polymorphic list.

Similarly S.IM.PL de/serializatin is used to interpret selectors, as directives on

the meta-metadata declarations. Further, the MetaMetadata type contains seman-

77

<meta_metadata name="flickr_author"
 extends="document"
 parser="xpath">

 <semantic_actions>
 <get_field name="flickr_link_set" />
 <for_each collection="flickr_link_set"
 as="result">
 <get_field object="result"
 name="link" />
 <get_field object="result"
 name="title" />
 <parse_document now="true" >
 <arg value="title" name="anchor_text" />
 <arg value="link" name="container_link" />
 </parse_document>
 </for_each>
 </semantic_actions>

 <collection name="flickr_link_set"
 xpath="//div
 [@class='Photo&
 #39;]"
 child_type="flickr_link">
 <scalar name="link"
 xpath="./span/a/@href" />
 <scalar name="title"
 xpath="./span/a/@title">
 <filter regex="by \w*" replace="" />
 </scalar>
 </collection>

</meta_metadata>

@simpl_inherit
@simpl_tag("collection")
public class
MetaMetadataCollectionField
extends MetaMetadataNestedField
{...}

@simpl_inherit
@simpl_tag("scalar")
public class MetaMetadataScalarField
extends MetaMetadataField
{...}

public class MetaMetadataNestedField
extends ElementState
{
 @simpl_nowrap
 @simpl_map
 @simpl_classes(
 {MetaMetadataField.class,
 MetaMetadataScalarField.class,
 MetaMetadataCompositeField.class,
 MetaMetadataCollectionField.class, })
 protected HashMapArrayList
 <String, MetaMetadataField> kids;
}

@simpl_inherit
@simpl_tag("composite")
public class MetaMetadataCompositeField
extends MetaMetadataNestedField
{...}

public class MetaMetadata
extends MetaMetadataCompositeField
{
 @simpl_collection
 @simpl_scope ("SA_TYPES_SCOPE")
 private ArrayList<SemanticAction>
 semanticActions;
}

@simpl_inherit
public class MetaMetadataField
extends ElementState
{...}

Fig. 29.: The data binding between a meta-metadata wrapper and DBAL-augmented

class definitions in Java. S.IM.PL Serialization’s support for polymorphic types en-

ables the nested structure of metadata type declarations and semantic actions.

78

tic actions; represented by a polymorphic list of base class SemanticAction. The

dynamic @simpl scope annotation specifies the set of semantic actions that can be

used. The @simpl scope annotation facilitates addition of new semantic actions, as

the metadata definition language is evolving. New semantic actions are added by

extending SemanticAction base classes and added to the type system scope iden-

tified by the parameter (SA TYPES SCOPE) to @simpl scope annotation. Therefore,

less change in code is required to deserialize new semantic actions.

When deserializing a meta-metadata wrapper, S.IM.PL Serialization is also used

to extend type system scopes to store additional information derived from meta-

metadata specific annotations, such as the @mm dont inherit annotation, which is

used for facilitating inheritance in metadata type declarations. A derived metadata

type, automatically inherits all attributes from the parent metadata type. How-

ever, certain attributes are specific to the declared metadata type, which should

not be inherited by derived types. For example, the extends attribute (declared

in flickr author wrapper in Figure 28) is specific to the declared metadata type.

Derived types can override but not inherit the extends attribute.

3. Compile-time Module

Meta-metadata wrappers written by developers are stored in a repository on the users

machine. The compile-time module generates metadata classes from meta-metadata

wrappers as they specify the structure of metadata abstract data types.

Figure 30 shows the di↵erent components and use of S.IM.PL Serialization

and type system scopes in generating metadata classes. The compile-time

module iterates over each of the defined wrappers in the repository, deserializing

it using S.IM.PL Serialization. Extended type system scopes consisting of

MetaMetadataFieldDescriptors and MetaMetadataClassDescriptors encapsulate

79

meta-
metadata
repository

meta-metadata
wrapper
in XML S.

IM
.P

L
M

et
aM

et
ad

at
a

Si
m

pl
Ty

pe
sS

co
pe

meta-metadata
Instance

S.IM.PL
 Metadata

SimplTypesScope

S.IM.PL
code generation

facilities

meta-metadata
code generation

facilities

generated
metadata classes

for each
wrapper

extends

translate
into

generated
 type system scope

deserialize

Fig. 30.: Di↵erent components involved in compiling a meta-metadata wrapper repos-

itory. S.IM.PL Serialization and type system scopes are used to deserialize wrappers

and generate metadata classes.

additional information that facilitates creation of the correct meta-metadata

instance. After deserialization, the meta-metadata definitions are translated to

metadata type system scopes, which can be used to generate language-specific code

through S.IM.PL Serialization code-generation facilities, which operate on type

system scopes.

Since metadata type system scopes are an extension of S.IM.PL Serialization’s

type system scopes, which contain additional metadata-specific information, the

compile-time module can extend S.IM.PL Serialization’s code generation facilities to

output additional metadata-specific annotations, such as the @mm name annotation.

Figure 31 shows the generated metadata classes for the flickr.com author-

tagged photos web page. The generated code is augmented with DBAL; therefore,

80

@simpl_inherit
public class FlickrAuthor
extends Document
{
 @simpl_collection("flickr_link")
 @simpl_tag("flickr_link_set")
 @mm_name("flickr_link_set")
 private ArrayList<FlickrLink> flickrLinkSet;
 ..
}

@simpl_inherit
public class FlickrLink
extends Metadata
{
 @simpl_scalar
 private MetadataParsedURL link;

 @simpl_scalar
 private MetadataString title;
}

Fig. 31.: Generated metadata classes for flickr.com author-tagged photos informa-

tion source. FlickrLink is used as collection of links in FlickrAuthor class definition.

instances of metadata can be made persistent using S.IM.PL Serialization.

Generated metadata classes extend Metadata, built-in subtypes of Metadata,

or other generated metadata classes. For example, in Figure 31 the FlickrLink

class extends Metadata and FlickrAuthor extends Document, which is a sub-type of

Metadata.

Collection representation applications that operate on di↵erent types of meta-

data use polymorphic fields and collections to store instances of metadata at run-

time. De/serialization of such polymorphic fields and collections is handled auto-

matically through type system scopes, definitions of which are also generated by

meta-metadata’s compile-time module.

81

4. Run-time Module

The runtime module populates metadata instances with information extracted from

information resources. The information is populated either through XPaths and reg-

ular expressions or direct-binding. Figure 32 shows the flow of information from

information resources into metadata objects and use of S.IM.PL Serialization and

type system scopes.

In the case of direct binding, XML published through web services is automat-

ically deserialized using S.IM.PL to instantiate metadata objects, as metadata class

definitions contain DBAL declarations, which bind instances of metadata to serial-

ized representations. In the case of population through information extraction rules,

XPaths and regular expressions are used to populate particular fields in the metadata

objects.

As shown in Figure 32, an application specifies a URL of the information resource

from which it wants to extract metadata. Based on the mime-type and URL pattern,

the runtime module creates an instance of the meta-metadata object, which was

easily deserialized using S.IM.PL Serialization. The meta-metadata instance finds the

associated ClassDescriptor in the generated type system scope, which was generated

by the compile-time module and encapsulates all di↵erent type of metadata classes.

The ClassDescriptor instantiates an empty instance of the metadata object.

The meta-metadata instance specifies the type of parser which should be used

to populate the instance of metadata object. In case of direct-binding, the meta-

data instance is automatically populated through S.IM.PL Serialization. In case of

information extraction rules, the framework utilizes MetadataFieldDescriptors to

gain access to each field. An XPath expression specifies the node in the document

where the information is located; regular expressions specifies how that information

82

select by
mime-type, URL pattern

meta-metadata
instance

S.IM.PL deserialize

metadata instance

generated
type system scope

S.IM.PL Serialization
Type system scopes

Information Extraction
MetadataFieldDescriptors

parser?

URL of
information

resource

populated metadata
instance

information resource

associated
ClassDescriptor

find

XML
XML/HTML

download

XPath, regular expressions direct binding

Semantic
Actions

execute

Fig. 32.: Runtime module: shows how metadata objects are populated from an in-

formation resource. S.IM.PL Serialization is used for deserializing meta-metadata

wrappers, creating metadata instances, direct binding, and information extraction.

is filtered or formatted, such that it can correctly be assigned to the metadata field.

Once the information is extracted as a string value, a MetadataFieldDescriptors

provides functionality to marshall the scalar into the correct type

Populating scalar fields is managed through extension of S.IM.PL Serializa-

tion’s scalar type system. The framework adds additional scalar types, such as

83

MetadataString, MetadataFloat, MetadataInteger, and other scalar types. This

extension enables the framework to treat scalar fields as composite objects, such that

additional information, like term vectors [31], is stored with scalar fields, which are

used by software applications, but not required for de/serialization.

Finally, when a metadata instance is populated, the runtime executes semantic

actions, which call bridge functions that enable scripting flows of control for speci-

fying use of metadata in software applications, in case they need to perform further

operations on the received metadata.

C. Preferences Management System

We developed an extensible Preferences Management System based on S.IM.PL Se-

rialization. It introduces a type-system that enables users to specify di↵erent types

of visual and functional configurations of softwares through an XML file. Later, the

software application gains quick and easy access to these configuration settings. The

framework is used in software applications, which we will examine in Chapter VIII.

A user specifies configuration settings through a pref XML file, as shown in Fig-

ure 33. The XML file binds to class definitions augmented with DBAL declarations.

A generic container object PrefSet; maps preferences by their unique name. Prefer-

ences can be of di↵erent data types such as boolean, integer, float, string, or any other

scalar or composite type. The preferences HashMap is declared with @simpl scope

annotation; therefore, it functions as a polymorphic collection that can contain pref-

erences of any type abstracted by the type system scope. The identifier of which is

specified through the argument PREF TYPE SCOPE.

The key feature of this system is typed-access to configuration settings, instead

of a software application accessing string values and converting them to appropriate

84

@simpl_inherit
public class PrefSet
extends ElementState
{
 @simpl_map
 @simpl_nowrap
 @simpl_scope(PREFS_TYPES_SCOPE)
 HashMap<String, Pref<?>> preferences;
..
}

@simpl_inherit
public abstract class Pref<T>
extends ElementState
implements Mappable<String>
{
 @simpl_scalar
 protected String name;
..
}

@simpl_inherit
public class PrefBoolean
extends Pref<Boolean>
{
 @simpl_scalar
 boolean value;
..
}
@simpl_inherit
public class PrefInt
extends Pref<Integer>
{
 @simpl_scalar
 float value;
..
}

<pref_set>

 <pref_boolean name="save_local_media" />
 <pref_boolean name="simulated_annealing"
 value="true" />
 <pref_boolean name="draw_grid" />
 <pref_int name="num_search_results"
 value="20" />
..
</pref_set>

Fig. 33.: The data binding between a configuration XML file and Java classes. The

PrefSet class contains a polymorphic map of preferences. The @simpl scope anno-

tation specifies the types of preferences, such as integer and boolean.

types. The type conversion is automatically handled by type system scopes through

class-tag mappings with ClassDescriptors.

The use of @simpl scope annotation enables developers to easily add new pref-

erence types to the type system scope and have the system automatically de/serialize

85

them to correct types. For simplicity, we used scalars in the example Figure 33. How-

ever, users can also add composite and collection objects as value for a preference.

1. Meta-Preferences System

When developing applications for users, the software requires a graphical user inter-

face from where users can modify values of preferences by themselves without breaking

the system through incorrect specifications. Maintaining the interface for preferences

management can be di�cult, as preferences are constantly added, removed, or modi-

fied based on the current version of system and features it supports.

To address this issue, we developed Meta-Preferences System. It extends

Preferences Management System and based on S.IM.PL Serialization. The

Meta-Preferences System enables software engineers to specify from a meta-pref

XML file, the interface and error-handling related configuration of a particular type

of preference. For example, an integer preference type has a corresponding integer

meta-preference type that specifies additional information to the integer preference,

such as the interface component that will modify this preference and the range of

values the specified integer can contain.

The Meta-Preferences System reduces the burden on software engineers as inter-

face for managing configuration is specified through an XML file, which is easier to

maintain, in comparison to modifying the source code, which may result in errors.

Similar to Preferences Management System, the Meta-Preferences System utilizes

S.IM.PL Serialization’s support for data binding polymorphic instances. Analogous

to PrefSet, a MetaPrefSet class encapsulates a generic collection of di↵erent types

of MetaPrefs that can be used. Therefore, software engineers can easily add new

sub-types of MetaPrefs in the system.

86

D. Conclusion

In this chapter, we examined software frameworks: Object-Oriented Distributed Se-

mantics Services (OODSS), meta-metadata language and architecture, and Prefer-

ences Management System, to validate S.IM.PL Serialization’s design and motivate

its features. We demonstrated how S.IM.PL Serialization is used to support their ar-

chitecture through its extensible design and flexible data binding. These frameworks

are used in research software applications and used by students in undergraduate and

graduate courses and Texas A&M University, Department of Computer Science and

Engineering.

OODSS is a software framework designed to support real-time network commu-

nication and remote method invocation in distributed software applications. S.IM.PL

Serialization is at the core of de/serialization of OODSS messages in an architecture

that hinges on polymorphism. Remote methods are dynamically dispatched based

on the sub-type of each message received. S.IM.PL Serialization’s support for data

binding polymorphic types facilitates dynamic dispatching through instantiation of

the correct message sub-type on the remote machine. Type system scopes function

as objects of mutual understanding between server and client applications, as they

encapsulate types of messages exchanged. This, provides an automatic error-handling

mechanism for unknown messages. Flexible data binding enables OODSS services to

produce concise messages as compared to other commonly used technologies of rep-

resenting information for remote method invocation, such as SOAP and XML-RPC.

Multi-format and cross-language support in S.IM.PL Serialization enables OODSS

services to function across platforms in multiple-formats.

The meta-metadata language and architecture comprise a framework that en-

ables software engineers to consistently describe the structure of metadata, how it is

87

represented internally as program objects, acted-on by software tools, and presented

to the users. The framework validates S.IM.PL Serialization’s extensible design and

motivate the value of its features. It extends type system scopes to encapsulate ad-

ditional information related to metadata and meta-metadata objects. The extension

of type system scopes facilitates code generation and information extraction. Data

binding of polymorphic fields is extensively utilized, which facilitates re-usability and

maintenance of the framework’s source code. As of this writing, the framework de-

scribes 85 information sources, which extract information into 148 di↵erent types of

metadata objects.

The Preferences Management System enables software engineers to gain quick

and easy to configuration settings of a software application through external XML

files. External XML files enables persistence of configuration settings on a user ma-

chine for later access. S.IM.PL Serialization’s support for data binding polymorphic

objects enables the Preferences Management System to deserialize configuration set-

tings into e�cient generic data structures in the runtime memory, enabling software

applications to quickly access, modify, and store a particular value of a preference.

88

CHAPTER VIII

VALIDATION - RESEARCH APPLICATIONS

In this chapter, we examine S.IM.PL Serialization’s use in two research software ap-

plications: the Team Coordination (TeC) game and combinFormation. TeC is a dis-

tributed software application, designed to teach and enhance team coordination skills

through an engaging game experience. The TeC game has been played by university

students, fire fighting students, and other emergency responders. combinFormation

is a creativity support tool that connects searching, browsing, organizing, modelling,

and visualizing information. combinFormation is used by university students and

researchers to generate creative ideas.

By examining how S.IM.PL Serialization is used in various components of TeC

and combinFormation, we validate the capability of S.IM.PL Serialization in support-

ing real-world software applications that require robustness, modularity, flexibility in

supporting continuous enhancements, and ease in debugging and deployment. It also

validates features of S.IM.PL Serialization as applicable to accommodate requirements

of software engineers. As of this writing, atleast 2,100 users have used and benefited

from TeC and combinFormation. S.IM.PL Serialization has performed without errors.

In the next section, we examine di↵erent components of combinFormation.

S.IM.PL Serialization is used as part of meta-metadata language and architecture

(VII, B) and independently for configuration and persistence of user-created

compositions. Then, we examine di↵erent components of TeC. S.IM.PL Serialization

is used as part of OODSS (VII, A) for network communication and independently

for managing configuration settings, and recording and replaying game sessions.

Finally, we examine TeC’s cross-language implementation use-case that utilizes

89

cross-language code translation and data binding facilities. We examine how

S.IM.PL Serialization facilitated migration of TeC client application from Java to

Objective-C.

A. combinFormation

combinFormation is a creativity support tool that connects searching, browsing, or-

ganizing, modelling, and visualizing information [32][33][34]. combinFormation uses

the integrative visual representation of information composition to represent collec-

tions, instead of lists or grids of separate elements. The composition (Figure 34) is

formed using image and text clippings, derived from clippings from documents, to

represent important ideas from the documents. combinFormation is integrated into

the curriculum of the undergraduate coursework ENDS - 101 The Design Process and

used by students in graduate course CSCE - 655 Human-Centered Computing. As

of this writing, approximately 2,000 students have used combinFormation. Studies

have shown that users benefit from combinFormation in generating creative ideas for

course assignments.

Figure 35 shows stages of data flow in combinFormation, which use of S.IM.PL

Serialization. A combinFormation user specifies a set of information resources and

initial set of queries for the focused web crawler to find relevant web pages. The user

then launches combinFormation with interface and application configurations loaded

from XML files. Later, the web crawler extracts documents and image/text clippings

through meta-metadata language and architecture, and ranks them based on the

user’s interest model to form an information composition. Finally, an information

composition can be saved by the user as an XML file for later retrieval.

90

Fig. 34.: An information composition made from combinFormation, which presents software technologies and research

related to S.IM.PL Serialization, in a form that provokes thinking. Image and text clippings are extracted from web

resources and scholarly articles.

91

Specify
Information
Resources

Interface
Configuration

 XML

meta-preferences
 XML

Launch
combinFormation

Information Extraction
meta-metadata

Collect Unparsed
Documents

Collect Image &
Text Clippings

Save
XML

using seeds for specified
information resources

from the web

s.im.pl serialization

user interest
model

document ranking
metadata extraction
surrogate extraction

surrogate ranking

Fig. 35.: The data flow in combinFormation. S.IM.PL Serialization is used for config-

uring interface, specifying information sources, extracting information through meta-

metadata, and persisting an information composition

1. Launch Configuration and User Settings

The combinFormation interface is managed through external XML files, which fa-

cilitates easy deployment and changes to the combinFormation software. For inter-

face rendering, S.IM.PL Serialization is used to connect interface configuration XML

files with typed-Java objects. The instances of Java objects, which contain interface

settings, are used to render the Graphical User Interface (GUI). Through S.IM.PL

92

Serialization, the combinFormation GUI is configurable by external XML files, which

avoids recompilation of the source code when an interface component is modified.

Thus, facilitating deployment of the software in production, as only an XML file

is replaced on the server. A total of 16 DBAL-augmented Java classes are used

for encapsulating interface configuration settings, leveraging S.IM.PL Serialization’s

support for scalar, composite, collection, and polymorphic types.

Configuration settings for some visual and functional components of combinFor-

mation are user-specific. They are handled by the Preferences Management System

(VII, C), which internally uses S.IM.PL Serialization for management and persistence

of preferences, providing quick and easy access to the combinFormation software. The

meta-preferences (VII, C, 1) system is used to render an interface from where a user

can modify preferences.

2. Information Extraction from the Web

In combinFormation, a focused web crawler uses the queries specified by the user to

crawl and collect documents from the Internet. Meta-metadata, utilizing S.IM.PL

Serialization, is used to extract document metadata and clippings that contain meta-

data from documents. Meta-metadata supports multiple information sources, such as

Flickr, Wikipedia, IMDb, ACM Digital Library, RSS, and the Google and Bing search

engines, enabling combinFormation to extract and present image and text clippings

from these information sources.

The collected image/text clippings are presented to users, which they can ma-

nipulate by changing its size, location, font, and color. As the user hovers over a

clipping, she can view, edit, or navigate to the source web document from in-context

details on demand and tools (Figure 36). A user can also express interest in each

clipping and specific terms inside a surrogate metadata, which changes the user’s in-

93

Fig. 36.: As a user hovers over a clipping, its nested metadata is displayed through

in-context details on demand tool. A user can modify metadata, express interest in

a specific term, or navigate to the actual resource.

terest model. The web crawler fetches more documents based on the user’s interest

model and presents additional clippings to the user. The crawler constantly fetches

additional documents and clippings until the user stops further collection. Users once

satisfied can save the information composition for later retrieval.

94

New information sources can be easily added in meta-metadata and seamlessly

integrated in combinFormation through polymorphism. The Document class is a

base type of all di↵erent kinds of metadata objects supported by meta-metadata. A

declared field of type Document functions as a polymorphic type, which can be of any

type of metadata specific to an information source. The information composition in

Figure 36 is created from clippings from 13 di↵erent information sources. For the

composition, meta-metadata facilitated metadata extraction from 136 information

resources.

3. Saving an Information Composition

Image and text clippings, extracted metadata, and relationships between clippings

and container documents is represented by DBAL-augmented Java classes. There-

fore, an information composition can be easily persisted in the form of an XML

document on the user’s machine for later retrieval, enabling users to re-open a saved

information composition to further modify/add/review information. S.IM.PL Serial-

ization facilitates representation of relationships between di↵erent types of clippings

and container documents from heterogeneous information sources as XML. Addi-

tional information specific to an information composition, such as visual and spatial

attributes of clippings and information composition, are also serialized and persisted

through S.IM.PL Serialization.

Figure 37 shows a serialized representation of an information composition and

DBAL-augmented class definitions that encapsulate document and clipping metadata.

The InformationComposition class encapsulates the structural and referential in-

formation about clippings and source document metadata, annotations, and media

and composition elements.

Clippings can be of image or text types. The ImageClipping and TextClipping

95

@simpl_inherit
public class InformationComposition
extends Document
{
 @simpl_collection
 @simpl_classes
 ({ImageClipping.class,
 TextClipping.class})
 protected List<Clipping> clippings;

 @simpl_collection("annotation")
 protected List<Annotation>
 annotations;

 @simpl_collection
 @simpl_scope(MEDIA_TRANSLATIONS)
 protected List<ClippableDocument>
 media;
}

<information_composition width="2560" height="1396">
 <clippings>
 <text_clipping simpl:id ="583098523"
 text=" We develop an XML binding framework..."
 <source_doc>
 <scholarly_article
 mm_name="acm_portal"
 location="http://dl.acm.org/..."
 title="A concise XML binding framework ..."
 metadata_page="http://dl.acm.org/..."
 pages="62-65">
 <clippings>
 <text_clipping
 context="A concise XML binding framework..."
 text="concise XML binding framework">
 </text_clipping>
 <text_clipping simpl:ref="583098523" />
 </clippings>
 <abstract>Semantic web researchers ...</abstract>
 <authors>
 <author
 location="http://dl.acm.org..."
 title="Andruid Kerne">
 </author>
 </authors>
 <source
 location="http://dl.acm.org/DocEng '08"
 title="DocEng Proceeding of the eighth ACM ..."
 year="2008" isbn="978-1-60558-081-4">
 </scholarly_article>
 </source_doc>
 </text_clipping>
 </clippings>
 <annotations>...</annotations>
 <media>
 <image
 location="relatedwork-images/pasted-10.png"
 width="329" height="346"
 simpl:id="1140991537"></image>
 </media>
 <composition_space
 extent="0 0 2560 1396" is_active="true"
 is_interactive="true" z_index="-1">
 <kids></kids>
 </composition_space>
</information_composition>

@simpl_inherit
public class TextClipping
extends Clipping
{
 @simpl_scalar String text;
}

@simpl_inherit
public class ImageClipping
extends MediaClipping<Image>
{
}

@simpl_inherit
public class CompositionSpace
extends GUI<CompositionElement>
{..}

@simpl_inherit
public class ClippableDocument
extends Document
{
 @simpl_collection
 @simpl_classes
 (ImageClipping.class)
 List<MediaClipping<ME>> clippings;
}

Fig. 37.: The mappings between Java classes and a serialized representation of an

information composition. The @simpl scope and @simpl classes annotations are

used to represent polymorphic types.

96

classes represent these di↵erent types. They extend the Clipping base class, which

refers the source document metadata through a polymorphic composite type

Document. The source document metadata types are dynamically specified through

the @simpl scope annotation, which contains the identifier of a generated type

system scope from meta-metadata. The generated type system scope encapsulates

all the di↵erent types of metadata documents supported by the meta-metadata

language and architecture. Therefore, S.IM.PL Serialization’s architecture of data

binding polymorphic types enables combinFormation to easily persist diverse types

of document metadata. Similarly, di↵erent types (image or text) of clippings are

represented through a polymorphic list of clippings in InformationComposition

class. Other elements, specified by users, such as text annotations, media elements,

and visual attributes of text clippings are represented by S.IM.PL objects.

Graph serialization is utilized to encapsulate referential information between clip-

pings and source documents. For example, a clipping references its source document

for and particular document maintains references to all extracted clippings. In earlier

versions of combinFormation, when graph serialization was not supported, the saved

XML files were more verbose and the source code was less maintainable, as developers

used alternate mechanisms to represent cyclic references.

As of now, an information composition is saved as XML, but support for multiple

formats has enabled combinFormation developers to focus on future work related to

exporting a composition in other formats to utilize third party tools. For example,

support for BibTeX is planned for integration in combinFormation, which will enable

users to export a BibTeX database, using this format’s ability to compile bibliogra-

phies through third party tools.

97

B. Team Coordination Game

The Team Coordination (TeC) game is a multi-player game that focuses on teach-

ing and enhancing team coordination skills through embodied interaction. The TeC

project investigates real-life team coordination practices among fire emergency re-

sponders and integrates findings into game design. The focus of TeC is on human-

centered aspects of distributed cognition and team coordination. TeC is played by

university students, fire fighting students, and other emergency responders with the

goal of improving team coordination skills. Studies have shown that the game is suc-

cessful in this mission [35] [36]. As of this writing, 174 game sessions with 99 di↵erent

users have been played. The Disaster Preparedness and Response (DPR) unit of the

Texas Engineering Extension is in the process of deploying the game into multiple

courses in the curriculum that it o↵ers to the international community of emergency

responders. DPR played an important role in responses to 9/11, Hurricane Katrina,

Hurricane Rita, Hurricane Ike, and many other prominent disasters.

TeC is a multi-player game. Several players join a centralized game server. Play-

ers acquire roles in the game, through which they communicate and share di↵erent

pieces of information to succeed in the game. TeC client applications, which are

used by players, communicate with the game server to share, transfer, and update

information about the game world. The communication, which is in the form of

XML messages, is managed by OODSS (VIII, A), internally using S.IM.PL Serializa-

tion for de/serialization of messages. In all game sessions, S.IM.PL Serialization has

performed without errors.

In the next section, we examine the message communication architecture of TeC

and report on the complexity and frequency of de/serialization of game messages,

handled correctly by S.IM.PL Serialization. Then, we further examine data types in

98

TeC that compose game messages and utilize various data binding features. Finally,

we examine a logging and playback system that researchers use for replaying recorded

games for measuring impact of game sessions on player skills.

1. Message Communication Architecture

In TeC, players join the game server from client applications. They are assigned the

roles of seeker or coordinator. In a typical game setting, 4 players join the game

server. One players takes the role of the coordinator, while the rest take the role

of the seeker. Seekers see the local view of the game world as they move around to

collect goals and avoid threats. They are guided by the coordinator, who sees the

global view of the game world.

Seekers’ actions in the game world change the state of the game, which is updated

on the server. The server updates clients with new information at every game cycle.

The communication between client and server applications is managed by OODSS.

A game session is typically played for 15 minutes. It can end early if seekers are able

to collect all 12 goals before the allotted time expires. Equation 8.1 calculates the

quantity of messages de/serialized in a TeC game session; an approximation, assuming

a game is played for complete its duration and all goals are collected. 9 di↵erent types

of messages are used for communication, each of which, contains specific information

and transmitted depending upon the state of the game.

messages / game = 4 players⇥ 900 seconds

⇥ 30 messages / player / second

+ 1, 456 conditional messages

= 109,456 XML messages (9 types) (8.1)

99

Messages in TeC, play a crucial role in driving the game mechanics and changing

the state of the TeC client. Figure 38 shows the communication architecture with

types of messages exchanged between client and server application. A shared type

system scope encapsulates these di↵erent kinds of messages. The client authenti-

cates with the server by sending a LoginWithRole request message. If credentials

are verified, the server replies with the InitializeGame message, which contains game

configuration data, such as map, time, number of goals, number of threats, and num-

ber of seekers. Later, the client sends a SetReadiness message to notify that the

player is ready to start the game. Finally, as the game starts, the client repeatedly

sends the UpdateClientAvatar message to update a seeker’s location on the server.

The server replies with a RespondWithGameState message that updates the location

of other seekers as wells a threats, on the map. UpdateClientAvatar and Respond-

WithGameState messages are repeatedly sent every 30 milliseconds to keep the game

world synchronized across client applications. When seekers are collecting goal, a

CollectingGoal message is sent to the server.

Table VIII shows the size, depth, and an approximate number of messages de/se-

rialized during a single game session for each client. As of this writing, 174 TeC game

sessions have been played by 99 users, which includes university students, fire fighting

students, and other emergency responders. S.IM.PL Serialization performed without

errors and performance issues.

2. Data Binding TeC Entities

TeC is a distributed application with client applications communicating with a cen-

tralized game server. Data exchanged is in the form of entities which are serialized

Conditional messages are sent based on certain conditions within the game, such
as when a seeker is logging-in, confirming ready state, or collecting goal.

100

TeC
 Server

Shared
Type System Scope

TeC
Seeker Client

TeC Client

LoginPerform
Service

Initialized

Process
Response

Process
Response

LoginStatusResponse

InitializeGame

LoginWithRole

serialize
deserialize
state

InitializedPerform
Service

Ready &
Sending
Updates

Process
Response

Readiness-
Confirmation

SetReadiness

Sending
Updates

Perform
Service

UpdatedProcess
Response

RespondWith-
GameState

UpdateClientAvatar

Collect
Goal

Perform
Service

Update
Goals

Process
Response

OkResponse

CollectingGoal

Fig. 38.: The communication architecture of TeC, utilizing OODSS. A shared type

system scope encapsulates 9 di↵erent types of messages that modify client state.

101

Table VIII.: Types of TeC messages and their size, depth, and count. Size is calculated

in bytes, which denotes the amount of data contained in the message. Depth is the

level of nesting when serialized. Count is an approximate measure of the number of

times the messages are sent in a single game session.

Messages Size / Bytes Depth Count

LoginWithRole 125 2 1

LoginStatusResponse 125 2 1

InitializeGame 3,668 6 1

SetReadiness 60 1 1

ReadinessConfirmation 2,040 1 1

UpdateClientAvatar 227 3 13,500

RespondWithGameState 1,168 5 13,500

CollectingGoal 51 1 180

OkResponse 45 1 180

and transmitted for use by the remote application. These entities are complex data

structures represented by deeply nested composites, collections, and polymorphic ob-

jects. They also function as objects that drive game mechanics. Flexibility to bind

only the required fields for de/serialization in entities is crucial, as entity objects con-

tain local application specific logic and state variables. Using S.IM.PL Serialization,

software engineers can easily omit de/serialization of fields that are not required by

the remote application. This improves performance and reduces message size.

Although, TeC’s communication architecture involves exchange of more types of

messages, we will examine the InitializeGame, RespondWithGameState, and Collect-

102

ingGoal messages, as these messages are crucial in the functioning of the game. All

di↵erent types of entities are encapsulated by these messages.

Entities in TeC, can be categorized as static or dynamic. Static game entities do

not change their runtime state as the game progresses. For example the game map

and sub-entities that constitute a map are static entities. The states of dynamic game

dynamic game entities are constantly in flux as a game progresses. For example, as a

seeker moves around the map to collect goals, its location on the map changes. Static

game entities are transmitted once, while dynamic game entities are transmitted every

game cycle to update their current state across all applications.

a. Static Game Data

Static game entities are encapsulated in the StaticGameData class. An instance

is transmitted through the InitializeGame message. Values in StaticGameData are

populated through an external configuration file on the server. The Preferences Man-

agement System (VII, C) is used for access to these configurations. Initial locations

of seekers and goals is also considered as static game data. The game map is loaded

through an external XML file; the URL is sent as part of static game data. Figure 39

shows the data binding for the InitializeGame class, with its XML representa-

tion. Polymorphic collections are used to implement generic containers for di↵erent

sub-types of seekers and goals. For example, goals can be collaborative and non-

collaborative. Collaborative goals require more than one seeker to collect them, while

non-collaborative goals require only a single seeker to collect. Collaborative goals im-

plement di↵erent game mechanics as compared to non-collaborative goals, therefore,

they are represented as di↵erent sub-types of common base class Goal.

The game map is stored as an external XML file. The XML contains informa-

tion specific to the map, such as locations of walls and safe zones, gps and wifi signal

103

<initialize_game>
 <game_data timestamp="1303229145900">
 ...
 </game_data>
 <static_game_data
 map_url="southsidedorms.xml">
 <seekers>
 <s id="1">
 <pos x="295" y="556" />
 <dir y="1" />
 <vel />
 </s>
 </seekers>
 <goals>
 <g id="_g0" num_req_skr="1">
 <pos x="678" y="517" />
 <col_map></col_map>
 </g>
 ...
 </goals>
 </static_game_data>
</initialize_game>

public class InitializeGame
{
 @simpl_composite
 GameData gameData;

 @simpl_composite
 StaticGameData staticGameData;
}

public class StaticGameData
{
 @simpl_scalar
 ParsedURL mapUrl;

 @simpl_collection
 @simpl_scope(TTEC_SEEKERS)
 ArrayList<SeekerAvatar> seekers;

 @simpl_collection
 @simpl_scope(TTEC_GOALS)
 ArrayList<Goal> goals;
}

Fig. 39.: Data binding of an InitializeGame message class with its XML repre-

sentation. Seekers and goals are entities that can of di↵erent sub-types. they are

represented by polymorphic collections in StaticGameData.

strength areas, seeker spawn points, and the size of the map. Using S.IM.PL Serializa-

tion, the XML is deserialized into instances of static game entities, which are used by

the server and client applications to drive game mechanics, such as collision detection

with walls. Figure 40 shows the data binding of map XML with Java classes. The

map is represented by a hierarchy of class definitions. The game maintains separate

versions of the software that use di↵erent sub-types of maps. For example, gps and

wifi signal strength areas are entities used for simulating the e↵ect of signal strength

on the game, when the game is played without these sensors. When the game is

played with gps and wifi sensors, these entities are not required, hence a sub-type

104

<enhanced_game_terrain
 sector_size="200">
 <gps_fields>
 <g_p_s_field num_sats="12"
 x="476.0" y="456.0"
 w="400.0" h="400.0" />
 ...
 </gps_fields>
 <seeker_spawns>
 <point2_d_double
 x="295.0" y="556.0" />
 </seeker_spawns>
 <wi_fi_fields>
 <wi_fi_field strength="1"
 x="256.0" y="714.0"
 w="500.0" h="500.0" />
 ...
 </wi_fi_fields>
 <walls>
 <polygon>
 <polygon_verticies>
 <point2_d_double
 x="44.0" y="79.0" />
 ...
 </polygon_verticies>
 </polygon>
 ...
 </walls>
</enhanced_game_terrain>

public class EnhancedGameTerrain
extends SimpleTerrain
{
 @simpl_collection("g_p_s_field")
 private ArrayList<GPSField>
 gpsFields;

 @simpl_collection("point2_d_double")
 private ArrayList<Point2DDoubleState>
 seekerSpawns;

 @simpl_collection("wi_fi_field")
 private ArrayList<WiFiField>
 wiFiFields;
}

public class SimpleTerrain
extends ElementState
{
 @simpl_collection("polygon")
 protected ArrayList<PolygonState>
 walls;
}

Fig. 40.: Data binding of an EnhancedGameTerrain map class with its XML repre-

sentation. It extends SimpleTerrain; a base class for di↵erent types of maps.

other than EnhancedGameTerrain is used.

b. Dynamic Game Data

Dynamic entities, such as seekers, threats, and goals are updated on clients through

RespondWithGameSate and CollectingGoal messages. The RespondWithGameState

message updates the location of seekers and threats on TeC client. Figure 41 shows the

data binding of Java classes with RespondWithGameState message. The GameData

105

class contains collections of seekers and threats. As introduced earlier in example

walkthrough (II, A), threats can be of di↵erent types depending on their behaviour

in the game. They derive from the common base class Threat. To represent such

scenarios, software engineers usually declare a single polymorphic collection, instead

of declaring separate collections for each sub-type, which are di�cult to maintain.

S.IM.PL Serialization’s support for data binding polymorphic instances enable soft-

ware engineers to adhere to object-oriented principals of software design that facili-

tates code maintenance and re-usability.

As mentioned earlier, goals in TeC can be of di↵erent sub-types: collaborative

publi class RespondWithGameState
extends ResponseMessage
{
 @simpl_composite
 private GameData gameData;
}

public class GameData extends
{
 @simpl_scalar
 protected int cycRem;

 @simpl_scalar
 protected double score;

 @simpl_collection
 @simpl_scope(TEC_THREATS)
 protected ArrayList<Threat>
 threats;

 @simpl_collection
 @simpl_scope(TEC_SEEKERS)
 protected ArrayList<SeekerAvatar>
 seekers;
}

<respond_with_game>
 <game_data
 cyc_rem="19760"
 score="-1.599999651312828">
 <threats>
 <nt id="_t3" ord="3">
 <pos x="54.83" y="675.34" />
 <dir x="-0.71" y="0.7" />
 <vel x="-2.1" y="2.03" />
 </nt>
 </threats>
 <seekers>
 <s id="1" gps_sats="10"
 wi_fi_str="1"
 c="2" colTime="19802">
 <pos x="69.48" y="668.09" />
 <dir x="-0.21" y="0.98" />
 <vel />
 </s>
 </seekers>
 </game_data>
</respond_with_game>

Fig. 41.: Data binding of an EnhancedGameTerrain map class with its XML repre-

sentation. It extends SimpleTerrain; a base class for di↵erent types of maps.

106

and non-collaborative, deriving from a common base class Goal. Collaborative goals

require the presence of more than one seeker at the goal’s location to be collected.

To synchronize goal collection, the goal entity maintains a map of goal collectors;

seekers attempting to collect goal. The map is updated through the CollectingGoal

message sent to the server. The server computes the requirements for goal collection;

if satisfied, goal collection begins. Seekers must remain at goal location to complete

the collection process. Usage of this map structure is necessary for synchronizing goal

collection events in the game. S.IM.PL Serialization’s support for binding the map

data structure facilitates software engineers in handling such cases.

3. Recording and Replaying Game Sessions

During TeC user study sessions, researchers are interested in finding and collecting

data based on how users interact and play the game. It is essential for researchers to

record and playback a game session for later analysis, data collection, and reporting

of findings. The TeC game session is recorded through S.IM.PL Serialization. The

game server logs game states in real-time, which are later used by the Coordinated

Log and Playback System (CLAPS) [37] to replay the game for analysis. All 174 game

sessions that have been played by users are recorded through S.IM.PL Serialization

and made available for researchers to analyse. CLAPS synchronizes game replay

with audio data of players’ communication, providing visual components that enables

researchers to examine how communication between players a↵ects their actions in

the game. S.IM.PL Serialization is used to deserialize game states, making instances

available for CLAPS to render game states. The rendering code is same as that

originally written for TeC.

Flexible constructs in S.IM.PL Serialization played a crucial role in enabling

CLAPS software to work with old XML files, generated by previous versions of the

107

TeC game. For example, serialized log files in earlier versions of TeC were verbose

with lengthy tag names. Developers modified @simpl tag declarations in class def-

initions with shorter tag names. The produced log files from the later version were

concise. However, to be able to replay games from old XML files, developers used

@simpl other tags annotation to specify the old tag for deserialization. Hence, less

code modification was required for backward compatibility.

C. Cross-Language Use Case: TeC iPhone Client

We presented the application of S.IM.PL Serialization in the Team Coordination

Game (TeC) (VIII, B), to validate the ability of the framework to support real time

distributed applications. We also examined TeC’s message communication archi-

tecture to present details of message complexity and frequency of de/serialization

requests handled by the framework. In this case study, we examine cross-language

implementation of TeC’s client application to present how S.IM.PL Serialization fa-

cilitated software engineering principles of code reuse, maintenance, documentation,

and porting existing software to other platforms and programming languages.

In the next section we describe the motivation behind the TeC project to port the

existing Java-based client application to Objective-C programming language utilizing

the Apple iOS platform. During this process, we ported 130 Java class definitions to

Objective-C through S.IM.PL Serialization’s cross-language code translation utilities.

The generated code produced no compile-time or runtime errors in de/serialization

of messages across platforms, reducing development, testing, and debugging time.

Later, we briefly refer back to Section B, 2 to examine the complexity of entity

representation in the TeC game, utilizing deeply nested composite, polymorphic and

collection objects, thus validating S.IM.PL Serialization’s cross-language capabilities

108

to handle complex data structures.

We examine how the flexibility to bind only the required fields for serialization

facilitated TeC client’s development in Objective-C. We also discuss issues in cross-

language code generation such as, di↵erences in keywords, memory size of data types,

and integration of generated code.

1. Why Migrate TeC Client?

Migrating an application from one platform to another is a common scenario, as ad-

vancements in hardware technologies and programming languages o↵er new ways to

build interactive applications. The TeC game’s client and server applications were

originally developed in Java. Java is a platform independent programming language

and o↵ers high-level programming language features that software developers benefit

from during development. However, with the introduction and increased popularity

of Apple iOS platform and iPhones, we have seen migration of many existing appli-

cations to run on iPhones. As of now, the Apple iOS platform does not support the

Java virtual machine, therefore, code-bases for such applications must be ported to

Objective-C programming language for iOS development. Similarly for TeC, iPhones

o↵ers new ways the game can be played and made available to the users.

TeC is a location-aware game that uses GPS and compass sensors to determine

a player’s location and heading, which is used to control their avatars in the virtual

game world. iPhones provide a mobile platform and built-in sensors that can be easily

utilized. Therefore, we wanted to port the mobile part of the TeC game, which is the

seeker client application, to Objective-C.

109

2. Cross-Language Implementation

S.IM.PL Serialization facilitated migration of existing TeC client’s Java source code

to Objective-C through cross-language code translation utilities (VI, B). During this

process, 130 Java class definitions were translated to Objective-C. The generated code

did not produce compile-time errors. The Java code included embedded documenta-

tion, which was also ported into Objective-C, facilitating development in Objective-C.

Since Objective-C does not support annotations, data bindings are specified through

serialized type system scope XML file. The generated code also includes comments

that described how a particular field is annotated in Java, facilitating development

in Objective-C. Later, runtime cross-language de/serialization of messages functioned

without errors and performance issues.

In Section B, 2, we examined the complexity of messages and briefly described

the structure of entities in TeC. Declarations of entities are structured in the form

of deeply nested class hierarchies, that utilizes inheritance to maximize code reuse.

Polymorphism is extensively used for implementing di↵erent behaviours of similar

entities in the game. A fairly large number of classes are used to encapsulate run-

time behaviours of entities. Instances of entities are de/serializable through S.IM.PL

Serialization. Therefore, in addition to driving the game mechanics, entities are also

used for transmitting information to the remote application. Writing these classes in

Objective-C by hand is a tedious and time consuming task. Later, debugging due to

human-errors in hand coding can also increase the burden on software engineers and

increase development time.

S.IM.PL Serialization’s cross-language utilities resolved the issue of time required

in hand-coding message specific classes and debugging runtime errors in de/serializa-

tion. The generated code was documented, functioned without errors, and produced

110

Fig. 42.: The TeC seeker client running on iPhone. Entities shown, such as seeker,

threat, goal, and map are represented by S.IM.PL-objects in program.

a skeleton project that developers were able to easily modify and add application and

platform-specific logic, such as graphic handlers. Figure 42 shows a screen shot of

TeC seeker client running on iPhone, utilizing the message communication architec-

ture presented earlier in Section B, 1.

Few issues were encountered during cross-language code translation and data

binding, which helped us improve the cross-language support in S.IM.PL Serialization.

For example, certain variable names, such as in and id were used in Java TeC client.

Therefore, the generated code in Objective-C also contained variables with names in

and id, which are keywords in Objective-C and cannot be used as variables names.

We were able to resolve this issue by maintaining a map of keywords in the code

111

translation utility and notifying the user by generating a warning if variable names

in Java conflict with keywords in Objective-C. A user can easily resolve this issue

by refactoring the variable name to a value that does not conflict with keywords in

Objective-C.

D. Conclusion

In this chapter, we presented applications of S.IM.PL Serialization in research soft-

ware, combinFormation and Team Coordination (TeC) game, to validate the ability

of the framework to support application development. As of this writing, approxi-

mately 2,100 users, which include students, researchers, and emergency responders,

have used TeC and combinFormation. To support real-world software applications,

S.IM.PL Serialization must be robust and flexible, and facilitate maintenance, de-

bugging, deployment, and documentation. We examined how these requirements are

satisfied in di↵erent components of these software applications.

combinFormation (VIII, A) is a creativity support tool, that presents information

as image and text clippings to the users to form an information composition. These

clippings are extracted from documents from the Internet, using the meta-metadata

language and architecture (VII, B), which builds on S.IM.PL Serialization. Later, an

information composition can be saved as an XML file using S.IM.PL Serialization.

Configuration of combinFormation software is also managed through external XML

files using the Preferences Management System (VII, C), which is based on S.IM.PL

Serialization. S.IM.PL Serialization has functioned without errors in these software

components. Extensive use of data binding support for polymorphic instances has

facilitated software engineers in maintenance and re-usability of the source code. The

ability to seamlessly access and manipulate data from external XML files have facili-

112

tated configuration management and deployment of the combinFormation software.

The Team Coordination (TeC) (VIII, B) game is a multi-player, distributed soft-

ware application. Network communication during the game is performed in real-time

using Object-Oriented Distributed Semantics Services (OODSS) (VII, A), which is

based on S.IM.PL Serialization. S.IM.PL Serialization is also used for recording game

sessions for later analysis. As of this writing, 99 users have played and benefited from

TeC. Their game sessions have been recorded and analysed by researchers. Since, the

communication is performed in real-time, performance of de/serialization is crucial.

We have not experienced runtime errors and performance issues with S.IM.PL Serial-

ization’s use in TeC. Extensive use of data binding support for polymorphic instances

has facilitated maintenance and re-usability of the source code.

Migration of software applications from one platform to another is a common

real-world problem, as development in hardware and software technologies leads to

newer ways a software application can be used and made available to the users. We

examined a cross-language use-case of S.IM.PL Serialization in TeC game’s client

application, which involved migration of an existing Java-based client application

to Objective-C programming language. S.IM.PL Serialization facilitated the process

by generating code in Objective-C for 130 class definitions. The generated code

produced no compile-time and runtime errors in de/serializing messages from Java-

server. Software engineers were able to easily modify and add application-specific

code to the generated class files, which facilitated development in Objective-C.

113

CHAPTER IX

PERFORMANCE BENEFITS AND DEVELOPER EXPERIENCE

Performance and usability are key components for the real-life application of a soft-

ware framework. In Chapter VIII, we presented application of S.IM.PL Serialization

in such real-life software systems whose users include students, researchers, and emer-

gency responders. S.IM.PL Serialization performed well for this. To formally validate

performance benefits of S.IM.PL Serialization we conducted benchmark tests to com-

pare S.IM.PL Serialization’s runtime performance of de/serialization with other XML

data binding frameworks: JiBX, JAXB, Castor, and XStream. Our results showed

that S.IM.PL Serialization outperformed these frameworks in nearly all de/serializa-

tion scenarios that included small (1.42KB), medium (123KB), and large (1,003 KB)

size XML files.

S.IM.PL Serialization’s prime goal is to relieve software engineers from the bur-

dens associated with developing information-centric applications. Therefore, usability

by software engineers is crucial validating goal for S.IM.PL Serialization. We con-

ducted a small-scale study with semi-structured interviews of 10 student developers

that used S.IM.PL Serialization in undergraduate and graduate coursework at Texas

A&M University, Department of Computer Science and Engineering. Students used

S.IM.PL Serialization in completing course assignments. Feedback from them in-

dicated that S.IM.PL Serialization eased the development process, facilitated code

re-usability, and documentation. Students also identified useful features and short-

comings in S.IM.PL Serialization that helped us improve our framework through

refinement/addition of data binding features and improvement in documentation and

error handling.

114

In the next section, we present benchmark results and analyse performance ben-

efits of S.IM.PL Serialization. Later, we summarize data obtained from feedback

of student developers and analyse two notable software applications developed by

students: a sketch recognition application and a multi-modal rummy game.

A. Performance Evaluation

We compared the performance of S.IM.PL Serialization with the best XML data bind-

ing frameworks. Performance was measured using the Bindmark [38] benchmark. We

ran serialization and deserialization benchmarks on an Intel Core i7 2.8 GHz processor

with 8 GB 1067 Hz RAM. Often, the relative performance of XML frameworks di↵ers

greatly depending on the size of the XML representation. Therefore, we included

varying sizes of XML files in our benchmark: small (1.42 KB), medium (123 KB),

and large (1,003 KB) size XML files. The depth of XML data was kept constant at

2, 20, and 45 for small, medium, and large files respectively.

The benchmark results compared performance of S.IM.PL Serialization with

JiBX, JAXB, XStream, and Castor. These frameworks are commonly used XML

data binding frameworks for commercial and non-commercial applications. We ran

multiple iterations of de/serialization across di↵erent XML file sizes: 1,000 small,

100 medium, and 10 large XML files. The choice for the number of iterations was

arbitrary, but kept constant for a particular size across all frameworks. The data con-

tained in XML files was also kept constant across all frameworks. The benchmark of

S.IM.PL Serialization is unbiased, containing no code specific to Bindmark. Results

showed that S.IM.PL Serialization outperformed other frameworks.

115

Table IX.: Serialization time required using di↵erent serialization. S.IM.PL Serial-

ization outperforms other frameworks in all scenarios.

framework / serialization time (nanoseconds) runtime

(# runs) small (1000) medium (100) large (10) size (KB)

S.IM.PL 18,091 432,094 2,327,055 176

JiBX 18,400 460,726 2,663,215 141

JAXB 97,648 3,021,568 20,423,433 3,800

XStream 132,825 6,451,624 35,615,057 368

Castor 363,927 3,488,719 17,101,195 3,000

XML file size (KB) 1.42 123 1,003

XML file lines 55 1,817 8,567

XML file depth 2 20 45

1. Serialization Benchmarks

Serialization in XML data binding frameworks is the process of generating XML

representation of an object in memory. Table IX shows the benchmark results for

serializing objects into small, medium, and large size XML files. Results indicate

that S.IM.PL Serialization’s runtime performance is better than all the frameworks

used in Bindmark.

S.IM.PL Serialization is approximately 9 times faster than JAXB; a Java sup-

ported XML data binding framework. XStream and Castor are further down below in

the performance chart. S.IM.PL Serialization is 15 times faster than XStream and 8

times faster than Castor. JiBX is closest in performance with S.IM.PL Serialization.

JiBX uses an o✏ine compile-step, which is excluded by Bindmark. The compile-
step augments Java byte-code by adding de/serialization methods to compiled classes.

116

Table X.: Deserialization time required using di↵erent serialization frameworks.

S.IM.PL Serialization outperforms other frameworks in all scenarios, except small

XML files compared to JiBX.

framework / deserialization time (nanoseconds) runtime

(# runs) small (1000) medium (100) large (10) size (KB)

S.IM.PL 202,671 1,852,291 11,659,359 176

JiBX 77,510 2,277,680 17,276,832 141

JAXB 216,060 3,290,398 18,903,100 3,800

XStream 260,395 6,506,639 40,732,718 368

Castor 766,221 6,112,564 35,433,526 3,000

XML file size (KB) 1.42 123 1,003

XML file lines 55 1,817 8,567

XML file depth 2 20 45

2. Deserialization Benchmarks

Deserialization in XML data binding frameworks is the process of creating objects

in memory from XML representation. Table X shows the benchmark results for de-

serializing small, medium, and large size XML files. Results indicate that S.IM.PL

Serialization’s runtime performance is better than all the frameworks used in Bind-

mark, except for small size files in comparison to JiBX.

S.IM.PL Serialization is approximately twice as fast as JAXB and approximately

3 times faster than XStream and Castor. Again, JiBX is closest in performance to

S.IM.PL Serialization.

JiBX uses an o✏ine compile-step, which is excluded by Bindmark. The compile-
step augments Java byte-code by adding de/serialization methods to compiled classes.

117

3. Discussion on Benchmark Reports

When a framework needs to get data into and out of the runtime objects, a common

way of doing this is through reflection. Reflection is a powerful language feature that

enables runtime access to an object’s encapsulated data, methods, and type informa-

tion. However, reflection su↵ers from a performance disadvantage when compared to

calling a method and accessing fields directly from the source code.

Through close examination of XML data binding frameworks used in benchmark

results, we found that all other frameworks directly use reflection operations, except

JiBX. JiBX takes a di↵erent approach: Java byte-code augmentation from an o✏ine

compile-step, which adds de/serialization code in compiled classes. Since, a part

of processing required at runtime is moved to the compile time, JiBX yields better

runtime performance than JAXB, XStream, and Castor. However, the compile-step

is di�cult to manage as it is handled by the programmer, using a separate utility

software. Changes in source code requires that programmers re-run the compile-step.

Table XI.: De/serialization time normalized with the smallest value for each size of

XML document.

Serialization (normalize time) Deserialization (normalized time)

Framework Small Medium Large Small Medium Large

S.IM.PL 1 1 1 2.62 1 1

JiBX 1 1.07 1.15 1 1.23 1.48

JAXB 5.40 6.99 8.78 2.79 1.78 1.62

XStream 7.34 14.93 15.31 3.36 3.51 3.49

Castor 20.1 8.07 7.35 9.74 3.3 3.04

118

S.IM.PL Serialization also utilizes reflection features of the programming lan-

guage, but performs better than JiBX and significantly better than rest of the frame-

works Table XI. From the benchmark results, we draw the conclusion that the per-

formance benefits of S.IM.PL Serialization are achieved through type system scopes.

Type system scopes utilize tag-based mappings, which provide quick access to con-

stituent instances of ClassDescriptors and FieldDescriptors that cache reflection

accessor objects and data binding semantics, resulting in better runtime performance.

However, further tests and benchmarks reports are required to formally verify and

measure the impact of type system scopes on de/serialization performance.

Thus, in conclusion, the performance of JiBX is close to but inferior to that of

S.IM.PL Serialization. Further, JiBX requires o✏ine compilation and performs byte-

code modification. It is thus harder to use. Further, JiBX is XML only, lacking cross-

language and multi-format support. Developers are better served by using S.IM.PL

Serialization.

B. Development Experience

We wanted to validate the usability of S.IM.PL Serialization by software engineers and

verify that features supported by S.IM.PL Serialization are e↵ectively used and suf-

ficient in di↵erent scenarios of software development. We conducted semi-structured

interviews with 10 students developers that used S.IM.PL Serialization. Initial data

indicated that S.IM.PL Serialization is easy to understand and integrate with software

applications that require de/serialization of runtime objects. Students also reported

that S.IM.PL Serialization eased the development process, reduced development and

testing time, and facilitated documentation of the source code. Students were able

to spent more time concentrating on broader goals of their projects rather than writ-

119

ing tedious parsing code. We intend to conduct further studies with more student

and expert developers to draw substantial conclusions about the usability of S.IM.PL

Serialization.

Table XII.: Interview groups of student developers. Each group developed a research

grade software application using S.IM.PL Serilialization independently or as part of

other research frameworks, such as OODSS and meta-metadata.

identifier # students year

B1 2 2009

B2 1 2009

B3 1 2010

B4 2 2010

C1 2 2010

C2 2 2010

S.IM.PL Serialization was introduced to students at the start of the semester

in undergraduate course CSCE-482 Capstone Design and graduate course CSCE-

455 Human Centered Computing. Students were encouraged but not required to use

S.IM.PL Serialization for assignments. At the end of the semester, we conducted semi-

structured interviews with student developers who were actively involved in using

S.IM.PL Serialization (Table XII). We mainly asked students about their experience

and impact of S.IM.PL Serialization on their assignments.

1. Human Centered Computing

Students in the graduate computer science course, CSCE-455 Human Centered Com-

puting, develop software applications that helps them understand principles of writing

120

usable softwares. At the end of the semester students are required to form groups of

upto five students to complete a research project. They develop variety of distributed

applications using location sensors and mobile devices and later, conduct user stud-

ies to validate the design, usability, and contribution of their software applications.

Below we summarize qualitative data from semi-structured interviews with student

developers and report issues they faced in using S.IM.PL Serialization.

Students in group [B1] liked the ability to seamlessly de/serialize data from

XML. They reported that generated XML was human-readable, interoperable and

suggested that they would use S.IM.PL Serialization again for future projects. [B2]

started development with their own serialization implementation. However, they

later switched to S.IM.PL Serialization as they thought it was more convenient to

use. [B3] liked the ability of data binding with other sources and reported that

S.IM.PL Serialization was more expressive than C#’s XmlSerializer. [B4] reported

that S.IM.PL Serialization was easy to use and they could focus on broader goals of

their projects rather than writing tedious code for parsing and de/serialization.

Students in groups [B1] and [B2] reported problems in understanding the library

and use of Data Binding Annotation Language (DBAL) (II, D). [B1], [B2], and

[B4] reported that they had trouble in debugging erroneous use of DBAL constructs.

We later, developed an online guide for S.IM.PL Serialization with examples and

tutorials [12]. We also implemented error handling and reporting code in S.IM.PL

Serialization that helps developers in debugging. [B3] reported a special case of cyclic

references in his class definitions, which was not supported by S.IM.PL Serialization.

We implemented graph serialization (III, E) to resolve this shortcoming. Later, [B3]

used S.IM.PL Serialization and OODSS to develop a distributed application for his

research in Sketch Recognition (IX, C, 1).

121

2. Senior Capstone Design

CSCE-482 Capstone Design is an undergraduate course in which students develop

variety of novel and interactive software systems. Students form groups of upto six

students to complete a research project in phases during the course of the semester.

They use mobile devices, location sensors, and multi-touch displays to develop in-

teractive software systems. Below we summarize qualitative data obtained through

semi-structured interviews of student developers.

[C1] developed a distributed application for composing music using a Java-based

server and iPhones. iPhone users select music notes, which they send across to the

server application. A music composition is created from contributions by iPhone

users. Three users simultaneously connect with the server to play the game in real-

time. S.IM.PL Serialization and OODSS were used for de/serialization and network

communication. Students in group [C1] reported that they did not find any problems

with S.IM.PL Serialization. They reported that online tutorials were su�cient for

understanding the basic use of S.IM.PL Serialization. Students were able to directly

use the example code from the guide, after making few changes.

Students in group [C2] developed a Multi-modal Rummy Game (IX, C, 2) us-

ing S.IM.PL Serialization and OODSS. The game was developed in Objective-C using

Apple iOS platform on iPhones and iPad. They reported a minor bug of memory leak

during deserialization of reference type objects, which was fixed during development.

They also reported online documentation was helpful in understanding S.IM.PL Seri-

alization and its supported features were su�cient in implementing their application.

[C2] wanted to serialize enumerated types, which are not supported by S.IM.PL Se-

rialization in Objective-C. An alternate mechanism was suggested, but we intend to

implement support for enumerated types.

122

C. Applications Developed by Students

We demonstrate the use of S.IM.PL Serialization in two notable software applications

developed by student developers. A Sketch Recognition application was developed by

a graduate student, which is used by undergraduate students to submit hand-drawn

sketches and have them automatically graded by the system. Multi-modal Rummy

Game was developed by a team of undergraduate students that teaches old people to

use mobile devices and technology through an engaging card game.

The Sketch Recognition application was used by Fall 2010 and Spring 2011 un-

dergraduate students. It is publicly deployed for use by future students. The Multi-

modal Rummy Game was developed in Spring 2010. Since then, the game is under

active development by researchers and it is in the process of approval of publishing

rights at Apple’s App Store.

1. Sketch Recognition Application

A researcher [R1] from group [B3] used S.IM.PL Serialization and OODSS for his

research application on sketch recognition. Sketch Recognition is a sub domain of

Human Computer Interaction (HCI). Research in sketch recognition develops algo-

rithms and software programs based on data from hand drawn sketches. The sketch

data is usually represented as an XML document containing location and timestamps

of points. Points are further categorized into strokes, such that a stroke can contain

one or more points.

The application was developed for undergraduate students to submit assignments

using a computer to draw diagrams and have them automatically graded by the

system. S.IM.PL Serialization is used to serialize sketch data into XML files for

transport and storage on the server. In sketch application, a stroke can belong to

123

multiple shapes. A change in data of a stroke must reflect a change in each of the

containing shape objects, thus resulting in backward edges in the object model. [R1]

used graph serialization feature to correctly represent such object models.

In Fall 2010 and Spring 2011, 33 and 20 students respectively used the system and

submitted a total of 11 assignments, each consisting of 5 problems. A few students

did not submit all problems. As a result a total of 2,370 submissions of sketch data

were made; de/serialized and represented correctly by S.IM.PL Serialization. Each

submission message on average contained 100 KB of data in XML, upto 6 levels

deep. [R1] reported that he did not had issues with S.IM.PL Serialization and error

reporting was su�cient for debugging incorrect bindings.

[R1] reported that using S.IM.PL Serialization instead of built-in binary repre-

sentation helped in de/serializing old XML files with very less modification to the

source code. He also reported that de/serializing polymorphic instances and graph

serialization support were very important in implementing the desired functionality.

[R1] identified minor bugs in S.IM.PL Serialization, which we were able to fix imme-

diately. A few design issues were also raised. [R1] did not like the use of maps in

S.IM.PL Serialization as it required implementation of IMappable interface. Also,

data binding of maps in S.IM.PL Serialization requires keys as scalars and values

as composite objects, which [R1] reported was a constraint for his application. [R1]

requested support for using scalar as values in maps. We plan to implement this

support in S.IM.PL Serialization.

2. Multi-Modal Rummy Game

[C2] developed Multi-modal Rummy Game game using iPhones and iPad. iPhones

act as private displays that presents a user’s hand of cards, while the iPad acts as

a public display that users can interact-with and see which cards are played during

124

the game. A user selects a card on their iPhone. The iPhone application serializes

data and sends it across to the iPad application, which deserializes it and renders the

played card. Similarly, a user can also draw cards from the public display onto their

iPhone. S.IM.PL Serialization is used for de/serialization of game objects represented

by 43 class definitions.

Students in group [C2] continued working on their application to further inves-

tigate the social impact of their application. They conducted 6 user study sessions.

Each session required 4 players and lasted for approximately 1.5 hours. The number

of messages exchanged between the server and client application varies based on what

is happening in the game. Also, the complexity of messages depends upon the nature

of information being exchanged. For example, lay-down request for cards is repre-

sented with a data structure encapsulating an array of card objects, while drawing

a card request message contains data about a single card. On average, 1.6 messages

per second are exchanged between the server and client application. Therefore, ap-

proximately 34,560 XML messages were correctly de/serialized across all user-study

sessions and client applications. [C2] reported that they did not experience runtime

errors and performance issues with S.IM.PL Serialization during user study sessions.

D. Conclusion

In this chapter, we presented benchmark results and student developer experience re-

ports. The benchmark results validate that S.IM.PL Serialization outperforms other

XML data binding frameworks. JiBX, which is Java-based XML data binding frame-

work, is a close alternative in performance. However, maintenance of the source code

is di�cult using JiBX, as data bindings are external to the source code and managed

through an o✏ine compile-step by the programmer. In comparison, S.IM.PL Serial-

125

ization uses annotations, which are easier to maintain, as they are specified within

the source code. Interpretation of annotations is handled automatically at runtime.

Frameworks that use annotations are significantly slower than S.IM.PL Serialization

as they extensively use reflection, which is computationally expensive. S.IM.PL Se-

rialization reduces the amount of reflection operations required through type system

scopes (III) that cache data binding semantics and reflection accessor objects, pro-

viding better performance than prior frameworks.

To validate usability of S.IM.PL Serialization by software engineers, we con-

ducted semi-structured with student developers who used S.IM.PL Serialization in

course assignments. Initial data from 10 student developers is encouraging. We

intend to conduct further studies to draw substantial conclusions about the devel-

opment experience with S.IM.PL Serialization. Feedback from students helped us

improve S.IM.PL Serialization’s features, error handling, and documentation. A core

feature that was added from feedback of a student was graph serialization. A com-

plete tutorial set and documentation were developed to help students understand the

use of the framework and Data Binding Annotation Language (DBAL) (II, D). Error

handling code was added to facilitate debugging of incorrect use of DBAL constructs.

Students suggested that S.IM.PL Serialization reduced development and testing time

and facilitated documentation of the source code. They also reported that S.IM.PL

Serialization was more flexible and supported more features and development require-

ments than other XML data binding frameworks, such as Microsoft’s XmlSerializer.

Students showed interest in using S.IM.PL Serialization for future projects. They were

able to develop complex software applications that are publicly deployed or in the pro-

cess of public deployment, such as the Sketch Recognition Application (IX, C, 1), and

Multi-modal Rummy Game (IX, C, 2).

126

CHAPTER X

RELATED WORK

Systems that communicate, transfer, and exchange information extensively rely on

serializing and deserializing structured information. Data binding frameworks facili-

tates translation between typed object models with serialized representations. Flex-

ible mechanisms of data binding have been discussed and implemented before to

reduce cognitive load on software engineers. Solutions such as JAXB [39], JiBX

[7], Castor [40] are Java-specific data binding frameworks. Although, these frame-

works are flexible in representing information, software programmers are restricted to

platform-specific code, and to only use XML format. S.IM.PL Serialization enables

data binding across platforms with multiple serialization formats.

The following sections categorizes the di↵erent types of data binding approaches

and discusses them in comparison to S.IM.PL Serialization. Subsequently, cross-

platform data-binding and XML transformation approaches are discussed.

A. Document-Centric Approaches

Many XML data binding frameworks focus on code generation from XML Schema

files. Castor, Zeus [41], and JBind [42] provide tools that take an XML grammar

as the starting point for serializing and deserializing information. These frameworks

generate code in a target programming language, which binds to structured informa-

tion representations through external mapping files. We categorize these approaches

as document-centric, where programmers start by defining an information schema and

later generate an object model from it.

Document-centric approaches are based on external specifications outside of the

127

program. These external files are di�cult to maintain and debug, as they reside

outside of source code. Changes to information structure require changes to these

external files and regeneration of code.

B. Object-Centric Approaches

An alternative object-centric approach to data binding is to design the object model

first and later bind fields for serialization. Object-centric approaches are more con-

venient for developers as they can focus on the design of the application.

S.IM.PL Serialization addresses object-centric data binding principles: (1) Write

class definitions that define object structures. (2) Integrate algorithms, application

logic, and state variables with class definitions. (3) Bind required fields to serial-

ized representations. S.IM.PL Serialization supports these principles by defining the

semantics of translation through an annotation language. Using annotations to aug-

ment class definitions is convenient for developers because of their closeness to the

source code. They are easier to write through auto-completion features in Integrated

Development Environments (IDE)s such as Visual Studio [16] for .NET and Eclipse

[15] for Java. These IDEs also support refactoring, enabling easy maintenance of

augmented class definitions.

In comparison to language constructs in prior frameworks, such as JAXB [39]

and XmlSerializer [43], S.IM.PL Serialization’s annotation language is more concise

for handling complex and polymorphic type objects. Flexible constructs support

de/serialization to multiple formats such as XML, JSON, and TLV (type-length-

value) [8], providing fine-grained control over the representation.

128

C. Cross-Language Information Binding

When writing applications across multiple platforms, developers are required to write

platform specific code to read and write structured data. Software tools such as

Google Protocol Bu↵ers [44] have addressed this issue by generating serialization

code in multiple programming languages from definition of message structures spec-

ified through external files. External files can be di�cult to maintain. In S.IM.PL

Serialization, software engineers define message structure by augmenting class defini-

tion with DBAL.

Most of the prior research in supporting cross-language computing can be clas-

sified as Interface Description Language (IDL)-based approaches such as Distributed

Component Object Model (DCOM) [27], Common Object Request Broker Archi-

tecture (CORBA) [20], and MockingBird [28]. These approaches require that the

engineer define interfaces through external specification in an external language (the

IDL). Although IDL-based approaches enable object passing across platforms, they

are not data binding frameworks. The focus of IDL-based approaches is to support

communication across platforms in distributed applications. Such systems ignore the

value of control over serialized representations, as only deserialized information is

important from an application’s perspective.

In certain contexts, fine-grained control over the serialized representation is cru-

cial. For example, reading data from the wild, such as an RSS [45] feed. To write an

application that consumes RSS, developers require control over how serialized repre-

sentation bind with program objects. To be able to easily write such applications, we

need flexible data binding mechanisms across platforms. S.IM.PL Serialization’s plat-

form and format independent approach enables software engineers to easily bind data

with objects in di↵erent platforms and seamlessly transition from one data format to

129

another, as required.

D. XML Programming Languages

XML is a powerful and widely used format for tree-structured data. To support

the need for working with XML in programming languages, prior research led to the

definition of XML programming languages, such as XSLT [46], XDuce [47], CDuce

[48], Xtatic [49], and XCentric [50]. These projects presents XML programming lan-

guages to statically specify types of XML data, conforming to a specific structure. In

contrast, S.IM.PL Serialization is based on data binding principles where data struc-

ture and types are driven by the structure and types of objects in an object-oriented

programming language; eliminating the need to define a new external programming

language. The model that S.IM.PL Serialization presents for data binding also sup-

ports other tree-structured representations as opposed to only XML.

130

CHAPTER XI

CONCLUSION

Development of cross-language and multi-format distributed applications is common

in real-world software engineering, as di↵erent programming languages and data for-

mats o↵er features that are suitable for a particular application. To support com-

munication between applications in such scenarios, we need data binding frameworks

that enable cross-language and multi-format de/serialization of data, reduce burdens

on software engineers, and promote software engineering principles of code-reuse,

maintenance, and documentation.

We developed S.IM.PL Serialization to facilitate software development in such

scenarios. S.IM.PL Serialization supports cross-language data binding across Java,

C#, and Objective-C programming languages, with XML, JSON, and TLV data

formats. S.IM.PL Serialization provides cross-language code generation utilities that

ease development of distributed software systems, and facilitate migration of existing

applications.

Cross-language and multi-format data binding are facilitated through type sys-

tem scopes that encapsulate data binding semantics as abstract semantic graphs.

S.IM.PL Serialization utilize type system scopes to e�ciently de/serialize data across

programming languages in multiple formats. Type system scopes provide a platform-

independent mechanism for describing the structure of data and representing data

binding semantics, forming the basis of a cross-language type system for specifying

data bindings.

Type system scopes are extensible. A software framework, meta-metadata lan-

guage and architecture (VIII, B), extends type system scopes to develop the meta-

metadata type system for describing the structure and flow of metadata from infor-

131

mation resources to software applications that operate on metadata. Other software

frameworks, such as OODSS, and Preferences Management System, utilize type sys-

tem scopes for data binding of polymorphic instances, which facilitates their archi-

tectures for network communication and configuration management.

S.IM.PL Serialization is e�cient. Performance benchmarks indicate that

S.IM.PL Serialization’s run-time performance is better than other, widely used, data

binding frameworks. S.IM.PL Serialization is robust. It has performed e↵ectively

and without errors in research and educational software used by thousands of users,

who are not computer science students or researchers.

Student programmers have used S.IM.PL Serialization in development of soft-

ware applications for course assignments and research applications. They found it

helpful and easy to use. We have made S.IM.PL Serialization available to the open-

source community. Its source-code and documentation is publicly available on the

Internet [12].

A. S.IM.PL Serialization

S.IM.PL Serialization is a data binding framework, built with object-oriented design

principles that facilitates development of correct information-centric software applica-

tions. It promotes software engineering principles of code re-usability, maintenance,

documentation, and enables flexibility in data and object representation.

The framework presents a Data Binding Annotation Language (DBAL) to specify

data binding semantics. In comparison to specifying data binding semantics through

external files, DBAL declarations reside within the source-code, which are easier to

maintain and facilitates documentation of the source code.

Prior data binding frameworks are language and format-specific, which limits

132

their usability. In comparison, S.IM.PL Serialization provides cross-language data

binding in multiple formats, which facilitates development of distributed applications,

integration with third party software systems, and migration of existing software

applications to other programming languages.

B. Type System Scopes

S.IM.PL Serialization’s data binding architecture is based on type system scopes; a

key contribution of this research. Type system scopes provide abstraction over the

semantics of de/serialization. They encapsulate data binding semantics as abstract

semantics graphs. In programming languages that support annotations, type system

scopes are automatically derived from interpretation of declarations in DBAL.

At runtime, type system scopes and their constituent data structures are im-

mutable objects, which are cached for re-use. They cache reflection accessor objects

and are organized in e�cient data structures; mapped with associated tags in seri-

alized representations. Therefore, type system scopes enable better runtime perfor-

mance in comparison to other data binding frameworks.

The abstractions provided by type system scopes are utilized by programmers

through specification of DBAL constructs, enabling data binding of di↵erent types

of data structures, such as deeply nested composites, collections, map, graphs, and

polymorphic types.

1. Cross-Language Type System

During the course of this research, we are formalizing type system scopes as a cross-

language type system. This includes language independent representation of abstract

data types, generation of language specific type declarations, and automatic, com-

133

patible, multi-format de/serialization of object graphs.

In the cross-language type system, ClassDescriptors and FieldDescriptors

are language-independent basic types, declarations of which describe the structure of

classes and constituent fields; they also specify how an instance of a class is serialized

and represented in multiple formats. They enable specification of data structures

in programming languages as abstract types: scalars, composite, collection, or poly-

morphic. Furthermore, these abstract types are mapped with concrete types in a

particular programming language, such as Java’s Integer, Float, String, ArrayList,

and HashMap, or C#’s Int32, Single, String, List, and Dictionary data types.

C. Multi-Format Support

Type system scopes enable multi-format support in S.IM.PL Serialization, as they

abstract data binding semantics, which are independent of any particular format.

Utilizing the abstract data binding semantics encapsulated in type system scopes,

S.IM.PL Serialization implements de/serialization functionalities in di↵erent formats.

Fine-grained control over a particular format is provided through DBAL con-

structs that further specifies how a particular field is represented in a particular

format.

Switching between formats is seamless. Software engineers can specify the data

format through parametrized de/serialization functions. This enables applications to

easily translate data from one format to another, integrate with third party software,

and facilitates debugging, as software engineers can switch from non-readable format

to readable format and identify errors in data.

S.IM.PL Serialization comes with built-in support for XML, JSON, TLV, and

BibTeX formats of data representation. We plan to integrate support for other for-

134

mats, such as YAML, an alternative to XML that is gaining popularity in web appli-

cations.

D. Cross-Language Support

Cross-language support in S.IM.PL Serialization is facilitated through type system

scopes, as they describe data structures in a language-independent type system and

specify how objects bind with serialized representations.

Equivalent specification of type system scopes in particular programming lan-

guages, either through DBAL augmented class definitions or serialized type system

scopes, enables cross-language data binding.

We provide code generation utilities that facilitate cross-language data binding.

The code generation utility uses type system scopes to generate code in any supported

target programming language. Code comments used for documentation of the source

code are part of the type system scope enabling parsing by third party documentation

utilities.

Presently, cross-language support is provided between Java, C#, and Objective-

C programming languages. Support for JavaScript as target programming language

is currently under development. Support for further programming languages, such as

C++ and Python, is planned.

E. Validation

1. Data Binding Architecture and Extensibility

We examined how S.IM.PL Serialization’s data binding architecture is utilized and

extended to explore di↵erent areas of research through software frameworks. Re-

search frameworks that utilize and/or extend S.IM.PL Serialization were developed

135

to promote software engineering principles, reduce burden on software engineers, and

facilitate development of di↵erent types and components of software systems. These

frameworks are used in research applications and by students developing software

applications for course and research assignments.

OODSS implements novel semantics of service call and return in distributed

applications that promote object-oriented design principals. S.IM.PL Serialization’s

support for polymorphism is being used for OODSS message parsing and invocation.

OODSS utilizes type system scopes and data binding architecture for polymorphic

types to dynamically dispatch invocation of remote methods. S.IM.PL Serialization

enables OODSS services to function across di↵erent programming languages and sup-

port communication in multiple formats.

The Preferences Management system utilizes the data binding architecture of

polymorphic types to provide quick and typed access to configuration settings spec-

ified in external files. It facilitates configuration management and deployment of

software applications.

The meta-metadata language and architecture validates the extensibility of type

system scopes. It develops a language-independent meta-metadata type system that

extends type system scopes for specifying the structure of metadata, how data is

extracted from information resources, presented to users, and acted-on by software

tools. As of this writing, software engineers have specified 148 metadata types through

the meta-metadata type system describing 85 di↵erent information sources. These

include scholarly articles, books, patents, search engine results, RSS feeds, social

media, newspapers, and product stores.

136

2. Real-World Software Applications and Robustness

S.IM.PL Serialization is used in research and educational software applications, de-

veloped by researcher and student developers. The research applications Team Coor-

dination (TeC) game and combinFormation are designed to teach and enhance team

coordination skills and promote creativity.

TeC is a multi-player game that has been played by students, fire-fighters, and

other emergency responders. Studies have shown that through TeC’s engaging game

experience, players learned and improved team coordination skills. As of this writing,

99 di↵erent users have played and benefited from TeC.

TeC client application was migrated from Java to Objective-C using the cross-

language code generation facilities that translated 130 Java classes to Objective-C.

This newer portable version of TeC uses cross-language data binding, as the game

server is still maintained in Java.

combinFormation is a creativity support tool has been used by students in un-

dergraduate and graduate coursework at Texas A&M University. A majority of com-

binFormation users are not computer science students. Studies have shown that

combinFormation is successful in promoting creativity. At least 2,000 users have used

an benefited from combinFormation.

A multi-modal rummy game was developed by undergraduate students. Its goal

is to teach use of technology to old people through an engaging card game. S.IM.PL

Serialization is used for de/serialization of data for network communication. At least,

24 di↵erent users have played multi-modal rummy across multiple user study sessions.

A graduate student developed a research application for undergraduate students

to submit assignments through hand drawn sketches and have the system automat-

ically grade them. S.IM.PL Serialization is used for de/serialization of sketch data.

137

At least 53 undergraduate students have used the software to develop and submit

assignments.

S.IM.PL Serialization has performed without errors and performance issues in

these software applications. Extensive use of data de/serialization in these software

applications validates S.IM.PL Serialization’s capability to accommodate require-

ments of software engineers, developing complex software systems.

3. Performance Benefits

We measured de/serialization performance of S.IM.PL Serialization with other widely

used data binding frameworks: JiBX, JAXB, Caster, and XStream. Our benchmark

results showed that S.IM.PL Serialization’s runtime performance is better than these

frameworks. S.IM.PL Serialization is 9 times faster in serialization and twice as fast in

deserialization than JAXB, which is a Java supported XML data binding framework.

The performance benefits of S.IM.PL Serialization are achieved through type sys-

tem scopes, as they e�ciently cache data binding semantics derived from annotations

and reflection accessor objects, which facilitates quick access to data binding seman-

tics and reduces the number of reflection operations required for de/serialization.

4. Development Experience

We conducted semi-structured interviews with undergraduate and graduate student

developers that used S.IM.PL Serialization for developing research projects and course

assignments. Initial data obtained from 10 student developers is encouraging, as they

suggested that S.IM.PL Serialization was easy to use and facilitated development and

documentation of the source code. Data binding architecture accommodated their

software design requirements.

Developers suggested some shortcomings, which helped us improve S.IM.PL Se-

138

rialization through addition/refinement of data binding features and error reporting

and handling.

F. Ongoing Work

S.IM.PL Serialization is under active development. We are consistently working to-

wards improving the design and data binding architecture that may further improve

runtime performance and facilitate software engineers in application development.

In the next sections, we present the ongoing work in S.IM.PL Serialization and

describe how it a↵ects the framework and software engineers.

1. Pull Parsers

We presented earlier in Chapter III Section C, 2 that deserialization is performed

using type system scopes with SAX parsers. To validate that type system scopes can

be easily integrated with other types of parsers, we are integrating pull parsers for

deserialization. Pull parsers parse data as a stream rather than pushing events out to

the client code (SAX). The client code drives the parser rather than a parser driving

the client code.

Pull parsers are generally shown to be faster in performance as compared to SAX

parsers, and result in simpler code. We hypothesize that integrating pull parsers will

improve runtime performance and maintainability of the code-base.

2. Extend ElementState?

In the current implementation, user-defined classes must extend ElementState base

class to enable de/serialization of its instances. The ElementState base class stores

information that is utilized by deserialization algorithms, code-generation utilities,

139

and other software frameworks that extend S.IM.PL Serialization, such as the meta-

metadata language and architecture.

Although this mechanism of extending ElementState simplifies various function-

alities that the framework provides, it imposes an unnecessary restriction on software

engineers. For example, a software engineer wants to author a S.IM.PL de/serializ-

able class that extends a class is provided by a third party framework, which of course

does not extend ElementState. As multiple inheritance is not supported by many

programming languages (for its issues), software engineers are forced to work around

this limitation.

We are removing this limitation, so that software engineers will not be required

to extend ElementState for de/serialization. This will provide more flexibility and

improve e↵ectiveness of S.IM.PL Serialization in real-world software applications.

G. Future Work

S.IM.PL Serialization is a project that started with focus on relieving software en-

gineers from burdens associated with present day intricacies of writing information-

centric applications. We implemented, presented, and validated a framework that

addresses our present objectives.

We have identified areas of future research that will further facilitate develop-

ment of information-centric applications, cater the growing requirements of software

engineers, and validate e�cacy of S.IM.PL Serialization.

1. Languages without Reflection

S.IM.PL Serialization utilizes reflection capabilities of a programming language to im-

plement generic de/serialization functionalities. Since reflection is computationally

140

expensive, some programming languages such as C++, do not support this function-

ality. Thus, a generic mechanism for de/serialization cannot be implemented.

Future work in S.IM.PL Serialization will investigate support for programming

languages that do not support reflection. We plan to implement a cross-language code

generator for C++ that generates class definitions as well as parsing and serializa-

tion code from type system scopes. Objects serialized from supported programming

languages will seamlessly deserialize into objects of C++ and vice versa.

Generation of parsing code will be di�cult to manage as changes in object struc-

ture will require re-generation of C++ classes. However, serialization and deseri-

alization processes will be significantly faster in C++, as runtime introspection is

not required. Using this methodology we can support object-oriented programming

languages that do not support reflection.

2. Generic Parsers

Addition of a new format presently requires changes to the S.IM.PL Serialization code

base. The amount of change required can vary depending on the relative di↵erence

of the new format to the currently supported formats. The change may include

modifications in DBAL and addition of new serialization and deserialization methods.

We plan to improve the architecture of S.IM.PL Serialization so that minimal

or ideally no change in code base is required to incorporate a new format. We plan

to investigate parser generators and the possibility of incorporating a generic parser.

A generic parser can parse data in any format from specifications in BNF or EBNF

grammar. Generic parsers are an area of active research. Di�culties arise from

ambiguous grammar and e�ciency in parsing. However, research in this domain

presents methods to work around these di�culties.

Type system scopes are independent data structures and not integrated with

141

specific parsers. Therefore, through further research, we can incorporate a generic

parser with type system scopes and implement de/serialization methods that can

work with any format, provided its BNF or EBNF grammar.

3. Data Representation Protocols

Data representation protocols for remote method invocation follows a specific format

such as XML but further defines their own syntax of how information is represented.

For example, SOAP encapsulates data in a soap envelope containing soap-header and

soap-body tags in XML. Similarly, XML-RPC also uses XML but represents infor-

mation as key-value pairs. We plan to implement inherent support for widely used

data representation protocols, enabling software developers using S.IM.PL Serializa-

tion to write applications that communicate with third party software systems, such

as typical Web Services.

142

REFERENCES

[1] W3C, “Extensible markup language (xml) 1.0 (fifth edition),” 2009. http://

www.w3.org/TR/REC-xml/.

[2] D. Crockford, “JSON: The fat-free alternative to XML,” December 2006. http:

//www.json.org/fatfree.

[3] O. Ben-Kiki, C. Evans, and I. döt Net, “YAML Ain’t Markup Language

(YAML™) Version 1.2,” 2009. http://www.yaml.org/spec/1.2/spec.html.

[4] J. Gosling, B. Joy, G. Steele, and G. Bracha, Java(TM) Language Specification.

Mountain View, CA: Addison-Wesley Professional, 3rd ed., 2005.

[5] T. L. Thai and H. Lam, .NET Framework Essentials. Sebastopol, CA: O’Reilly

& Associates, Inc., 2001.

[6] Apple Inc., “The Objective-C Programming Language,” October 2009.

http://developer.apple.com/mac/library/documentation/Cocoa/

Conceptual/ObjectiveC/ObjC.pdf.

[7] D. M. Sosnoski, “JiBX: Binding XML to Java Code,” 2011. http://jibx.

sourceforge.net/.

[8] International Telecommunication Union, “ITU-T X.690,” 2002. http://www.

itu.int/ITU-T/studygroups/com17/languages/X.690-0207.pdf.

[9] A. Feder, “Bibtex format description,” 2006. http://www.bibtex.org/

Format/.

143

[10] A. Kerne, Z. O. Toups, B. Dworaczyk, and M. Khandelwal, “A concise XML

binding framework facilitates practical object-oriented document engineering,”

in Proc. ACM DocEng, pp. 62–65, 2008.

[11] A. Kerne, Z. O. Toups, B. Dworaczyk, and A. Khandelwal, “Expressive, e�cient,

embedded, and componenet-based xml-java data binding framework,” tech. rep.,

Texas A&M University, 2008.

[12] Interface Ecology Lab, “Support for information mapping in programming lan-

guages,” July 2010. http://ecologylab.net/research/simpl/index.html.

[13] D. Flanagan, Javascript: The Definitive Guide. Sebastopol, CA: O’Reilly &

Associates, Inc., 4th ed., 2002.

[14] B. Stroustrup, The C++ Programming Language, Third Edition. Boston, MA:

Addison-Wesley Longman Publishing Co, 3rd ed., 1997.

[15] Eclipse Foundation, “Eclipse integrated development environment,” 2010. http:

//eclipse.org.

[16] Microsoft Corporation, “Microsoft Visual Studio,” 2010. http://www.

microsoft.com/visualstudio/en-us/.

[17] B. W. Boehm, “A spiral model of software development and enhancement,”

Computer, vol. 21, pp. 61 –72, May 1988.

[18] S. S. Skeina, The Algorithm Design Manual, ch. 15, pp. 495–496. Stony Brook,

NY: Springer, 2nd ed., August 21, 2008.

[19] M. McCracken, “BibDesk Mac bibliography manager,” 2010. http://bibdesk.

sourceforge.net/.

144

[20] Object Management Group, “CORBA: Core specification,” 2010. http://omg.

org/docs/04-03-12.pdf.

[21] NDoc, “NDoc Code Documentation Generator for .NET,” 2005. http://ndoc.

sourceforge.net/.

[22] Apple Inc., “HeaderDoc User Guide: Introduction,” 2010. http:

//developer.apple.com/mac/library/documentation/DeveloperTools/

Conceptual/HeaderDoc/intro/intro.html.

[23] Z. O. Toups, A. Kerne, W. A. Hamilton, and N. Shahzad, “Object-oriented

distributed semantic services: A S.IM.PL Approach,” Submitted to ICSE, 2010.

[24] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements

of Reusable Object-Oriented Software. Boston, MA: Addison-Wesley Longman

Publishing Co., Inc., 1995.

[25] W3C, “SOAP Version 1.2 Part 1: Messaging Framework (Second Edition),”

April 2007. http://w3.org/TR/soap.

[26] D. Winer, “XML-RPC specification,” 1999. http://xmlrpc.com/spec.

[27] R. Grimes and D. R. Grimes, Professional Dcom Programming. Birmingham,

UK: Wrox Press Ltd., 1997.

[28] J. Auerbach, C. Barton, M. Chu-Carroll, and M. Raghavachari, “Mockingbird:

Flexible stub compilation from pairs of declarations,” in Proc. of the 19th IEEE

International Conference on Distributed Computing Systems, pp. 393–402, IEEE

Computer Society, 1999.

145

[29] A. Kerne, Y. Qu, A. Webb, S. Damaraju, N. Lupfer, and A. Mathur, “Meta-

metadata: A metadata semantics language for collection representation applica-

tions,” in Proc. of 2010 ACM Conference on Information and Knowledge Man-

agement, (Toronto, Ontario), pp. 26–30, October 2010.

[30] W3C, “XML Path Language,” 2009. http://www.w3.org/TR/xpath/.

[31] G. Salton and C. Buckley, “Term-weighting approaches in automatic text re-

trieval,” Inf. Process. Manage., vol. 24, pp. 513–523, August 1988.

[32] Interface Ecology Lab, “combinformation,” http://ecologylab.net/

combinFormation/.

[33] A. Kerne, E. Koh, B. Dworaczyk, J. M. Mistrot, H. Choi, S. M. Smith, R. Grae-

ber, D. Caruso, A. Webb, R. Hill, and J. Albea, “combinformation: a mixed-

initiative system for representing collections as compositions of image and text

surrogates,” in Proc. JCDL, pp. 11–20, 2006.

[34] A. Kerne, E. Koh, S. M. Smith, A. Webb, and B. Dworaczyk, “combinFormation:

Mixed-initiative composition of image and text surrogates promotes information

discovery,” ACM Trans. Information Systems, vol. 27, no. 1, pp. 1–45, 2008.

[35] Z. O. Toups, W. A. Hamilton, A. Kerne, and N. Shahzad, “Zero-fidelity sim-

ulation of fire emergency response: Improving team coordination,” in Proc.

ACM SIGCHI Conference on Human-Computer Interaction, (Vancouver, BC,

Canada), May 2011.

[36] Z. O. Toups, A. Kerne, and W. A. Hamilton, “The team coordination game: A

zero-fidelity simulation abstracted from fire emergency response work practice,”

146

ACM Transactions on Computer-Human Interaction, vol. 18, no. 4, 2011. in

press.

[37] W. A. Hamilton, Z. O. Toups, and A. Kerne, “Synchronized communication and

coordinated views: qualitative data discovery for team game user studies,” in

Proc. Ext Abs ACM Computer Human Interaction, pp. 4573–4578, 2009.

[38] Bindmark, “bindmark: BindMark home page,” 2005. https://bindmark.dev.

java.net/old-index.html.

[39] J. Fialli and S. Vajjhala, “The Java architecture for XML binding (JAXB),” JSR

Specification, January 2003. http://jaxb.java.net/.

[40] E. Group, “The Castor Project,” 2005. http://www.castor.org/.

[41] C. Contreras, C. Ney, and F. Letellier, “Enhydra Zeus Project,” 2008. http:

//zeus.ow2.org/.

[42] S. Wachter, “JBind - A Java-XML Data Binding Framework,” 2009. http:

//jbind.sourceforge.net/jBind.html.

[43] Microsoft Corporation, “XmlSerializer Class (System.Xml.Serialization),” 2010.

http://msdn.microsoft.com/en-us/library/system.xml.serialization.

xmlserializer.aspx.

[44] Google Inc., “Protocol bu↵ers : Google’s data interchange format,” 2011. http:

//code.google.com/p/protobuf.

[45] W3C, “RSS 2.0 Specification (RSS 2.0 at Harvard Law),” 2003. http://cyber.

law.harvard.edu/rss/rss.html.

147

[46] J. Clark, “XSL Transformations (XSLT), Version 1.0,” November 1999. http:

//w3.org/TR/xslt.

[47] H. Hosoya and B. C. Pierce, “Xduce: A statically typed xml processing lan-

guage,” ACM Trans. Internet Technol., vol. 3, pp. 117–148, May 2003.

[48] V. Benzaken, G. Castagna, and A. Frisch, “CDuce: An XML-centric general-

purpose language,” in Proc. ACM SIGPLAN, pp. 51–63, 2003.

[49] V. Gapeyev, F. Garillot, and B. C. Pierce, “Statically typed document transfor-

mation: An Xtatic experience,” in Workshop on Programming Language Tech-

nologies for XML, Jan. 2006.

[50] J. Coelho and M. Florido, “xCentric: Logic programming for XML processing,”

in Proc. ACM Int’l Workshop on Web Information and Data Management, pp. 1–

8, 2007.

148

APPENDIX A

NOMENCLATURE: ABBREVIATIONS

DBAL Data Binding Annotation Language

XML Extensible Markup Language

JSON Java Script Object Notation

TLV Type Length Value

YAML Y A’int Markup Language

OODSS Object Oriented Disctribute Semantics Services

TeC Team Coordination

S.IM.PL Support for Information Mapping in Programming Languages

CORBA Componenet Object Request Broker Architecture

DCOM Distributed Component Object Model

SOAP Simple Object Access Protocol

WSDL Web Services Description Language

HTML HyperText Markup Language

RPC Remote Procedure Call

W3C World Wide Web Consortium

URL Uniform Resource Locator

149

APPENDIX B

DBAL - REFERENCE AND EXAMPLES

Annotation Production Rule Description

@simpl scalar SIMPLIndividualAugmentation:

@simpl composite

| @simpl scalar

| @simpl hints({HintName ,

{HintName}})

| @simpl filter

(regex = ”Expression”)

defines a scalar class at-

tribute to be translated

as XML attribute.

Example:

@simpl scalar

String item;

@simpl hints SIMPLIndividualAugmentation:

@simpl composite

| @simpl scalar

| @simpl hints({HintName ,

{HintName}})

| @simpl filter

(regex = ”Expression”)

precisely define the

syntactic structure of

serialization by using

XML ATTRIBUTE,

XML LEAF,

XML TEXT,

XML TEXT CDATA,

XML LEAF CDATA

Example:

@simpl hints

(Hint.XML ATTRIBUTE)

String item;

150

Annotation Production Rule Description

@simpl composite SIMPLIndividualAugmentation:

@simpl composite

| @simpl scalar

| @simpl hints({HintName ,

{HintName}})

| @simpl filter

(regex = ”Expression”)

must be a subclass of

ElementState, meaning

that it has further anno-

tated fields.

Example:

@simpl composite

CopmositeObject item;

@simpl filter SIMPLIndividualAugmentation:

@simpl composite

| @simpl scalar

| @simpl hints({HintName ,

{HintName}})

| @simpl filter(regex =

”Expression”)

takes a valid regular ex-

pression to filter out

the data when translating

from serialized represen-

tation.

Example:

@simpl filter

(regex = "")

String item;

@simpl collection SIMPLCollectionAugmentation:

@simpl wrap

| @simpl nowrap

| @simpl collection

([”TagName”])

| @simpl map

([”TagName”])

[SIMPLClasses]

Identifier TypeArguments

describes a collection of

scalar/composite/poly-

morphic types; by default

collections are wrapped

Example:

@simpl collection

("item")

ArrayList<Item>

items;

151

Annotation Production Rule Description

@simpl map SIMPLCollectionAugmentation:

@simpl wrap

| @simpl nowrap

| @simpl collection

([”TagName”])

| @simpl map

([”TagName”])

[SIMPLClasses]

Identifier TypeArguments

describes a collection of

scalar/composite/poly-

morphic types; by default

collections are wrapped

Example:

@simpl map

("item")

HashMap<String,

IMappableObj> items;

@simpl wrap SIMPLCollectionAugmentation:

@simpl wrap

| @simpl nowrap

| @simpl collection

([”TagName”])

| @simpl map

([”TagName”])

[SIMPLClasses]

Identifier TypeArguments

used with collections

and maps; wraps the

serialized representation

with tag name

Example:

@simpl wrap

@simpl collection

("item")

ArrayList<String>

items;

152

Annotation Production Rule Description

@simpl nowrap SIMPLCollectionAugmentation:

@simpl wrap

| @simpl nowrap

| @simpl collection

([”TagName”])

| @simpl map

([”TagName”])

[SIMPLClasses]

Identifier TypeArguments

this directive defines if

the resultant leaf nodes

in serialized representa-

tion be wrapped with

class or attribute name

Example:

@simpl nowrap

@simpl collection

("item")

ArrayList<String>

items;

@simpl classes SIMPLClasses :

@simpl classes(

{ClassName.class,

{ClassName.class}})

for polymorphic type

definitions; takes input

classes that the defined

type can to

Example:

@simpl classes {

{Base.class,

Sub.classs}}

@simpl collection

("item")

ArrayList<String>

items;

153

Annotation Production Rule Description

@simpl scope SIMPLScope:

@simpl scope(

[”SimplTypesScope”])

for polymorphic type

definitions; takes input

classes that the defined

type can to

Example:

@simpl scope{”tScope”}

@simpl map

("item")

HashMap<String,

IMappableObj> items;

@simpl inherit ClassDeclaration

class [@simpl inherit]

[@simpl tag(”TagName”)]

[SIMPLOtherTags]

Identifier [extends Type]

[implements TypeList]

ClassBody

indicates that the fields

of superclass should be

translated.

Example:

@simpl inherit

public class

SomeClass extends

AnotherClass

154

Annotation Production Rule Description

@simpl tag FieldDecl :

[@simpl tag(”TagName”)]

[SIMPLOtherTags]

[SIMPLClasses]

SIMPLIndividualAugmentation

Type Identifier

MethodOrFieldRest |

SIMPLCollectionAugmentation

Identifier MethodORFieldRest

allows programmer to

explicitly declare the tag

name for a given field or

class.

Example:

@simpl tag("tag name")

String item;

@simpl other tags SIMPLOtherTags :

@simpl other tags(

{”TagName”,

”TagName” }})

for backward compatibil-

ity. allows programs

to read serialized formats

with a di↵erent tag name

Example:

@simpl other tags(

"old tag")

String item;

155

APPENDIX C

QUESTIONNAIRE - SEMI-STRUCTURED INTERVIEW

1) Which software tool(s) did you employ in creating your application?

2) What was your experience using the software tools(s) in creating your applications?

a. Did the software tools(s) impact the way you constructed your application?

b. Did they make any aspect simpler?

c. More di�cult?

d. How did using the software tools(s) impact your development process?

3) How would you compare working with the software tools to other methods you

could have used to solve the same problem?

4) Have you used any technologies similar to the software tools previously?

a. Which technologies?

b. What applications did you develop?

c. Did the other technologies make development simpler?

e. How did the other technologies compare to the software tools?

5) Did you modify the software tools(s) in any way?

a. What was the purpose of the modifications?

6) What did you like about developing with the software tools?

7) What did you dislike about developing wit the software tools?

8) Is your application for one-time use, or will you re-use it?

9) Would you use the software tools(s) again?

10) What would make the software tools(s) better?

156

VITA

Nabeel Shahzad received his Bachelor of Science in computer science from National

University of Computer and Emerging Sciences in Karachi, Pakistan in 2006. After

working in the industry for 2 years, he entered MS program at Texas A&M University

in College Station, Texas in 2008. In 2009, he joined the Interface Ecology Lab with

Prof. Andruid Kerne as his advisor.

Nabeel can be reached by email (nabeel@ecologylab.net) or by mail:

Department of Computer Science and Engineering

c/o Dr. Andruid Kerne

Texas A&M University

College Station, Texas, USA 77843-3112

