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ABSTRACT

Modeling Aspects and Computational Methods for Some

Recent Problems of Tomographic Imaging. (December 2011)

Moritz Allmaras, Diplom, Technical University of Munich;

M.S., Georgia Institute of Technology

Co–Chairs of Advisory Committee: Dr. Wolfgang Bangerth
Dr. Peter Kuchment

In this dissertation, two recent problems from tomographic imaging are studied, and

results from numerical simulations with synthetic data are presented.

The first part deals with ultrasound modulated optical tomography, a method

for imaging interior optical properties of partially translucent media that combines

optical contrast with ultrasound resolution. The primary application is the optical

imaging of soft tissue, for which scattering and absorption rates contain important

functional and structural information about the physiological state of tissue cells. We

developed a mathematical model based on the diffusion approximation for photon

propagation in highly scattering media. Simple reconstruction schemes for recover-

ing optical absorption rates from boundary measurements with focused ultrasound

are presented. We show numerical reconstructions from synthetic data generated for

mathematical absorption phantoms. The results indicate that high resolution imag-

ing with quantitatively correct values of absorption is possible. Synthetic focusing

techniques are suggested that allow reconstruction from measurements with certain

types of non-focused ultrasound signals. A preliminary stability analysis for a lin-
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earized model is given that provides an initial explanation for the observed stability

of reconstruction.

In the second part, backprojection schemes are proposed for the detection of

small amounts of highly enriched nuclear material inside 3D volumes. These schemes

rely on the geometrically singular structure that small radioactive sources represent,

compared to natural background radiation. The details of the detection problem are

explained, and two types of measurements, collimated and Compton-type measure-

ments, are discussed. Computationally, we implemented backprojection by counting

the number of particle trajectories intersecting each voxel of a regular rectangular

grid covering the domain of detection. For collimated measurements, we derived

confidence estimates indicating when voxel trajectory counts are deviating signifi-

cantly from what is expected from background radiation. Monte Carlo simulations

of random background radiation confirm the estimated confidence values. Numerical

results for backprojection applied to synthetic measurements are shown that indicate

that small sources can be detected for signal-to-noise ratios as low as 0.1%.
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CHAPTER I

INTRODUCTION

The term tomography in its original meaning refers to imaging by slices. In early

tomographic methods, X-ray images of the human body were collected slice by slice.

Today, tomography subsumes a variety of techniques that aim at imaging the internal

structure of objects by measuring their interaction with certain types of excitations

like electromagnetic waves (X-rays, gamma radiation, optical light), elastic waves

(ultrasound, seismic waves) or particle radiation (neutrons, electrons). The measured

data does not by itself constitute an image, but rather it needs to be processed by a

reconstruction algorithm to create meaningful images. The reconstruction procedure

is usually based on a physical model of the interaction between matter and the

excitation, as well as the measuring process. This distinguishes computed tomography

from direct imaging techniques, where the measured data itself constitutes the image.

Common to all tomographic methods is their non-invasive nature: The excitation is

generated and data is collected only outside the object of interest, and information

about the interior structure is recovered without requiring physical access to the

object’s inside.

Common applications of tomography are found in medical imaging, geophysical

imaging, oceanography and industrial testing. In geophysics, seismic tomography

is used to explore the underground structure and locate boundaries between layers

of different materials like rock, soil or sand. Major applications include discovery

This dissertation follows the style of the SIAM Journal on Applied Mathematics.
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and survey of oil reservoirs and underground aquifiers, as well as learning about

the interior structure of the earth on a global scale. In oceanography, topography

of the seafloor and temperature distribution in the oceans are studied using sonog-

raphy. Industrial testing applications include the detection of cracks and faults in

components with high reliability requirements like airplane wings, propellor blades

or engine cylinders.

The use of tomographic techniques for medical diagnostics was greatly advanced

with the invention of X-ray computed tomography (CT) by Cormack and Hounsfield

in the early 1970s. Shortly thereafter, CT was complemented by magnetic reso-

nance imaging (MRI), single-photon emission computed tomography (SPECT) and

positron emission tomography (PET) (see [21, 24] for an overview), all of which

are widely used by today’s medical practitioners. These imaging modalities differ

in setup, type of excitation used, and the physical quantities they are sensitive to.

While CT reconstructs internal X-ray attenuation, MRI images are related to density

of hydrogen atoms, and SPECT and PET images show the distribution of certain

radioactive isotopes. Likewise, the multitude of tomographic imaging methods avail-

able for medical diagnostics can be explained by the need to visualize different aspects

of the body’s interior in order to diagnose different types of diseases.

A particular material property that has been of interest for research during re-

cent years are the optical characteristics of biological tissue that is transmissive or

translucent to optical light. Absorption and scattering rates, and, in some appli-

cations, fluorescent emission in the optical spectrum, carry important information

about the physiological and structural state of tissue (see [14] for an overview). It
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has been found that blood oxigenization, increased hemoglobin concentration and

hypermetabolism, all of which can be linked to tumor growth, are characterized by

an increase in optical absorption and scattering rates. Hence, the imaging of optical

tissue properties has the prospect of allowing early diagnosis of cancer in tissue.

The first part of this text deals with the mathematics of a relatively new method

for optical imaging of tissue, the so-called ultrasound modulated optical tomography.

In this imaging modality, the high optical contrast for cancer detection is combined

with the high resolution of ultrasound imaging. While many experimental studies

have been carried out and physical models for this technique have been developed

over the last decade, a concise mathematical model linking the measurements to the

optical properties of the medium still seems to be missing. Such a model, together

with computational reconstruction schemes, numerical examples and initial theoret-

ical analysis is the topic of the first part of this dissertation. The discussion closely

follows the findings reported in [4].

In the second part, a problem arising in homeland security is treated using com-

mon techniques from tomographic reconstruction. The goal is to detect the presence

of small sources of highly enriched nuclear material amongst a strong background of

random noise. Some evidence is presented that backprojection, a well-known ingre-

dient of many reconstruction schemes for computed tomography, can be a useful tool

in detecting sources with a very low ballistic signal-to-noise ratio (SNR), assuming

that sources are sufficiently small and the background is random. Such problems

with very low SNR do not normally lend themselves to tomographic imaging meth-

ods, since strong random noise can easily deteriorate reconstructions to a level where



4

they are no longer useful. However, for detection it is not required to reconstruct

quantitatively correct images, and it will be shown that under these circumstances

backprojection can yield valuable results. The discussion is based on findings in a

2D setting presented in [5, 19], and extends these results to the practically important

case of detection inside 3D volumes.
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CHAPTER II

RECONSTRUCTIONS IN ULTRASOUND MODULATED OPTICAL

TOMOGRAPHY

2.1. Introduction

In this section, we first consider the properties and setup of optical tomography

(OT) as a biomedical imaging modality. A fundamental issue of optical tomography

is the limited resolution, and modulation by focused ultrasound is introduced as

one possible way of overcoming this limitation. We discuss the idea and setup of

ultrasound modulated optical tomography, and outline the past developments in the

field. A brief discussion of the idea behind the mathematical model used in this text

follows, and the section concludes with an overview of the different aspects covered

in this text.

2.1.1. Optical tomography

In optical tomography, the target quantity for imaging are the optical properties of

materials that are permeable to photons in the optical spectrum. Primary applica-

tion is the imaging of soft tissue like the human breast and brain. In OT, objects are

irradiated by optical light, usually delivered by a laser beam or through fiber optics.

Typically, light in the near-infrared (NIR) spectrum with wavelengths around 700

nm is used, which can penetrate several centimeters deep into soft tissue. Sensors

are placed around the object to detect scattered photons in reflection or transmis-

sion configuration. Photomultipliers, CCD cameras or interferometers are common
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sensors in OT. Different variations of the OT modality exist in which optical exci-

tations are pulsed, amplitude-modulated or of direct-current type. If coherent light

is used for excitation, interference of scattered photons causes interference patterns,

so-called speckle patterns, on the object’s surface, whose characteristics are recorded

by some OT variants. The sensor signals are then fed to a computer reconstruction

algorithm that recovers the distribution of internal optical properties of the medium.

The general setup of the OT measurement process is depicted in Figure 2.1. See [62]

for an overview of different types of OT modalities.

Absorption and scattering rates of soft tissue are related to blood oxigeniza-

tion, hemoglobin and melanin concentration. Elevated levels result form increased

angiogenesis and hypermetabolism, both of which are indicative of tumor growth.

Hence, OT images have high contrast for the detection of early stages of cancer in

soft tissue. Optical light as non-ionizing electromagnetic radiation is harmless to

the human organism, unlike X-ray radiation used in CT or gamma rays in PET or

SPECT. Sensors and sources for optical light are highly developed, inexpensive and

widely available. This makes OT imaging relatively inexpensive in comparison to

other tomographic imaging methods.

Most types of optically translucent tissue are also turbid, i.e. highly scattering in

the optical spectrum. Individual photons undergo mutiple scattering events before

they can be detected by sensors. Typical scattering rates in soft tissue are on the

order of one scattering event per millimeter of path length. Consequently, informa-

tion about initial photon directions is rapidly lost as photons propagate through the

tissue. The rapid diffusion of photons implies that reconstruction from boundary
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CCD camera

light source

tissue sample

Fig. 2.1. Experimental setup in optical tomography.

measurements is severely ill-posed, rendering sharp imaging of interior optical prop-

erties all but impossible. Hence, existing optical tomography devices are restricted

to thin objects (e.g. skin) or low resolution [7].

2.1.2. Ultrasound modulated optical tomography

In order to reduce the ill-posedness of the original optical tomography procedure,

interactions of the optical signal with other types of excitations can be studied. The

idea of such hybrid imaging methods is to combine the beneficial properties of two

physically different excitations. See [62] for a practical discussion of hybrid optical

imaging methods. For example, in photoacoustic tomography, a short light pulse

initiates rapid thermal expansion of the cells inside a tissue sample, which generates

an elastic wave that can be detected by ultrasound sensors placed along the surface

of the object. In this imaging modality, the optical signal acts as an excitation for

an acoustic wave, hence combining the high contrast of optical imaging for detection
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of cancer cells with the high resolution of ultrasound imaging.

The hybrid imaging method that is the subject of this text to some extent re-

verses the principle of photoacoustic tomography: In ultrasound modulated optical

tomography (UOT, UMOT, also: acousto-optic tomography, AOT), the tissue sam-

ple is irradiated by a coherent light source, and concurrently an ultrasound wave is

focused inside the object. See Figure 2.2 for an illustration of the setup in UOT.

It has been found that a part of the optical signal is modulated at the frequency of

ultrasound [35, 62]. The intensity of this modulation relates to the photon density at

the location of the ultrasound focus. Multiple experiments are conducted in which

the ultrasound focus is scanned throughout the medium, so that information about

the photon density at each location inside the object can be obtained. Reconstruct-

ing the distribution of optical properties from this type of interior data is known to be

significantly less ill-posed than reconstruction from the boundary measurements col-

lected in conventional optical tomography. Modulation by ultrasound in some sense

provides an interior excitation without physically accessing the object’s interior.

2.1.3. History of ultrasound modulated optical imaging

Ultrasound tagging of photons in the optical spectrum for the purpose of imaging was

first discussed by Marks et al. in 1993 [41]. Wang et al. [61] presented experimental

results of optical imaging with continuous-wave ultrasound modulation. Experimen-

tal results were supplemented with theoretical explanations of the modulation effect

by Leutz and Maret [35]. In 1997 Kempe et al. [25] analytically and experimentally

investigated optical imaging by modulation with narrowly focused ultrasound signals.
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Ultrasound transducer

CCD camera

light source

tissue sample

Fig. 2.2. Setup in ultrasound modulated optical tomography.

In 2001 Wang proposed analytic and Monte Carlo models for UOT [58, 59]. Since

then, UOT has seen numerous improvements in signal acquisition techniques and

experimental setup. However, most of the existing techniques are based on direct

imaging, using the measurements of modulation intensity to represent the optical

properties near the ultrasound focus.

The only work known to the author that attempts to reconstruct actual optical

material parameters from UOT measurements with focused ultrasound is the thesis

of Nam [43]. However, this work assumes internal light intensities to be known and

does not incorporate the process of ultrasound modulation into the mathematical

model. We intend to close this gap by proposing a model for UOT that includes the

process of ultrasound modulation as well as the measurements, and is based on the

diffusion approximation for light propagation in highly scattering media.
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2.1.4. Diffusion model for ultrasound modulation

The literature contains a number of models that address the UOT technique, see for

example [25, 35, 43, 59, 60, 62]. Most of them describe the coupling between ultra-

sound and light in probabilistic terms. The path of individual photons is modeled as

a stochastic process, and the influence of the ultrasound signal on the probabilities

for photons to be scattered or absorbed is investigated. For practical purposes, this

allows particle-based Monte Carlo simulations of the light intensity modulation effect

caused by the ultrasound wave.

On the other hand, for optical imaging in turbid media at a depth of centime-

ters, photon intensities can be accurately modeled by the diffusion approximation.

The diffusion model consists of a partial differential equation (PDE), whose solution

describes the photon density inside the tissue sample. Under certain assumptions,

the stochastic description of the coupling between ultrasound signal and photon in-

tensity can be translated to the diffusion regime. It will be shown in Section 2.2

that this leads to a set of coupled diffusion equations describing the original light

intensity and a second, virtual intensity field that represents the part of the optical

signal that is modulated by ultrasound. The problem of reconstructing optical tissue

properties from UOT measurements then yields a parameter identification problem

for two coupled PDEs. Since numerical techniques for solving elliptic PDEs are well

developed and highly efficient, it can be hoped that this approach leads to fast re-

construction schemes for UOT that do not need to resort to statistical sampling for

evaluating probabilistic models of photon propagation.
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2.1.5. Outline

The mathematical principles of ultrasound modulation of coherent light in turbid

media are discussed in Section 2.2. We then derive a model for the effect of ultrasound

modulation in the diffusion regime, describe the measurement process in UOT and

introduce the parameter identification problem that arises for reconstruction of the

absorption coefficient. In Section 2.3, three simple computational algorithms are

derived for reconstructing the spatially varying absorption coefficient from scanning

UOT measurements with well-focused ultrasound signals. Examples of the resulting

reconstructions from numerical phantom data are provided in Section 2.4.

The most problematic assumption in our reconstruction scheme is the perfect

focusing of ultrasound, which is unrealistic for practical applications. Section 2.5 dis-

cusses synthetic focusing techniques that allow focused measurements to be recovered

from measurements with ultrasound localized along lines or spheres.

Given the simplicity of our computational reconstruction schemes and the lack

of regularization, the high quality of the obtained absorption images for numerical

phantoms suggests that the reconstruction problem at hand must be rather well-

posed, or at least is not as ill-posed as the conventional OT reconstruction problem.

In Section 2.6, a formal linearization of our model is studied that relates perturba-

tions in the absorption coefficient and in the measurements by a Fredholm operator

between appropriately chosen Sobolev spaces. This provides a partial explanation

to the stable reconstruction observed in the numerical experiments. The last section

concludes with a summary and possible directions for future research on the topic.
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2.2. Mathematical model

In this section, we first give a brief overview of the principles that govern ultrasound

modulation of light in turbid media, and describe the quantities that are being mea-

sured in UOT. After some rearrangements, this leads to the description of a virtual

light source of photons tagged by the ultrasound signal. We use this observation to

derive a model for ultrasound modulation in the diffusion regime of photon propaga-

tion. We describe the measurements in terms of our model, and formulate an inverse

problem for the reconstruction of optical absorption from UOT measurements with

scanning of the ultrasound signal.

2.2.1. Principles of ultrasound modulation

Three mechanisms for ultrasound modulation of light in tissue have been identified

in the literature [59]:

1. Variations in optical properties induced by ultrasound. The ultrasound wave

causes tissue cells to compress and expand periodically, changing the index

of refraction, scattering and absorption rates. This in turn influences photon

propagation and leads to partial modulation of the measured light signal at

ultrasound frequency.

2. Variations of optical phase by ultrasound induced oscillation of scatters. Scat-

tering sites undergo periodic motion caused by ultrasound which affects the

scattering paths of photons. This leads to oscillation of the optical phase at

ultrasound frequency which can be detected in the measurements.
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3. Variations of optical phase by ultrasound modulation of index of refraction.

Similar to the second mechanism, periodic changes of the refractive index cause

modulation of the optical phase at ultrasound frequency.

The second and third mechanism require a coherent light signal, while coher-

ence is not necessary for the first mechanism. Since ultrasound modulation of non-

coherent light has been found to be weak in experiments [59, 60], it is believed that

the dominant cause for ultrasound modulation of coherent light is given by the sec-

ond or third effect. Hence, our derivation will be based on results that have been

established for coherent light [25, 35, 59]. However, we note that there exist descrip-

tions of the UOT procedure based on the first mechanism [40] and that these result

in mathematical models that are considerably different from the one discussed here

[9]. For ultrasound modulation of coherent light, it was shown in [59] that the second

and third mechanisms yield the same type of analytical model. A brief discussion of

this model is given in the following.

A plane ultrasound wave irradiates a homogeneous isotropic medium that oc-

cupies a domain Ω. Let η ∈ ∂Ω denote the location of a detector for optical light.

It is assumed that the optical wavelength is much shorter than the mean free path

between scattering events (weak scattering). In practice, the optical wavelength is

about 700 nm, and in soft tissue the typical scattering mean free path is about 1

mm, so that this assumption is satisfied. Also we require that variations in opti-

cal path length induced by the ultrasound signal are much smaller than the optical

wavelength (weak modulation).
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The signal that is measured, e.g. by an interferometer, is the electric field auto-

correlation function at η [35]:

G1(η, τ) = 〈E(η, t+ τ)E∗(η, t)〉t

Here angle brackets denote averaging over time, and the electric field E is related to

the light intensity I as I(η, t) = |E(η, t)|2. It has been shown experimentally (see

[35]) that on short time scales the autocorrelation function oscillates at ultrasound

frequency (typically between 1 and 20 MHz). Over time scales much longer than

the ultrasound period, coherence of the exiting light is lost, i.e. G1(η, τ) → 0 as

τ → ∞, due to the Brownian motion of scatteres. Since we are interested in the

ultrasound modulation part of the autocorrelation, all terms arising from the decay

due to Brownian motion will be neglected in the following discussion. We will derive

expressions for G1 and, in particular, its modulation depth, i.e. the magnitude of the

oscillation of G1 at ultrasound frequency.

2.2.2. A path integral model

For a point source of unit strength at location σ ∈ Ω, its contribution to the overall

autocorrelation at η can be written as

G1(σ, η, τ) =
∑

s=s(σ,η)

Ps 〈Es(t+ τ)E∗s (t)〉t .

The sum extends over all scattering paths s inside Ω that connect source σ and

boundary location η. Ps is the fraction of the intensity incident at σ that scatters

along s multiplied by the probability of a photon not getting absorbed along this
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path. Es denotes the accumulated phase of the electric field at η from photons

following path s. Consequently, 〈Es(t)E∗s (t)〉t = 1, and G1(σ, η, 0) is the probability

of photons originating at σ to reach the detector at η.

In [25, 59] it was shown how autocorrelation is influenced by an ultrasound

pressure wave with frequency ωa through mechanisms 2 and 3 mentioned above. If

we neglect contributions from Brownian motion of the scatterers, it follows from [25]

that

G1(σ, η, τ) = α

∫
Ω

P (σ, x)P (x, η)|p(x)|2(1− cosωaτ) dx,

where |p(x)| is the amplitude of the ultrasound signal at x, P (x, y) is the probability

of photons originating at x to reach y, and α is a proportionality constant. In partic-

ular, the dependence on the square of the ultrasound amplitude has been observed

experimentally, see [35].

Since P (x, y) = G1(x, y, 0), we can rewrite the previous equation as

G1(σ, η, τ) = α

∫
Ω

G1(σ, x, 0)G1(x, η, 0)|p(x)|2(1− cosωaτ) dx.

If light is incident with intensity S(σ) from boundary sources at positions σ ∈

∂Ω, the overall autocorrelation function at detector location η is

G1(η, τ) =
∫
∂Ω
S(σ)G1(σ, η, τ) dσ.

Using the previous equation, and defining the unmodulated light intensity u(x) =
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∫
∂Ω
S(σ)G1(σ, x, 0) dσ for all x ∈ Ω ∪ ∂Ω, we find that

G1(η, τ) = α

∫
Ω

u(x)|p(x)|2G1(x, η, 0) dx (1− cosωaτ)

= v(η)(1− cosωaτ),

where

v(η) = α

∫
Ω

u(x)|p(x)|2G1(x, η, 0) dx. (2.1)

This representation of the correlation has given rise to the name tagged photons or

virtual light source for v. Equation (2.1) implies that these tagged photons originate

at the site x of interaction of the unmodulated light intensity u(x) and ultrasound

field p(x). For detector locations η close to the focus of the ultrasound signal, the

presence of the virtual source v has been observed experimentally [62]. However,

technically v is not an actual photon flux but a (scaled) correlation function.

2.2.3. Diffusion based model of ultrasound modulation

Now that we have derived expressions that quantify the effect of ultrasound modu-

lation, we need to relate them to the optical properties of the medium. To this end,

we need a model for describing photon propagation in soft tissue. A very general

analytic model for photon propagation inside a medium is given by the radiative

transfer equation (RTE, also: Boltzmann equation). The RTE is a partial differen-

tial equation for the radiance, i.e. the energy flux per direction at each point inside

the medium (see [62] for a detailed description of the RTE). Since the radiance in

3D depends on six independent variables, namely location inside the medium, direc-

tion of energy flux and time, it is difficult to treat numerically. Hence, there exist
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several simpler models that approximate solutions to RTE to various degrees of ac-

curacy under certain assumptions. See [7] for an overview of approximate models.

A commonly used model is the diffusion approximation, which is appropriate if the

medium is strongly scattering, isotropic and if photons on average experience suffi-

ciently many scattering events. These conditions are satisfied for many types of soft

tissue [7]. Under the diffusion approximation, the steady state unmodulated light

intensity u(x) =
∫
∂Ω
S(σ)G1(σ, x, 0) dσ satisfies the diffusion equation:

−∇ ·D∇u(x) + µau(x) = 0 in Ω. (2.2)

Here, µa = µa(x) is the spatially varying absorption coefficient,

D = D(x) =
1

3(µa(x) + µ′s(x))
(2.3)

is the diffusion coefficient and µ′s the reduced scattering coefficient. In highly scat-

tering media, µ′s � µa, and the diffusion coefficient is dominated by scattering. In

this text, we restrict our interest to the reconstruction of the absorption coefficient

µa, since it can express various structural and functional anomalies in soft tissue [14].

Hence we will consider µ′s to be approximately constant in the following. However,

we note that in principle the model presented here could just as well be used for

reconstruction of the scattering coefficient.

Equation (2.2) is complemented by boundary conditions. For tissue in con-

tact with a surrounding medium, Robin-type boundary conditions are a common

choice [7]:

2D
∂u(x)

∂n
+ γu(x) = S(x) on ∂Ω. (2.4)
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Here n denotes the outward normal to the surface ∂Ω and γ > 0 is a constant

describing the optical refractive index mismatch at the boundary.

From (2.2), (2.4) and the definition of u, we conclude that G1(·, ·, 0) is the

Green’s function for the diffusion equation with Robin boundary condition, and

hence satisfies the equations

−∇x ·D∇xG1(x, y, 0) + µaG1(x, y, 0) = δ(x− y) for all x, y ∈ Ω, (2.5)

2D
∂G1(x, y, 0)

∂nx
+ γG1(x, y, 0) = 0 for x ∈ ∂Ω, y ∈ Ω. (2.6)

Here, δ denotes the Dirac delta distribution. We note that if photon propagation

in a medium is viewed as a random walk, then the interpretation of the transition

probability P (x, y) = G1(x, y, 0) as the Green’s function for a diffusion equation is

quite common.

Finally, from equations (2.1), (2.5) and (2.6) it follows that v is a solution to

the following boundary value problem: −∇ ·D∇v(x) + µav(x) = α|p(x)|2u(x) in Ω,

2D ∂v(x)
∂n

+ γv(x) = 0 on ∂Ω.
(2.7)

This agrees with the intuitive notion of viewing v as a virtual light source of ul-

trasound tagged photons. Together with (2.2) and (2.4), these equations form our

model for ultrasound modulation of coherent light in soft tissue.
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2.2.4. Measurements

Detectors. We will assume that the amplitude v(η) of the oscillation of G1(η, τ)

at ultrasound frequency can be measured directly. Since the frequency of ultrasound

ωa and autocorrelation time shift τ are known in controlled experiments, this poses

no restriction, but it will simplify the following discussion.

In principle, interferometric detectors could be placed around the entire bound-

ary to pick up v(x). In practice, however, we will only be able to measure at a

small number of locations. To simplify the discussion, we will assume that only a

single detector at location η ∈ ∂Ω is used. More elaborate experimental setups could

include multiple detectors to suppress the effects of noise.

Ultrasound scanning. Equation (2.7) holds for arbitrary ultrasound functions

p(x). The shape of the ultrasound function can be controlled by the experimental

setting. Hence, additional measurement data can be obtained by conducting mul-

tiple experiments with different shapes of the ultrasound function. In particular, it

can be attempted to focus the ultrasound signal to a specific part of Ω. It is clear

from (2.7) that the obtained measurement will then only depend on the values of

u within the focal region of the ultrasound. By scanning the ultrasound through-

out Ω, complementary information about u in different parts of the domain can be

collected. More generally we can assume that the data consists of measurements of

vξ(η) corresponding to ultrasound signals pξ from a set {pξ}ξ∈I indexed by ξ ∈ I.
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2.2.5. The reconstruction problem

We can now formulate the reconstruction problem addressed in this work:

Inverse problem formulation. Given a family of ultrasound signals {pξ}ξ∈I , the

light illumination pattern S(x), detector location η ∈ ∂Ω, µ′s and γ. Assume that for

each ξ ∈ I, the values

h(ξ) = vξ(η) (2.8)

are known in the coupled system of equations

−∇ ·D∇u(x) + µau(x) = 0 in Ω,

2D ∂u(x)
∂n

+ γu(x) = S(x) on ∂Ω,

−∇ ·D∇vξ(x) + µav
ξ(x) = α|pξ(x)|2u(x) in Ω,

2D ∂vξ(x)
∂n

+ γvξ(x) = 0 on ∂Ω.

(2.9)

The goal is to recover the spatially varying absorption coefficient µa inside a region

of interest U ⊂ Ω.

Naturally, any question about existence and uniqueness of solutions or the well-

posedness of the above problem is tightly related to the choice of the ultrasound

signals {pξ}ξ∈I . If, for example, the data consisted only of one measurement for a

single ultrasound signal, there is no hope of recovering the spatially varying coefficient

on any open set.

On the other hand, if the ultrasound beam is focused to a point ξ ∈ Ω, the

measurement v(η) will depend on the value of u(x) at x = ξ only. In practice,

due to the wave nature of ultrasound it is impossible to focus to a single point

[36]. Nonetheless, the assumption of perfectly focused ultrasound is common in the
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literature.

Hence we assume in the following two sections that scanning measurements are

available for perfectly focused ultrasound signals, i.e. that

|pξ(x)|2 = δ(x− ξ), ξ ∈ U

and the measurements are

h(ξ) = vξ(η) for all ξ ∈ U.

In the next section, some simple computational reconstruction schemes for recover-

ing µa from such measurements are discussed. Some ideas for reconstruction from

measurements with non-focused ultrasound signals will be presented in Section 2.5.

2.3. Reconstruction

2.3.1. Reconstruction formula for scanning measurements with focused ultrasound

The purpose of this section is to show that under the model (2.9), high resolution

reconstruction of the absorption from scanning measurements with focused ultra-

sound is feasible. The algorithm discussed here is conceptually simple but still yields

reasonable results as we shall see in Section 2.4. Throughout this section we as-

sume that ultrasound signals can be perfectly focused to any point inside Ω, i.e.

|pξ(x)|2 = δ(x− ξ) and h(ξ) is available for all ξ ∈ U .

Let G(x, y) denote Green’s function for the diffusion model (2.2), i.e. the solution
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of  −∇x ·D∇xG(x, y) + µ(x)G(x, y) = δ(x− y) x ∈ Ω,

2D ∂G(x,y)
∂nx

+ γG(x, y) = 0 x ∈ ∂Ω.
(2.10)

By definition of Green’s function, the solution vξ in (2.9) can be written as

vξ(x) =

∫
Ω

G(x, y)α|pξ(y)|2u(y) dy

= α

∫
Ω

G(x, y)δ(ξ − y)u(y) dy

= αG(x, ξ)u(ξ).

(2.11)

Thus,

h(ξ) = vξ(η) = αG(η, ξ)u(ξ), u(ξ) =
h(ξ)

αG(η, ξ)
. (2.12)

Substituting (2.12) into the first equation of (2.9), we obtain an equation for

recovering µa:

µa(ξ) =
[∇ξ ·D∇ξ] (h(ξ)/G(η, ξ))

h(ξ)/G(η, ξ)
. (2.13)

2.3.2. Reconstruction algorithms

The obvious problem in using formula (2.13) for reconstruction is that it is implicit

in µa since both D and the Green’s function G depend on the absorption. Three

approaches to deal with this issue are given in the following algorithms:

• Algorithm 1. Instead of the exact Green’s function G, use an approximation

G̃ in (2.13). For example, for constant absorption µa(x) = µ̄a and constant

diffusion D(x) = D̄, the whole space Green’s function to (2.2) on Rd is given
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by

G̃(x, y) =


1

2π
K0 (κ|x− y|) d = 2,

1
4π|x−y| exp (−κ|x− y|) d = 3,

where κ =
√
µ̄a/D̄ and K0 is the modified Bessel function of the second kind

[6].

• Algorithm 2. For given µ̄a and D̄, an approximation to Green’s function can

be computed by solving (2.10) numerically.

• Algorithm 3. The previous algorithm can be iterated to compute successively

refined reconstructions for µa:

– Initial step: Using an initial guess µ0
a for the absorption coefficient (e.g.

µ0
a = const), compute the corresponding Green’s function numerically,

and apply formula (2.13) to find a new approximation µ1
a.

– Iterative step: Using the current approximation µka, recompute Green’s

function and D and apply formula (2.13) to find µk+1
a .

The Green’s function used in Algorithm 1 neither incorporates the correct ab-

sorption coefficient nor satisfies the boundary conditions posed in (2.10). Hence,

we cannot expect the resulting reconstruction to be quantitatively correct or even

qualitatively correct near the boundary of Ω. In Algorithm 2, the numerical Green’s

function satisfies the correct boundary condition and we can expect reconstructions

to be at least qualitatively valid. The iterative Algorithm 3 has the potential of

successively approximating the correct Green’s function and hence we can hope for

quantitatively correct reconstructions after sufficiently many iterations.
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Although we do not investigate the convergence properties of the iterative scheme

here, in the numerical simulations presented in the following section the iterates con-

verged reliably, albeit slowly.

2.4. Numerical implementation

In this section, numerical tests are performed using the algorithms outlined in the

previous section. We first state the computational setting and outline the calculations

involved in simulating the forward problem and the measurement process. Then the

implementation of the reconstruction schemes is discussed. Finally, we introduce the

particular test cases for our computations and present the results.

In this text, we only use synthetic measurement data obtained by forward cal-

culations from mathematical phantoms, rather than actual experimental data. All

computations were done in 2D, although they can be readily carried over to 3D.

For the finite element calculations involved in solving boundary value problems for

diffusion equations, the open source finite element library deal.II [10, 11] was used.

2.4.1. Computational setting

We take Ω to be the square [0 cm, 5 cm]2, which approximately corresponds to the

relevant dimensions in a practical UOT setting. The reconstruction domain U is

chosen as [0.5 cm, 4.5 cm]2. For the boundary light source S in (2.4), ∂Ω is split into

∂Ω1 = {x ∈ ∂Ω : x1 = 0 cm} and ∂Ω2 = ∂Ω\∂Ω1. Constant illumination is assumed
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Ω

∂Ω1

S

U

η

Fig. 2.3. Setting for numerical experiments: Domain Ω, area of interest U , incident

light source S(x) on the left, and detector point η on the right.

on ∂Ω1 and no photons are injected on ∂Ω2:

S(x) =

 1 for x ∈ ∂Ω1,

0 for x ∈ ∂Ω2.
(2.14)

The modulation depth is measured at a single detector location η = (5 cm, 2.5 cm).

This layout is depicted in Figure 2.3.

2.4.2. Numerical test cases

Ultrasound field. In our numerical examples, we use Gaussian-shaped synthetic

ultrasound signals:

p(x) = C exp

(
−

d∑
j=1

|xj|2
σ2
j

)
, (2.15)
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where C is a normalization constant. By choosing different variances σ2
j , we can

model the focusing properties of the pressure field.

To simulate scanning of the ultrasound focus, focusing points {ξi, i = 1, . . . , N}

are placed at the vertices of a regular square grid covering the area of interest U .

For each i we then construct a signal pξ
i
(x) focused at ξi by setting

pξ
i

(x) := p(x− ξi).

To simplify notation we set vi := vξ
i

and pi := pξ
i

in the following.

Absorption phantoms. To test our algorithms, we use three test cases in which

the true absorption coefficients have the following form:

• A disk-shaped inclusion K ⊂ Ω with midpoint (2.5 cm, 2.5 cm) and radius

0.5 cm. The absorption coefficient is assumed to be equal to µ̄ outside the

inclusion and slightly higher inside:

µ∗(x) =

 µ̄ , x ∈ Ω \K

1.2 µ̄ , x ∈ K.

• For the same inclusion K, a much higher absorption coefficient contrast is

chosen:

µ∗(x) =

 µ̄ , x ∈ Ω \K

10 µ̄ , x ∈ K.

• A more complicated coefficient with multiple inclusions of different magnitude

between 1.2 µ̄ and 2.0 µ̄. Their exact shape is shown in the right panel of

Figure 2.4. This case tests the ability of our algorithms to resolve several
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Fig. 2.4. Test cases for absorption coefficient µ∗.

nearby objects.

For actual numerical values, we used µ̄ = 0.023 cm−1, µ′s = 10.74 cm−1 and γ =

0.431 cm−1 in our computations. These values represent typical optical properties of

soft tissue [42].

2.4.3. Forward simulations

In order to generate artificial measurements h(ξ) (see (2.8)), we need to compute

the solutions u(x), vξ(x) of the forward problem (2.9) for a set of given data D,µa, S

(diffusion coefficient, absorption coefficient, incoming light flux) and an ultrasound

signal focused at the point ξ ∈ U . Then, evaluating vξ at the detector location η, we

obtain the measurement value h(ξ).

Incident light field. Since in our model the incident light intensity u is indepen-

dent of the shape and location of the ultrasound wave, u only needs to be computed

once. For this computation, a finite element approximation to u is constructed on a

regular rectangular grid using Q1 finite elements [13], solving equations (2.2)–(2.4).
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Fig. 2.5. Left: Incident light intensity u for constant absorption coefficient. Center

and right: Modulated light intensity vξ for two different focus points ξ. Note

that v depends on the focus position as well as the intensity of u at the focus.

The left panel of Figure 2.5 shows u for the case of a constant absorption coefficient

µa.

Modulated light field and measurements. Given u and the choice of ultra-

sound signal pi, we compute the intensity of the modulated light vi(x) using equations

(2.9). The equations are again solved using Q1 finite elements. Two examples for

vi are shown in Figure 2.5 for two different focus positions. The modulated light

intensities vi are then evaluated at the sensor location η to yield the measurements

h(ξi) = vi(η).

2.4.4. Green’s function and reconstruction

The reconstruction Algorithms 2 and 3 require knowledge of the Green’s function

G, which, given the absorption and diffusion coefficients µa and D, solves (2.10).

Hence, we compute G by solving another diffusion problem with homogeneous Robin

boundary conditions and a suitable approximation to the delta function as the right
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hand side. As before, this is done using a finite element scheme, where we choose

a different, coarser mesh than in forward problem calculations to avoid committing

inverse crimes.

An obvious problem in the reconstruction formula (2.13) is that it involves

derivatives of the measurement data h(ξ), which causes instabilities in the presence

of noise. Regularizations for this type of problem are well-studied (e.g. [43]), and

the stability analysis in Section 2.6 suggests that this is the only source of instability

in the reconstruction process. Hence, we opt not to add extra regularization and

compute the derivatives by a simple central differencing scheme. Without adding

noise to the measurements, it turned out that in all of our computational experi-

ments, the regularization stemming from discretization on a fixed grid was sufficient

for obtaining reconstructions without visible noise artifacts.

2.4.5. Reconstruction results

For the results shown in this section, measurements were produced using the ultra-

sound signal arising from setting variances σ1 = σ2 = 0.1 cm in the Gaussian (2.15),

resulting in sharp focusing in each direction (see the center panel of Figure 2.8 on

page 33). The ultrasound focus ξi was scanned on a 100×100 mesh of points in-

side the area of interest U . Figure 2.6 shows reconstructions obtained from each of

the three algorithms from Section 2.3.2 for the three different cases of absorption

phantoms.

To estimate if the reconstructed coefficients are quantitatively correct, profiles

of the reconstructions along lines were extracted and plotted in Figure 2.7 for each
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Fig. 2.6. Reconstruction results for the three coefficient phantoms: Algorithm 1 (top),

Algorithm 2 (middle), Algorithm 3 after N = 40, 70 and 40 iterations, re-

spectively (bottom).
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of the three phantoms.

The results confirm the expectations stated in Section 2.3.2:

• Algorithm 1 produces reconstructions that are incorrect especially near the

boundary of the domain, but somewhat hint at the location of interior singu-

larities, especially in the case of large variations in the coefficient.

• Reconstructions from Algorithm 2 are not quantitatively correct but capture

the locations of singularities in the coefficient.

• Algorithm 3 after sufficiently many iterations produced correct reconstructions

for all three phantoms. Reconstruction are slightly off near the sensor loca-

tion η = (5 cm, 2.5 cm) in the cases of small coefficient variation and multiple

inclusions.

In particular, Algorithm 3 reconstructs sharp interfaces between inclusions with-

out excessive blurring and recovers quantitatively correct values of the absorption

coefficient. These are significant advantages in comparison to many other optical

tomographic methodologies.

2.5. Ultrasound focusing

So far we have assumed that ultrasound can be perfectly focused to individual points

inside the object of interest. In practice, this is not a realistic assumption: Diffrac-

tion due to the wave nature of ultrasound and the geometry and bandwidth of the

transducer limit the achievable focus size. In particular, the focus is often much

sharper in the direction transverse to the transducer lens, but elongated and blurred
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Fig. 2.7. Reconstruction profiles (right) along lines (left). Phantom with small varia-

tions (top), large variations (middle) and multiple inclusions (bottom). Pro-

files show exact coefficient (black, interpolated on the finite element grid),

reconstructions from Algorithm 1 (green), Algorithm 2 (blue) and Algorithm

3 (red).
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Fig. 2.8. Simulated ultrasound pressure field |p|2 with transducer at the bottom (left),

Gaussian ultrasound signal |p|2 with σ1 = σ2 = 0.1 (center), Gaussian signal

with σ1 = 0.1, σ2 = 0.3 (right).

along the transducer direction. A realistic simulation of a focused ultrasound beam

is shown in the left panel of Figure 2.8 (see [3] for the details of this simulation).

Experimental measurements of focused ultrasound signals can be found e.g. in [36].

For a comprehensive discussion of localization of waves see [22].

To demonstrate that sharp ultrasound focusing is a crucial requirement for the

reconstruction algorithms presented in Section 2.3, the computational experiments

from Section 2.4 were repeated with a Gaussian ultrasound signal that is slightly

elongated in transducer direction. This signal is shown in the right panel of Fig-

ure 2.8. For comparison, the ultrasound signal used in Section 2.4 is shown in the

center panel of Figure 2.8.

Figure 2.9 shows the results produced by Algorithms 2 and 3. The quality

of reconstruction is severely deteriorated, sharp interfaces are blurred especially in

y-direction, and the reconstructed absorption has spurious peaks near the domain

boundaries and the detector location. It is clear that reconstructions from scanning

measurements with a realistic, even more elongated ultrasound signal (such as Fig-
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Fig. 2.9. Reconstruction results for ultrasound signal with elongated focus: Algorithm

2 (top) and after N iterations of Algorithm 3 (bottom).

ure 2.8, left) would be even worse. Hence, strategies need to be developed to deal

with measurements obtained from ultrasound modulation without perfect focusing.

One of these strategies, known as synthetic focusing, is discussed in the following.

2.5.1. Synthetic focusing principle

Instead of attempting to perfectly focus ultrasound waves in space, synthetic focus-

ing allows the use of non-localized ultrasound fields and reconstructs the signal by

superposition. This approach was suggested in [30]. The idea is that if measure-

ments are obtained from a specifically chosen set of non-focused ultrasound signals,

a mathematical reconstruction procedure can recover what the measurements from

focused ultrasound signals would have been. This reconstruction procedure involves
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the inversion of an integral transform.

To explain the details of this technique for UOT, let us assume that measure-

ments are obtained for a set {pλ}λ∈Λ of non-focused ultrasound signals. This means

that the measurements are hλ = vλ(η), where vλ solves

−∇ ·D∇vλ(x) + µav
λ(x) = α|pλ(x)|2u(x) in Ω,

2D
∂vλ(x)

∂n
+ γvλ(x) = 0 on ∂Ω

(2.16)

for all λ ∈ Λ. As before, u(x) is the unmodulated light intensity, the solution to (2.2)

and (2.4).

On the other hand, the input that is required for the algorithms in Section 2.3

is hξ = vξ(η) for all ξ ∈ U , with vξ solving

−∇ ·D∇vξ(x) + µav
ξ(x) = αδ(x− ξ)u(x) in Ω,

2D
∂vξ(x)

∂n
+ γvξ(x) = 0 on ∂Ω.

We observed in (2.11) that

vξ(x) = αG(x, ξ)u(ξ).

Since the vλ solve the diffusion problem (2.16), they can be written as a convolution

of Green’s function with the right hand side:

vλ(x) =

∫
Ω

G(x, ξ)α|pλ(ξ)|2u(ξ) dξ

=

∫
Ω

(
αG(x, ξ)u(ξ)

)
|pλ(ξ)|2 dξ

=

∫
Ω

vξ(x)|pλ(ξ)|2 dξ.
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Hence,

hλ = vλ(η) =

∫
Ω

vξ(η)|pi(ξ)|2 dξ =

∫
Ω

h(ξ)|pλ(ξ)|2 dξ. (2.17)

This equation implies that the measurements hλ are derived from the focused data

h(ξ) by integration against the squared amplitude |pλ|2 of the ultrasound signal.

Or, put differently, the hλ arise from superposition of h(ξ) with weights |pλ|2. If the

family {pλ}λ∈Λ is chosen in such a way that the integral transform (2.17) is invertible,

then the focused data can be recovered by inversion of an integral transform with

kernel |pλ|2.

Not every ultrasound signal can be generated in practice. The choice of possible

ultrasound signals is limited by the experimental setup and the characteristics of the

transducer. In [30], several types of waves were suggested for synthetic focusing in

ultrasound modulated electrical impedance tomography (also called acousto-electric

tomography, AET). The measurements in AET depend, at least for small perturba-

tions, linearly on the ultrasound amplitude |p| (see [31]), while in UOT this depen-

dence is quadratic. Thus, it would likely be difficult to create ultrasound signals for

which the squared amplitude |p|2 corresponds to a monochromatic or plane wave,

which are two of the main examples in [30]. On the other hand, spherical waves,

i.e. focusing ultrasound along spheres, also suggested in [30], will be applicable to

UOT as well. The measurements then correspond to integrals of the point-focused

ultrasound signal over spheres, and focused data can be recovered by inverting spher-

ical mean Radon transform (see [29] for an overview).
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2.5.2. Reconstruction from ultrasound localized along lines

One approach to synthetic focusing is based on the observation that in practice nar-

rowly focused ultrasound signals have more resemblance with lines than points (see

Figure 2.8, left). If line-shaped ultrasound signals are scanned in linear and angular

increments, the resulting measurements correspond to the Radon transform (X-ray

transform in 3D) of the data for point-focused ultrasound. Inversion techniques for

Radon and X-ray transforms are widely known and well-studied [24, 44]. This ap-

proach has been verified experimentally in [37, 38], where direct UOT images were

reconstructed by filtered backprojection from measurements with linear and angular

scanning of the ultrasound column. In the following section, we will show how this

technique can be applied to recover point-focused data from scanning measurements

with ultrasound signals focused along lines, which can then be fed to the reconstruc-

tion algorithms from Section 2.3.

We assume that the ultrasound beam can be localized along arbitrary lines L

intersecting the domain of interest U . Again we restrict our discussion to the 2D case,

U ⊂ Ω ⊂ R2. Lines are parametrized by their normal ω ∈ S1 and distance s from

the origin, which we choose to be the midpoint of the domain U (see Figure 2.10).

Points x on a line L with normal ω and distance s from the origin are characterized

by the equation x ·ω = s. The set of ultrasound signals is {pL}L∈Λ with Λ = {(ω, s) :

ω ∈ S1, s ∈ [0, d
2
]}, where d denotes the diameter of the domain. The signal pL is a

distribution such that |pL|2 is the Dirac measure of the line L, i.e.∫
Ω

|pL(x)|2f(x) dx =

∫
L

f(x)dx for all f ∈ C∞(Ω).
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Fig. 2.10. Parametrization of a line L by normal ω and distance s from origin.

Then the measurements for such signals are, according to (2.17), given by

ĥ(ω, s) = vL(η) =

∫
Ω

h(ξ)|pL(ξ)|2 dξ

=

∫
x·ω=s

h(ξ) dξ.

(2.18)

This is the Radon transform of the point-focused measurements h(ξ):

ĥ = Rh. (2.19)

A well-known inversion formula for Radon transform is the filtered backprojection

(FBP) formula [24, 44]:

h =
1

4π
R#H

dĥ

ds
. (2.20)

Filtered backprojection involves the backprojection operator R# and the Hilbert

transform H. For a function g : S1 × R → R, the action of these operators is given
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by

(
R#g

)
(x) =

∫
S1

g(ω, ω · x) dω,(
Hg
)
(ω, s) = v.p.

∫
R

g(ω, τ)

s− τ dτ.

R# integrates over all lines passing through x, while H d
ds

represents a filter in the

variable s. In most numerical implementations of (2.20), the filtration step is applied

in FFT domain, and backprojection is computed by quadrature. See [24] for details

on the implementation.

2.5.3. Numerical example for ultrasound localized along lines

Here we repeat some of the calculations from Section 2.4 with ultrasound signals

localized along lines. To approximate real ultrasound more realistically, signals are

not chosen as exact lines but rather have some spread transverse to the line direction.

For a line L with parameters (ω, s), the numerical line function we use is given by

pL(x) =


l(x · ω − s) if |x · ω − s| ≤ δ,

0 else,

with the line profile

l(t) = k

(
e−( t

δ
)2 − e−1

1− e−1

) 1
2

.

The normalization constant k is chosen such that
∫ δ
−δ l

2(t) dt = 1, and the line half

width δ is set to 0.1 in the computations, resulting in ultrasound signals as shown

in Figure 2.11. Forward simulations are run as described in Section 2.4.3, with the
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Fig. 2.11. Ultrasound intensity |pL|2 focused along line with ω =
(

1
0

)
, s = 0 (top).

Profile in x-direction (bottom).

ultrasound signal scanned in 512 angular and 512 linear increments. The measure-

ments are, as in Section 2.4.3, the values of the modulated light intensities vL at the

detector location η = (5 cm, 2.5 cm).

According to (2.19), inverse Radon transform is applied to the collected measure-

ments {vL(η)}L∈Λ to recover the measurements {vξ(η)}ξ∈U for point-focused ultra-

sound signals. FBP is used as the computational algorithm for inverting Radon trans-

form, where the filter is computed in FFT domain and backprojection is calculated

by quadrature [24]. Since inversion of Radon transform by itself is ill-conditioned

(although only slightly so, see [44]), this procedure is prone to polluting the mea-

surements with high frequency noise that would be amplified by the reconstruction

algorithms from Section 2.3. To avoid issues of this kind, an additional low-pass filter
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is added to the filtration step of FBP to smoothen the results of Radon inversion.

This extra step is common to reduce noise in the computational results of FBP [24].

FBP recovers point-focused measurements vξ(η) on a 50×50 grid of focus points

covering the reconstruction domain U = [1 cm, 4 cm]2. Then, Algorithms 2 and 3

are applied as described in Section 2.4 to reconstruct the absorption coefficient µa.

The results for the three absorption phantoms from 2.4.2 are shown in Figure 2.12.

Reconstruction quality is almost as good as in the examples in Section 2.4.

There is a slight increase in high-frequency noise owing to the concatenation of two

modestly ill-posed operations. Also, a gradual decay towards the detector location

is visible in the line profile especially for the phantoms with small variation and

multiple inclusions. Overall, singularities in the coefficients are well visible with

sharp reconstruction of the boundaries, and reconstructed absorption values are close

to the correct ones.

In practice, neither the high ultrasound resolution of 512 angular and 512 linear

increments nor the uniform focus along lines shown in Figure 2.11 are realistic as-

sumptions. However, the results clearly show that synthetic focusing can be a viable

preprocessing procedure for applying the reconstruction process from Section 2.3 to

UOT measurements with certain types of non-focused ultrasound signals.

2.6. Stability of the linearized problem

Intuitively, reconstruction in UOT is expected to be substantially more stable than

reconstruction from boundary measurements in OT, since ultrasound focusing re-

sults in measurements containing localized interior information that is not available
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Fig. 2.12. Reconstruction results for the three coefficient phantoms: Algorithm 2

(top), Algorithm 3 after N = 40, 70 and 40 iterations (middle), recon-

struction profiles along cutlines (bottom, cutlines as in figure 2.7).
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from OT measurements. The quality of reconstructions observed in our numerical

simulations, especially the recovery of sharp singularities by Algorithm 3, confirms

this intuition. In this section, a first step is made towards understanding the stability

of reconstruction in UOT.

Note that even though equations (2.9) defining u and v are linear, the relation

between absorption coefficient µa and measurements h is nonlinear. In this section,

we consider a (formal) linearization of the system (2.9) that will allow us to gain

some insight into the local properties of the inverse problem.

Let Ω ⊂ Rd with d = 2 or d = 3 be an open bounded domain with C2-boundary.

We use the notation µ := µa throughout this section. Let us assume that µ is a small

perturbation of a known background absorption µ0 ∈ C0,1(Ω) with µ0 > 0, so that

µ(x) = µ0(x) + εµ1(x), ε� 1.

We formally write the solutions u and vξ to (2.9) as an asymptotic expansion in the

small parameter ε:

u(x) = u0(x) + εu1(x) + o(ε),

vξ(x) = vξ0(x) + εvξ1(x) + o(ε),

(2.21)

Here, o(ε) denotes terms of higher order in the small parameter ε. Our goal is to relate

the first order perturbations of the absorption coefficient µ1 and the measurements

h1(ξ) := vξ1(η), where η ∈ ∂Ω is the location of the detector.

Let us again assume perfectly focused ultrasound, i.e. |pξ(x)|2 = δ(x − ξ). By

inserting the above expansions into equations (2.9) and sorting terms according to
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powers of ε, we get the zeroth order perturbation system

−∇ ·D∇u0(x) + µ0(x)u0(x) = 0, (2.22)

−∇ ·D∇vξ0(x) + µ0(x)vξ0(x) = αδ(x− ξ)u0(x), (2.23)

and the first order perturbation system

−∇ ·D∇u1(x) + µ0(x)u1(x) = −µ1(x)u0(x), (2.24)

−∇ ·D∇vξ1(x) + µ0(x)vξ1(x) = αδ(x− ξ)u1(x)− µ1(x)vξ0(x) (2.25)

for all x ∈ Ω. These equations are complemented by inhomogeneous Robin boundary

conditions as in (2.4) (with sufficiently smooth source term S) for u0 and homoge-

neous Robin boundary conditions for vξ0, u1 and vξ1. Here we neglect the (weak)

dependence of D on µ and instead set D ≡ const > 0 for the rest of this section.

Equations (2.22)–(2.23) imply that u0 and vξ0 are solutions to the forward model

for absorption coefficient µ0. Under the stated assumptions, standard elliptic regu-

larity theorems (e.g., [20]) imply u0 ∈ H3(Ω), and by the Sobolev embedding theorem

u0 ∈ C1(Ω) [16].

Let us assume that the absorption coefficient is known near the boundary, so

that it suffices to consider perturbations µ1 supported on an open set U with C2-

boundary such that U ⊂ Ω. We assume the data h1(ξ) to be given for all ξ ∈ U . In

what follows, we derive an explicit formula for the dependence of µ1 on h1 and then

study properties of the corresponding linear operator.

Let us denote by G0(x, y) Green’s function as defined in (2.10) corresponding to

the background absorption coefficient µ0. Equation (2.23) implies that for all x ∈ Ω
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and ξ ∈ U ,

vξ0(x) =

∫
Ω

αG0(x, z)δ(z − ξ)u0(z) dz

= αG0(x, ξ)u0(ξ).

From (2.25) we can now deduce that

vξ1(x) =

∫
Ω

G0(x, z)
[
αδ(z − ξ)u1(z)− µ1(z)vξ0(z)

]
dz

= αG0(x, ξ)u1(ξ)− αu0(ξ)

∫
Ω

G0(x, z)G0(z, ξ)µ1(z) dz.

Evaluating at x = η and solving for u1 yields

u1(ξ) =
h1(ξ)

αG0(η, ξ)
+

u0(ξ)

G0(η, ξ)

∫
Ω

G0(η, z)G0(z, ξ)µ1(z) dz.

We now use this expression to eliminate u1 from (2.24). Noting that the differential

operators now act on ξ and that

[−∇ξ ·D∇ξ + µ0(ξ)]G0(x, ξ) = δ(x− ξ),
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we get

0 = u0(ξ)µ1(ξ) + [−∇ξ ·D∇ξ + µ0(ξ)]

(
h1(ξ)

αG0(η, ξ)

)
+ [−∇ξ ·D∇ξ + µ0(ξ)]

(
u0(ξ)

G0(η, ξ)

∫
Ω

G0(η, z)G0(z, ξ)µ1(z) dz

)
= u0(ξ)µ1(ξ) + [−∇ξ ·D∇ξ + µ0(ξ)]

(
h1(ξ)

αG0(η, ξ)

)
+

(
[−∇ξ ·D∇ξ]

[
u0(ξ)

G0(η, ξ)

])∫
Ω

G0(η, z)G0(z, ξ)µ1(z) dz

− 2D

[
∇ξ

(
u0(ξ)

G0(η, ξ)

)]
·
[
∇ξ

∫
Ω

G0(η, z)G0(z, ξ)µ1(z) dz

]
+

u0(ξ)

G0(η, ξ)
G0(η, ξ)µ1(ξ).

We will frequently view G0(η, y) as a function of y in the following and hence

introduce the notation

Gη
0(y) := G0(η, y) for y ∈ U.

Note that since η ∈ ∂Ω, Gη
0 has no singularities on U and hence is a regular solution

to (2.22) there. Elliptic regularity and Sobolev embeddings then imply that Gη
0 ∈

C1(U).

Let us define the following operators acting on functions g defined on U :

(
K1g

)
(ξ) := − 1

2u0(ξ)

(
[−∇ξ ·D∇ξ]

[
u0(ξ)

Gη
0(ξ)

])∫
U

Gη
0(z)G0(z, ξ)g(z) dz, (2.26)

(
K2g

)
(ξ) :=

D

u0(ξ)

[
∇ξ

(
u0(ξ)

Gη
0(ξ)

)]
·
[
∇ξ

∫
U

Gη
0(z)G0(z, ξ)g(z) dz

]
, (2.27)

and

F := 1−K1 −K2.
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In terms of these operators, our considerations above imply that µ1 is a solution to

the following linear equation:

(
Fµ1

)
(ξ) = − 1

2u0(ξ)
[−∇ξ ·D∇ξ + µ0(ξ)]

(
h1(ξ)

αGη
0(ξ)

)
. (2.28)

In order for the above expressions to be well-defined, we have to make sure

that u0 and Gη
0 are bounded away from zero on U . The following lemma follows

immediately from the Hopf Lemma (e.g., [47]):

Lemma 1. There is a constant c > 0 such that u0 ≥ c and Gη
0 ≥ c on U .

Next we consider the properties of the integral term involved in K1 and K2. The

important observation here is the following:

Lemma 2. The mapping

g 7→
∫
U

G0(z, ·)Gη
0(z)g(z) dz (2.29)

is a bounded linear operator from L2(U) to H2(U).

Proof: Let us assume that g ∈ L2(U). Since Gη
0 ∈ C(U), multiplication by Gη

0

is a bounded linear operator on L2(U). The following integration against G0(z, ·)

results in the solution to the diffusion equation with homogeneous Robin boundary

condition and right hand side Gη
0g ∈ L2(U). Elliptic regularity theory (e.g., [16, 20])

implies that this is a continuous operator from L2(U) to H2(U). �

Because of the compact embedding of H2(U) in L2(U), the operator defined

by (2.29), viewed as a mapping from L2(U) to L2(U), is compact. In (2.26), this
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operator is multiplied by the factor

− 1

2u0(ξ)

(
[−∇ξ ·D∇ξ]

[
u0(ξ)

Gη
0(ξ)

])
. (2.30)

The functions u0,∇u0, G
η
0 and ∇Gη

0 are all bounded on U because u0, G
η
0 ∈ C1(U).

Since u0 and Gη
0 satisfy (2.22), the terms ∇ · D∇u0 and ∇ · D∇Gη

0 are bounded

on U as well, and u−1
0 and (Gη

0)−1 are bounded due to Lemma 1. Consequently,

multiplication by (2.30) represents a bounded linear operation on L2(U), and so K1

is a compact operator on L2(U). Similarly, K2 is a compact operator on L2(U). This

leads us to the main result of this section:

Theorem 3. F : L2(U)→ L2(U) is a Fredholm operator of index zero.

Thus, the kernel N (F ) of F has finite dimension and the range R(F ) is closed

and of finite codimension, equal to the dimension of the kernel. This immediately

implies the following result:

Corollary 4. F as an operator from the quotient space L2(U)/N (F ) to R(F ) has

bounded inverse, and the following norm equivalence holds:

c1‖Ff‖L2(U) ≤ ‖f‖L2(U)/N (F ) ≤ c2‖Ff‖L2(U). (2.31)

The L2-norm of the right hand side expression in (2.28) can be estimated in terms

of the H2-norm of the measured perturbation h1, so that we obtain the following

stability result:

Theorem 5. Under the stated assumptions, there is a constant C > 0 such that the
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following relation holds:

‖µ1‖L2(U)/N (F ) ≤ C‖h1‖H2(U). (2.32)

We conjecture that the kernel N (F ) is in fact trivial, and thus the operator

F is invertible. This would imply that µ1 is uniquely determined by the measured

perturbation h1, and allow us to replace the quotient space norms in (2.31) and (2.32)

with the regular L2 norms. However, we have not been able to prove this result yet.

Smoother norm coercive estimates for the absorption can be obtained if stronger

assumptions are made on the unperturbed absorption µ0 and the domain. For in-

stance, if µ0 ∈ C∞(Ω), S ∈ C∞(∂Ω), and Ω has smooth boundary, the operators K1

and K2 defined in (2.26)–(2.27), are of order −2 and −1, respectively, in the Sobolev

scale:

K1 : Hs(U)→ Hs+2(U),

K2 : Hs(U)→ Hs+1(U).

This and the Sobolev embedding theorem [1] imply that for any s ≥ 0, F is a

Fredholm operator on Hs(U), which in turn leads to the estimate

‖f‖Hs(U) ≤ c
(
‖f‖L2(U) + ‖Ff‖Hs(U)

)
(2.33)

for all f ∈ Hs(U). Thus, we have the following result:

Theorem 6. Under the stated assumptions, for any s > 0 there is a constant C such

that

‖µ1‖Hs(U) ≤ C
(
‖µ1‖L2(U) + ‖h1‖Hs+2(U)

)
.
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If only a specific value of s is of interest, the smoothness assumptions on µ0, S

and ∂Ω can be relaxed accordingly.

2.7. Conclusion and outlook

2.7.1. Summary

In this chapter we have introduced a mathematical model for UOT that is based

on describing the effect of ultrasound modulation to optical light propagation in the

diffusion regime. Under this model, the reconstruction of optical material properties

turns into a parameter estimation problem for a coupled set of diffusion equations.

A simple reconstruction scheme was introduced for recovering the spatially varying

absorption coefficient from boundary measurements of light intensities modulated

by point-focused ultrasound signals. Numerical experiments show that under these

assumptions stable reconstruction with sharp features and quantitatively correct

values of the absorption coefficient is possible. We then discussed the idea of synthetic

focusing which, after an additional preprocessing step, allows our reconstruction

algorithm to be applied to measurements with certain types of ultrasound signals

not focused to individual points. Numerical experiments with ultrasound focused

along lines showed results with comparable quality to those obtained with point-

focused ultrasound. An initial stability analysis for a linearized version of our model

provides some insight as to why reconstruction from measurements with focused

ultrasound is only mildly unstable. This corresponds to our observations from the

numerical results, which were computed without further stabilization.
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2.7.2. Open issues

To verify the practical applicability of our model and the reconstruction scheme,

reconstructions should be computed from actual physical measurements instead of

using data from numerical simulations. We expect this to be challenging since real-

life experiments rarely satisfy the idealized assumptions made in the derivation of

our algorithm. However, there is some room for improvement: While we assumed the

modulated light intensity to be measured only by a single photon detector, multiple

detectors could be placed around the boundary to collect spatially distributed mea-

surement data. This would improve resistance to noise and provide complementary

information for reconstruction. However, our current reconstruction scheme would

have to be adjusted to deal with this type of measurement data.

It is known that the scattering coefficient also contains information about the

physiological state of cells. Hence, it would be interesting to investigate if the mea-

surements available in UOT allow reconstruction of both absorption and scattering

at the same time.

More recently it has been observed that the type of internal data available from

measurements in UOT follows a more general principle also found in other hybrid

imaging modalities [8, 27, 33]. Research efforts are under way to establish a general

theoretical framework for analysis of tomography problems with internal data. It

can be hoped that such results and the reconstruction schemes arising from them

will be applicable to the UOT model presented in this text.

The synthetic focusing approach discussed in Section 2.5 could be extended to

other types of ultrasound signals, in particular pressure waves focused along nar-
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row spherical wavefronts. The resulting preprocessing step would correspond to

reconstruction in thermoacoustic tomography, for which substantial theory and re-

construction algorithms have already been developed [19, 28].

The linearized stability analysis provided in Section 2.6 is still at an early stage.

A characterization of the kernel of the Fredholm operator F in (2.28) is missing. It

also needs to be shown that the formal linearization we applied is indeed a valid

local approximation to the nonlinear problem. Then, the stability result for the

linearization could be extended locally to the nonlinear model.
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CHAPTER III

DETECTION OF SMALL RADIOACTIVE SOURCES BY 3D

BACKPROJECTION

3.1. Introduction

3.1.1. Motivation

Recent security threats have led to a reassessment of scenarios for terrorist attacks.

One of the worst case scenarios involves the illicit import or fabrication of a nuclear

weapon within the boundaries of the US, which if successfully deployed in a terrorist

attack would have disastrous consequences. A major obstacle to the assembly of nu-

clear weapons is the availability of a critical mass of highly enriched nuclear material.

Fissile materials used in nuclear weapons are typically composed of uranium-235 (U-

235), uranium-233 (U-233) or plutonium-239 (Pu-239). The production, transport

and storage of such substances is tightly regulated and controlled within the US. The

enrichment process required for the production of weapon grade nuclear material is

highly complex and requires sophisticated technology and equipment, so that the risk

of illegal enrichment facilities being operated within the country is deemed small. A

more plausible threat is the illicit import of highly enriched material or a nuclear

weapon itself. Multiple smaller amounts of subcritical mass could be smuggled along

different routes and assembled to a nuclear weapon inside the country.

Of particular concern as a target channel for influx of nuclear material are cargo

ports. In 2008, an estimated 14 million cargo containers were handled by all US

container ports [57]. Automated facilities have been established for screening incom-
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ing cargo for radioactivity, and measures have been implemented to rate the risk

of individual cargo containers to contain illicit nuclear material based on origin and

contents of containers and the available intelligence information. Due to cost and

time limitations, it is currently not possible to thoroughly inspect every single con-

tainer. However, there is a congressional mandate to improve screening facilities and

technology in the near future. Besides cargo ports, similar security issues also arise

at airports and land border crossings, as well as for non-cargo maritime transport.

There, various types of freight, luggage and vehicles need to be inspected for the

presence of nuclear material.

A major issue for screening objects by measuring emitted radioactivity is that

highly enriched uranium (HEU) in particular only emits small amounts of radioac-

tivity. A subcritical mass of HEU can be easily shielded by lead containment to

further reduce the amount of emitted gamma radiation. The levels of radioactivity

emitted from such sources is often not sufficient to be distinguished from the natu-

rally present background radiation. This background stems from atmospheric and

cosmic sources, soil and building materials, as well as radiation emitted by legiti-

mate freight like fertilizer, ceramics, or other products containing rock or potassium.

Hence, screening for enriched nuclear materials at border controls is a difficult task,

and there are severe time constraints for detection devices to obtain and process

radiation measurements. In this setting, current detection technology is prone to ei-

ther generate too many false positives, in which case expensive manual inspection of

the containers is required, or false negatives, meaning that objects containing illegal

nuclear material may enter the country undetected [18].
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Consequently, new detection technology needs to be developed that targets spe-

cific properties of the substances that are at risk for smuggling and use in improvised

nuclear weapons. In this work, the specific property enabling detection is the small

geometric size that illicit nuclear material is expected to have. The critical mass for

HEU corresponds to a sphere of diameter between 10 and 20 cm, depending on the

degree of enrichment. Concealing larger amounts of weapon grade material would

require a substantial quantity of high-Z materials for shielding, which in turn can

be detected by radiography [18]. Radiation from a small radioactive source however

has a different geometric footprint than background radiation: It originates from a

small volume fraction inside the object under investigation, in contrast to natural

background radiation being emitted from larger distributed structures.

Some modalities from medical imaging, even though they are generally not suit-

able for applications with very low signal-to-noise ratios (SNRs), are known to cor-

rectly reflect locations of singularities even under missing data conditions. While

reconstruction of singularities is usually not sufficient in medical imaging, knowing

locations of singularities is enough to reveal small radiating sources. This principle

has first been used for detection in [5, 19]. There, backprojection algorithms were

applied to collimated and Compton measurements generated from 2D simulations

of cargo containers with a small source buried within a strong background signal.

A probabilistic analysis of backprojection showed that it has the potential to reveal

statistical anomalies in the data that indicate the presence of small localized radia-

tion sources. The purpose of this chapter is to extend the theoretical estimates and

computational results of [5, 19] to the practically important case of detection inside
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3D volumes.

3.1.2. Types of measurements

Commonly used devices for detecting nuclear material in cargo can be categorized as

active or passive modalities. Active detectors irradiate the object of interest with X-

ray, gamma or neutron radiation and measure the resulting transmission or reflection

signal. Passive detectors measure radiation emitted by the object itself. Since passive

detectors do not expose cargo, passengers of vehicles or safety personnel to any

harmful radiation, their use in the detection scenarios poses less safety concerns and

is easier to handle since no radiation sources need to be operated.

The types of radioactivity emitted from nuclear material include gamma radia-

tion and neutrons. Alpha and beta radiation is readily absorbed by most materials

and hence does not play a role in detection. In principle, assuming availability of

suitable detectors, the detection method discussed in this text can be applied to

both gamma and neutron radiation. Hence, we will jointly refer to both neutrons

and photons in the gamma spectrum as “particles” in the following.

Since enriched nuclear material does not necessarily emit a large amount of

radiation, measuring radioactivity in terms of particle counts only will usually not

siffice for detecting the presence of sources with reasonable certainty. In this text

we assume that the locations of particle interactions with sensors are measured as

well as certain information about the direction from which particles originated. We

distinguish between two cases of directional information that sensors can supply:

• If the direction from which a particle originated is measured by the sensor, we
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speak of collimated measurements. This type of measurement is most common

in medical imaging, particularly in X-ray computed tomography (CT). Sensors

that can supply this type of information restrict the field of view of a gamma

or neutron detector to a single direction by collimation with thin lead tubes

or a mask. Particles that arrive at the sensor with their direction not aligned

to collimator direction are absorbed by the collimator and not registered by

the sensor. This implies that collimated sensors are unidirectional and are not

sensitive to particles from directions other than the collimator direction, which

means that a major share of the emitted particles is not recorded by the sensor.

Unfortunately, since radiation levels emitted from weak sources are already very

low, this low sensitivity renders collimated sensors unsuitable for the purpose

of detection. Hence collimated measurements, while often desirable in theory,

cannot be obtained with sufficient SNRs in practice.

• In Compton type sensors, particles experience Compton scattering at the sen-

sor, and the location and scattering angle are recorded. This effectively de-

termines a hollow cone of possible directions from which a particle may have

originated. For gamma radiation, sensors of this type are known as Compton

cameras and have been suggested in the 1970s [54]. Neutron sensors based on

a different physical principle that provide the same type of data for neutron

radiation are currently under development. We will jointly refer to the mea-

surements provided by such sensors as Compton type data. While this type of

data contains less information than collimated measurements, sensors do not

require collimation and hence have a much higher sensitivity, making them
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more suitable for detection in practice.

The backprojection based detection scheme suggested in [5, 19] was initially ap-

plied to collimated measurements, and a probabilistic explanation was given why the

method is successful at detecting small sources. In 2D the two types of measurements

are closely related, since a conic surface can be viewed as the union of two half-lines.

This allows backprojection algorithms for collimated measurements to be extended

to backprojection for Compton type measurements in a relatively straightforward

way. In 3D however, the relation between the two types of measurements is more

complicated. Nevertheless, backprojection can be viewed as a purely geometrical

operation, and this geometric interpretation is readily applicable to Compton data

in 3D.

3.1.3. Outline

In Section 3.2, the setup of the detection problem and the different types of mea-

surements are explained in detail. Section 3.3 deals with the connection between

the detection problem and a medical imaging modality called single photon emis-

sion computed tomography (SPECT). The backprojection operator as a common

ingredient for reconstruction schemes in SPECT is introduced and its application

to the detection problem is discussed. In Section 3.4, the statistical properties of

backprojection are analyzed in the setting of the detection problem. For collimated

measurements, under certain assumptions on the statistics of background and source

formulas are derived for the confidence that a particular set of measurements cannot

be explained by the presence of background radiation alone, in which case the pro-
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posed detection scheme will claim the presence of a source. Some simple numerical

schemes for simulating random background radiation and computing backprojection

in 3D by backpropagating individual particles on a discrete grid are discussed in

Section 3.5. In Section 3.6, results from Monte Carlo simulation of the background

are used to verify the confidence estimates from Section 3.4. Then, synthetic mea-

surements are generated for cargo containing a small source and the suggested back-

projection scheme is applied to study feasibility of detection. Section 3.7 concludes

with a discussion of the results and an outlook to directions for future research. The

methodology used in this text closely follows the ideas presented in [5, 19].

3.2. Setup

A passive detection facility can be realized as a gate that cargo, vehicles or luggage

entering the country at border crossings or ports pass through. During the screening

process objects remain inside the detector gate for a certain amount of time while

measurements of particles emitted from the object are recorded. For each parti-

cle that is measured, the detector records location of the particle interaction and

collimated or Compton type information about its direction.

3.2.1. Collimated measurements

A 2D schematic of a collimated sensor is shown in Figure 3.1. For each particle

that reaches the sensor plate, the location of particle interaction x and orientation

Θ of the collimator is recorded. In a 3D geometry, a planar detector plate with an

attached collimator grid is used, so that x ∈ R2 and Θ = (α, ϕ), where α and ϕ are
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Fig. 3.1. Collimated particle detector. Particle a is absorbed by the collimator, par-

ticle b is recorded with location x and direction Θ, particle c misses the

detector.

elevation and azimuth angle of the collimator.

During the detection process, the sensor is rotated around the object to col-

lect particles from different directions. In 3D, the collected particle data is a four-

dimensional set (linear offset from the center of the detector plate, elevation and

azimuth of the collimator).

It can be seen from Figure 3.1 that particles with directions not lined up with the

collimator will be absorbed and hence not be measured, explaining the low sensitivity

of collimated sensors mentioned in the previous section.
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3.2.2. Compton measurements

Compton measurements are obtained from devices similar to Compton cameras.

Compton cameras were suggested in 1974 [54] for measuring gamma photons. See

Figure 3.2 for the principle of Compton cameras. The sensor consists of two layered

detection plates. Photons incident on the first plate experience Compton scattering

and continue along the scattered direction to the second detector plate, where pho-

tons are absorbed. The locations x0 of scattering and x1 of absorption are recorded,

as well as the energies E0 of scattering and E1 of absorption. From the energies the

scattering angle ψ is determined by the relation [15, 54]

cosψ = 1− mc2E1

(E1 + E2)E2

,

where c is the speed of light and m is electron mass. On the other hand, ψ and the

particle direction d are related to the vector β = x0 − x1 by

cosψ = −〈d, β〉|d| |β| . (3.1)

Hence for each detected photon, the scattering angle ψ and the direction β = x0−x1

determine a hollow cone of possible directions from one of which the photon must

have originated. As the vertex of such cones is restricted to the sensor plate, the

data is five-dimensional (linear two-dimensional offset on sensor plate, cone central

axis β and scattering angle ψ).

Compton detectors have been used in astronomy [2, 50], medical imaging [51,

52, 54] and for monitoring of nuclear sites [48, 49]. The advantages of Compton de-

tectors over collimated detectors are an increased field of view and higher overall
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x1

ψ

x0

d

Fig. 3.2. Compton camera detector. Photons are scattered at first detector plate,

absorbed at second detector plate.

sensitivity due to lack of collimation. On the other hand, the information obtained

from each particle measurement is less specific in comparison to collimated measure-

ments, and the set of measurements has a sparse structure in the five-dimensional

data space. This complicates computational discretizations to continuous reconstruc-

tions schemes for Compton data. See [46] for an overview of Compton imaging.

Currently, detectors for neutron radiation are being developed based on different

physical principles that measure the same type of information as Compton cameras.

We will not distinguish between these different physical measuring principles in the

following and jointly refer to them as Compton type sensors.
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3.2.3. Sources of radiation

A major obstacle to the detection of small radioactive sources is the presence of

background radiation. Overall the radiation measured by the sensors originates from

three different types of sources:

1. Background from atmospheric and cosmic radiation, natural soil radioactivity

and radiation emitted from concrete and other building materials located in

the vicinity of the detection device. This signal generally originates from larger

structures, and its statistical properties do not change significantly between

different screening sessions. Shielding the detection device from this type of

radiation is difficult to achieve especially for high energy gamma rays.

2. Natural radiation from legitimate cargo. In particular materials containing

rock, soil or potassium like concrete, fertilizer or cat litter naturally emit small

amounts of gamma radiation. The contribution from these sources depends on

the particular type of cargo. In many cases, larger amounts of cargo of the same

type are located in a single container, and the radiation then originates from

a larger fraction of the container volume. This type of radiation is frequently

the cause of false positives in the detection process.

3. Radiation from illicit nuclear material. Such sources would likely be very weak

due to shielding and other measures taken to conceal the material. The amount

of nuclear material is expected to be small due to the high efforts involved in

acquisition and production. Hence, this type of source can be expected to be

geometrically small.
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Overall, the signal-to-noise ratio between ballistic particles from illicit sources

and the natural background radiation is often as low as 0.1%. The number of particles

that is measured by the sensors depends on the radiation intensity of the sources, the

sensitivity of the sensors and the time that is spent for acquiring the measurements.

3.3. Relation to medical imaging

3.3.1. SPECT imaging

The situation in detection of small nuclear sources is similar to the one in the medical

imaging modality single photon emission tomography (SPECT). In SPECT, a radio-

pharmaceutical combining a gamma emitting isotope with biomarkers is injected into

a patient’s bloodstream, where the biomarkers cause the radioisotope to attach to

sites of physiological interest. Photons emitted by the radioisotope are detected by

collimated detectors and an image of the isotope distribution inside the patient is

reconstructed by a computational reconstruction algorithm. The image can provide

information about the functional state of organs or other sites that the biomarkers

attached to. The main differences to the setting in detection of small radioactive

sources are:

• Even though radioisotopes used in SPECT are only weakly radioactive, the

signal-to-noise ratio is typically much higher than what is expected for detection

of nuclear sources.

• In SPECT, the characteristics of the radioisotope are known and the acquisition

times are longer (15-20 minutes) than acceptable sojourn time for container
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screening (<1 minute).

• While in SPECT an actual image of the radioisotope distribution needs to be

reconstructed, this is not necessary for detection of nuclear sources. A strong

indication that a cargo container contains unusual radioactive sources is suffi-

cient for deciding to assign the container to a thorough inspection procedure.

In SPECT, reconstruction of images under the low SNRs expected in the de-

tection problem would be considered impossible. However, since imaging is not

necessary for detection of nuclear sources, there is still hope that reliable detection

schemes can be devised even for low SNRs. In [5, 19] it was shown that backprojec-

tion, an operation that is a common ingredient for many tomographic reconstruction

algorithms, yields promising results for detection of small nuclear sources. In the

following we discuss the definition of backprojection for collimated data in 3D. We

largely follow the presentation in [44, 45].

3.3.2. Backprojection for collimated measurements

Let Ω ⊂ R3 be the domain covered by the object under investigation. Collimated

particle measurements for given collimator angle and a given offset on the planar

sensor can be interpreted as superposition of particles originating from a fixed line.

Let θ ∈ S2 denote the normalized collimator direction and x ∈ θ⊥ the offset on the

sensor plane. In terms of elevation α and azimuth ϕ of the collimator, θ ∈ S2 is
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given by

θ =


cosϕ cosα

sinϕ cosα

sinα

 .

We assume that radiation is isotropic, i.e. particles are equally likely to be emitted

in each direction, and there is no scattering of particles. Let f(y) be the source

intensity and µ(y) the attenuation at y ∈ Ω. Then for a sufficiently large number

of detected particles, the expected value of the particle count is given by the line

integral (
Pµf

)
(θ, x) =

∫ ∞
−∞

f(x+ tθ)e−
∫∞
t µ(x+τθ) dτ dt. (3.2)

Pµ is called the attenuated X-ray transform (or attenuated ray transform) operator.

It maps the function f to weighted integrals over straight lines parametrized by

θ ∈ S2 and x ∈ θ⊥. Pµf is a function on the set T = {(θ, x) : θ ∈ S2, x ∈ θ⊥}.

The problem in SPECT is to recover f from measurements of Pµf . This problem

is often aggravated by the fact that the attenuation map µ is unknown and only

partial measurements of Pµf are available. To simplify the discussion, let us assume

that µ = 0 and Pµf is given on all of T . In this case P := P0 is simply integration

of f along lines: (
Pf
)
(θ, x) =

∫ ∞
−∞

f(x+ tθ) dt. (3.3)

An operator that is frequently useful for reconstruction is the backprojection operator,

which for a function g on T is given by

(
P#g

)
(y) =

∫
S2

g(θ, Eθy) dθ for all y ∈ R3. (3.4)
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Here, Eθy = y− (y · θ)θ is the orthogonal projection of y onto θ⊥, see Figure 3.3. P#

can be interpreted as the geometric dual of P : While P integrates functions along

lines, P# at a point y integrates line data over all lines passing through y.

o

(y ·θ)θ

L

θ

y

Eθy

Fig. 3.3. Orthogonal projection Eθy for line L.

Also we have∫
S2

∫
θ⊥
g(θ, x)

(
Pf
)
(θ, x) dx dθ =

∫
S2

∫
θ⊥
g(θ, x)

∫ ∞
−∞

f(x+ tθ) dt dx dθ

=

∫
S2

∫
R3

g
(
θ, y − (y · θ)θ

)
f(y) dy dθ

=

∫
R3

(
P#g

)
(y) f(y) dy.

Hence, P# is the adjoint operator of P .

A well-known reconstruction formula for recovering f from Pf is the so-called

filtered backprojection (FBP). It says that for g = Pf , under some mild assumptions

(see [45] for details) we have

f =
1

(4π)2
P#Ig, (3.5)
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where I denotes the Riesz potential operator of order −1 on T , which is defined by

its Fourier transform:

(̂I g) (θ, ξ) = |ξ| ĝ(θ, ξ), ξ ∈ θ⊥.

Here ̂ denotes Fourier transform in the variable x ∈ θ⊥. I acts as a filter that

amplifies high frequencies, which explains the term filtered backprojection for the

operator in (3.5).

Since complete knowledge of (Pf)(θ, x) for all (θ, x) ∈ T is rarely available

in practice, it has been noted that FBP is not as useful for reconstructions in 3D

SPECT as it is in 2D [45]. However, FBP schemes are very well studied, and it

is known that FBP correctly reconstructs singularities in the intensity distribution

even for missing data and unknown attenuation. For example, if µ ∈ C∞0 (Ω) is an

unknown attenuation coefficient, the results from [32] imply that under quite general

assumptions the function

1

(4π)2
P#IPµf

has singularities at the same locations as f . In medical imaging, singularities often

express boundaries between different types of tissue, and small inclusions in tissue

can indicate malign cell mutations. It is remarkable that filtered backprojection can

reconstruct the locations of such inclusions without knowledge of the attenuation

map µ.

For the detection of radioactive material, small sources represent singularities

in the radiation intensity map, while background radiation from larger structures is

more smooth and evenly distributed. This observation was used in [5, 19] to show
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that even though there is a large background present in the detection problem, FBP

can still reliably detect the presence of small sources. It was also discovered there that

the filtration operator in FBP is not useful for detection, since it further amplifies

the dominating background noise in the signal. Backprojection by itself was found

to be more reliable under strong background noise than FBP.

A heuristic explanation for the usefulness of backprojection for detecting small

sources can be given as follows: Let us assume for a moment that inside Ω there is

only a single point source located at p ∈ Ω, so that f is a Dirac delta function centered

at p. Then all collimated measurements for lines that do not cross p will be zero. The

backprojection of the measurements at each point different from p will only involve

few lines with non-zero measurements, while the backprojection at p will include

all lines with non-zero measurements. Hence, we expect the backprojected image

to have a sharp peak at p. Even if there is a strong but spread out background

superimposed on f during the measurements, this would lead to a rather smooth

distribution in the backprojected image, from which the sharp peak at p may still be

distinguishable. In the following section, a statistical interpretation will yield some

estimates that show under which assumptions backprojection can successfully detect

small sources.

The discussion of backprojection techniques so far has been limited to collimated

measurements. The theory for reconstruction from Compton data is far less devel-

oped and only few reconstruction formulas are available [15, 19, 55]. The analytical

meaning of backprojection in this case is not well understood in 3D. Still, the ge-

ometric interpretation of backprojection as an averaging process over all geometric
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primitives intersecting a given point, can be easily carried over to Compton type

measurements.

In the following section, we will restrict our attention to collimated measure-

ments and derive some probabilistic estimates that show the usefulness of backpro-

jection for detection. We will return to Compton type data in Section 3.6.3, where

some numerical simulations for detection by backprojection of Compton measure-

ments will be presented.

3.4. Probabilistic estimates for backprojection of collimated measurements

In this section, we follow the probabilistic approach taken in [5, 19] to develop an

understanding of why and when backprojection can be useful for detecting geometri-

cally small sources. To this end we try to formalize the intuition given in the previous

section: If there is a small radiating source present inside the scanned object, then

backprojection of collimated measurements should peak near the location of the

source. See Figure 3.4 for an illustration of this idea. By investigating the statistical

properties of the data from collimated measurements, we will be able to estimate

under which conditions such a peak will be pronounced enough to be distinguished

from the background.

3.4.1. Confidence estimates

In the detection problem, the signal is quite weak and measurements consist of indi-

vidual particle counts per line. Hence, instead of integrating measurements over all

directions as the backprojection formula (3.4) implies, we sum the number of particle
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Fig. 3.4. Accumulation of particle trajectories near a source.

trajectories intersecting a small volume centered at x ∈ Ω and use this count as our

approximate backprojection value at x. We will frequently call this process of count-

ing lines intersecting a certain volume backpropagation in the following to distinguish

from backprojection as defined by formula (3.4). If this count is significantly higher

in a certain region than what we would expect from the background radiation, we

claim that there is a source located there.

First, let us estimate what contribution the background radiation will have in

this process. To simplify this discussion, let us assume that trajectories of background

particles are uniformly distributed random lines intersecting Ω. This means that the

average local density of particle trajectories is constant throughout Ω. Such particle

trajectories would result from a uniform distribution of background sources over

the whole space that emit uniformly in all directions. This assumption may not be
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exactly true in practice, for example background particles emitted from legitimate

mildly radioactive cargo necessarily originate from the interior of Ω. However, since

the background radiation in general originates from larger, distributed structures, we

expect the assumption of uniformly distributed trajectories of background particles

to be reasonable. See [26] and the discussion in Section 3.5.1 for more details about

the definition of uniform randomness for geometric objects.

What is the probability for a random line to intersect a small volume inside Ω?

Let us consider a cube CR of linear size R and a smaller cube Cr of linear size r � R

contained in CR. According to [26], the probability p of a random line intersecting

CR to also intersect Cr is given by the ratio of the surface areas of Cr and CR:

p =

∫
∂Cr

dS∫
∂CR

dS
=

6r2

6R2
=

r2

R2
. (3.6)

For N independent random lines intersecting CR, the probability that i of the lines

also intersect Cr is described by the binomial distribution B(N, p) and is given by(
N
i

)
pi(1− p)N−i.

Suppose the object to be scanned for sources is a cube of linear dimension R,

and let us subdivide this domain into Nvox := (R/r)3 smaller cubic voxels of linear

size r � R. This setup is depicted in Figure 3.5. The value of r should correspond

approximately to the dimension of a small source that we try to detect. In practice,

the ratio r/R is expected to be around 0.01, with R on the order of several meters

and r several centimeters.

Let X be a random variable describing the number of lines intersecting a given

voxel. If only the uniformly distributed background is present, then X is distributed
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R

r

Fig. 3.5. 3D grid of voxels of size r.

according to the binomial distribution B(N, p). However, if the count of lines in-

tersecting the given voxel is very far in the tail of the distribution B(N, p), then

such an event is unlikely to be explained only by the presence of the background.

To measure how far in the tail the line count is, we will calculate the distance from

the mean µ := Np of the binomial distribution in terms of its standard deviation

σ :=
√
Np(1− p). If this distance is significantly large in a voxel, we claim that

there is a source located there. Let k be a fixed threshold such that the probability

of the random variable X to exceed µ + kσ is very small. This probability is given

by the cumulative distribution function (cdf) of the binomial distribution:

Pk := P (X > µ+ kσ) = 1− P (X ≤ µ+ kσ) = 1−
bµ+kσc∑
i=0

(
N

i

)
pi(1− p)N−i. (3.7)

Here, b·c denotes the floor function.

If more than µ+kσ lines intersect a single voxel, the detection scheme indicates
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the presence a source. The confidence that such an accumulation of lines is not due

to the random background is given by 1−Pk. We have to take into account that this

accumulation can happen in any of the Nvox voxels. If we assume that the random

variables X for different voxels are independent, the probabilities of no more than

µ+ kσ lines intersecting in any of the voxels due to the random background is

ck :=
Nvox∏
i=1

(1− Pk) = (1− Pk)Nvox =

[ bµ+kσc∑
i=0

(
N

i

)
pi(1− p)N−i

]Nvox

. (3.8)

Under our assumptions, ck is also the confidence that an accumulation of more than

µ+ kσ lines in at least one voxel is not due to the random background.

In reality, the random variables X are not truly independent between different

voxels. If a voxel is intersected by a particular line, the probability that this line

also intersects a neighboring voxel is higher than the probability that it intersects

a voxel far away. However, this conditional dependence is difficult to quantify. We

will show results from computational simulations below that indicate that the error

introduced by neglecting this dependence is in fact small.

Now let us assume that there is a source of size r present inside the screened

object. We can use equations (3.6)–(3.8) to determine under which circumstances

the source will be successfully detected by backpropagation. Assume that we have

a rough estimate of the SNR s, such that the number of particles measured will be

N + ns with N background particles and ns := sN particles originating from the

source. Our goal is to estimate how big N should be to reliably detect the source. The

particle measurements will be backpropagated on a grid of Nvox := (R/r)3 voxels.

The source will not be lined up with the voxel grid, but there will be a voxel from
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which at least ns/8 = sN/8 source particles originate. The random background will

contribute about Np particles to each voxel. Thus the source will be detected by the

backpropagation scheme if

sN/8 +Np > µ+ kσ = Np+ k
√
Np(1− p).

This is equivalent to

N > 64

(
k

s

)2

p(1− p). (3.9)

Hence for a fixed value of k the source can always be detected if N is chosen large

enough. Unfortunately, the confidence level ck in (3.8) depends on both k and N , so

that a fixed value of k does not correspond to a fixed confidence level.

From (3.9) we find that k ≈ s
8

(
N

p(1−p)

)1/2
, and using this in (3.8) yields the

confidence level depending on N only:

c ≈
[ b(p+s/8)Nc∑

i=0

(
N

i

)
pi(1− p)N−i

]Nvox

. (3.10)

Now for a desired confidence level, we can choose N such that the right hand side of

(3.10) is larger than the confidence level, and this value of N provides an estimate

of how many particles need to be measured in order to detect the source.

Let us look at an example: We would like to detect a source of approximate

diameter r = 10 cm with an SNR of ∼0.1% inside a container of size R = 10 m with

a confidence of at least 99%. Thus s = 10−3 and p = (r/R)2 = 10−4. From (3.10),

we find that for N = 2.75×105 the confidence is1 c ≈ 0.99, and this corresponds to a

1To evaluate the binomial cdf the routine binocdf from the MATLAB Statistics
Toolbox [53] was used.
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value of k ≈ 6.6. Hence, we should measure approximately 275,000 particles. After

backpropagating these measurements on a grid of Nvox = (R/r)3 = 106 voxels, if any

of the voxels have more than µ + kσ ≈ 62 lines intersecting, we can claim with at

least 99% confidence that this cannot be explained by the random background only.

3.4.2. Approximations to the binomial distribution

The cdf for the binomial distribution is difficult to evaluate when the number of

Bernoulli trials is large. The representation using the binomial coefficient in (3.8) is

not practical for values of N that are common in the detection problem. For large

number of trials, the binomial distribution is often approximated by simpler proba-

bility distributions that are easier to handle. In the following, two very common ap-

proximations are discussed, the normal and Poisson approximations. In Section 3.6.1,

the resulting confidence estimates are verified using Monte Carlo simulations.

Normal approximation. For large N and values of p not too close to 0 or 1,

the binomial B(N, p) is well approximated by the normal distribution N (µN , σN )

with mean µN = Np and standard deviation σN =
√
Np(1− p). Various rules of

thumb have been suggested in the literature to determine for which exact range of

N and p the normal approximation is valid (see [34] for an overview). Most of these

rules imply that the normal approximation should be valid in the detection setting,

however they generally focus on the probabilities resulting from the approximation,

rather than derived quantities like the cdf that is of interest here. The normal

approximation has been successfully used for estimating confidences of detection in

2D in [5, 19].
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Approximating the number of background lines intersecting a particular voxel by

a normal random variable XN ∼ N (µN , σN ), the probability of more than µN +kσN

lines intersecting is

PNk := P (XN > µN + kσN ) =
1

σN
√

2π

∫ ∞
µN+kσN

e
− (x−µN )2

2(σN )2 dx =
1

2
erfc

(
k√
2

)
,

where erfc(x) = 2√
π

∫∞
x
e−t

2
dt is the complementary error function.

If independence of the random variable XN across different voxels is assumed,

the confidence that a line count exceeding µN + kσN in any of the voxels is not due

to the random background is

cNk =

[
1− 1

2
erfc

(
k√
2

)]Nvox

. (3.11)

Poisson approximation. For large values of N and small values of p, B(N, p)

is accurately represented by the Poisson distribution Pois(λ) with λ = Np. Mean

and standard deviation of this discrete probability distribution are given by µP =

λ = Np and σP =
√
λ =
√
Np. The Poisson distribution is frequently used to model

radioactive decay [56], which is the underlying process for generating the radiation

that is observed in detection.

The probability for a Poisson distributed random variable XP ∼ Pois(λ) to

attain values exceeding µP + kσP is given by

PPk := P (XP > µP + kσP) =
∑

j>µP+kσP

e−µ
P (µP)j

j!
= 1− Γ(bµP + kσP + 1c, µP)

bµP + kσPc! ,

where Γ(s, x) =
∫∞
x
ts−1e−tdt is the upper incomplete gamma function.

Assuming independence between voxels, the confidence that line counts above
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µP + kσP are not stemming from the background is

cPk =

[
Γ(bµP + kσP + 1c, µP)

bµP + kσPc!

]Nvox

. (3.12)

3.5. Computational methods

In order to test the effectivity of the backprojection detection scheme numerically,

we simulate the measurement process and apply backprojection to the resulting syn-

thetic measurements. In this section, algorithms for simulating the random back-

ground and computing backprojection will be discussed. The algorithms will subse-

quently be used in Section 3.6 to verify the confidence estimates given in Section 3.4

and numerically simulate 3D detection of small sources. There are three main tasks

for which computational schemes are introduced in the following:

• Simulation of the background radiation.

• Backprojection of collimated measurements.

• Backprojection of Compton measurements.

Throughout this section, the computational domain is chosen as the 3D cube Ω =

[−1, 1]3.

3.5.1. Simulating random background radiation

For simulation purposes the background radiation will be modeled as a sample of

random lines intersecting the detection domain Ω. There is some inherent ambiguity

attached to the meaning of randomness of geometric objects, see for example the
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detailed discussion of Bertrand’s paradox in [23]. In essence, there are many ways

of interpreting geometric randomness, and there is no natural reason for picking one

interpretation over another, unless additional information about the desired kind

of randomness is given. The point of view taken in this text is that a random

distribution of lines ought to be invariant under rotations and translations, and this

determines the distribution uniquely [26]. Note that this assumption had already

been used implicitly in (3.6). Another way to think of this invariance is that the

local density of lines from a random sample should be uniform throughout Ω.

There are some pitfalls associated with picking random lines in 3D. For example,

one might expect that random lines in Ω could be generated by picking a random

starting point from Ω and a direction uniformly random from S2. But in fact this

choice of parametrization neglects lines originating outside Ω that still intersect Ω

due to their direction. Since these missing lines have a higher chance of intersecting

the corner regions of Ω, lines sampled according to this rule have a higher density

near the center of Ω. Probability densities for parametrizations of lines that lead to

a uniform distribution have been given in [12]. We use the chord model for which it

was shown e.g. in [39] that it produces uniformly distributed lines. According to the

chord model, random lines can be generated as follows:

Algorithm 1.

1. Pick two independent random points uniformly distributed on a sphere encom-

passing Ω.

2. Connect the points to form a line.

3. Discard lines that do not intersect Ω.
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Since Ω = [−1, 1]3, we take the sphere to be of radius
√

3 centered at the

origin. To choose points uniformly distributed on this sphere, following [63] we pick

u uniformly from [−1, 1], θ uniformly from [0, 2π) and set

x =
√

3− 3u2 cos θ, y =
√

3− 3u2 sin θ, z =
√

3u.

Hence, to generate a random line, four random numbers need to be drawn, and the

probability of rejecting a line for not intersecting Ω is 1−2/π ≈ 0.36. If Algorithm 1 is

implemented on a regular desktop computer and efficient random number generators

are used, millions of random lines can be generated within a few seconds.

3.5.2. Backprojection of collimated measurements

Collimated particle measurements consist of a set {li}Ni=1 of N lines that intersect

the domain Ω. To backproject these measurements, the integral over the unit sphere

in (3.4) needs to be computed. Since in the detection problem the integrand is

not a continuous function on S2 but rather a discrete count of lines, instead of

approximating the integral by quadrature we resort to the backpropagation scheme

suggested in Section 3.4: The domain is decomposed into smaller cells and for each

cell, the number of intersecting lines is computed. This will approximate the integral

in (3.4) up to a constant scaling factor.

As in Section 3.4, we decompose the domain Ω into a mesh of n3 regular cubic

voxels of linear size r = 2/n. The computational task then is to find for each line li

the voxels that are intersected by the line, see Figure 3.6. This problem bears some

similarity to rasterization of lines in computer graphics [17], which is however more
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Fig. 3.6. Line intersecting Ω.

common in a 2D setting. Note that a line intersects a given voxel if and only if it

intersects one of the voxels’ sides. Hence, we can first find the points where a line

intersects the grid planes, and then each voxel adjacent to such an intersection point

is crossed by the line. This procedure is subsumed in the following algorithm.

Algorithm 2 (Backpropagation of lines).

For each line li:

1. Find the intersections of the line with the grid planes.

2. For each voxel that contains at least one of the intersection points, increase its

line count variable by one.

See Figures 3.7–3.8 for an illustration of this algorithm. The number of opera-

tions for backpropagating a single line is of order O(n), and the number of operations

for all N lines is of order O(Nn). Since the backpropagation of individual lines is

independent, Algorithm 2 can be easily implemented in parallel. Moreover, particles
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Fig. 3.7. Intersections with grid planes.

Fig. 3.8. Intersected voxels.

can be backpropagated as soon as they are measured, even while the data collection

process is still ongoing.

3.5.3. Backprojection of Compton measurements

For Compton sensors, the measurements consist of a set of hollow cones {(x0
i , βi, ψi)}Ni=1

given by their vertex x0
i , central axis βi and opening half angle ψi (see Figure 3.2).
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Compton measurements in 2D can be related to collimated measurements and a

backprojection formula analogous to (3.4) can be found for the Compton transform

[5, 19]. In 3D however, a simple relation between X-ray and Compton transform is

not available, and the formal description of a backprojection operator as the adjoint

to the Compton transform is not known. Still the geometric interpretation of back-

projection as an averaging process over all geometric primitives passing through a

fixed point can be readily applied to Compton measurements. For the purpose of

computations, we will again resort to a simpler backpropagation scheme: Subdivid-

ing the computational domain Ω into smaller cells, we count the number of cone

surfaces passing through each cell.

Note that this is really the simplest possible way of backpropagating cone sur-

faces. It may be beneficial if, instead of merely counting the number of cones in-

tersecting a cell, the contribution of each cone surface is weighted according to the

surface area of its intersection with the cell. However, such schemes would likely be

more computationally expensive, and should be backed by theoretical justifications

of the cone weights. Hence, we leave the investigation of such schemes to future

work.

For the subdivision into cells the same regular voxel grid as in Section 3.5.2 is

used, see Figure 3.5. While it is possible to determine exactly which voxels a given

cone intersects, this is a tedious task. Instead, we choose a small step size h < r and

cover the cone surface with a mesh of points approximately distance h apart from

each other. Then, we determine for each mesh point the voxel it is contained in.

The meshing strategy for the cone surfaces differs between acute (ψ ≤ π/4) and
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Fig. 3.9. Discrete grid points on conic surface with vertex x0, central axis β and

opening half angle ψ. Acute cone (left), obtuse cone (right).

obtuse (ψ > π/4) cones: For acute cones, the central axis β is discretized in steps

of size h, and at each discrete point, the normal plane to β passing through the

point is intersected with the cone surface, resulting in a circle. Then, the circle is

discretized in steps of size h. For obtuse cones, the cone surface is intersected with

hollow cylinders around the cone central axis with radius kh, k = 1, 2, .., and the

resulting circles are discretized in steps of size h. See Figure 3.9 for an illustration

of this discretization. We summarize the procedure in the following algorithm.

Algorithm 3 (Backpropagation of conic surfaces).

Choose a step size h < r. For each cone, do the following:

1a. If the cone is acute, for k = 1, 2, . . . intersect the cone surface with planes

normal to β through the points x0 + khβ.

1b. If the cone is obtuse, for k = 1, 2, . . . intersect the cone surface with cylindrical
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surfaces of axis x0 + tβ and radius kh.

2. Place discrete points spaced at arc length h apart on the resulting circles.

3. For each voxel that contains at least one of the discrete points, increase its line

count variable by one.

There is no guarantee that this algorithm finds all voxels which are intersected

by a given cone surface. In practice however, for h small enough (e.g. h = r/2),

the number of voxels missed is very small. Figure 3.10 shows an example of a

backpropagated cone surface for different values of h on a grid with n = 50 for the

cone given by x0 = (0, 0,−1), β = (0, 0, 1) and ψ = 45◦. The number of operations

necessary for backpropagating a single cone is of the order O(n2), and for all N

cones the operation count is of order O(n2N). Even though this operation count

is substantially higher than for backpropagation of collimated data, we note that

backpropagation of different cones is independent and hence can be carried out in

parallel.

3.6. Simulation results

In this section, Algorithms 1–3 are used to simulate the detection process compu-

tationally. In the fist part, the accuracy of the probabilistic estimates derived in

Section 3.4 is tested by comparing estimated confidences to the results of a Monte

Carlo simulation of the background radiation. In the second part, synthetic colli-

mated measurements from a cargo container containing a small source are generated.

Backprojection is applied to the synthetic measurements to investigate the feasibil-
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Fig. 3.10. Backpropagated cone surface for h = r (left), h = 2r/3 (middle), h = r/2

(right).

ity of detection. In the third part, synthetic Compton measurements are generated

numerically and Compton backprojection is applied.

3.6.1. Monte Carlo simulation of the background

The confidence estimates given in Section 3.4 were derived under certain assumptions.

Independence of the events “a voxel is intersected by a given line” across different

voxels was assumed, and in Section 3.4.2, the binomial distribution was approximated

by normal and Poisson distributions. To verify that the errors introduced by these

approximations are not too large, we simulate a large number of random samples

of the background and compare the statistics across the samples to the theoretical

estimates.

To this end, we simulate M independent samples of random backgrounds. In

each sample, N independent, uniformly distributed lines intersecting Ω = [−1, 1]3

are generated using Algorithm 1. The lines are backpropagated on a grid of n3 voxels



87

to count the number of lines intersecting each voxel. For each sample, the maximum

voxel line count is recorded. We set rk to be the ratio of samples in which the

maximal line count does not exceed µ + kσ, where µ and σ are mean and standard

deviation of the random variables as defined in Section 3.4. We then compare for

varying value of k the ratio rk to the confidence estimate (3.8) from the binomial

distribution and the normal and Poisson approximations given by (3.11) and (3.12)

respectively.

In the calculations, M = 10,000 samples are generated with N = 500,000 ran-

dom lines each. The lines are backpropagated to a mesh of 1003 voxels, which

corresponds to values p = 10−4, µ = Np = 50, and σ =
√
Np(1− p) ≈ 7.07. Since

both the binomial and the Poisson distribution are discrete, their cdf only depends

on the integer part of µ + kσ. Hence, instead of varying k directly, we vary µ + kσ

in integer increments. The corresponding values of rk, ck, c
N
k and cPk are recorded in

Table 3.1. The cdf for binomial and Poisson distribution is evaluated by the routines

binocdf and poisscdf from the MATLAB Statistics Toolbox [53].

It can be seen that for all values of k the binomial and Poisson estimates of

the confidence are very close to the rates from the Monte Carlo simulation. The

values of the normal estimate on the other hand significantly overestimate the confi-

dence. Consequently, we conclude that normal approximation should be avoided for

estimating detection probabilities in 3D, while estimates from the original binomial

distribution and the Poisson approximation are generally accurate. For the detec-

tion examples in the following section, we will use the Poisson estimate cPk to assess

confidences of detection.
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Table 3.1. Comparison between estimated confidences and statistics from 10,000 sam-

ples for different values of k.

k µ+ kσ rk ck cNk cPk
4.81 84 0.016 0.016 0.468 0.016

4.95 85 0.092 0.093 0.690 0.093

5.09 86 0.258 0.261 0.837 0.260

5.23 87 0.470 0.471 0.920 0.470

5.37 88 0.658 0.659 0.962 0.658

5.52 89 0.797 0.795 0.983 0.795

5.66 90 0.885 0.883 0.992 0.883

5.80 91 0.936 0.935 0.997 0.935

5.94 92 0.966 0.965 0.999 0.965

6.08 93 0.983 0.982 0.999 0.981

6.22 94 0.991 0.990 1.0 0.990

3.6.2. Detection from collimated measurements

We simulate the actual detection process by generating synthetic measurements from

a cargo container containing a small source and applying the backprojection detection

scheme to the measurements. The detection domain is again the cube Ω = [−1, 1]3,

with a spherical source of diameter 0.02 located at position (0.1, 0.2, 0.3) (we delib-

erately choose an off-center location in order to avoid symmetries). The background

radiation consists of Nb random lines intersecting Ω that are generated using Algo-

rithm 1. The source emits Ns � Nb particles that are chosen as random lines inter-

secting the volume occupied by the source. At the boundary, an array of 100× 100

square particle sensors is placed on each side of the cube that measure particle in-

teractions and directions particles originated from. As the location of a particle
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interaction the midpoint of the corresponding sensor midpoint is recorded, while di-

rections are measured exactly (up to numerical precision). This generates a set of

synthetic measurements {li}Nb+Nsi=1 . The setting is a simplification of the scanning

measurement process outlined in Section 3.2.1, where sensors needed to be rotated

around the object of interest to collect measurements. Also, a more realistic model of

the measurements would take into account the limited angular resolution of sensors,

as well as measurement errors.

We then apply the backprojection scheme described in Algorithm 2 to back-

propagate the measurements on a grid of 1003 regular cube-shaped voxels. This

results in a count of the number of intersecting lines for each voxel. For the first set

of results, we choose Nb = 275,000 and Ns = 275 corresponding to our benchmark

SNR of 0.1%. According to the example given at the end of Section 3.4 based on

estimate (3.10), this setting should allow detection of the source with at least 99%

confidence. Mean and standard deviation of the background are µ = Np = 27.5 and

σ =
√
Np(1− p) ≈ 5.24.

The top panel of Figure 3.11 shows a histogram of the voxels according to their

particle counts. While most voxels have values around the mean 27.5, there is a

small number of voxels to the far right with counts between 120 and 160. To make

these outliers more visible in the plot, the bottom panel of Figure 3.11 shows a log

histogram of the voxel particle counts. The outliers to the far right are more than

ten times the standard deviation away from the mean of the background. According

to the Poisson confidence estimates (3.12), the probability of such outliers happening

due to the random background is practically zero. Hence, the detection scheme would
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Fig. 3.11. Histogram of voxel particle counts (top), log histogram of voxel particle

counts, incremented by one (bottom).

mark this container as suspicious of containing a source.

To verify that the outliers in the histogram are indeed due to the hidden source,

a 3D plot of the voxels with line counts exceeding 60 is shown in Figure 3.12. It

can be clearly seen that all voxels with line counts above 60 are close to the source

location (0.1, 0.2, 0.3).

In the next experiment, we reduce the number of detected background particles

to Nb = 100,000, and the number of source particles to Ns = 100, keeping the SNR

constant at 0.1%. Mean and standard deviation of the background are µ = Np = 10

and σ =
√
Np(1− p) ≈ 3.16. Figure 3.13 shows the line counts along the plane

x = 0.1 that passes through the source. The location of the source is clearly visible.
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Fig. 3.12. Voxels with line count exceeding 60.

The maximum line count in this case is 58, which is again more than ten standard

deviations away from the mean, and the probability that this could happen due to

the random background is essentially equal to zero.

Now we investigate how well the detection scheme works for even lower SNR.

Figure 3.14 shows the line counts along the same slice x = 0.1 for Nb = 100,000 and

Ns = 40, corresponding to an SNR of 0.04%. The source is much harder to locate

in these images. Indeed, using our Poisson confidence estimate (3.12), we find the

confidence for a maximum line count of 28 to be cPk ≈ 0.47. This tells us that such a

maximum is actually quite likely to happen due to the random background, and we

cannot claim the presence of a source with reasonable certainty.

Next we test what influence the size of the source has on the detection results.

With Nb = 100,000 and Ns = 100, we increase the diameter of the source to 0.08,

leaving its location unchanged. Intuitively the larger size should increase the number

of voxels covered by the source, and hence decrease the average particle count for
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Fig. 3.13. Backpropagation image along the plane x = 0.1. Alignment of the plane

inside Ω (left), 2D projection (middle), elevated surface plot (right).

Fig. 3.14. Backpropagation image along x = 0.1 for Ns = 40. 2D projection (left),

elevated surface plot (right).

each such voxel. Figure 3.15 shows the resulting particle counts along the slice

x = 0.1. Even though the source is barely visible, the maximum line count is 31,

corresponding to a detection confidence cPk ≈ 0.98. Note that since the source is now

larger than a single voxel, the slice x = 0.1 may not contain the voxel of maximum

intersection count. This explains why the source is less visible in Figure 3.15 than

in, say, Figure 3.14, for which we found a lower detection confidence.
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Fig. 3.15. Backpropagation image along x = 0.1 for increased source diameter. 2D

projection (left), elevated surface plot (right).

In practice, the object to be inspected cannot usually be surrounded by sensors

on all sides. Instead, the detection facility is more likely to resemble a gate with

sensor arrays on at most four sides of the cargo. To imitate this setting, we remove

the particle sensors on the sides given by y = −1 and y = 1, so that particles that

exit Ω through these sides are not registered. In the simulation, random particles

keep being generated until Nb = 100,000 background and Ns = 100 source particles

are recorded by the remaining sensors. The source diameter is 0.02 and its location is

unchanged. Figure 3.16 shows the x = 0.1 slice of the backpropagated measurements.

The maximum intersection count is 37, and the corresponding confidence is estimated

to be practically equal to one. From Figure 3.16, it can be seen that the missing

sensors lead to an overall non-uniform distribution of the intersection counts, with on

average less particles intersecting voxels close to the missing sensors at y = −1 and

y = 1. In [5, 19], non-uniform background was dealt with by considering deviations

from local means over subgrids of pixels. While this technique could be applied in

3D as well, we shall not discuss this in the present text.
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Fig. 3.16. Backpropagation image along x = 0.1 for missing sensors in y-direction

(horizontal direction in figure). 2D projection (left), elevated surface plot

(right).

3.6.3. Detection from Compton type measurements

To simulate detection from Compton-type measurements, we proceed in a very sim-

ilar way as for detection from collimated measurements. The cone surfaces corre-

sponding to the particle measurements are backpropagated on a grid using Algo-

rithm 3 and superimposed to generate the backprojection image.

During the measurement process, Compton scattering of particles at the sensor

plate needs to be simulated in order to choose the half opening angle ψ of the resulting

cones (see Figure 3.2). The distribution of Compton scattering angles is given by

the Klein-Nishina formula [55]. It depends on the energy of incoming particles,

about which we have made no specific assumptions. Hence, to keep the discussion

simple, we will assume a uniform distribution of scattering angles instead. Thus, for

each particle, at the site of interaction with the sensor the cone central axis β (see

Figure 3.2) is chosen from a uniform distribution on the half sphere of directions
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pointing away from the sensor plate. The cone half opening angle ψ is calculated

using (3.1).

For the computations the same setting as in 3.6.2 is used. The domain Ω is

the cube [−1, 1]3, and a spherical source of diameter 0.02 is placed at (0.1, 0.2, 0.3).

Algorithm 1 generates Nb random lines intersecting Ω and Ns random lines inter-

secting the source. At the boundary, an array of 100 × 100 square sensors on each

side of Ω records particle hits and randomly generates the central cone axes β from

the half sphere of unit vectors pointing away from the sensor plate. As location of

the particle interaction the sensor midpoint is recorded, while β and ψ are stored up

to numerical accuracy.

The backprojection scheme for Compton data given in Algorithm 3 is applied to

backpropagate the measurements on a regular grid of 1003 cubic voxels. The result

is a count of the number of intersecting cone surfaces for each voxel. To visualize

these results, we plot the backpropagation values along slices through the source

location. Additionally, we show a 3D image of the voxels with values at least 95%

of the maximum value. This will serve as a visual indication of how well the source

voxels are distinguishable from the background, since we do not have any confidence

estimates available for detection from Compton measurements.

In the first example, Nb = 500,000 background and Ns = 1,000 source particles

are generated, corresponding to an SNR of 0.2%. The resulting intersection counts

per voxel range from 3,523 to 6,870. Figure 3.17 shows the values along the slice

x = 0.1 in the left and middle panel, and the voxels with values exceeding 95% of

6,870 in the right panel. It can be seen that the background radiation leads to a
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Fig. 3.17. Backpropagation image from Compton measurements. 2D projection (left)

and elevated surface plot (middle) along slice x = 0.1, voxels with values

exceeding 95% of the maximum (right).

non-uniform distribution of the backprojection values. Voxels near the center of the

domain are more likely to be intersected by the random cone surfaces than voxels

close to the corners of the domain. Still, the location of the source is visible as a

peak slightly exceeding the background distribution, and all voxels with values in

excess of 95% of the maximum are located at the source location.

We lower the SNR to the benchmark value of 0.1% by setting Ns = 500, and

the results are shown in Figure 3.18. The source is now very difficult to locate in

the image along x = 0.1 slice. In the 3D plot, we see that many voxels far from the

source have values close to the maximum, making the source nearly indistinguishable

from the background. We can no longer claim successful detection in this case.

Next, the diameter of the source in increased to 0.04 and 0.08, while keeping

Nb = 500,000 and Ns = 1,000. The results are shown in Figures 3.19 and 3.20.

While the source of diameter 0.04 is clearly visible, the one of diameter 0.08 cannot

be easily distinguished from the background.
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Fig. 3.18. Backpropagation image for Ns = 500. 2D projection (left) and elevated

surface plot (middle) along slice x = 0.1, voxels with values exceeding 95%

of the maximum (right).

Fig. 3.19. Backpropagation image for source diameter 0.04. 2D projection (left) and

elevated surface plot (middle) along slice x = 0.1, voxels with values ex-

ceeding 95% of the maximum (right).
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Fig. 3.20. Backpropagation image for source diameter 0.08. 2D projection (left) and

elevated surface plot (middle) along slice x = 0.1, voxels with values ex-

ceeding 95% of the maximum (right).

Finally, we remove the sensor arrays on the sides given by y = −1 and y = 1.

Still, Nb = 500,000, Ns = 1,000 and the source has diameter 0.02. Figure 3.21 shows

the backprojected image. The shape of the background changed in a similar way as

in the collimated case, with on average less cones intersecting the voxels near the

missing detectors. Still, the source can be distinguished from the background nearly

as well as if sensors were available on all sides.

3.7. Conclusion and outlook

We have demonstrated how backprojection in 3D can be useful in the detection of

small nuclear sources. Detection is based on the fact that the signal emitted from ge-

ometrically small sources has a characteristic structure in the collected dataset that

is emphasized by backprojection. For collimated particle measurements, statistical

estimates were given that show under which conditions the signal from a small source

can be distinguished from the stronger but more random background. The validity
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Fig. 3.21. Backpropagation image for missing sensor on y = −1 and y = 1 sides.

2D projection (left) and elevated surface plot (middle) along slice x = 0.1,

voxels with values exceeding 95% of the maximum (right).

of the estimates was verified by comparing to statistics from Monte Carlo simula-

tions of random background radiation. A simple grid backpropagation algorithm for

computing backprojection of collimated measurements was discussed that allows fast

calculation of backprojection images. These can then be analyzed for presence of a

source by visual inspection or using the statistical estimates. Confidence estimates

derived for collimated measurements allow for automated detection by thresholding

of the backprojected measurements. Computational examples of detection from syn-

thetic collimated measurements show the detectability of small sources even for low

SNR. Size of the source, SNR, overall number of particles and placement of sensors

all influence the feasibility and results of detection by backprojection. For Compton

measurements, which are more useful in practice due to increased sensitivity and

field of view of the sensors, a theoretical or statistical explanation for the usefulness

of backprojection is not available. We applied a simple backpropagation algorithm

to backproject Compton data, and its potential for detection of small radioactive
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sources was shown in the computational results.

All theoretical and computational results were based on the assumption that the

background radiation can be well approximated by a uniformly random distribution

of particle trajectories. In practice, the background originates from natural sources

and legitimate cargo material that may not be uniformly distributed inside the con-

tainer, and scattering and absorption contributes to the structure of the background.

Hence, it needs to be verified how well the assumption of uniform randomness of the

background fits to the practical situation. In the nuclear engineering community,

Monte Carlo simulations of containers filled with different materials have been used

for testing detection methods [18]. We propose to apply our backprojection scheme

to data generated in this way to verify how sensitive our results are to the assumption

of a uniform background.

Also, we have not taken into account the effect of limited angular resolution

of the sensors. The ability of backprojection to resolve the small size of potential

sources crucially depends on the resolution of sensors, and the influence of this factor

on detection results needs to be studied.

The backpropagation of Compton measurements led to a non-uniformly dis-

tributed background in the backprojected image that makes it harder to detect

sources located closer to the center of the domain. It should be investigated if a

weight factor can be introduced in the backpropagation of cone measurements in

order to remove the non-uniformity of the background.

Lastly, statistical estimates for detection confidences were presented only for the

case of collimated measurements. It would be helpful if similar estimates could be
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found for the statistics of Compton measurements. This would also provide some

insight into how to handle the non-uniform background in Compton backprojection

mentioned above.
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CHAPTER IV

CONCLUSION

In the first part of this dissertation a mathematical model for ultrasound modulated

optical tomography was presented that includes optical properties of the medium,

ultrasound modulation and the measurement process. Three simple reconstruction

schemes were introduced that can recover the medium’s absorption coefficient from

scanning UOT measurements with perfectly focused ultrasound waves. We pre-

sented numerical reconstructions from synthetic measurements generated for three

different absorption phantoms. Reconstructions showed high resolution images with

quantitatively correct values of optical absorption. We discussed synthetic focusing

techniques in UOT that allow for reconstructions from measurements with certain

types of non-focused ultrasound waves. As an example, reconstructions were com-

puted from measurements with ultrasound waves localized along lines. An initial

stability analysis for a linearized version of our model is given that explains the

stability observed in the numerical reconstruction examples.

In the second part, backprojection schemes in 3D were presented for detecting

small nuclear sources inside cargo containers and other objects. We considered two

different types of passive detectors that collect collimated or Compton-type data

respectively of the radiation emitted from the screened objects. A computational

backprojection scheme was suggested that backpropagates trajectories of measured

particles on a regular rectangular grid and counts the number of trajectories inter-

secting each grid cell. For the case of collimated measurements, we estimated the
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confidence that measurements are not consistent with the signal expected from a

uniformly random background. If this confidence is large, the proposed detection

scheme will claim the presence of a radioactive source inside the screened object.

We verified the derived estimate computationally using a Monte Carlo simulation

of random backgrounds. Synthetic measurements were created for cargo containers

containing a small source by sampling from a background distribution and a local-

ized source distribution. The proposed backprojection scheme was applied to the

synthetic measurements to assess the feasibility of detection. We found that under

our assumption of a uniform background, we were able to detect small sources with

SNR as low as 0.1% from collimated measurements. For Compton type measure-

ments, we successfully detected the source for SNR around 0.2%, but found that

the proposed backprojection scheme produces non-uniform background images that

complicate detection of sources located in corners of the screened object.
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[45] F. Natterer and F. Wübbeling, Mathematical Methods in Image

Reconstruction, Society for Industrial and Applied Mathematics, Philadelphia,

2001.

[46] G. W. Phillips, Gamma-ray imaging with Compton cameras, Nuclear

Instruments and Methods in Physics Research Section B: Beam Interactions

with Materials and Atoms, 99 (1995), pp. 674–677.

[47] M. H. Protter and H. F. Weinberger, Maximum principles in

differential equations, Springer, New York, 1984.

[48] G. J. Royle and R. D. Speller, A flexible geometry Compton camera for

industrial gamma ray imaging, in IEEE Nuclear Science Symposium.

Conference Record., vol. 2, 1996, pp. 821–824.

[49] G. J. Royle and R. D. Speller, Compton scatter imaging of a nuclear

industry site, in IEEE Nuclear Science Symposium, 1997, pp. 365–368.

[50] V. Schonfelder, R. Diehl, G. G. Lichti, H. Steinle, B. N.

Swanenburg, A. J. M. Deerenberg, H. Aarts, J. Lockwood,

W. Webber, J. Macri, J. Ryan, G. Simpson, B. G. Taylor,

K. Bennett, and M. Snelling, The imaging Compton telescope Comptel

on the gamma ray observatory, IEEE Transactions on Nuclear Science, 31

(1984), pp. 766–770.

[51] M. Singh, An electronically collimated gamma camera for single photon

emission computed tomography. Part I: Theoretical considerations and design

criteria, Medical Physics, 10 (1983), pp. 421–427.



110

[52] M. Singh and D. Doria, An electronically collimated gamma camera for

single photon emission computed tomography. Part II: Image reconstruction

and preliminary experimental measurements, Medical Physics, 10 (1983),

pp. 428–435.

[53] The MathWorks, Inc., Matlab Statistics Toolbox, 2011.

http://www.mathworks.com/products/statistics.

[54] R. W. Todd, J. M. Nightingale, and D. B. Everett, A proposed γ

camera, Nature, 251 (1974), pp. 132–134.

[55] T. T. Truong, M. K. Nguyen, and H. Zaidi, The mathematical

foundations of 3D Compton scatter emission imaging, International Journal of

Biomedical Imaging, 2007 (2007).

[56] J. E. Turner, Atoms, Radiation, and Radiation Protection, 3rd ed.,

Wiley-VCH, Weinheim, 2007.

[57] U.S. Department of Transportation, Research and Innovative

Technology Administration, Bureau of Transportation

Statistics, America’s container ports: Freight hubs that connect our nation

to global markets, 2009.

http://www.bts.gov/publications/americas container ports/2009.

[58] L. V. Wang, Mechanisms of ultrasonic modulation of multiply scattered

coherent light: A monte carlo model, Optics Letters, 26 (2001), pp. 1191–1193.

[59] L. V. Wang, Mechanisms of ultrasonic modulation of multiply scattered

coherent light: An analytic model, Physical Review Letters, 87 (2001),

43903/1-4.



111

[60] L. V. Wang, Ultrasound-mediated biophotonic imaging: A review of

acousto-optical tomography and photo-acoustic tomography, Disease Markers,

19 (2004), pp. 123–138.

[61] L. V. Wang, S. L. Jacques, and X. Zhao, Continuous-wave ultrasonic

modulation of scattered laser light to image objects in turbid media, Optics

Letters, 20 (1995), pp. 629–631.

[62] L. V. Wang and S.-I. Wu, Biomedical Optics. Principles and Imaging,

Wiley-Interscience, Hoboken, NJ, 2007.

[63] E. W. Weisstein, Sphere point picking, 2011. From MathWorld–A Wolfram

Web Resource, http://mathworld.wolfram.com/SpherePointPicking.html.



112

VITA

Moritz Allmaras was born in Stuttgart, Germany. He studied Applied Mathematics

at Technical University of Munich, where he received a Diplom degree in 2006. In

2006 he obtained a M.S. degree in Mathematics at Georgia Institute of Technology.

He subsequently enrolled in the doctoral program in Mathematics at Texas A&M

University, where the present dissertation was prepared, and graduated in December

2011. Moritz can be contacted at:

Department of Mathematics

Texas A&M University

3368 TAMU

College Station, TX 77843

USA

E-Mail: moritz@allmaras.de


