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ABSTRACT 

 

Towards Privacy Preserving of Forensic DNA Databases. (December 2011) 

Sanmin Liu, B.S., Huazhong University of Science & Technology; 

M.E.,  Huazhong University of Science & Technology 

Chair of Advisory Committee: Dr. Jyh-Charn Liu 

 

Protecting privacy of individuals is critical for forensic genetics. In a kinship/identity 

testing, related DNA profiles between user’s query and the DNA database need to be 

extracted. However, unrelated profiles cannot be revealed to each other. The challenge is 

today’s DNA database usually contains millions of DNA profiles, which is too big to 

perform privacy-preserving query with current cryptosystem directly. In this thesis, we 

propose a scalable system to support privacy-preserving query in DNA Database. A two-

phase strategy is designed: the first is a Short Tandem Repeat index tree for quick 

fetching candidate profiles from disk. It groups loci of DNA profiles by matching 

probability, so as to reduce I/O cost required to find a particular profile. The second is an 

Elliptic Curve Cryptosystem based privacy-preserving matching engine, which performs 

match between candidates and user’s sample. In particular, a privacy-preserving DNA 

profile matching algorithm is designed, which achieves Oሺ݊ሻ  computing time and 

communication cost. Experimental results show that our system performs well at query 

latency, query hit rate, and communication cost. For a database of one billion profiles, it 

takes 80 seconds to return results to the user.   
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CHAPTER I 
 

INTRODUCTION 

 
Nowadays privacy concerns have become one of the most important security issues in 

many Internet applications. One of them is in the area of forensic science, which has 

experienced significant progress recently. In 1984, DNA Fingerprint was used to 

describe the analysis of polymorphic regions of DNA. In the following year, at the 

request of the United Kingdom Home office, DNA profiling was successfully applied to 

resolve an immigration dispute. The use of genetics was quickly adopted by the forensic 

community and plays an important role worldwide in the investigation of crime [1]. 

1.1 DNA Profiling 

A major research opportunity exists on how to develop a high efficient matching 

algorithm to support DNA database forensics, which will not suffer re-identification 

from malicious users. Here, we assume a query from a client is safe when1 only related 

DNA profiles between user and database could be learned by each other, without leaking 

whole content of unrelated profile to each other. Through partial value of a profile will 

be disclosed between client and server, it can still guarantee each individual’s privacy. 

Forensic genetics is a branch of genetics that deals with the application of genetic 

knowledge to legal problems and legal proceedings. Forensic genetics is also a branch of 

forensic medicine that deals more broadly with the application of medical knowledge to 

                                                       
The journal model is IEEE/ACM Transactions on Networking. 
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legal matters [1]. Figure 1 describes the basic steps to identify criminal with forensic 

genetics. 

Short Tandem Repeats (STRs) are currently the most common technique used for 

DNA forensics. STR is a pattern of two or more nucleotides repeated and the repeated 

sequences are directly adjacent to each other. Typically, the core unit is between 1-6 

base pairs (bp), while the repeats range from 50-300bp. We call this repeat pattern allele, 

which is represented as a float number.  In human genomes, there are totally more than 

10,000 STR loci [Table III shown on page 41]. Due to a high polymorphism between 

individuals and strong stability across time, STR are used in many applications, 

including identification, parentage and kinship testing, genetic genealogy and answering 

historical questions, etc. 

 

Fig. 1.  Forensic genetics in identifying criminal 

 

Since the 1990s, many countries have setup national DNA profile databases to assist in 

the identification of suspect of crimes. Among these, the Combined DNA Index System 

(CODIS) of the United States Federal Bureau of Investigation (FBI) contains over 



3 
 

 

6,300,000 offender profiles and 241,000 forensic profiles. CODIS employ 13 STR loci 

for identification [7]. Typically, a test is declared negative with exclusion at three or 

more loci [1].  

While STR provides a reliable technique for identifying criminal, it can also be 

misused for re-identification, infer ethnic origin, and also for disease detection [5] [9] 

[10]. It has been found that these attacks in practice can often be facilitated by the unique 

background knowledge of human genomes, i.e., the availability of a reference population 

that resembles case individuals.   

1.2 Kinship Testing 

Kinship testing is used to match human remains from disaster scenes to declared parents. 

In many big disasters, we need to identify the victims so as to further deal with the 

results. In cases that involve hundreds of victims, remains need to be claimed by their 

families. Due to severe damage to the remains, potential families could be a large pool. 

Besides of this, it is very useful to identify suspects without accessibility to their DNA 

sample but their parents’. Kinship testing could be conducted in two situations: both 

parents appear, and just one parent appears. 

(1)    Kinship testing with one parent 

In this case, we have access to the DNA profile of one potential parent. And we 

need to identify if a DNA sample from a crime scene is the potential child of this 

declared parent. Since a child inherits DNA from both parents evenly, there is a half 

matching between one parent and child. In reality, since sometimes mutations exist, it is 
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a standard practice to require exclusion on three or more loci before a test is declared 

negative [1]. We use ሺX୧ଵ, X୧ଶሻ and ሺY୧ଵ, Y୧ଶሻ, i ൌ 1,2,… , n to represent the DNA profile 

of a child and a potential parent, respectively, then we have if 

෍ሾሺX୧ଵ, X୧ଶሻ ת ሺY୧ଵ, Y୧ଶሻ ് ሿ׎
N

୧ୀଵ

 ൒ N െ 2, 

then there is a significant probability that there is a kinship between the two given 

samples. 

(2)    Kinship testing with two parents  

In this case, we have access to a DNA profile from crime scene and DNA profiles 

of both declared parents. And we would like to confirm the kinship between the criminal 

and two referred parents. Since we have two DNA reference, we can argue that the test is 

positive only when the DNA profile matches both the mother and father evenly. Then we 

have if 

෍ሼሾX୧ଵ א ሺY୧ଵ, Y୧ଶሻሿ ת ሾX୧ଶ א ሺZ୧ଵ, Z୧ଶሻሿሽ
N

୧ୀଵ

 ൒ N െ 2, 

then there is a significant probability that the sample is a child of the potential parents. 

1.3 Identity Testing 

Identity testing is used for matching a suspect to the samples from the scene of crime.  In 

this case, we are able to obtain DNA sample from suspects directly. Some suspects may 

be innocent. If a suspect is convicted of the crime, his/her DNA profile will be loaded to 
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the DNA database for future reference.  Here, we use ሺS୧ଵ, S୧ଶሻ, i ൌ 1,2,… , n, to denote 

the DNA profile of a suspect. Then, if 

෍ሾሺX୧ଵ, X୧ଶሻ ൌ ሺS୧ଵ, S୧ଶሻሿ
N

୧ୀଵ

 ൒ N െ 2, 

for each locus, it is matched when two alleles are both equal to the reference. If totally at 

least N - 2 loci are matched, we say the suspect is the criminal with a significant 

probability.  

1.4 Protecting DNA Information 

DNA information is sensitive for public usage. Abused usage can lead to the disclosure 

of an individual’s characteristics, such as race and disease. There are two main problems 

for developing efficient and secure privacy-preserving DNA profile matching: (1) to 

protect the privacy of individuals, we want to extract related DNA profiles between 

user’s query and database; unrelated information cannot be revealed to each other. F. 

Bruekers [3] proposed a privacy-preserving STR matching scheme based on the privacy-

preserving set matching algorithm developed by M. Freedman [6]. Basically, they 

treated each DNA profile as a set with 13 pairs of allele values, and use Freedman’s 

algorithm to compare these sets. Results can be deduced from the difference between 

two profiles. However, Freedman’s algorithm also has high computing cost as the 

database grows big. Therefore, for database like CODIS, we need a better solution. (2) 

How to design efficient and secure protocols for DNA profile data matching? Suppose 

Alice sends a profile to Bob, they want to find the matching profiles without disclosing 
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one’s unmatched data to the other. This is the main technique for DNA based 

identification. 

In this paper, we provide an efficient privacy-preserving DNA profile searching 

system, which could quickly detect all related entries in the database with the query. The 

major contributions of this paper are: (1) Profiles in database are indexed with a 

matching probability biased tree; (2) A two-step profile matching scheme is designed, 

with each step filtering out large amount of unrelated entries; (3) a high-performance 

ECC-based privacy preserving matching engine is developed for set matching. 
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CHAPTER II 
 

RELATED WORK 
 

2.1 Existing DNA Databases 

In 1994, the US movement passed the DNA Identification Act which enables the 

establishment of the Combined DNA Index System. CODIS is funded by United States 

federal bureau of investigation (FBI). In essential, CODIS contains National DNA Index 

System (NDIS), State DNA Index System (SDIS) and Local DNA Index System (LDIS). 

Each sample in the database must include a laboratory identifier, a specimen identifier, 

and information to classify/review the integrity of the DNA record. The FBI selects 13 

STR loci for developing database. Totally, there are four segments in CODIS: 

 The forensic Index contains NDA profiles from crime scene samples 

 The offender Index contains DNA profiles of individuals convicted of certain 

crime 

 Unidentified human remains 

 Relatives of missing persons    

As of October 2009, the situation of CODIS is: 

 Total number of offender profiles: 6,300,000 

 Total number of forensic profiles: 241,000 

Currently all 50 states have mandatory DNA collection from certain felony offenses like  

sexual assault and homicide, and 47 states collect DNA from all convicted felons. The 
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American Civil Liberties Union worries about the increasing use of collecting DNA 

from arrested suspects.  

The UK National DNA database is established in 1995. NDNAD has mainly two 

segments: 

 profiles generated from scenes of crime (263,000 by 2005) 

 Profiles generated from individuals (3,450,000 by 2005) 

With large amount of profiles in NDNAD, there is currently a 45% chance to match a 

sample from scenes to the database. More ethical concerns have been raised since 75% 

of young black males aged from 15 to 34 are collected while 22% of young white people 

are collected.  

2.2 Performance vs. Privacy 

2.2.1 Search Time 

Search time is the time from starting a query to getting the results from DNA database 

server. According to [2], currently search performance of CODIS is approximately 5 

seconds with a database of 100,000 profiles. This means that a big national database of 

one billion profiles, such as China and India, will require 5,000 seconds. This is 

inacceptable for a real-time query. To speedup CODIS, a hierarchical database is 

proposed in [2]. It gathers similar DNA profiles, and deploys them onto different 

machines. A query is divided into n communication parts, with each part handled by a 

machine separately. A parallel virtual machine (PVM) based computing architecture is 
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designed to perform database search concurrently. However, there is still no 

performance evaluation for this idea.  

2.2.2 Related Cryptographic Techniques 

Most of the privacy-preserving genomic computation protocols rely on two 

cryptographic techniques: secure multi-party computation (SMC) and private set 

intersection (PSI). The idea of secure multi-party computation (SMC) was first proposed 

in [13] based on the solutions to the Millionaire’s Problem. A general solution for the 

problem of secure two-party computation was later presented in [14]. The idea of SMC 

was to enable a set of untrusting parties to compute certain common function based on 

their own private inputs. After a successful secure multi-party computation each party 

only knows the output from the function and does not know anything about other’s 

inputs.  

The building block of SMC is Oblivious Transfer (OT) protocol [15]. It allows a 

receiver to choose one secret from any two secret generated by a sender without 

knowing the other one, while the sender cannot know which secret the receiver chose. 

The complexity to compute an OT for each bit of two parties’ message (e.g., genomic 

data sequences) and transfer the whole garbled circuits makes SMC hard to implement 

for real-world security applications. While privacy-preserving computation of edit 

distance for measurement of similarity between gene sequences was achieved in [16] 

based on SMC, even the optimized SMC cannot handle genome computations of a 

realistic scale [17]. A PSI protocol aims to compute the intersection of elements 
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provided by two parties (say Alice and Bob) without exposing other information. That is, 

if and only if Alice and Bob have matching elements, the equality of the matching 

elements should be computable by both parties.  

In the process, outsiders cannot infer any of the matching results. Alice cannot 

know unmatched elements of Bob, and vice versa. Like SMC protocols, previous work 

on PSI designs had O(n2) [6], where  n is the number of elements of two user’s sets. This 

is considered to be too high to be useable for real-world applications [18]. In addition, 

this is no existing implementation of using PSI protocols for complex string 

computations/comparisons like edit distance.  

2.2.3 Existing Privacy-preserving Genomic Computation Protocols  

[21] proposed the first protocol for privacy-preserving sequence comparisons such that 

one party reveals nothing about his private sequence to the other party. Their solution 

was extended to support privacy-preserving Smith-Waterman local nucleotide 

comparisons in [22]. Several more efficient secure genomic computation protocols were 

proposed in [16] that supported calculations of both edit distance and Smith-Waterman 

similarity scores between two sequences. The authors developed their protocols based on 

secure multi-party computation (SMC) [13][14] and evaluated their prototype by 

implementing it on sequences from the Pfam [23] database of protein families.  

The most recent privacy-preserving genomic computation framework [17] was 

based on program specialization. In their framework genomic data was categorized as 

sensitive data and public data. The partition allowed a concrete biology computation on 
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public data and a symbolic computation on sensitive data such that protection on 

sensitive genomic data was efficiently achieved. Another privacy-preserving matching 

protocol [3] was proposed to allow two parties to find their matching short tandem 

repeats (STRs) [24], which was the main technique for DNA based identification. Their 

solution was based on a private set intersection (PSI) [6] protocol so that two parties 

could find their matching STRs without disclosing the content s of their sequence to 

each other.   
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CHAPTER III 
 

PRIVACY PRESERVING OF FORENSIC DNA DATABASES 
 

3.1 Basics and Assumptions 

Usually the DNA data gathered for genetic forensics can be conveniently accessed by 

authorized agents to benefit the social security. However, such data dissemination needs 

to be considered with the protection of participants’ privacy. This becomes very 

important since unveiling of the gathered DNA data can cause serious consequence. For 

example, revealing the identity of a case individual usually relates him to the disease, 

which may cause denial of access to health/life insurance, education, and employment. 

Prior research shows that raw DNA data (genotypes) is often too risky to publish even 

after removal of explicit identifiers [25] (such as name, social security number, etc.) 

since recovery of a participant’s identity can be achieved through examining his genetic 

markers related to his observable features [26][27]. So aggregate genome data, such as 

allele frequencies (i.e., the frequencies of different SNP values) are usually displayed 

because such data covers an individual’s information with that of others and is thought 

to be of less sensitive. For example, the NHGRI/NIH used to make allele frequencies 

publicly available.  

However, some recent work [28][29] show that even public allele frequencies and 

test statistics can incur effective attacks to participants’ identities or SNP sequences. 

Homer et al. [29] found that the presence of an individual in a case group can be 
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determined from allele frequencies, given the assumption that the victim’s DNA profile 

has been acquired (from a single hair or a drop of blood). Another study [28] show that 

even the test statistics (e.g., p-value, r-squares) calculated from allele frequencies and 

published in HGS papers could facilitate attacks in some cases enough for identifying 

participants or recovering portions of their DNA sequences. Usually there are two types 

of common aggregated data, the allele frequencies for both individual SNPs and SNP 

pairs, and the test statistics derived from the frequencies. Such data is studied under two 

typical threats, identification attack and recovery attack. The former uses an individual’s 

DNA profile to determine his relation with an aggregate data-set [8][28][29][30]. The 

latter re-constructs individuals’ SNP sequences from test statistics. It has been found that 

these attacks in practice can often be facilitated by the unique background knowledge of 

human genomes, i.e., the availability of a reference population that resembles case 

individuals.  

In general, protecting privacy of individual DNA when the profile is public to any 

potential attackers does not appear realistic. Developing solutions that can support 

kinship/identity testing without releasing holder’s sensitive data (e.g., DNA profiles in 

CODIS and NDNAD) to others is perhaps one of the most important privacy challenges 

in forensic genetics. For this purpose researchers have developed some tools/solutions. 

Most of the solutions rely heavily on various cryptographic techniques. Despite their 

different degrees of success, it is well recognized that most existing solutions face 

challenges of poor system scalability, high computing costs, and inadequate security 
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protections [18][31]. In summary, there are two main problems for developing efficient 

and secure privacy-preserving DNA profile matching protocols.  

Problem 1: How to manage millions of DNA profiles to facilitate forensic query? 

Suppose Alice has ten million DNA profiles and wants to keep these data on a general 

computer she can afford. As we know, 10 million profiles will take up more than 1GB 

space. For a national DNA database, the number of profiles could be as big as one 

billion. Hence, instead of main memory, we have to put this data on hard disk, for which 

space is not a problem. To quickly locate a profile on the disk, we have to achieve the 

following goals: 

G(1): How to organize all this DNA profiles on hard disk, so that we can operate 

(search/add/remove/update) a profile efficiently? 

G(2):  How to design an efficient algorithm to find all the related profiles to the query? 

We will design a novel index tree to organize the massive DNA profiles based on the 

allele of each locus. Basically, since each locus has a different distribution of alleles, we 

propose a strategy to discriminate these loci wisely.  

Problem 2: How to design efficient and secure protocols for basic DNA profile 

matching? Suppose Alice and Bob each has a set of DNA profiles and they want to find 

the related profiles without disclosing one’s unrelated profiles to each other. This is the 

main technique for DNA based identification. Here we view each allele as a single 

element (unit). Then the privacy-preserving element matching protocol should satisfy the 

following requirements:  
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R(1): If and only if Alice and Bob have matching elements, the equality of the elements 

must be computable by both parties.  

R(2): Outsiders cannot infer any elements. Bob cannot know unmatched elements of 

Alice, and vice versa.  

We propose a new privacy-preserving element matching protocol to solve these 

technical challenges based on ECDLP [32] and elliptic curve cryptosystem (ECC)-based 

homomorphism [33]. More specifically, ECDLP guarantees protection of a party’s 

elements when they are associated with an ECC point (R(2)) and ECC-based 

homomorphism guarantees computability of encrypted elements (R(1)). For example, 

Alice can encrypt her elements by associating them with an elliptic point and send them 

to Bob. Based on ECC-based homomorphism, Bob can modify Alice’s encrypted 

elements using his own elements. After Alice receives the modified elements, she can 

perform equality check on the returned modified elements to find out the intersection as 

the matching elements. Compared with the existing work [3][6], the proposed protocol 

has linear computational and communication costs. We also evaluate the protocol by 

implementing it for matching of simulated DNA profiles.  

There are two types of attacks: 

 Semi-honest attacks: Attackers follow appropriate computation protocols, but want 

to gain others’ private information 

 Malicious attacks: Attackers can do anything to obtain private information of the 

other parties, e.g., do not honor agreements, send false information, involve in 

collaborations with other attackers. 
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Our paper is based on the following two assumptions: 

Assumption 1: to protect individual’s privacy, only related profiles between users 

and database could be learned by each other. 

Assumption 2: users are semi-honest. They will not break the rules in order to gain 

private information. Our protocol is designed to resist passive dictionary attacks 

launched by semi-honest adversary, but it is not designed to defend against active attacks, 

e.g., forging of attributes, traffic interception to block correlation.  

3.2 Output Formats 

There are generally two different kinds of results users want to get: (1) is my sample 

related to any of the profiles in DNA database? (2) If yes, what are the allele values of 

all the related profiles? For (1), the user has many samples from crime scene, and wants 

to know if which belongs to a potential criminal. They submit the samples to a reference 

database, e.g. CODIS, and just want to know yes or no. In doing so, right samples could 

be followed up. For example, after a disaster, we need to find the families of the victims. 

First, the government needs to obtain DNA samples for crime scene. Due to the severe 

destroy of disaster, many unrelated samples other than victims’ are extracted. First we 

need to filter out these noises. To do this, a query is initiated to a reference DNA 

database where the victims should appear. A good reference database might be a national 

DNA database like NDNAD, which contains most citizens’ samples. For the second 

output format, we would like to the extract content of related profiles, and use them for 

further analysis, e.g., compare them between each other to better identify the criminal.  
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CHAPTER IV 
 

DESIGNING PRIVACY-PRESERVING SYSTEM 
 

Population genetics is a study of factors affecting the allele and genotype frequencies of 

different genetic loci in a population. The Hardy-Weinberg law provides a simple 

mathematical representation of the relationship of genotype and allele frequencies within 

an ideal population. It states that within a randomly mating population the genotype 

frequencies at any single genetic locus remain constant [1]. To meet HW law, there are 

five preliminaries:  

 the population is infinitely large; 

If the population is limited, then the frequency of alleles [4] will change through a 

genetic drift process. In a small population, the effect of genetic drift is more 

significant. However, most countries and races have a large population which 

genetic drift could be ignored. 

 random mating occurs within the population;  

Since STR genotypes do not affect human’s phenotype, such as height, intelligence, 

or strength, selection of STR through mating is unlikely. 

 the population is free from the effects of migration; 

Human history is full of migration and this could affect allele frequency obviously. 

However, populations with different culture, language, religions are not likely to 

merge in a short term. 

 there is no natural selection; 
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The loci used for forensic genetics are not located within functionally important 

regions. Hence, they are unlikely facing the impact of natural selection. 

 no mutations occur.  

The mutation of STR loci are relatively low at less than 0.2% per generation and do 

not have oblivious effect on allele frequency. 

In [34], allele frequency of six groups of populations, including African Americans, 

U.S. Caucasians, Hispanics, Bahamians, Jamaicans, and Trinidadians are reported. The 

TPOX locus was the least discriminating locus for Caucasians and Hispanics, while 

D12S317 is the least discriminating one for African-based populations. Also, there is 

little departure from HW laws in any of the six populations. To characterize the allele of 

each population, at least one hundred individuals need to be collected. The larger the 

database, the more representative of the population it will be. 

From Table III [shown on page 41], we know that the allele distributions of 13 core 

loci are very diverse. For FGA, there are totally 16 different alleles, while 10 of them 

having a frequency larger than 1%. While for TH01, there are 6 alleles. And all of them 

appear bigger than 1%. To better represent this diversity, locus matching probability is 

proposed. We will show how to use MP to build our STR index tree for quick search.  

4.1 Database Organization 

The workflow of our system is as shown in Figure 2: (1) Firstly, we calculate allele 

distribution for each locus according to the entries in the database. To locate a profile 

efficiently, locus with lower matching probability is compared first. An STR index tree 
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is build based on the matching probability of locus. The resulting STR indexing strategy 

is stored at the coordinator of server; (2) Secondly, when a client initiates a query, its 

coordinator will request indexing strategy from server. After receiving the indexing 

strategy, the client will re-order its STR into as Sଵ, … , S୩ , … , SN; (3) Then, we start a 

progressive plain-text matching procedure, from Sଵ , Sଶ , …, to S୩ . For each round of 

matching, we record the total number of exclusion (number of different locus value), 

once the number exceed the threshold, we exclude all entries linked with S୩. (4) Finally, 

all candidates are further matched for the remaining loci, using privacy-preserving 

matching engine. Server’s coordinator access all the entries meet the criteria from disk 

and send them to the client.   

 

Fig. 2. System overview (PT represents Plain-Text, PP represents Privacy-Preserving) 
 

4.1.1 Matching Probability for Multi-locus DNA Profiles 

Sampling error, single bands and correlations within and between loci always exist. 

They bring uncertainty of matching probability between two random people in a 
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population. Traditional method use product rule to calculate the matching probability for 

multi-loci DNA profiles. Aspects of the product rule have been criticized by many 

authors. Krane [35] points out that there is a higher matching probability in a sub-

population than in a large population.  Since a small sub-population infer a high relative 

frequency. When matching probability is small, the effect of relative frequency is 

significant.  

Sampling error comes from experiment condition limit, or labor’s error. It is 

inevitable in many cases. Table I shows how sampling error would affect our result. For 

a profile with 7 loci, if we ignore two alleles, then the matching probability increases 

from 10-7 to 1.45×10-6. 

Table I — Matching probabilities for 7 loci samples 
 

Profile with 7 loci Matching probability 
original 10-7 

2 allele ignored 1.45×10-6 

3 allele ignored 5×10-6 

 

4.1.2 STR Index Tree 

As illustrated in Section 3.1, a real DNA database could contains billions of profiles, 

which will requires hundreds of Gera Bytes to store. Thus, it is not suitable to store this 

data all in RAM. An alternative is to store them in external disk which is usually big 

enough. The disadvantage of external disk lies in it is relatively slow to access, 20 times 

lower than RAM. For a 7200 rpm ATA hard disk, it will take 200 seconds to read 10GB 

data. If we want to search for a profile on disk, we need to scan half of the data on 
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average. To get rid of this pain, a better way is to organize the data with an index tree. 

Two basic requirements for the index tree are: (1) First, it could be put into memory for 

quick access. (2) Second, It indexes the location of each profile on disk, so as to find any 

profile quickly.  

We use locus as the nodes of the index tree. Basically, it is a  ݇-level tree, with each 

level representing the allele of one locus. The leaves point to the location of the disk 

block where the candidates are. The number of entries in the tree would be 

approximately ݌௞ , here ݌  is the expected fan-out of each node. For a 13-loci DNA 

database, ݇ ൌ 6, and ݌ ൌ 10. Hence the tree takes up 40MB space, which is totally fit to 

memory.   

4.2 PTME: Plain-text Element Matching Engine 

A DNA database usually contains millions of records. If we access every entry from the 

disk, it will induce a big overhead. Instead, we use an index tree to reduce the I/O cost. 

For a query,  

ሾ ሺXଵଵ, Xଵଶሻ, ሺXଶଵ, Xଶଶሻ, … , ሺXNଵ, XNଶሻ ሿ 

and a DNA database  

ە
ۖ
۔

ۖ
ۓ
ሾ ሺYଵଵ, Yଵଶሻ, ሺYଶଵ, Yଶଶሻ, … , ሺYNଵ, YNଶሻ ሿଵ
ሾ ሺYଵଵ, Yଵଶሻ, ሺYଶଵ, Yଶଶሻ, … , ሺYNଵ, YNଶሻ ሿଶ

.

.

.
ሾ ሺYଵଵ, Yଵଶሻ, ሺYଶଵ, Yଶଶሻ, … , ሺYNଵ, YNଶሻ ሿMۙ

ۖ
ۘ

ۖ
ۗ

 

Our goal is to find out all the entries which may be related to the query. This is measured 

by comparing two DNA profiles without leaking whole profiles between the client and 
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the server. First, for each locus, we calculate matching probability based on the allele 

value frequency in the database.  

ܲܯ ൌ ∑ ௜ܲ
ସ ൅ 4∑ ሺ ௜ܲ ௝ܲሻଶ௡

௝வ௜
௡
௜ୀଵ    ( ௜ܲ: probability of allele value equals to i ) 

Particularly, for a N-loci database (N = 13 for CODIS), we first calculate ܯ ௫ܲ, x = 1, …, 

N, and then sort them ascendant. Suppose the ordered ܯ ௫ܲ  is as follows: 

൫ܯ ௜ܲ,ܯ ௝ܲ,ܯ ௞ܲ,, … ൯. Then we can generate the following index tree for all the entries as 

shown in Figure 3.  

                                                                   Lଵ    
      ቀY11_min,Y12_minቁ … ቀY11_max,Y12_maxቁ 

 
 
 
 
 

                         : 
 

 
 
 
 
 
 

                             L୩ 
 ቀYk1_min,Yk2_minቁ … ቀYk1_max,Yk2_maxቁ 

--------------------------------------------------------------------------------------------------------
-           

 
 
                                                          … 
 

Fig. 3. Structure of STR index tree 

 

Plain-Text 
Element Matching 

Privacy-Preserving 
Element Matching 
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As described in Figure 4, for nodes in the tree, the keys are alleles of locus. And for each 

allele, it has a pointer links to its sub-trees. Each node also has an augment hash-table. 

Basically, key is allele, and value is a pointer to its child node. With the hash-table, 

constant time can be achieved to search on each level of the tree. 

 

Fig. 4. Structure of nodes 
 

4.3 PPME: Privacy-preserving Element Matching Engine 

A privacy-preserving matching engine (PPME) is developed for the set comparison of 

two DNA profiles. PPME use elliptic curve discrete logarithm problem (ECDLP), which 

is immune from passive attacks (e.g., dictionary attack). Briefly, PPME is the first 

demonstration of crypto-based alert correlation which has the following key features: (1) 

linear running time, i.e., Oሺ݊ሻ, where n is the number of input attributes, (2) proven 

privacy protection, and (3) secure against passive (dictionary) attacks. Figure 5 describes 

the procedure of our Privacy-Preserving matching engine. Firstly, the client loads its last 

N – k alleles to its PPME module. At the same time, the PPME of server fetches the last 

N – k alleles of all candidates. Secondly, for each candidate, a privacy-preserving set 
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matching is performed for these alleles between the client and server. Based on the 

matching result, server will know which candidates meet the criteria to be related to the 

sample. Finally, server will send related profiles to user. 

 
 

Fig. 5. Privacy-preserving set matching procedure 

Figure 6 presents the protocol of Privacy-Preserving Set Matching. First Alice uses E to 

generate the ciphertexts E(A) = [E(a0), E(a1) ,…, E(an)] on the (hashed) input elements 

A, where each ciphertext E(ai) consists of two elliptic curve points as its “front” point 

and “back” point. The “front” points are produced by associating Alice’s chosen random 

numbers with base point P. The “back” points are produced by associating both the 

random numbers and Alice’s elements with her computed point QA, where Alice’s 

elements cannot be deduced because of ECDLP. Alice then sends E(A) to Bob. After 

receiving E(A), Bob uses M and his own elements B to produce M[B, E(A)], i.e., 

modification of E(A). The modification function M allows Bob to (1) associate both his 

own elements B and one chosen random number with the “front” points of E(A), and (2) 

associate the same random number with the “back” points of E(A).  

Again, Bob’s elements cannot be computed from the modified “back” points 

because of ECDLP. Then Bob sends his M[B, E(A)] back to Alice, who can use D to 

decrypt-and-then-evaluate the “front” and “back” points. After the decryption (i.e., 

eliminating the difference between the “front” points and “back” points caused by 
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Alice’s own secret number and random number) if a pair of “front” point and “back” 

point are equal, Alice and Bob have an identical (matched) element. Otherwise, their 

elements are different. Bob has symmetric operations as Alice and therefore will not be 

further repeated here. Details of the protocol are discussed as follows [20]. 

 

Fig. 6. Flowchart of the privacy-preserving element matching protocol 
 
Computation Complexity and Communication Complexity Analysis: We use the 

multiplications of large random numbers with ECC points to protect user’s elements 

from dictionary attacks, i.e., H1(ai) cannot be deduced from E(ai)b = [rA1H1(ai) + rA2]QA. 

In addition, I also use H1 on M[A, E(B)] and M[B, E(A)] such that Alice (or Bob) cannot 

further manipulate the received ciphertexts as ECC points. Otherwise, inside adversaries, 

e.g., Alice, could launch dictionary attack to try every possible values for elements to get 

an equivalent equation between H1[kA
-1rA2

-1M(ai)b] and M(bj)f. If n = m, both Alice and 

Bob need (4n + 6) (i.e., O(n)) point multiplications to compute the intersection: one 
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multiplication to associate secret number with the base point, (n + 2) multiplications to 

generate the ciphertexts (step 1), (2n + 2) multiplications to execute M on received 

ciphertexts (step 3), (n + 1) multiplications to execute D on the modified ciphertexts 

(step 5) for decryption. Table II presents the comparison of computing costs of Protocol 

I and the PSI protocols used in [3][6]. Here n denote the number of elements of both 

Alice and Bob, and L is the bit length of each input element (assume all elements have 

the same length). Through Table II we can find that compared to [3][6] our protocol has 

linear computation costs based on same security model and different cryptography 

fundamentals. 

Table II— Comparison between PPME and existing work 
 

 Freedman’s Method PPME 
Computation Cost O(n2) O(n)

Communication Cost O(n) O(n)

Security Analysis secure to passive attack secure to  passive attack 

 

4.4 Security Analysis 

Algorithm 1: Privacy-preserving Matching of DNA profiles 

1. User A sends the first k alleles to database S 

2. S use PTME to find candidates; and load them into memory 

3. S initiates PPME with A to match the latter N - k loci 

4. S sends all related profiles to A. 
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For the remaining N - k loci, we could not continue with the PTME strategy. Otherwise, 

whole content of unrelated profiles will be disclosed to each other. How to select an 

optimal N – k? It depends on two factors: first, the space should be big enough to avoid 

re-identification; Second, privacy-preserving matching on these N - k loci, should be 

finished in a reasonable time, e.g. several minute.  

In this process, 

 From the view point of A, it learned all related profiles in the database. 

 From the view point of B, it definitely learns the first k loci of A. For the latter N - k 

loci, it can guess A’s allele from the matched ones. In total, B cannot learn A unless 

A is related to at less one sample in the database. In other words, if A is unrelated to 

any profile in B, then the unmatched allele in latter N - k loci could not be guessed 

by B. Hence, the whole procedure is secure. 
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CHAPTER V 
 

EVALUATION 
 

5.1 Database Simulation 

5.1.1 Single-race, Multiple-races  

To the best of our knowledge, due to security concern, there is no public human DNA 

database available. However, many researchers have summarized the characteristics of 

different DNA databases. One of these characteristics is allele distribution, which shows 

the stable allele frequency in each population. We decide to utilize the allele 

distributions for 13 STR loci published in [34] to generate our simulated database. 

Basically, our DNA database contains the characteristics of real population, i.e., allele 

distribution. And its size will be similar as real DNA database. As shown in [34], 

different populations/races have different allele distributions. For a multiple-population 

based database, we just need to get the size of each population, and then generate sub-

databases for each population according to their allele distribution. 

5.2 Index Tree Size vs. Disk Size 

In this section, we perform simulations to calculate the space taken by index tree and the 

database. In these simulations, we set k = 6, and change the size of the database. Since 

all profiles are stored on disk, we can tell that the space of disk grows linearly as the 

number of DNA profiles increased. For index tree, since the level equals to k and the fan 
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out is in the range of [6, 16], we can tell there is an upper bound for the space 

requirement. As shown in Figure 7, the maximum space taken by STR index tree is 

nearly 10MB. On the other hand, when the number of profiles in database rises to 1 

billion, 100 GB will be needed to hold all the profiles.   

5.3 Query Latency 

Query latency is the time to get all the related profiles for a query. It shows the 

responsiveness of the matching system to the user, with lower latency indicating better 

responsiveness. In these experiments, we measure the average query latency of all the 

successful queries at a given k. Particularly, time cost of PTME and PPME are analyzed 

respectively.  

To evaluate time complexity of PTME and PPME, we implemented a DNA profile 

generator to create one set of DNA profiles for database server on PC1 (Intel Core Dual 

2.00GHz, 2GB RAM) and a query from PC2 (Intel Xeon 2.40GHz, 2GB RAM). We 

change the number of profiles in database from 104 to 105, …, 109, and perform database 

query respectively.  

5.3.1 Phase I: PTME  

As the first phase of our system, the performance of PTME is critical. In this section, we 

shows the time required to search in STR index tree in order to find all candidate profiles, 

which will be used for phase II. Since STR index tree is in memory and it is basically a 

tree structure. The effectiveness of matching probability is evaluated. Figure 8 compares 

PTME with MP-unbiased method using query latency measured in seconds. Observe 
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that PTME has lower query latency than MP-unbiased index trees. One can get up to 1.8 

times faster query responses in PTME when compared to MP-unbiased index tree. 

Figure 8 also tells that the time to locate candidates grows logarithmically as the size of 

database increase. This is because as the database grows, more candidates exist in the 

index trees. Therefore, more search time is needed totally. 

 

Fig. 7. Space cost of index tree 

 

Fig. 8. Time cost of plain-text element matching engine 
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Fig. 9. Time cost of privacy-preserving element matching engine 

 

 

 

Fig. 10. The relationship between candidate number and PPME time cost 
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5.3.2 Phase II: PPME 

After we load all candidates into memory, we are able to evaluate the time cost for 

privacy-preserving matching between user’s samples and these candidates.  

We have implemented PPME with the public crypto library of MIRACL [11]. I 

chose G1 as an additive group of points on E: y2 = x3 + x, with the prime order q = 2159 

+ 217 + 1, and SHA-1 [12] is selected as H1.. Each experiment is repeated for ten times 

to get the average computing costs, and the results are presented in Figure 9 and Figure 

10. The computing cost grows linearly with the number of DNA profiles: 1 second is 

needed for matching of 100 profiles, while 72 seconds for matching of 10,000 profiles.  

5.4 Query Hit Rate 

A query is said to be successful if it results in at least one related profile hit. Total 

number of query-hits returned for a query started in the system can also be used as an 

end-to-end metric to compare different DNA databases. Figure 11 shows the comparison 

using this metric. As the size of the database grows, the system achieves higher number 

of query-hits, which climb up to 95% as at the size of 109, while a 107-scale database 

only guarantees a 8% query-hit rate. This infers that more related profiles can be 

discovered in a bigger database.  
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Fig. 11. Query hit rate 
 
 

 

Fig. 12. Communication cost between user and database 
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5.5 Communication Cost 

We also measure the average communication cost of privacy-preserving profile 

matching between user and database, i.e., network bandwidth, at the database’s side in 

the system. A database’s bandwidth cost limits the number of incoming queries it can 

process concurrently. When a database is overloaded, the query of a user is delayed and 

added to an output queue of infinite length. For equal query rates, the database achieves 

smaller bandwidth cost would have less queue length at its users’ side. Figure 12 

compares the average bandwidth cost for different size of databases. It shows that the 

bandwidth requirement grows linearly with the number of candidates, based on the 

measurements made by Wireshark [19]. Observe that at the size of 109, the average 

bandwidth is less than 200 KB. It means 625 queries can be performed concurrently with 

a 1Gb Network Interface Card.  
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CHAPTER VI 
 

CONCLUSION 

 
This thesis has proved a high-performance system for privacy-preserving DNA database 

forensics. We provide two key techniques related to DNA database query. The STR 

index tree aims at indexing the disk location of each DNA profile in the database. Locus 

matching probability is used to build a light-weight index tree. It groups DNA profiles 

based on allele. Moreover, we develop a privacy-preserving matching engine, which is 

used to find related profiles without leaking unrelated profiles between user and the 

database. The simulations have shown that PTME has faster query latency than MP-

unbiased method. PPME performs much better than previous methods in a million-scale 

database. The results will help the community to develop new techniques to cope with 

data security while trying to find related entries in the database, at large scale. 
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APPENDIX 
 

Table III— Observed allele distributions (as %) for 13 STR loci in African American 
 

Alell
es 

D3S135
8 

VW
A 

FGA D8S
1179 

D21S1
1 

D18S5
1 

D5S81
8 

D13S317 D7S
820

CSF1PO TPO
X 

TH01 D16S
539 

6    0.3       8.6 11.0  

7       0.3  0.7 4.3 2.2 44.1  

8       5.0 3.6 17.4 8.6 36.8 18.6 3.6 

9    0.6   1.4 2.8 15.7 3.3 18.2 14.5 19.9

9.3            10.5 11.0

10 0.5  0.3 2.5  0.6 6.4 5.0 32.4 27.1 9.3 1.4 29.4

11  0.3  3.6  0.6 26.1 23.7 22.4 20.5 22.5  18.7

12 0.2   10.8  5.8 35.6 48.3 9.1 30 2.4  16.5

13 1.2 0.6  22.2  5.6 24.4 12.6 1.9 5.5   1.0 

14 12.1 6.7  33.3  6.4 0.6 3.6 0.5 0.7    

15 29.1 23.6  21.4  16.7  0.3      

16 30.7 26.9  4.4  18.9        

17 20 18.3  0.8  16.4        

18 5.5 13.6 0.8   13.1        

18.2   0.8           

19 0.5 7.2 5.3   7.8        

19.2   0.3           

20 0.2 2.8 7.2   5.6 0.3       

21   12.5   1.1        

22   22.5   0.6        

23   12.5           

24   18.6  0.3         

25   10   0.6        

26   3.6  0.3         

27   2.2  6.2         

28   1.7  21.5         

29   0.6  19.0         

29.2     0.3         

30   0.3  17.9         

>30   0.3  34.6         
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