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ABSTRACT

Imaging Heterogeneous Objects Using Transport Theory and Newton’s Method.

(December 2011)

Nathaniel Raymond Fredette, B.S., Marquette University

Co–Chairs of Advisory Committee: Dr. Jean C. Ragusa
Dr. Wolfgang Bangerth

This thesis explores the inverse problem of optical tomography applied to two-

dimensional heterogeneous domains. The neutral particle transport equation was

used as the forward model to simulate how neutral particles stream through and

interact within these heterogeneous domains. A constrained optimization technique

that uses Newton’s method served as the basis of the inverse problem.

The capabilities and limitations of the presented method were explored through

various two-dimensional domains. The major factors that influenced the ability of

the optimization method to reconstruct the cross sections of these domains included

the locations of the sources used to illuminate the domains, the number of separate

experiments used in the reconstruction, the locations where measurements were col-

lected, the optical thickness of the domain, the amount of signal noise and signal bias

applied to the measurements, and the initial guess for the cross section distribution.

All of these factors were explored for problems with and without scattering.

Increasing the number of sources, measurements and experiments used in the

reconstruction generally produced more successful reconstructions with less error.

Using more sources, experiments and measurements also allowed for optically thicker

domains to be reconstructed. The maximum optical thickness that could be recon-

structed with this method was ten mean free paths for pure absorber domains and

two mean free paths for domains with scattering. Applying signal noise and signal

bias to the measured fluxes produced more error in the reconstructed image. Gener-
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ally, Newton’s method was more successful at reconstructing domains from an initial

guess for the cross sections that was greater in magnitude than their true values than

from an initial guess that was lower in magnitude.
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CHAPTER I

INTRODUCTION

A. Motivation

A current area of research interest in national security is to effectively and efficiently

determine the presence of highly-enriched uranium (HEU) or plutonium in the many

shipping containers that enter ports in the United States. This interest comes as a

result of the 9/11 Commission Act passed by Congress in 2007 that requires 100% of

inbound cargo to be scanned by 2012.1 It appears that this requirement may not be

fully achieved by 2012, but as of Feburary of 2009 eighty percent of the 11.5 million

inbound cargo containers were being scanned.2

The systems used today in all major U.S. ports to determine the presence of

radioactive material within cargo containers are Radiation Portal Monitors (RPM).

These devices generally exist in the form of a gate or series of gates that the containers

can be driven through and scanned. The monitors are effective for determining the

presence of radiation, but offer little more information about the particular source.

This simple pass-fail system leads to many false alarms as many everyday items emit

radiation including smoke detectors due to the americium-241 source contained inside,

bananas, milk, cocoa powder and lean beef due to the trace amounts of potassium-

40,3 and fire brick and kitty litter due to their high clay content which often contains

traces of uranium and thorium. In addition, if an illuminating source is imposed on the

boundary of the container, the contents of the container may become activated. These

materials include steel, aluminum and many agricultural products.3 Current portal

The journal model is Nuclear Science and Engineering.
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monitors also have not proven to be that effective at identifying natural or highly

enriched uranium (HEU). In fact, the best available Advanced Spectroscopic Portal

Monitors (ASP) are only capable of identifying bare HEU 70-88 percent of the time

and masked HEU and depleted uranium (DU) only 53 percent of the time.4 Therefore,

a better algorithm that uses more information collected from better detectors about

the specific material distribution within the container is desired.

B. Inverse Problems

An inverse problem can be generally defined as a case where one wants to know the

values of some unknown quantities, often the material properties of a object, but only

has access related quantities.5 This relationship between the desired quantities and

the related quantities can be modeled by a partial differential equation (PDE). This

PDE serves as the basis for the forward model, since the related measurable quanti-

ties (the particle flux or count at a detector location, for instance) can be computed

from solving the PDE given some yet unknown quantities (again material proper-

ties). Therefore, one must successively guess values of the unknown parameters and

solve the PDE to obtain values for the measurable quantities. The values of the

computed quantities that result from solving the PDE are then compared with the

actual observed quantities and sophisticated techniques are used to propose the next

guess for the values of these parameters. This process is then repeated until the dif-

ference between the observable quantities and the computed quantities is reduced to

some acceptable level. These inverse problems can be found in many fields including

groundwater flow,5,6 DC resistivity,6 hydraulic head,5 optical tomography,5–15 mag-

netotelluric inversion6 and gravity gradiometry.5 Optical tomography is the type of

inverse problem considered in this thesis.

Since only the values of some related quantities are available at some distance
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away from the object of interest, inverse problems are often ill-posed. This means

that the observable quantities could arise from an object of many different parameter

distributions. Because of this fact, the solution to inverse problems is known to be

much more difficult to find than simply solving the forward problem. There are also

many factors common to many inverse problems that effect the ability to find the

searched parameters. Some of these factors are the number and locations of the

measuring devices, the number of separate experiments that are conducted where

measurements are collected, the amount of signal noise present in the environment,

the amount of signal bias due to the limitations of the measuring device, the initial

guess for the parameter distribution, the material properties of the object and any

surrounding materials and the magnitude of the measurable signal. Each of these

factors that affect the ability to find the solution to the inverse problem will be

considered in this thesis.

The specific inverse problem considered in this Thesis is the problem of inverse

neutral particle transport through a cargo container. Like many inverse problems,

only a measurable quantity of radiation that escapes the container will be used to

generate an image of the container. Therefore, when actually implemented, some de-

tection system will be required to collect measurements of the fluxes emitted from the

cargo container. Many different detectors can can be used in portal monitors such as

scintillators such as Sodium Iodide (NaI), High Purity Germanium (HPGe), Polyvinyl

Toluene (PVT) for gamma particle detection and gas-filled detectors like Helium-3

(He-3) tubes for neutron detection. These detectors are positioned within the portal

monitor on multiple sides of the scanned vehicle to measure the radiation emitted

from the boundary of the vehicle. The portal monitors are used to measure the natu-

ral radiation that is emitted from the contents of the cargo container passively or the

emitted radiation when sources are used to actively illuminate the container by im-
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posing neutral particles on different sides and at different angles. Active interrogation

will be the focus of this thesis.

Several simplifications will be made in this thesis to lay the ground for a proof-

of-principle demonstration. The cargo container problem will be simplified to a study

on two-dimensional heterogeneous domains. The external illuminating sources will

be imposed on the boundaries of the domains and only the most normal angles deter-

mined by the Sn angular quadrature will be used. The number of possible imposed

boundary sources and measurement locations considered in this thesis will be equiv-

alent to the dimensions of the material map for the considered domain. Several other

assumptions will be made in this thesis to simplify the inverse transport process and

they will be presented in the Sections III-A, III-B, IV-A and IV-C.

C. Optimization

In mathematics, a simple optimization process can be defined as a systematic ap-

proach to minimize or maximize some real function based on choosing values of pa-

rameters from a set of acceptable values. There are many different optimization

methods that cater to many different specific problem types. Inverse problems are

often difficult, ill-posed optimization problems where convergence cannot be guar-

anteed. Constraints can be applied to the optimizer to narrow the set of possible

parameters that will be proposed. In addition, the more information that is provided

in the optimization routine, the faster this process can be conducted. This is why

derivative-free methods where the gradient of the objective function is not provided

generally perform slower than methods that use the gradient information. However,

the faster Newton-based routines that use gradient information can introduce addi-

tional convergence problems. For instance, if the gradient of the objective function is

very close to zero, then Newton’s method can propose a new guess for the parameters
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that is very far from the actual minimum and the method can diverge. Both the

Nelder-Mead and Newton’s methods were explored in this document.

In the case of our problem, the objective or misfit function that is to be minimized

is a measure of the difference between the measured boundary angular fluxes as

recorded from the detector and the computed angular fluxes as calculated from our

model. The computed angular fluxes with be calculated by solving the transport

equation iteratively with updated parameters provided by the optimization routine.

The formulation of the optimization problem yields systems of nonlinear equations

because of the coupling between angular fluxes and cross sections.

D. Outline of Thesis

In Chapter II, a summary of some methods that have been explored with respect

to solving the inverse problems of cargo container imaging, optical tomography, ap-

plied DC-resistivity and magnetostatics is presented. In Chapter III, the transport

equation and adjoint transport equation are presented as the balance equations used

to model the transport of radiation through a heterogeneous medium. In Chapter

IV, the optimization process is described as well as some of the methods investigated

in this document. In Chapter V, the particular optimization problem of inverse

neutral particle transport through a cargo container is introduced. This entails es-

tablishing the objective function, Lagrangian relationship, the optimality conditions

and the Hessian matrix. In Chapter VI, some sample problems are presented that

were explored to determine some of the capabilities and limitations of the method.

Results from both the derivative-free and Newton based methods are presented in

this section. In Chapter VII, conclusions are drawn from the results collected in this

study. Suggestions for future research in inverse neutral particle transport applied to

cargo container imaging are also made in this section.
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CHAPTER II

PREVIOUS WORK

A. Inverse Neutral Particle Transport Related to Cargo Container Imag-

ing

The conservation of neutral particles can be modeled using the transport equation.

This neutral particle transport equation is applicable to neutron, gamma and coupled

neutron-gamma transport. In this thesis, only neutron transport will be considered,

but the model is applicable to other neutral particle transport problems.

The idea of using neutron transport to noninvasively infer the contents of ship-

ping containers is a topic of growing interest for national security reasons. Many

researchers in United States are working to solve this challenging problem. Several

researchers at Texas A&M University have investigated this topic and three unique

approaches to cargo imaging are discussed in the following paragraphs.16–18

First, the idea of using both transmitted and scattered radiation to reconstruct

images of a object was suggested by Scipolo.16 In the process of using transmitted

radiation, the difference between the original beam and the portion of the beam that

makes it through an object is used to generate an image of the object. In other

words, it is the removal of some percentage of the original beam in some pattern due

to scattering and absorption that allows one to generate an image of an object. In

scattered radiation, the angle at which the radiation is redirected after an interaction

within some object can be used to make inferences about the material properties of

the object. A Sn quadrature was used as the basis of the angular dsicretization and

the Step Characteristic (SC) method was used as the spatial discretization scheme.

The SC method transforms the angular dependence of the transport equation into
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a one dimensional equation by rotating the axis of the coordinate system along the

direction of motion. The angular flux at one point along this line and the known

source term can be used to solve for the angular flux anywhere along the characteristic

line. The effects of uncollided and collided fluxes are then added and angular fluxes

within the entire domain can be determined. The inverse models were composed of

the steepest decent and conjugate gradient routines. The steepest decent method

used the gradient of the objective function to determine the direction that minimizes

the objective function. The conjugate gradient method minimizes the residual of

the objective function and the direction of the updated guess for the parameters is

determined by a linear interpolation between the old direction and the new gradient.

Because the angular flux is calculated as a separate combination of the contributions

due to uncollided and collided fluxes, the gradient must also be calculated in this

manner. This method showed promise in its ability to correctly identify the location

and cross sections of inclusion materials within a domain with some degree of error.

The method did tend to smear the size and position of the inclusion. This is possibly

an artifact of how the SC method calculates the angular fluxes along the characteristic

lines.

Sternat17 suggested to use diffusion theory to approximate neutral particle trans-

port through a medium and constrained optimization to reconstruct the cross sec-

tions of two dimensional domains. The chosen optimization technique was Newton’s

method with the Armijo algorithm applied for step length control. The gradient and

Hessian matrix were formed and substitution was used to form the Schur complement

to avoid inverting the large Hessian system. The steepest decent method was also

employed for comparison sake. The effects of reconstruction depth, resolution and

number of experiments was investigated. The number of experiments generally had

the effect of reducing the amount of iterations required for the reconstruction process
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and increasing the accuracy of the final image. Single energy and multigroup mod-

els were studied and signal noise and bias were added to the synthetic measurement

data in some of these models to better simulate real detection systems. The method

was successful in its ability to reconstruct many domains, but a reconstruction depth

limit of 6-7 characteristic lengths was determined. Some multigroup models were

considered where energy dependent cross sections were reconstructed using illumi-

nating sources with specific energies. Adding energy dependence, signal bias and

noise increased the complexity of the imaging problem and as a result, the size of the

domains that could be reconstructed was reduced. Using multiple experiments gener-

ally improved image quality in fewer iterations, but a point of diminishing returns was

noticed where more experiments added little new information to the reconstruction

and image quality showed little improvement.

Wu18 suggested the idea of assuming a finite library of possible materials within

the container. This then allowed for the use of a discrete optimization method where

a discrete material indicator was proposed rather than the continuous cross section

value. This method also employed a combined deterministic and stochastic methods

for simulating neutron transport. First, inexpensive calculations are conducted using

a gradient based deterministic search to get a general idea of the domain using a single

energy group, a coarse spatial mesh or diffusion theory instead of transport theory.

Next, cells that have similar cross sections or material properties are grouped together

and interface regions that may contain multiple materials are identified. Third, the

materials that possess similar properties to those identified in the initial deterministic

search are placed in material candidate libraries. Fourth, additional constraints can

be applied to the material regions to limit the candidate materials. Finally, an itera-

tive optimization process is conducted where guesses for the material distributions are

proposed and a high resolution transport forward model is used to compute the objec-
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tive function. Because the optimization problem has been reformulated into a discrete

problem, meaningful derivatives of the objective function can not be computed and a

gradient based technique can not be used. Instead, the problem becomes one of com-

binatorial optimization where random numbers and some information learned from

previous guesses are used to generate the new material distribution for the domain.

The idea of reformulating the continuous optimization problem of determining cross

sections into a discrete one of determining materials from a candidate library proved

to be a novel approach to the cargo container imaging problem. However, this method

generates a new interface region materials which contain some combination of two or

more materials. Of course, these regions do not really exist and the size of these

regions is a function of the resolution of the image. This method is also subject to

the same limitations of the other techniques with regard to optically thick and highly

scattering materials.

B. Radiation Imaging in Medical Physics

Optical tomography is a method of noninvasive diagnostics that is growing in interest

in the medical field. In this process light is used to illuminate tissue and measure-

ments are taken of the transmitted and scattered light. Because of the different

scattering and absorption coefficients of fat, muscle, white matter, grey matter, etc.,

measurements of the transmitted and scattered light can be used to reconstruct an

image that depicts the tissue sample. This imaging technique shows promise in ap-

plications which include breast and brain imaging for the detection of cancers, finger

joint imaging for the diagnosis of arthritis and blood toxicology. Many numerical

methods have been reviewed that use the photon transport equation as the forward

model and some optimization techniques as the inversion method.

Klose7–9 and Hielscher7–12 have thoroughly investigated various numerical meth-



10

ods for imaging in the field of optical tomography. In most of these methods, the

equation of radiative transfer (ERT) or transport equation is used as the basis of the

forward model.7–11 In some of these studies7,10 the time dependent transport equation

was considered, but in most cases the transport equation was simplified by the steady

state assumption.8,9, 11 However, Hielscher and Bartel also proposed the time depen-

dent diffusion equation as the model of light propagation in tissue.12 The objective

function took many different forms in these many studies. In all cases an objective

function is formed as a least squares comparison between the measured and computed

fluxes and it is used to quantify their difference. However, this least squares term is

often normalized in different ways. The objective function is normalized by the mea-

surements or detector readings of each source detector pair,8,11 the predicted fluxes

for each source detector pair,7 a normalization constant that quantifies the confidence

in the accuracy of a certain measurement,9 or some other constant.12 Abdoulaev, Ren

and Hielscher proposed the addition of a regularization term to the objective function

that imposes additional constraints.10 This Tikhonov regularization functional is in-

cluded in the objective function to help suppress high-frequency components of the

optical properties because of the ill-posedness of the optical tomography problem.

Various different optimization techniques were applied in the studies by Hielscher

and Klose. A one-dimensional line search using the golden section rule along the

gradient direction was used to minimize the objective function in one paper.7 The

gradient of the objective function is determined by differentiating the adjoint trans-

port equation which is accomplished by solving the transport equation in the reverse

direction. The method displayed image resolution improvement as the number of

iterations was increased. The test cases also displayed the trend that increasing the

number of sources and the number of measurement points leads to image resolution

improvement, but there did exist a point of diminishing returns where more exper-
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iments and measurements adds little improvement to quality. Klose and Hielscher

propose the use of a quasi-Newton method that uses the secant condition to ap-

proximate the Hessian system.8 This specific quasi-Newton method is referred to as

Broyden-Fletcher-Goldfard-Shanno method (BFGS) or the limited-memory Broyden-

Fletcher-Goldfard-Shanno (lm-BFGS) and it is used to find the zeros of the gradient

of the objective function and the minimum of the objective function. The Armijo

or sufficient decrease line search was implemented with the quasi-Newton method to

ensure that the method did not overshoot the minimum. The quasi-Newton meth-

ods were compared to a conjugate gradient optimization technique and a 2-10 fold

reduction in the number of iterations to minimize the objective function was noticed.

This was determined to be a result of the better search direction determined in the

quasi-Newton method and inexact line search which required fewer evaluations of the

forward model. The next method used lm-BFGS to determine the spatial distribution

of fluorescent sources contained within biological tissue.9 This method was employed

along with an adjoint differentiation scheme that allows for the gradient of the ob-

jective function to be calculated during the computation of the forward model. This

adjoint differentiation technique eliminated the need to evaluate the adjoint transport

equation and decreases the number of computational operations. Experiments were

conducted with a phantom and the trend of improved image depth resolution was

noticed as the sources and detectors were positioned on more sides of the phantom

was noticed. The idea of rescaling the measurements was also explored to reduce the

likelihood of reconstruction errors created by coarse spatial grids, ray-effects or false

scattering.

In a contrasting method, Abdoulaev, Ren and Hielscher10 use an augmented

Lagrangian approach where the inverse transport problem is formulated into a PDE-

constrained optimization problem. The new objective is to minimize a Lagrangian



12

function that is then formed as the difference between the objective function, the

constraints and a penalty term that measures how severely that the constraints are

violated for the current guess of the optical properties and fluences. The gradient

of this now augmented Lagrangian function is then computed to form the Karush-

Kuhn-Tucker (KKT) optimality conditions and lm-BFGS is also employed to find the

minimizer of the Lagrangian function. This PDE-constrained optimization technique

showed a 10-30 fold decrease in computing time as compared with unconstrained

optimization techniques and is highly parallelizable.

Another technique used a gradient based optimization technique that uses the

lm-BFGS scheme extended to three dimensions.11 Hexahedral and tetrahedral spacial

meshes were examined on geometries similar to the human head. The limitations of

the current implementation to only consider isotropic scattering was mentioned, but

plans to add anisotropy were discussed.

Yet another technique considers two different inverse problems where n tissues

types with n different optical properties are known to be contained within a medium.12

In the first case, the volume fractions and locations of these tissues are unknown prior

to the reconstruction, where as in the second case the volumes and tissue types are

assumed to be known prior to the reconstruction but not the locations of the tis-

sue types. Penalty factors for the two cases were applied to the objective function

and a gradient-based iterative image reconstruction (GIIR) scheme was employed.

Generally, the addition of the penalty terms limited the search space of the gradient

method and led to improvements in image quality. The sensitivity of the reconstruc-

tion method with respect to the chosen hyperparameter was noted and the GIIR

method with penalty terms was compared to the linear-perturbation approach.

Bangerth5,13 and Joshi13 proposed the idea of applying adaptive finite element

methods to the solution to inverse problems, with applications to optical tomogra-
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phy. In the first paper,5 Bangerth outlines a general framework for the solution of

inverse problems that utilizes adaptive finite element meshes. This framework formu-

lates inverse problems as PDE-constrained optimization problems were a Newton-type

method is to minimize a Lagrangian function comprised of an objective function and

its constraints. A Tikhonov regularization term is included in the Lagrangian to sup-

press unwanted features in the solutions of the forward model and parallelization is

considered throughout the optimization process. A line search technique is proposed

that uses the norm of the residual of the optimality conditions as the merit function

and the Schur complement method is used to avoid the inversion of the large Hessian

matrix. This framework was applied to an optical tomography test case and a tumor

of a centimeter in diameter was correctly identified and located. In addition, the

adaptive mesh technique proved less computational expensive because of the ability

to conduct initial iterations with a coarser mesh. In the second paper,13 the specific

florescence tomography problems was discussed more thoroughly as the process of illu-

minating a fluorescent dye with red light and the emitted infrared light is measured.

The coupled photon diffusion equations were provided as the basis of the forward

model. The Lagrangian formulation for the PDE-constrained optimization problem

consisted of the least squares error function and Tikhonov regularization term, the

constraints on the state equation and the parameter inequalities. A Gauss-Newton

method is used where an approximation of the Hessian system is used to determine

the search direction for the value of the updates of the parameters. The merit func-

tion based line search is then employed to determine an acceptable step length and

the Schur complement method is employed to decompose the approximate Hessian

matrix. The choice of the regularization functional is more explicitly explained as

a function of the material property distribution and the goal reducing the regular-

ization parameter as the misfit decreases was presented. Again, the method proved
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capable of imaging a small tumor located in a lymph node in the groin of a Yorkshire

Swine. The benefits of the adaptive meshes with respect to the reduction in over-

all computational time and to increase image resolution in the areas of concern was

presented.

Roy and Sevick-Muraca14 propose an active constrained truncated Newton method

for optical tomography. In this method the coupled photon diffusion equations formu-

lated in the frequency domain are solved using Galerkin finite elements in the forward

model. The objective function is formed as the summation over all sources and all

detectors of the product of the difference between the computed and measured fluxes

and their respective complex conjugates. An active constrained method is then em-

ployed where the set of optical properties that lie between a lower and upper bound

is first determined, then the subproblem of minimizing the objective function with

respect to the remaining variables is approached as an unconstrained minimization

problem. These upper and lower bounds are determined dynamically and the search

space for the parameters is reduced with each iteration. A Newton method with

trust region is then used to updated the free variables and a line search using both of

the Wolfe conditions was employed. Reverse automatic differentiation (RAD) was in-

cluded in the forward model to calculate the gradient of the error function without the

need for an additional sweep. The active constrained Newton method was tested on

a few two-dimensional domains and the results were compared with those generated

with an unconstrained gradient based method. The active constrained method was

more efficient, accurate and less computationally expensive than the unconstrained

gradient based technique. This was mainly attributed to the second order nature of

the Newton method and the reduction in the search space for the parameters due to

the constraints.

Hussein and Bowles15 propose a method that uses the incoherently scattered ra-
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diation in imaging. The forward model is generated on a pixel by pixel basis and is

comprised of an attenuation term for the beam before it enters the pixel of interest, a

probability term that quantifies the likelihood of scattering and another attenuation

term for the scattered beam. This forward model yields a detector response function

that allows for duplicity of possible solutions based on whether the dominant inter-

action process is scattering or attenuation. Therefore, a numerical scheme for biasing

the solution towards the dominant process is included to overcome this problem of

multiple solutions. The source term in each pixel is then calculated in a sweeping

manner along the source beam to the pixel of interest and then along the scattered

direction to the measurement point. The imaging algorithm was tested on meter scale

cargo containers where the detection of weapons was the goal. The reconstruction

scheme using scattering radiation and the contraction method proved successful in re-

constructing the many test cases examined. The scaling procedure used to modify the

measurements improved the conditioning of the problem to allow for the reconstruc-

tion of noisy systems without further constraints or regularization. It also permitted

the imaging of low density materials and thin objects and the method to be less

sensitive to initial guesses.

C. Imaging Applied to DC-Resistivity and Magnetostatics

Haber and Ascher6 suggest formulating the inverse problem as a constrained opti-

mization problem where a preconditioner can be applied directly to the optimality

conditions derived from a Newton-type method. The objective function is formed as

the sum of the least squares difference and the Tikhonov regularization term. The

Lagrangian is then formed as the sum of the objective function and the product of

the constraints and the Lagrange multiplier. The KKT system is the calculated as

the first and second partial derivatives of the Lagrangian. The Hessian system is
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then permuted so that the blocks on the diagonal of the matrix dominate and a

reduced Hessian is computed by decomposing the larger system. A preconditioner

that approximates the inverse of the large permuted Hessian system is then used to

avoid the computationally expensive inversion process. The suggested method was

tested on DC-resistivity and magnetostatic problems. In both cases the proposed pre-

conditioned symmetric quasi-minimal residual (PSQMR) method was compared to a

preconditioned conjugate gradient (PCG) method. The number of iterations and the

total number of floating point operations were used as metrics for the performance

of the method. Generally, the PSQMR method required more iterations, but less

floating point operations per iteration than the PCG method. The main advantage

noticed by the PSQMR method was the elimination of the need to maintain conju-

gacy of the direction vectors to a high accuracy when using the conjugate gradient

method.
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CHAPTER III

TRANSPORT THEORY

A. Balance Equation

The behavior of a neutron population within some differential volume of interest

can be described by the neutron transport equation whose unknown quantity is the

angular flux. Neutrons are produced or removed from a system in several ways and

these processes can be described in a balance equation or Eq. (3.1):19

1
v(E)

∂ψ(~r, E, ~Ω, t)
∂t

= −~Ω · ~∇ψ(~r, E, ~Ω, t)− Σt(~r, E)ψ(~r, E, ~Ω, t)+∫ +∞

0
dE ′

∫
4π
dΩ′Σs(~r, E ′ → E, ~Ω′ → ~Ω)ψ(~r, E ′, ~Ω′, t)+

S(~r, E, ~Ω, t) (3.1)

Here, the term with the time derivative represents the change in the angular

flux with respect to time. In this study of the cargo container imaging, the neutron

population is assumed to be at steady state and this term in the neutron transport

equation is zero. The second and third terms of Eq. (3.1) represent the mechanisms

by which neutrons can be removed from a specific direction and energy group within

a specific differential volume across a specific time interval. These loss terms repre-

sent how neutrons are removed due to streaming through and interaction within the

differential volume. In imaging, the leakage term is important because of the ability

to measure the leaked neutrons that exit the boundary of the domain. The fourth and

fifth terms of Eq. (3.1) represents the mechanisms by which neutrons are introduced

into the differential phase-space. These mechanisms are due to scattering within the
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system and internal sources. Internal sources are especially interesting in cargo con-

tainer imaging because the presence of internal sources will indicate whether or not

SNM is confined within a container. This thesis will only consider a single energy

group analysis, the dependence of all of the terms on energy can also be removed.

Now that we have applied some simplifying assumptions to the neutron transport

equation, Eq. (3.2) results:

~Ω · ~∇ψ(~r, ~Ω) + Σt(~r)ψ(~r, ~Ω) =
∫

4π
d~Ω′Σs(~r, ~Ω′ → ~Ω)ψ(~r, ~Ω′)+

S(~r, ~Ω) for ~r ∈ V, ~Ω ∈ S2 (3.2)

In addition, it is important to remember that the source term of Eq. (3.2) can

include internal sources due to fissionable material or other internal sources contained

within the differential volume. However, no fissionable materials were considered in

this thesis. In the cargo imaging problem, illuminating sources are often imposed on

the boundary of the domain to determine the contents of the domain. The boundary

conditions that describe these illuminating sources are given in Eq. (3.3):

ψ(~r, ~Ω) = ψinc(~r, ~Ω) for


~r ∈ ∂V

~Ω · ~n(~r) < 0
(3.3)

Here, ψinc(~r, ~Ω) is the angular flux imposed on the domain from an illuminating

source such as a neutron source from an x-ray generator. Eq. (3.2) can then be

written in matrix form to better represent the system of linear equations that results

as the equations are discretized with respect to space and angle:
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AΨ = q (3.4)

This discretized operator, A, seen in Eq. (3.4), is referred to as the transport

operator. This transport operator is formed as the difference between the loss and

scattering matrices. q is the source term that contains the contributions to the neutral

particle fluxes due to internal volumetric and boundary sources.

B. Adjoint Transport Equation

The adjoint transport equation serves as the basis of the backward model. By solv-

ing the adjoint equation, the Lagrange multipliers or importance function can be

determined. Obtaining this importance function is crucial to solving the constrained

optimization problem. The adjoint transport equation is given in Eq. (3.5):

A†Ψ† = q† (3.5)

Here, Ψ† is the adjoint angular flux, q† is the adjoint source term and A† is

the adjoint transport operator. Since the A matrix is comprised of only real-valued

quantities, the adjoint matrix A† is equivalent to the transpose of the A matrix or AT .

Eq. (3.5) determines how important a given source distribution is. In the remainder

of this thesis, Ψ† will be denoted as λ, the Lagrange multiplier, for consistency with

the notation used in the optimization literature. The adjoint source, q†, will be

determined by the optimality conditions for the optimization problem.
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CHAPTER IV

OPTIMIZATION TECHNIQUES

A. Overview

Optimization is the process of deciding which is the best choice from a set of choices.

Optimization involves minimizing some real valued cost function by systematically

choosing real valued parameters from a set of allowable values. Optimization is a large

field in applied mathematics with many different iterative approaches to achieve the

final solution parameters. The best optimization algorithm depends on the specific

problem being solved and the trade-offs between robustness, efficiency and accuracy

of each method.

The general form of an optimization problem can be formulated as the minimiza-

tion relationship seen in Eq. (4.1):20

min
x∈Rn

f(x) (4.1)

Here, x is the vector of variables or parameters, f(x) is the scalar objective func-

tion or misfit that we want to minimize and Rn is the set of all possible real numbers

to which the parameters belong. Based on knowledge of the problem or physical sys-

tem that is being modeled, often times the searchable space for the parameters can be

reduced to some subset of Rn. This reduction in the searchable space is accomplished

through the application of constraints to the optimization process. The general form

of a constrained optimization problem can be seen in Eq. (4.2):20
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min
x∈Rn

f(x) subject to


ci(x) = 0, i ∈ E

ci(x) ≥ 0, i ∈ I
(4.2)

Here, ci(x) is the equality or inequality constraint imposed on f(x), i is the

index of the constraint, E is the set of all equality constraints and I is the set of all

inequality constraints imposed on the minimization problem.

There are various classifications of problems that are encountered in engineering

applications that govern which optimization techniques are best suited for the prob-

lem. First, optimization problems can be constrained or unconstrained as evidenced

by Eq. (4.2). Constrained optimization problems have limitations that are imposed

on the objective function or parameters to limit the number of possible solutions. For

example, the parameters of cargo container domain represent the cross sections of

the materials contained within the container. Since a negative cross section has no

physical meaning, a logical constraint on this optimization problem would be to limit

the possible parameters that the optimizer could propose to values greater than or

equal to zero. Unconstrained optimization problems do not propose any limitations

on the solution process. Generally, the more information that can be provided to

the optimization routine, the more accurate and efficient the routine can be. How-

ever, the algorithms used in constrained optimization problems are generally much

more complex than those for unconstrained techniques and require more computa-

tions to determine the next update for the parameters. The cargo container problem

can be approached as either a constrained or unconstrained optimization problem.

Second, optimization problems can be discrete or continuous. This classification can

also be thought of as a constraint that is imposed on the solution parameters. The

cargo container problem is a continuous optimization problem because cross sections

are positive real valued numbers and are not limited to some discrete set. Third,
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optimization problems can be stochastic or deterministic. This classification of the

problems is rooted in the model that is used to represent the problem. Transport the-

ory as presented in this document is deterministically modeled, but similar processes

in particle physics can be stochastically modeled as well.

Just as there are many different classifications of optimization problems, there

are also many different optimization algorithms or methods used to achieve the so-

lution. These methods are all iterative, but they differ in the amount of information

they require to achieve the solution. All optimization routines make use of the ob-

jective function and any constraints that exist to arrive at the solution parameters.

Some optimization routines make use of the first and second derivatives of the objec-

tive function and constraints to solve the problem. Newton based methods generally

require first and second derivative information, where as derivative-free methods do

not. Derivative-free methods are applicable to a wider variety of optimization prob-

lems and require less computer storage, but require more computational time. Newton

methods require less computational time, but also require more computer storage and

are specific to problems where derivative information is accessible. Two methods are

investigated in this document. The first is the Nelder-Mead method, a derivative-free

method. The second is a Newton based method.

B. Nelder-Mead Method

The Nelder-Mead algorithm21 for function minimization is an unconstrained, derivative-

free optimization technique. It works by evaluating an objective function of n variables

by a creating a simplex of n+1 vertices. The objective function is then evaluated for

each of the combination of variables that form the vertices of the simplex, and the

combination of these variables that leads to the largest and smallest value of the ob-

jective function, xh and xl, are stored. Three operations are then preformed based
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on this largest value of the objective function which are reflection, expansion and

contraction. In reflection, the centroid of the simplex defined by all of the vertices

except the one with the largest objective function value, x̄, is calculated. The vertex

with the largest value is then reflected across the centroid using Eq. (4.3):

x∗ = (1 + α)x̄− αxh (4.3)

Here, α is a positive constant known as the reflection coefficient. The objective

function is then evaluated at this new reflection point and if the resulting value lies

between the maximum and minimum values of the original simplex, then this new

point replaces xh and a new simplex is formed. However, if this refection point yields

a value of the objective function which is new minimum, then an expansion can be

conducted to determine the amplification of magnitude of the reflection point based

on Eq. (4.4):

x∗∗ = γx∗ + (1− γ)x̄ (4.4)

Here, γ is a real number greater than one which is calculated based on the ratio

of the distance from the centroid to the expanded point, x∗∗, to the distance from the

centroid to the reflected point, x∗. Once the new expanded point has been determined,

the objective function is evaluated at this point. If the evaluation of the expanded

point is the new minimum, then the new simplex is formed by replacing xh by x∗∗.

Otherwise, the new simplex is formed by replacing xh by x∗. In the last case where

the objective function evaluated at the reflected point is larger than that of xh, a

contraction occurs described by Eq. (4.5):
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x∗∗ = βxh + (1− β)x̄ (4.5)

Here, β is a real number between zero and one which is calculated based on the

ratio of the distance from the centroid to the contracted point, x∗∗, to the distance

from the centroid to the original point, xh. In the contraction process, the value of the

objective function evaluated at the initial point is compared with that of the reflected

point and the larger of the two is redefined as xh. If the contracted point yields

an objective function that is greater than that associated with either the reflected

or original points, then all of the original simplex vertices are averaged with xl to

generate the new simplex. Otherwise, the contracted point replaces xh to form the

next simplex.

The Nelder-Mead algorithm is a robust algorithm that is only capable of finding

local minima. It only requires the evaluation of the objective function, which makes it

applicable to optimization problems where the objective function is non-differentiable.

It is also a very stable method that generally does not propose outrageous values for

the parameters, because the gradient is not used to propose new guesses for the

parameters. However, because only the objective function is evaluated, the method

requires many iterations and much computational time to locate the solution.

C. Newton’s Method

In optimization problems, Newton-based methods require the gradient and Hessian

system to be calculated in order to generate an updated prediction of the parameters.

Newton methods generally converge to the solution more rapidly than derivative

free methods, but they are less reliable and do not guarantee convergence unless

considered with a line search. In this thesis, the inverse neutral particle transport
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problem is tackled with Newton’s method as a constrained optimization problem. In

this constrained optimization problem, prior knowledge about neutral particle physics

is applied to the objective function in the form of a constraint. Only one equality

constraint will be applied to the objective function in this thesis even though other

constraints could be applied. Because of this, Eq. (4.2) can be simplified to consider

only equality constraints and the general formulation of the constrained optimization

problem becomes Eq. (4.6):

min
x∈Ω

f(x) where Ω = {x|ci(x) = 0, i ∈ E} (4.6)

Here, Ω is the acceptable domain space of possible parameter combinations de-

fined by the set of imposed equality constraints, E . In the case of the inverse neutral

particle transport problem, a set of equality constraints is applied to the optimization

problem that ensures that the transport equation is satisfied for every angular flux

at every angle and spatial coordinate. A relationship known as the Lagrangian func-

tional can be defined as the combination of the objective function and its constraints

or Eq. (4.7):

L(x, λ) = L(Σ,Ψ, λ) = f(Σ,Ψ) +
∑
i∈E

λici(Σ,Ψ) (4.7)

Here, λi is the importance factor and L is the Lagrangian. Also, it can be seen

that the objective function is only dependent on x which is comprised of the set of total

cross sections, Σt, scattering cross sections, Σs, and angular fluxes Ψ, where as the

Lagrangian is dependent on both x and λ. This evidences the fact that the objective

function requires only the evaluation of the forward model or transport equation and

the Lagrangian requires this computation plus the evaluation of the backward model
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or adjoint transport equation. This is because the Lagrangian function required that

the Lagrange multipliers, λi, be computed. These Lagrange multipliers track the

neutral particles in the reverse direction and they contain information about the

neutron importance with respect to the imposed sources.

1. Gradient and Hessian System

Now that the constrained optimization problem has been presented, the gradient and

Hessian systems can be computed as the first and second partial derivatives of the

Lagrangian function with respect to the coupled independent variables. In inverse

problems, these variables are generally the input and output variables of physical

model and importances or adjoint variables. The specific independent variables of the

inverse neutral particle transport problem are presented in the next section of this

thesis. Since the goal of the minimization process is to determine the minimum of the

objective function while still satisfying the constraints, the value of the gradient of the

Lagrangian function at this minimum is zero or ~∇L = 0. Therefore, the gradient of

the Lagrangian function, also known as the Karush - Kuhn - Tacker (KKT) optimality

conditions10 seen in Eq. (4.8), results:

F(y) =

∂L
∂x

∂L
∂λ

 =


0
...

0

 (4.8)

Here, x again represents the input and output variables of the transport model,

λ represents the importances or adjoint variables and y is one vector that combines

both x and λ. And again, it is desired to determine the point where the gradient of

the objective function is equal to zero. In the case of the inverse transport problem of



27

cargo container imaging, the determining where the gradient of the objective function

is zero is a nonlinear problem. Then Newton’s method is used to solve this nonlinear

problem. Newton’s method require the computation of the derivative of the gradient

of the Lagrangian function or the second derivative of the Lagrangian. This set

of all the second derivatives of the Lagrangian or the Hessian operator can then be

computed as the second derivative of the Lagrangian with respect to each the variables

and importances or Eq. (4.9):

H =

∂xxL ∂λxL

∂xλL ∂λλL

 (4.9)

Now that the gradient and Hessian terms have been presented, update values for

the parameters of interest can be computed. These parameters of interest now include

both the input and output variables of the transport model, x, and the importances

or adjoint variables, λ. So a new vector δy is introduced as a update vector that

contains all of the variables and importances and the general equation that is solved

in Newton’s method to calculate this update vector is Eq. (4.10):

δy = −H−1F(yk) (4.10)

Here, H is the Hessian matrix and F is the gradient vector. The change in the

vector of variables can then be used to update the vector of variables or Eq. (4.11)

where k represents the Newton iteration index:

yk+1 = yk + δy (4.11)
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Newton’s method is iterated until ||F(yk)|| < ε, where ε is a user-defined toler-

ance.

2. Schur Complement

The Schur Complement is a technique that recognizes that the Hessian system seen

in Eq. (4.9) is composed of multiple smaller matrices or blocks and uses substitution

to solve for each of the updated unknowns that are contained in δy individually. This

method is less computationally expensive because it requires that matrices only as

large as the blocks of the Hessian be stored and inverted as opposed to storing and

inverting the full Hessian matrix. The Schur complement method can be implemented

on any linear system that consists of blocks.

3. Line Search

When using Newton’s method, it is common to use a line search method to determine

an acceptable step length or fraction of the update direction vector to apply to the

vector of parameters. This is done because using the full Newton step length can

lead to divergence especially when the initial guess is far from the solution and the

objective function has a minimum that is difficult to locate. Divergence can occur

because often, a full step in the update direction can stride beyond the minimum and

this can yield a worse guess than in the previous iteration. The general equation that

displays how the parameters are updated in Newton’s method with the additional

damping parameter, α, can be seen in Eq. (4.12):

yk+1 = yk + αkδyk (4.12)

The goal of the line search is solely to determine an acceptable value for this
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damping parameter that yields an improved guess for the parameters. This damping

parameter is generally determined by computing two conditions. These two conditions

are collectively referred to as the Wolfe conditions. Separately, the first condition is

referred to as the sufficient decrease or Armijo condition and the second condition

is referred to as the curvature condition. Both of these conditions are more fully

explained in the following sections. In practice, an initial value for α of unity is

attempted first and the two conditions are checked. If these conditions are satisfied,

then the current step length is accepted, otherwise then value of alpha is reduced

and the conditions are recomputed. This process is repeated until the conditions are

satisfied or some minimum step length specified by the developer is achieved. This

minimum step length was chosen to be 10−3 and the step length was reduced by a

constant 1.5 with every iteration for this thesis. These values were chosen because

the value of the objective function changes only minimally with each successive guess

when a step size of this magnitude is applied and 1.5 was chosen because reducing

the step size by half each time was thought to reduce it too rapidly.

a. Sufficient Decrease Condition

The sufficient decrease condition evaluates a merit function, often chose to be the

objective function, and gradient at the current Newton iteration and compares these

values with the merit function evaluated at the next iteration as seen in Eq. (4.13):

φ(yk+αδy)≤ φ(yk) + c1α∇φ(yk)T δy (4.13)

Here, φ(yk+αδy) is the merit function evaluated at the possible next Newton

step, φ(yk) is the merit function evaluated at the current Newton step, c1 is a constant

that was set to 10−4 in the results in this thesis, α is the fraction of the update direction
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vector to be added to the current Newton iteration, δy is the update direction vector

and ∇φ(yk)T is the transpose of the gradient of the merit function evaluated at the

current Newton iteration. The sufficient decrease condition ensures that the value of

the merit function has been sufficiently reduced between successive iterations.

b. Curvature Condition

The curvature condition evaluates the gradient at the current Newton iteration and

compares it with the gradient of the merit function evaluated at the next iteration as

seen in Eq. (4.14):

∇φ(yk+αδy)T δy ≥ c2∇φ(yk)T δy (4.14)

Here, ∇φ(yk+αδy)T is the gradient of the merit function evaluated at the pos-

sible next Newton step and c2 is a constant that was set to 0.9 in the results in this

thesis. The curvature condition ensures that the slope of the merit function has been

sufficiently reduced between successive iterations. Satisfying both of these conditions

generally implies that the updated parameters represent a better approximation of

the true parameters.

Both the sufficient decrease and curvature conditions served as the basis of the

line search used for all of the test cases explored in this thesis except for in Example

14 or the optical thickness study with scattering. These two conditions were applied

to Newton’s method because they are a common line search that is often used to

ensure that Newton’s method does not overshoot the solution parameters.



31

c. Additional Checks

A negative cross section backtrack method was also applied that allowed the minimum

step length value to be 10−4 so that Newton’s method would be less likely to propose

negative values for the cross sections. Along these same line of thought, a backtrack

was also applied that reduced the step length if the proposed scattering cross section

was larger than the proposed total cross section for any region. This check also

allowed the step length to be reduced to values less than 10−4.
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CHAPTER V

INVERSE TRANSPORT PROBLEM

A. Objective Function

In the case of noninvasive cargo container imaging, the only available data are outgo-

ing angular flux measurements. Therefore, the model of radiation transport is used

to make predictions for these outgoing angular fluxes and a metric to quantify the

difference between the computed and measured fluxes is required. This measure of

the difference between the computed and measured angular fluxes is the objective

function or misfit. This function is generally computed using a least squares tech-

nique where the difference between the measured and computed fluxes is squared to

treat positive and negative flux differences equally. All of the squared flux differences

are then summed and then divided by two to yield a single value for the objective

function. Reducing the magnitude of this value should lead to a better material map

and is the basis for most optimization techniques. The expression that describes the

misfit in the inverse transport problem is given in Eq. (5.1):

f = 1
2

∫
∂V m

d2r
∫
~Ω·~n>0

d~Ω|~Ω · ~n|
(
ψ(~r, ~Ω)− ψ̃(~r, ~Ω)

)2
(5.1)

Here, f is the objective function, ∂V m is the subset of the cargo boundary where

measurements are taken, ~n the outward normal unit vector, ψ is the computed angular

flux and ψ̃ is the measured angular flux. This misfit function written in discrete

notation in Eq. (5.2) will serve as the metric to determine the quality of the material

map at every iteration for every simulation studied in this Thesis:
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∆ = 1
2(Ψ− Ψ̃)TM(Ψ− Ψ̃) (5.2)

Here, Ψ̃ and Ψ are the vectors of measured and computed angular fluxes for every

spatial coordinate, angle and energy group, respectively. The matrix M is a filtering

matrix that only extracts the outgoing angular fluxes that lie on the boundary where

measurements were taken. This is done again because for noninvasive imaging, the

only measurements that are accessible lie on some portion of the boundary.

B. Formulation of Lagrangian

As discussed in the section on optimization, the Lagrangian function is comprised of

the objective function and its constraints. In this inverse transport problem, the only

constraint that is applied to the objective function is that the proposed cross sections

must produce angular fluxes that satisfy the transport equation. The Lagrangian is

defined by Eq. (5.3):

L(Ψ, λ,Σ) = 1
2(Ψ− Ψ̃)TM(Ψ− Ψ̃) + λT (AΨ− q) (5.3)

Here, λ is the importance function or the adjoint angular flux vector, A is the

transport operator and q is the external volumetric and surface source terms of the

transport equation. Σ is the vector of parameters or cross sections and this term

can be found within the transport operator, A. Again, in order to minimize the

Lagrangian, the transport equation, (AΨ− q = 0), must be fulfilled.
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C. Optimality Conditions

The optimality conditions form the gradient or first derivative of the Lagrangian

with respect to the vector of angular fluxes, the vector of adjoint fluxes and the

vector of cross sections. These optimality conditions determine the direction of the

steepest ascent of the Lagrangian function and the location of the minimum of the

Lagrangian will be found when all these conditions are zero. When the derivative of

the Lagrangian functional is taken with respect to the variable vectors, a dimension

is added and the optimality conditions are vector quantities. The derivative of the

Lagrangian with respect to the vector of angular fluxes is Eq. (5.4):

∂L
∂Ψ

= M(Ψ− Ψ̃) + AT
λ =


0
...

0

 (5.4)

Here, it can be noted that the filtering matrix, M, and the adjoint transport

operator matrix, AT , are present. Conventionally, the variable vectors of the La-

grangian equation and the optimality conditions are presented as column vectors. In

this term, the filtering matrix extracts the measured flux differences and the result

is summed with the transport operator which models all the radiation interaction

processes weighted according to their computed importances. This term represents

the gradient of the objective function and the constraints with respect to the an-

gular fluxes. It is also important to note that the flux difference at the boundary,

M(Ψ− Ψ̃), is the adjoint source term in this adjoint problem. The derivative of the

Lagrangian with respect to the vector of adjoint angular fluxes is Eq. (5.5):
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∂L
∂λ

= AΨ− q =


0
...

0

 (5.5)

When the derivative of the Lagrangian is taken with respect to the importance

function, the result is the transport equation. This result is true for all optimization

problems. The derivative of the Lagrangian with respect to the vector of cross sections

is Eq. (5.6):

∂L
∂Σ

= λT
∂A
∂Σ

Ψ =


0
...

0

 (5.6)

The only place that the cross sections are found in the Lagrangian are in the

transport operator. Therefore, the derivative of the transport operator matrix with

respect to the vector of cross sections yields a three dimensional tensor or a vector

of two dimensional matrices. In other words, there should exist a collection of N

matrices based on the number of cross sections each with a row dimension with a

length equivalent to the length of the importance function and a column dimension

with a length equivalent to the length of the angular flux vector. In this term, the

contribution to the transport equation constraint attributed to each reconstructed

cross section is isolated in the ∂A
∂Σ term. In summary, the full gradient vector, F, is

Eq. (5.7):



36

F =


M(Ψ− Ψ̃) + AT

λ

AΨ− q

λT∂ΣAΨ

 (5.7)

D. Hessian Matrix

Newton’s method requires the formulation of the Hessian matrix, H, in addition to

the gradient of the Lagrangian function. The requirement is because the ~∇L = ~0 is

a nonlinear problems that must be solved with an iterative method. The optimality

conditions form a nonlinear problem because in each term a product of the variables

of the linear system or their derivatives can be found. Therefore, a root finding

method is needed to solve this nonlinear system and Newton’s method was chosen

because of the low computational time and number of iterations required to find the

solution. The Hessian matrix is formulated by taking a derivative of the optimality

conditions with respect to the angular flux, adjoint flux and cross section vectors. In

other words, this large matrix represents all of the combinations of the second partial

derivative of the Lagrangian equation with respect to each of the variable vectors or

Eq. (5.8):

H =


∂ΨΨL ∂λΨL ∂ΣΨL

∂ΨλL ∂λλL ∂ΣλL

∂ΨΣL ∂λΣL ∂ΣΣL

 (5.8)

Here, the rows of the Hessian represent each of the optimality conditions and all

have the same first derivatives. The columns of the Hessian represent the process of

taking the derivative of the optimality conditions with respect to each of the variable

vectors and all have the same second derivatives. From looking at this matrix, we
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can predict that the Hessian matrix should be symmetric because the below diagonal

derivatives are the same as the above diagonal derivatives taken in the opposite order.

The results of evaluating the derivatives of the Lagrangian for the inverse transport

problem are provided in Eq. (5.9):

H =


M AT ∂ΣATλ

A 0 ∂ΣAΨ

λT∂ΣA ΨT∂ΣAT 0

 (5.9)

This equation does display symmetry where the below diagonal sub-matrices are

simply the transposes of the above diagonal sub-matrices. Because of the ambiguity

associated with taking the transpose of a vector of matrices for the ∂ΣAT term, the

matrix has been rewritten and given indices in Eq. (5.10):

H =


Mi,j Aj,i

∑
j

(
∂
∂Σk

Aj,i

)
λj

Ai,j 0i,j
∑
i

(
∂
∂Σk

Ai,j

)
Ψi∑

j λ
T
j

(
∂
∂Σk

Ai,j

) ∑
i ΨT

i

(
∂
∂Σk

Aj,i

)
0k,k

 (5.10)

Here, the index, i, corresponds to the index of the angular flux vector, the index,

j, corresponds to the index of the adjoint flux vector and the index, k, corresponds

to the parameter vector. The transpose of the transport operator simply swaps the

indices of this two dimensional matrix. The product of a flux and the partial derivative

of the transport matrix with respect to the vector of cross sections can be clearly

represented as the dot product of the flux and the partial of the transport operator

over the flux index represented in summation notation as shown in Eq. (5.10). The

system of equations that is solved in Newton’s method can be seen in Eq. (5.11):
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M AT ∂ΣATλ

A 0 ∂ΣAΨ

λT∂ΣA ΨT∂ΣAT 0




δΨ

δλ

δΣ

 = −


M(Ψ− Ψ̃) + AT

λ

AΨ− q

λT∂ΣAΨ

 (5.11)

E. Schur Complement Method

Newton’s method requires building and inverting the large Hessian system. This

process can require large amounts of memory and computational time. The Schur

complement of the Hessian system was found to alleviate some of these memory and

time problems. The Schur complement method simply recognizes that the Hessian

system is block diagonal and it uses substitution to solve for the change in each of the

variables of the nonlinear system independently. This process gains a computational

edge over solving the Hessian system, because the transport operator is the largest

matrix that is formed which alleviates some of the memory problems of building

the full Hessian. This Schur complement still requires the transport operator to be

inverted several times, but since the full Hessian does not need to be inverted, this

method still saves computational time. Based on Eq. (5.11), the Hessian system can

be deconstructed into three basic equations. The quantity that we desire to update

first is the cross sections, so substitution will be used to eliminate the δΨ and δλ

from (5.11). Evaluating the second row of the Hessian matrix yields Eq. (5.12):

AδΨ + ∂ΣAΨδΣ = q −AΨ (5.12)

Solving this equation for δΨ, Eq. (5.13) result:
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δΨ = A−1(q −AΨ− ∂ΣAΨδΣ) (5.13)

Evaluating the first row of the Hessian system, Eq. (5.14) results:

MδΨ + ATδλ+ ∂ΣAλδΣ = −M(Ψ− Ψ̃)−ATλ (5.14)

Solving this equation for δλ, Eq. (5.15) results:

δλ = A−T(−M(Ψ− Ψ̃)−ATλ−MδΨ− ∂ΣAλδΣ) (5.15)

Eq. (5.13) can be substituted into Eq. (5.15) and Eq. (5.16) results:

δλ = A−T(−M(Ψ− Ψ̃)−ATλ−MA−1(q −AΨ− ∂ΣAΨδΣ)− ∂ΣAλδΣ)

(5.16)

The third row of the Hessian system can now be evaluated and the result is Eq.

(5.17):

λT∂ΣAδΨ + ΨT∂ΣAδλ = −λT∂ΣAΨ (5.17)

Eqs. (5.13) and (5.16) can now be substituted into Eq. (5.17) and the result is

Eq. (5.18):
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ΨT∂ΣAA−T(−M(Ψ− Ψ̃)−ATλ−MA−1(q −AΨ− ∂ΣAΨδΣ)− ∂ΣAλδΣ)+

λT∂ΣAA−1(q −AΨ− ∂ΣAΨδΣ) = −λT∂ΣAΨ

(5.18)

This equation can now be solved for the δΣ. The terms that contain δΣ are

grouped together to form a square matrix that will be referred to as the S matrix or

Schur complement. The terms that do not contain a δΣ are grouped together to form

a vector that will be referred to as the U vector. Therefore, the systems of linear

equations is reformulated in the form of SδΣ = U. The terms that form the S matrix

are displayed in Eq. (5.19):

S = λT∂ΣAA−1∂ΣAΨ + ΨT∂ΣAA−T(MA−1∂ΣAΨ− ∂ΣAλ) (5.19)

The terms that form the U vector can be seen in Eq. (5.20):

U = −λT∂ΣAA−1q + ΨT∂ΣA(λ+ A−TM(A−1q − Ψ̃)) (5.20)

Once δΣ has been found, then the updates for the other parameters, δΨ and δλ,

can be found by solving Eqs. (5.14) and (5.15) with these these values of δΣ.

F. Newton’s Method for Multiple Experiments

The inverse transport problem can be extended to multiple experiments rather eas-

ily. First, the Lagrangian functional for multiple experiments can be written as the

summation of the Lagrangian functionals for each experiment. This relationship is

given in Eq. (5.21):
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Le(Ψ, λ,Σ) =
N∑
i

1
2(Ψi − Ψ̃i)TMi(Ψi − Ψ̃i) + λTi (AΨi − qi) (5.21)

Here, i is the experiment index and it denotes that each experiment contains

its respective set of computed angular fluxes, N is the total number of experiments,

Ψi, measured angular fluxes, Ψ̃i, importances, λi, sources, qi, and measurements

locations on the boundary, Mi. The transport operator, A, remains unchanged with

each new experiment because the geometry of the domain remains unchanged. The

gradient of the Lagrangian for multiple experiments can then be given in Eq. (5.22):

Fe(Ψ, λ,Σ) =



M1(Ψ1 − Ψ̃1) + ATλ1

...

MN(ΨN − Ψ̃N) + ATλN

AΨ1 − q1

...

AΨN − qN

λT1 ∂ΣAΨ1
...

λTN∂ΣAΨN



=



0
...

0

0
...

0

0
...

0



(5.22)

The Hessian matrix for multiple experiments is given by Eq. (5.23):
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He =



M1 0 0 AT 0 0 ∂ΣATλ1 0 0

0 . . . 0 0 . . . 0 0 . . . 0

0 0 MN 0 0 AT 0 0 ∂ΣATλN

A 0 0 0 0 0 ∂ΣAΨ1 0 0

0 . . . 0 0 . . . 0 0 . . . 0

0 0 A 0 0 0 0 0 ∂ΣAΨN

λT1 ∂ΣA 0 0 ΨT
1 ∂ΣAT 0 0 0 0 0

0 . . . 0 0 . . . 0 0 . . . 0

0 0 λTN∂ΣA 0 0 ΨT
N∂ΣAT 0 0 0


(5.23)

The Schur complement of the Hessian system with multiple experiments can also

be determined. This Schur complement can be seen in Eq. 5.24:

δΣ =
[

N∑
i=1

Si
]−1[ N∑

i=1
Ui

]
(5.24)
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CHAPTER VI

RESULTS AND DISCUSSION

A. Pure Absorber Problems

In this section, the ability of Newton’s method to identify the material properties of

some simple pure absorber problems with only a single experiment will be explored.

Example 1 presents the minimization problem that Newton’s method is trying to

solve. The effects of the number and position of the illuminating sources used to scan

the domain is also examined in example 1. Example 2 serves as a comparison between

Newton’s method and the derivative-free Nelder-Mead method. The convergence

process as Newton’s method get closer to the actual solution is also present in example

2 for a problem with two inclusions. Example 3 displays the ability of Newton’s

method to reconstruct a more complex four-strip domain. Finally, Example 4 presents

the effects of applying illuminating sources on different sides of a four-region domain.

1. Example 1 - Misfit Surfaces

The first example problem is a simple model with two homogeneous regions each

encompassing half of the geometry and it can be seen in Figure VI-1. The two

regions of the model are divided vertically down the center of the model. A complete

description of the problem layout can be seen in Table VI-I. This two-parameter

problem allows the objective function surface to be plotted as function of the two

total cross sections of the two regions. The surface plots of the objective function

will display the challenges associated with inverse transport because the finding the

minimum of the objective function is not a trivial task.
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Fig. VI-1.: Two-Parameter Problem - True Cross Section Distribution.

Tables similar to Table VI-I will be used to describe the input parameters used

to define the model geometry, reconstruction parameters and boundary sources used

in each example. An angular quadrature of S8 was maintained for all of the ex-

ample problems in this thesis because it provided a reasonable compromise between

sufficient angular resolution and reasonable computing times. Only square domains

were examined in this thesis and the domain size is identified in either centimeters

or number of mean free paths. The number of material regions specifies how many

distinct materials regions exist in true geometry of the example problem. For this

example, there are two distinct material regions in this problem. The material mesh

specifies the number of possible distinct material regions. In example 1, a total of six-

teen distinct materials could be modeled and independently reconstructed. However,

the domain was assumed to consist of only two material regions so that the misfit

surface could be plotted. The flux mesh specified the total number of cells used in

the angular flux computation. This mesh is generally finer than the material mesh to

increase model accuracy. The number of search parameters specifies the number of

independent cross sections that are to be reconstructed in the optimization process.
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The actual cross sections of the various material regions specify the values of the

true solution which are used to obtain the the reference solution and then discarded

before the reconstruction begins. In this problem, the objective function surface was

generated by evaluating the misfit function at 625 different parameter combinations.

The parameter combinations were generated by varying the cross sections from 50

to 200% of their actual values in 25 equally-spaced increments. The surface source

intensity was maintained at 100 for all examples explored in this thesis. In the re-

construction process, only the comparison between the boundary angular fluxes at

each iteration and of the actual solution is significant and the exact magnitude of the

illuminating source is irrelevant. The boundaries where each illuminating source was

imposed is also presented in this Table. In future test problems, the initial guess for

the cross section distribution within the domain is also presented in the Table. The

initial guess is very crucial in the optimization process and the performance of the

routine is highly dependent on the quality of the initial guess. Finally, the addition

of multiple experiments on the reconstruction process is explored in future problems

and the number of experiments is specified in these Tables.
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Table VI-I.: Misfit Surface Parameter Description

Angular Quadrature (Sn) 8

Domain Size (cm) 4x4

Number of Material Regions 2

Material Mesh 4x4

Flux Mesh 8x8

Number of Searched Parameters 2

Actual Cross Section of Material 1 (cm−1) 0.9

Actual Cross Section of Material 2 (cm−1) 1.1

Number of Guessed Parameter Pairs 625

Range of Guesses for Cross Section of Material 1 (cm−1) 0.45-1.80

Range of Guesses for Cross Section of Material 2 (cm−1) 0.55-2.20

Illuminating Source Intensity ( n
(cm2−Sr)) 100

Boundaries of Imposed Illuminating Sources left, right, both

As can be seen in Table VI-I, the misfit surface was plotted for three different

illuminating sources. These illuminating sources only imposed a flux directed at the

angle that was most normal to that boundary of the domain. The misfit values in the

following surface plots were represent logarithmically to amplify the small changes

in the value of the object function as the two parameters varied. However, since the

logarithm of zero is infinite, nothing is plotted for the combination of the parameters

that yields the true domain configuration. This accounts for the holes in the data

plotted in the following misfit surface plots.

First, a beam that encompassed the entire left side of the model was used to
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illuminate the domain. The objective function surface that resulted from this process

can be seen in Fig. VI-2. Because the left boundary is formed completely by the first

region and the illuminating source is only imposed on this boundary, the flux measured

at the boundaries offers little recognition that the domain consists of two regions. This

is the reason why the misfit surface appears as a shallow valley with a minimum that

is rather difficult to locate. In fact, if one only imposed the source on the left side

and only measured the emitted radiation on the right side, one might expect that

the reconstructed domain would be homogeneous with a magnitude equivalent to the

average of the cross sections of the two actual regions. The orientation of the misfit

surface is also interesting to note. The valley of the misfit surface for the first case

runs parallel to the value of the cross section of the second region. This means that

the illuminating source provides more information about the first region than the

second region. This makes sense because the illuminating source is imposed directly

on the first region and the signal has already undergone much attenuation before it

reaches the second region.
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Fig. VI-2.: Two-Parameter Problem - Left Illumination Only.

In Fig. VI-3, again the objective function surface can be seen as a shallow

valley. This is the result of the fact that the emitted flux on the left boundary offers
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little information about the existence of the two distinct regions of the model. The

orientation of the valley should also be noted. Since the boundary flux is imposed on

the right side of the model, more information is now provided about the cross section

of the second region than the first.
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Fig. VI-3.: Two-Parameter Problem - Right Illumination Only.

Finally, illuminating sources were imposed on both the left and right boundaries

of the model in Fig. VI-4. In this case, the sources illuminate both sides of the model

and both cross sections become much more distinguishable. This is evidenced by the

fact that the misfit surface plot is no longer a shallow valley, but more conical in

shape. Finding the minimum of a cone is a much simpler optimization problem than

finding the minimum of a shallow valley, because the objective function varies greatly

along the conical surface and the gradient of a conical surface points more directly

toward the minimum of the objective function. This also evidences a general trend

that will be reinforced in the example problems to come that the addition of more

illuminating beams, more measurement points and more experiments improves the

ability of Newton’s method to reconstruct the cross section values.
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Fig. VI-4.: Two-Parameter Problem - Illumination from Both Left and Right Sides.

2. Example 2 - Homogeneous Domain and Dual Inclusion Convergence

Study

The second example problem explores the ability of Newton’s method to reconstruct

the total cross sections of a homogeneous domain. All twenty-five of the cross sections

of the domain are reconstructed independently and the Nelder-Mead method was

also explored as a comparison between a method that computes the first and second

derivatives of the Lagrangian versus one that simply evaluates the objective function.

A list of the parameters that define the geometry, discretization scheme and source

positions for the problem can be seen in Table VI-II.
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Table VI-II.: Homogeneous Domain Parameter Description

Angular Quadrature (Sn) 8

Domain Size (cm) 6x6

Number of Material Regions 1

Material Mesh 5x5

Flux Mesh 15x15

Number of Searched Parameters 25

Actual Cross Section (cm−1) 1.00

Newton Initial Guess for Cross Section (cm−1) 1.75

Nelder-Mead Initial Guess for Cross Section (cm−1) 1.10

Illuminating Source Intensity ( n
(cm2−Sr)) 100

Illuminating Sources all sides

The reconstruction and error results for the homogeneous domain can be seen

in Fig. VI-5 for Newton’s method and in Fig. VI-6 for the derivative-free method.

It is noticeable that the error in the reconstruction for Newton’s method is orders

of magnitude less than the error found using the Nelder-Mead method. The Nelder-

Mead method was also provided with a homogeneous initial guess for the total cross

section within the domain of 1.1. This value was much closer to the actual cross

section of the domain than the initial guess provided for Newton’s method of 1.75.

Based on these results, it seems that the Nelder-Mead algorithm is more susceptible

to be stuck in local minima than Newton’s method. Further comparison of the two

methods has been included in Table VI-III.
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Fig. VI-5.: Homogeneous Domain: Reconstructed Cross Sections and Error Using

Newton’s Method.
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(a) Reconstruction
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Fig. VI-6.: Homogeneous Domain: Reconstructed Cross Sections and Error Using

Nelder-Mead Method.

In Table VI-III, we can see that Newton’s method required much less computa-

tional time and fewer iterations than the Nelder-Mead algorithm. This is expected

because Newton’s method is a second order method that uses more information about



52

the objective function to locate its minimum. The final value of the Lagrangian was

also determined to be orders of magnitude smaller for Newton’s method as supposed

to the derivative free method. This also is to be expected because the quality of the

reconstruction was much better for Newton’s method than that of the Nelder-Mead

method.

Table VI-III.: Homogeneous Domain Convergence Comparison

Method Newton Nelder-Mead

Time (hrs) 0.06 8.47

Number of Iterations 56 72515

Magnitude of L 10−6 10−1

Once the ability of Newton’s method to reconstruct a homogeneous domain was

established, a domain with two inclusions was reconstructed using Newton’s method.

Multiple figures have been included in this thesis to display the convergence process

of Newton’s method as it tries to find the parameters of the domain. A list of the

parameters that define the geometry, discretization scheme and source positions for

the problem can be seen in Table VI-IV. Again, all twenty-five parameters were

reconstructed independently and further refinement was used in the computation of

the flux solution to achieve a more accurate result.
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Table VI-IV.: Dual Inclusion Domain Parameter Description

Angular Quadrature (Sn) 8

Domain Size (cm) 6x6

Number of Material Regions 3

Material Mesh 5x5

Flux Mesh 60x60

Number of Searched Parameters 25

Actual Cross Section of Surroundings (cm−1) 1.00

Actual Cross Section of Absorbers (cm−1) 1.50

Homogeneous Initial Guess for Cross Section (cm−1) 1.75

Illuminating Source Intensity ( n
(cm2−Sr)) 100

Illuminating Sources all sides

Fig. VI-7 shows the convergence history for the dual inclusion problem. Each

picture represents about every ninth iteration. In can be noticed that solution changes

greatly in the first thirty iterations as Newton’s method is searching for the parameters

that best represent those of the domain. After iteration 30, the image changes very

little and even large Newton steps lead to very small changes in the values of the

parameters. Finally, the convergence criteria of reducing the Lagrangian and misfit

functions to values less than 10−6 is achieved by iteration 92. This convergence criteria

was used on all of the problems in this thesis unless specified otherwise.
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(b) Iteration 10.
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(c) Iteration 19.
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(d) Iteration 28.
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(e) Iteration 37.
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(f) Iteration 46.
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(g) Iteration 55.
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(h) Iteration 64.
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(i) Iteration 73.

0
1

2
3

4
5

6
7

0

1

2

3

4

5

6

7
0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

x
y

C
ro

ss
 S

ec
tio

n

(j) Iteration 82.
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(k) Iteration 92.

Fig. VI-7.: Dual Inclusion Domain Reconstruction.

3. Example 3 - Four-Strip Domain

The third example problem explores the ability of the optimization method to re-

construct a domain comprised of four different materials aligned in a series of strips
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of equal width. Each of the four different regions possesses a different cross section

value and the example tests the ability of Newton’s method to reconstruct a more

complex domain. The true cross section map of the four strip domain can be seen in

Fig. VI-8. A detailed description of the parameters that definite the geometry, dis-

cretization scheme, source locations and reconstructed cross sections can be found in

Table VI-V. Because of the increased complexity of this four domain model, further

refinement was required in the flux solution to allow domain reconstruction. In this

model, all 16 of the possible distinct materials were allowed to independent in the

reconstruction process. Sources were imposed and measurements were recorded on

all boundaries of this model.
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Fig. VI-8.: Actual Four-Strip Domain.
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Table VI-V.: Parameter Description of Four-Strip Domain

Angular Quadrature (Sn) 8

Domain Size (cm) 4x4

Number of Material Regions 4

Material Mesh 4x4

Flux Mesh 32x32

Number of Searched Parameters 16

Actual Cross Section of Material 1 (cm−1) 0.9

Actual Cross Section of Material 2 (cm−1) 1.0

Actual Cross Section of Material 3 (cm−1) 1.1

Actual Cross Section of Material 4 (cm−1) 0.9

Homogeneous Initial Guess for Cross Section (cm−1) 1.0

Illuminating Source Intensity ( n
(cm2−Sr)) 100

Illuminating Sources all sides

In Fig. VI-9, it can be noticed that the reconstruction was a success and the

final error was on the order of 10−5. In this process the misfit and Lagrangian values

were minimized to less that 10−6 in fourteen iterations. This convergence tolerance

was maintained for all of the results presented in this thesis. All fourteen iterations

were conducted in about twenty minutes.
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Fig. VI-9.: Four-Strip Domain Reconstructed Cross Sections and Error.

4. Example 4 - Four-Region Domain with Illuminating Sources on 1, 2,

3 or 4 Side(s)

In example 4, the ability of Newton’s method to reconstruct the cross sections of

a four-region domain is explored as illuminating beams are imposed on 1, 2, 3 or 4

sides of the geometry. Each reconstruction is conducted with only one experiment and

it is shown that reconstruction ability improves as illuminating beams are imposed

on more sides of the model. A list of the parameters that define the geometry,

discretization scheme and source positions for the problem can be seen in Table VI-

VI.
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Table VI-VI.: Parameter Description of Four-Region Domain with Varying Illumi-

nating Sources

Angular Quadrature (Sn) 8

Domain Size (cm) 8x8

Number of Material Regions 4

Material Mesh 4x4

Flux Mesh 16x16

Number of Searched Parameters 16

Actual Cross Section of Material 1 (cm−1) 0.7

Actual Cross Section of Material 2 (cm−1) 0.9

Actual Cross Section of Material 3 (cm−1) 1.1

Actual Cross Section of Material 4 (cm−1) 1.3

Homogeneous Initial Guess for Cross Section (cm−1) 1.5

Illuminating Source Intensity ( n
(cm2−Sr)) 100

Illuminating Sources 1, 2, 3, 4 sides

A diagram that displays the locations of each of the four material regions and

labels each of the sides of the geometry can be seen in Fig. VI-10. This same material

layout and side numbering scheme was maintained for all of the four region problems

examined in this thesis. These four region problems can be found in examples 8, 16

and 17.
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Fig. VI-10.: Diagram of Four-Region Domain with Sides and Material Regions Iden-

tified.

In Fig. VI-11, the results of the test case where beams were only imposed on the

side 1 of the geometry as seen in Fig. VI-10. In this case, Newton’s method fails to

generate a reconstruction of the domain because insufficient radiation is transmitted

through the regions defined by materials 2 and 4 when the beam is only imposed

on side 1. Because only minimal radiation is transmitted through regions 2 and 4,

Newton’s method has little information about these regions and begins to propose

outrageous values for the cross sections of these regions. Because Newton’s method

was diverging from the solution and reconstruction was unlikely, the process was

terminated after 100 iterations and these results are presented in Fig. VI-11. Similar

results are expected if the sources were applied solely to any other side of the geometry

simply because insufficient information is collected from a single scan conducted on

a single side of the domain.
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Fig. VI-11.: Domain with Source on 1 Side Reconstructing the Total Cross Sections.

In Figs. VI-12, VI-13 and VI-14, sufficient information was collected from im-

posing beams on multiple sides of the model to permit reconstruction. The trend of

reduced reconstruction error as illuminating sources were imposed on more sides of

the model can also be noticed. In Fig. VI-12, beams were imposed on the sides 1 and

2 of the geometry as explained in Fig. VI-10. In Fig. VI-13, beams were imposed on

sides 1, 2 and 3 as seen in Fig. VI-10. Finally, illuminating sources were modeled on

all sides of the model in Fig. VI-14.
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Fig. VI-12.: Domain with Sources on 2 Sides Reconstructing the Total Cross Sections.
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Fig. VI-13.: Domain with Sources 3 Sides Reconstructing the Total Cross Sections.
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Fig. VI-14.: Domain with Sources on 4 Sides Reconstructing the Total Cross Sections.

5. Summary of Findings from Pure Absorber Problems

In the pure absorber problems section, some initial simple problems were explored to

visually get a feel for the inverse transport problem and how Newton’s method uses

variation of parameters to locate the solution of this inverse transport problem. In

example 1, the surface of objective function for a simple two-parameter problem was

plotted to understand what the surface looks like and the challenges associated with

locating the minimum of this surface. In this problem, the reduction in the complexity

of the optimization problem by applying illuminating sources to two opposite sides

of the model rather than just to one side was also noticed. This simplification in
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the optimization process was noticed as the misfit surface changed shape from a

shallow valley with a minimum that was rather difficult to locate to more of a conical

surface with an apparent minimum. In example 2, the ability of Newton’s method to

reconstruct a homogeneous domain was explored. The Nelder-Mead method was also

used to reconstruct the same homogeneous domain to show the benefits of Newton’s

method. Newton’s method required fewer iterations, less computational time and

reconstructed an image with less error than the Nelder-Mead algorithm. This was

attributed to Newton’s method’s utilization of the gradient and Hessian information

of the constrained optimization problem. A problem with with two inclusions was also

studied to display the reconstruction process using Newton’s method. It was noticed

that in the early iterations as Newton’s method is searching for the parameters of the

domain, the image varies greatly. As Newton’s method begins to propose values of the

parameters that are close to those used to create the synthetic data, the image changes

very little even as Newton takes large steps. In example 3, a domain comprised of

four strips was considered to display Newton’s ability to reconstruct the material

properties of a more complex domain. Finally in example 4, a four region domain

each with unique cross sections was considered while imposing beams on 1, 2, 3

or all sides of the model in a single experiment. This study displayed the general

trend that as illuminating sources are applied to more sides of the model, the error

in the resulting image is reduced. It was also noticed that if insufficient radiation is

transmitted through a domain, Newton’s method can not determine the cross sections

of certain regions of the model and values for those cross sections that deviate greatly

from the true values of those regions are proposed.
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B. Pure Absorbers with Multiple Experiments

In this section, the ability of Newton’s method to reconstruct the cross sections of

various pure absorber domains where multiple experiments or scans are used. Exam-

ples 5 and 6 explore the optical thickness limits where the measurable signal becomes

too small to permit reconstruction. Eight experiments each covering one half of a

side are used in example 5, where as sixteen experiments each covering one fourth

of a side are used in example 6. Example 7 examines the sensitivity of Newton’s

method to the proposed initial guess for the cross sections of a homogeneous domain

reconstructed as four independent regions. Finally, example 8 displays the effects of

using measurements collected from different sides of the domain. This example is

successful in reconstructing all of the cross sections for all of the cases, but the same

example will be revisited in example 17 in the scattering section and this will not be

the case.

1. Example 5 - Central Inclusion Domains with 8 Experiments

In example 5, domains with a central inclusion and surrounding medium of increas-

ing size are studied. These problems explored the optical thickness limit of Newton’s

method as more material is padded around the central inclusion. This additional ma-

terial increases the number of mean free paths that the incident radiation must travel

through until it reaches the boundary. This results in a reduction in the measurable

signal at the boundary and increases the difficulty of the reconstruction process. In

each of the models in this example, the flux cell size was held constant at 0.5 by

0.5 centimeters and eight experiments with beams covering half of a side were used

in the reconstruction process. The domains were assumed to be comprised of only

two parameters representing the surroundings and central inclusion and only the two
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cross sections were reconstructed. The condition number of the Schur matrix was

tracked throughout the reconstruction to determine how ill-conditioned the problem

was and the reliability of the results. A list of the parameters that define the geom-

etry, discretization scheme, reconstructed cross sections and source positions for the

problem can be seen in Table VI-VII.

Table VI-VII.: Parameter Description of Central Inclusion Domains with 8 Experi-

ments

Angular Quadrature (Sn) 8

Domain Sizes (cm) 8x8, 12x12, 16x16,

20x20

Number of Material Regions 2

Material Mesh 4x4, 6x6, 8x8, 10x10

Flux Mesh 16x16, 24x24, 32x32,

40x40

Number of Searched Parameters 2

Actual Cross Section of Surroundings (cm−1) 0.9

Actual Cross Section of Absorber (cm−1) 1.3

Homogeneous Initial Guess for Cross Section (cm−1) 1.5

Illuminating Source Intensity ( n
(cm2−Sr)) 100

Illuminating Sources 8-exp, 1/2-side each

Figs. VI-15, VI-16, VI-17 and VI-18 present the reconstruction, error and condi-

tion number results for the 8x8, 12x12, 16x16 and 20x20 centimeter central inclusion

problems, respectively. It can be noticed that the error in the reconstruction and

the condition number of the Schur matrix is increased as the optical thickness of
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the problem is increased. The reconstruction is successful for the 8x8, 12x12 and

16x16 centimeter cases, but it fails for the 20x20 centimeter case. In all of the suc-

cessful cases, there is a spike in the condition number in the early iterations before

the method stabilizes. The maximum order of magnitude of the condition numbers

registered for the 8x8, 12x12 and 16x16 centimeter cases were 106, 1011 and 1015,

respectively. In the 20x20 centimeter case, the condition number of the Schur matrix

grows exponentially to 1027 in later iterations resulting in a failed reconstruction.

In this case, again insufficient radiation reaches the center of the model where the

inclusion is and therefore, the value of the cross section of this region has a negligible

effect on the computed fluxes. Because of this Newton’s method can not detect the

inclusion and begins to propose huge values for the cross section of this region. In

this case, the termination criteria of minimizing the misfit and Lagrangian below 10−6

were still satisfied after 134 iterations because the inclusion cross section value has no

effect on the flux solution. The final reconstructed cross section of the surroundings

is correct, but the cross section of the inclusion varies by orders of magnitude from

the actual solution as seen in Fig. VI-18.

0
2

4
6

8

0
2

4
6

8

0.8

1

1.2

1.4

xy

T
ot

al
 C

ro
ss

 S
ec

tio
n

(a) Reconstruction.
0

2
4

6
8

0
2

4
6

8
1

2

3

4

5

6

7

x 10
−5

xy

T
ot

al
 E

rr
or

(b) Error.
0 20 40 60 80 100 120 140

10
3

10
4

10
5

10
6

10
7

Iterations

C
on

di
tio

n 
N

um
be

r 
of

 S
 M

at
rix

(c) Condition Number.

Fig. VI-15.: Reconstruction, Error and Condition Number Results for the 8x8cm

Central Inclusion Problem with 8 Experiments.
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(c) Condition Number.

Fig. VI-16.: Reconstruction, Error and Condition Number Results for the 12x12cm

Central Inclusion Problem with 8 Experiments.
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Fig. VI-17.: Reconstruction, Error and Condition Number Results for the 16x16cm

Central Inclusion Problem with 8 Experiments.
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Fig. VI-18.: Reconstruction, Error and Condition Number Results for the 20x20cm

Central Inclusion Problem with 8 Experiments.

2. Example 6 - Central Inclusion Domains with 16 Experiments

Example 6 is very similar to example 5 where central inclusion of increasing optical

thickness is studied. In example 6, sixteen experiments each encompassing one fourth

of a side are modeled as supposed to the eight experiment problems studied in example

5. Because of the additional experiments, 8x8, 12x12, 16x16 and 20x20 centimeter

domains were able to be reconstructed and the method did not fail until the 24x24

centimeter domain was attempted. Again the domains were assumed to be comprised

of only two materials and only two parameters were reconstructed. The same flux

cell size was maintained as in example 5. A list of the parameters that define the

geometry, discretization scheme, reconstructed cross sections and source positions for

the problem can be seen in Table VI-VIII.
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Table VI-VIII.: Parameter Description of Central Inclusion Domains with 16 Exper-

iments

Angular Quadrature (Sn) 8

Domain Sizes (cm) 8x8, 12x12, 16x16,

20x20, 24x24

Number of Material Regions 2

Material Mesh 4x4, 6x6, 8x8, 10x10,

12x12

Flux Mesh 16x16, 24x24, 32x32,

40x40, 48x48

Number of Searched Parameters 2

Actual Cross Section of Surroundings (cm−1) 0.9

Actual Cross Section of Absorber (cm−1) 1.3

Homogeneous Initial Guess for Cross Section (cm−1) 1.5

Illuminating Source Intensity ( n
(cm2−Sr)) 100

Illuminating Sources 16-exp, 1/4-side each

Figs. VI-19, VI-20, VI-21, VI-22 and VI-23 present the reconstruction, error

and condition number results for the 8x8, 12x12, 16x16, 20x20 and 24x24 centimeter

central inclusion problems, respectively. As display in example 5, the error in the

reconstruction and the condition number of the Schur matrix increase as the optical

thickness of the problem increases. The reconstruction is successful for the 8x8,

12x12, 16x16 and 20x20 centimeter cases, but it fails for the 24x24 centimeter case.

In all of the successful cases, there is a spike in the condition number in the early

iterations before the method stabilizes. The maximum order of magnitude of the
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condition numbers registered for the 8x8, 12x12, 16x16 and 20x20 centimeter cases

were 106, 1011, 1016 and 1019 respectively. In the 24x24 centimeter case, the condition

number of the Schur matrix grows exponentially to 1031 in later iterations resulting in

a failed reconstruction. Just as in example 5, the termination criteria of minimizing

the misfit and Lagrangian below 10−6 were still satisfied after 134 iterations because

the inclusion cross section value has no effect on the flux solution. The method was

again able to correctly reconstruct the cross section of the surrounding material, but

the cross section of the inclusion region is off by orders of magnitude as seen in Fig.

VI-23.
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(c) Condition Number.

Fig. VI-19.: Reconstruction, Error and Condition Number Results for the 8x8cm

Central Inclusion Problem with 16 Experiments.

0

5

10

0

5

10

0.8

1

1.2

1.4

xy

T
ot

al
 C

ro
ss

 S
ec

tio
n

(a) Reconstruction.
0

5

10

0

5

10

0

1

2

3

4

5

x 10
−5

xy

T
ot

al
 E

rr
or

(b) Error.
0 20 40 60 80 100 120 140

10
8

10
9

10
10

10
11

10
12

Iterations

C
on

di
tio

n 
N

um
be

r 
of

 S
 M

at
rix
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Fig. VI-20.: Reconstruction, Error and Condition Number Results for the 12x12cm

Central Inclusion Problem with 16 Experiments.
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(c) Condition Number.

Fig. VI-21.: Reconstruction, Error and Condition Number Results for the 16x16cm

Central Inclusion Problem with 16 Experiments.
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(c) Condition Number.

Fig. VI-22.: Reconstruction, Error and Condition Number Results for the 20x20cm

Central Inclusion Problem with 16 Experiments.
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Fig. VI-23.: Reconstruction, Error and Condition Number Results for the 24x24cm

Central Inclusion Problem with 16 Experiments.
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Because of the only minimal improvement in the reconstruction ability when six-

teen versus eight experiments were conducted and the increased computational time

required for the additional experiments, the remaining problems in this thesis will be

simulated with eight experiments unless otherwise specified. But, generally increasing

the number of experiments leads to some improvements which include more accurate

reconstructions with less error, reconstructions that converge in fewer iterations and

reduction in the condition numbers seen in the Schur matrix. The one downfall is

that increasing the number of experiments leads to more computational time spent

in each Newton iteration. There definitely exits a threshold were the addition of

more experiments leads to minimal improvement in image quality because imposing

sources extremely close together and taking additional measurements extremely close

together adds little new information to the reconstruction.

3. Example 7 - Homogeneous Domain Initial Guess Study

In example 7, the effect of varying the initial guess for the parameters was studied for a

homogeneous domain. The proposed initial guesses were varied at different distances

from the actual solution in the positive and negative directions. The method proved

rather robust for reconstructing the parameters of this problem for all of the initial

guesses attempted. Since the domain considered in this problem was homogeneous,

a heterogeneous initial guess generated using random numbers was used to make the

reconstruction more challenging. In each case, the initial guess for the parameters

was shifted based on some percentage of the actual parameter distribution and then

random numbers were then used to create heterogeneity in the initial guess at 20-25%

of the shift percentage. A description of these initial guesses and the input parameters

for the problem can be found in Table VI-IX.
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Table VI-IX.: Parameter Description of Homogeneous Domain Reconstruction from

Various Initial Guesses

Angular Quadrature (Sn) 8

Domain Sizes (cm) 4x4

Number of Material Regions 1

Material Mesh 4x4

Flux Mesh 16x16

Number of Searched Parameters 4

Actual Cross Section of Domain (cm−1) 1.0

Initial Guesses Approaching from Above (%) 1000 ± 200, 5000 ±

1000, 10000± 2500

Initial Guesses Approaching from Below (%) 75±5, 50±10, 25±15

Illuminating Source Intensity ( n
(cm2−Sr)) 100

Illuminating Sources 8-exp, 1/2-side each

The sufficient decrease and curvature conditions were employed in all of the initial

guess reconstructions conducted in this example. It was noticed that on many of the

problems where the initial guess was below the actual solution, the Wolfe conditions

would never be satisfied and the minimum step length was always used. To combat

this problem, a slightly heuristic approach was employed were a check was conducted

on the magnitude of the step length. If the step length was determined to be the

same values for the five preceding iterations, the step length was then reset to 0.25

and the Newton iteration was continued. This approach proved successful for all of

the cases tested in this example. The results of the three initial guess studies where

the solution was approach from below can be seen in Figs. VI-24, VI-25 and VI-26.
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All of these figures display the proposed initial guess, the final reconstruction and the

error in the final reconstruction. All of these reconstructions were successful and the

errors are all of similar magnitudes. The total number of iterations required to reduce

the misfit and Lagrangian to less than 10−6 was determined to be 163, 81 and 62 for

initial guesses of 75%, 50% and 25% of the actual paramters, respectively. Each of

these reconstructions required the value of the step length to be reset to 0.25 multiple

times.
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Fig. VI-24.: Initial Guess of 75% ± 5% of Actual Cross Section of Homogeneous

Domain.
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Fig. VI-25.: Initial Guess of 50% ± 10% of Actual Cross Section of Homogeneous

Domain.
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Fig. VI-26.: Initial Guess of 25% ± 15% of Actual Cross Section of Homogeneous

Domain.

In the case of the initial guess that approach the solution from above, the opti-

mization method never stagnated with the minimum step length. These reconstruc-

tions took many fewer iterations than when the solution was approached from below.

The results of the three initial guess studies where the solution was approached from

above can be seen in Figs. VI-27, VI-28 and VI-29. All of these figures display the

proposed initial guess, the final reconstruction and the error in the final reconstruc-

tion. All of these reconstructions were successful and the errors are all of similar

magnitudes. The total number of iterations required to reduce the misfit and La-

grangian to less than 10−6 was determined to be 14, 25 and 18 for initial guesses of

1000%, 5000% and 10000% of the actual parameters, respectively.
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Fig. VI-27.: Initial Guess of 1000%± 200% of Actual Cross Section of Homogeneous

Domain.
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Fig. VI-28.: Initial Guess of 5000%±1000% of Actual Cross Section of Homogeneous

Domain.
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Fig. VI-29.: Initial Guess of 10000%±2500% of Actual Cross Section of Homogeneous

Domain.
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Generally, Newton’s method with the Wolfe conditions line search was able to

reconstruct the solution easier from an initial guess that was above the values of the

actual parameters. These higher initial guesses converged in many fewer iterations to

solutions with lower error and the step size was never artificially modified.

4. Example 8 - Four-Region Domain with Measurements taken on 1, 2,

3 and 4 Sides

In example 8, a four-region domain is reconstructed with information collected from

measurements on 1, 2, 3 or 4 sides of the model. All of these reconstructions were

conducted with 8 experiments and a homogeneous initial guess for the parameters of

1.5 was used as the starting point for the reconstruction. The same material region

layout and side numbering scheme was used in this example as can be seen in Fig.

VI-10 of example 4. The example where measurements are only recorded from one

side of the geometry collect measurements from side 1 as explained in Fig. VI-10.

The test case where measurements are collected from two sides uses sides 1 and 2 as

seen in Fig. VI-10. The test case where measurements are collected from three sides

of the geometry uses sides 1, 2 and 3 as seen in Fig. VI-10. Finally, the last model

uses measurements from all sides of the geometry to generate the image. A list of

the parameters that define the geometry, discretization scheme, reconstructed cross

sections and the source and measurement locations for the problem can be seen in

Table VI-X.
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Table VI-X.: Parameter Description of Four-Region Domain Measuring on 1, 2, 3 or

4 Side(s) of Model

Angular Quadrature (Sn) 8

Domain Sizes (cm) 8x8

Number of Material Regions 4

Material Mesh 4x4

Flux Mesh 16x16

Number of Searched Parameters 4

Actual Cross Section of Material 1 (cm−1) 0.7

Actual Cross Section of Material 2 (cm−1) 0.9

Actual Cross Section of Material 3 (cm−1) 1.1

Actual Cross Section of Material 4 (cm−1) 1.3

Homogeneous Initial Guesses (%) 1.5

Illuminating Source Intensity ( n
(cm2−Sr)) 100

Illuminating Sources 8-exp, 1/2-side each

Measurements 1, 2, 3 or 4 Sides

Figs. VI-30, VI-31, VI-32 and VI-33 show the reconstruction and error results

for the four region domain reconstructions with measurements taken on 1, 2, 3 and 4

sides of the model, respectively. In every case investigated in this example, Newton’s

method was able to correctly identify the parameters of the domain. It can also

be noticed that the quality of the reconstruction is improved and the error in the

reconstruction is reduced as measurements from more sides of the model are used. The

reconstructions were conducted in fifty-five, fifty-nine, fifty-nine and forty-five minutes
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for the models with measurements on 1, 2, 3 and 4 sides, respectively. The images

were generated in 126, 124, 132 and 130 iterations for the models with measurements

on 1, 2, 3 and 4 sides, respectively. The total number of iterations is pretty consistent

for all of the cases, but the reconstruction using measurements from all four sides

finished ten minutes quicker than other cases.
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Fig. VI-30.: Four-Region Domain Measuring on 1 Side.
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Fig. VI-31.: Four-Region Domain Measuring on 2 Sides.
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Fig. VI-32.: Four-Region Domain Measuring on 3 Sides.
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Fig. VI-33.: Four-Region Domain Measuring on 4 Sides.

5. Summary of Findings from Pure Absorbers with Multiple Experiments

In this section on pure absorbers with multiple experiments, the improvements in

image quality when using multiple experiments was explored. In example 5, the

optical thickness limit of the Newton’s method was explored through central inclusion

problems of increasing size. Eight experiments each with a beam covering half of a side

were used to reconstruct these problems. The optical thickness limit was determined

to be eight mean free paths deep into the object. The condition number of the

Schur complement matrix was also tracked in these reconstructions and it was a good

indicator of the difficulty of the reconstruction problem. The condition number of the

Schur matrix increased as the optical thickness increased and all of the successful cases
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showed sharp peaks in the condition number in earlier iterations, but lower condition

numbers as the method proposes values of the cross sections that become increasingly

close to the true cross section values. In the unsuccessful reconstruction, the condition

number of the Schur matrix continued to increase through all the interactions of the

optimization process and never stabilized. Example 6 showed many of the same

trends as example 5. An optical thickness limit of nearly ten mean free paths was

achieved with sixteen experiments rather than only eight. The same trends were

observed with regard to the condition number of the Schur complement matrix as were

seen in example 5. In example 7, the sensitivity of Newton’s method to the initial

parameter distribution used to start the optimization process was studied. It was

noticed that Newton’s method could reconstruct images much easier from an initial

guess consisting of values that were larger in magnitude than the actual parameters

than from one with values lower in magnitude. This was noticed from the need to force

Newton’s method to take larger steps at various times in the optimization process

to overcome stagnation points when starting from lower initial guesses. Also, many

more iterations were required for lower initial guesses than higher ones. Finally in

example 8, it was noticed that using measurements from more sides of the model in

the reconstruction process generally leads to higher quality reconstruction with less

error.

C. Pure Absorbers with Signal Noise and Bias

The next few test cases will simulate the effects of signal noise and bias on the

measured angular fluxes that are used in the reconstruction process. The addition

of signal noise simulates how the presence of background radiation will affect your

detector readings. The addition of signal bias simulates the signal drift in the detector

as the crystal temperature is increased from cold startup to operating temperatures.
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Multiplicative signal noise assumes that all measurements experience the same level

of noise represented by Eq. (6.1):

zi,noise = zi(1 + βεi) (6.1)

Here, β is the percentage of the actual signal that is noise, εi is the random

number that ranges from positive to negative unity and zi is the measured angular

flux vector without signal noise. Signal bias can be represented by the relationship

seen in Eq. (6.2):

zi,biased noise = zi(1 + δ + βεi) (6.2)

Here, the additional δ term is the signal bias and this term simply shifts all of

the measurements in either the positive or negative direction.

1. Example 9 - Four-Strip Domain with Signal Noise

In the ninth example a domain comprised of four strips of different cross sections is

considered where 0.01%, 0.10%, and 1.00% signal noise is applied to the measured

angular fluxes. The geometry consists of a 4x4 material mesh where all sixteen of

these parameters are independently reconstructed. The cross sections of the four

regions are 0.9, 1.0, 1.1 and 0.9, respectively. The inital guess for the domain was

a homogeneous 1.5 and eight experiments with each beam encompassing half of a

side were modeled. A list of the parameters that define the geometry, discretization

scheme, reconstructed cross sections and source positions for the problem can be seen

in Table VI-XI.
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Table VI-XI.: Parameter Description of Four-Strip Domain with Signal Noise

Angular Quadrature (Sn) 8

Domain Sizes (cm) 4x4

Number of Material Regions 4

Material Mesh 4x4

Flux Mesh 32x32

Number of Searched Parameters 16

Actual Cross Section of Material 1 (cm−1) 0.9

Actual Cross Section of Material 2 (cm−1) 1.0

Actual Cross Section of Material 3 (cm−1) 1.1

Actual Cross Section of Material 4 (cm−1) 0.9

Homogeneous Initial Guess for Cross Section (cm−1) 1.5

Illuminating Source Intensity ( n
(cm2−Sr)) 100

Illuminating Sources 8-exp, 1/2-side each

Multiplicative Signal Noise (%) 0.01, 0.1, 1.0

In Fig. VI-34, the results of the four bar domain reconstruction can be seen with

0.01%, 0.10%, and 1.00% signal noise. As is to be expected, the reconstructed image

posseses much less acuracy when more noise is applied to the measured angular fluxes.

The error plots seen in Fig. VI-35 also evidence this trend. An additional termination

criteria was required so that Newton’s method would stop. Based on the amount of

signal noise, there is a minimum value of the Lagrangian and objective function

that Newton’s method can achieve which is generally greater than the convergence

tolerance of 10−6 used in this thesis. This occurs because Newton’s method can not
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account for the noise in the synthetic data and will always search for the parameters

without the applied noise. This leads to an error between the measured and computed

fluxes that can never be removed completely. Therefore, an additional check was

introduced to see if the two concurrent values of the Lagranigain and misfit only

deviate by less than 10−6, then the optimization routine is terminated.
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(c) 1.00% Noise.

Fig. VI-34.: Reconstructions of Four-Strip Domain with Differing Amounts of Signal

Noise.
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Fig. VI-35.: Error in Reconstructions of Four-Strip Domain with Differing Amounts

of Signal Noise.
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2. Example 10 - Central Inclusion with Signal Noise and Positive and

Negative Signal Bias

In the tenth example a domain comprised of a central inclusion and surrounding

medium is considered where only signal noise is applied, noise and positive signal

bias are applied or noise and negative signal bias are applied to the measured angular

fluxes. In the first set of cases, 0.01%, 0.10%, and 1.00% signal noise is applied to

the measured angular fluxes. In the second set of cases, 0.10% signal noise and either

1.00% or 5.00% positive signal bias is applied to the measured angular fluxes. In

the third set of cases, 0.10% signal noise and either 1.00% or 5.00% negative signal

bias is applied to the measured angular fluxes. However, the geometry of the model

remains the same for all of these studies and it consists of a 4x4 material mesh where

all sixteen of these parameters are independently reconstructed. The cross sections

of the two regions are 1.0 and 1.3, respectively. The inital guess for the domain was

a homogeneous 1.5 and eight experiments with each beam encompassing half of a

side were modeled. A list of the parameters that define the geometry, discretization

scheme, reconstructed cross sections and source positions for the problem can be seen

in Table VI-XII.
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Table VI-XII.: Parameter Description of Central Inclusion Domain with Signal Noise

and Signal Bias

Angular Quadrature (Sn) 8

Domain Sizes (cm) 4x4

Number of Material Regions 2

Material Mesh 4x4

Flux Mesh 8x8

Number of Searched Parameters 16

Actual Cross Section of Surroundings (cm−1) 1.0

Actual Cross Section of Inclusion (cm−1) 1.3

Homogeneous Initial Guess for Cross Section (cm−1) 1.5

Illuminating Source Intensity ( n
(cm2−Sr)) 100

Illuminating Sources 8-exp, 1/2-side each

Multiplicative Signal Noise (%) 0.01, 0.10, 1.00

Positive Signal Bias (%) 1.00, 5.00

Negative Signal Bias (%) 1.00, 5.00

Figs. VI-36 and VI-37 display the reconstruction and error results for the noise

only studies where 0.01%, 0.10%, and 1.00% signal noise is applied to the measured

angular fluxes. As expected, the quality of the reconstruction and the amount of error

as more signal noise is imposed. The effects of the signal noise on the reconstructed

cross sections are nearly unnoticable for the models with 0.01% and 0.10% signal noise.

The effects are more prominant in the case with 1.00% signal noise. The images were

generated in 8.4, 9.9 and 10.5 minutes for the 0.01%, 0.10%, and 1.00% signal noise
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cases, respectively. The 0.01% and 0.10% signal noise studies required seventy-one

iterations and the 1.00% signal noise study required seventy-five iterations.

0
1

2
3

4

0

2

4
0.9

1

1.1

1.2

1.3

1.4

xy

T
ot

al
 C

ro
ss

 S
ec

tio
n

(a) 0.01% Noise.
0

1
2

3
4

0

2

4
0.9

1

1.1

1.2

1.3

1.4

xy

T
ot

al
 C

ro
ss

 S
ec

tio
n

(b) 0.10% Noise.
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(c) 1.00% Noise.

Fig. VI-36.: Reconstruction of Central Inclusion Domain with Differing Amounts of

Signal Noise.
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Fig. VI-37.: Error in Reconstruction of Central Inclusion Domain with Differing

Amounts of Signal Noise.

Figs. VI-38 and VI-39 display the reconstruction and error results for the signal

noise and positive signal bias studies where 0.10% signal noise and 1.00% or 5.00%

signal bias are applied to the measured angular fluxes. Since positive signal bias has

the effect of increasing all of the measured fluxes by some constant value, the effects

are rather apparent in the reconstruction and error results. In the reconstructions

for the positive signal bias cases, the reconstructed central inclusion region is lower

by approximately 1.00% or 5.00% than the actual cross section of this region of 1.3.
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These results make sense because if the measurements are influenced by positive

signal bias, then the fluxes are 1.00% or 5.00% higher than they would be if the

bias was not present. This implies that the inverse transport method should predict

1.00% or 5.00% less absorption to occur in this region of the domain and this is the

case. The cells in the corners of the domain also show this same trend where there

predicted values are 1.00% or 5.00% less than if the signal bias was not present. The

remaining material regions that lie in the region surrounding the inclusion but not on

the corners of the domain are 1.00% or 5.00% more than they would be if the bias was

not present. This can be attributed to the fact that the predicted flux distribution

with signal bias is still similar to the predicted flux distribution without signal bias

and this causes these regions to be elevated to compensate for the decrease in the

other cross sections.
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Fig. VI-38.: Central Inclusion Domain with 0.10% Signal Noise and Positive 1.00%

Signal Bias.
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Fig. VI-39.: Central Inclusion Domain with 0.10% Signal Noise and Positive 5.00%

Signal Bias.

Figs. VI-40 and VI-41 display the reconstruction and error results for the signal

noise and negative signal bias studies where 0.10% signal noise and 1.00% or 5.00%

signal bias are applied to the measured angular fluxes. Since negative signal bias has

the effect of decreasing all of the measured fluxes by some constant value, the effects

are rather apparent in the reconstruction and error results. In the reconstructions

for the negative signal bias cases, the reconstructed central inclusion region is higher

by approximately 1.00% or 5.00% than the actual cross section of this region of 1.3.

These results make sense because if the measurements are influenced by negative

signal bias, then the fluxes are 1.00% or 5.00% lower than they would be if the

bias was not present. This implies that the inverse transport method should predict

1.00% or 5.00% more absorption to occur in this region of the domain and this is the

case. The cells in the corners of the domain also show this same trend where there

predicted values are 1.00% or 5.00% more than if the signal bias was not present. The

remaining material regions that lie in the region surrounding the inclusion but not on

the corners of the domain are 1.00% or 5.00% less than they would be if the bias was

not present. This can be attributed to the fact that the predicted flux distribution

with signal bias is still similar to the predicted flux distribution without signal bias
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and this causes these regions to be decreased to compensate for the increase in the

other cross sections.
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Fig. VI-40.: Central Inclusion Domain with 0.10% Signal Noise and Negative 1.00%

Signal Bias.
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Fig. VI-41.: Central Inclusion Domain with 0.10% Signal Noise and Negative 5.00%

Signal Bias.

3. Summary of Findings from Pure Absorbers with Signal Noise and Bias

In this section, the effects of the addition of signal noise and signal bias was explored

on some pure absorber problems. Generally, the addition of signal noise and signal

bias increased the difficulty in image reconstruction and produced images with greater

error. In example 9, a four strip domain was examined where various amounts of signal

noise was applied to the synthetic data. Image quality declined as the signal noise
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was increased. The need for an additional convergence criteria was required in the

reconstructions with signal noise due to the fact that noise represented a minimum

amount of error that Newton’s method could never eliminate. In example 10, the

effects of signal noise and signal bias were examined on a central inclusion problem.

The same trend of decreased image quality as the amount of signal noise and bias

was increased was also evident for this example. The results seen for the cases with

signal bias could be explained by the increased or decreased flux values. An increase

in the fluxes would generally imply that less absorption occurred in the domain and

visa versa and these trends were apparent in the reconstructions.

D. Problems with Scattering

In this section, the ability of Newton’s method to reconstruct the material properties

of domains with scattering is examined. In example 11, a two-parameter problem is

studied so that the surface of the objective function can be plotted for problems with

various amounts of scattering. In example 12, the scattering and total cross sections

of a homogeneous domain are reconstructed as eight independent parameters to test

Newton’s ability to reconstruct a simple domain with scattering. In example 13, the

effects of adding signal noise and bias to the reconstruction process for a four-strip

domain. In examples 14, 15, 16 and 17 the optical thickness, initial guess, different

source locations and different measurement locations example problems are revisited

with scattering, respectively. Eight experiments are used in all of the reconstructions

in this section with the exception of example 16 where the source locations are varied.

In example 16, only one experiment is used in the reconstruction.
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1. Example 11 - Scattering Misfit Surface Plots

In the eleventh example the surface of the objective function is considered for a

homogeneous domain with constant total and scattering cross sections. This two-

parameter problem allows for the misfit surface to be plotted as a function of the

scattering and total cross sections. The misfit surface is considered for four different

scattering cross sections. These scattering cross sections were determined based on

a percentage of the total cross section so that the complete range of low to high

scattering medium could be plotted. The scattering percentages considered in these

misfit surface plots were 10%, 50%, 90% and 99%. A 50x50 grid of values was used

to generate the suface of the objective function and these values ranged from 50% to

200% of the true value of the parameters. The true total cross section was maintained

at a value of 1.00 cm−1 for all of the studies. Therefore, the true scattering cross

sections were 0.10, 0.50, 0.90 and 0.99 cm−1. A list of the parameters that define the

geometry, discretization scheme and source positions used to generate these misfit

surfaces can be seen in Table VI-XIII.
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Table VI-XIII.: Parameter Description of Misfit Surface Geometry

Angular Quadrature (Sn) 8

Domain Size (cm) 4x4

Number of Material Regions 1

Material Mesh 4x4

Flux Mesh 8x8

Number of Searched Parameters 2

True Total Cross Section (cm−1) 1.00

True Scattering Cross Section (cm−1) 0.10, 0.50, 0.90, 0.99

Number of Guessed Parameter Pairs 2500

Range of Guesses for Total Cross Section (cm−1) 0.50-2.00

Range of Guesses for Scattering Cross Section (%) 50-200

Illuminating Source Intensity ( n
(cm2−Sr)) 100

Boundaries of Imposed Illuminating Sources all sides

In Fig. VI-42, the misfit surface that results from the 10% scattering case is

presented. With this low amount of scattering, the misfit surface resembles the misfit

surface from the the pure absorber model seen in example 1. In this case, determining

the total cross section is much easier than determining the scattering cross section.

This is evidenced by the fact that the misfit surface changes more drastically with

changes in the total cross section than with changes in the scattering cross section.

The scattering cross section is generally more difficult to reconstruct than the total

cross section using Newton’s method. Therefore, some of the problems seen in the

pure absorber section of this thesis were simplified when it was desired to reconstruct
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both the total and scattering cross sections. In addition, because a 50x50 grid of

values was used to generate the misfit surface, the combination of cross sections that

yeilds the true values was not plotted and no hole is present in the data for any of

these figures.
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Fig. VI-42.: Misfit Surface Plot with 10% Scattering.

In Fig. VI-43, the misfit surface that results from the 50% scattering case is

presented. The area where the sharp peaks are found can be ingored in this figure

because the combination of cross sections that were used to generate these values

correspond to a situation where the scattering cross section is larger than the total

cross section. Since the scattering cross section can never be larger than the total

cross section, these values are non-physical and should be ignored. It can also be

noticed that the misfit surface of the case with 50% scattering is very flat and the

gradient only changes drastically very near the true value of the parameters. This

means that the gradient of the objective function provides little information about

the location of the minimum of the objective function unless the proposed values

of the parameters is very near the true parameters. This displays the difficulty of

the optimization problem where both the total and scattering cross section are to be

reconstructed and one may expect slow convergence for initial guesses that are far
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from the actual solution.
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Fig. VI-43.: Misfit Surface Plot with 50% Scattering.

In Fig. VI-44, the misfit surface that results from the 90% scattering case is

presented. Again some non-physical parameters combinations have been plotted and

these should be ignored. The valley of the misfit where the minimum is located has

now rotated so that is runs along a line that approximately corresponds to when the

scattering cross section is equal to the total cross section. Again it can be seen that

misfit surface is rather flat everywhere except near the misfit valley.
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Fig. VI-44.: Misfit Surface Plot with 90% Scattering.

In Fig. VI-45, the misfit surface that results from the 99% scattering case is
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presented. Again some non-physical parameters combinations have been plotted and

these should be ignored. The valley of the misfit where the minimum is located runs

along a line that approximately corresponds to when the scattering cross section is

equal to the total cross section.
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Fig. VI-45.: Misfit Surface Plot with 99% Scattering.

2. Example 12 - 8-Parameter Homogeneous Domain

In example 12, a domain with true total and scattering cross section distributions that

are homogeneous is reconstructed as four distinct material regions or an 8-parameter

problem. This simple problem serves as an introduction to the process of recon-

structing both the scattering and total cross sections simultaneously. This inverse

transport problem was conducted for three different scattering cross sections of 0.10,

0.50 and 0.90 cm−1. In all cases the total cross section was maintained at a constant

1.00 cm−1. An initial guess of 1.50 cm−1 was proposed for the values of all of the

scattering and total cross sections in each of the studies in this example. A list of

the parameters that define the geometry, discretization scheme, reconstructed cross

sections and source positions for the problem can be seen in Table VI-XIV.
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Table VI-XIV.: Parameter Description of Homogeneous Domain with Scattering

Angular Quadrature (Sn) 8

Domain Size (cm) 4x4

Number of Material Regions 1

Material Mesh 4x4

Flux Mesh 16x16

Number of Searched Parameters 8

Actual Total Cross Section (cm−1) 1.00

Actual Scattering Cross Section (cm−1) 0.10, 0.50, 0.90

Homogeneous Initial Guess for Total Cross Sections

(cm−1)

1.50

Homogeneous Initial Guess for Scattering Cross Sections

(cm−1)

1.50

Illuminating Source Intensity ( n
(cm2−Sr)) 100

Illuminating Sources all sides

Figs. VI-46 and VI-47 display the reconstructions and errors for the total and

scattering cross sections for the problem with 10% scattering. The reconstruction was

successful and the maximum error was determined to be on the order of 10−5 and

10−6 for the total and scattering cross sections, respectively. The reconstruction was

completed in one hundred and twenty-six iterations in fifty-three hours.
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Fig. VI-46.: Total Cross Section Reconstruction for the 8-Parameter Homogeneous

Domain with 10% Scattering.
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Fig. VI-47.: Scattering Cross Section Reconstruction for the 8-Parameter Homoge-

neous Domain with 10% Scattering.

Figs. VI-48 and VI-49 display the reconstructions and errors for the total and

scattering cross sections for the problem with 50% scattering. The reconstruction was

successful and the maximum error was determined to be on the order of 10−5 for the

total and scattering cross sections. The reconstruction was completed in one hundred

and twenty-six iterations in fifty-two hours.
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Fig. VI-48.: Total Cross Section Reconstruction for the 8-Parameter Homogeneous

Domain with 50% Scattering.
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Fig. VI-49.: Scattering Cross Section Reconstruction for the 8-Parameter Homoge-

neous Domain with 50% Scattering.

Figs. VI-50 and VI-51 display the reconstructions and errors for the total and

scattering cross sections for the problem with 90% scattering. The reconstruction

was successful and the maximum error was determined to be on the order of 10−5

for both the total and scattering cross sections. The reconstruction was completed in

eighty-six iterations in thirty-six hours.
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Fig. VI-50.: Total Cross Section Reconstruction for the 8-Parameter Homogeneous

Domain with 90% Scattering.
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Fig. VI-51.: Scattering Cross Section Reconstruction for the 8-Parameter Homoge-

neous Domain with 90% Scattering.



100

Because of the extremely long solve times of fifty-three, fifty-two and thirty-six

hours for this simple homogeneous problem, the transport function was optimized so

that computational time could be reduced. This optimization process consisted of

calculating only once and storing the large matrices that do not change with each

iteration of the the transport operator. Significant performance improvements were

noticed after this optimization was conducted and this explains why solution time

are significantly reduced in the following problems.

3. Example 13 - Four-Strip Domain with No Signal Noise, Only Noise,

and Both Noise and Bias

In example 13, a four strip domain is considered with no signal noise, with only signal

noise and with both signal noise and signal bias. This four strip domain is grouped

into eight distinct regions where both the total and scattering cross sections are

reconstructed. This simulation was conducted with eight experiments each covering

half of a side and the scattering percentage was maintained at 90% of the total cross

section for all regions in all of the studies conducted in this section. Homoeneous

initial parameter distributions of 1.2 and 1.1 cm−1 were used as the starting points

for the reconstructions of the total and scattering cross sections, respectively. A list

of the parameters that define the geometry, discretization scheme, reconstructed cross

sections, source positions and applied signal noise and bias for the problem can be

seen in Table VI-XV.
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Table VI-XV.: Parameter Description of Four-Strip Domain with Signal Noise and

Bias

Angular Quadrature (Sn) 8

Domain Sizes (cm) 4x4

Number of Material Regions 4

Material Mesh 4x4

Flux Mesh 8x8

Number of Searched Parameters 16

Actual Total Cross Section of Material 1 (cm−1) 0.90

Actual Total Cross Section of Material 2 (cm−1) 1.00

Actual Total Cross Section of Material 3 (cm−1) 1.10

Actual Total Cross Section of Material 4 (cm−1) 0.90

Actual Scattering Ratio for All Materials (c) 0.90

Homogeneous Initial Guess for Total Cross Sections

(cm−1)

1.20

Homogeneous Initial Guess for Scattering Cross Sections

(cm−1)

1.10

Illuminating Source Intensity ( n
(cm2−Sr)) 100

Illuminating Sources 8-exp, 1/2-side each

Multiplicative Signal Noise (%) 0.01, 0.1, 1.0

Positive Signal Bias (%) 1.00, 5.00

Negative Signal Bias (%) 1.00, 5.00

Figs. VI-52 and VI-53 display the reconstructions and errors for the total and
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scattering cross sections for the baseline case where no signal noise or bias has been

applied to the measured fluxes. The reconstruction was successful and the generated

image possessed error on the order of 10−5 for both the scattering and total cross

sections. This reconstruction was completed in 54 iterations lasing just under three

hours.
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Fig. VI-52.: Total Cross Section Reconstruction Results for Four-Strip Domain with-

out Signal Noise.
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Fig. VI-53.: Scattering Cross Section Reconstruction Results for Four-Strip Domain

without Signal Noise.

Figs. VI-54 and VI-55 display the reconstructions and errors for the total and

scattering cross sections for the case where 0.01% signal noise has been applied to the

measured fluxes. As expected, more error is introduced into the reconstruction due

to this signal noise and the resulting error in the total cross section has quadupled
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and resulting error in the scattering cross section has tripled as compared with the

baseline case. This reconstruction was completed in fifty-one iterations lasting three

hours.
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Fig. VI-54.: Total Cross Section Reconstruction Results for Four-Strip Domain with

0.01% Signal Noise.
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Fig. VI-55.: Scattering Cross Section Reconstruction Results for Four-Strip Domain

with 0.01% Signal Noise.

Figs. VI-56 and VI-57 display the reconstructions and errors for the total and

scattering cross sections for the case where 0.10% signal noise has been applied to

the measured fluxes. Again, the quality of the reconstructions has further diminished

with the addition of more signal noise. The error seen in both the scattering and

total cross sections is now on the order of 10−4. This reconstruction was completed

in 51 iterations lasting two hours and fourty-five minutes.
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Fig. VI-56.: Total Cross Section Reconstruction Results for Four-Strip Domain with

0.10% Signal Noise.
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Fig. VI-57.: Scattering Cross Section Reconstruction Results for Four-Strip Domain

with 0.10% Signal Noise.

Figs. VI-58 and VI-59 display the reconstructions and errors for the total and

scattering cross sections for the case where 1.00% signal noise has been applied to

the measured fluxes. The error in the reconstruction has increased by another order

of magnitude due to the addition more signal noise and is now on the order of 10−3.

This reconstruction was completed in 49 iterations lasting just under three hours.



105

0
1

2
3

4

0

2

4
0.8

0.9

1

1.1

1.2

xy
T

ot
al

 C
ro

ss
 S

ec
tio

n

(a) Reconstruction.
0

1
2

3
4

0

2

4
−2

0

2

4

x 10
−3

xy

T
ot

al
 E

rr
or

(b) Error.

Fig. VI-58.: Total Cross Section Reconstruction Results for Four-Strip Domain with

1.00% Signal Noise.
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Fig. VI-59.: Scattering Cross Section Reconstruction Results for Four-Strip Domain

with 1.00% Signal Noise.

Figs. VI-60 and VI-61 display the reconstructions and errors for the total and

scattering cross sections for the case where 0.10% noise and 1.00% positive signal

bias has been applied to the measured fluxes. The error was further increased by the

addition of signal bias and is on the order of 10−3. The positive signal bias had the

effect of shifting the predicted value of the middle two strips by about 1.00% and

decreasing the predicted value of the outer two strips by about 1.00%. The shape

of the error produced from this case with positive bias resembles the shape of the

error for the baseline case for both the scattering and total cross sections. The major

differences between the errors seen in this case and the baseline case are that the
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baseline case has no noise so the predicted values of the cross sections are uniform

within each region of the domain. Also because of the bias, the error has been scaled

and is much larger in magnitude for the case with bias. This reconstruction was

completed in 49 iterations lasting just under three hours.
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Fig. VI-60.: Total Cross Section Reconstruction Results for Four-Strip Domain with

0.10% Signal Noise and 1.00% Positive Signal Bias.
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Fig. VI-61.: Scattering Cross Section Reconstruction Results for Four-Strip Domain

with 0.10% Signal Noise and 1.00% Positive Signal Bias.

Table VI-XVI displays the average total and scattering cross section values for the

true and reconstructed domains. This table displays the trend that as positive signal

bias is added, this has the effect of increasing the magnitude of all of the angular fluxes.

This then has the effect of decreasing the apparent amount absorption occurring

within the domain and decreases the values of the reconstructed cross sections. This
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can be seen in Table VI-XVI as the values of the reconstructed total and scattering

cross sections are lower in magnitude than their respective true values.

Table VI-XVI.: Average Cross Section Comparison for Four-Strip Domain with 0.10%

Signal Noise and 1.00% Positive Signal Bias

Average True Total Cross Section (cm−1) 0.9750

Average Reconstructed Total Cross Section (cm−1) 0.9717

Average True Scattering Cross Section (cm−1) 0.8775

Average Reconstructed Scattering Cross Section (cm−1) 0.8770

Figs. VI-62 and VI-63 display the reconstructions and errors for the total and

scattering cross sections for the case where 0.10% noise and 5.00% positive signal

bias has been applied to the measured fluxes. The error was further increased by the

addition of signal bias and is on the order of 10−2. The positive signal bias had the

effect of shifting the predicted value of the middle two strips by about 5.00% and

decreasing the predicted value of the outer two strips by about 5.00%. Again, the

shape of the error produced from this case is similar to the error seen in the baseline

and 1.00% positive bias case where the majority of the reconstruction error occurs in

the outer strips of the domain. This reconstruction did not converge in five hundred

iterations because the Lagrangian was still changing more 10−6 between consecutive

iterations. These 500 iterations lasted twenty-seven hours.
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Fig. VI-62.: Total Cross Section Reconstruction Results for Four-Strip Domain with

0.10% Signal Noise and 5.00% Positive Signal Bias.
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Fig. VI-63.: Scattering Cross Section Reconstruction Results for Four-Strip Domain

with 0.10% Signal Noise and 5.00% Positive Signal Bias.

Table VI-XVII displays the average total and scattering cross section values for

the true and reconstructed domains. This table again displays the trend that as

positive signal bias is added to the measured angular fluxes, the values of the recon-

structed cross sections are decreased. Table VI-XVII shows this trend as the values

of the reconstructed total and scattering cross sections are lower in magnitude than

their respective true values. The average values of the reconstructed cross sections

are also reduced as more positive signal bias is added to the fluxes.



109

Table VI-XVII.: Average Cross Section Comparison for Four-Strip Domain with

0.10% Signal Noise and 5.00% Positive Signal Bias

Average True Total Cross Section (cm−1) 0.9750

Average Reconstructed Total Cross Section (cm−1) 0.9585

Average True Scattering Cross Section (cm−1) 0.8775

Average Reconstructed Scattering Cross Section (cm−1) 0.8744

Figs. VI-64 and VI-65 display the reconstructions and errors for the total and

scattering cross sections for the case where 0.10% noise and 1.00% negative signal

bias has been applied to the measured fluxes. The error is on the order of 10−2 for

the total cross sections and 10−3 for the scattering cross sections. The negative signal

bias had the opposite effect of the positive bias and decreased the predicted value of

the middle two strips by about 5.00% and increased the predicted value of the outer

two strips by about 5.00%. The shape of the error produced from this case is similar

to the error seen in the baseline case where the majority of the reconstruction error

occurs in the outer strips of the domain. This reconstruction was completed in 42

iterations lasting about two hours.



110

0
1

2
3

4

0

2

4
0.8

0.9

1

1.1

1.2

xy
T

ot
al

 C
ro

ss
 S

ec
tio

n

(a) Reconstruction.
0

1
2

3
4

0

2

4
−5

0

5

10

15

x 10
−3

xy

T
ot

al
 E

rr
or

(b) Error.

Fig. VI-64.: Total Cross Section Reconstruction Results for Four-Strip Domain with

0.10% Signal Noise and 1.00% Negative Signal Bias.
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Fig. VI-65.: Scattering Cross Section Reconstruction Results for Four-Strip Domain

with 0.10% Signal Noise and 1.00% Negative Signal Bias.

Table VI-XVIII displays the average total and scattering cross section values for

the true and reconstructed domains. This table displays the opposite trend that as

negative signal bias is added, this has the effect of decreasing the magnitude of all

of the angular fluxes. This then has the effect of increasing the apparent amount

absorption occurring within the domain and increases the values of the reconstructed

cross sections. This can be seen in Table VI-XVIII as the values of the reconstructed

total and scattering cross sections are lower in magnitude than their respective true

values.
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Table VI-XVIII.: Average Cross Section Comparison for Four-Strip Domain with

0.10% Signal Noise and 1.00% Negative Signal Bias

Average True Total Cross Section (cm−1) 0.9750

Average Reconstructed Total Cross Section (cm−1) 0.9787

Average True Scattering Cross Section (cm−1) 0.8775

Average Reconstructed Scattering Cross Section (cm−1) 0.8783

Figs. VI-66 and VI-67 display the reconstructions and errors for the total and

scattering cross sections for the case where 0.10% noise and 5.00% negative signal bias

has been applied to the measured fluxes. The error is on the order of 10−2 for the total

and scattering cross sections. Again, the reconstruction of the domain underpredicted

the values of the middle two strips by about 5.00% and overpredicted the values of the

outer two strips by about 5.00%. The shape of the error produced from this case is

similar to the error seen in the baseline and the other bias cases where the majority of

the reconstruction error occurs in the outer strips of the domain. This reconstruction

was completed in 220 iterations lasting about ten hours and fourty-five minutes.

0
1

2
3

4

0

2

4
0.8

0.9

1

1.1

1.2

xy

T
ot

al
 C

ro
ss

 S
ec

tio
n

(a) Reconstruction.
0

1
2

3
4

0

2

4
−0.02

0

0.02

0.04

0.06

xy

T
ot

al
 E

rr
or

(b) Error.

Fig. VI-66.: Total Cross Section Reconstruction Results for Four-Strip Domain with

0.10% Signal Noise and 5.00% Negative Signal Bias.
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Fig. VI-67.: Scattering Cross Section Reconstruction Results for Four-Strip Domain

with 0.10% Signal Noise and 5.00% Negative Signal Bias.

Table VI-XIX displays the average total and scattering cross section values for the

true and reconstructed domains. This table again displays the trend that as negative

signal bias is added to the measured angular fluxes, the values of the reconstructed

cross sections are increased. Table VI-XIX shows this trend as the values of the

reconstructed total and scattering cross sections are greater in magnitude than their

respective true values. The average values of the reconstructed cross sections are also

increased as more negative signal bias is added to the fluxes.
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Table VI-XIX.: Average Cross Section Comparison for Four-Strip Domain with 0.10%

Signal Noise and 5.00% Negative Signal Bias

Average True Total Cross Section (cm−1) 0.9750

Average Reconstructed Total Cross Section (cm−1) 0.9944

Average True Scattering Cross Section (cm−1) 0.8775

Average Reconstructed Scattering Cross Section (cm−1) 0.8818

4. Example 14 - Central Inclusion Optical Thickness Study Reconstruct-

ing Both Scattering and Total Cross Sections

In example 14, central inclusion problems of increasing size are examined to determine

the optical thickness limit for problems with scattering. In these problems, both the

total and scattering cross sections of the central inclusion and surrounding regions

are reconstructed using eight experiments. These problems generally required signifi-

cantly longer computational times than the pure absorber central inclusion problems

even after the code optimization had been conducted. The introduction of scattering

within the domain increased the complexity of the problem and a much lower optical

thickness limit was discovered. A list of the parameters that define the geometry, dis-

cretization scheme, reconstructed cross sections and source positions for the problem

can be seen in Table VI-XX.
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Table VI-XX.: Parameter Description of Central Inclusion Domains with 8 Experi-

ments and Scattering

Angular Quadrature (Sn) 8

Domain Sizes (cm) 4x4, 6x6

Number of Material Regions 2

Material Mesh 4x4, 6x6

Flux Mesh 8x8, 12x12

Number of Searched Parameters 4

Actual Total Cross Section of Surroundings (cm−1) 0.90

Actual Total Cross Section of Inclusion (cm−1) 1.30

Actual Scattering Cross Section of Surroundings (cm−1) 0.45

Actual Scattering Cross Section of Inclusion (cm−1) 0.65

Initial Guess for Inclusion Total Cross Section (cm−1) 1.50

Initial Guess for Inclusion Scattering Cross Section

(cm−1)

0.85

Illuminating Source Intensity ( n
(cm2−Sr)) 100

Illuminating Sources 8-exp, 1/2-side each

Figs. VI-68 and VI-69 display the reconstructions and errors for the total and

scattering cross sections of the 4x4cm central inclusion domain. Newton’s method

was able to reconstruct all four of the cross sections that define this domain. The

history of the condition numbers for the 23 Newton iterations can be seen in VI-69c.
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Fig. VI-68.: Total Cross Sections Results for the 4x4cm Central Inclusion Domain.
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Fig. VI-69.: Scattering Cross Sections Results for the 4x4cm Central Inclusion Do-

main.

Figs. VI-70 and VI-71 display the reconstructions and errors for the total and

scattering cross sections of the 6x6cm central inclusion domain. Newton’s method

failed to reconstruct the cross sections of the 6x6cm domain. In this slightly optically

thicker problem, the values of the cross sections of the central inclusion region con-

tribute even less to the value of the objective function. Because of this, changing the

value of the scattering cross section does not affect the value of the misfit and New-

ton’s method begins to propose negative values for this cross section. The negative

cross section backtrack mentioned in Chapter IV was employed, but a minimum value

of 10−4 for the line search parameter α was applied as well. So a negative scattering

cross section of the inclusion region was eventually proposed because of this mini-
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mum value of the line search parameter. The history of the condition numbers for

all 500 Newton iterations can be seen in VI-71c. In this case, the condition number

continues to grow with every successive Newton iteration and cross sections will never

be reconstructed successfully. Therefore, an optical thickness limit of 2-3 mean free

paths has been determined for the central inclusion domain with scattering and eight

experiments.
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Fig. VI-70.: Total Cross Sections Results for the 6x6cm Central Inclusion Domain.
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Fig. VI-71.: Scattering Cross Sections Results for the 6x6cm Central Inclusion Do-

main.
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5. Example 15 - Homogeneous Domain Initial Guess Study Reconstruct-

ing Both Scattering and Total Cross Sections

In example 15, the sensitivity of Newton’s method when reconstructing both the total

and scattering cross sections is test on a homogeneous domain. Three different initial

guesses are proposed as the starting point for the optimization process starting from

the values above and below the actual parameters. The same heuristic procedure was

implemented as in the pure absorber initial guess problem where if the optimization

process began to stagnate and the line search was only permitting Newton’s method

to take very small steps, the step size was overwritten and a larger step was taken.

This process was almost never required when the actual parameters were approached

from above starting from a higher initial guess. This process was frequently required

when the actual parameters were approached from below starting from a lower initial

guess. A description of the input parameters for the problem for all of the studies con-

ducted in this example as well as the initial parameter distributions used to start the

optimization process are described in Table VI-XXI. Again, since the reconstructed

domain was homogeneous, the initial guess was generated with random numbers to

make it heterogeneous and more challenging for Newton’s method.
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Table VI-XXI.: Parameter Description of Homogeneous Domain Reconstruction from

Various Initial Guesses with Scattering

Angular Quadrature (Sn) 8

Domain Sizes (cm) 4x4

Number of Material Regions 1

Material Mesh 4x4

Flux Mesh 16x16

Number of Searched Parameters 4

Actual Total Cross Section (cm−1) 1.0

Actual Scattering Cross Section (cm−1) 0.5

Initial Guesses Approaching from Above (%) 1000 ± 200, 5000 ±

1000, 10000± 2500

Initial Guesses Approaching from Below (%) 90± 2, 80± 5, 50± 10

Illuminating Source Intensity ( n
(cm2−Sr)) 100

Illuminating Sources 8-exp, 1/2-side each

Figs. VI-72, VI-73, VI-74, VI-75, VI-76 and VI-77 display the initial guess,

reconstruction and error results for the scattering and total cross sections of the

homogeneous domain starting from an initial guess that is lower than the actual

scattering and total cross sections. Figs. VI-72 and VI-73 represent the optimization

results when an initial guess of 90% ± 2% of the true scattering and total cross

sections was used. Figs. VI-74 and VI-75 represent the optimization results when

an initial guess of 80%± 5% of the true scattering and total cross sections was used.

Figs. VI-76 and VI-77 represent the optimization results when an initial guess of

50%±10% of the true scattering and total cross sections was used. Newton’s method
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was able to reconstruct the homogeneous domain from the 90%± 2% and 80%± 5%

initial parameters distributions, but it was unable to reconstruct the domain from

the 50%±10% initial guess. It both of the successful reconstructions, the step length

was required to be reset many times before the solution was achieved. This again

reinforced the trend that Newton’s method found it easier to appoach the solution

from a higher initial guess than a lower one. In addition, the complexity of the

scattering problem was emphasized as the proposed initial guesses had to be much

closer to the true parameter distribution for the problem with scattering as compared

with the pure absorber problems seen in example 7.
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Fig. VI-72.: Initial Guess, Reconstruction and Error Results for Total Cross Section

with 90± 2% Initial Guess.
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Fig. VI-73.: Initial Guess, Reconstruction and Error Results for Scattering Cross

Section with 90± 2% Initial Guess.
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Fig. VI-74.: Initial Guess, Reconstruction and Error Results for Total Cross Section

with 80± 5% Initial Guess.
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Fig. VI-75.: Initial Guess, Reconstruction and Error Results for Scattering Cross

Section with 80± 5% Initial Guess.
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Fig. VI-76.: Initial Guess, Reconstruction and Error Results for Total Cross Section

with 50± 10% Initial Guess.
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Fig. VI-77.: Initial Guess, Reconstruction and Error Results for Scattering Cross

Section with 50± 10% Initial Guess.

Figs. VI-78, VI-79, VI-80, VI-81, VI-82 and VI-83 display the initial guess,

reconstruction and error results for the scattering and total cross sections of the

homogeneous domain starting from an initial guess that is higher than the actual

scattering and total cross sections. Figs. VI-78 and VI-79 represent the optimization

results when an initial guess of 1000% ± 200% of the true scattering and total cross

sections was used. Figs. VI-80 and VI-81 represent the optimization results when

an initial guess of 5000%± 1000% of the true scattering and total cross sections was

used. Figs. VI-82 and VI-83 represent the optimization results when an initial guess

of 10000%±2500% of the true scattering and total cross sections was used. Newton’s

method was able to reconstruct the homogeneous domain from the 1000%±200% and

5000%± 1000% initial parameters distributions, but it was unable to reconstruct the

domain from the 10000%± 2500% initial guess. In all of these cases where the initial

guess was greater than the true values of the parameters, the lines search method

never stagnated and the step length was never reset. This again reinforced the trend

that Newton’s method found it easier to appoach the solution from a higher initial

guess than a lower one. The complexity of the scattering problem was emphasized

as 10000%± 2500% initial guess was unsuccessful when both the scattering and total
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cross sections were reconstructed as compared with the pure absorber problem seen

in example 7.
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Fig. VI-78.: Initial Guess, Reconstruction and Error Results for Total Cross Section

with 1000± 200% Initial Guess.
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Fig. VI-79.: Initial Guess, Reconstruction and Error Results for Scattering Cross

Section with 1000± 200% Initial Guess.
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Fig. VI-80.: Initial Guess, Reconstruction and Error Results for Total Cross Section

with 5000± 1000% Initial Guess.
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Fig. VI-81.: Initial Guess, Reconstruction and Error Results for Scattering Cross

Section with 5000± 1000% Initial Guess.
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Fig. VI-82.: Initial Guess, Reconstruction and Error Results for Total Cross Section

with 10000± 2500% Initial Guess.
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Fig. VI-83.: Initial Guess, Reconstruction and Error Results for Scattering Cross

Section with 10000± 2500% Initial Guess.

6. Example 16 - Four-Region Domain with Illuminating Sources on 1, 2,

3 or 4 Sides Reconstructing Both Scattering and Total Cross Sections

In example 16, the effects of imposing sources on different numbers of sides in a single

experiment is examined on a four region domain with scattering. The scattering cross

sections for the domain were maintained at 50% of the total cross section for all of the

studies conducted in this section. The same material region layout and side numbering

scheme was used in this example as can be seen in Fig. VI-10 of example 4. A list of

the parameters that define the geometry, discretization scheme, reconstructed cross

sections and source positions for the problem can be seen in Table VI-XXII.
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Table VI-XXII.: Parameter Description of Four-Region Domain with Scatting and

Varying Illuminating Sources

Angular Quadrature (Sn) 8

Domain Size (cm) 8x8

Number of Material Regions 4

Material Mesh 4x4

Flux Mesh 16x16

Number of Searched Parameters 8

Actual Total Cross Section of Material 1 (cm−1) 0.70

Actual Total Cross Section of Material 2 (cm−1) 0.90

Actual Total Cross Section of Material 3 (cm−1) 1.10

Actual Total Cross Section of Material 4 (cm−1) 1.30

Actual Scattering Ratio for All Materials (c) 0.50

Homogeneous Initial Guess for Total Cross Sections

(cm−1)

1.5

Homogeneous Initial Guess for Scattering Cross Sections

(cm−1)

1.3

Illuminating Source Intensity ( n
(cm2−Sr)) 100

Illuminating Sources 1, 2, 3, 4 sides

Figs. VI-84 and VI-85 display the results of the reconstruction as sources are

applied to only one side of the model. In this case, the reconstruction is unsuccessful

just as it was not in the pure absorber problem in example 4. The single experiment

with a single beam does not proved sufficient information about the domain to gen-
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erate an image. Most likely the beam is sufficiently attenuated and scattered with in

the domain that measurable fluxes do not provide a good representation of the ma-

terial properties of the domain and the reconstruction fails. This failure is evidenced

by the large errors in the scattering and total cross sections which are on the order of

10−1. The Newton iterations were terminated after five hundred iterations and forty

hours.
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Fig. VI-84.: Total Reconstruction and Error for Four-Region Domain with Sources

on 1 Side.
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Fig. VI-85.: Scattering Reconstruction and Error for Four-Region Domain with

Sources on 1 Side.

Figs. VI-86, VI-87, VI-88, VI-89, VI-90 and VI-91 display the reconstruction and

error results for the other three models with sources on two, three or fours sides of

the model. All of these cases were successful and the the general trend of a reduction
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in the reconstruction error and an improvement in image quality as more sources

are used can be seen in these results. The successful reconstructions were conducted

in 124, 260 and 240 iterations for the simulations with beams on two, three and

four sides, respectively. These reconstructions required ten and half, twenty-six and

twenty-three hours for the studies with illuminating sources on two, three and four

sides to complete, respectively.
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Fig. VI-86.: Total Reconstruction and Error for Four-Region Domain with Sources

on 2 Sides.
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Fig. VI-87.: Scattering Reconstruction and Error for Four-Region Domain with

Sources on 2 Sides.
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Fig. VI-88.: Total Reconstruction and Error for Four-Region Domain with Sources

on 3 Sides.
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Fig. VI-89.: Scattering Reconstruction and Error for Four-Region Domain with

Sources on 3 Sides.

0
2

4
6

8

0
2

4
6

8
0.5

1

1.5

xy

T
ot

al
 C

ro
ss

 S
ec

tio
n

(a) Reconstruction.
0

2
4

6
8

0
2

4
6

8
0.5

1

1.5

2

x 10
−5

xy

T
ot

al
 E

rr
or

(b) Error.

Fig. VI-90.: Total Reconstruction and Error for Four-Region Domain with Sources

on 4 Sides.
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Fig. VI-91.: Scattering Reconstruction and Error for Four-Region Domain with

Sources on 4 Sides.

7. Example 17 - Four-Region Domain Reconstructing Both Scattering

and Total Cross Sections Using Measurements from 1, 2, 3 and 4

Sides

In example 17 the effects of using the measurements from different combinations of

sides of the model in the reconstruction process are explored. All of the models seen

in this example are simulated with eight experiments each covering half of a side and

both the total and scattering cross sections are reconstructed simultaneously. All of

the scattering cross sections in the models simulated in example 17 are maintained

at 90% of the total cross section values. The same material region layout and side

numbering scheme was used in this example as can be seen in Fig. VI-10 of example

4. Homogeneous initial guesses of 1.5 cm−1 and 1.3 cm−1 were used as starting

points for Newton’s method for the total and scattering cross sections. A list of

the parameters that define the geometry, discretization scheme, reconstructed cross

sections and source positions for the problem can be seen in Table VI-XXIII.



130

Table VI-XXIII.: Parameters Description of Four-Region Domain Measuring on 1, 2,

3 or 4 Side of Model

Angular Quadrature (Sn) 8

Domain Sizes (cm) 8x8

Number of Material Regions 4

Material Mesh 4x4

Flux Mesh 16x16

Number of Searched Parameters 4

Actual Total Cross Section of Material 1 (cm−1) 0.70

Actual Total Cross Section of Material 2 (cm−1) 0.90

Actual Total Cross Section of Material 3 (cm−1) 1.10

Actual Total Cross Section of Material 4 (cm−1) 1.30

Actual Scattering Ratio for All Materials (c) 0.90

Homogeneous Initial Guess for Total Cross Sections

(cm−1)

1.50

Homogeneous Initial Guess for Scattering Cross Sections

(cm−1)

0.85

Illuminating Source Intensity ( n
(cm2−Sr)) 100

Illuminating Sources 8-exp, 1/2-side each

Measurements 1, 2, 3 or 4 Sides

Figs. VI-92 and VI-93 display the reconstruction and error results as the total

and scattering cross sections of the domain are reconstructed only with the measure-

ments from one side. In this case, Newton’s method was unable to reconstruct the
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cross sections of the domain in the provided two hundred iterations. This was most

likely due to the fact that insufficient information was collected from only measur-

ing on one side of the model to correctly identify the material property distribution

of the domain. This failed reconstruction is evident by the large errors seen in the

reconstruction that are on the order of 100. The two hundred iterations that were

conducted for this problem lasted for about nine hours.
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Fig. VI-92.: Total Reconstruction and Error Results for the Four-Region Domain

with Measurements on 1 Side.
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Fig. VI-93.: Scattering Reconstruction and Error Results for the Four-Region Domain

with Measurements on 1 Side.

Figs. VI-94, VI-95, VI-96, VI-97, VI-98 and VI-99 are the reconstruction and

error results for the scattering and total cross sections for the domain where measure-

ments gathered from two, three or four sides of the model were used in the reconstruc-
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tion. All of these simulations were successful. The trend of improved image quality

and reduction in reconstruction error as more measurements are use to generate the

image is again noted in this example. Forty-four, forty-nine and forty-nine iterations

were required for the reconstruction for the models run with measurement collected

from two, three and four sides, respectively. These simulations lasted twenty-four,

twenty-nine and twenty-four hours to run, respectively.
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Fig. VI-94.: Total Reconstruction and Error Results for the Four-Region Domain

with Measurements on 2 Sides.
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Fig. VI-95.: Scattering Reconstruction and Error Results for the Four-Region Domain

with Measurements on 2 Sides.
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Fig. VI-96.: Total Reconstruction and Error Results for the Four-Region Domain

with Measurements on 3 Sides.

0
2

4
6

8

0
2

4
6

8

0.8

1

1.2

1.4

xy

S
ca

tte
rin

g 
C

ro
ss

 S
ec

tio
n

(a) Reconstruction.
0

2
4

6
8

0
2

4
6

8

2

3

4

x 10
−6

xy

S
ca

tte
rin

g 
E

rr
or

(b) Error.

Fig. VI-97.: Scattering Reconstruction and Error Results for the Four-Region Domain

with Measurements on 3 Sides.
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Fig. VI-98.: Total Reconstruction and Error Results for the Four-Region Domain

with Measurements on 4 Sides.
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Fig. VI-99.: Scattering Reconstruction and Error Results for the Four-Region Domain

with Measurements on 4 Sides.

8. Summary of Findings from Scattering Problems

In this section the challenges of introducing scattering into many problems was ex-

amined. It was noticed the scattering process increases the complexity of the inverse

transport problem because the measurable radiation is now clouded with uncertainty

about the origin of the particle. In the pure absorber problems, the image of the

domain is generated based simply on the difference between the original intensity of

the incident beams and the measured radiation a the measurement point. In other

words, the amount of radiation that is removed from the beam or absorbed by the

domain is used to create the image. However, when scattering is introduced, now

radiation can be measured at the detectors after is had interacted within the domain.

This complicated the reconstruction process because now the origin of the measured

radiation is uncertain and can only be categorized by a probability. This again is

more complex than the pure absorber problems where radiation only traverses the

domain in straight lines. Only isotropic scattering was studied in this thesis as well,

so in actuality the inverse transport problem contains even more complexity.

In addition to the added difficulty noticed in all of the scattering problems, some

other unique findings were uncovered in each of the specific scattering problems. In
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example 11, the misfit surface of a two-parameter problem was plotted as to under-

stand its shape as the scattering and total cross sections were varied. This evidenced

the additional difficulty in determining the scattering cross section and that the sur-

face was often rather flat unless the proposed values was very near the actual solution.

This meant that the gradient of the misfit provided little information about the loca-

tion of the minimum and the wall of the misfit valley were also noticed to be convex.

Both of these observations again reinforce the complexity of the inverse transport

problem. In example 12, a simple homogeneous domain was examined to get a feel

for the capability of Newton’s method to reconstruct both the scattering and total

cross sections. The method had little trouble reconstructing these parameters, but

the computational time required for problems with scattering was noted and algo-

rithm was optimized for better performance. In example 13, the four-strip domain

was revisited with signal noise and bias. The same trends were noticed in the scat-

tering reconstruction as in the pure absorber problems. Increasing the noise in the

measured fluxes caused greater error in the reconstructed image. Signal bias had the

effect of shifting the cross section of the domain in either the positive or negative

direction due to the uniform increase or decrease seen in the measured fluxes. In

example 14, central inclusion problems with scattering of increasing optical thickness

are considered. An optical thickness limit of 2-3 mean free paths thick was deter-

mined to be the maximum depth that permitted a successful reconstruction of the

cross sections of the domain. In example 15, the initial guess studies were revisited

and the complexity of the scattering problems became apparent as many of the initial

guess that were successful for the pure absorber problems were not for the scattering

cases. The same challenges were noticed as Newton’s method approached the solu-

tion from a lower initial guess and higher initial guess proved to be more reliable.

In example 16, the problem where sources were applied to different combinations of
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sides of the domain was studied for a scattering problem. Again, when the beam was

imposed on only one side of the model, insufficient information could be collected

to fully characterize the material properties of the domain. The reconstruction was

successful when beams were imposed on more sides of the model and as more beams

were imposed, image quality improved. Finally, in example 17 a four region domain

with scattering was reconstructed with measurements from various numbers of sides

of the domain. The added complexity of scattering was noted as the reconstruction

was unsuccessful when measurements were collected from only one side of the model,

because this case was successful for the pure absorber case. The trend of improved

image quality as measurements were recorded from more sides of the model was again

evident.
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CHAPTER VII

CONCLUSIONS AND OUTLOOK

Using transport theory and Newton’s method to create images of various domains

has the potential to be a useful algorithm to analyze cargo container scans. First,

this algorithm generally requires fewer iterations and computational time than any

derivative-free technique. Second, this method is also easy to implement as long as

the first and second derivatives of the Lagrangian function can be computed. Third, it

is also flexible enough to accommodate differing illuminating sources, numbers of ex-

periments, initial guesses and measurement locations. Fourth, this technique showed

a successful ability to reconstruct domains where signal noise and bias was applied

to the angular fluxes. And last, the inverse transport method proved capable to re-

construct a wide range of problems ranging from pure absorbers to highly scattering

mediums.

Many limitations of applying Newton’s method to the transport equation were

also noted. First, a maximum of ten mean free paths thick for pure absorbers and

two mean free paths for scattering problems were determined to be the maximum

optical thicknesses where the measurable signal from the illuminating sources is still

strong enough to permit reconstruction. Second, the dependence of the success of

the reconstruction and the required computational time was determined to be highly

dependent on the initial guess for the parameters. And third, this method allows for

Newton’s method to propose negative cross section values and scattering cross sections

that are larger there corresponding total cross section. An additional backtracking

technique was employed as an attempt to prevent this problem, but these scenarios

have no physical meaning and further constraints could be applied to prevent this.
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Looking forward, there are a few ways to improve how Newton’s method is ap-

plied to the optimality conditions of the inverse transport problem. First, a more

robust line search than the Armijo or Wolfe backtrack technique could be employed

to ensure that Newton’s method does not overshoot the true solution. Second, the

Lagrangian could be modified to include further constraints including an upper and

lower bound on the cross sections and a check that ensures that the total cross section

is always greater than or equal to the scattering cross section. Third, a method for

treating the uncollided flux could be considered in unison with this method to better

characterize the uncollided radiation. Fourth, a preconditioner could be implemented

to provide Newton’s method with an improved initial guess for the distribution of

the cross sections within the domain. Fifth, this method could be made compatible

with adaptive meshing strategies so that finer meshes could be generated in areas of

interest and coarser meshes could be used for less interesting areas. Sixth, anisotropic

scattering could be added to the forward solver to expand the range of problems that

can be considered with the method. Seventh, the method could be extended to three

dimensions to tackle more realistic problems. And last, this method could be paral-

lelized so that the problem could be solved more efficiently on multiple processors.
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