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ABSTRACT 

 

Structural Reliability: Assessing the Condition and Reliability of Casing in Compacting 

Reservoirs. (December 2011) 

Prasongsit Joe Chantose, B.S., Utah State University 

 Co-Chairs of Advisory Committee: Dr. Jerome Schubert 

 Dr. Catalin Teodoriu 

 

 Casing has a higher risk of failure in a compacting reservoir than in a typical 

reservoir. Casing fails when reservoir compaction induces compression and shear 

stresses onto it. They compact as reservoir pressure depletes during production. High 

compaction reservoirs typically are composed of unconsolidated, overpressured rocks 

such as chalk, diatomite, and sandstone. Pore pressure depletion increases effective 

stress, which is the rock matrix stress pushing upward against overburden pressure. 

Effective stress may exceed rock compressive strength, inducing compaction. Wells in 

compacting reservoirs risk high failure and deformation rates.  

 This project introduces the concept of structural reliability to quantify casing 

failure risks in compacting reservoirs. This research developed probabilistic models for 

casing capacities using current design methods and a reservoir compaction load using 

finite-element model simulations. Probabilistic models were used in creating two limit-

states functions to predict casing failure: axial yielding and buckling failures. A limit-

state function describes the casing condition as the casing experiences a reservoir 

compaction load. The limit state function is the input in component and system analyses 
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for casing fragility and conditional probability of casing failure. Fragilities can predict 

casing probability of failure as reservoir pressure is depleting. Sensitivity and 

importance analyses are also performed to determine the importance of parameters 

affecting the casing reliability.  

Applying the knowledge produced from this research to casing design methods 

can improve design reliabilities and forecast the risk of casing failure in compacting 

reservoirs.   

  



 v 

DEDICATION 

 

I dedicate this thesis to my deceased father, Prapas Chantose, who supports me 

always; my beloved mother, Phatra Adisaraluk; and my family. 

  



 vi 

ACKNOWLEDGEMENTS 

 

 I would like to take this opportunity to thank my committee chairs, Dr. Jerome 

Schubert and Dr. Catalin Teodoriu, for taking me into the group, giving me a project to 

work on, and guiding me to new ideas to use in this research.  

 I would like to thank Dr. Paolo Gardoni, my committee member, for taking time 

to help me incorporate new methods and guiding me through solving the project 

problem. I would like to thank another committee member, Dr. David Wiltschko, for his 

patience and guidance.  

I want to thank my friends and colleagues for sharing and helping me throughout 

my years at Texas A&M University. I would like to acknowledge the financial support 

from Crisman Institute for funding my research and making it possible for me to achieve 

my master’s degree. 

Finally, I thank my mother, father, and family for their encouragement, 

understanding, and support. 

  



 vii 

TABLE OF CONTENTS 

 

              Page 

ABSTRACT ..............................................................................................................  iii 

DEDICATION ..........................................................................................................  v 

ACKNOWLEDGEMENTS ......................................................................................  vi 

TABLE OF CONTENTS ..........................................................................................  vii 

LIST OF FIGURES ...................................................................................................  x 

LIST OF TABLES ....................................................................................................  xiii 

CHAPTER 

 I INTRODUCTION AND LITERATURE REVIEW ............................   1 

   

  1.1 Background and Objective .............................................................  1 

  1.2 Importance ......................................................................................  2

  1.3 Literature Review ...........................................................................  3 

  1.4 Proposed Work ...............................................................................  7 

  1.5 Procedure ........................................................................................  9 

  1.6 Structure of Thesis .........................................................................  10 

II STRUCTURAL RELIABILITY METHOD AND APPROACH ........      12 

 

  2.1 Structural Reliability Approach .....................................................  12 

  2.2 First Order Reliability Analysis (FORM) ......................................  16 

  2.3 Use of Standard Normal Space in FORM ......................................  17 

  2.4 Determination of the Design Point u* ............................................  19 

  2.5 Monte Carlo Simulation .................................................................  20 

  2.6 Reliability Analysis on Component Level and System Level ........  20 

 

 III PROBABILISTIC MODELS CONTRUCTION .................................  22 

                        

  3.1 Introduction ....................................................................................  22 

  3.2 Probabilistic Capacity Model for Axial Yield Failure ...................  22 



 viii 

CHAPTER                                                                                                                   Page                           

  

  3.3 Probabilistic Capacity Model for Buckling Failure .......................  24 

  3.4 Reservoir Compaction Finite-Element Modeling ..........................  25 

       3.4.1    Boundary Condition and Model Geometry ....................  26 

       3.4.2    Analysis Step ..................................................................  28 

       3.4.3    Geostatic Step .................................................................  28 

       3.4.4    Boundary, Loading, and Initial Condition .....................  29 

       3.4.5    Result of the Geostatic Step ...........................................  31 

       3.4.6    Soil Step Analysis ..........................................................  34 

       3.4.7    Mesh Convergence Study ...............................................  34 

       3.4.8    Reservoir Compaction Model by Chia (1989) ...............  35 

       3.4.9    Model Modification ........................................................  38 

       3.4.10  Experimental Design ......................................................  39 

  3.5 Probabilistic Demand Model for Reservoir Compaction ...............  40 

       3.5.1    Deterministic Model Selection .......................................  41 

       3.5.2    Correction Term for Bias in the Deterministic Model ...  45 

       3.5.3    Standard Deviation of Model Error ................................  54 

 

 IV CASING FRAGILITY ESTIMATES ..................................................  56 

                        

  4.1 Introduction ....................................................................................  56 

  4.2 Fragility Estimate Computation .....................................................  56 

  4.3 Limit-State Function for Casing Axial Yielding ............................  57 

  4.4 Fragility Estimates for Casing Axial Yielding ...............................  59 

  4.5 Limit-State Function for Casing Buckling .....................................  62 

  4.6 Fragility Estimates for Casing Buckling ........................................  64 

  4.7 Casing System Reliability ..............................................................  66 

 

 V IMPORTANCE AND SENSITIVITY ANALYSES ...........................  69 

                        

  5.1 Importance Analysis .......................................................................  69 

  5.2 Importance Analysis Result and Discussion ..................................  70 

  5.3 Sensitivity Analysis ........................................................................  73 

  5.4 Sensitivity Analysis Result and Discussion ...................................  74 

 

 VI RESULT DISCUSSION AND APPLICATION .................................  77 

                        

  6.1 Casing Failure Mitigation Strategy ................................................  77 

  6.2 Structural Reliability Result Discussion ........................................  78 

 

 

 

 



 ix 

CHAPTER                                                                                                                   Page                           

 

         VII        CONCLUSIONS AND FURTHER STUDY .....................................      80 

         

  7.1 Conclusions ....................................................................................  80 

  7.2 Further Study ..................................................................................  81 

 

NOMENCLATURE ..................................................................................................  84 

REFERENCES ..........................................................................................................  87 

VITA .........................................................................................................................  89 



 x 

LIST OF FIGURES 

 

FIGURE                                                                                                                       Page 

 

2.1 Probability of failure pf computation using limit state function g(x)  

 and joint PDF of random variable x ...........................................................  13 

 

2.2 Probability distribution function (PDF) of random variable ......................  14 

 

2.3 Construction of limit-state function schematic ..........................................  15 

 

2.4 FORM approximation of limit state function G(u)  

 in standard normal space ............................................................................  16 

 

2.5 Use of standard normal space in FORM approximation ............................  18 

 

3.1 Finite-element model consists of the overburden (top), 

  the reservoir (middle), and the underburden (bottom) ..............................  26 

 

3.2 Magnified view shows casing and cement of the finite element model.  

 Casing is the left-most column; cement is in the middle;  

 reservoir is on the right.. ............................................................................  27 

 

3.3 Load conditions show pink arrows for overburden load  

 and yellow arrows for element weights .....................................................  30 

 

3.4 Formation pressure profile plot. The model was successfully 

  implemented with the input pressure and stress after geostatic step  .......  32 

 

3.5 The model axial deformation result after geostatic step shows small  

 deformation, appears everywhere in the model,  

 with magnitude of 10
-1

 to 10
-4

 ...................................................................  32 

 

3.6 The pore pressure distribution in the model pore pressure increases  

 with increasing depth. Blue (overburden) is around 5,000 psi.  

 Red (underburden) is around 8,900 psi .....................................................  33 

 

3.7 At reservoir depth (750 – 800 ft.), the effective stress drops drastically  

 because excess pore pressure helps support the formation  

 from overburden stress. .............................................................................  33 

 

3.8 The modified model meshing. Casing area connected with the reservoir  

 has finer mesh than the reservoirs outer boundary for accuracy.. .............  35 



 xi 

FIGURE                                                                                                                       Page 

 

3.9 Chia’s maximum casing axial strain for  

 reservoir R1 is about 2% ............................................................................  36 

 

3.10 The modified model maximum casing axial strain is about 1.9%,  

 which is close to Chia’s .............................................................................  36 

 

3.11 Chia’s maximum casing axial stress for reservoir R1 

 is about 14,000 psi ......................................................................................  37 

 

3.12 The modified maximum casing axial stress is about 14,000 psi,  

 which is close to Chia’s ..............................................................................  37 

 

3.13 The difference in pore pressure across the reservoir is shown  

 for two methods used in simulation ...........................................................  39 

 

3.14 Comparison of three deterministic models to simulation results ...............  43 

 

3.15 Closer look of the comparison illustrates that the deterministic models  

 is accurate in predicting casing axial strain ................................................  43 

 

3.16 Diagnostic plots for Biot constant ..............................................................  46 

 

3.17 Diagnostic plots for casing grade ...............................................................  47 

 

3.18 Diagnostic plots for casing outer diameter .................................................  47 

 

3.19 Diagnostic plots for casing thickness .........................................................  48 

 

3.20 Diagnostic plots for casing Poisson’s ratio ................................................  48 

 

3.21 Diagnostic plots for cement Poisson’s ratio ...............................................  49 

 

3.22 Diagnostic plots for depleted pressure .......................................................  49 

 

3.23 Diagnostic plots for casing Young’s modulus ...........................................  50 

 

3.24 Diagnostic plots for sandstone Poisson’s ratio ...........................................  50 

 

3.25 Diagnostic plots for sandstone Young’s modulus ......................................  51 

 

3.26 Diagnostic plots for shale Young’s modulus .............................................  51 

 



 xii 

FIGURE                                                                                                                       Page 

 

3.27 Diagnostic plots for shale porosity .............................................................  52 

 

3.28 Diagnostic plots for shale Poisson’s ratio ..................................................  52 

 

3.29 Diagnostic plots for sandstone porosity .....................................................  53 

 

3.30 Diagnostic plots for sandstone Poisson’s ratio ...........................................  53 

 

4.1 FORM approximation agrees with Monte Carlo simulation results  

 for axial yield failure. .................................................................................  60 

 

4.2 Axial yield fragility estimates decrease in failure probability  

 as casing grade increases ............................................................................  61 

 

4.3 FORM approximation agrees with Monte Carlo simulation  

 result for buckling failure ...........................................................................  65 

 

4.4 Buckling fragility decreases as casing outer diameter increases ................  65 

 

4.5 System fragility has the highest probability of failure because 

 either axial yield or buckling could occur ..................................................  67 

 

5.1 Model error ε and formation Young’s modulus of elasticity Ef  

 have highest effect on casing reliability .....................................................  71 

 

5.2 Importance analysis of buckling illustrates that unsupported casing 

 length L is the most important parameter affecting casing reliability ........  72 

 

5.3 Closer look at importance analysis for buckling mode of failure ..............  73 

 

5.4 Change of interface slippage S is most sensitive to change in fragility  

 for the axial yield mode of failure ..............................................................  75 

 

5.5 Change of interface slippage S is most sensitive to change in fragility  

 for the buckling mode of failure .................................................................  76 

 



 xiii 

LIST OF TABLES 

 

TABLE                                                                                                                          Page 

 

3.1 Ranges of input data for parameters in experimental design .....................  40 

 

3.2 MAPE of the deterministic models ............................................................  44 

 

4.1 Input data for parameters in axial yield mode of failure ............................  58 

 

4.2 Input data for parameters in buckling mode of failure ...............................  64 

 

 



 1 

CHAPTER I 

INTRODUCTION AND 

LITERATURE REVIEW 

1.1 Background and Objective 

 Oil is a valuable commodity today. However, production may stop if the well is 

damaged or fails as a result of casing deformations, which may result from reservoir 

compaction during production. Casing damage may interrupt production so repairs can 

be made, and casing failure can stop production completely. Assessing and predicting 

casing conditions in developing fields are important to prevent casing failures.  

Standard casing designs do not include the reservoir compaction load. Generally, 

if the reservoir is expected to undergo high compaction, the casing system tends to be 

overdesigned. The overdesigned casing system adds higher cost to the total project 

expense. Optimization of the casing design is essential to keep the casing cost minimal 

and keep the casing functioning properly. Including the reservoir compaction load in the 

casing designs can ensure the optimum casing designs. 

 The objective of this research was to develop ways to assess and prediction for 

casing conditions in reservoirs subject to compaction. To assess and predict casing 

condition, this research uses the concept of structural reliability to estimate casing 

fragility. Fragility is the conditional probability of a damaged condition. By estimating 

____________ 

This thesis follows the style of SPE Economics & Management Journal. 
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casing fragility, the knowledge of casing damage conditions under specific reservoir 

characteristics and depleted pressure are gained.  

 To achieve the stated objective, the project had the following goals:  

 1. Assess the capacity of casing for axial yield and buckling failures. Two casing 

failure modes are high occurrences at the crest of the reservoir, where the highest axial 

load is expected.  

 2. Assess the demand from reservoir compaction by creating a finite-element 

model to simulate the compaction mechanism. The results from modeling were used to 

choose the best-fit reservoir compaction model. 

 3. Estimate fragilities of casing subject to reservoir compaction load at the 

component and system levels. After fragility estimations, importance and sensitivity 

analyses were performed to pinpoint parameters that greatly influence the casing 

reliability.  

1.2 Importance 

 Present technologies in predicting the magnitude of reservoir compaction and its 

effect on casing are geomechanical simulation, wellbore 3D simulation, and reservoir 3D 

simulation. Although simulation can account for many parameters to simulate the closest 

solutions, simulation results cannot produce exact solutions because of uncertainties that 

arise in the real world or in making the simulation. 

 Such uncertainties may be the error in parameter measurements, model error, or 

some unknown parameters, that cannot be accounted for in the simulation. Thus, the 
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simulation results can only give us approximations; they lack the ability to compare the 

degree of correction to the actual results.  

 The importance of this research is to introduce an approach that can fill the gap 

of simulations that cannot account for the uncertainty in the solution. 

 Structural reliability can optimize the casing design and estimate the condition of 

the casing for a compacting reservoir. The casing design in compacting reservoir tends 

to be over-designed to accommodate compaction, this approach can reduce casing cost 

down the hole. Where the casing has been underdesigned, this approach can extend the 

project’s economic life by preventing failure. The research approach can assess 

reliability improving the economics and the safety of the design.  

 It is important to know the casing conditions in the developing field to reduce the 

number of casing failures, whether by changing production methods or by repairing the 

wells. Casing conditions are identified by analyzing fragilities, which come from the 

limit-state functions constructed by probabilistic models. The fragilities explain the 

damaged condition in terms of probability of failure. The Bayesian method used in 

generating the probabilistic models in this research allows the models to be applied and 

updated to fit specifications of other fields with casing failure problems. 

1.3 Literature Review 

 Around the beginning of the 1980, when oil fields were being rapidly developed, 

reservoir compaction was not considered a problem. After 4 to 5 years of production, 

subsidence began to emerge as a sign of casing failure. Casing deformation and failure 
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followed and became problems. Well production stopped. Workover operations were not 

possible because casings were deformed severely. Some of the fields reported to have 

high casing failure rates were Ekofisk, Belridge, and Shengli.  

 Ekofisk is a North Sea chalk basin. High subsidence occurred because of the 

high-porosity chalk’s compaction. More than 90 wells were reported to have casing 

failure. Yodovich et al. (1988) presented a statistical model that correlated Ekofisk 

casing failure data, production data, and reservoir data. Using the linear discriminated 

function given the failure and nonfailure well data, the statistical model was created to 

forecast the probability of casing failure as function of well inclination and reservoir 

strain. That probabilistic model can only be applied to Ekofisk field because it was 

correlated from the casing failure seen from that field.  

 The Belridge diatomite field located in California experienced casing failure in 

nearly 1,000 wells. Diatomite high rock compressibility allowed high deformation in the 

production zone, causing severe damage to the casing in both the reservoir region and 

the overburden rock formation (Fredich et al. 1998).  

Bruno (2001) used 3D wellbore modeling, 3D reservoir modeling, and 2D 

geomechanical modeling to determine the amount of reservoir deformation at Belridge 

field. The 2D geomechanical simulation model was used to determine the high 

compaction zone. The 3D reservoir model focused on simulating the actual formation 

deformation used in modeling the wellbore to attain casing behavior. The results from 

Bruno (2001) may be most accurate in simulating casing damage under reservoir 

compaction. However, the simulation results only apply to one specific field.  
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 The American Petroleum Institute, (API 1999) studied casing performance to 

create a design function for casing. They modeled burst, collapse, and pipe body 

yielding in tension modes of failure in deterministic form. The deterministic 

formulations give a design value that should exceed the expected loading value times a 

safety factor value so that casing is ensured not to fail. But deterministic design lacks the 

ability to quantify safety of the design.  

 Adams et al. (1993) used structural reliability to quantify risks associated in 

casing design factors in development and exploration wells, including installation, 

drilling, and production operations. Adams et al. (1993) used the deterministic casing 

design published by API to study the safety factor for the capacity strength of casing. 

The components they studied are loads seen in typical reservoirs. These load 

components match the components of casing design proposed by API, which include 

weight, buoyancy, bending, ballooning, and heat. However, compacting reservoirs 

require specific loading models because these reservoirs do not behave like the typical 

reservoir where compaction is not a problem.  

 Fjaer et al. (1992) used a lab experiment to calculate the amount of compaction 

in terms of axial strain. The experiment was set up to reduce the pressure in the sample 

core and measure the effect. They proposed an equation explaining the axial strain given 

the reduced pressure and rock static properties, which are Young’s modulus of elasticity 

and the Poisson ratio. Similarly, Settari (2002), introduced the Biot’s constant to the 

formulation to account for the poroelastic effect in the formation. Ibekwe et al. (2003) 

applied Settari (2002) formulation for a stiff rock formation and introduced another 
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formulation for soft rock. Using these models, Ibekwe et al. (2003) were able to 

calculate the strain in each reservoir zone and categorize each zone according to the 

severity of the reservoir compaction. In their model, different casing designs and amount 

of production are specific for each zone to reduce the risk of casing failure.  

 Chia et al. (1989) used Abaqus, finite-element simulation software, to simulate 

the effect of the casing in a compacting reservoir. Their study showed that the axial 

stresses of the casing exceeded its limit and made it prone to failure. They treated the 

formation stiffness as linear elastic and the casing as elastoplastic material. The model 

simulates reservoir compaction using one-phase Darcy flow for two cases: slippage and 

non-slippage. Slippage at the interface of casing and cement and cement and formation 

may occur as the reservoir compacts. Chia et al. (1989) showed that slippage could 

greatly reduce the casing axial strain. The results also show the locations of maximum 

axial compressive stress and maximum axial compressive strain is at the interface of the 

reservoir with the overburden and the underburden. The maximum axial compressive 

strain result is significantly higher than the yield strain of the casing.  

 Bruno (1990) gives a simple assumption that the formation axial strain is equal to 

the casing axial strain. If the casing limit is known and assumed equal to the formation 

strain, this assumption can be used to find maximum depleted reservoir pressure.  The 

critical axial strain for casing steel begins yielding around 0.3% and ultimately fails in a 

plastic range of no more than 0.7%. The casing yield strain can be used as a design limit 

and a company can design the production plan not to exceed the yield strain of the 
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casing. Bruno (1990) also introduced a casing buckling failure model. Buckling failure 

usually occurs when large amount of solid is produced.  

 Gardoni et al. (2002) used statistical method to produce probabilistic capacity 

and demand models for bridge components and systems for fragility estimates. Gardoni 

et al’s approach to assess bridge conditions prone to failure from earthquake quantifies 

the safety of the bridge in terms of probability of failure. The model used the Bayesian 

updating method, so it can be used for other bridges in other locations by using specific 

information and knowledge for the specific bridge to update the model. The ultimate 

result of assessed bridge conditions is a fragility estimate, shown in a cumulative density 

function, CDF. Gardoni et al. showed the probability of failure increasing from 0% to 

100%, depending on the change of the affected parameter. 

1.4 Proposed Work 

 This thesis incorporates statistical methods into the common casing design to 

account for the uncertainty in formation and casing properties, error in the design model, 

and error in the measurement of casing.   

 Casing damage conditions depend on two conditions: the capacity strength of the 

casing and the demand from the reservoir compaction load. When the capacity is 

exceeded by the demand, the condition is described as failure. Thus, setting a limit-state 

function where failure occurs when the limit is exceeded can describe casing conditions. 

Following the method used in Gardoni (2002), this research creates probabilistic models 

for the capacity of the casing and loading behavior from reservoir compaction. Using the 
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probabilistic models, the fragility can be computed for a well location given the specific 

field data from the limit-state function. 

 This work considered two modes of casing failure considering are casing axial 

yielding and casing buckling. The failure modes mostly occurred at the crest of the 

reservoir where maximum reservoir deformation takes place. The probabilistic capacity 

models are taken from standard deterministic design, and the probabilistic demand 

model is built from the results from simulation. The model simulates reservoir 

compaction from production, or reduction in pore pressure. Production is simulated as a 

one-phase fluid flow from the outer reservoir boundary to the casing. Mesh convergence 

is analyzed for the accuracy of the result with the time used. 14 different models are 

designed to capture the all casing dimensions. Experimental designs for the simulated 

cases apply the method of space filled to capture wide range of possibility in input 

parameters. 

 Fragility estimates address the probability of casing failure from reservoir 

compaction by using statistical data given in the oil field and by casing manufacturers. 

The probability of failure is expressed in a CDF plot. This research analyzed casing 

failure in component level analysis for one mode of failure, and in system level analysis, 

either mode of failure could occur. In the component level, this method analyzed 

fragility estimates for the possibility of only one mode of failure. On the system level, 

this method analyzed fragility estimates for the possibility for either mode of failure to 

occur.  
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 In addition to fragility estimates, importance and sensitivity analyses analyzed 

the input parameters of the limit-state function for each failure mode. Importance and 

sensitivity analysis computes the importance and sensitivity of the input parameter to the 

limit-state function. Importance and sensitivity analyses identify parameter that should 

be address to reduce the risk of casing failure. 

1.5 Procedure 

The procedures to compute the fragility and estimate the importance and 

sensitivity parameters are as follows: 

1. Construct the probabilistic capacity models for axial yielding and buckling 

modes of failure. 

2. Create finite-element models using Abaqus to compute the strain in casing from 

reservoir compaction. 

3. Experimentally design 70 simulation cases and run the simulation for computing 

the casing strain for the 70 cases.  

4. Use the results from simulations to construct the probabilistic demand model 

from the best-fit deterministic reservoir compaction strain formulation. The best-

match formulation is judged by calculating mean absolute percentage error 

(MAPE) for each deterministic formulation. 

5. Create the limit-state function from the created probabilistic models and estimate 

the fragility at the component level and system levels. 

6. Compute the sensitivity and importance measure for the input parameters. 
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1.6 Structure of Thesis 

 This thesis is structured in the following manner, beginning with the general 

introduction chapter, this chapter. The next chapter, Chapter II, describes the structural 

reliability approach, which uses the statistical methods to account for randomness in the 

input parameters, uncertainty in the models, model errors, and inaccuracy of the 

deterministic design. Chapter II explains the theory behind constructing the limit-state 

function and the method for computing the limit-state function for probability of failure. 

The two methods for computing the limit-state function are the first-order reliability 

method (FORM) and Monte Carlo simulation.  

 Chapter III discusses the procedure for constructing the limit-state function 

through the probabilistic capacity and demand models.  This chapter covers the theory in 

current deterministic capacity and demand formulation used in constructing the 

probabilistic models. Chapter III also discusses the procedure and results of the finite-

element models used in creating the demand probabilistic models and the analysis run in 

the simulation and mesh convergence study. Experimental design cases are shown with 

description of the theory used in designing the 70 cases. Chapter III covers the strain 

estimation formulate for reservoir compaction and the procedure for choosing the best 

formulation using mean absolute percentage error, MAPE.   

 Chapter IV discussed the results of FORM and Monte Carlo simulation on the 

limit-state function using the probabilistic models created in Chapter III. By using two 

methods to solve the limit state function, results can be compared for accuracy. The 

statistics computational program for finite-element reliability using Matlab (FERUM) 
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can compute the limit state function using both FORM and Monte Carlo simulation. The 

fragility estimate, which is the conditional cumulative probability function, is calculated 

in this chapter using probability of failure from the component-level and system-level 

analysis. The results of the component-level and system-level analyses are discussed. 

 Chapter V explains the method and analysis steps in performing the sensitivity 

and importance analyses. Importance and sensitivity analyses use parts of the results 

from computing the probability of failure in Chapter IV. Results discussed in this 

chapter show how sensitive the input parameters are in the probabilistic models and how 

important the input parameters are in defining the failure condition.  

 Chapter VI presents the conclusion of my thesis. Further study is suggested in 

this chapter to improve the accuracy of the results and the quality of probabilistic models 

to use in the field.  
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CHAPTER II 

STRUCTURAL RELIABILITY  

METHOD AND APPROACH 

2.1 Structural Reliability Approach 

 The structural reliability approach relies on statistical methods to account for 

uncertainty in the input and for unknown parameters. This approach requires 

construction of the limit-state function. A limit-state function describes a state at which a 

capacity model is compared to a demand model. A failure occurs when a demand 

exceeds a capacity. The limit-state function can be described as shown below.  

      xDxCxg  , 
(2.1) 

where g(x) is the limit state function, C(x) is the capacity model, D(x) is the demand or 

loading model, and x is a set of random variables associated with the limit-state function 

such as x=(x1, x2, x3,…, xn). The failure condition occurs when the limit-state function 

becomes negative, g(x) ≤ 0. In general, the failure state begins as the demand model 

exceeds the capacity model. Thus, a probability of failure can be expressed as:  

   



0

0
g(x)

f f(x)dxgPp  (2.2) 

where pf is the probability of failure, f(x) is the joint probability distribution function, 

PDF, of x. The probability of failure, pf, is the volume underneath the joint PDF, of the 

starting from surface where g(x) = 0, to the end of the joint PDF in the direction of g(x) < 

0. Fig. 2.1 shows the contour of f(x) plot, the limit state surface where g(x) = 0, and the 

volume used in computing the probability of failure.  
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Fig. 2.1—Probability of failure pf computation using limit state function g(x) and 

joint PDF of random variable x 

Introducing below is a casing design capacity for burst failure as an example of 

this approach. 

 
o

y

b
D

tf.
p

751


,

 (2.3) 

where pb is the casing burst pressure, fy is the casing yield stress, t is the casing 

thickness, Do is the casing outer diameter. Here, pb represents the maximum burst 

pressure capacity that the casing is allowed to take. Furthermore, during a production 

period, the production casing experiences internal pressure required to transport fluid up 

to surface. The internal fluid pressure represents the demand load to the casing. When 

the demand exceeds the capacity, failure is likely to occur.  
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 Using the application of statistical probability, the risk of casing being prone to 

failure can be quantified. Using the statistical method, all parameters in the design 

function have their statistic distributions with a mean and a standard deviation. These 

statistical parameters are called random variables. For example, a casing manufacturer 

rolls out 2,000 casings with a specific size. If the outer diameter and the thickness are 

measured for all 2,000 casing, the outer diameter and thickness will vary for each of the 

casings measured. The plot of measurements against the number of occurrences for 

2,000 casings shows the distribution of the measured dimension with a mean and a 

standard deviation such as in Fig. 2.2. 

 

Fig. 2.2—Probability distribution function (PDF) of random variable 

 Fig. 2.2 shows the probability distribution function (PDF) plot for casing 

thickness. There are many types of PDFs such as normal, lognormal, uniform, and chi-

square distribution. The PDF of thickness in Fig. 2.2 is a normal distribution function. 
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Thus, the capacity models and the demand model can be constructed in term of a 

PDF because each input parameter in the model is a PDF. After the construction of 

probabilistic capacity models and the probabilistic demand model, they are combined 

into limit-state functions. Then the limit-state functions can be used to compute the 

probability of failure. The schematic in Fig. 2.3 shows the construction of a limit-state 

function by Adams et al. (1993), where he applied structural reliability to a drilling 

system. 

 

Fig. 2.3—Construction of limit-state function schematic  

 Several methods can be used to compute the probability of failure or the area in 

joint PDF f(x) where g(x) < 0 is shown in Fig. 2.1. Two methods used are the first-order 

reliability method (FORM) and Monte Carlo simulation.  
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2.2 First Order Reliability Analysis (FORM) 

 The FORM method approximates the probability of failure for a limit-state 

function. The probability of failure is expressed as: 

  
 




0uG

nf duup   (2.4) 

G(u) expresses the limit-state function in the standard normal space of the 

associated random variables.  un  is the PDF of the random variable u transformed 

from the limit state function in normal space f(x). The standard normal space and its 

transformation from normal space are covered in the next section.  

Fig. 2.4 shows FORM approximation of the limit-state surface in standard 

normal space G(u) = 0.  

 

Fig. 2.4—FORM approximation of limit state function G(u) in standard normal 

space 
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By assuming that G(u) is continuously differentiable, the approximation is 

written as 

      u*uGu*GuG T   (2.5) 

by linearizing the integration boundary. TG is the gradient vector where

 n

T uG/uG/G  1
. It is in best practice to choose u* that lies on the limit-state 

surface G(u) = 0 and closest to the origin. u* is called the ―design point‖ or the ―most 

likely failure point,‖ because its probability of failure is highest.  

 Using the properties of standard normal space, the probability of failure is

 βΦp f   where Φ(
.
) is the standard normal cumulative probability function. The 

property of standard normal space states that β = α
T
u* where β, reliability index, is the 

distance from the origin to u* and GG/α   is the normalized negative gradient 

vector. 

2.3 Use of Standard Normal Space in FORM  

 The standard normal space, which is called u space, has the random variables u= 

(u1, u2, u3,…, un), which have the probability density function 

  
 











2

2 2

1
exp

2

1
u

π
u

n/n  (2.6) 

where  un  is the standard normal PDF. There are three important properties of the 

standard normal space to help compute the probability of failure using FORM. First, the 

standard normal PDF is rotationally symmetrical decaying exponentially with the square 
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of the distance from the origin in the radial direction (Gardoni 2009). Second, on a plane 

β – α
T
u = 0, defined in terms of its distance β from the origin and its unit outbound 

normal vector α, the probability density is maximum at the origin-projection point 

u*=βα. It decays exponentially with the square of the distance from that point. Last, the 

probability content of the half-space β – α
T
u ≤ 0 is  βΦp 1  where Φ() is the 

standard normal cumulative probability function. Fig. 2.5 shows the standard normal 

space use in computing FORM. 

 

Fig. 2.5—Use of standard normal space in FORM approximation 

Normally, the outcome space of the limit-state function’s random variables 

x=(x1,x2,x3,…,xn)  is in normal space. To use FORM, the random variables x in normal 



 19 

space require transformation to random variables u in standard normal space using a 

one-to-one mapping technique. The transformation is written as u=u(x) with the Jacobian 

matrix ]x/u[J jiu,x  . Inversely, the random variable x is x=x(u) and the inverse 

Jacobian matrix is 

 
x,ujiu,x J]x/u[J 

1
 (2.7) 

 Using the one-to-one mapping, the first assumption is random variables x are 

statically independent non-normal random variables with marginal PDFs f(xi) and CDFs 

F(xi), i = 1, 2, 3, …, n. The transformation takes the form  

    n,...,,,ixFΦu i 3211    (2.8) 

where  1Φ  is the inverse standard normal cumulative probability function. To solve 

the inverse transform function, the inverted Jacobian diagonal matrix is used as 

 
 
 

1









 u,x

i

i

x,u J
xf

u
diagJ


 (2.9) 

Gardoni (2009) considered this transformation one-to-one as long as F(xi) is 

continuous and functions of xi increase strictly.  

2.4 Determination of the Design Point u* 

 FORM approximation required u* as shows above. Zhang and Der Kiureghian et 

al. (1995) introduced an improved Hasofer and Lind-Rackwitz and Fiessler (HL-RF) 

algorithm to find u* closest to the origin for accuracy of FORM. Their procedure is 

shown below: 
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1. Set index i = 1 and tolerances ε1 and ε2 (ε1 = ε2 = 10
-3 

is a good choice for most 

problems). Select an initial point x1 (e.g., x1 = M) and compute u1 = u(x1). 

2. Compute xi = x(ui) (skip this step for i = 1), Ju,x and Jx,u = Ju,x
-1

 at xi, G(ui) = 

g(xi) and     .JxguG x,u

T

i

T

i   

3. Compute the direction vector 
   

 
 
 

.u
uG

uG

uG

uuGuG
d i

i

i

i

i

T

ii

i 







  

4. Determine the step length 
λ

iλ minarg  

2.5 Monte Carlo Simulation  

 Monte Carlo simulation is another method that can be used to compute the 

probability of failure by simulating each value from the distribution for each random 

variable. Increasing the number of simulation means increasing the accuracy of the 

result. However, a large number of simulations requires a large amount of time.  

2.6 Reliability Analysis on Component Level and System Level 

 The reliability analysis on a component level involves using a structural 

reliability approach on a specific failure mode given a capacity and demand model to 

construct a limit-state function. Thus, the probability of failure for a mode of failure is 

  0 g(C,D)Pp f  (2.10) 
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where g(C,D) is the limit-state function of a failure mode. The distribution of the limit-

state function g where g = g(C,D) given the C distribution and D distribution can be 

found. Thus, the probability of failure is written as 

    00 gf FgPp   (2.11) 

where Fg(0) is the cumulative distribution function, CDF. 

 A system consists of an assembly of components. When a component fails, the 

system may or may not fail. In this thesis, a system consists of a casing that may fail by 

axial yielding or buckling. A component-level analysis looks at one state of failure. 

However, system reliability looks at failure of the system. In this case, the failure in 

either buckling or axial yielding is considered failure to the system. This type of system 

reliability is called series system where system fails if any of its components fail.  

 System reliability explains the event of failure in term of the union between two 

states of failure. gc is denoted as the limit-state function for axial yielding mode of 

failure and gb as the limit-state function for the onset of buckling. Thus, the system 

probability of failure is written as 

        0000  bybyby ggPgPgPFFP  (2.12) 

 Eq. 2.12 explains system reliability as the union between the event where axial 

yielding failure occurs (Fc) and event where buckling failure occurs (Fb). The probability 

that either one of failures will occur is equal to the probability of axial yielding failure 

plus the probability of buckling failure, minus the probability of axial yielding failure 

intersecting the probability of buckling failure.  
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CHAPTER III 

PROBABILISTIC MODELS 

CONSTRUCTION 

3.1 Introduction 

 Limit-state functions require probabilistic demand models and probabilistic 

capacity models. The probabilistic capacity models describe the casing strength 

necessary to resist the reservoir compaction load. The probabilistic demand model 

describes the reservoir compaction load on the casing. Reservoir compactions occur as 

reservoir pressure decrease during production.  

Formulations of the probabilistic models consider previous knowledge about the 

casing and the reservoir behaviors. In probabilistic models, the deterministic term 

describes the current knowledge about the casing strengths and the deformations from 

reservoir compaction. This chapter explains the procedure to construct the probabilistic 

capacity models and the probabilistic demand model. Two probabilistic capacity models 

covered are axial yielding and buckling failure. The limit-state functions for both failure 

modes share the same probabilistic demand model, which is covered in this chapter.   

3.2 Probabilistic Capacity Model for Axial Yield Failure 

 The state of axial yielding occurs when the casing is loaded during compression 

until it reaches its yield stress. The casing in the reservoir experiences compressive 

deformation transfer through the cement from the reservoir. Three layers, consisting of 



 23 

casing, cement, and the formation are bonded together. The bonds ensure that the casing 

deforms the same amount as the reservoir. As a reservoir compacts, deformation is 

transferred from the formation to the cement to the casing. This causes the casing to 

compress axially.  

An axial yielding failure occurs around the production interval where maximum 

axial deformation occurs. The axial yield capacity model calculates the maximum strain 

the casing can resist. Casings are made of steel. Assuming the casing fails in a linear 

elastic manner, Hook’s law can be applied. Thus, the maximum strain is calculated as a 

function of yield stress and Young’s modulus of elasticity of the casing. The casing axial 

strain is written as 

 
c

c
c

E

σ
ε 

 

(3.1) 

εc is the axial strain, σc is the yield stress of casing, and Ec is the casing Young’s 

modulus of elasticity. Using eq. 3.1, the probabilistic axial yield capacity model  xCy
 

as 

    
c

c

yy
E

xcxC


 ˆ
 (3.2) 

 xcy
ˆ is the deterministic model that account for the failure mechanism. Due to the lack 

of lab experimental data for the casing compressive yield test, determination of the 

correction terms for any bias in deterministic model and the standard deviation for model 

error are not included in this probabilistic model. The correction terms for bias in the 
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deterministic model and the standard deviation for model error are described in the 

probabilistic demand model section later in this chapter. 

3.3 Probabilistic Capacity Model for Buckling Failure 

 Buckling is casing instability that results from the axial load in a compacting 

reservoir and the lack of lateral restrain of the formation to fix the casing in place. 

Casing buckling usually occurs in the center of the production interval, where vertical 

strain is maximum. A capacity model is a function of casing properties and formation 

properties that restrain casing from lateral movement caused by axial stress from the 

reservoir. 

Bruno’s (1990) casing buckling failure formulation gives he conservative 

approximation for minimum buckling load below:  

 2

24

LA

Iπ
ε

c

b   (3.3) 

εb is the casing strain limit before onset of buckling. L is the unsupported length of 

casing. Ac is the casing cross-sectional area. I is the area moment of inertia of casing. Eq. 

3.3 assumes no slips occur at the two interfaces: casing to cement and cement to 

formation. Eq. 3.4 and 3.5 calculate the area moment of inertia and the casing cross-

sectional area. 

   44
2

64
t-DD

π
I oo   (3.4) 
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   22
2

4
t-DD

π
A ooc   (3.5) 

Do is the casing outer diameter. t is the casing thickness.  

The above knowledge about casing buckling is used as the deterministic model 

for the probabilistic buckling model. The probabilistic capacity model for buckling 

failure  xCb  can be written as shown below. 

    
  

   222

442

2
4

2
64

4

ˆ

Lt-DD
π
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π

π

xcxC

oo

oo

bb






 (3.6) 

 xcb
ˆ  is the deterministic model term of the probabilistic model.  

3.4 Reservoir Compaction Finite-Element Modeling 

 Application of structural reliability requires statistical data for the specific field. 

Using field data to determine each random variable distribution can reduce uncertainty 

in the model. However, acquiring field data for this thesis was not possible. The lack of 

field data in this thesis is compensated by using finite-element model simulation. 

Abaqus, a finite-element simulation software, is run to simulate the effect of 

reservoir compaction on casing. The simulation results are used in creating the 

probabilistic demand model.  This model design is similar to the model created by Chia 

(1989), and the results are compared with those results. After calibration, the models are 

modified a little to capture the effect of depletion pressure. Then the 70 different cases of 

reservoir compaction simulation are run to capture the effect on casing deformation of 
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different depletion pressures. Using the results of 70 simulations to represent casing 

deformations substitutes for the missing data from the field.  

3.4.1 Boundary Condition and Model Geometry 

 The model has three parts: the casing, the cement, and the formation. The 

elements representing the formation are 8-node axisymmetric quadrilateral, biquadratic 

displacement, and bilinear pore pressure. The casing and the cement elements are 8-node 

biquadratic axisymmetric quadrilaterals. Fig. 3.1 shows the whole model in three layers, 

with the overburden at the top, reservoir in the middle, and underburden in the bottom. 

At the left side of the model, at the centerline (yellow dotted line), are the casing and 

cement, which are shown in magnified view in Fig 3.2. 

 

Fig. 3.1—Finite-element model consists of the overburden (top), the reservoir 

(middle), and the underburden (bottom) 

 

Overburden 

Underburden 

Reservoir 



 27 

 

Fig. 3.2—Magnified view shows casing and cement of the finite element model. 

Casing is the left-most column; cement is in the middle; reservoir is on the right  

 The elements in the left column represent the casing. The elements in the middle 

column represent the cement. The elements in the right column are the formation. This 

model is an axisymmetric model, as shown by the yellow dotted centerline. The 

axisymmetric model allows the user to analyze the model as a 3D model which requires 

simpler 2D model input. The axisymmetric model rotates the 2D model geometry input 

about the axis, the yellow centerline. This model input is chosen because it requires less 

time to run the analysis. Chia (1989) used a similar model.  

 The formation is assumed to behave as a linear elastic. The formation material 

properties consist of permeability, density, Young’s modulus of elasticity, and Poisson’s 

ratio. The casing behaves in perfect plasticity mode. The casing has the properties of 

Young’s modulus of elasticity, Poisson’s ratio, and yield stress. The cement is assumed 

Reservoir Cement 

Casing 
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to behave in elastic mode with Young’s modulus of elasticity and Poisson’s ratio 

properties.  

3.4.2 Analysis Step 

 The simulations require two analysis steps. The first step is the geostatic step, 

which allows the model to interact with the boundary conditions to create stress and 

deformation equilibrium conditions in the formation before production begins. The 

second step is the soil step, which simulates the production of the fluid in the reservoir. 

In the soil step, the pore pressure moves from the reservoir boundary to the casing. Thus, 

the reduction in the reservoir pore pressure simulates the oil production.  

3.4.3 Geostatic Step 

 The importance of the geostatic step is to set the model to the input pressure 

profile of the formation before the oil production. This ensures model accuracy in 

representing the actual formation.  

The geostatic step balances the input formation stresses and the input pore 

pressure. Abaqus allows users to input the formation stress and the pore pressure profiles 

according to the model elevation. The geostatic step uses the effective stress, the pore 

pressure, and the element weights to compute the equilibrium state of the model. It 

adjusts the model size by displacing each node in the model until the model is in 

equilibrium for the input stresses, the boundary conditions, and the element weights. The 

model stress results should be equal to input stresses.  
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 The goal of geostatic step is to have zero displacement in the model results given 

the input. Thus, the input of stress and pore pressure should be accurate in comparison 

with the actual formation data. The model can produce zero displacement easier if the 

input data is accurate. However, with the field data absent, the model will achieve 

equilibrium by changing the weight of the elements in the model. The procedure below 

shows the steps used in achieving zero displacement.   

3.4.4 Boundary, Loading, and Initial Condition 

 This section explains the boundary condition in the model. Fig. 3.3 shows the 

boundary and the loading conditions. The two side boundaries are fixed from displacing 

in the horizontal direction. The base is fixed from moving in the vertical direction. The 

top is free to move anywhere. Each element is loaded with gravity, which is shown by 

yellow arrows pointing down within each element. The top of the model is at the depth 

of 10,000 ft. The pink arrows represent the overburden pressure pushing downward on 

the model.  
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Fig. 3.3—Load conditions show pink arrows for overburden load and yellow 

arrows for element weights 

 For initial conditions, the overburden stress at the top of the model is 10,000 psi. 

The total stress gradient is 1 psi/ft from top to base of the model. The effective stress is 

defined as 

 ρσσ ob   (3.7) 

σob is the total stress (overburden stress plus the weight of the formation). σ  is the 

effective stress. Effective stress is the stress from the rock matrix that pushes against the 

overburden stress. ρ is the pore pressure. Thus, the total stress is equal to the effective 

stress plus the pore pressure.  

The top of the model has total stress of 10,000 psi. The base has total stress of 

11,550 psi. The overburden stress in the formation increases linearly by 1 psi/ft. The 

height of the model is 1,550 ft. The initial pore pressure is 5,000 psi at the top to 8,900 

psi at the base. The reservoir represents the transition zone, or the zone of excess 
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pressure from the oil production zone. In the reservoir, pore pressure rises from 5,275 psi 

to 8,525 psi. Fig. 3.4 shows the pore pressure and the total stress plots against the 

formation depth.  

 In order to reach this initial condition with zero displacement after the geostatic 

step, the applied overburden pressure and weight of each element is changed. The 

simulation run the different overburden pressure and the weight of the formation inputs 

until the deformation reaches zero. With this pressure and weight, the model can 

accurately represent a deepwater reservoir.  

3.4.5 Result of the Geostatic Step 

 The displacement result is shown in Fig. 3.5. The displacement result is not quite 

zero. However, it is less than 1 in. and in the magnitude of -1 to -2. Spending time to 

find the loading values for the smallest displacement does not change the result much.  

Fig. 3.6 shows the model pore pressure distribution, which follows the pore 

pressure profile in Fig. 3.4. The reservoir lay in the excess pore pressure zone, where the 

pore pressure raises from 5,275 psi to 8,525 psi. Effective stress increases with depth 

(Fig. 3.7), but when it reaches the excess pore pressure zone, it decreases largely. This is 

because the excess pore pressure in this zone helps relieve the effective stress from 

carrying the total stress. 
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Fig. 3.4—Formation pressure profile plot. The model was successfully implemented 

with the input pressure and stress after geostatic step 

 

Fig. 3.5—The model axial deformation result after geostatic step shows small 

deformation, appears everywhere in the model, with magnitude of 10
-1

 to 10
-4
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Fig. 3.6—The pore pressure distribution in the model pore pressure increases with 

increasing depth. Blue (overburden) is around 5,000 psi. Red (underburden) is 

around 8,900 psi 

 

 

Fig. 3.7—At reservoir depth (750 – 800 ft.), the effective stress drops drastically 

because excess pore pressure helps support the formation from overburden stress 
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3.4.6 Soil Step Analysis 

 Soil step analysis models the fluid movement from the reservoir boundary to the 

casing. Soil step simulates oil production by specifying boundary conditions for the pore 

pressure. After the model reaches an equilibrium state, the boundary condition at the 

casing is set to a lower pressure than the reservoir pressure to create a movement in the 

pore pressure, simulating the production. Mesh convergence is studied to determine the 

result convergence and the time needed for running the simulation.  

3.4.7 Mesh Convergence Study 

 Fig. 3.8 shows the meshing of the model. Elements of the casing and cement are 

noticeably finer than the outer reservoir boundary elements. The casing, the cement, and 

the formation are modeled with different materials. Finer mesh is needed at the area of 

interest for accuracy in the results. In this simulation, the casing in the reservoir zone is 

expected to have the maximum compaction strain. The goal is to increase the number of 

elements for the casing region that connects the reservoir until the strain result 

converges. The optimized total was 11,400 elements with reasonable computation time.  
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Fig. 3.8—The modified model meshing. Casing area connected with the reservoir 

has finer mesh than the reservoirs outer boundary for accuracy 

3.4.8 Reservoir Compaction Model by Chia (1989) 

 To validate the model, the results are compared to a model created by Chia 

(1989). Fig. 3.9 shows Chia’s the axial casing strain according to depth. The highlighted 

region represents the reservoir region. R1 has the height of 50 ft, which is the same 

height as the modified model. The R1 reservoir has a production rate of 1,200 B/D. R2 

and R3 have heights of 25 ft and production rates of 600 B/D. Model results are 

compared to the R1 reservoir for model validation. Fig. 3.10 shows the result of model 

axial casing strain. The behavior of casing axial strain is a little different from Chia’s 

model. However, the maximum axial casing strain is quite close. Chia’s maximum 

casing strain is about 2%; the modified model maximum casing strain is about 1.9%. 

The difference in the result may come from computer processing power and size of mesh 

used.   

Number of element increasing 
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Fig. 3.9—Chia’s (1989) maximum casing axial strain for reservoir R1 is about 2% 

 

Fig. 3.10—The modified model maximum casing axial strain is about 1.9%, which 

is close to Chia’s 

 Fig. 3.11 shows the axial casing stress result from Chia’s model. Comparing R1 

results to the modified model results shows that the axial stress behaves in the same 

manner and the model results are within range of Chia’s. The difference between the 

modified model is axial stress and Chia’s stress is that the modified model starts in 
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compression where Chia’s axial stress starts in tension. The modified model axial stress 

starts in compression because of the overburden load at the top of the model.  

 

Fig. 3.11—Chia’s maximum casing axial stress for reservoir R1 is about 14,000 psi 

 

Fig. 3.12—The modified maximum casing axial stress is about 14,000 psi, which is 

close to Chia’s 

 



 38 

3.4.9 Model Modification 

 The reservoir compaction model was successfully created and validated by 

Chia’s (1989) model. However, this model does not account well for pressures in the 

reservoir.  

Abaqus does not allow users to input the drawdown or the depletion pressure 

data. Only the reservoir depletion pressure can be accounted for accurately using 

Abaqus. This is because the permeability input in Abaqus controls both the permeability 

of the formation in darcies and the production rate in volume/time, but not just the 

permeability.  

Using soil step and specifying the pore pressure boundary at the casing, a pore 

pressure movement is simulated across the reservoir. If permeability input for Chia’s 

model is used, the pore pressure across the reservoir shows the drawdown effect. If a 

higher permeability value is used, the reservoir pressure become constant across the 

reservoir. The reservoir pressure is also equal to the specified pressure at the casing. This 

method accounts for the change in reservoir pressure easily and accurately. 

Fig. 3.13 compares Chia’s plot of pore pressure vs. the reservoir radius compare 

to the modified model used in this thesis. For both methods, a wellbore pressure around 

the perforation is specified with 2,200 psi. The pressure at the radius of the reservoir is 

reduced from the original at 8,500 psi to around 6,800 psi for Chia’s (1989) model and 

2,200 for the modified model. In Chia’s model, the oil produced is from around the 

wellbore with a little bit in the outer reservoir radius, and drawdown pressure affects the 

casing producing axial strain around 1.8% (Fig. 3.10).  
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Fig. 3.13—The difference in pore pressure across the reservoir is shown for two 

methods used in simulation 

3.4.10 Experimental Design 

 Experimental design is introduced to design the value for each parameter input to 

run in Abaqus. WIth Statistical Toolbox, additional toolbox in Matlab, the simulation 

cases are designed for 70 different cases. Table 3.1 shows the range of parameters used 

for the experimental design. The design style is the space-filling design style, which is 

best when not much information about the model is known. It is best used in cases that 

call for a whole range of results from a given range of inputs. This is because the space-

filling design maximizes all possible occurrences with the given parameter ranges. 
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Table 3.1— Ranges of input data for parameters in experimental design 

Variable Symbol Range 

Reservoir Young's  

Modulus of Elasticity (psi) Er 14,500 - 4,350,000 

Reservoir Poisson ratio νr 0.05 - 0.35 

Reservoir Porosity (%) φr 3 – 40 

Cement Young's  

Modulus of Elasticity (psi) Ece 1,740,000 - 2,610,000 

Cement Poisson ratio νce 0.20 - 0.33 

a
Casing Yield Stress (psi) σc 40,000 - 110,000 

Casing Young's  

Modulus of Elasticity (psi) Ec 28,300,000 - 30,000,000 

Casing Poisson ratio νc 0.27 - 0.30 

b
Casing Outer Diameter (inches) OD 4.5 – 20 

c
Casing Thickness (inches) T 0.25 - 0.635 

Depletion Pressure (psi) dP 2200 – 8500 

Shale Young's  

Modulus of Elasticity (psi) Es 58,000 - 10,000,000 

Shale Poisson ratio νs 0 - 0.30 

Shale Porosity (%) φr 3 – 40 
a
Discrete variable with values of 40,000; 55,000; 75,000; 80,000; 90,000; 

 95,000; 110,000. 
b
Discrete variable with values of 4.5, 5.0, 5.5, 6.625, 7.0, 7.625, 8.625, 

9.625, 10.75, 11.75, 13.375,16, 18.625, 20 
c
Discrete variable with values of 0.244, 0.25, 0.352, 0.375, 0.395, 0.43, 

0.435, 0.45, 0.48, 0.489, 0.5,  0.54,  0.557, 0.635 

3.5 Probabilistic Demand Model for Reservoir Compaction 

 The probabilistic demand model represents reservoir compaction behavior load 

on the casing. The probabilistic demand model has the general form of 
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       ccccc εσx,θγxdx,ΘD  ˆ
 (3.8) 

 xdc
ˆ is the deterministic model, which account for the current reservoir compaction 

approximation method.  cc x  , is the model correction term for any bias that the 

deterministic design has, compared to the actual occurring results, or in this case the 

simulation results. The model correction term is expressed in terms of x  variable and c

, unknown parameters. c is the standard deviation of the model error. c is a random 

variable with zero mean and unit variance. The rest of this chapter will explain the 

process of constructing each term in the probabilistic demand model by determining 

each of the terms in the probabilistic model. 

3.5.1 Deterministic Model Selection 

 From the literature review, three deterministic models that approximate the 

magnitude of reservoir compaction are the Settari (2003) model, the Fjaer (1998) lab 

experiment correlation model, and the soft rock model by Ibekwe et al. (2003). Fjaer  
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(1998) model is based on lab experiments where sandstone was put into a confining 

pressure and pore pressure. The experiment started by loading the sandstone sample with 

constant confining pressure. The pore pressure was reduced and then the deformation of 

the sample was recorded. The sandstone strain is written as 

  
,

1

21
2

ΔP
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νν
ε

ss
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z



  (3.9) 

νs is the sandstone Poisson ratio, Es is the sandstone Young’s modulus of elasticity, and 

ΔP is the change in pore pressure. The Settari (2003) model used Fjaer’s (1998) model 

but also included α, Biot’s constant or poroelastic constant, to account for the actual pore 

fluid behavior in rock. 
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 Last, in the model proposed in Ibekwe et al. (2003) for a soft rock, the vertical 

formation strain is written as 
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 (3.11) 

 Ibekwe et al. (2003) used Settari’s (2003) model for stiff rock in the formation. 

To choose the best-fit deterministic model for simulation results, the three models are 

compared (Figs. 3.14 and 3.15) with the simulation result. 



 43 

 

Fig. 3.14—Comparison of three deterministic models to simulation results 

 

Fig. 3.15—Closer look of the comparison illustrates that the deterministic models is 

accurate in predicting casing axial strain 
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Figs. 3.14 and 3.15 show that all three models agree with the result of the 

simulation. The 1:1 reference lines are plotted on both figures to compare the 

deterministic model results with the simulation, which is the actual results. Points lying 

along the 1:1 line mean that the deterministic model approximation is equal to the actual 

results. However, a graphical figure does not show how exactly those points lie on the 

1:1 lines. To find the best-fit model for the deterministic term in the probabilistic model, 

mean absolute percentage error, MAPE, is used. The lowest error provided by MAPE 

computation is the best-fit model. The MAPE computational formulation is show as 

 ,
1

1







n

i i

ii

A

FA

n
MAPE  (3.12) 

where n is the total number of simulation, Ai is the actual data, which is the each 

simulation result, and Fi is the predicted value from each of the model shown above. 

Table 3.2— MAPE of the deterministic models 

Deterministic Model MAPE 

Fjaer (1998) 15.40% 

Settari (2003) 15.10% 

Ibekwe et al (2003) 14.30% 

 

Table 3.2 shows the MAPE results, confiming the Ibekwe et al. (2003) model is 

best-fit for the deterministic term with the lowest error in the probabilistic model.  Thus, 

the deterministic model is written as 
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  
 

 
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1ˆ ΔP
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ss

s

c



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where the three parameters E, v, and ΔP are random variables with lognormal 

distribution. 

3.5.2 Correction Term for Bias in the Deterministic Model 

 The deterministic model cannot fully represent the simulation results. The 

correction term should correct any bias that the deterministic model has on the 

simulation results, which represent the actual field results. Graphically, Fig. 3.15 shows 

that the deterministic model does not have any bias compared to the simulation results 

because the points are close on the 1:1 reference line. The correction term for bias in the 

deterministic model cannot be determined graphically. To determine accurately the 

correction term for bias in the deterministic model, diagnostic plots for each parameter 

in the simulation are used. The diagnostic plot shows the effect of a parameter on the 

differences between the simulation result and the deterministic model. Figs. 3.16 to 3.30 

show the diagnostic plots for different parameters. 

 If a parameter has any bias on the deterministic model, the diagnostic plot would 

show a trend line. As shown from the diagnostic plots below, the parameter values are 

mostly zero as the values for the differences in the simulation results and deterministic 

model increase. Thus, the deterministic model is unbiased. This term is excluded from 

the probabilistic demand model. However, θ1, a constant parameter to account for 
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uncertainty in the deterministic model, is included into the probabilistic model to make it 

a linear model. θ1 is an unknown model parameter. 

 

Fig. 3.16—Diagnostic plots for Biot constant 
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Fig. 3.17—Diagnostic plots for casing grade 

 

Fig. 3.18—Diagnostic plots for casing outer diameter 
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Fig. 3.19—Diagnostic plots for casing thickness 

 

Fig. 3.20—Diagnostic plots for casing Poisson’s ratio 
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Fig. 3.21—Diagnostic plots for cement Poisson’s ratio 

 

Fig. 3.22—Diagnostic plots for depleted pressure  
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Fig. 3.23—Diagnostic plots for casing Young’s modulus 

  

Fig. 3.24—Diagnostic plots for sandstone Poisson’s ratio 
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Fig. 3.25—Diagnostic plots for sandstone Young’s modulus  

  

Fig. 3.26—Diagnostic plots for shale Young’s modulus 
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Fig. 3.27—Diagnostic plots for shale porosity  

 

 Fig. 3.28—Diagnostic plots for shale Poisson’s ratio 
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Fig. 3.29—Diagnostic plots for sandstone porosity 

  

Fig. 3.30—Diagnostic plots for sandstone Poisson’s ratio 
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3.5.3 Standard Deviation of Model Error 

The probabilistic demand model is written as linear model where the original 

form is  

 σεHθY   (3.14) 

and each parameter is a vector matrix aχs shown below. 
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 (3.15) 

The probabilistic demand model is written as 

     dddd εσθxdx,ΘD  1
ˆ  (3.16) 

 Linear regression analysis is performed to determine σd, the standard deviation of 

the model error and θ1, the unknown model parameter. Y is represented as the simulation 

result strains minus the deterministic model strains. The H matrix is represented as 1x64 

matrixes, with a total of 70 results from simulations. However, six results are not 

accurate. They do not take into account. εd is the model error which has a normal 

distribution with a mean of zero and a unit standard deviation. 

According to Gardoni (2002), θ1 has a t distribution,   η,H'Hs,θtk

12ˆ   and σc has 

an inverse chi square distribution, 
22 χηs . θ1 has the mean and variance of θ̂  and 

   2
12 


η/H'Hηs . σc has the mean and variance of  22 η/ηs and 

    422
242  ηη/sη .  
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Giving all the terms in the probabilistic demand model, the probabilistic demand 

model is written as 

   dd
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CHAPTER IV 

CASING FRAGILITY ESTIMATES 

4.1 Introduction 

 In the previous chapter, the probabilistic capacity models and the probabilistic 

demand model were created for two modes of casing failure, which are axial yielding 

and buckling. In this chapter, the probabilistic models are used to construct the limit 

state functions. To show the application of structural reliability, the input values and 

distribution are assumed for a specific field. The input parameters are the Young’s 

modulus of elasticity and Poisson’s ratio. It is recommended to acquire actual field data 

for accurate results for a specific field. 

4.2 Fragility Estimate Computation 

 FERUM, a computative program using MATLAB, was used in computing the 

reliability index and probability of failure for given capacity and loading models for both 

compression and buckling failure. The first-order reliability method (FORM) and Monte 

Carlo simulation were used to compute reliability index (β, beta). The purpose of 

performing two computations is because FORM required less computation time than 

Monte Carlo simulation. However, FORM is an approximation; it does not produce as 

accurate results as Monte Carlo simulation. Monte Carlo simulation requires a large 

amount of time to compute the result.  
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4.3 Limit-State Function for Casing Axial Yielding 

 The limit-state function describes the condition state for the casing. The limit-

state function is written as 

      ,xDxCxg   (4.1) 

where C(x) is the probabilistic capacity model. D(x) is the probabilistic demand model. 

In Chapter III, both capacity and demand probabilistic models were consructed. The 

probabilistic capacity model describes the axial yielding strain limit of the casing. The 

probabilistic demand model describes the reservoir deformation strain caused by 

depleting the reservoir pressure.  

 The assumption for the axial yielding limit-state function is that the strain of the 

reservoir equals the strain in casing deformation. However, in the field, slippage may 

have occurred at the formation-cement and cement-casing interfaces. The slippage 

random variable is included in the limit-state function to account for this effect. Chia and 

Bradley (1986) showed that slippage could occur to reduce casing deformation by 30% 

to 40%. The slippage variable is included into the demand model to reduce the reservoir 

compaction strain. The failure state occurs when the casing begins yielding. The limit-

state function takes the form of 
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 All the parameters are random variables with distributions, means, and standard 

deviations, Table 4.1. 

 



 58 

Table 4.1— Input data for parameters in axial yield mode of failure 

Random Variable Symbol Distribution Mean 

Standard 

Deviation 

Reservoir Young's Modulus of 

Elasticity (psi) Ef Lognormal 300000 50000 

Reservoir Poisson ratio νf Lognormal 0.22 0.043 

Casing Yield Stress (psi) σc Lognormal 103550 2278.1 

Casing Young's Modulus of 

Elasticity (psi) Ec Lognormal 30,000,000 1,050,000 

Slippage S Lognormal 0.65 0.05 

Depletion Pressure (psi) ΔP Lognormal 1000 30 

Unknown Parameter θ1 Normal 1.09E-04 1.03E-04 

Standard Deviation of Model 

Error σd Lognormal 8.25E-04 3.54E-04 

 

 Adams et al. (1993) assumed that the casing yield stress, casing Young’s 

modulus of elasticity, and pore pressure distributions were normal distributions. In this 

study, most of the random variables are assumed lognormal because their actual values 

cannot be negative. In Chapter III, σd has inverse chi square distribution and θ1 has t 

distribution as explained in the previous chapter. However, σd is assumed lognormal 

distribution and θ1 is assumed a normal distribution. The reason is that FERUM does not 

implement an inverse chi square distribution and t distribution input into the program.  

Apparently, lognormal distribution has similar behavior as inverse chi square 

distribution and normal distribution is similar to t distribution for high values of degree  
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of freedom, η, according to Gardoni et al. (2002). εd is a normal distribution with zero 

mean and unit standard deviation.  

 A correlation matrix, which accounts for the relationship between random 

variables, is required for input. Another assumption made is that all random variables are 

statistically independent, which means they have no relation to each other. Thus, the 

correlation matrix is unit diagonal and zero. Assuming random variables are statistically 

independent may not be correct for the input variables, casing thickness may relate to 

casing diameter when they are rolled. Further study is required to determine the relation 

between the random variables for the input correlation matrix.    

4.4 Fragility Estimates for Casing Axial Yielding 

 Chapter II shows the method used in solving the limit-state functions for 

probability of failure. A combination of probability of failure at different depletion 

pressure with the limit-state functions generates the fragility of casing risk to axial yield. 

Fragility is the conditional probability of casing failure. Fig. 4.1 shows the comparison 

between FORM and Monte Carlo simulation as a check for the results. The results from 

the two methods show agreement, which indicates that FORM results are accurate.  
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Fig. 4.1—FORM approximation agrees with Monte Carlo simulation results for 

axial yield failure 

 Using the FORM method to calculate the probability of casing failure, casing 

fragilities are estimated and shown in Fig. 4.2. The fragility estimate is shown as a 

function of increasing depleted reservoir pressure for different casing grade. The input 

casing grade is from Adams et al. (1993), who uses 0.022 for the coefficient of variation 

for the casing grade. The coefficient of variation is the mean divided by the standard 

deviation. Thus, calculation for the standard deviation for each casing grade is possible. 
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Fig. 4.2—Axial yield fragility estimates decrease in failure probability as casing 

grade increases 

 The result shows the decrease in probability of failure as the casing grade 

increases; higher casing grade is recommended for completion in a high-risk reservoir 

compaction field. Reservoir depletion pressure of about 1,500 psi can cause Grade P-110 

casing to have a 50% probability of yielding. For 100% yielding, the depletion pressure 

is around 3,000 psi.  

 Casing yielding is not the ultimate casing failure. Production casing may 

continue to be used after yielding, but it is prone to collapse if the formation radial stress 

increases. Furthermore, Grade H-40 casing has the lowest yield stress. At the beginning 

of production, it risks failure because of the standard deviation of the model error term.  
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4.5 Limit-State Function for Casing Buckling 

 Casing buckling occurs when the casing sees no lateral support after loss of 

cement. For the buckling limit-state function, the same demand model as for the axial 

yielding limit-state function is used, though the simulations representing reservoir 

compaction include cement in the model. The assumption is made that casing 

deformation is still equal to the reservoir deformation with and without cement.  

Usually, cement is lost during the solid production process caused by high 

differential pressure near the wellbore. However, cement remains above and under the 

production zone. The cement above and below the production zone can translate the 

reservoir deformation to casing. This deformation causes buckling in the production 

interval. 

 From Chapter III, a probabilistic demand model and a probabilistic capacity 

model for casing buckling were constructed. The probabilistic capacity model is written 

as 
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where εb is the casing strain limit for buckling, Do is the casing outer diameter, t is the 

casing thickness, and L is the unsupported length of casing downhole. The probabilistic 

capacity model has only the deterministic model term. Further studies and data are 

needed to construct a model bias correction term and the standard deviation of model 

error term. 
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 The buckling capacity model assumes that the cement is absent starting at the 

beginning of production. However, in an actual production well, the cement is present at 

the start of production. After periods of production, the cement may be produced with 

the solid particles from the formation due to near wellbore drawdown pressure. The 

absence of cement takes away casing lateral support. Further study is needed to 

incorporate the solid production process into the capacity model to compute the 

unsupported casing length, L. 

 Combining the capacity and demand models, the limit-state function for buckling 

failure is written as 

  
  

   


























 






















 dd

f

f

oo

oo

b εσθPS
E

ν

LtDD
π

tDD
π

π

xg 1

222

442

1

2
4

2
64

4

,  (4.4) 

All random variables are assumed statistically independent. Table 4.2 shows the input 

distribution, mean, and standard deviation for each parameter. 
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Table 4.2— Input data for parameters in buckling mode of failure 

Random Variable Symbol Distribution Mean 

Standard 

Deviation 

Reservoir Young's Modulus of 

Elasticity (psi) Ef Lognormal 300000 50000 

Reservoir Poisson ratio Νf Lognormal 0.22 0.043 

Casing Outer Diameter (inches) OD Lognormal 4.5 0.0032 

Casing Thickness (inches) T Lognormal 0.287 0.00054 

Unsupported Casing Length 

(inches) L Lognormal 25 10 

Depletion Pressure (psi) ΔP Lognormal 1000 30 

Unknown Parameter θ1 Normal 1.09E-04 1.03E-04 

Standard Deviation of Model 

Error σd Lognormal 8.25E-04 3.54E-04 

 

 Outer diameter Do and thickness t are specified with the mean and standard 

deviation for each Do range from 4.5 in. to 20 in. The unsupported length is assumed 

constant for all the cases.  

4.6 Fragility Estimates for Casing Buckling 

 To check the FORM result for the buckling limit-state function, the Monte Carlo 

simulation is performed. Fig. 4.3 shows that a FORM result agrees with the Monte Carlo 

simulation result.  
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Fig. 4.3—FORM approximation agrees with Monte Carlo simulation result for 

buckling failure 

 

 

Fig. 4.4—Buckling fragility decreases as casing outer diameter increases 
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 Fig. 4.4 shows the fragility estimate for casing buckling for each outer diameter 

and thickness. Fragility estimates of casing buckling failure shows that increasing the 

outer diameter reduces the risk of casing buckling. For a 4-1/2 in. OD, it takes around 

1,000 psi of depleted pressure to assure casing buckling.  

High compaction reservoirs require large casing diameter. However, as today’s 

production scenarios face tough challenges from the deeper sources with high pressure 

and high temperature, choosing large production casing sizes are limited. 

 Structural reliability for component reliability of casing in compacting reservoir 

is a tool for assessing casing condition and predicting future conditions. Fragilities, 

results based on axial yielding and buckling, can help estimate casing failure risk 

associated with the amount of production.  

4.7 Casing System Reliability 

 With the results for component reliability, they can be compared and combined 

to analyze the system reliability. Using the method explained in Chapter II, the results of 

system reliability prone to any mode of failure is computed and shown in Fig. 4.5. 

Computation of system reliability requires the results from component reliability as 

shown 

        0000  bybyby ggPgPgPFFP  (4.5) 

 Fig. 4.5 shows the differences between system reliability and component 

reliabilities for a P-110 casing grade with outer diameter of 7-5/8 in. 
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Fig. 4.5—System fragility has the highest probability of failure because either axial 

yield or buckling could occur 

 

 The system fragility has the highest probability of failure because either mode of 

failure may occur. The two limit-state functions do not contain any reduction variable. 

Both failures could occur as the reservoir pressure depletes. The system fragility follows 

the buckling fragility at the beginning, where buckling risk a higher probability of 

failure. At the end, it merges with axial yield fragility.  

 System reliability analysis computes the results by combining the results at the 

component level for axial yielding and buckling. Using the same demand models for 

both failures, casing sees the same load but it could behave in axial yielding or buckling 

modes. Comparison between axial yield and buckling fragilities shows that casing is 
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more like to buckle at the beginning of production. Axial yielding is more likely to 

happen toward the end.  

 The reason for buckling to occur at the beginning of production is the slenderness 

ratio, L/r. The slenderness ratio is the unsupported length divided by the radius of 

gyration of the casing. Usually for a low value of slenderness ratio (a short, unsupported 

length with a large diameter), axial yielding is likely to occur first. However, the system 

reliability result shows that buckling occurs first. Thus, the slenderness ratio consists of 

unsupported casing length L, outer diameter Do, and thickness t large enough to cause 

buckling before casing can yield. 
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CHAPTER V 

IMPORTANCE AND SENSITIVITY 

ANALYSES 

5.1 Importance Analysis 

 Importance analysis measures the effect of uncertainty in random variable 

distributions toward probability of failure. In addition to calculating the casing fragility, 

FORM approximation gives results for importance analysis of each failure mode.  

Importance analysis measures how much each random parameter in the limit-state 

function affects the probability of failure.  

From FORM computation, the results β, the reliability index, and u*, design 

point is obtained. Importance analysis starts by shifting the distribution of each random 

variable ui by small amount ε; the corresponding change in β is 

  ε
u

β

u

β

u

β
Δβ

n























 

21

 (5.1) 

Because β is in standard normal space, ε shifts the β coordinate system by vector e = [–ε 

– ε … – ε]
T
. Thus, the change in β is 

 eT

u  *
 (5.2) 

where *u  is the gradient vector of β with respect to the coordinates at the design 

point. The gradient vector *u
 
is written as  
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(5.3) 

where α, gradient vector, is the unit vector at the design point directed towards the 

failure set. Thus α is the importance measure of the random variables u if the random 

variables x in normal space is statistically independent, as assumed.  

 The algebraic sign of   describes random variable u as a demand variable or a 

capacity variable. Positive i  corresponds to a demand random variable xi. Negative i  

corresponds to a capacity variable xi. In interpreting of the results in importance analysis, 

as the values of positive increase, the probability of failure increases. As the values of 

negative   increase, the probability of failure increase. Thus, importance measures tell 

us how important the random variable distributions are as the probability of failure 

increases in fragility estimates.  

5.2 Importance Analysis Result and Discussion 

Importance analysis shows the effect of uncertainty in random variable 

distributions toward probability of failure. Fig. 5.1 illustrates the importance vector α of 

the random variables in axial yielding mode as a function of reservoir depletion pressure. 

The plot is for Grade P-110 casing, which is mostly used in high-compaction reservoirs. 
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Fig. 5.1—Model error ε and formation Young’s modulus of elasticity Ef have 

highest effect on casing reliability 

 

 In axial yield mode, the ε and formation Young’s modulus of elasticity Ef are two 

most important random variables. A high positive value of the model error ε indicates 

that ε is a ―demand‖ variable; it remains constant over the production period. The 

formation Young’s modulus of elasticity Ef increases in negative value as production 

increases. This indicates that the formation Young’s modulus of elasticity Ef has a high 

effect on probability of failure as production increases. 

 For buckling failure, Fig. 5.2 shows importance measures for a 6-5/8-in. outer 

diameter casing with a 0.557-in. thickness. Unsupported casing length L and formation 

Young’s modulus of elasticity Ef are the most important variables. The importance 
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results match Bruno’s (1990) theory, which stresses the importance of having good 

cement placement to reduce the risk of buckling failure. In addition, the unsupported 

casing length L has higher values than the interface slippage S. This shows that it is more 

important to control the cement placement and solids production than to place ductile 

cement to reduce casing deformation. 

 

Fig. 5.2—Importance analysis of buckling illustrates that unsupported casing 

length L is the most important parameter affecting casing reliability 

 Fig. 5.3 is the zoom of Fig. 5.2. The importance order of random variables 

illustrates that the model error ε and model standard deviation σ are more important than 

formation Young’s modulus of elasticity Ef.  
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Fig. 5.3—Closer looks at importance analysis for buckling mode of failure 

 Comparing importance analyses between axial yielding and buckling modes 

shows that the random variable in buckling is a higher contributor to failure than axial 

yielding. However, in axial yielding the Young’s modulus of elasticity Ef and the 

interface slippage S are more important than in buckling. Giving the results, the 

unsupported casing length L, the Young’s modulus of elasticity Ef, and the interface 

slippage S are most important contributors to the system of casing failure. 

5.3 Sensitivity Analysis 

 Sensitivity measures analyzed how sensitive the reliability of the components is 

to the change in parameters used in computing the probability of failure. The sensitivity 

of the reliability is measured with respect to changes in the input random variables. It is 
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useful for an easy evaluation of the change of the fragility for a given change of the 

design of the structure. In optimizing the design, the derivative of failure probability pf is 

expressed as  

      ββp x0,fx0,     (5.4) 

where  β  is the standard normal PDF, and  β,Θx0 is the gradient vector of reliability 

index β with respect to parameter x0 and Θ. The parameter Θ denotes the set of 

distribution parameters: means, standard deviations, and correlation coefficients. The 

parameter x0 is the vector of deterministic parameters in the limit-state function.  

 In sensitivity measures, model error ε, standard deviation of model error σ, and 

unknown parameter θ are left out. The gradient vector  β,Θx0 and reliability index β 

are obtained from the first order reliability method (FORM) using the method by 

Hohenbichler and Rackwitz (1986) and Bjerager and Krenk (1989). Unlike the 

importance analysis, ranking of the variables is not possible because of the difference in 

units. 

5.4 Sensitivity Analysis Result and Discussion 

The sensitivity analysis measures the change in probability of failure with respect 

to the change in model parameters. Thus, random variables in sensitivity measure cannot 

be compared in order like the importance analysis because differences in units. 

However, sensitivity plots of each random variable give insight on failure mechanism.  

The sensitivity measures plot in term of the reliability index (beta) sensitivity 

with respect to the mean value of the distribution parameters. Fig. 5.4 shows the 
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sensitivity of the casing grade P-110 for axial yield. The change of the interface slippage 

S and the formation Poisson’s ratio ν can greatly affect the fragility of the casing axial 

yielding failure. At 1,500 psi of depleted pressure, the sensitivity measure of the 

interface slippage S is about 2.3. We can take the sensitivity measure times any change 

in the interface slippage S and add it to the original reliability index to find the new 

reliability index.    

 

Fig. 5.4—Change of interface slippage S is most sensitive to change in fragility for 

the axial yield mode of failure 
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Sensitivity analysis of buckling failure illustrates that interface slippage S is most 

sensitive. Increasing the unit of interface slippage S can increase the casing reliability to 

buckling. In the field, this can be done by using ductile cement. This way the 

deformation from the formation is absorbed by the cement, which can reduce the 

deformation in casing. Furthermore, it expects to see that the unsupported casing length 

L variable did not have a high sensitivity measure. The assumption for buckling failure is 

that the casing is already unsupported at the beginning of production. This is the reason 

that the sensitivity of unsupported casing length is not high. 

 

Fig. 5.5—Change of interface slippage S is most sensitive to change in fragility for 

the buckling mode of failure 
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CHAPTER VI 

RESULT DISCUSSION AND APPLICATION 

6.1 Casing Failure Mitigation Strategy 

After subsidence occurs, casing failures or damages are likely to follow. 

However, aftering subsidence has occurred, it is already too late. At this point, casing 

may already have been damaged. Therefore, the first strategy against casing failure is to 

study reservoirs and surrounding formations. Reservoir planning using information from 

the geologist and geomechanical models helps identify high compaction zones. Avoiding 

drilling and producing from these zones can prevent casing from failure.  

If production from a high-compaction zone is necessary, structural reliability can 

be used to predict future casing failure risk from the amount of production. Structural 

reliability can also be applied to developing fields to determine the casing’s risk of 

failure by assessing reservoir pressure from when the well started producing to the 

present. Also, by setting the maximum failure risk, a company can produce to the 

identified reservoir pressure before beginning workover operation to repair and maintain 

casing conditions. Another method to reduce failure risk is to inject water into nearby 

wells to keep reservoir pressure from reaching the reservoir pressure associated with the 

set maximum casing failure risk. 
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6.2 Structural Reliability Result Discussion 

This section discusses effects of the results on decision making of when to start 

injecting water or to begin workover operations. First, the fragilities in Fig. 4.2 and Fig. 

4.4 have shown that using a large-diameter casing with high casing grade in a 

compaction zone can extend casing life. With large diameter and high casing grade, the 

casing has more capacity to resist compaction load. However, putting large-diameter 

casing into the production zone may not be possible because of challenges in producing 

from deeper reservoirs, where a casing system requires a very large-diameter conductor 

and surface casing to carry the total weight from other casing downhole. Depending on 

the number of casing strings, the choice of the production casing may be limited. Thus, 

using high casing grades for production casing may be the choice to increase casing 

resistance to compaction load. Even though using large diameter casing may not be 

possible, another choice to increase casing system resistance is by ensuring good cement 

placement in the production zone. The importance analysis result for buckling failure in 

Fig. 5.2 shows that the unsupported casing length L has a high effect on the probability 

of failure. Thus, if a good cement placement is ensured thoroughout the life of the well, 

the risk of casing buckling is lowered. 

Comparison between axial yielding and buckling in Fig. 4.5 shows that casing 

buckling is more likely to occur at the beginning of a production period. Yielding is 

more likely to occur later into the production period. However, the buckling model use 

the input PDF of unsupported casing length L and 50 ft reservoir height. Changing 

reservoir height to smaller than 50 ft and changing the PDF to one associated with 
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possible cement loss can decrease the probability of buckling to be lesser than the 

probability of yielding from the start to the end of production. 

Times to failure are associated with the production rate, well planning, well 

location, and reservoir management. Geomechanical modeling of formations and well 

production can assist the user in effectively computing the failure location and time.  

 When depletion pressure reaches 100% probability of axial yielding, the casing 

begins to yield. Yielded casing is still capable of delivering oil to the surface; just as 

when the buckling fragility reaches 100%, the casing has only begun to buckle and the 

well can continue to produce. The buckling fragility does not account for the severity of 

buckling condition. However, for both modes of failure, at this point the casing is 

damaged. Continuation of production can lead to ultimate failure such as casing collapse 

or severe deformation obstructing workover tools. Casing repairs to strengthen the 

casing or water injection to increase pore pressure in the reservoir should definitely start 

at this point. It may be worthy to send a downhole camera to check casing conditions at 

depletion pressure, where the probability of failure is 50%. If the casing has already 

yielded or buckled at the depletion pressure of 50% failure probability, continuing 

production until depletion pressure reaches 100% failure probability can fail the well.  
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CHAPTER VII 

CONCLUSIONS AND FURTHER STUDY 

7.1 Conclusions 

1. The application of structural reliability in the field of petroleum 

engineering can assist the user in making better decisions knowing the risk taking. 

Structural reliability can predict and assess casing conditions given static field data and 

casing data. It can account for the uncertainty in the input data to compute failure 

probability and to construct the fragility estimates of casing conditions. 

2. A fragility estimate is the conditional probability of casing condition 

according to reservoir pressure reduction from production. The fragility shows that 

casing may undergo axial yielding even if reservoir pressure reduction from the assumed 

reservoir properties is low. Grade P-110 casing has a 100% probability of casing axial 

yielding around a depleted pressure of 3,000 psi. Although axial yielded casing may still 

able to produce, its stress resistance is altered and it is prone to collapse under the stress 

around the wellbore. 

3. Using the assumption made for buckling failure where the lateral support 

is absent from the start of production, casing risks buckling in the beginning of the 

production period. However, in reality, casing buckling depends highly on how much the 

well produces solids such as cement and the surrounding rock formation. Solids 

production can take away the lateral support casing needs to prevent buckling.  
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4. System reliability estimates fragility for system failure. System failure 

represents any mode of failure that can occur in a system. System fragility has the 

highest probability of failure among the component reliabilities. The reason is that 

system fragility computes the failure case where either mode of failure, axial yield or 

buckling, could occur.  

 5. Sensitivity analysis describes the effect of the change in parameters to the 

change in fragility. For both modes of failure, the change in interface slippage S 

parameter has the highest effect on the change of fragility. In the field, cement type 

controls the interface slippage. Using ductile cement in a compacting reservoir can 

reduce the risk of casing failure. Ductile cement has the property to deform easier than 

regular cement. Thus, the cement may absorb some of formation deformation before 

transferring it to the casing.  

 6. Importance analysis describes which parameter is the important 

contributor to fragility. For axial yielding, the casing model error term ε and the 

formation Young’s modulus of elasticity Ef are the most important. For buckling, the 

unsupported casing length L is the most important.  

7.2 Further Study 

 To improve the results and quality of the probabilistic models, field data is 

needed. Analyzing field data for a specific field will reduce the uncertainty in the 

probabilistic demand models. Necessary field data are data related to casing failure 

occurrences such as failed casing specifications and formation parameters including 
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Young’s modulus of elasticity, Poisson ratio, and depletion pressure. Matching the 

reliability results with the actual failure occurrences can estimate the model’s accuracy. 

High-accuracy models may require few adjustment and calibration. 

 Lab experiment data could assist in data collection for the capacity models of the 

casing. So far, casing specification data that have been collected from a casing 

manufacturer. Random variables of the casing parameters were studied by Adams et al. 

(1993). However, casing compressive lab experiments on axial yielding are needed to 

find the actual yielding casing strain from compression forces. The actual casing strain 

can be used to find the model error in the capacity model. In addition, detection of the 

bias in the deterministic model can be done using the lab experimental results. Addition 

of the error term and the collection of the bias of the deterministic model can improve 

the accuracy of the probabilistic model results.  

 Performing 3D reservoir modeling for reservoir compaction instead of the 2D 

model used in this research can compute more accurate deformation results. However, 

3D reservoir modeling requires high technology computers to run simulations. The costs 

of these computers are very high. 

 Generally, two modes of failure occur at the crest of the reservoir and at the 

production interval where maximum reservoir deformation occur. However, additional 

probabilistic model construction is necessary to better account for casing failure at all of 

the field locations, including the overburden rock formation and the field’s outer radius. 

The additional modes of failure are shear, tension, and collapse failures. Several methods 

that could assist in constructing these models are 3D wellbore modeling for casing 
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capacity, 3D reservoir modeling for formation deformation demand, and lab experiments 

to account for better uncertainty of the formation and casing parameters.  

 Application of structural reliability has a wide range of application, which can be 

applied to different problems in the field of petroleum engineering.  
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NOMENCLATURE 

g Limit-state function 

C Capacity model 

D Demand model 

x Random variable 

pf Probability of failure 

pb Casing burst pressure 

fy Casing yield stress 

t Casing thickness 

Do Casing outer diameter 

n  Probability density function in standard normal space
 

u Random variable in standard normal space 

u* Design point 

 Gradient vector

 
Φ Standard normal cumulative probability function 

β Reliability index  

α Normalized negative gradient vector 

J Jacobian matrix 

F Cumulative density function, CDF 

Fc Axial yield failure event 

Fb Buckling failure event 

TG
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εc Casing axial strain 

σc Yield stress of casing 

Ec Casing Young’s modulus of elasticity 

ĉ  Capacity deterministic model 

εb Casing strain limit before onset of buckling 

L Unsupported length of casing 

Ac Casing cross-sectional area 

I Area moment of inertia of casing 

σob Formation total stress 

σ   Formation effective stress 

ρ  Pore pressure
 

 

 Deterministic model for reservoir compaction 

 Correction term for bias in deterministic model 

 Correction term for deterministic model 

 Model standard deviation 

 Model error 

εz Reservoir compaction strain
 

νs Reservoir Poisson ratio 

Es Reservoir Young’s modulus of elasticity 

ΔP Depletion pressure 

Ai Actual data  

Fi Predicted data 

cd̂

cγ

cθ

c

c
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Y Simulation strains minus deterministic strains 

H Constant matrix 

η Degree of freedom 

χ
-2 

Inverse Chi Square distribution function 

 Gradient vector of reliability index β with respect to parameter u* 

 
  Gradient vector of reliability index β with respect to parameter x0 

   and Θ 

x0  Vector of deterministic parameters in the limit state function 

  

*u

 βΘx0,
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