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ABSTRACT 

 

Dynamic Effects in Nucleophilic Substitution Reactions.  

(December 2011) 

Xavier Sheldon Bogle, B.A., Franklin & Marshall College  

Chair of Advisory Committee: Dr. Daniel A. Singleton 

 

In order to rationally optimize a reaction, it is necessary to have a thorough 

understanding of its mechanism. Consequently, great effort has been made to elucidate a 

variety of reaction mechanisms. However, the fundamental ideas needed to understand 

reaction mechanisms are not yet fully developed. Throughout the literature, one 

encounters numerous examples of experimental observations that are not explainable by 

conventional mechanistic ideas and methods. The research described in this dissertation 

employs a unique approach towards the identification and analysis of systems whose 

observations cannot be explained by conventional transition state theory (TST). 

The nucleophilic substitution of 4,4-dichloro-but-3-en-2-one by sodium-para-

tolyl-thiolate was explored. It was deduced that the reaction was concerted and 

consequently, the product selectivity observed in the reaction cannot be explained by 

TST. Dynamic effects play a major role in the observed selectivity and this is further 

supported by the results of dynamic trajectory simulations. 

Using computational studies, the ethanolysis of symmetric aryl carbonates was 

also shown to be concerted, provided that the substrate possesses good leaving groups. 
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Furthermore, extensive precedence has been set by Gutthrie, Santos, Schelgel, and 

others, detailing concerted substitutions at acyl carbon. 

The Fujiwara hydroarylation is thought to occur by either a C-H activation 

mechanism or an electrophilic aromatic substitution (EAS). The KIEs associated with 

this reaction have been determined and provide strong support for the latter. 

Computational studies also displayed fair agreement with experimentally determined 

KIEs, further supporting the EAS mechanism.  

Isotopic perturbation of equilibria is invaluable in helping to determine whether a 

structure exists as a single structure or whether it is a time average of two equilibrating 

structures. The bromonium cation of tetramethylethylene and hydrogen pthalate have 

been wrongly reported as existing as equilibrating structures. The time averaged 

geometries have been determined in each case, via a variety of methods and the myth of 

equilibrating structures in the above cases has been debunked. 
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CHAPTER I 

I�TRODUCTIO�  

 

The understanding and ultimately the control of chemical reactions are central 

goals of physical organic chemistry. In order to rationally optimize a reaction, it is 

necessary to have a thorough understanding of its mechanism. Consequently, great effort 

has been made to elucidate a variety of reaction mechanisms. However, the fundamental 

ideas needed to understand reaction mechanisms are not yet fully developed. Throughout 

the literature, one encounters numerous examples of experimental observations that are 

not explainable by conventional mechanistic ideas and methods. The research described 

in this dissertation employs a unique approach towards the identification and analysis of 

systems whose observations cannot be explained by conventional transition state theory 

(TST). 

In its simplest form, a chemical reaction represents the conversion of reactants 

into a product.   This conversion occurs by a particular reaction mechanism, which is 

most commonly viewed as a description of the path or sequence of steps leading to 

product formation. As will be seen, more information than this may be needed, but the 

determination of this path or sequence of steps in itself can prove challenging for a 

variety of reasons. Most often, the reactive intermediates formed en route to product 

have extremely short life times thereby making their observation impractical. In others, 

one may encounter reactions that have overlapping, competing rate-limiting steps that 

____________ 
This dissertation follows the style of Journal of the American Chemical Society. 
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fluctuate based on external factors such as concentration, temperature or pH of the 

reaction medium.  

As defined by TST, the selectivity observed between two products in a reaction 

is directly related to the relative free energies of the transition states (TSs) of the 

competing pathways. However, in stark contradiction to this idea, there are documented 

cases where only a single transition structure is locatable but yet two distinct products 

are formed.1 Under these circumstances, TST is incapable of qualitatively accounting for 

the experimental observations and it will be shown that these systems are instead 

controlled by a type of “dynamic effect” where the decision to form either product is 

made on the downward slope on a bifurcating energy surface after passing through the 

transition state. Essentially, trajectories (reaction paths from starting material to product) 

on these bifurcating surfaces can pass through the first transition state and afford the 

products without passing through any successive intermediates or transition states. 

As tools, the work in this dissertation will use the determination of experimental 

kinetic isotope effects (KIEs) using the Singleton natural abundance methodology,2 

dynamic trajectory studies, theoretical KIE predictions and kinetic rate studies. These 

mechanistic probes are employed in conjunction with each other to determine the 

structural features of transition states, identify rate limiting or product determining steps 

and the elucidation of overall mechanisms. It should be noted that this dissertation will 

not describe the intricacies of the Singleton natural abundance NMR methodology as it 

has been described in numerous dissertations and publications. 
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Kinetic Isotope Effects  

 The substitution of one isotope for another at or near an atom in which bonding 

changes are occurring generally leads to small changes in the observed rates. These 

small changes in the observed rates are termed kinetic isotope effects and they originate 

mainly from the difference in frequencies of the vibrational modes of two isotopologues. 

 The frequency of a stretching vibration is modeled by the classic equation (eqn. 

1-1) for the stretching of a spring with masses at both ends. The reduced mass of a bond 

between a heavy atom (C, N, and O) and H is significantly affected upon substitution of 

H by D. The reduced mass, mr, increases, subsequently causing the stretching frequency 

and the zero-point energy (ZPE) of a C-D bond to be lower than that of a C-H bond. 

 

υ = 1/2π (k/mr)
1/2   mr = m1m2/m1+m2     (1-1) 

 

 As illustrated in Figure 1-1, an isotope effect is observed for a C-H vs C-D bond 

when the levels of the ZPE associated with each isotope, change to different extents on 

proceeding from starting materials to the transition state. If the normal modes are closer 

in energy at the transition state than they are in the starting material, a decrease in ZPE is 

observed and the lighter isotope encounters a smaller activation barrier. In this case, 

lighter isotopes tend to react faster and this is referred to as a normal isotope effect. In 

the opposing case, where the normal modes are further apart in the transition state vs. 

starting materials, then the heavier isotope has a lower barrier to overcome and 

consequently reacts faster than the lighter isotope. This isotope effect is called an inverse 
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isotope effect. It should be pointed out that factors other than ZPE play some role in 

KIEs when conventional TST is considered, but ZPE is usually the dominant contributor 

to the isotope effect. 

 
 
 

  
Figure 1-1. Origin of a Kinetic Isotope Effect. They result from changes in the ZPE on 
going from starting materials to the transition state. 
 
 
 
 Traditional isotope effect studies require explicit isotopic labeling at all positions 

for which an isotope effect will be determined. This is often an arduous task and as such 

these methods can prove to be somewhat limited and highly inefficient. All of the KIEs 

reported in this dissertation were determined at natural abundance using the Singleton 

methodology.2 This methodology takes advantage of the competition reaction that is 

inherent between isotopes at their natural abundances, and avoids all difficulties 
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associated with the synthesis of labeled materials. As a reaction proceeds to high 

conversion, the product becomes enriched in the faster reacting isotopologues while the 

starting material becomes enriched in the slower reacting isotopologues. A comparison 

is then made between the isotopic content of the recovered starting material and that of 

original material that hasn’t been exposed to reaction conditions. The KIE is then 

determined from this comparison. 

 

Dynamic Effects 

 Transition state theory is the underlying paradigm by which chemists understand 

reactivity and selectivity. However, in recent years, the Singleton group has shown that 

there are numerous instances encountered in studying simple organic reactions where 

TST proves incapable of accounting for experimental observations. Under these 

circumstances, an alternate approach has to be taken which involves taking the impact of 

the collective momenta and motion of atoms on the observed experimental outcomes 

into account. This impact of the momenta and motion of atoms on the experimental 

outcomes is what we call a dynamic effect. 

 There are several different types of dynamic effects that have been identified in 

chemical reactions. Carpenter has been studying the phenomenon of dynamic matching 

since 1984.3 One assumption generally made is that intramolecular vibrational energy 

redistribution (IVR) is fast relative to the timescale of the reaction. This is not always the 

case and consequently the passage of trajectories passing through an initial transition 

state can influence the selectivity among successive transition states. Based on this 
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dynamic matching effect, TST based methods fall short of accurately predicting 

experimental results and instead, dynamic trajectories have to be employed to make 

accurate predictions of the selectivity. 4 

 A second type of dynamic effect that is also due to slow IVR is non-statistical 

recrossing. Recrossing occurs when a trajectory passes the transition state, runs into a 

potential energy wall and then reverts to starting material instead of forming product. To 

some extent, statistical versions of TST such as microcanonical variational TST, are 

capable of reasonably predicting and allowing for recrossing.5 However, it is also known 

that some recrossing that occurs is not statistically predictable.  

 Singleton and Ussing first demonstrated non-statistical recrossing experimentally 

in the cycloaddition of diphenyl ketene and cyclopentadiene as depicted in Figure 1-2.6 

Here the first step of the mechanism is the formation of a bond between Cα and C1. The 

trajectory passes TS 3 and then continues toward 4, which is the TS by which 5 and 6 

can interconvert. Basically, in most cases, Cα and C1 approach each other, fail to form a 

bond and return to starting materials via TS 3. The key result from this study is that the 

rate of the reaction was not determined by 3 and the experimental KIEs reflect 4, which 

is well beyond the statistical TS.  
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Figure 1-2. Cycloaddition of Cyclopentadiene and Diphenylketene. 
 
 
 
 A third type of dynamic effect, and the one that has most significance to this 

dissertation, is associated with bifurcating potential energy surfaces. Chemists generally 

assume that separate products are the result of separate transition states and the 

respective ratios of these products are directly related to the relative energies of the 

competing transition states. However, it has also been recognized that this assumption 

may be unreliable.7  
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Figure 1-3. Symmetrical and Unsymmetrical Potential Energy Surfaces. (a) The surface 
is symmetrical and the minimum-energy path (MEP) bifurcates at a second transition 
state.  Trajectories would tend to diverge from the MEP in the area of the valley-ridge 
inflection (VRI). (b) The surface is unsymmetrical and the MEP does not bifurcate.  
  
 
 
 
 Figure 1-3 depicts two types of bifurcating surfaces where reactants can first pass 

through the initial TS and then proceed to product without barrier. In Figure 1-3(a), a 

symmetrical bifurcating surface is depicted where the minimum energy pathway (MEP) 

bifurcates to give, equally, two equivalent products.8 

 Figure 1-3(b) is far less understood and provides a more interesting case where 

the bifurcating surface is now unsymmetrical and trajectories may lead to two, 

distinguishable products.9 The MEP no longer bifurcates and as a result, TST cannot 

predict the experimental product ratios.10 As will be shown in Chapter III, dynamic 

trajectories are the only way of accurately predicting product ratios in these systems 

where the energy surface is unsymmetrical. 
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 Taking the evidence presented into account, as well as the results that will be 

presented in the following chapters, it will become apparent that the utilization of the 

Singleton methodology to determine experimental KIEs, prediction of theoretical KIEs, 

kinetic rate studies and dynamic trajectories are highly efficient mechanistic probes. 

Furthermore, when used in conjunction, they provide the ability to show that dynamic 

effects are prevalent in simple organic reactions such as nucleophilic substitutions. 
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CHAPTER II 

ETHA�OLYSIS OF SYMMETRIC ARYL CARBO�ATES 

 

Introduction 

 Nucleophilic substitution at acyl carbons is undoubtedly one of the cornerstone 

transformations in organic chemistry. Many synthetically useful products and 

intermediates can be accessed via this route and consequently, these transformations 

have been explored extensively throughout the literature. The conventional mechanism 

for nucleophilic substitution at acyl carbon involves a stepwise addition-elimination 

process proceeding through a tetrahedral intermediate. However, in numerous cases, 

experimental or computational studies have supported the significance of the concerted 

pathway, particularly in reactions involving substrates with good leaving groups.11There 

has been a recurring debate over whether the concerted reactions are relatively common 

or only occur under exceptional circumstances. 

In the 1950’s Bender12 employed 18O labeling experiments to provide compelling 

evidence for the tetrahedral intermediate in the hydrolysis of several carboxylic esters. 

However, the generality of the tetrahedral intermediate was later questioned when 

Bender et al.13 reported the lack of 18O incorporation during alkaline hydrolysis of 

benzyl benzoates. McClelland performed rate studies on the breakdown of an anionic 

hemi-ortho ester and concluded that for leaving groups better than alkoxide, the lifetime 

of the tetrahedral intermediate would be too short to exist.14 Williams et al. explored the 

attack of phenoxide on 4-nitrophenylacetate and found that the Brönsted dependence for 
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this process was linear and hence was inconsistent with a mechanism involving a 

tetrahedral intermediate.15 

Santos and Castro et al. have extensively explored the nucleophilic attack of 

amine nucleophiles on substituted aryl carbonates as depicted in Figure 2-1.16 They 

employed an approach similar to that which McClelland used by performing kinetic 

studies with different substrates, obtaining Brönsted plots and using a combination of the 

slopes associated with each plot and results from earlier studies17 to determine the nature 

of the mechanism. Ultimately, a connection was established between leaving group 

ability and the likelihood of concertedness i.e. the better the leaving group, the more 

likely the reaction is to occur in a concerted fashion. 

 
 
 

 
Figure 2-1. Anilinolysis of Substituted Aryl Carbonates.16 

 
 

 
Reactions proceeding via a concerted mechanism are particularly interesting in 

that any observed leaving group selectivity may be determined by dynamic effects. The 

potential energy surface that defines the nucleophilic attack of a symmetric aryl 

carbonate is a symmetric one. 

In this chapter, we will detail the exploration of the ethanolysis of symmetric aryl 

carbonates. Based on the evidence provided earlier, this reaction is hypothesized to 
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occur in a concerted fashion. A combination of 13C, 17O intermolecular KIEs and 

dynamic trajectory simulations will be employed to test the hypotheses and show that 

dynamic effects play a role in the observed selectivity. 

   

Results 

The reaction of bis-para-nitrophenyl carbonate and sodium ethoxide was chosen 

for analysis. This carbonate substrate was chosen because it has several key 

characteristics. Firstly, it possesses two para-nitrophenoxide leaving groups and as 

outlined by Santos et al. the presence of the nitro groups serve to destabilize the potential 

tetrahedral intermediate to such an extent that the mechanism is likely to be concerted.17 

Secondly, this substrate presents an excellent opportunity for us to probe the mechanism 

by determining the 17O intra-molecular isotope effect associated with the reaction. The 

17O KIE was expected to be indicative of a concerted versus stepwise process. 

 
  
 

 

 
 
 

One additional area of concern regarding the kinetics of this mechanism was the 

overall mode of base catalysis at work in the reaction. A specific base catalyzed process 

would display fairly simple kinetics while a general base catalyzed process would most 
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likely be mechanistically ambiguous.18 This mechanistic ambiguity originates from the 

fact that the reaction generates para-nitrophenoxide as a product, which could also 

function as a basic species. 

This was addressed by performing a kinetic study in which uniform aliquots were 

removed at specific time intervals and analyzed by 1H NMR to determine the overall 

conversion of the reaction. This was then plotted versus time to determine whether the 

reaction rate was constant or whether it decreased over time. As evidenced in Figure 2-2, 

the overall rate of the reaction decreases as the reaction progresses and thus, is 

suggestive of a specific base catalyzed process.  

 
 
 

 

 

 

 

 

 

 

 

 

Figure 2-2. Kinetic Study of the Reaction of 1 with Sodium Ethoxide. 
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Intermolecular 
13

C KIEs of Bis-para-�itrophenyl Carbonate 

The intermolecular KIEs for the reaction of 1 with sodium ethoxide in anhydrous 

ethanol are expected to provide important information regarding the transition state of 

the rate limiting step. The intermolecular 13C KIEs for the ethanolysis of bis-para-

nitrophenyl carbonate were determined at natural abundance using the Singleton NMR 

methodology.19 Two ethanolysis reactions catalyzed by 2 mole percent sodium ethoxide 

in anhydrous ethanol at 25 ºC were taken to 82 ± 2 % conversion and 74 ± 2 % 

conversion (determined by 1H-NMR), quenched, and unreacted starting material was 

recovered following an aqueous workup and column chromatography. In each case, the 

13C composition at each position in the recovered samples was determined using the 

Singleton 13C-NMR methodology and compared to 13C composition of standard samples 

that were not subjected to reaction conditions.  The relative 13C compositions were 

determined by using the carbons ortho to the nitro group as an internal standard, with the 

assumption that their individual isotopic compositions remained constant throughout the 

reaction. The intermolecular KIEs so determined are listed in Figure 2-3. 

  

 

 

 

 



 15 

 

Figure 2-3. Intermolecular 13C KIEs (k12
C/k13

C) for the Ethanolysis of 1. Both sets of 
KIEs represent two independent experiments with the standard deviations listed in 
parentheses. 

 
 
 

One issue that surfaced during the analysis was the fact that 1 was not 

sufficiently soluble in common deuterated solvents at room temperature. This issue was 

avoided by both heating the probe to 60 ºC in deuterated acetonitrile to maximize 

homogeneity and reducing the amount of sample used to ~300mg to prevent “crashing 

out” during analysis. This occurred quite frequently when larger amounts of material 

(~500 mg) were used. 

The main observation here is that a large primary isotope effect is observed for 

the carbonyl carbon, which is consistent with both our expectations and with earlier 

results published by O’Leary et al. for the hydrolysis of aryl carbonates.20 However, the 

carbon atoms at quaternary positions appeared to exhibit isotope effects which were 

contrary to our predictions. These unexpected KIEs on the quaternary carbons were 

hypothesized to be a result of peak broadening brought on by the increased temperature 

necessary to maintain homogeneity and minimize viscosity of the sample. This called 

into question the complete set of results obtained with 1. 
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Intermolecular 
13

C KIEs of Diphenyl Carbonate 

To address the solubility/viscosity issue encountered during the analysis of bis-

para-nitrophenyl carbonate, the decision was made to try a new substrate, diphenyl 

carbonate 4, bearing in mind that this new substrate still met the required criteria. It 

possessed two good leaving groups and thus was still likely to react in a concerted 

manner and was also symmetric, which signified that an 17O intra-molecular analysis 

was still viable. 

 
 
 

 
 
 
 
In a much similar fashion to before, two reactions were taken to 81 ± 2 % 

conversion and 77 ± 2 % conversion, quenched, and unreacted starting material was 

recovered following an aqueous workup and column chromatography.  The increased 

solubility of diphenyl carbonate relative to bis-para-nitrophenyl carbonate afforded us 

the ability to use deuterated chloroform as our solvent which was desirable from a 

familiarity standpoint. In addition, this also meant that high probe temperatures were no 

longer necessary and subsequent NMR analyses were instead run at a probe temperature 

of 40 ºC. It was hypothesized that this would help to circumvent the issues plaguing the 

previous analysis of bis-para-nitrophenyl carbonate. Apart from the above mentioned 

changes, the isotopic analysis was carried out in a much similar manner to that of the 
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nitro substituted analog and the isotope effects so determined are listed in Figure 2-4. 

The observation that the KIEs for the phenyl rings approached unity and that the sets of 

KIEs are consistent supports the success of the analysis. 

 
 
 

 

Figure 2-4. Intermolecular 13C KIEs (k12
C/k13

C) for the Ethanolysis of Diphenyl 
Carbonate. Both sets of KIEs represent two independent experiments with the standard 
deviations listed in parentheses. 
 
 
 

Again, the KIE calculated for the carbonyl carbon is consistent with that 

observed in the literature. In addition, this study also provides answers regarding the 

appearance of unexpected KIEs that were observed for the quaternary carbons of bis-

para-nitrophenyl carbonate. In Figure 2-4, all aromatic carbons, quaternary carbons 

included, have KIEs that are essentially unity or within experimental error of unity. 

Qualitatively, this indicates that there is very little bonding of the nucleophile, if any, to 

these aromatic carbons at the rate limiting transition state. By directly comparing the 

KIEs listed in Figure 2-4 with those of bis-para-nitrophenyl carbonate listed in Figure 2-

3, then it becomes apparent that the “phantom” KIEs observed on the quaternary carbons 

are directly related to the homogeneity/viscosity issues that were encountered with the 

analysis of that sample. 
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Intramolecular 
17

O KIEs of Diphenyl Carbonate 

 As was alluded to earlier, the symmetric nature of the carbonate species being 

studied provides a unique opportunity to probe the mechanism of the ethanolysis using 

intramolecular 17O isotope effects. Unlike intermolecular KIEs which define the 

transition state of the rate determining step, intramolecular kinetic isotope effects are a 

reflection of the nature of the transition state of the selectivity determining step. This 

isotope effect originates from the fact that isotopic substitution in either oxygen alpha to 

the carbonyl group of the carbonate substrate induces desymmetry and ultimately an 

isotope effect represents the choice between an 17O or 16O being expelled to give a non-

statistical distribution of isotopomeric products. 

Under normal circumstances, conventional intramolecular KIE studies would be 

performed on recovered product but in this system, the mono-substituted product can 

potentially react with a second ethoxide molecule to form the disubstituted product. 

Hence, determining the isotope effect from recovered product was not feasible as there 

would also be an isotope effect associated with the second substitution. 

The intramolecular analysis was carried out in a much similar manner to the 

intermolecular study on diphenyl carbonate. The only difference was that, this study was 

run at twice the scale of the previous to account for a second reaction that was necessary 

to generate the standard for the NMR analysis. 

As outlined in Figure 2-5, the first ethanolysis reaction was taken to high 

conversion and generated phenol that was designated as the “sample” for 17O analysis. 

The monosubstituted product, ethyl phenyl carbonate, was then isolated using flash 
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column chromatography and reacted again to generate the 17O standard sample. Since 

intramolecular KIEs represent the competition between two branches of a mechanism 

that are equivalent, not considering isotopic substitution, then it becomes apparent why 

there may be an isotope effect in the first reaction but none in the second. Ultimately, the 

presence of an 17O intramolecular isotope effect would be indicative of a concerted 

process.  

 
 
 

 

Figure 2-5. Reaction Schematic for Determination of 17O KIEs. 
 
 
 
 However, in practice, the low sensitivity of 17O nucleus coupled with its strong 

tendency for broad peaks proved to be obstacles too great to be overcome with the 

current resources at our disposal.  
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Theoretical Studies 

Initially, gas phase DFT calculations (B3LYP/6-31G*) were employed to model 

the potential energy surface representing the ethanolysis of both 1 and 4 and also to 

locate the transition states associated with each system. However, there was some 

skepticism whether these gas phase methods would be capable of accurately representing 

the potential energy surface for these reactions in solution. 

 

Predicted Isotope Effects 

The 13C KIEs were calculated for the addition transition state of 1 with 

methoxide (TS1) and the corresponding transition state of 4 with methoxide (TS2) using 

the Bigeleisen-Mayer method.21, 22 In both cases it was assumed that the use of 

methoxide would have no effect on the overall geometry of the TS and consequently no 

effect on the theoretically determined KIEs. 

 
 
 

 

Figure 2-6. Predicted KIEs (red) for the Ethanolysis of 1. Experimentally determined 
KIEs (black) also listed. 
 



 21 

 Upon analyzing both Figure 2-6 and Figure 2-7, it becomes apparent that the gas 

phase transition states from which the KIE predictions were made significantly 

underestimate the KIE determined from experiment. Consequently, we hypothesized that 

an alternate approach was needed that would account for the effect of solvent on the 

charged species in solution. 

 
 
 

 

Figure 2-7. Predicted KIEs (red) for the Ethanolysis of 4. Experimentally determined 
KIEs (black) are also listed. 
 
 
 
O�IOM Method for Modeling Explicit Solvent Molecules 

 The ONIOM (Our own N-layered Integrated molecular Orbital and molecular 

Mechanics) method allows for the combination of much more powerful/computationally 

expensive ab initio methods and less expensive molecular mechanics methods in the 

same calculation with high levels of accuracy.23 With regards to the carbonate systems 

being modeled, B3LYP/6-31G* ab intio method was used for the core atoms while an 

AM1 method was utilized for the 18 explicit solvent (ethanol) molecules surrounding the 

core.  
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Figure 2-8.  ONIOM Trajectories from Simplified Structures. 
 
 
 

Dynamic trajectory simulations were initiated from both a simplified dimethoxy-

para-nitrophenoxy methoxide core 7 as well as from the trimethoxy methoxide 8 as 

depicted in Figure 2-8, both of which were surrounded by 18 ethanol molecules. 

Interestingly, all trajectories that were initiated from 7 resulted in the expulsion of the 

nitrophenoxy group. This observation was indicative of the absence of an intermediate 

on the PES and as a result, represents a concerted reaction. Conversely, those initiated 

from 8 did not result in expulsion of any of the methoxy groups. This result was 

consistent with expectations as substrates with poorer leaving groups would be expected 

to react via a stepwise mechanism. Accordingly, trajectories initiated from 8 do not form 

a product because they instead oscillate in a minimum on the PES, the intermediate.  

 
Discussion 

Despite being unable to experimentally measure 17O intramolecular isotope 

effects, the computational aspect of this work provided valuable insight into the nature 

of these reactions. Computationally, strong arguments can be made for the ethanolysis of 

aryl carbonates being concerted. ONIOM trajectories initiated from 7 and 8 provided 

strong support for the substitution reactions of aryl carbonates being concerted. The 
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results from the trajectories align well with experimental evidence provided by Bender, 

and Santos et al.; which showed that nature of the mechanism was directly related to the 

nucleofugality of the groups present. Substrates with good leaving groups are most likely 

to react in a concerted manner and exhibit selectivities that are determined by dynamic 

effects. Those with poorer leaving groups are more likely to do so in a stepwise fashion 

via a tetrahedral intermediate.  

 

Experimental Section 

General 

All reactions were carried out in oven dried glassware and in most cases; freshly 

purified, dry solvents were used. All chemicals used were obtained commercially and 

4.5 Å molecular sieves were added to solvents to maintain dryness when necessary. The 

reaction vessels were purged with N2 prior to use. 

 

Bis-para-�itrophenyl Carbonate.
24 In 500 mL of toluene at room temperature, 

6.030 g (30 mmol) of para-nitrophenyl chloroformate and 5.004 g (36 mmol) of para-

nitrophenol were dissolved and stirred. Upon dissolution of the solids, 4.5 mL (36 

mmol) of N,N-dimethylaniline was then dissolved in 70 mL of toluene and added 

dropwise to the reaction mixture via an addition funnel over a 15 min period. The 

reaction was allowed to run for 3 h and was then quenched with 250 mL of H2O. The 

toluene layer was then washed with 3 x 250 mL portions of 5% HCl followed by 3 x 250 

mL of 10% NaCl solution and finally 3 x 100 mL portions of 10% NaHCO3 solution. 
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The remaining organic layer was concentrated under reduced pressure to give a white 

solid. This white solid was purified via recrystallization from CHCl3. The crystals so 

formed were then washed with a cold solution of 9:1 hexanes:ethyl acetate. The pure 

crystals were then allowed to air dry and trace amounts of solvent were then removed in 

vacuo. The overall yield was 73% (6.68 g isolated): 1H NMR (CDCl3) δ 8.33 (m, 4H) 

7.51 (m, 4H); 13C (CD3CN) δ 156.17, 151.19, 147.04, 126.38, 123.07. 

 

Intermolecular KIE Determination in the Ethanolysis of Bis-para-

nitrophenyl Carbonate: Example Procedure. While stirring under N2, 5.005 g (16.5 

mmoles) of bis-para-nitrophenyl carbonate was added to 2 L of anhydrous ethanol and 

allowed to stir at 25 ºC until the solution was completely homogenous. To 10 mL of 

anhydrous ethanol was added 0.227 g (3.3 mmoles) of NaOEt and the solution was 

carefully warmed using a heat gun until homogeneity was achieved. The solution was 

then added quickly using a syringe to the 2 L ethanol/carbonate mixture. The reaction 

was monitored by NMR analysis of aliquots and was quenched after 45 mins with 5% 

HCl solution. The overall conversion was 82% and was computed by first integrating all 

the aryl protons and then deducing the relative integration for a single proton in each 

compound. The reaction mixture was then extracted with toluene, dried over CaSO4, 

filtered and then concentrated on a rotary evaporator. The unreacted starting material 

was then isolated from the concentrated reaction mixture by flash column 

chromatography using a 4:1 mixture of hexanes and ethyl acetate as an eluent. The 

fractions containing pure starting material were then concentrated under reduced 
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pressure to afford 400 mg of bis-para-nitrophenyl carbonate. An analogous reaction 

using 5.006 g of bis-para-nitrophenyl carbonate was taken to 74% conversion and 331.8 

mg of pure starting material was isolated. 

 

Intermolecular KIE Determination in the Ethanolysis of Diphenyl 

Carbonate: Example Procedure. While stirring under N2, 10.01 g (47 mmoles) of 

diphenyl carbonate was added to 2 L of anhydrous ethanol and allowed to stir at 25 ºC 

until the solution was completely homogenous. To 30 mL of anhydrous ethanol was 

added 0.6423 g (9.4 mmoles) of NaOEt and the solution was carefully warmed using a 

heat gun until homogeneity was achieved. The solution was then added quickly using a 

syringe to the 2 L ethanol/carbonate mixture. The reaction was monitored by H-NMR 

analysis of aliquots and was quenched after 130 mins with 5% HCl solution. The overall 

conversion was 81% and was calculated in a similar manner to that used for 1. The 

reaction mixture was then extracted with toluene, dried over CaSO4, filtered and 

concentrated on a rotary evaporator. The unreacted starting material and ethyl phenyl 

carbonate product were then isolated from the concentrated reaction mixture by flash 

column chromatography using a 9:1 mixture of hexanes and ethyl acetate as an eluent. 

The mixture of carbonates was concentrated under reduced pressure and then 

chromatographed again using a 1:1 mixture of CH2Cl2 and hexanes. The fractions 

containing pure starting material were then concentrated under reduced pressure to 

afford 520 mg of diphenyl carbonate: 1H NMR (CDCl3) δ 7.42-7.36 (m, 4H) 7.26-7.23 

(m, 6H); 13C (CDCl3) δ 151.90, 151.07, 129.46, 126.11, 120.79. An analogous reaction 
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using 9.99 g of diphenyl carbonate was taken to 77% conversion and 376 mg of pure 

starting material was isolated. 

 

Intramolecular KIE Determination in the Ethanolysis of Diphenyl 

Carbonate: Example Procedure. While stirring under N2, 10.00 g (47 mmoles) of 

diphenyl carbonate was added to 2 L of anhydrous ethanol and allowed to stir at 25 ºC 

until the solution was completely homogenous. To 60 mL of anhydrous ethanol 0.6420 g 

(9.4 mmoles) of NaOEt was added and a heat gun was used to carefully warm the 

solution until homogeneity was achieved. A syringe was then used to quickly add the 

solution to the 2 L ethanol/carbonate mixture. The reaction was monitored by NMR 

analysis of aliquots and was quenched after 135 mins with 5% HCl solution. The overall 

conversion was 81%. The reaction mixture was then extracted with toluene, dried over 

CaSO4, filtered and then concentrated on a rotary evaporator. The unreacted 4 and ethyl 

phenyl carbonate product 5 were then isolated from the concentrated reaction mixture by 

flash column chromatography using a 9:1 mixture of hexanes and ethyl acetate as an 

eluent to separate them from the phenol yielding 6.16 g mixture of 4 and 5.  
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CHAPTER III 

DY�AMIC CO�TROL OF STEREOSELECTIVITY I� A �UCLEOPHILIC 

SUBSTITUTIO� REACTIO� 

 

Introduction 

Many forms of nucleophilic substitution reactions are intrinsically stereospecific, 

in that their products are defined in their mechanisms by the stereochemistry of the 

starting materials. Others are stereoselective, in that their product stereochemistry is 

defined by the choice among pathways leading to stereoisomeric products.  The normal 

assumption in the latter case is that the stereoselectivity is determined by the free 

energies of competitive transition states leading to the products.  We describe here how 

stereoselectivity in nucleophilic substitutions at sp2 carbons can be decided by dynamic 

effects on the downhill slope of “bifurcating energy surfaces.”   

The conventional mechanism for nucleophilic substitution at sp2 carbons 

involves a stepwise addition-elimination process proceeding through a tetrahedral 

intermediate. In some reactions, however, experimental and computational studies have 

supported the importance of concerted substitutions, particularly when the reaction 

involves good leaving groups.  

Williams showed that nucleophilic substitution reactions at acyl carbons can 

occur via a concerted mechanism contrary to the more conventional stepwise, addition-

elimination process.25 This was demonstrated in a series of reactions involving phenolate 

ions and various substituted 2-Aryloxazolin-5-ones.  Utilizing a combination of kinetic 
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studies (rate and equilibrium constant determination) and 18O labeling experiments; 

Williams et al. arrived at results that were consistent with a concerted displacement 

mechanism. 

Castro and Santos have shown that a variety of acyl substitution can occur in a 

concerted fashion.26, 27, 28 They explored the nucleophilic attack of amine nucleophiles on 

substituted aryl carbonates and ultimately established a connection between the 

nucleofugality and the nature of the mechanism. Again, the better the leaving group, 

then the more likely the reaction to be concerted, as was discussed in Chapter II. 

A theoretical basis for concerted mechanisms was established by Guthrie using 

multidimensional Marcus theory, and he particularly defined structural conditions under 

which substitutions are likely to be concerted.29 This involved the initial derivation of 

equations permitting the application of Marcus theory to reactions with two, three or 

four reaction coordinate dimensions, based on the quartic approximation to the reaction 

coordinate (Eqn 3-1). Ultimately, Guthrie mapped the multidimensional hyperspace, 

searched for transitions states on these surfaces and then determined the nature of the 

mechanism associated with a particular transition state depending on what the values 

(ranging from 0-1) of the reaction coordinates were at the transition state.  

 
 

G=ax
2
 + bx

3
 + cx

4                      (3-1) 
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Schlegel and Bach studied nucleophilic substitutions on vinylic chlorides in the 

gas phase and established the viability of a concerted mechanism, though they suggested 

that the presence of electron-withdrawing groups could favor a stepwise process.30 

We considered that the concerted mechanism could lead to an intriguing 

phenomenon in the nucleophilic substitution reactions of electrophiles containing two 

leaving groups, such as carbonates or vinylic dihalides.  When there are two leaving 

groups in a stepwise mechanism, the selectivity between leaving groups is decided by 

the relative energies of the competing transition states for loss of the leaving groups.  For 

a concerted process, however, it seemed possible that the reaction could involve only a 

single transition state that is passed through before the structural “decision” has been 

made as to which of the two leaving groups will be lost.  In such a circumstance, the 

selectivity between leaving groups, and the product selectivity, could be decided by 

dynamic effects on the slope of the potential energy surface beyond the transition state.   

 

Results 

To explore this possibility, nucleophilic substitution on the dichlorobutenone 1 

was chosen for study.  In 1, the good chloride leaving groups should promote a 

concerted mechanism, based on the ideas expressed by Guthrie.  In addition, reactions of 

1 exhibit a stereoselectivity that is readily observable.31 The particular reaction of 1 with 

sodium para-tolylthiolate proved convenient, occurring rapidly in dry ethanol at 25 ˚C. 
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Figure 3-1.  Reaction of 1 with Sodium Para-tolylthiolate. H-NMR shifts of vinylic 
peaks listed in red. 
 
 
 

The determination of the stereoselectivity in this reaction was complicated by the 

observation that the initial products 2 and 3 are susceptible to a further reaction affording 

the disubstituted product 4 as can be seen in Figure 3-1.  To determine the kinetic 

selectivity between 2 and 3 as well as the relative rates of their formation versus their 

conversion to 4, the product mixture versus conversion was determined then modeled 

kinetically.  The relative amounts of 1:4 in the product mixture were obtained at a series 

of conversions using limiting amounts of the sodium para-tolylthiolate, followed by 1H-

NMR analysis of worked-up aliquots by comparing the integrations of the vinylic peak 

for each compound, located at δ 6.12, 6.32, 5.96, and 5.78 for 1, 2, 3, and 4, respectively. 

The vinylic peaks representing each of the four compounds were assigned by using 

NMR correlation calculations which predicted a chemical shift of 6.34 ppm for 2 and 
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5.98 ppm for 3. The kinetic modeling of the product mixture assumed that all of the 

conversions were bimolecular, and the relative values of the rate constants were adjusted 

to optimally match the observed compositions.  The resulting relative rates were 4.5, 1, 

3.3, 3.7 for k1, k2, k3, and k4, respectively. As can be deduced from the relative rates, the 

experimental product ratio of 2:3 was found to be 4.5:1. 

The preference for formation of 2 over 3 was expected from the previous 

observations of Barton for reactions of 1 with lithium dimethylcuprate.32 This was 

further supported in studies by Dieter et al. which utilized a combination of UV 

Spectroscopy, NMR and X-ray crystallography to show definitively that the major 

product in these substitutions was the product formed by the stereospecific addition of 

the nucleophile in a syn fashion to the activating group.33   

 

Theoretical Studies 

From a theoretical perspective, the interesting aspect of the experimental 

observations is that 3 is formed at all; as will be discussed; conventional computational 

studies do not rationalize its formation.  A series of computational levels were employed 

to locate the transition structure/s associated with the nucleophilic substitution of 1 by 

sodium para-tolylthiolate.   
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In B3LYP/6-31+G** calculations employing a PCM solvent model for ethanol, 

transition structure 5 was located, leading (by IRC) to the formation of 2.  Three notable 

features were common to all of the calculational results.  The first is that no 

intermediates could be located.  While there is some question whether a PCM solvent 

model would be satisfactory for locating intermediates in reactions of this type, by 

taking the relatively high nucleofugality of chloride substituents into account, then the 

concerted process would fit with the general expectations of these reactions as outlined 

by Guthrie.  The second feature is that at transition structure 5, no clear structural 

decision has been made regarding which chloride will be displaced. This is apparent as 

the bond lengths of both C-Cl bonds at the TS are almost identical (differ by less than 

0.01Å).  The third and most striking feature is that only transition structures leading to 2 

were locatable.  Despite extensive effort, no substitution transition structure leading by 

IRC to 3 could be located in any calculation. However, it can be expected that products 2 

and 3 can interconvert via the rotational transition state, 6. 
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Figure 3-2. Qualitative Energy Surface for the Nucleophilic Substituion of 1.  
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Discussion 

The phenomenon of a single transition structure leading to two different products 

is representative of reactions involving a bifurcation in the potential energy surface 

(PES) and consequently, representative of a system where the selectivity is controlled by 

dynamic effects.34 In such systems, one would expect the PES to resemble that depicted 

in Figure 3-2. Trajectories on this surface could first pass through an addition transition 

state and give either product 2 or 3, effectively bypassing both the tetrahedral 

intermediate and the subsequent elimination transition state.  Under these circumstances, 

the “structural decision” is made beyond 5 and determines which chloride is displaced 

and ultimately, which product is formed.  

As stated earlier, adherence to conventional transition state theory would require 

the existence of two competing transition structures leading to either product. Our ability 

to locate only a single transition structure, from which both products can be obtained via 

direct/indirect routes, is characteristic of systems where the observed selectivity is being 

determined by dynamic effects. Furthermore, if this hypothesis is indeed true, then we 

would expect our trajectory calculations to arrive at results that are consistent with the 

experimentally determined product ratio. 

Quasiclassical direct-dynamics trajectories on a PCM B3LYP/6-31+G** energy 

surface were initiated from PCM transition state, 5. Each normal mode of the TS was 

given its zero point energy plus a Boltzmann sampling of additional energy appropriate 

for 298.15 K, with a random phase and sign for its initial velocity. The mode associated 

with the imaginary frequency was given a Boltzmann sampling of energy “forward” 
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over the col. A Verlet algorithm was employed to propagate the trajectories and 1-fs 

steps were taken until product formation was observed. The median time for formation 

of products 2 and 3 was found to be 85 and 94 fs respectively. The numbers of 

trajectories resulting in the formation of either product 2 or 3 were counted to give a 

predicted product ratio of 2.4:1.   

As hypothesized, the trajectory studies predict a ratio that is in direct agreement 

with that observed experimentally. Initially, a 2.4:1 predicted ratio may seem 

significantly different from the 4.5:1 ratio observed experimentally but upon closer 

examination it becomes apparent that this is most certainly not the case. If the 

corresponding amount of each product represented by the given ratios is determined, 

then 2.4:1 represents a 70:30 ratio and 4.5:1 represents an 81:19 ratio of products 2 and 3 

respectively. In addition, trajectory results also show a clear preference for the addition 

of the thiolate nucleophile in a syn fashion to the ketone substituent and are consistent 

with previous results obtained for similar substitutions on analogous systems.35 

In summary, the inability to locate any intermediates on the potential energy 

surface confirms that the substitution is concerted and could potentially be governed by 

dynamic effects. Computational studies employing a PCM solvent model, located only a 

single transition state, leading directly to the major product. This is inconsistent with 

conventional TST and as per the rules of TST, we would expect to locate two separate 

competing transition states leading to either product. Finally, the remarkable agreement 

between the experimental product ratios and the ratios predicted by dynamic trajectory 
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studies provides further evidence that the mechanism of substitution is concerted and the 

stereoselectivity is controlled by dynamic effects.  

 

Experimental Section 

General 

Oven-dried glassware was cooled under a stream of nitrogen prior to use and the 

reaction was run under positive N2 pressure. All chemicals used were obtained 

commercially and 4.5 Å molecular sieves were added to solvents to maintain dryness 

when necessary. The reaction apparatus for the synthesis of the dichlorobutenone was a 

500 mL three-necked round bottom flask equipped with an addition funnel and a 

nitrogen line. The system was purged with N2 prior to use. The distillation apparatus was 

a 500 mL round-bottomed flask connected to a Vigreux column and a short-path 

distillation head. A 6 torr oil-free vacuum pump was used as the vacuum source. 

 

Synthesis of 4,4-dichloro-3-buten-2-one
31

.To 100 mL of dry CH2Cl2 was added 

14.0g (0.11 moles) of anhydrous AlCl3 and the mixture was allowed to stir in an ice bath 

for 15 minutes. To this slurry was added 8.0 mL (8.8g, 0.11 moles) of acetyl chloride 

dissolved in 20 mL of CH2Cl2 via addition funnel over 15 minutes. After the addition, the 

solution was allowed to warm up to room temperature and stir for about 5 hrs, allowing 

adequate time for the formation of the acetyl chloride-AlCl3 complex.  Subsequently, 8.0 

mL (9.70g, 0.10moles) of vinylidene chloride dissolved in 20 mL CH2Cl2 of was then 

added slowly over 30 minutes. The reaction mixture was quenched after approximately 
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20 hrs by stirring in crushed ice for 15 mins and then it was filtered. This ensured that 

any excess acetyl chloride was hydrolyzed and also got rid of any emulsions that would 

affect separation of the phases.  It was then extracted with 3 x 200 mL portions of 

CH2Cl2 after which the organic layers were combined. The combined organic layers 

were then washed with 3 x 200 mL of water and then stirred and cooled while 30 mL 

(21.9g, 0.22 moles) of Et3N was added slowly over 30 mins. The reaction was allowed to 

run for 10 hrs and then quenched with 300 mL of 10% HCl solution. The organic layer 

was washed with 2 x 100 mL of 10% HCl solution and then dried with CaSO4 and 

filtered. The dried reaction mixture was first concentrated by distilling off the CH2Cl2 

under atmospheric pressure and then the desired dichloroenone product distilled under 

reduced pressure using a short Vigreux column at ~40 ˚C/6 Torr.  

 

Reaction Kinetics of 4,4-dichloro-3-buten-2-one with Sodium-para-

tolylthiolate. Kinetic studies were carried out by dissolving 0.7g (5 mmol) of the 

dichloroenone into 30 mL of anhydrous ethanol in a 100 mL round bottomed flask. 

While being stirred under N2, 0.22g (1.5 mmol or 0.3 equivalents) of sodium-

paratolylthiolate was added and allowed to react for 1h. An aliquot (0.7 mL) was then 

taken, washed with a 1:1 NaHCO3/Na2CO3 solution, dried and analyzed by 1H-NMR to 

determine the relative amounts of each product as well as unreacted starting material. 

Immediately after taking an aliquot, an additional 0.1 equivalents (0.5 mmol) of the 

thiolate was added and allowed to react for 30 mins until the next aliquot was taken. This 

was repeated until the reaction was close to completion i.e. all the dichloroenone had 
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reacted. It was deemed important to keep the concentration of the thiolate nucleophile 

low to minimize the inevitable formation of the disubstituted byproduct. The relative 

amounts of each product for given equivalents of thiolate are listed in Tables 3-1 and 3-

2. 

 

 

 

Table 3-1. First kinetic study of the reaction of the thiolate with 1. 
Thiolate  

(equiv.) 

Major product 

(%) 

Dichloroenone 

(%) 

Minor product 

(%) 

Disubstituted 

Product (%) 

0 - 100 - - 

0.3 8.6  83.9 2.8 4.7 

0.4  16.0 76.8 4.6 2.7 

0.5 20.2 65.8 6.8 7.2 

0.6 25.2 60.9 6.3 7.6 

0.7 30.2 49.5 8.8 11.5 

1.0 45.8 16.5 15.9 21.8 

1.1 49.9 9.0 15.8 25.4 

1.2 51.8 5.2 14.9 28.1 
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Table 3-2. Second kinetic study of the reaction of the thiolate with 1. 

Thiolate  

(equiv.) 

Major product 

(%) 

Dichloroenone 

(%) 

Minor product 

(%) 

Disubstituted 

Product (%) 

0 - 100 - - 

0.8 29.0 43.1 11.1 16.8 

0.9  32.9 39.4 10.9 16.9 

1.0 37.8 29.6 8.5 24.2 

1.1 42.3 22.9 8.6 26.3 

1.2 44.1 17.8 11.1 27.1 

1.3 42.5 12.3 13.9 31.3 

1.4 35.2 6.3 16.8 41.7 
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CHAPTER IV 

MECHA�ISM OF THE FUJIWARA HYDROARYLATIO� 

 

Introduction 

 It has long been realized that the activation of C-H bonds, which are ubiquitous 

in nature, would present a wide range of synthetic possibilities. Even more so, selective 

C-H activation would undoubtedly provide chemists with a powerful synthetic tool. 

Consequently, significant effort has been put into the development of methodology 

towards achieving this goal.36,37,38 

 Over the past two decades, significant advances have been made in the use of 

transition metal catalysts in C-C bond formation processes.39 In 2000, Fujiwara and 

coworkers reported the catalytic intramolecular hydroarylation of alkenes and alkynes 

using both palladium and platinum acetate in trifluoracetic acid to synthesize a variety of 

coumarins and quinolinones (Fig. 4-1).40 Coumarins and quinolinones have stimulated a 

substantial amount of interest because of their numerous applications as therapeutic 

agents. 41  
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Figure 4-1. Synthesis of Coumarins and Quinolinones. 
 
 
 

Initially, Fujiwara and coworkers proposed that the ring closure occurred via a 

“C-H activation” mechanism, see Figure 4-1.42a This proposed C-H activation 

mechanism was defined by a series of transformations. Firstly, the Pd(II) species 

coordinates to the alkyne, the C-H bond is then activated to form the aryl-palladium 

complex II, trans insertion of the alkyne into the Pd-Aryl bond forms III and finally, 

protonation of III forms the coumarin product. However, this proposed mechanism was 

based on experimental results that provided support for the involvement of TFA in the 

protonolysis step but did not provide any evidence regarding the formation of the 

palladacycle II. 
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Figure 4-2. Hydroarylation by “C-H activation.” 
 
 
 
 In 2005, Tunge and coworkers43 proposed a second mechanism for the 

hydroarylation reaction involving an electrophilic aromatic substitution process. As 

depicted in Figure 4-3, it is apparent that the EAS mechanistic cycle is strikingly similar 

to that of the “C-H activation” mechanism, the characteristic difference being that I is 

converted to III via a Wheland intermediate IV. 
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Figure 4-3. Hydroarylation by EAS. 
 
 
 
 Ultimately, this chapter will show that the determination of intermolecular 

kinetic isotope effects using natural abundance NMR methodology combined with 

theoretical calculations is highly suitable for deducing which of the two proposed 

mechanisms best describes the hydroarylation.  

 

Results           

 The Pd-catalyzed ring closure of ortho-tolyl 3-phenylpropiolate 1, to give the 

ring-closed 4-phenyl-8-methyl coumarin 2 was chosen for analysis, see Figure 4-4. This 

substrate was chosen particularly because it ensures that the C-C bond formation occurs 

on only one position of the aryl ring. In other words, only a single cyclized product will 

be formed in the reaction mixture.  
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Figure 4-4.  KIE Reaction Taken To ~ 80% Conversion. 
 
 
 
 It should also be noted that several control reactions were performed to ensure 

that the Pd catalyst was indeed necessary for the hydroarylation. Firstly, 1 was subjected 

to reaction conditions in the absence of the Pd catalyst and the reaction mixture was 

allowed to stir for 13hrs. The reaction was quenched, worked up and analyzed using H-

NMR spectroscopy to confirm the absence of 2. A second control reaction was ran with 

the catalyst being replaced by a strong Lewis acid, AlCl3 and again, no 2 was observed 

by H-NMR spectroscopy. The results from both control reactions confirmed that the Pd 

catalyst was indeed necessary for coumarin formation. 

 

Intermolecular 
13

C KIEs 

The intermolecular 13C KIEs for the hydroarylation of 1 were determined at 

natural abundance using the Singleton NMR methodology. Two reactions catalyzed by 3 

mole percent Pd(OAc)2 in dry CH2Cl2 at 25 ºC were taken to 85 ± 2 % conversion and 

85 ± 2 % conversion (determined by 1H-NMR), quenched, and unreacted starting 

material was recovered following an aqueous workup, concentration under reduced 

pressure and column chromatography. In each case, the 13C composition at each position 



 45 

in the recovered samples was determined using the Singleton 13C-NMR methodology 

and compared to 13C composition of standard samples that were never subjected to 

reaction conditions.  The relative 13C compositions were determined by using the ortho 

carbons of the phenyl group as an internal standard, with the assumption that their 

individual isotopic compositions remained constant throughout the reaction. The 

intermolecular KIEs so determined are listed in Figure 4-5. 

 
 
 
 
 
 

 

Figure 4-5. Intermolecular 13C KIEs (k12
C/k13

C). Palladium catalyzed Fujiwara 
Hydroarylation of ortho-tolyl 3-phenylpropiolate 1 to give 4-phenyl 8-methyl coumarin 
2. Both sets of KIEs represent two independent experiments and the standard deviations 
of these measurements are indicated in parentheses. Experimental KIEs at all other 
unlabeled positions are unity. 
 
 
 
 The main observation  here is that the isotope effects for the bonding carbons, 

aryl carbon α to the ester and alkynyl carbon α to phenyl are both large. Qualitatively, 
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this implies that the C-C bond formation is occurring in the rate limiting step. Curiously, 

both sets of data display a significant isotope effect at the carbonyl group which is very 

surprising and up to this point an explanation for its origin has been elusive. 

 

Theoretical Studies 

  Modeling transition-metal catalyzed processes computationally can be quite 

challenging depending on the complexity of the system being studied. As a result, there 

are numerous methods available which are suitable depending on the nature of the 

system. Consequently, this study was undertaken bearing in mind that a broad spectrum 

of methods would be needed.  Both gas phase and various solvent models were utilized 

to locate the transition structure via which 1 is converted into 2. Best agreement between 

experimentally determined KIEs and theoretical predictions was achieved when a gas 

phase B3LYP/6-31G* method was used for C, H, O and F and LANL2DZ for Pd.  

The 13C KIEs based on TS1 were predicted from scaled theoretical vibrational 

frequencies using conventional transition state theory by the Bigeleisen and Mayer 

method and are listed in Figure 4-6. It should also be noted that KIE predictions based 

on the various transition states located, all showed a significant isotope effect at the 

carbonyl C, an observation which is also present in experimental KIEs. 
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TS1 

 
 
 

O O

1.000

1.030(2)
1.029(2)

1.014(2)
1.014(3) (assumed)

1.004(3)
1.003(2)

1.012(2)
1.012(1)

0.998(3)
0.999(2)

0.999(2)
1.000(1)

1.004(2)
1.002(2)

1.000

1.013

1.002

1.043

1.031

 

Figure 4-6. Predicted KIEs (red) calculated from TS1. Experimentally determined KIEs 
(black) are also listed. 

 

 

 

1.97 Å 
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Discussion 

The C-H activation mechanism proposed by Fujiwara is particularly intriguing 

since it invokes an unusual trans-addition of the Pd-Ar bond across the alkyne. While 

there are a handful of examples of these unusual trans-additions to alkynes, aryl-

palladium complexes have shown a strong preference for cis-addition to alkynes. 44 As a 

result, the overall stereochemistry observed for the hydroarylation aligns well with the 

proposed EAS mechanism as electrophilic attack of alkynes towards nucleophilic attack 

commonly occurs via a trans-addition.45 The intermolecular 13C KIEs determined 

experimentally, also support the proposed EAS mechanism and large isotope effects on 

the acetylene carbon and aryl carbons are symbolic of rate limiting C-C bond formation. 

 

Experimental Section 

General 

Oven-dried glassware was cooled under a stream of nitrogen prior to use and the 

reaction was run under positive N2 pressure. All chemicals used were obtained 

commercially and 4.5 Å molecular sieves were added to solvents to maintain dryness 

when necessary. The reaction vessels were purged with N2 prior to use. 

 

Phenyl Propiolyl Chloride. Example Procedure. To 200 mL of dry chloroform, 

25.0g (0.17 moles) of phenyl propiolic acid was dissolved with stirring. This was 

followed by the addition of 50 mL (0.68 moles) of thionyl chloride and the mixture was 
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allowed to react for 3-5 hrs under reflux. Excess thionyl chloride was then removed via 

vacuum distillation to give the concentrated acid chloride.  

 

O-tolyl 3-phenyl Propiolate. Example Procedure. The recovered acid chloride 

was dissolved in 200mL of chloroform and ~1.5 equivalents (23 mmoles) of ortho-cresol 

were then added. This mixture was then allowed to react under reflux and the overall 

conversion was monitored using NMR. Whenever the relative amount of o-cresol 

stabilized, the heat source was removed and then the mixture was concentrated under 

reduced pressure to give a yellow solid. This yellow solid was purified by recrystallizing 

from hexanes. The white crystals so formed were then rinsed with a cold solution of 

hexanes and allowed to dry. 

 

Palladium Catalyzed Ring Closure. Example Procedure. Under positive N2 

pressure, 7.05 g (28 mmoles) of 1 was dissolved in a mixture of 14 mL dichloromethane 

and 42 mL trifluoroacetic acid with stirring. To this solution, 188 mg (0.83 mmoles) of 

Pd(OAc)2 was then added and allowed to react at room temperature for 4 h.  The overall 

percent conversion was determined using H-NMR by monitoring the vinylic proton of 

the coumarin product. The reaction was then quenched with brine and extracted into 

ether when the conversion approached 80%. The organic layer was washed with brine 

and then with 10% sodium carbonate until fizzing ceased. The diethyl ether was distilled 

under reduced pressure and the remaining starting material was isolated by flash column 

chromatography using a 2:3 dichloromethane:hexanes solution as eluent. Two identical 
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reactions were ran and taken to 84.8 % and 84.9 % conversion. The remaining starting 

material was isolated from each reaction and analyzed by 13C-NMR spectroscopy using 

CDCl3 as a solvent. 
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CHAPTER V 

DISTI�GUISHI�G BETWEE� ISOTOPIC PERTURBATIO� OF EQUILIBRIA 

A�D ISOTOPE-I�DUCED DESYMMETRIZATIO� 

 

Introduction 

It is well understood that isotopic substitution desymmetrizes the time-averaged 

geometry of otherwise symmetrical structures.46 However, the effect of isotopic 

substitution on geometry is often assumed to be small, and this assumption is central to a 

number of experimental observations. We describe here a way in which the effect of 

isotopic substitution on the geometry of a symmetrical structure can be surprisingly large 

and how this can mislead the interpretation of experimental observations.  

The experimental distinction between a symmetrical structure versus two 

degenerate equilibrating structures of lower symmetry has been a common problem in 

chemistry. This issue is most vexing when the conjectured equilibration would be rapid 

and the applicable spectroscopic techniques have a low time resolution, as in NMR 

studies of simple molecules. To address this problem, Saunders developed one of the 

most elegant experiments of classical physical organic chemistry in the observation of 

isotopic perturbation effects on the NMR spectra of molecules of interest.47 The 

Saunders experiment proved its power by convincingly addressing the structure of the 

norbornyl cation,48 and over the last 30 years it has been employed broadly in organic 

and organometallic chemistry.49, 50, 51   
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The idea behind the Saunders experiment is that desymmetrizing isotopic 

substitution affects the equilibrium between two equilibrating structures but cannot have 

a strictly analogous effect on a single symmetrical structure where no equilibration is 

present. For example, deuterium substitution in a methyl group of 1a/1b strongly affects 

the equilibrium between structures that would otherwise be degenerate. The 13C NMR 

spectrum of 1 with L = D reflects the breaking of the degeneracy, and widely separate 

signals are observed for carbons that were overlapping in the unlabeled 1 (L = H).  With 

2, in contrast, there is no equilibrium to affect. The NMR spectrum of 2 still reflects an 

asymmetry that results from intrinsic isotope effects on chemical shifts, but the 

separation of carbons that were equivalent in the unlabeled structure is much smaller 

than in the case of 1. As a result, the 13C NMR spectra of 1 (L = D) versus 2 readily 

distinguish the equilibrating from non-equilibrating structures. 

 
 
 

L3C CH3

H
+CH3L3C

H
+

1a 1b
L = H  ->  K = 1
L = D  ->  K >> 1

H D+

2
 

 
 
 

We envisioned that under certain circumstances the intrinsic isotope effects on 

the chemical shifts for single "symmetrical" structures might be much larger than 

normally anticipated, making these structures appear to be unsymmetrical equilibrating 

structures. Intrinsic isotope effects on chemical shifts can occur in purely harmonic 



 53 

systems, but the largest effects should in general be associated with changes in the time-

averaged geometry of a molecule upon isotopic substitution. This requires 

anharmonicity. Changes in molecular geometry, such as differing C-H and C-D bond 

lengths, can arise from simple cubic terms in the potential V versus normal coordinate 

displacement Q without any coupling of normal modes, e.g., from aiii terms in Figure 5-1 

with all aiij = 0. However, the resulting isotope effects on the shift of atoms more than 

one bond distant are generally small. The more interesting effect of anharmonicity that 

we considered would arise when a mode i (or a series of modes), whose zero-point 

energy (zpe) is affected strongly by isotopic substitution, is coupled (|aiij| >> 0) with a 

mode j that desymmetrizes an otherwise symmetrical molecule. In such a case, isotopic 

substitution in i can affect the time-averaged displacement of the "distant" mode j.   

 
 
 

  

V = kiiQi
2

i

∑ + αiiiQi
3

i

∑ + αiijQi
2Q j

i, j(i≠ j)

∑ +L
 

Figure 5-1. Anharmonic Potential with Respect to Coordinate Displacement. 
 
 
 

An example of this phenomenon arises in the bromonium ion derived from 

tetramethylethylene (3). Ohta and coworkers found that the 13C NMR signals for the 

quaternary carbons in 3 are separated ("D") by 3.61 ppm.50 This shift is more than an 

order of magnitude larger than normal two-bond intrinsic H/D isotope effect on a 13C 

chemical shift in the absence of equilibrating structures. Accordingly, Ohta concluded 
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that 3 is not a 1,2-bridged structure (3a), but rather is a rapid equilibrium of b-

bromocarbenium ions (3b). The data appeared to force this conclusion, but it is a 

bothersome one since a long history of experimental observations has supported the 

bridged structure, as reflected in every undergraduate textbook of organic chemistry. In 

addition, theoretically calculated potential-energy minima for 3 uniformly have the C2v 

symmetry of the bridged ion 3a.   

 

Results 

In the calculated C2v structures for 3a, such as the MPW1PW91/6-31+G**52 

structure 4 in Figure 5-2, a low-energy B2 mode "j" (133X cm-1) rocks the axis of the 

central C-C bond versus the bromine atom.  If motion of the bromine atom toward the 

CH3 groups is defined as "positive" motion in j, then a series of modes associated with 

C-H stretching and bending vibrations exhibit positive cubic force constants aiij (i being 

the stretching and bending modes), while an equivalent series of modes associated with 

C-D stretching and bending vibrations exhibit negative aiij (calculated from finite 

differences of Cartesian Hessians53). In other words, motion of the bromine atom toward 

the CH3 groups strengthens the C-H stretching and bending vibrations, particularly those 

associated with the hydrogens anti to the bromine atom, while weakening the 

corresponding C-D vibrations. This fits with the intuitive structural ideas used to 

understand b-deuterium isotope effects in carbocations. Because of the lower zero-point 

energy in C-D vibrations, the molecular zero-point energy is decreased as the bromine is 

displaced toward the CD3 groups. Based on the cubic force constants, the difference in 
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zero-point energy between the two classical turning points of mode j would be about 20 

cm-1. This is a substantial correction relative to the potential energy curve for mode j and 

should lead to a significant time-averaged displacement of mode j away from the C2v 

structure.  

 
 
 

H3C
H3C

CD3

CD3

Br+

3a

H3C
H3C CL3

CL3

Br +

CL3

CL3H3C
H3C

Br+

3b  

Figure 5-2. Bromonium Cation (3a) and Equilibrating Bromocarbenium Species (3b). 
 
 
 

We used three methods to estimate the desymmetrization of 3 and the effect of 

this desymmetrization on its NMR spectra. The first and conceptually simplest approach 

treats the motion in the low-energy mode j as slow and separable from the motion in the 

other modes, so that the zero-point energy in the other modes can be applied directly as a 

correction to the energy curve governing mode j. Numerical solution of Schrodinger's 

equation for the resulting energy curve affords a wavefunction from which the average 

displacement of mode j can be calculated. The overall structure 5a from this "one-

dimensional" approach then assumes that all other modes are at their potential energy 

minimum. The second method applied second-order perturbation theory based on the 

cubic and semi-diagonal quartic force constants,54 resulting in structure 5b. The third 

method made use of quasiclassical direct-dynamics trajectory calculations. A series of 

quasiclassical trajectories on the MPW1PW91/6-31+G** surface were started from 4 
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giving each normal mode its ZPE plus a Boltzmann sampling of additional energy 

appropriate for the temperature of the simulation. Using a Verlet algorithm, trajectories 

were continued to a time limit of 500 fs.55 The trajectory geometries (>100,000 in each 

case) in curvilinear coordinates were then averaged, affording structures 5c, 5d, and 5e 

at 0, 193, or 298 K, respectively.  

All three methods predict significant desymmetrization of the bromonium ion. 

For comparison, the change in the C-Br bond length in (CH3)2CHBr versus (CD3)2CHBr 

as predicted by the second-order perturbation theory method is only 0.0004 Å, so the 

geometry change in 5 is a factor of 20 greater than might have been expected from a 

structurally similar model. The trajectory method predicts somewhat greater 

desymmetrization than either the one-dimensional or perturbation theory approach. A 

notable observation is that the desymmetrization increases with temperature.  

It is overly simplistic but enlightening to calculate the NMR spectra based on 

these time-averaged structures. For each geometry 5a-e, the separation of the quarternary 

carbon 13C chemical shifts, ∆, was calculated by the GIAO method (mPWPW91/6-

31+G**), and the results are summarized in Figure 5-3.The striking observation is that 

the predicted ∆ for each structure is in the range of the experimentally observed ∆.  In 

other words, the experimental observation appears to result from the large change in the 

time-averaged geometry of the molecule due to the anharmonicity effect describes 

above. However, these single structure calculations do not allow for the change in the 

span of accessed nuclear configurations due to isotopic substitution. We therefore 

employed the non-simplistic, if arduous, approach of calculating ∆ based on NMR 
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calculations at each point of the trajectories at 193 K. The result is again in the range of 

the experimentally observed ∆. Overall, as is consistent with both classical mechanistic 

studies and computational studies, the NMR observation may be explained without the 

need to postulate any asymmetry in the unlabeled bromonium ion.   

 
 
 

Br+

D
D

D

D

D
D

H H

H

H

H
H

distance 2distance 1
5a   (0 K)    
5b   (0 K)    
5c   (0 K)  

 (193 K)
 (298 K)

distance 1
2.1126
2.1261

2.1362(7)
2.1404(4)
2.1456(25)

distance 2
2.1073
2.1179

2.1191(6)
2.1251(8)
2.1306(21)

  ∆
2.10
2.70
4.40
4.48
4.66

3.61
(exptl)  

Figure 5-3. Intrinsic Chemical Shifts. 
 

 
 
A difficult but more broadly important example to consider is the hydrogen 

phthalate anion 6. The nature of the hydrogen bond (H-bond) in anions of this type has 

been of considerable interest, both from fundamental perspective and with regard to the 

disputed importance of "low-barrier" or "short, strong" H-bonds in catalysis. The 

structure of 6 has been considered in terms of two limiting possibilities, either having the 

proton centered between the oxygens as in the "symmetrical" 6a, or having the proton 

localized in one well of a double-well potential with a rapid equilibration of the two 

tautomeric forms as in the "asymmetric" 6b. X-ray and neutron diffraction studies have 

observed the symmetrical structure, and gas-phase computational studies have also 

favored this structure. The interesting question has been the structure of the anion in 

solution. Primary isotope effects on the chemical shift in 6, i.e. comparison of the 
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chemical shifts of H versus D versus T have favored the symmetrical structure in 

solution.56 However, a series of papers by Perrin and coworkers have applied a 

Saunders-type isotopic perturbation experiment to 6 and a variety of related ions, and in 

all cases the experimental observations have been interpreted as supporting asymmetric 

structures.49 Perhaps the most striking observation is that the isotopic perturbation 

experiment appears to support an asymmetric structure for 7, a molecule designed to 

avoid desymmetrizing counterion effects, even in relatively non-polar methylene 

chloride solutions. The sweeping conclusion from these observations has been that "H-

bonds are not symmetric in solution".49c Rather, the necessarily asymmetric 

instantaneous environment effected by any solvent is taken as sufficient to break the 

molecular symmetry. By extension, these studies have been interpreted as denying any 

extra stabilization associated with short-strong hydrogen bonds.55   
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The key Perrin experiment involves the study of hydrogen phthalates containing 

a single 18O-label, as in 8. The presence of the 18O leads to a separation of the 13C NMR 

signals (∆ obs) for carboxylate carbons Cc versus Cc' and ipso carbons Ci versus Ci'. 

Assuming that the peak separation in the corresponding diacid forms under identical 

conditions represents the intrinsic isotope effects on the chemical shift, ∆ 0, the 

consistent observation that | ∆ obs| > | ∆ 0| triggers the conclusion that that hydrogen 

phthalate ions consist of equilibrating tautomers rather than single symmetrical 

structures. However, outside of water and methanol, the carboxylate carbons were not 

diagnostic of equilibrating tautomers owing to very low differences between ∆ obs and ∆ 

0, ≤ 4 ppb. Instead, conclusions relied on observations of ∆ obs versus ∆ 0 for the ipso 

carbons. For 7 (R = octyl) in CD2Cl2, - ∆ obs was 12 ppb while - ∆ 0 was only 2 ppb, and 

this difference was considered to be conclusive support for equilibrating tautomers.   

To explore whether the ∆ obs for the ipso carbons in hydrogen phthalates is 

consistent with the isotope-induced desymmetrization of a symmetrical structure, we 

applied the methods used to study 3. All of the methods encounter substantial difficulties 

owing to the 200-fold smaller effect in phthalates versus 3.  All of the methods 

encounter substantial difficulties owing to the roughly 200-fold smaller effect of 18O in 

pthalates versus deuterium in 3, particularly with regard to numerical convergence. We 

unltimately focused on the most rigorous procedure of calculating the NMR spectrum at 

each point of avery large number of quasiclassical trajectories at 25 ºC. This method 

itself has the substantial problem that the 18O isotope effect on the chemical shifts in 8 

converges exceedingly slowly relative to the small experimental ∆ obs. We estimate that it 
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would take an impractical 120,000,000 force and NMR calculations or 1500 processor 

years to obtain a satisfactory statistical significance for the predicted ∆ obs. To get around 

this problem, we employed the non-physical 24O in trajectories making the assumption 

that this would increase the magnitude of the isotope effect by approximately a factor of 

4. This decreases the computational cost by a factor of 16. A series of quasiclassical 

trajectories on the gas-phase MPW1PW91/6-31G* surface were intitiated from 9a and 

9b giving each normal mode its ZPE plus a Boltzmann sampling of additional energy 

appropriate for the 25 ºC, along with a random phase and sign for its intial velocity. The 

trajectories were then propagated both forward and backward in time for 500 fs. At each 

point in the trajectories, the isotropic shielding was calculated by the GIAO method. The 

time-averaged  ∆ 0  was then calculated from the average of NMR shifts from 

approximately 5,000,000 trajectory points for 9a and 2,500,000 trajectory points for 9b. 

 
 
 

 

 

 
 

  As will be comforting to many organic chemists, the NMR observations are 

explained without the need to postulate any intrinsic asymmetry to a symmetrical 

bromonium ion. All three methods show strong agreement with the experimentally 
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determined chemical shifts ofr the bromonium ion. However, in the case of Hydrogen 

phthalate only the trajectory simulations give good predictions of the experimental 

result. Both the one-dimensional displacement method and the 2nd order perturbation 

theory methods are highly dependent on the desymmetrizing normal modes. In 3, there is 

one major desymmetrizing mode and not much contribution from other modes. 

However, with regards to 9, then one observes several different desymmetrizing modes 

allof which display significant hydrogen motion between both carboxylate O. The 

trajectory method, on the other hand, is unaffected by this wider distribution of 

asymmetry along several modes and consequently, no dropoff is observed in the 

predictions 3 to 9 are analysed. 
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CHAPTER VI 

CO�CLUSIO�S 

  

 In the study of the ethanolysis of symmetric aryl carbonates, substrates with good 

leaving groups were found to have early transition states and are likely to undergo 

substitution in a concerted manner. Additionally, the unique structure of symmetric 

carbonates is such that upon nucleophilic attack at the carbonyl, one would expect an 

isotope effect to be generated in one of the atoms adjacent to the carbonyl. The presence 

of an 17O isotope effect would be indicative of a concerted mechanism while its absence 

would mean the mechanism was stepwise. However, while we were unable to determine 

17O KIEs experimentally, it was shown conclusively using trajectory simulations that 

these reactions were in fact concerted and ultimately their selectivities would be 

determined by dynamic effects. 

 The reaction of 4,4-dichloro-3-buten-2-one with sodium para-tolylthiolate 

nucleophile, provided two distinguishable products and therefore, a measurable product 

ratio. We hypothesized that if our dynamic simulations predicted product ratios that 

showed good agreement with experimental results, then this would indicate that the 

selectivity was determined by dynamic effects. The predicted product ratio of 2.5:1 was 

in good agreement with the experimental ratio (4.5:1) and provides strong support for 

the mechanism being concerted and also for the stereoselectivity being controlled by 

dynamic effects. 
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 Intermolecular 13C KIEs are an efficient tool in deciding which of the two 

proposed mechanisms better describes the reaction. The large normal 13C KIEs observed 

are indicative of rate limiting C-C bond formation and consequently, support the 

proposed EAS mechanism rather than a “C-H activation’ mechanism.. 

 The distinction between isotopic perturbation of equilibrium and isotope-induced 

desymmetrization with regards to the bromonium cation of tetramethylethylene and 

hydrogen phthalate was thoroughly explored. Prior to this work it was generally assumed 

that if the isotope effect of the chemical shift was large then automatically, this was 

thought to indicate the presence of two degenerate equilibrating structures. However, 

this study has been successful in showing that small changes in the time-averaged 

geometry of a single non-degenerate species can lead to a large isotope effect, hence 

creating the illusion of two equilibrating structures when that is not actually the case.  

 The application of TST to the observed selectivity in an organic reactions 

involves the assumption that each product  is afforded by  a different pathway and the 

relative amounts of each product is dependent on the relative energies of competing 

transition states. However, this work has shown that cases do exist where no competing 

transition states/pathway exists and instead these systems are defined by a bifurcation in 

the PES, on which the selectivity observed is under dynamic control. In other cases, it 

has been shown that the combination of KIEs, theoretical calculations and dynamic 

trajectory simulations is a powerful tool for the elucidation of reaction mechanisms. 
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Ethanolysis of Symmetric Aryl Carbonates 

Intermolecular Starting Material 
13

C �MR KIE Sample Integration Results 

for Bis-para-nitrophenyl Carbonate  

 

STD1     

     

 
Average of 6 

FIDs ST. DEV.   

C-O 440.1817 0.970709   

carbonyl 233.9535 1.36418   

"Nitro" carbon 468.621 1.543991   

aryl 993.9067 1.94204   

aryl 1000 0   

     

RCVRD SM1     

     

 
Average of 6 

FIDs ST. DEV. KIE ST. DEV. 

C-O 432.5643 0.944538 0.990 0.003 

carbonyl 254.6065 0.891681 1.052 0.007 

"nitro" Carbon 466.1182 1.754314 0.997 0.005 

aryl 991.0472 1.364913 0.998 0.002 

aryl 1000 0 1.000 0.000 

 

STD4     

     

 
Average of 6 

FIDs ST. DEV.   

C-O 420.9783 0.202136   

carbonyl 214.8412 0.639188   

"Nitro" carbon 504.9205 1.163842   

aryl 984.4633 0.882888   

aryl 1000 0   

     

RCVRD SM4     

     

 
Average of 6 

FIDs ST. DEV. KIE4 ST. DEV. 

C-O 413.1667 1.006163 0.986 0.002 
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Average of 6 

FIDs ST. DEV. KIE4 ST. DEV. 

carbonyl 228.4117 1.519311 1.048 0.008 

"nitro" Carbon 513.0562 1.063993 1.012 0.003 

aryl 977.2522 0.733187 0.995 0.001 

aryl 1000 0 1.000 0.000 

 

Bis-para-nitrophenyl Carbonate – Full 
13

C Spectrum 
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Intermolecular Starting Material 
13

C �MR KIE Sample Integration Results 

for Ethanolysis of Diphenyl Carbonate. All integrations are relative 

integrations versus an integration of 1000 for the para-Carbon. 

 

STD1     

     

 
Average of 
6 FIDs ST. DEV.   

carbonyl 251.46183 0.253   

C-O 483.03683 0.173   

meta aryl 998.47683 0.832   

ortho aryl 499.07717 0.446   

para aryl 1000 0.000   
RCVRD 
SM1     

     

 
Average of 
6 FIDs ST. DEV. KIE ST. DEV. 

carbonyl 269.517 0.300 1.044 0.002 

C-O 481.997 0.569 0.999 0.001 

meta aryl 998.596 0.531 1.000 0.001 

ortho aryl 501.143 0.385 1.002 0.001 

para aryl 1000.000 0.000 1.000 0.000 

 

STD2     

     

 
Average of 
6 FIDs ST. DEV.   

carbonyl 248.493 0.458   

C-O 476.665 0.444   

meta aryl 999.222 0.869   

ortho aryl 497.594 0.399   

para aryl 1000.000 0.000   

 
 
RCVRD 
SM2     

 
Average of 
6 FIDs ST. DEV. KIE ST. DEV. 

carbonyl 265.885 0.600 1.048 0.003 
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Average of 
6 FIDs ST. DEV. KIE ST. DEV. 

C-O 476.249 0.712 0.999 0.002 

meta aryl 998.204 0.903 0.999 0.001 

ortho aryl 499.404 1.096 1.002 0.002 

para aryl 1000.000 0.000 1.000 0.000 

                                          

Diphenyl Carbonate – Full 
13

C spectrum 

 

 

 

 



 75 

Dynamic Control of Stereoselectivity in a �ucleophilic Substitution Reaction
 

1
H-�MR Spectrum of the vinylic region of the reaction mixture 
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*Left most peak at 6.34 ppm represents the vinylic proton of 1, peak at 6.26 represents 

vinylic proton of major product 2, peak at 5.86 is vinylic proton of minor product 3 and 

peak at 5.64 is vinylic peak of disubstituted product 4. 

 

Mechanism of the Fujiwara Hydroarylation 

Intermolecular Starting Material 
13

C �MR KIE Sample Integration Results 

for Reaction of 1. All integrations are relative integrations versus an integration 

of 2000 for a pair of aromatic carbons. 

 

 AVERAGE ST. DEV.   

carbonyl 935.625 1.139   

quarternary(ester) 942.326 1.562   

Aromatic (peak 3) 2000.000 0.000   

aromatic 1013.859 2.798   

aromatic 1012.544 1.906   

aromatic 1010.718 0.825   

aromatic 2035.464 2.452   

aromatic 1017.336 1.214   

aromatic 1006.180 1.249   

Aromatic (C-H Act.) 1031.368 1.802   

quarternary(methyl) 1015.719 1.766   

acetylene 1051.718 1.673   

acetylene 1034.595 2.447   

methyl 961.521 1.293   

     

RCVRD SM 1     

     

 AVERAGE ST. DEV. KIE ST. DEV. 

carbonyl 956.939 1.067 1.012 0.002 

quarternary(ester) 939.520 2.240 0.998 0.003 

Aromatic (peak 3) 2000.000 0.000 1.000 0.000 

aromatic 1013.764 3.398 1.000 0.004 

aromatic 1015.285 2.580 1.001 0.003 

aromatic 1012.296 1.790 1.001 0.002 

aromatic 2033.376 2.394 0.999 0.002 

aromatic 1015.162 2.122 0.999 0.002 

aromatic 1005.380 2.165 1.000 0.002 
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 AVERAGE ST. DEV. KIE ST. DEV. 

Aromatic (C-H Act.) 1059.169 2.642 1.014 0.003 

quarternary(methyl) 1017.561 1.409 1.001 0.002 

acetylene 1110.626 1.884 1.030 0.002 

acetylene 1043.152 2.030 1.004 0.003 

methyl 968.209 1.696 1.004 0.002 

 

 Average ST. DEV.   

carbonyl 926.105 0.781   

quarternary(ester) 929.951 1.053   

Aromatic (peak 3) 2000.000 0.000   

aromatic 1013.563 1.957   

aromatic 1018.405 2.149   

aromatic 1007.171 1.557   

aromatic 2024.156 1.694   

aromatic 1013.588 2.296   

aromatic 1017.666 2.708   

Aromatic (C-H Act.) 1026.615 2.131   

quarternary 1015.391 1.855   

acetylene 1055.979 1.201   

acetylene 1028.140 1.492   

methyl 946.856 1.472   

     

RCVRD SM 3     

     

 Average ST. DEV. KIE3 ST. DEV. 

carbonyl 946.394 1.067 1.012 0.001 

quarternary(ester) 928.567 1.669 0.999 0.002 

Aromatic (peak 3) 2000.000 0.000 1.000 0.000 

aromatic 1011.596 1.536 0.999 0.002 

aromatic 1018.287 2.717 1.000 0.003 

aromatic 1006.686 0.974 1.000 0.002 

aromatic 2023.501 1.215 1.000 0.001 

aromatic 1009.206 1.442 0.998 0.003 

aromatic 1013.031 1.526 0.998 0.003 

Aromatic (C-H Act.) 1053.897 1.047 1.014 0.002 

quarternary 1017.624 0.878 1.001 0.002 

acetylene 1114.293 1.658 1.029 0.002 

acetylene 1034.584 0.831 1.003 0.002 

methyl 950.333 1.798 1.002 0.002 
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Ortho-tolyl-3-phenylpropiolate – full 
13

C spectrum 
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Theoretical Structures from the Ethanolysis of Symmetric Carbonates 

Bis-para-nitrophenyl carbonate 

B3LYP/6-31G* 
E(RB+HF-LYP) = -1136.08251998 
 
Zero-point correction= 0.205500 (Hartree/Particle) 
Thermal correction to Energy= 0.223411 
Thermal correction to Enthalpy= 0.224355 
Thermal correction to Gibbs Free Energy= 0.154948 
Sum of electronic and ZPE= -1135.877019 
Sum of electronic and thermal Energies= -1135.859109 
Sum of electronic and thermal Enthalpies= -1135.858165 
Sum of electronic and thermal Free Energies= -1135.927572 
 
       E      CV        S 
    KCal/Mol Cal/Mol-K Cal/Mol-K 
Total 140.192 66.321 146.079 
 
 C,0,3.7049075988,-1.6503271227,0.8521503892 
 C,0,2.6115510289,-1.2322128844,0.091014063 
 C,0,2.6899882977,-0.1281051197,-0.7609454996 
 C,0,3.8977189773,0.5577404122,-0.8565706476 
 C,0,4.9881017256,0.1333789463,-0.1003091893 
 C,0,4.9086568957,-0.9625688574,0.7574406659 
 O,0,1.4389726915,-1.9471304406,0.3205916175 
 C,0,0.5574590163,-2.1898846059,-0.6756529307 
 O,0,0.6494871674,-1.8653580973,-1.8296476514 
 N,0,6.2591916117,0.8649198532,-0.2064011514 
 O,0,7.2030575593,0.4684437175,0.47650434 
 O,0,-0.4500713455,-2.8770490862,-0.0915542615 
 C,0,-1.5456594404,-3.3204015109,-0.8276822391 
 C,0,-2.755235735,-3.3126635367,-0.1302247111 
 C,0,-3.9025700155,-3.801411689,-0.7432008055 
 C,0,-3.8098760205,-4.2897093497,-2.0455542177 
 C,0,-2.6036995823,-4.3051867712,-2.7425770325 
 C,0,-1.452480495,-3.8187137033,-2.1292366054 
 N,0,-5.020282721,-4.8071799411,-2.7007020295 
 O,0,-6.0697221298,-4.7836163748,-2.0583955229 
 O,0,-4.9097993344,-5.232224581,-3.8500303733 
 O,0,6.3011767891,1.8283105004,-0.9705617367 
 H,0,3.5965995623,-2.5066326502,1.5088609913 
 H,0,5.7776798641,-1.2596655115,1.3308451722 
 H,0,4.0020110719,1.4175690267,-1.5065311469 
 H,0,1.8351620554,0.1831934705,-1.3452669419 
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 H,0,-2.7799880084,-2.9260546645,0.8827805587 
 H,0,-4.8578737768,-3.8089974433,-0.2336940189 
 H,0,-2.5758213469,-4.6984643783,-3.7511334797 
 H,0,-0.5090189614,-3.8170226072,-2.657384605 
 

Transition State 

B3LYP/6-31G* 
E(RB+HF-LYP) = -1251.23555529 
 
Zero-point correction= 0.244764 (Hartree/Particle) 
Thermal correction to Energy= 0.265388 
Thermal correction to Enthalpy= 0.266332 
Thermal correction to Gibbs Free Energy= 0.192572 
Sum of electronic and ZPE= -1251.012050 
Sum of electronic and thermal Energies= -1250.991426 
Sum of electronic and thermal Enthalpies= -1250.990482 
Sum of electronic and thermal Free Energies= -1251.064241 
 
       E      CV        S 
    KCal/Mol Cal/Mol-K Cal/Mol-K 
Total 166.533 76.689 155.240 
Zero-point correction= 0.243550 (Hartree/Particle) 
Thermal correction to Energy= 0.264319 
Thermal correction to Enthalpy= 0.265263 
Thermal correction to Gibbs Free Energy= 0.191367 
Sum of electronic and ZPE= -1250.992005 
Sum of electronic and thermal Energies= -1250.971237 
Sum of electronic and thermal Enthalpies= -1250.970293 
Sum of electronic and thermal Free Energies= -1251.044189 
 
       E      CV        S 
    KCal/Mol Cal/Mol-K Cal/Mol-K 
Total 165.862 76.182 155.527 
 
 C,0,3.2787205984,-1.6352809188,-0.5914464899 
 C,0,2.3296522542,-0.8673686983,0.0880679058 
 C,0,2.6531157746,0.3303327073,0.7316903022 
 C,0,3.9719173194,0.7671540564,0.6742193724 
 C,0,4.9262521567,0.005685798,-0.0110340198 
 C,0,4.595958288,-1.1950071519,-0.6441816173 
 O,0,1.0563090929,-1.3878763703,0.2142611177 
 C,0,-0.0005317251,-0.6901641816,-0.3062040785 
 O,0,0.064687643,1.2541187277,1.4723147758 
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 C,0,0.1044053009,2.4535389318,0.8111736718 
 N,0,6.311482636,0.466588567,-0.0630006318 
 O,0,6.5958796673,1.5298499378,0.4958662321 
 O,0,-1.1009291311,-1.3161741307,0.2151348559 
 C,0,-2.3370423995,-0.7123693905,0.089809262 
 C,0,-3.3354842329,-1.4157722376,-0.5887896984 
 C,0,-4.620656971,-0.8891009133,-0.6406276164 
 C,0,-4.8700849214,0.3309794123,-0.0075214629 
 C,0,-3.8668122503,1.0275904081,0.676831956 
 C,0,-2.5798432877,0.5042680266,0.7333934135 
 N,0,-6.2217294888,0.8827475639,-0.0585525681 
 O,0,-7.0934450989,0.2409887617,-0.6572899883 
 O,0,0.0240319287,0.0601881285,-1.2417151473 
 O,0,-6.4345869659,1.962535503,0.5004541011 
 O,0,7.1382959048,-0.2315469063,-0.6623466172 
 H,0,-1.7119407951,0.9564992157,1.2586000736 
 H,0,-4.1106234963,1.9650484994,1.1622029746 
 H,0,-5.4243062111,-1.3975909788,-1.1581365913 
 H,0,-3.0954726633,-2.3612480855,-1.0647114883 
 H,0,2.9761571544,-2.5626346464,-1.0673682795 
 H,0,5.3637141241,-1.7555619751,-1.1624085096 
 H,0,4.2777416254,1.6862672208,1.1595641137 
 H,0,1.8175298107,0.8390950001,1.2575790226 
 H,0,-0.772812167,2.6369892024,0.1385461353 
 H,0,0.134364865,3.343686613,1.4913514228 
 H,0,0.9913296609,2.5781883033,0.1378080958 
 

 

Diphenyl Carbonate 

Diphenyl carbonate opt 
B3LYP/6-31G* 
E(RB+HF-LYP) = -727.081978901 
 
Zero-point correction= 0.200365 (Hartree/Particle) 
Thermal correction to Energy= 0.213183 
Thermal correction to Enthalpy= 0.214128 
Thermal correction to Gibbs Free Energy= 0.157800 
Sum of electronic and ZPE= -726.881614 
Sum of electronic and thermal Energies= -726.868796 
Sum of electronic and thermal Enthalpies= -726.867851 
Sum of electronic and thermal Free Energies= -726.924179 
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       E      CV        S 
    KCal/Mol Cal/Mol-K Cal/Mol-K 
Total 133.775 49.249 118.551 
 
 C,0,-2.1921101965,-2.6556949327,-2.0859672799 
 C,0,-1.8463697426,-2.9222567106,-0.7624279847 
 C,0,-2.4083415283,-3.9874504665,-0.0630964433 
 C,0,-3.3445796861,-4.801654215,-0.700313266 
 C,0,-3.7117810787,-4.547109666,-2.0229131324 
 C,0,-3.1340914259,-3.4765436812,-2.7080422329 
 O,0,-0.8542789315,-2.2095580269,-0.0787684437 
 C,0,-0.8247477467,-0.8597011061,-0.1358267837 
 O,0,-1.5850946196,-0.1368937688,-0.726357381 
 O,0,0.237887821,-0.4940657875,0.6147502617 
 C,0,0.5612852315,0.8594475878,0.7663430814 
 C,0,0.6121830468,1.7488973222,-0.305402269 
 C,0,1.027366797,3.0597337238,-0.0657611613 
 C,0,1.392308471,3.4698516423,1.2179286053 
 C,0,1.342329989,2.5601669365,2.2756982943 
 C,0,0.9247967278,1.2480153639,2.053351177 
 H,0,-4.4428855228,-5.1799522495,-2.5177336593 
 H,0,1.7150446989,4.4922561137,1.3922312244 
 H,0,-2.1038174379,-4.1661117929,0.9631006796 
 H,0,-3.7859169233,-5.6341095807,-0.1595377053 
 H,0,-3.4141119504,-3.2745035903,-3.7381521018 
 H,0,-1.7470433706,-1.8211723314,-2.6126398556 
 H,0,0.8802106025,0.5210952408,2.8579226528 
 H,0,1.6272656121,2.8685486338,3.2776517765 
 H,0,1.066103012,3.7623528343,-0.8935194585 
 H,0,0.3227471513,1.4296545069,-1.2984825949 
 
 
 

Transition State 

Diphenyl carbonate w/ methoxide ts search 

B3LYP/6-31G* 
E(RB+HF-LYP) = -842.206364553 
 
Zero-point correction= 0.238054 (Hartree/Particle) 
Thermal correction to Energy= 0.253835 
Thermal correction to Enthalpy= 0.254779 
Thermal correction to Gibbs Free Energy= 0.193372 
Sum of electronic and ZPE= -841.968372 
Sum of electronic and thermal Energies= -841.952591 
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Sum of electronic and thermal Enthalpies= -841.951647 
Sum of electronic and thermal Free Energies= -842.013054 
 
       E      CV        S 
    KCal/Mol Cal/Mol-K Cal/Mol-K 
Total 159.284 59.343 129.242 
Zero-point correction= 0.238062 (Hartree/Particle) 
Thermal correction to Energy= 0.253888 
Thermal correction to Enthalpy= 0.254832 
Thermal correction to Gibbs Free Energy= 0.192695 
Sum of electronic and ZPE= -841.968302 
Sum of electronic and thermal Energies= -841.952477 
Sum of electronic and thermal Enthalpies= -841.951533 
Sum of electronic and thermal Free Energies= -842.013670 
 
       E      CV        S 
    KCal/Mol Cal/Mol-K Cal/Mol-K 
Total 159.317 59.401 130.779 
 
 C,0,-1.2784899071,-4.3492254033,-1.1706209789 
 C,0,-1.6317673933,-3.0712842761,-0.7336974596 
 C,0,-2.9240443168,-2.5731551657,-0.8913537129 
 C,0,-3.89169722,-3.3715276828,-1.507119183 
 C,0,-3.5597968134,-4.6501833672,-1.9588537032 
 C,0,-2.2555896954,-5.129494739,-1.7879230357 
 O,0,-0.7189390376,-2.3151403733,-0.0177173929 
 C,0,0.3912142289,-1.8318536061,-0.669574614 
 O,0,0.4639406284,-1.5509477459,-1.8388401637 
 O,0,1.150893779,-1.2984453795,0.3443624402 
 C,0,2.4348187354,-0.8660302535,0.056786401 
 C,0,3.4276374741,-1.8014037357,-0.2405424127 
 C,0,4.7345018578,-1.3451801391,-0.4101536819 
 C,0,5.047279036,0.0130461746,-0.2786006027 
 C,0,4.0385915057,0.929065589,0.0257062684 
 C,0,2.7222561986,0.4909593405,0.1939677823 
 O,0,1.5714390101,-3.9643834094,-0.7553117364 
 C,0,1.9522489387,-4.186689202,-2.0490274492 
 H,0,6.071856504,0.3554266617,-0.4118467195 
 H,0,-4.3134881618,-5.2703547023,-2.4405716196 
 H,0,3.0874652623,-2.8436181757,-0.3214152513 
 H,0,5.5217354637,-2.0592482307,-0.6447077685 
 H,0,4.2720947995,1.9868893637,0.1306049406 
 H,0,1.9196160812,1.1832683829,0.4322525514 
 H,0,-3.1570782364,-1.5752319876,-0.5305806538 
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 H,0,-4.9031460039,-2.9904625169,-1.6347169606 
 H,0,-1.9980497621,-6.127629318,-2.1373527928 
 H,0,-0.2342747056,-4.6405384409,-0.9893327916 
 H,0,1.1116201223,-4.174003037,-2.7895088883 
 H,0,2.6797773182,-3.4358587793,-2.4549194748 
 H,0,2.4549283096,-5.1798608452,-2.2046753361 
 
 
 
 
 

O�IOM trajectories of Trimethoxy Methoxide 

ONIOM(B3LYP/6-31G*:AM1) 
Zero-point correction= 1.607135 (Hartree/Particle) 
Thermal correction to Energy= 1.719606 
Thermal correction to Enthalpy= 1.720550 
Thermal correction to Gibbs Free Energy= 1.420936 
Sum of electronic and ZPE= -0.729439 
Sum of electronic and thermal Energies= -0.616968 
Sum of electronic and thermal Enthalpies= -0.616024 
Sum of electronic and thermal Free Energies= -0.915638 
 
       E      CV        S 
    KCal/Mol Cal/Mol-K Cal/Mol-K 
Total 1079.069 355.814 630.591 
 
C 0.1680364 -1.3162941 0.2505533 
O -0.4047970 -0.2718881 0.6915328 
O 1.4182249 -1.7041487 0.8754109 
C 2.0854343 -0.7084610 1.6325596 
H 2.9869436 -0.4712586 1.0773129 
H 1.4277658 0.1585875 1.8835444 
H 2.3908560 -1.0061812 2.6535713 
O -0.5596811 -2.5026548 0.2268028 
C -1.5483015 -2.5509805 1.2099074 
H -1.1497420 -2.6706125 2.2635642 
H -2.1579363 -1.6579593 1.2326818 
H -2.1765143 -3.4275344 0.9117935 
O 0.6208489 -1.1976467 -1.2050965 
C -0.4179589 -1.0240303 -2.1013867 
H -1.3882095 -0.7155588 -1.7275582 
H -0.1539894 -0.1054038 -2.7295892 
H -0.6290238 -1.9840647 -2.7661913 
H -2.5782894 -5.8676231 3.1293377 M 



 86 

O -2.6504939 -6.6069563 3.7311288 M 
C -1.7379438 -6.4449143 4.7895423 M 
C -1.3765088 -4.9898460 5.0470296 M 
H -2.2374951 -6.9596707 5.6480613 M 
H -0.7952622 -6.9454131 4.4904379 M 
H -1.6106077 -4.3634819 4.1583652 M 
H -1.9428576 -4.5501950 5.9527889 M 
H -0.3335355 -4.7602026 5.2010524 M 
H -1.8529553 1.0827243 1.1908810 M 
O -2.6396999 1.4383051 1.6217447 M 
C -2.5794809 2.8724812 1.7347944 M 
C -2.1696749 3.5975733 0.4927689 M 
H -3.6550143 3.0420164 1.9132210 M 
H -1.8559836 3.1407914 2.5661864 M 
H -2.4951480 4.6475633 0.6472649 M 
H -1.1046031 3.6259142 0.3267561 M 
H -2.6101880 3.2361255 -0.4387480 M 
H -5.0897766 -3.3605585 -2.6183810 M 
O -5.5846640 -4.1980146 -2.4961614 M 
C -5.2829885 -5.1001755 -3.5018964 M 
C -3.7689348 -5.2310365 -3.7832400 M 
H -5.7761712 -6.0960809 -3.2423854 M 
H -5.7598824 -4.7437989 -4.4195520 M 
H -3.5151230 -4.9629568 -4.8059449 M 
H -3.2048221 -4.5204080 -3.0933630 M 
H -3.3903728 -6.2688496 -3.5481900 M 
H -3.9029789 0.0691602 0.8372681 M 
O -4.5225292 -0.6620110 1.1407654 M 
C -4.6465631 -0.4592203 2.5257228 M 
C -6.0728911 -0.1982298 2.9841701 M 
H -4.2499297 -1.3994195 3.0247516 M 
H -4.0182876 0.4042034 2.8956600 M 
H -6.7788776 -0.2205635 2.1436531 M 
H -6.3299586 -1.0155221 3.7111874 M 
H -6.1548555 0.8041455 3.4764710 M 
H -6.4016662 -1.0266071 -1.5524235 M 
O -6.0856329 -0.7973623 -2.4752028 M 
C -4.7242654 -0.5963296 -2.2314854 M 
C -3.9665075 -0.5039345 -3.5700447 M 
H -4.5943564 0.3756787 -1.6185388 M 
H -4.3549569 -1.5584019 -1.7350013 M 
H -4.3760685 0.3908494 -4.1019502 M 
H -2.8842827 -0.3065941 -3.4416925 M 
H -4.2024406 -1.4294466 -4.2443364 M 
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H -4.4814555 -6.3739879 -1.4745802 M 
O -3.9879543 -6.8665276 -0.8136554 M 
C -3.7685179 -6.1702864 0.3802660 M 
C -5.0611195 -5.7243368 1.0612641 M 
H -3.2458061 -6.9367232 1.0807471 M 
H -3.1373584 -5.2991976 0.2579675 M 
H -5.0409165 -5.6381248 2.2039132 M 
H -5.4433293 -4.7474616 0.6805345 M 
H -5.8345074 -6.5742472 0.9198613 M 
H -2.7311579 1.7158382 4.2196324 M 
O -2.7841077 1.4853854 5.1246189 M 
C -2.5064227 2.6497146 5.8885351 M 
C -1.4571196 3.5797112 5.3601497 M 
H -3.4832439 3.1182857 6.0251502 M 
H -2.1807054 2.1625527 6.9035229 M 
H -1.2744503 4.2996439 6.1498140 M 
H -0.5194036 3.0759202 5.0904374 M 
H -1.7896550 4.1258706 4.4521164 M 
H -1.3517660 5.4056491 -3.7653424 M 
O -1.1158495 5.3074347 -4.6979607 M 
C -0.8431708 3.9599213 -4.9751337 M 
C -0.2105321 3.9878845 -6.3769862 M 
H -0.1799300 3.5820376 -4.2041708 M 
H -1.7991003 3.3468395 -4.9679579 M 
H -0.4359894 3.0059525 -6.9009122 M 
H -0.7619586 4.7740656 -6.9485653 M 
H 0.8697552 4.2307777 -6.2250469 M 
H -3.0628712 6.5692949 -4.3865426 M 
O -2.9987843 6.6096318 -3.4442825 M 
C -3.8979019 5.6308073 -2.9633945 M 
C -5.3178006 6.0174955 -3.1878462 M 
H -3.6407393 4.6717146 -3.4950648 M 
H -3.6007784 5.5402921 -1.8653767 M 
H -5.9119014 5.1213389 -2.9461719 M 
H -5.6260506 6.8629231 -2.5178883 M 
H -5.4658799 6.3259305 -4.2593873 M 
H 3.0109641 -3.3545207 1.5831470 M 
O 3.3054872 -3.9967500 2.2127287 M 
C 2.0714605 -4.6290526 2.6154582 M 
C 1.4164604 -5.2955280 1.4283186 M 
H 1.4094025 -3.7985837 3.0191941 M 
H 2.3617328 -5.3393366 3.4109979 M 
H 0.7480804 -4.5871287 0.8753752 M 
H 0.8462320 -6.2555852 1.5407166 M 
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H 2.2251005 -5.6002310 0.7098058 M 
H 3.0566980 -2.2409751 -0.7435050 M 
O 3.7695500 -2.7102358 -1.2866608 M 
C 4.5744704 -1.7197350 -1.9769127 M 
C 5.0095797 -0.7109255 -0.8708914 M 
H 3.9943077 -1.3565266 -2.8420586 M 
H 5.4306546 -2.3046935 -2.3113693 M 
H 4.1569291 -0.0853160 -0.4981574 M 
H 5.8687443 -0.1525546 -1.1588569 M 
H 5.3228001 -1.3568064 -0.0013385 M 
H 3.0074590 -4.0649031 -2.8371750 M 
O 2.9548320 -4.7202145 -3.5342022 M 
C 1.6434785 -4.5444606 -4.1034313 M 
C 0.6116291 -5.2678050 -3.2870753 M 
H 1.7019611 -5.0599854 -5.0768334 M 
H 1.4827271 -3.4394913 -4.2477628 M 
H -0.1500008 -5.8794797 -3.8822258 M 
H -0.0152344 -4.5268400 -2.7108596 M 
H 1.1323118 -5.9768007 -2.5795619 M 
H 4.3549672 -2.9858673 4.5473363 M 
O 4.5869690 -2.5078650 5.3030917 M 
C 5.7863307 -1.7852596 4.9423756 M 
C 5.8682920 -1.6791787 3.4217424 M 
H 6.7172852 -2.3273018 5.4097880 M 
H 5.7487475 -0.7601858 5.3773611 M 
H 6.9094305 -1.4667313 3.0238943 M 
H 5.1702641 -0.8583014 3.0690111 M 
H 5.5884117 -2.6079399 2.9087714 M 
H 1.2725914 1.7503453 4.0254366 M 
O 1.8029904 1.9998969 4.8294986 M 
C 2.9722555 1.1886827 4.8239924 M 
C 2.8718786 0.2834210 6.0588219 M 
H 3.8649559 1.9482974 4.9187158 M 
H 3.1168985 0.5494117 3.9211595 M 
H 2.2726667 -0.6235179 5.7662959 M 
H 2.3993271 0.7764743 6.9442171 M 
H 3.8439960 -0.0876113 6.4133187 M 
H 0.3509690 1.6002761 0.3836793 M 
O 0.8682632 2.4044617 0.5005884 M 
C 1.6943255 2.4554141 -0.6506147 M 
C 0.8967548 2.9242604 -1.8574048 M 
H 2.1512480 1.4331380 -0.8609450 M 
H 2.5176956 3.1439790 -0.2833968 M 
H 1.7143646 3.2577361 -2.6526621 M 
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H 0.2730543 3.7994256 -1.6083814 M 
H 0.2752738 2.0591926 -2.2405077 M 
H 5.9484153 -4.1863777 -1.6605881 M 
O 6.6435964 -4.6254711 -1.1763327 M 
C 6.0601268 -5.1760695 0.0023688 M 
C 4.7503865 -5.9338074 -0.1600524 M 
H 6.8061964 -5.8776989 0.4519303 M 
H 5.8586141 -4.3135208 0.6636001 M 
H 4.2947207 -6.0954050 0.8542835 M 
H 4.0757824 -5.2589396 -0.7741690 M 
H 4.8537689 -6.9404818 -0.6086359 M 
H 4.8237697 5.1560824 -1.3817754 M 
O 4.1758214 5.5019725 -2.0261895 M 
C 4.6889497 5.1049572 -3.3126242 M 
C 3.5874264 5.4647228 -4.2959101 M 
H 5.5586750 5.7382214 -3.5655172 M 
H 4.9597877 4.0261686 -3.2860822 M 
H 3.7588011 5.1298114 -5.3306948 M 
H 2.6327842 5.0168022 -3.8881750 M 
H 3.4408580 6.5866534 -4.2697312 M 
H 5.4204392 3.8653175 0.6337666 M 
O 6.0305434 4.5722397 0.7177126 M 
C 5.4575235 5.5611142 1.5460393 M 
C 4.0206533 5.9340935 1.1643710 M 
H 5.4891700 5.2635528 2.5830058 M 
H 6.2211789 6.3798913 1.4930678 M 
H 3.6369985 6.7527937 1.7368591 M 
H 4.0103327 6.2813002 0.0808976 M 
H 3.3365918 5.0877927 1.1892042 M 
 
 

O�IOM Trajectories of Dimethoxy �itrophenoxy Methoxide 

 

ONIOM(B3LYP/6-31G*:AM1) 
Zero-point correction= 1.668361 (Hartree/Particle) 
Thermal correction to Energy= 1.785818 
Thermal correction to Enthalpy= 1.786762 
Thermal correction to Gibbs Free Energy= 1.476444 
Sum of electronic and ZPE= -0.632700 
Sum of electronic and thermal Energies= -0.515243 
Sum of electronic and thermal Enthalpies= -0.514298 
Sum of electronic and thermal Free Energies= -0.824617 
 
       E      CV        S 
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    KCal/Mol Cal/Mol-K Cal/Mol-K 
Total 1120.618 376.509 653.121 
 
C 2.3107020 2.8541239 0.3428389 
O 0.8618821 2.7884030 0.3809869 
C 0.4126910 1.5397121 0.8907788 
O 0.6804859 2.1398360 2.5966147 
C 0.6148726 1.3186551 3.5961458 
O 1.0398199 0.5118020 0.7218348 
O -0.9462208 1.7224717 0.7006236 
C -1.8616582 0.6668220 1.0247486 
C 0.0272074 0.0302841 3.4906324 
C -0.1537528 -0.7578177 4.6194349 
C 0.4027894 -0.3771850 5.8430495 
C 1.1704472 0.7822241 5.9239961 
C 1.2125430 1.6818660 4.8243746 
H -0.1557407 -0.4288268 2.6081032 
H -0.7579858 -1.6602789 4.6188658 
N 0.3416742 -1.2654063 6.9714026 
H 1.6821766 1.1341361 6.8741892 
H 1.6012740 2.6796910 4.7487782 
H 2.6248668 3.0610540 1.3294311 
H 2.7683821 1.9068981 -0.0531575 
H 2.5092842 3.6619612 -0.3428761 
H -2.8383313 0.8429794 0.5508038 
H -1.4420291 -0.2763582 0.6563713 
H -1.9989076 0.6865865 2.0952070 
O 1.1215221 -1.0754613 7.9070014 
O -0.5421136 -2.1306852 6.9516973 
O 0.5776254 -0.6620742 -2.0895306 M 
C 1.4212806 -1.7577503 -1.8082639 M 
C 1.3168522 -2.3095560 -0.4167418 M 
O -1.3188195 -1.2933677 -4.2337880 M 
C -1.9190556 -0.4013622 -3.3163474 M 
C -3.3591919 -0.1594001 -3.7192458 M 
O 3.6426838 -0.4786021 -0.0840246 M 
C 4.2063782 -0.5151276 1.2030395 M 
C 3.4262532 -1.4898191 2.0970151 M 
O -0.2167959 4.3073591 -2.3687552 M 
C -1.1023404 3.3156344 -2.8650798 M 
C -1.9951101 2.6100253 -1.8800463 M 
O -1.7076647 4.6233203 1.1111245 M 
C -1.2967024 5.5484110 2.1261908 M 
C 0.0732646 5.2547930 2.6895627 M 



 91 

O -5.0862477 4.1913208 1.4556601 M 
C -4.9433701 4.1605795 2.9152471 M 
C -3.9518016 3.0653830 3.2726028 M 
C -2.0776069 -2.5656879 -0.0597830 M 
C -1.6329522 -3.9577760 0.4267100 M 
O -2.8530988 -2.7033676 -1.2530473 M 
C -3.7389411 6.0392967 -1.6665754 M 
C -2.4558066 6.8336034 -2.0768269 M 
O -1.5217569 6.9781162 -1.0108896 M 
O -4.7088157 -4.7048395 0.2609048 M 
C -5.5325154 -5.1385410 1.3224681 M 
C -5.8795819 -4.0209455 2.2969718 M 
O -7.1709505 -4.4516254 -1.8610584 M 
C -6.7310395 -3.5218117 -2.8370974 M 
C -5.3207799 -3.8954401 -3.2094105 M 
O 0.9701501 0.7438506 -4.7535748 M 
C 1.2849984 -0.1102650 -5.8521990 M 
C 2.4177627 -1.0783405 -5.5380152 M 
O -5.4036812 -1.6215361 -0.1910737 M 
C -5.7235331 -0.3851471 0.4277407 M 
C -5.2995148 0.9089216 -0.3319666 M 
C 2.5162997 6.0036889 -0.4765466 M 
C 2.5156670 6.2242496 -1.9468904 M 
O 2.3809497 5.0152176 -2.6642164 M 
C 3.4699480 2.2536258 -3.1191150 M 
C 4.7860855 1.6032363 -3.5014131 M 
O 4.5787757 0.1673850 -3.7020615 M 
C 3.1056187 -5.1004590 2.9973698 M 
C 2.7014431 -6.5184685 3.5150550 M 
O 3.6880351 -5.2359119 1.6576233 M 
O 2.2864474 -6.1293775 -1.5021788 M 
C 1.3823034 -5.5545046 -0.5736603 M 
C 0.5810704 -6.5820510 0.2111911 M 
O 7.1991890 -1.3312961 -0.7507433 M 
C 6.6021393 -0.2145848 -1.3909933 M 
C 6.9993078 1.0385869 -0.5976200 M 
C 4.6223462 -3.6895137 -1.0658673 M 
C 5.2904312 -4.2529666 -2.2928019 M 
O 5.7628805 -3.1997471 -3.0979289 M 
H -4.4590575 -1.6102550 -0.4111545 M 
H -6.8695333 -0.4093806 0.5541155 M 
H -5.1579589 -0.2311953 1.4199940 M 
H -4.3993321 0.7182938 -0.9113345 M 
H -6.0608912 1.3962296 -1.0544002 M 
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H -5.0623390 1.6692466 0.4352084 M 
H 0.3029866 -0.2835259 -1.2372001 M 
H 1.2832427 -2.4670738 -2.6237321 M 
H 2.4277001 -1.3754064 -2.0147001 M 
H 2.3448407 -2.5819166 -0.0963935 M 
H 0.9613122 -1.5323396 0.3120246 M 
H 0.5816886 -3.1794645 -0.3021517 M 
H -4.4958852 -3.7830821 0.5317915 M 
H -6.4026306 -5.6068874 0.9128359 M 
H -4.9606929 -5.9805031 1.7902947 M 
H -6.6268107 -4.3647153 2.9884715 M 
H -5.0067409 -3.8079715 2.9576471 M 
H -6.1477560 -3.0896579 1.8001189 M 
H -0.3625655 -1.2701941 -3.9287939 M 
H -1.9322733 -0.8725353 -2.2988486 M 
H -1.3957460 0.5668700 -3.4040726 M 
H -3.9813542 -0.9519365 -3.2709824 M 
H -3.7920294 0.7544766 -3.3548828 M 
H -3.6154957 -0.1658601 -4.8469166 M 
H -2.3837192 -3.2240490 -1.9017377 M 
H -1.1630493 -1.9809334 -0.2592744 M 
H -2.8292713 -2.0861764 0.6732250 M 
H -0.8929215 -4.3945613 -0.2775214 M 
H -1.1936051 -3.8512356 1.4381815 M 
H -2.4740164 -4.6302739 0.5918570 M 
H -6.4797481 -4.5516123 -1.1918242 M 
H -7.4743851 -3.5359190 -3.6813596 M 
H -6.7940680 -2.5064905 -2.3185129 M 
H -4.6721378 -3.0997687 -3.6460020 M 
H -4.8106647 -4.3932306 -2.3431561 M 
H -5.2674036 -4.6905166 -4.0341028 M 
H 1.1204356 0.2260977 -3.9466456 M 
H 0.3477090 -0.6565245 -6.0858153 M 
H 1.6138672 0.5581905 -6.6337500 M 
H 2.5606480 -1.7182811 -6.4578561 M 
H 3.3388293 -0.5800997 -5.2901082 M 
H 2.0855645 -1.7634395 -4.6640553 M 
H 4.4666477 -4.6662231 1.5594965 M 
H 3.8850234 -4.6795461 3.6301648 M 
H 2.2494739 -4.3638098 2.9599848 M 
H 2.0169752 -6.3600158 4.3814013 M 
H 2.2508257 -6.9372898 2.6714609 M 
H 3.7020348 -6.9775402 3.7322707 M 
H 2.7101007 -6.8965643 -1.1092904 M 
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H 1.9579968 -4.9560592 0.2044401 M 
H 0.7308672 -4.8853893 -1.1581865 M 
H -0.1941835 -6.1039540 0.8872466 M 
H 0.1095702 -7.2656212 -0.5300816 M 
H 1.3120490 -7.1788809 0.8098836 M 
H 0.4815462 3.9882224 -1.7693359 M 
H -0.5517119 2.5543836 -3.4073309 M 
H -1.7491184 3.9521869 -3.5614321 M 
H -1.8203122 1.5306119 -1.7852493 M 
H -3.0624025 2.7403233 -2.0423813 M 
H -1.8561846 3.0542826 -0.8312775 M 
H -1.2001633 3.8325112 1.1352575 M 
H -2.1030834 5.5317016 2.9315844 M 
H -1.3149275 6.6076899 1.6558724 M 
H -0.1021398 4.4985412 3.4922214 M 
H 0.4889596 6.2047792 3.0923527 M 
H 0.6597671 4.8253228 1.8640014 M 
H -4.2010898 4.4261643 1.0908278 M 
H -5.9012669 3.7606236 3.2009506 M 
H -4.7332603 5.1709889 3.3664210 M 
H -3.9736882 2.9901908 4.3570759 M 
H -2.9216065 3.2469595 2.8925978 M 
H -4.4053692 2.1083382 2.8272690 M 
H 1.6308817 5.1065177 -3.2554487 M 
H 1.6966620 6.9081097 -2.2505052 M 
H 3.5230243 6.6944852 -2.2328219 M 
H 2.5428840 6.9364496 0.1132382 M 
H 3.4314314 5.4542285 -0.2392401 M 
H 1.6623853 5.3115261 -0.2576173 M 
H 4.2529174 -0.0432436 -2.8099908 M 
H 5.2188107 1.8989280 -4.4638894 M 
H 5.6107162 1.6398076 -2.7237466 M 
H 3.1378473 2.0511303 -2.0759355 M 
H 2.5829544 2.0002437 -3.7760278 M 
H 3.7198942 3.2964840 -3.0288359 M 
H 2.7855955 -0.0890666 -0.0798773 M 
H 4.0724084 0.5104457 1.7251262 M 
H 5.2710887 -0.7338757 1.1255992 M 
H 3.7610824 -1.2708706 3.0840677 M 
H 3.5188626 -2.5663671 1.7305272 M 
H 2.3600830 -1.3389472 1.8808230 M 
H -1.3060974 6.0780457 -0.7586003 M 
H -2.8182337 7.8745471 -2.2584307 M 
H -1.9618587 6.3424726 -2.9575121 M 
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H -4.3510831 5.7437328 -2.5656620 M 
H -3.5455277 5.1163580 -1.0859004 M 
H -4.4517840 6.6913681 -1.0552772 M 
H 6.9043613 -2.1009566 -1.2730305 M 
H 6.9726347 -0.0678893 -2.4421266 M 
H 5.4700696 -0.3214635 -1.4156257 M 
H 6.4562596 1.9087062 -1.0288219 M 
H 6.6752485 0.8972757 0.4633499 M 
H 8.0837443 1.2341080 -0.7181560 M 
H 5.0061194 -2.8156123 -3.5739118 M 
H 4.4840032 -4.8298553 -2.7642855 M 
H 6.2082797 -4.8522512 -2.1006828 M 
H 3.9510076 -4.3615288 -0.5331184 M 
H 5.4552887 -3.4598864 -0.3520848 M 
H 3.9631847 -2.8775415 -1.4243695 M 
 
 
 

Becke/6-31G* opt of dimethyl carbonate 

B3LYP opt of dimethyl carbonate 
B3LYP/6-31G* 
E(RB+HF-LYP) = -343.607745645 
 
C 0.97231   0.26601   1.37748 
O 0.57419  -0.71719   0.4638 
C -0.65251  -1.46741   0.66578 
O -0.87425  -2.04615   1.72102 
O -0.6383   -2.18554  -0.59609 
C -1.71907  -2.99076  -0.97499 
 H 1.91136   0.70849   1.04836 
 H 0.20737   1.03896   1.43525 
 H 1.10789  -0.18464   2.35955 
 H -1.51502  -3.43866  -1.94642 
 
 
 

Theoretical structures from Dynamic Control of Stereoselectivity in a �ucleophilic 

Substitution Reaction. 

 
dichloroSM2 

betabeta dichlorovinyl ketone opt 
B3LYP/6-31G* 
E(RB+HF-LYP) = -1150.41639172 
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Zero-point correction= 0.071876 (Hartree/Particle) 
Thermal correction to Energy= 0.079499 
Thermal correction to Enthalpy= 0.080443 
Thermal correction to Gibbs Free Energy= 0.038345 
Sum of electronic and ZPE= -1150.344516 
Sum of electronic and thermal Energies= -1150.336893 
Sum of electronic and thermal Enthalpies= -1150.335948 
Sum of electronic and thermal Free Energies= -1150.378046 
 
       E      CV        S 
    KCal/Mol Cal/Mol-K Cal/Mol-K 
Total 49.886 25.663 88.602 
 
 Cl,0,1.5571925207,-2.6060256961,-1.9100975868 
 C,0,2.8763090896,-3.2930648213,-2.8228149833 
 Cl,0,3.875719019,-4.3534516879,-1.8770988641 
 C,0,3.0379638685,-2.9865504897,-4.1187112107 
 C,0,4.0518880156,-3.4124660028,-5.1293496421 
 O,0,3.9292827932,-2.9497408755,-6.2537956273 
 C,0,5.1793950049,-4.3662354962,-4.7973241032 
 H,0,4.7941146832,-5.3305347216,-4.4488706819 
 H,0,5.7738762917,-4.5130541675,-5.7009332029 
 H,0,5.8146175283,-3.9671996334,-3.9991536717 
 H,0,2.3098111851,-2.301218408,-4.5424484259 
 
 
 
 
 
 

PCM TS of dichlorovinylketone with thiolate 

PCM high precision freq calc for dichlorovinylketone thiolate ts 
B3LYP/6-31+G** 
E(RB3LYP) = -1819.74108745 
 
Zero-point correction= 0.187985 (Hartree/Particle) 
Thermal correction to Energy= 0.204422 
Thermal correction to Enthalpy= 0.205366 
Thermal correction to Gibbs Free Energy= 0.140051 
Sum of electronic and ZPE= -1819.553102 
Sum of electronic and thermal Energies= -1819.536665 
Sum of electronic and thermal Enthalpies= -1819.535721 
Sum of electronic and thermal Free Energies= -1819.601036 
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       E      CV        S 
    KCal/Mol Cal/Mol-K Cal/Mol-K 
Total 128.277 57.588 137.467 
Zero-point correction= 0.187985 (Hartree/Particle) 
Thermal correction to Energy= 0.204422 
Thermal correction to Enthalpy= 0.205366 
Thermal correction to Gibbs Free Energy= 0.140051 
Sum of electronic and ZPE= -1819.553102 
Sum of electronic and thermal Energies= -1819.536665 
Sum of electronic and thermal Enthalpies= -1819.535721 
Sum of electronic and thermal Free Energies= -1819.601036 
 
       E      CV        S 
    KCal/Mol Cal/Mol-K Cal/Mol-K 
Total 128.277 57.588 137.467 
 
C                     4.00827  -0.32364  -3.84599 
 C                     2.68716  -0.48213  -3.42395 
 C                     2.25059   0.02278  -2.1802 
 C                     3.20488   0.69123  -1.38464 
 C                     4.52484   0.84574  -1.81353 
 C                     4.9567    0.33919  -3.04969 
 S                     0.57216  -0.17711  -1.64034 
 C                     6.39385   0.47797  -3.4964 
 Cl                    0.74225  -3.45465  -1.63076 
 C                     0.26492  -2.26079  -0.38464 
 Cl                    1.57082  -2.08512   0.82219 
 C                    -1.07156  -2.31441  -0.00522 
 H                     2.90131   1.09814  -0.42447 
 H                     5.23161   1.37268  -1.1758 
 H                     4.30717  -0.72045  -4.81409 
 H                     1.97636  -0.9959   -4.06472 
 H                     6.46646   0.58797  -4.58324 
 H                     6.87451   1.34496  -3.03268 
 H                     6.98179  -0.40719  -3.22068 
 C                    -1.76421  -1.64221   1.06262 
 H                    -1.72513  -2.84507  -0.69129 
 C                    -1.06199  -0.69008   2.01569 
 O                    -2.9946   -1.83721   1.21623 
 H                    -1.81821  -0.07337   2.50644 
 H                    -0.51905  -1.25146   2.78413 
 H                    -0.33762  -0.05265   1.50248 
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Rotational ts 6 via which 2 and 3 interconvert 

PCM opt of chlorovinylketone with thiolate attached 2.1A flipped x-coo 
B3LYP/6-31+G** 
E(RB3LYP) = -1819.74946672 
 
Zero-point correction= 0.187884 (Hartree/Particle) 
Thermal correction to Energy= 0.204112 
Thermal correction to Enthalpy= 0.205056 
Thermal correction to Gibbs Free Energy= 0.141699 
Sum of electronic and ZPE= -1819.561582 
Sum of electronic and thermal Energies= -1819.545355 
Sum of electronic and thermal Enthalpies= -1819.544411 
Sum of electronic and thermal Free Energies= -1819.607768 
 
       E      CV        S 
    KCal/Mol Cal/Mol-K Cal/Mol-K 
Total 128.082 57.735 133.346 
 
 C,0,-7.7909186305,0.4428617359,-3.7995773958 
 C,0,-6.4793989146,-0.0348728755,-3.9381578489 
 C,0,-6.2180443935,-1.3921710616,-3.7016296815 
 C,0,-7.2504554499,-2.2491273311,-3.3147836662 
 C,0,-8.5645403688,-1.7802674173,-3.1599945788 
 C,0,-8.8164576033,-0.4225026798,-3.414998766 
 S,0,-5.1759699674,1.0579784753,-4.5222721801 
 C,0,-4.3022704134,1.7725091033,-3.0734137176 
 Cl,0,-5.6749842947,2.7061423933,-1.9585561106 
 C,0,-3.3239729301,2.7546483863,-3.4777188737 
 C,0,-1.9471183153,2.6501903263,-3.7628548662 
 O,0,-1.2836768103,3.670724567,-4.139777832 
 C,0,-1.166759505,1.3401661887,-3.6694464586 
 Cl,0,-3.6985134436,0.4251188762,-1.9400446656 
 H,0,-0.3344885369,1.3955503985,-4.376428906 
 H,0,-0.7451506885,1.2193359612,-2.6647267392 
 H,0,-1.7661232227,0.4539291146,-3.8857627965 
 H,0,-3.753342722,3.7344195954,-3.6669843831 
 H,0,-5.2108137793,-1.7771811939,-3.8231173791 
 H,0,-7.0316493737,-3.2990990763,-3.1371572262 
 C,0,-9.6726642804,-2.7047468127,-2.7140925778 
 H,0,-9.8281958895,-0.037315829,-3.3152601001 
 H,0,-8.0069613216,1.4884285229,-3.9936287035 
 H,0,-9.7800746826,-2.68477078,-1.6222399409 
 H,0,-9.4697457701,-3.7399222049,-3.0036100969 
 H,0,-10.6355696924,-2.4088193827,-3.1411445088 
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Progdyn.conf for PCM trajectories 

 
#This is the configuration file for PROGDYN.  This file is read by progdynstarterHP and 
# the awk programs proggenHP, prog1stpoint, prog2ndpoint, and progdynb. 
#The programs won't read anything past the first blank line, 
#and this file must end with a blank line. 
#The program has a number of default values but they are unlikely to be what you want. 
#Do not delete lines - rather, comment out lines for unwanted options. 
#The values here are read repeatedly and most can be changed in the middle of running 
jobs 
#***The keywords are case sensitive.  The following keywords should always be 
defined:*** 
#***method, charge, multiplicity, memory, processors, title 
#*** method --The following word is copied exactly to the gaussian input file. 
method B3LYP/6-31+G** 
#*** method2 --The options here are restricted, unrestricted, and read. restricted is the 
default 
#If the method is U..., put unrestricted here and the .com files will have in them 
guess=mix. 
#If you put read here, the .com files will contain guess=tcheck, which sometimes makes 
things faster, sometimes not. 
#The use of read requires a specifically defined checkpoint file name using the keyword 
checkpoint. 
method2 restricted 
charge -1 
multiplicity 1 
processors 4 
#*** memory --The following "word" is copied exactly to the gaussian input file after 
%mem=. 
memory 7200mb 
#*** killcheck and checkpoint -- You can use a specifically defined checkpoint file 
name by putting 
#the name after the keyword checkpoint.  This is necessary if you use the read option 
with method2. 
#Defined checkpoint names are an unnecessary modest hastle and if you do not want to 
bother, use killcheck 1 
killcheck 1 
#checkpoint dyn20.chk 
#*** diagnostics -- 0 prints out nothing extra, 1 (default) prints out extra stuff to a 
#file "diagnostics", 2 adds more stuff, 3 adds velocities to a file "vellist" 
#4 adds the apparent temperature to vellist, but this is meaningless with quasiclassical 
calculations 
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diagnostics 0 
#*** title -- the title keyword must be followed by exactly four words 
title Dichlorovinylketone classical trajectories 298.15 
#*** initialdis -- 0 (default) turns off displacement of the normal modes, so that all 
trajectories start from the same place 
# and only the energies and signs of the motion in the modes are randomized 
# 1 gives a flat distribution of displacements where all of the possible values are equally 
likely 
# 2 (recommended) gives a QM-like gaussian distribution of displacements, so that 
displacements in the middle are more likely than 
# those at the end by 1/e 
initialdis 0 
#*** timestep -- this is the time between points in the trajectory.  Typical values would 
be 1E-15 or 0.5E-15 or 0.25E-15 
timestep 1E-15 
#*** scaling -- this lets you scale the gaussian frequencies by a constant 
scaling 1.0 
temperature 298.15 
#*** method3, method4, method5, and method6 -- These keywords let you add extra 
lines to the gaussian input file. 
#method3 and method4 add lines at the top of the input after the lines defining the 
method, and 
#this is useful to implement things like the iop for mPW1k 
#method5 and method6 add lines after the geometry, after a blank line of course 
#only a single term with no spaces can be added, one per method line.  Here are some 
examples to uncomment if needed 
#method3 IOp(3/76=0572004280) 
#method3 scrf=(pcm,solvent=ethanol) 
#add the line below with big structures to get it to put out the distance matrix and the 
input orientation 
#method3 iop(2/9=2000) 
method4 scrf=(pcm,solvent=ethanol) 
#method5 radii=bondi 
#method6 
#*** methodfile -- This keyword lets you add more complicated endings to gaussian 
input files 
#such as a gen basis set.  Put after the keyword the number of lines in a file you create 
called 
#methodfile that contains the test you want to add to the end of the gaussian input 
methodfile 0 
#*** numimag --This tells the program the number of imaginary frequencies in the 
starting structure. 
#if 0, treats as ground state and direction of all modes is random 
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#if 1, motion along the reaction coordinate will start out in the direction defined by 
searchdir 
#if 2, only lowest freq will go direction of searchdir and other imag mode will go in 
random direction 
numimag 0 
#*** searchdir -- This keyword says what direction to follow the mode associated with 
the imaginary frequency. 
#The choices are "negative" and "positive".  Positive moves in the direction defined in 
the gaussian frequency calculation 
#for the imaginary frequency, while negative moves in the opposite direction.  The 
correct choice can be made either 
#by a careful inspection of the normal modes and standard orientation geometry, or by 
trial and error. 
searchdir positive 
#*** classical --  for quassiclassical dynamics, the default, use 0.  for classical dynamics, 
use 1 
#if there are no normal modes and the velocities are to be generated from scratch, use 
classical 2 
classical 0 
#*** DRP, saddlepoint, and maxAtomMove --to run a DRP use 'DRP 1' in the line 
below, otherwise leave it at 0 or comment it out 
#the treatment of starting saddlepoints is not yet implemented so use saddlepoint no 
#if DRP shows oscillations then decrease maxAtomMove 
DRP 0 
saddlepoint no 
maxAtomMove 0.01 
#*** cannonball -- The program can "fire" a trajectory from a starting position toward a 
particular target, such as toward 
#a ts.  To use this, make a file cannontraj with numAtom lines and three numbers per 
line that defines the vector 
#for firing the trajectory, relative to the starting geometry's standard orientation.  The 
number following cannonball sets 
#the extra energy being put into the structure in kcal/mol 
#cannonball 10 
#*** keepevery --This tells the program how often to write the gaussian output file to 
file dyn, after the first two points. 
#Use 1 for most dynamics to start with, but use a higher number to save on disk space or 
molden loading time. 
keepevery 1 
#*** highlevel --For ONIOM jobs, the following line states the number of highlevel 
atoms, 
#which must come before the medium level atoms.  Use some high value such as 999 if 
not using ONIOM 
highlevel 999 
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#*** fixedatom1, fixedatom2, fixedatom3, and fixedatom4 - These fix atoms in space. 
#Fixing one atom serves no useful purpose and messes things up, while fixing two atoms 
#fixes one distance and fixing three has the effect of fixing three distances, not just two 
#in current form fixed atoms only are meant to work with no displacements, that is, 
initialdis=0 
#fixedatom1 2 
#fixedatom2 3 
#fixedatom3 19 
#*** boxon and boxsize - With boxon 1, a cubic box is set such that atoms that reach the 
edge 
#are reflected back toward the middle.  Useful for dynamics with solvent molecules.  
This is a crude 
#implementation that is ok for a few thousand femtoseconds but will not conserve 
energy long term. 
#Set the box size so as to fit the entire initial molecule but not have too much extra 
room. 
#The dimensions of the box are two times the boxsize, e.g. boxsize 7.5 leads to a box 
that is 15 x 15 x 15 angstroms 
#boxon 0 
#boxsize 7.5 
#*** displacements -- This keyword lets you set the initialdis of particular modes by 
using a series of lines of the format 
# displacements NumberOfMode InitialDisForThatMode, as in the example below. You 
should be able to do as many of these as you like 
# you might consider this for rotations where a straight-line displacement goes wrong at 
large displacements 
# The choices for InitialDisForThatMode are 0, 1, 2, and 10, where 10 does the same 
thing as 0 but is maintained for now because 
# a previous version of the program had a bug that made 0 not work. 
#displacements 1 10 
#*** etolerance --This sets the allowable difference between the desired energy in a 
trajectory and the actual 
#energy, known after point 1 from the potential energy + the kinetic energy in the initial 
velocities. 
#The unit is kcal/mol and 1 is a normal value for mid-sized organic systems.  For very 
large and floppy molecules, a larger value 
#may be needed, but the value must stay way below the average thermal energy in the 
molecule (not counting zpe). 
#If initialdis is not 0 and few trajectories are being rejected, decrease the value. 
etolerance 1 
#*** controlphase --It is sometimes useful to set the phase of particular modes in the 
initialization of trajectories. 
#The format is controlphase numberOfModeToControl positive or controlphase 
numberOfModeToControl negative. 
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#*** damping -- The damping keyword lets you add or subtract energy from the system 
at each point, by multiplying the velocities 
#by the damping factor.  A damping of 1 has no effect, and since you mostly want to 
change the energy slowly, normal values range 
#from 0.95 to 1.05.  The use of damping lets one do simulated annealing - you add 
energy until the structure is moving enough 
#to sample the kinds of possibilities you are interested in, then you take away the energy 
slowly. 
damping 1 
#*** reversetraj --This keyword sets the trajectories so that both directions from a 
transition state are explored. 
#reversetraj true 
 
 
#updated Aug 9, 2007 to include the possibility of classical dynamics by the keyword 
classical 
#updated Jan 2008 to include fixed atoms, ONIOM jobs, keepevery, and box size 
#update Feb 2008 to include methodfile parameter 
# updated Nov 2008 to allow for start without an initial freq calc using classical = 2 
# update Aug 2010 to include etolerance, damping controlphase and reversetraj 
 
 

Proganal for PCM trajectories 

 
BEGIN { 
getline < "isomernumber" 
isomer=$1 
} 
/ Dichlorovinylketone/ { 
   printf("%s %s %s %s %s %s   ",$1,$2,$3,$4,$6,$8) 
   runpoint=$6 
   } 
/Standard orientation/,/Rotational constants/ { 
   if (($1>.5) && ($1<27)) { 
      A[$1]=$4;B[$1]=$5;C[$1]=$6 
      } 
   } 
 
END { 
   C10Cl11=Distance(10,11) 
   Cl9C10=Distance(9,10) 
   S7C10=Distance(7,10) 
      printf("%s %.3f %s %.3f %s %.3f 
","C10Cl11",C10Cl11,"Cl9C10",Cl9C10,"S7C10",S7C10) 
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      if (runpoint>500) { 
         print "Too many points.  XXXXMT" 
         movedyn(isomer) 
         movetraj(isomer) 
         } 
      if (Cl9C10>2.1) { 
         print "Inversion Product XXXX" 
         movedyn(isomer) 
         movetraj(isomer) 
         } 
      if (C10Cl11>2.1) { 
         print "Retention Product XXXX" 
         movedyn(isomer) 
         movetraj(isomer) 
         } 
      if (S7C10>3.5) { 
         print "Floated off XXXX" 
         movedyn(isomer) 
         } 
 
system("date '+%b:%d:%Y %T'") 
   system("tail -1 Echeck | grep XXXX") 
   } 
 
function Distance(Atom1,Atom2) { 
  return sqrt((A[Atom1]-A[Atom2])^2 + (B[Atom1]-B[Atom2])^2 + (C[Atom1]-
C[Atom2])^2) 
} 
 
function Angle(Atom1,Atom2,Atom3) { 
   value=((-
Distance(Atom1,Atom3)^2+Distance(Atom1,Atom2)^2+Distance(Atom2,Atom3)^2)/(2
*Distance(Atom1,Atom2)*Distance(Atom2,Atom3))) 
   return acos(value) 
} 
 
function asin(x) { return (180/3.141592)*atan2(x, sqrt(1-x*x)) } 
 
function acos(x) { return (180/3.141592)*atan2(sqrt(1-x*x), x) } 
 
function atan(x) { return (180/3.141592)*atan2(x,1) } 
 
function Dihedral(Atom1,Atom2,Atom3,Atom4) { 
   B1x=A[Atom2]-A[Atom1] 
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   B1y=B[Atom2]-B[Atom1] 
   B1z=C[Atom2]-C[Atom1] 
   B2x=A[Atom3]-A[Atom2] 
   B2y=B[Atom3]-B[Atom2] 
   B2z=C[Atom3]-C[Atom2] 
   B3x=A[Atom4]-A[Atom3] 
   B3y=B[Atom4]-B[Atom3] 
   B3z=C[Atom4]-C[Atom3] 
   modB2=sqrt((B2x^2)+(B2y^2)+(B2z^2)) 
# yAx is x-coord. etc of modulus of B2 times B1 
   yAx=modB2*(B1x) 
   yAy=modB2*(B1y) 
   yAz=modB2*(B1z) 
# CP2 is the crossproduct of B2 and B3 
   CP2x=(B2y*B3z)-(B2z*B3y) 
   CP2y=(B2z*B3x)-(B2x*B3z) 
   CP2z=(B2x*B3y)-(B2y*B3x) 
   termY=((yAx*CP2x)+(yAy*CP2y)+(yAz*CP2z)) 
# CP is the crossproduct of B1 and B2 
   CPx=(B1y*B2z)-(B1z*B2y) 
   CPy=(B1z*B2x)-(B1x*B2z) 
   CPz=(B1x*B2y)-(B1y*B2x) 
   termX=((CPx*CP2x)+(CPy*CP2y)+(CPz*CP2z)) 
  dihed4=(180/3.141592)*atan2(termY,termX) 
  return dihed4 
} 
 
function killdyn(isomer) { 
   system("rm -f dyn") 
} 
 
 

Mechanism of the Fujiwara Hydroarylation 
 

TS 1 Becke/6-31G on C H O F, Lanl2dz on Pd 

ts1 
 TS for EAS of Ringclosure 
B3LYP/gen 
E(RB+HF-LYP) = -1945.94420951 
 
Zero-point correction= 0.290055 (Hartree/Particle) 
Thermal correction to Energy= 0.321600 
Thermal correction to Enthalpy= 0.322544 
Thermal correction to Gibbs Free Energy= 0.218016 
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Sum of electronic and ZPE= -1945.654155 
Sum of electronic and thermal Energies= -1945.622610 
Sum of electronic and thermal Enthalpies= -1945.621666 
Sum of electronic and thermal Free Energies= -1945.726193 
 
       E      CV        S 
    KCal/Mol Cal/Mol-K Cal/Mol-K 
Total 201.807 111.516 219.996 
 
 C,0,0.0728893158,-0.2783031639,1.6318503042 
 C,0,-0.5705346032,-0.0580124136,2.8680783866 
 C,0,0.1932090128,0.2784958289,4.006354056 
 C,0,1.5822290626,0.3847537495,3.901397317 
 C,0,2.216235426,0.1692349035,2.6716676445 
 C,0,1.4602915388,-0.1668712017,1.5392460062 
 C,0,-2.0136318348,-0.2022738723,2.9931742107 
 Pd,0,-2.0983607484,-2.6965540421,4.3538836525 
 O,0,-3.6885429412,-5.2640224912,3.7471975548 
 C,0,-3.2727417637,-4.7275598651,2.7124050827 
 C,0,-3.5544845839,-5.3218174184,1.3267157412 
 F,0,-2.3749608852,-5.6611560759,0.6734300634 
 C,0,-2.8749924021,-1.0434406981,3.517989044 
 C,0,-4.337069361,-0.9153684209,3.5247413246 
 O,0,-5.190160739,-1.7622180965,3.6660786795 
 O,0,-4.8044223246,0.472710252,3.3882055086 
 C,0,-3.923791871,1.4698540706,3.0747951189 
 C,0,-2.9615963767,1.2334348567,2.0383779333 
 C,0,-2.0836977826,2.3207442299,1.6917564442 
 C,0,-2.1174472104,3.4920228126,2.4126464034 
 C,0,-3.0507844037,3.6543979987,3.4699657905 
 C,0,-3.9607912389,2.6586272899,3.8299909574 
 C,0,-4.9468734994,2.8194588252,4.9573483506 
 O,0,-2.5521903339,-3.6214437499,2.6100498397 
 F,0,-4.3307048843,-6.4571219156,1.4041863559 
 F,0,-4.2230041761,-4.4091664317,0.5150760671 
 H,0,-1.3887957078,2.1920309731,0.8707131198 
 H,0,-1.446023091,4.3071821416,2.168902745 
 H,0,-3.0566103538,4.5866703556,4.0261749292 
 H,0,-0.2998075481,0.405940836,4.9627583493 
 H,0,2.1676875022,0.6249033995,4.7821602696 
 H,0,3.2954100496,0.2509820281,2.5965843821 
 H,0,1.9534318595,-0.3553463348,0.5918136191 
 H,0,-0.5116150978,-0.5668799344,0.76421172 
 H,0,-5.9753186285,2.6826389584,4.6069378984 
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 H,0,-4.7781994341,2.0687508679,5.7379547238 
 H,0,-4.8624258532,3.8107621725,5.4095476609 
 H,0,-3.2507134401,0.5579653419,1.2348093676 
 O,0,-0.8726928328,-3.9345132351,6.0191063655 
 O,0,-1.4354315156,-1.7593629633,6.1170612534 
 C,0,-0.8639604791,-2.8213202467,6.6216444814 
 C,0,-0.1642733789,-2.6354344725,7.9577397243 
 F,0,0.885911717,-1.7306376486,7.8241798345 
 F,0,-1.0335222972,-2.1211605616,8.9067297159 
 F,0,0.3513371378,-3.815079638,8.4402770022 
 
 

TS 2 Becke/6-31G* on C H O F, Lanl2dz on Pd 

ts16-31G* 
TS for EAS of Ringclosure 
B3LYP/gen 
E(RB+HF-LYP) = -1946.41332971 
 
Zero-point correction= 0.290672 (Hartree/Particle) 
Thermal correction to Energy= 0.321227 
Thermal correction to Enthalpy= 0.322172 
Thermal correction to Gibbs Free Energy= 0.220377 
Sum of electronic and ZPE= -1946.122658 
Sum of electronic and thermal Energies= -1946.092102 
Sum of electronic and thermal Enthalpies= -1946.091158 
Sum of electronic and thermal Free Energies= -1946.192953 
 
       E      CV        S 
    KCal/Mol Cal/Mol-K Cal/Mol-K 
Total 201.573 109.246 214.245 
 
 C,0,0.1134358477,-0.3587725425,1.66486693 
 C,0,-0.5568120576,-0.0747088219,2.8681206731 
 C,0,0.1803868366,0.2753862422,4.0138860965 
 C,0,1.5718298889,0.3303550278,3.9508967662 
 C,0,2.2337463543,0.0488164552,2.7535788274 
 C,0,1.5031871455,-0.3002278108,1.6128954083 
 C,0,-2.0089448885,-0.1624885912,2.9530537889 
 Pd,0,-2.2359904791,-2.6086977113,4.3868461569 
 O,0,-3.8966627186,-5.0142474983,3.7764354219 
 C,0,-3.3390026701,-4.6071530693,2.7743964261 
 C,0,-3.5176262634,-5.3291061375,1.4139185154 
 F,0,-2.3290096804,-5.7365800068,0.9222119904 
 C,0,-2.9076486552,-0.9543923079,3.479291052 



 107 

 C,0,-4.3674506631,-0.7267395833,3.4316322182 
 O,0,-5.2555040619,-1.5136202001,3.5292622652 
 O,0,-4.7254187546,0.6577413464,3.3019780463 
 C,0,-3.786829767,1.5641115793,2.9838604172 
 C,0,-2.8648407217,1.260847536,1.9322517697 
 C,0,-1.9332599112,2.2866613876,1.5501754235 
 C,0,-1.8657249585,3.4542060135,2.2657290547 
 C,0,-2.7517383656,3.6766279389,3.3496919618 
 C,0,-3.715798613,2.7524053621,3.7377698977 
 C,0,-4.6554928661,2.9798671503,4.8927731969 
 O,0,-2.5528810352,-3.5772468135,2.6447331878 
 F,0,-4.308680539,-6.4016163158,1.5293240737 
 F,0,-4.0724261122,-4.4970421398,0.5035390466 
 H,0,-1.2738198281,2.109465342,0.7074703694 
 H,0,-1.1494826157,4.2247443223,1.998928669 
 H,0,-2.6751152455,4.6080129286,3.9052484487 
 H,0,-0.3393313829,0.4612857719,4.9478899019 
 H,0,2.1385889487,0.5854486982,4.8415064277 
 H,0,3.3183221561,0.0910754954,2.7101374346 
 H,0,2.0181132036,-0.5388398322,0.6869482945 
 H,0,-0.4558217138,-0.6543599403,0.7881512282 
 H,0,-5.7008583048,2.9374778554,4.568617016 
 H,0,-4.5294268771,2.2060639129,5.658604956 
 H,0,-4.4745590072,3.9545141856,5.3536153023 
 H,0,-3.2067484516,0.5862213114,1.150333507 
 O,0,-1.2683379142,-3.9225696882,6.00945995 
 O,0,-1.6871917683,-1.7562551542,6.22373272 
 C,0,-1.2478996339,-2.8698837587,6.6786335052 
 C,0,-0.6651844688,-2.8493747142,8.102551389 
 F,0,0.4395182137,-2.0739148712,8.1302412191 
 F,0,-1.5560272892,-2.3320779456,8.9668727471 
 F,0,-0.331121312,-4.0749234085,8.513853302 
 
 

TS 3 Onsager calc. solvent=ethanol a0=5.63 

Onsager ts calculation 
B3LYP/gen 
E(RB+HF-LYP) = -1946.43659614 
 
Zero-point correction= 0.290830 (Hartree/Particle) 
Thermal correction to Energy= 0.322287 
Thermal correction to Enthalpy= 0.323231 
Thermal correction to Gibbs Free Energy= 0.218656 
Sum of electronic and ZPE= -1946.145766 
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Sum of electronic and thermal Energies= -1946.114309 
Sum of electronic and thermal Enthalpies= -1946.113365 
Sum of electronic and thermal Free Energies= -1946.217940 
 
       E      CV        S 
    KCal/Mol Cal/Mol-K Cal/Mol-K 
Total 202.238 111.200 220.097 
 
 C,0,1.7557254999,-0.5761779355,2.90924804 
 C,0,1.837564048,0.0770133023,1.6630013863 
 C,0,2.2601522383,1.4201520973,1.6026355007 
 C,0,2.590490279,2.095754605,2.7758654365 
 C,0,2.5123996272,1.4414975348,4.0075992454 
 C,0,2.0864676231,0.1085261241,4.0729676814 
 C,0,1.5322685262,-0.6158145109,0.4321241495 
 Pd,0,-1.1627551113,0.1868267631,-0.1810918311 
 O,0,-3.662032319,-1.2492332657,-1.2056909946 
 C,0,-3.0345821011,-1.9184659944,-0.3987074867 
 C,0,-3.6150573206,-3.2887310702,0.0473433814 
 F,0,-4.2871055425,-3.1516055805,1.2177592721 
 C,0,0.6054621017,-0.7104189313,-0.4880696896 
 C,0,0.7615228092,-1.44858771,-1.7673586209 
 O,0,-0.1048536626,-1.8587005225,-2.4850554059 
 O,0,2.0960595908,-1.5996135297,-2.184447031 
 C,0,3.1083186137,-1.3554063074,-1.3132299996 
 C,0,3.0270186744,-1.9139364446,-0.0029330042 
 C,0,4.1539755738,-1.7569474436,0.8663015288 
 C,0,5.2223370784,-0.9928296409,0.4664155196 
 C,0,5.2284611247,-0.3981034291,-0.8203570779 
 C,0,4.1851900912,-0.5545043809,-1.7320687959 
 C,0,4.2008938786,0.0676350235,-3.1041883037 
 O,0,-1.9337915978,-1.6545699162,0.2226139346 
 F,0,-4.4958220102,-3.7648232454,-0.8580176426 
 F,0,-2.6726028912,-4.2285974301,0.2280532978 
 H,0,4.1469007597,-2.240744233,1.8370467255 
 H,0,6.0821254164,-0.8598584611,1.1151617683 
 H,0,6.0880562529,0.1995425493,-1.1126898311 
 H,0,2.3151651382,1.9204489617,0.6416497148 
 H,0,2.9210455565,3.1287519655,2.7271226823 
 H,0,2.7903713018,1.9651438702,4.9174613475 
 H,0,2.0250964019,-0.3954857145,5.0327451659 
 H,0,1.4312767553,-1.611915953,2.9531342911 
 H,0,4.136510051,-0.6977003503,-3.8851961429 
 H,0,3.3474265843,0.7418564568,-3.2413376485 
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 H,0,5.11964926,0.6383436628,-3.258829877 
 H,0,2.3919459728,-2.7835807938,0.1417451812 
 O,0,-2.7184962548,1.8843211161,0.0680977189 
 O,0,-0.5835259643,2.1906565403,-0.4594934031 
 C,0,-1.7585132966,2.6281740203,-0.230642905 
 C,0,-2.0003918406,4.1402453848,-0.388760169 
 F,0,-0.8805295895,4.8491304857,-0.2163556813 
 F,0,-2.4743266512,4.3938585293,-1.630298642 
 F,0,-2.9201576757,4.5718008018,0.4932832137 
 
 
 
 
 

TS 4 CH Act. TS MPWPW91 

CHact-ts 
E(RmPW+HF-PW91) = -1419.21440653 
 
Zero-point correction= 0.259659 (Hartree/Particle) 
Thermal correction to Energy= 0.282406 
Thermal correction to Enthalpy= 0.283350 
Thermal correction to Gibbs Free Energy= 0.202832 
Sum of electronic and ZPE= -1418.954748 
Sum of electronic and thermal Energies= -1418.932000 
Sum of electronic and thermal Enthalpies= -1418.931056 
Sum of electronic and thermal Free Energies= -1419.011574 
 
       E      CV        S 
    KCal/Mol Cal/Mol-K Cal/Mol-K 
Total 177.213 83.093 169.465 
 
 C,0,0.5500941876,0.4217132554,0.0755768144 
 C,0,0.7216177488,0.1779628066,1.4299259354 
 C,0,1.8929307837,-0.4656570875,1.8235670951 
 C,0,2.8877636958,-0.8115826398,0.8893186204 
 C,0,2.6726009282,-0.5481060946,-0.4684378194 
 C,0,1.5054259331,0.0636566415,-0.8704660022 
 C,0,-0.3069633468,0.55662162,2.4473603737 
 O,0,1.9988471221,-0.7306868152,3.1477403746 
 C,0,3.1910213508,-0.9738270846,3.7999247925 
 C,0,4.3295027375,-0.9908147232,2.8921504957 
 C,0,4.4896956818,-0.3537839279,1.7655652221 
 O,0,3.1724616312,-1.13515711,4.9728029207 
 H,0,3.4208365579,-0.8446589818,-1.1880254543 
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 H,0,1.3267316374,0.2544953196,-1.917667804 
 H,0,-0.3622530265,0.9014226852,-0.2486557923 
 H,0,-1.1412917998,1.0700153694,1.9766070965 
 H,0,-0.6895576119,-0.3223678885,2.9635892105 
 H,0,0.1156023866,1.2104115053,3.2085040821 
 C,0,5.4177899126,0.5587385602,1.1307500651 
 C,0,5.0440963939,1.4620608834,0.1387909128 
 C,0,5.9825091653,2.3285569842,-0.3913031783 
 C,0,7.2951972795,2.2942665432,0.0528589363 
 C,0,7.6710704845,1.3984745542,1.0434319125 
 C,0,6.7389533236,0.5377071407,1.5883776528 
 H,0,4.0204015725,1.4998335014,-0.1965053943 
 H,0,5.6861920459,3.0344613355,-1.1523667246 
 H,0,8.0253666633,2.9679637178,-0.3702390658 
 H,0,8.6919691147,1.3705242656,1.3929048523 
 H,0,7.0159217838,-0.1662178807,2.357861609 
 Pd,0,4.0555844366,-2.356829007,1.3637391549 
 O,0,3.8784608063,-3.9759807185,-0.0763591312 
 O,0,5.0609541002,-4.3517719805,1.738722213 
 C,0,4.5987025611,-4.7057629473,0.6437845245 
 C,0,4.9222236538,-6.097662894,0.1036456926 
 F,0,3.8070435353,-6.7353415796,-0.2258534076 
 F,0,5.674757101,-5.9913341029,-0.9868391611 
 F,0,5.5747064685,-6.8283382254,0.9879843756 
 

O-tolyl-3-phenyl propiolate starting material Becke/6-31G* 

Arylprop 
 lowest energy conf of Aryl propynoate 
B3LYP/6-31G* 
E(RB+HF-LYP) = -767.326517942 
 
Zero-point correction= 0.233650 (Hartree/Particle) 
Thermal correction to Energy= 0.249367 
Thermal correction to Enthalpy= 0.250311 
Thermal correction to Gibbs Free Energy= 0.186839 
Sum of electronic and ZPE= -767.092868 
Sum of electronic and thermal Energies= -767.077151 
Sum of electronic and thermal Enthalpies= -767.076207 
Sum of electronic and thermal Free Energies= -767.139679 
 
       E      CV        S 
    KCal/Mol Cal/Mol-K Cal/Mol-K 
Total 156.480 58.980 133.589 
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 C,0,0.3832022285,-0.1001583836,-0.0700186283 
 C,0,0.7967875351,-0.6533159543,1.1395642033 
 C,0,2.1623650203,-0.7932413571,1.3882327786 
 C,0,3.0920696168,-0.3881324469,0.4309647422 
 C,0,2.6527530122,0.1569234117,-0.7761979593 
 C,0,1.2905029147,0.3151366923,-1.054546845 
 H,0,0.0630186283,-0.9601398127,1.8743923612 
 H,0,2.493263513,-1.2201034935,2.3307422786 
 H,0,4.156250186,-0.4966131357,0.6208943695 
 H,0,3.3776782425,0.4693322598,-1.5240592254 
 C,0,0.8076256735,0.9019571362,-2.357809513 
 O,0,-0.9711019301,-0.0071389974,-0.417325809 
 C,0,-1.8838185426,0.5183269203,0.4553900979 
 O,0,-1.6349002638,0.9404094289,1.5617072763 
 C,0,-3.1950710374,0.4978045739,-0.1392642907 
 C,0,-4.3274208302,0.5144964953,-0.5778981506 
 C,0,-5.6529862501,0.5271837978,-1.0992689654 
 C,0,-6.7158883509,1.0360202486,-0.3270722494 
 C,0,-8.0095132317,1.0453344493,-0.8404325656 
 C,0,-8.2601625573,0.5505232836,-2.1230559631 
 C,0,-7.2115359969,0.0441365516,-2.8955991758 
 C,0,-5.9144073948,0.0305083988,-2.3915285828 
 H,0,-6.5118454361,1.4181419108,0.6681515019 
 H,0,-8.8243774982,1.4389651713,-0.2395000017 
 H,0,-9.2714966724,0.5595105191,-2.5201114861 
 H,0,-7.4060236687,-0.3407922278,-3.8926517341 
 H,0,-5.0939176765,-0.36119119,-2.9844667483 
 H,0,0.2093436247,1.8060331918,-2.1940872605 
 H,0,1.653585793,1.1656707605,-2.9994175898 
 H,0,0.1696083491,0.1971367975,-2.9033548657 
 

O-tolyl-3-phenyl Propiolate Starting Material Becke/6-31G* (5D in jobfile) 

Arylprop2 
 lowest energy conf of Aryl propynoate 
B3LYP/6-31G* 
E(RB+HF-LYP) = -767.311245519 
 
Zero-point correction= 0.233779 (Hartree/Particle) 
Thermal correction to Energy= 0.249479 
Thermal correction to Enthalpy= 0.250423 
Thermal correction to Gibbs Free Energy= 0.187025 
Sum of electronic and ZPE= -767.077467 
Sum of electronic and thermal Energies= -767.061766 
Sum of electronic and thermal Enthalpies= -767.060822 
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Sum of electronic and thermal Free Energies= -767.124221 
 
       E      CV        S 
    KCal/Mol Cal/Mol-K Cal/Mol-K 
Total 156.551 58.932 133.433 
 
 C,0,0.384794033,-0.0901674203,-0.0680655129 
 C,0,0.8023007369,-0.6318129339,1.145927574 
 C,0,2.1690233455,-0.7709718074,1.390965575 
 C,0,3.0963897119,-0.3757230846,0.4269394374 
 C,0,2.6534991603,0.1583209839,-0.7842225397 
 C,0,1.290201773,0.3150043967,-1.0593768888 
 H,0,0.0714855121,-0.9308529488,1.8866125785 
 H,0,2.5024808707,-1.1892091572,2.3364342967 
 H,0,4.1610388611,-0.483431532,0.6146117472 
 H,0,3.3760723296,0.4631752388,-1.537428082 
 C,0,0.8036761955,0.8894743062,-2.3670533397 
 O,0,-0.9690418913,0.0038298621,-0.4143393023 
 C,0,-1.8860783664,0.515291609,0.4615038973 
 O,0,-1.642336277,0.9249129195,1.574042297 
 C,0,-3.1954475707,0.4976240382,-0.137513853 
 C,0,-4.328497327,0.5127591423,-0.5746585709 
 C,0,-5.6538372719,0.5236264192,-1.0966161638 
 C,0,-6.7203156826,1.0179593122,-0.319285814 
 C,0,-8.0140770425,1.0253117048,-0.8332449061 
 C,0,-8.2613858578,0.5428865439,-2.1215856992 
 C,0,-7.2092318982,0.0509395612,-2.8992757409 
 C,0,-5.9119468316,0.0393986168,-2.3946688925 
 H,0,-6.5189409541,1.3904128305,0.6801379018 
 H,0,-8.831453891,1.4076563818,-0.228460592 
 H,0,-9.2725823137,0.5502797663,-2.5189925616 
 H,0,-7.4010729509,-0.3242644382,-3.9005351528 
 H,0,-5.0889277383,-0.3410178442,-2.9914334052 
 H,0,0.2032506029,1.7934042869,-2.2101720632 
 H,0,1.648026317,1.1496397518,-3.0123748026 
 H,0,0.1665214157,0.1782684945,-2.9054994217 
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Distinguishing between isotopic perturbation of equilibria and isotope induced 

desymmetrization 

 
Displacement Method 

 The d6-bromonium cation structure is first optimized and then a high precision 

frequency calculation is done to ensure that the Cartesian coordinates of the modes are 

more accurate i.e. to five decimal places and not the usual two decimal places as in a 

regular frequency calculation. The lowest energy desymmetrizing mode is identified and 

then “steps” are made along this mode (5 steps in either direction of the standard 

orientation point. Frequency calculations are then performed for each of the new points 

that are obtained via stepping along the mode. The E+ZPE is determined for each point, 

converted to cm-1 and the energy of each point is expressed as a value relative to that of 

the standard orientation. A five-term polynomial is then solved to obtain values for each 

term and these terms are then input into a fortran program “NUCFUN” in order to 

generate the wavefunction. From the wavefunction, the time-averaged geometry of the 

bromonium cation can be determined. An NMR calculation using the GIAO (gauge 

including atomic orbitals) method is then performed and isotropic shifts and ultimately, 

the chemical shift of each quarternary carbon and the difference in chemical shift are 

determined. 

 
Bromonium Cation MPWPW91/6-31+G** OPT/FREQ CALC. 

brom-desymm 
 mpw1pw91 opt/freq calc of d6-bromonium ion 
mPW1PW91/6-31+G** 
E(RmPW+HF-PW91) = -2807.44363253 
 
Zero-point correction= 0.147522 (Hartree/Particle) 
Thermal correction to Energy= 0.157898 
Thermal correction to Enthalpy= 0.158842 
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Thermal correction to Gibbs Free Energy= 0.112316 
Sum of electronic and ZPE= -2807.296111 
Sum of electronic and thermal Energies= -2807.285734 
Sum of electronic and thermal Enthalpies= -2807.284790 
Sum of electronic and thermal Free Energies= -2807.331317 
 
       E      CV        S 
    KCal/Mol Cal/Mol-K Cal/Mol-K 
Total 99.083 37.857 97.924 
 
 C,0,-0.0722812533,0.0357154686,0.0488256313 
 C,0,0.3496513817,0.4037679942,1.4201951925 
 C,0,1.2705230699,-0.4838758456,2.2014249566 
 Br,0,-1.6060200852,-0.388134505,1.4340366776 
 C,0,0.3296744787,1.8337628835,1.8685125333 
 C,0,0.4129820521,-1.2322775257,-0.5862770963 
 C,0,-0.52720624,1.0857018857,-0.9191725904 
 H,0,-1.0322284067,1.932243531,-0.460995087 
 H,0,0.3659756751,1.456870899,-1.4369736714 
 H,0,-1.1837877732,0.6469590137,-1.6707727111 
 H,0,-0.2888196204,-1.5633106442,-1.3520455863 
 H,0,1.3620511744,-1.0010954625,-1.0857614481 
 H,0,0.5844731106,-2.0483733261,0.1109640938 
 H,0,0.236511299,1.8879640131,2.9533698537 
 H,0,1.2989049175,2.2709598368,1.5980868113 
 H,0,-0.4541921298,2.4364156901,1.4169143137 
 H,0,1.1323561825,-0.3231813661,3.2708386829 
 H,0,1.1629177236,-1.5442236983,1.9877506777 
 H,0,2.2963094437,-0.1848398419,1.9524397661 
 
 
 

Standard Orientation Geometry 
C -0.70366 0.74154 0.00018 

C -0.70589 -0.73972 0.00027 

C -0.97000 -1.50427 1.26199 

Br 1.27078 -0.00169 -0.00042 

C -0.97093 -1.50408 -1.26139 

C -0.96552 1.50683 1.26209 

C -0.96714 1.50674 -1.26136 

H -0.62032 1.01549 -2.16690 

H -2.05335 1.64112 -1.33715 

H -0.51710 2.49794 -1.20245 

H -0.51374 2.49726 1.20334 

H -2.05148 1.64312 1.33813 
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H -0.61933 1.01478 2.16740 

H -0.52248 -2.49605 -1.20303 

H -2.05738 -1.63679 -1.33685 

H -0.62366 -1.01302 -2.16685 

H -0.52007 -2.49560 1.20373 

H -0.62342 -1.01280 2.16748 

H -2.05624 -1.63861 1.33735 

 
 

Lowest energy desymmetrizing mode (5
th

 mode) 
X Y Z 

0.10933 -0.06743 -0.00013 

-0.12085 -0.0733 0.00009 

-0.09699 -0.09504 -0.02132 

-0.01323 0.07775 0.0004 

-0.09753 -0.09346 0.02065 

0.15482 -0.0318 0.00375 

0.1513 -0.03413 -0.00482 

0.09678 -0.07022 -0.00689 

0.17413 0.11934 -0.00175 

0.30097 -0.10133 -0.0079 

0.31928 -0.10579 0.01016 

0.17958 0.13824 -0.00584 

0.08768 -0.07368 0.0074 

0.09305 -0.01312 -0.05209 

-0.08359 -0.31827 0.1797 

-0.33636 -0.00715 -0.02155 

0.09421 -0.01402 0.05 

-0.33594 -0.01005 0.02145 

-0.08255 -0.32084 -0.18034 

 
 

Displacements Method using M06/6-31+G** 

m06-freq-0.0025-nmrcalc 
 M06 freq-nmr calc of d6-bromonium Factor=-0.0025 
M06/6-31+G** 
E(RM06) = -2806.98253172 
 
Zero-point correction= 0.145344 (Hartree/Particle) 
Thermal correction to Energy= 0.155909 
Thermal correction to Enthalpy= 0.156853 
Thermal correction to Gibbs Free Energy= 0.109785 
Sum of electronic and ZPE= -2806.837188 
Sum of electronic and thermal Energies= -2806.826623 
Sum of electronic and thermal Enthalpies= -2806.825679 
Sum of electronic and thermal Free Energies= -2806.872747 
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       E      CV        S 
    KCal/Mol Cal/Mol-K Cal/Mol-K 
Total 97.834 38.376 99.063 
 
6 -0.754042 -0.693531 0.000481 
6 -0.662337 0.777275 0.000401 
6 -0.873711 1.557145 -1.257199 
35 1.267340 -0.074831 -0.000579 
6 -0.871625 1.557538 1.258081 
6 -1.057221 -1.443082 -1.256419 
6 -1.055883 -1.443787 1.257221 
1 -0.678987 -0.978644 2.168321  
1 -2.149785 -1.520799 1.338021 
1 -0.661419 -2.461460 1.193681 
1 -0.665088 -2.461641 -1.192939 
1 -2.151293 -1.517425 -1.337639 
1 -0.679007 -0.978644 -2.167339 
1 -0.349790 2.516495 1.199881 
1 -1.946810 1.773886 1.335381 
1 -0.560412 1.044780 2.168561 
1 -0.355517 2.518020 -1.198299 
1 -0.560165 1.045893 -2.167709 
1 -1.949718 1.769283 -1.335039 
 
 

�UCFU�  

 

      PROGRAM NUCFUN 
 
      IMPLICIT REAL*8 (A-H, O-Z) 
 
      PARAMETER (MAXPT = 2000, MAXPT2 = 2*MAXPT) 
      PARAMETER (PI=3.1415927,H=6.62608D-34,C=2.99792458E8) 
      PARAMETER (AMU=1.66054E-27) 
 
      DIMENSION WORK(MAXPT2), PHI(MAXPT) 
      EXTERNAL VFUNC 
      COMMON /VFUNCD/ XK, REQUIL, ALPHA, X5, X4, X3, X2, X1 
 
 
      NDP = 0 
      DPN = NDP 
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C ** RM IS IN ATOMIC MASS UNITS 
C ** W  IS IN CM-1 
C ** XK=DSUBE IS IN CM-1 
 
      RM = 2.1248 
C ** removed because I don't think we need them 
C     W=214.502 
C     XK=12547. 
 
C ** Here are the constants we need for our function 
      X5=-226.1655 
      X4=227484.27 
      X3=-416.3365 
      X2=24775.746 
      X1=26.109461 
 
C ** ANHARMONICITY CONSTANT IN CM-1 
C ** ALPHA IS IN ANGSTROMS-1 
 
C     WX=(W**2)/(4*XK) 
C     CONST= 2*(PI**2)*AMU*C/(100*H) 
C     ALPHA=(W/1.0D8)*SQRT(CONST*RM/XK) 
 
C ** REDUCED MASS DIVIDED BY HBAR**2 
C ** EQUILIBRIUM DISTANCE IN ANGSTROMS 
 
      RM=(RM*AMU*4.0D0*(PI**2)*C/H)*(1.0D-18) 
C     REQUIL = 0.0 
 
      RSTART = -0.30 
      REND =   0.30 
      NPTS = 2001 
      TOLER = 1.0D-8 
      MAXPASS = 50 
 
C     EIN = W*(DPN+0.5) - WX*((DPN+0.5)**2) 
 
C     EIN = EIN*1.05 
 
      EIN = 200. 
 
      CALL NUMROV(EIN, RSTART, REND, NPTS, RM, VFUNC, TOLER, 
MAXPASS, 
     $            PHI, EOUT, IPASS, IERR, WORK) 
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      WRITE (6, '(5X, ''EIN = '', D15.8, ''  EOUT ='', D15.8,'// 
     $    '''  IPASS ='', I5, ''  IERR ='', I5)') EIN, EOUT, IPASS, IERR 
      IF (NPTS.NE.0) THEN 
           WRITE (6, '(/, ''The potential'')') 
           DO 50 I=1,NPTS,10 
              R=RSTART+(I-1)*(REND-RSTART)/(NPTS-1) 
              VZ = X5*R**5 + X4*R**4 + X3*R**3 + X2*R**2 +X1*R 
C             VZ = XK*( 1 - EXP(-ALPHA*(R-REQUIL))  )**2 
              WRITE (6, '(1X, 2F15.4)') R,VZ 
   50      CONTINUE 
           WRITE (6, '(/, ''The wave function'')') 
           DO 60 I=1,NPTS,10 
              R=RSTART+(I-1)*(REND-RSTART)/(NPTS-1) 
              VZ = X5*R**5 + X4*R**4 + X3*R**3 + X2*R**2 +X1*R 
C             VZ = XK*( 1 - EXP(-ALPHA*(R-REQUIL))  )**2 
              WRITE (6, '(1X,2F15.4)') R, PHI(I) 

60 CONTINUE 
      END IF 
 
      STOP 
 
      END 
      REAL*8 FUNCTION VFUNC(R) 
 
      IMPLICIT REAL*8 (A-H, O-Z) 
 
C     COMMON /VFUNCD/ XK, REQUIL, ALPHA 
      COMMON /VFUNCD/ XK, REQUIL, ALPHA, X5, X4, X3, X2, X1 
 
      VFUNC = X5*R**5 + X4*R**4 + X3*R**3 + X2*R**2 +X1*R 
C     VFUNC = XK*( 1 - EXP(-ALPHA*(R-REQUIL))  )**2 
 
      RETURN 
 
      END 
      SUBROUTINE NUMROV(EIN, RSTART, REND, NPTS, RM, VFUNC, 
     $                  TOLER, MAXPASS, PHI, EOUT, IPASS, IERR, WORK) 
C ** 
C ** EIN     - (INPUT) INITIAL GUESS OF ENERGY LEVEL 
C ** RSTART  - (INPUT) STARTING R 
C ** REND    - (INPUT) ENDING R 
C ** NPTS    - (INPUT) NUMBER OF POINTS TO USE IN GRID (MUST BE 
ODD) 
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C ** RM      - (INPUT) REDUCED MASS DIVIDED BY H BAR SQUARED 
C ** VFUNC   - (INPUT) EXTERNAL FUNCTION WHICH GIVES POTENTIAL 
ENERGY 
C ** TOLER   - (INPUT) CONVERGENCE TOLERENCE ON ENERGY 
C ** MAXPASS - (INPUT) MAXIMUM NUMBER OF ITERATIONS 
C ** PHI     - (OUTPUT) WAVE FUNCTION - MINIMUM DIMENSION NPTS 
C ** EOUT    - (OUTPUT) ENERGY LEVEL 
C ** IPASS   - (OUTPUT) NUMBER OF ITERATIONS NEEDED 
C ** IERR    - (OUTPUT)  = 0 CONVERGENCE ACHIEVED 
C **                     = 1 TOO MANY ITERATIONS NEEDED 
C **                     = 2 NPTS NOT ODD 
C **                     = 3 NPTS .LT. 3 
C **                     = 4 REND .LE. RSTART 
C ** WORK    - (SCRATCH) WORK ARRAY - MINIMUM DIMENSION NPTS*2 
C ** 
 
      IMPLICIT REAL*8(A-H, O-Z) 
 
      EXTERNAL VFUNC 
      DIMENSION PHI(*), WORK(*) 
 
C ** 
C ** IN WORK WE WILL PUT THE F AND PHIR ARRAYS 
C ** 
 
      IOFF = 0 
      IOFPHIR = IOFF+NPTS 
 
      IERR = 0 
      IF (MOD(NPTS, 2) .NE. 1) THEN 
         IERR = 2 
         RETURN 
      ELSE IF (NPTS .LT. 3) THEN 
         IERR = 3 
         RETURN 
      ELSE IF (REND .LE. RSTART) THEN 
         IERR = 4 
         RETURN 
      END IF 
 
      H = (REND-RSTART)/DFLOAT(NPTS-1) 
 
      E = EIN 
      IPASS = 0 
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      H2 = H*H/12.0D0 
      H210 = H2*10.0D0 
 
    5 CONTINUE 
      IPASS = IPASS+1 
      IF (IPASS .GT. MAXPASS) THEN 
         IERR = 1 
         RETURN 
      END IF 
 
      DO 10 I = 1, NPTS 
         WORK(IOFF+I) = -2.0D0*RM*(E-VFUNC(RSTART+(I-1)*H)) 
   10 CONTINUE 
      MIN = 0 
      EMIN = 1.0D36 
      DO 11 I = 1, NPTS 
         IF (EMIN .GT. WORK(IOFF+I)) THEN 
            EMIN = WORK(IOFF+I) 
            MIN = I 
         END IF 
   11 CONTINUE 
 
      WORK(IOFPHIR+1) = 0.0D0 
      WORK(IOFPHIR+2) = (1.0D0-H2*WORK(IOFF+2)) 
     $                  /(2.0D0+H210*WORK(IOFF+1)) 
 
      DO 20 I = 3, MIN 
         WORK(IOFPHIR+I) = (1.0D0-H2*WORK(IOFF+I)) 
     $                     /((2.0D0+H210*WORK(IOFF+I-1))- 
     $                     (1.0D0-H2*WORK(IOFF+I-2))*WORK(IOFPHIR+I-1)) 
   20 CONTINUE 
 
      PHI(MIN) = 1.0D0 
      DO 30 I = MIN-1, 1, -1 
         PHI(I) = WORK(IOFPHIR+I+1)*PHI(I+1) 
   30 CONTINUE 
 
      WORK(IOFPHIR+NPTS) = 0.D0 
      WORK(IOFPHIR+NPTS-1) = (1.0D0-H2*WORK(IOFF+NPTS-1)) 
     $               /(2.0D0+H210*WORK(IOFF+NPTS)) 
      DO 50 I = NPTS-2, MIN, -1 
         WORK(IOFPHIR+I) = (1.0D0-H2*WORK(IOFF+I)) 
     $                     /((2.0D0+H210*WORK(IOFF+I+1))- 
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     $                     (1.0D0-H2*WORK(IOFF+I+2))*WORK(IOFPHIR+I+1)) 
   50 CONTINUE 
 
      DO 60 I = MIN+1, NPTS 
         PHI(I) = WORK(IOFPHIR+I-1)*PHI(I-1) 
   60 CONTINUE 
 
      XN = 0.0D0 
      DO 70 I = 1, NPTS 
         XN = XN+PHI(I)**2 
   70 CONTINUE 
 
      DE = ((2.0D0+H210*WORK(IOFF+MIN))*PHI(MIN) 
     $      -(1.0D0-H2*WORK(IOFF+MIN-1))*PHI(MIN-1)- 
     $      (1.0D0-H2*WORK(IOFF+MIN+1))*PHI(MIN+1))/(H*H*XN) 
      DE = DE/(2.0D0*RM) 
 
      PRINT *, 'E, DE, IPASS', E, DE, IPASS 
      E = E+DE 
 
      IF (DABS(DE/E) .GT. TOLER) GOTO 5 
 
      EOUT = E 
 
      CALL OVRLP(OV, PHI, PHI, RSTART, REND, NPTS) 
 
      FAC = 1.0D0/DSQRT(OV) 
 
      DO 40 I = 1, NPTS 
         PHI(I) = FAC*PHI(I) 
   40 CONTINUE 
 
      RETURN 
 
      END 
      SUBROUTINE OVRLP(VAL, F1, F2, RSTART, REND, N) 
      IMPLICIT REAL*8(A-H, O-Z) 
 
      DIMENSION F1(1), F2(1) 
 
      IF (MOD(N, 2) .NE. 1) STOP 'OVRLP- N NOT ODD' 
      IF (N .LT. 3) STOP 'N .LT. 3' 
 
      H = (REND-RSTART)/DFLOAT(N-1) 
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      H13 = H/3.0D0 
      H43 = 4.0D0*H13 
      H23 = 2.0D0*H13 
      V = 0.D0 
      DO 10 I = 1, N-2, 2 
         V = V+F1(I)*F2(I)*H23+F1(I+1)*F2(I+1)*H43 
   10 CONTINUE 
      VAL = V-F1(1)*F2(1)*H13+F1(N)*F2(N)*H13 
 
      RETURN 
 
      END 

 
Hydrogen Phthalate MPW1PW91/6-31+G** 

Hydro-phthal-minHP 
 b3lyp HP freq calc of hydrogen-phthalate 
B3LYP/6-31+G** 
Zero-point correction= 0.113560 (Hartree/Particle) 
Thermal correction to Energy= 0.122987 
Thermal correction to Enthalpy= 0.123932 
Thermal correction to Gibbs Free Energy= 0.077740 
Sum of electronic and ZPE= -608.802179 
Sum of electronic and thermal Energies= -608.792752 
Sum of electronic and thermal Enthalpies= -608.791808 
Sum of electronic and thermal Free Energies= -608.837999 
 
       E      CV        S 
    KCal/Mol Cal/Mol-K Cal/Mol-K 
Total 77.176 35.445 97.219 
 
6 0.000000 1.376790 -1.444841 
6 0.000000 0.712330 -0.202331 
6 0.000000 -0.712330 -0.202331 
6 0.000000 -1.376790 -1.444841 
6 0.000000 -0.698510 -2.658751 
6 0.000000 0.698510 -2.658751 
6 0.000000 1.683360 1.002629 
8 0.000000 2.897880 0.766829 
6 0.000000 -1.683360 1.002629 
8 0.000000 1.189000 2.197649 
1 0.000000 -2.460440 -1.410081 
1 0.000000 -1.255060 -3.593471 
1 0.000000 1.255060 -3.593471 
1 0.000000 2.460440 -1.410081 
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8 0.000000 -2.897880 0.766829 
8 0.000000 -1.189000 2.197649 
1 0.000000 0.000000 2.215019 
 
 
 

Dynamic Trajectory Method  

 

Dynamic trajectories were intiated from the geometry obtained from a high 

precision frequency calculation. Each trajectory was allowed to run for 500 fs. A total of 

250 trajectories each consisting of 500 points were obtained and the time-averaged 

geometry of the structure was determined using a program (progaverage3) specifically 

written to average the geometries of all the points within the trajectories. An NMR 

calculation was then performed on the time averaged geometry so determined.  

 
 

Progaverage3-mdfd 

 
BEGIN { 
count=0 
for(i=1;i<=19;i++) { 
   x[i]=0;y[i]=0;z[i]=0 
   } 
} 
 
/Input orientation/,/Distance matrix/ { 
if ($3==0) { 
   if ($2==6) at[$1]="C" 
   if ($2==1) at[$1]="H" 
   if ($2==35) at[$1]="Br" 
   x[$1]=$4;y[$1]=$5;z[$1]=$6 
   } 
if ($1=="Distance") { 
   count++ 
   cc2=cc2+Distance(1,2) 
   cc3=cc3+Distance(2,3) 
   brc4=brc4+Distance(1,4) 
   cc5=cc5+Distance(2,5) 
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   cc6=cc6+Distance(1,6) 
   cc7=cc7+Distance(1,7) 
   hc8=hc8+Distance(8,7) 
   hc9=hc9+Distance(9,7) 
   hc10=hc10+Distance(10,7) 
   hc11=hc11+Distance(11,6) 
   hc12=hc12+Distance(12,6) 
   hc13=hc13+Distance(13,6) 
   hc14=hc14+Distance(14,5) 
   hc15=hc15+Distance(15,5) 
   hc16=hc16+Distance(16,5) 
   hc17=hc17+Distance(17,3) 
   hc18=hc18+Distance(18,3) 
   hc19=hc19+Distance(19,3) 
   ccc3=ccc3+Angle(3,2,1) 
   brcc4=brcc4+Angle(4,1,2) 
   ccc5=ccc5+Angle(5,2,1) 
   ccc6=ccc6+Angle(6,1,2) 
   ccc7=ccc7+Angle(7,1,2) 
   hcc8=hcc8+Angle(8,7,1) 
   hcc9=hcc9+Angle(9,7,1) 
   hcc10=hcc10+Angle(10,7,1) 
   hcc11=hcc11+Angle(11,6,1) 
   hcc12=hcc12+Angle(12,6,1) 
   hcc13=hcc13+Angle(13,6,1) 
   hcc14=hcc14+Angle(14,5,2) 
   hcc15=hcc15+Angle(15,5,2) 
   hcc16=hcc16+Angle(16,5,2) 
   hcc17=hcc17+Angle(17,3,2) 
   hcc18=hcc18+Angle(18,3,2) 
   hcc19=hcc19+Angle(19,3,2) 
   dih4=dih4+Dihedral(4,1,2,3) 
   dih5=dih5+Dihedral(5,2,1,4) 
   dih6=dih6+Dihedral(6,1,2,3) 
   dih7=dih7+Dihedral(7,1,2,3) 
   if (Dihedral(7,1,2,3)>24) dih7=dih7-360. 
   dih8=dih8+Dihedral(8,7,1,2) 
   if (Dihedral(8,7,1,2)>148) dih8=dih8-360. 
   dih9=dih9+Dihedral(9,7,1,2) 
   if (Dihedral(9,7,1,2)<-92) dih9=dih9+360. 
   dih10=dih10+Dihedral(10,7,1,2) 
   if (Dihedral(10,7,1,2)>25) dih10=dih10-360. 
   dih11=dih11+Dihedral(11,6,1,2) 
   if (Dihedral(11,6,1,2)<-25) dih11=dih11+360. 
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   dih12=dih12+Dihedral(12,6,1,2) 
   if (Dihedral(12,6,1,2)>92) dih12=dih12-360. 
   dih13=dih13+Dihedral(13,6,1,2) 
   if (Dihedral(13,6,1,2)<-148) dih13=dih13+360. 
   dih14=dih14+Dihedral(14,5,2,1) 
   if (Dihedral(14,5,2,1)<-25) dih14=dih14+360. 
   dih15=dih15+Dihedral(15,5,2,1) 
   if (Dihedral(15,5,2,1)>92) dih15=dih15-360 
   dih16=dih16+Dihedral(16,5,2,1) 
   if (Dihedral(16,5,2,1)<-148) dih16=dih16+360. 
   dih17=dih17+Dihedral(17,3,2,1) 
   if (Dihedral(17,3,2,1)>25) dih17=dih17-360. 
   dih18=dih18+Dihedral(18,3,2,1) 
   if (Dihedral(18,3,2,1)>148) dih18=dih18-360. 
   dih19=dih19+Dihedral(19,3,2,1) 
   if (Dihedral(19,3,2,1)<-92) dih19=dih19+360. 
#other important distances 
   BrToC1=BrToC1+Distance(1,4) 
   BrToC2=BrToC2+Distance(2,4) 
   } 
} 
END { 
#print "count",count 
print "cc2",cc2/count 
print "cc3",cc3/count 
print "brc4",brc4/count 
print "cc5",cc5/count 
print "cc6",cc6/count 
print "cc7",cc7/count 
print "hc8",hc8/count 
print "hc9",hc9/count 
print "hc10",hc10/count 
print "hc11",hc11/count 
print "hc12",hc12/count 
print "hc13",hc13/count 
print "hc14",hc14/count 
print "hc15",hc15/count 
print "hc16",hc16/count 
print "hc17",hc17/count 
print "hc18",hc18/count 
print "hc19",hc19/count 
print "ccc3",ccc3/count 
print "brcc4",brcc4/count 
print "ccc5",ccc5/count 
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print "ccc6",ccc6/count 
print "ccc7",ccc7/count 
print "hcc8",hcc8/count 
print "hcc9",hcc9/count 
print "hcc10",hcc10/count 
print "hcc11",hcc11/count 
print "hcc12",hcc12/count 
print "hcc13",hcc13/count 
print "hcc14",hcc14/count 
print "hcc15",hcc15/count 
print "hcc16",hcc16/count 
print "hcc17",hcc17/count 
print "hcc18",hcc18/count 
print "hcc19",hcc19/count 
print "dih4",dih4/count 
print "dih5",dih5/count 
print "dih6",dih6/count 
print "dih7",dih7/count 
print "dih8",dih8/count 
print "dih9",dih9/count 
print "dih10",dih10/count 
print "dih11",dih11/count 
print "dih12",dih12/count 
print "dih13",dih13/count 
print "dih14",dih14/count 
print "dih15",dih15/count 
print "dih16",dih16/count 
print "dih17",dih17/count 
print "dih18",dih18/count 
print "dih19",dih19/count 
#test=Dihedral(4,1,2,3) 
#test=Dihedral(1,2,3,4) 
#test=Dihedral(1,2,5,19) 
#other important distances 
print 
print "BrToC1",BrToC1/count 
print "BrToC2",BrToC2/count 
print "Count",count 
} 
 
function Distance(Atom1,Atom2) { 
  return sqrt((x[Atom1]-x[Atom2])^2 + (y[Atom1]-y[Atom2])^2 + (z[Atom1]-
z[Atom2])^2) 
} 
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function Angle(Atom1,Atom2,Atom3) { 
   value=((-
Distance(Atom1,Atom3)^2+Distance(Atom1,Atom2)^2+Distance(Atom2,Atom3)^2)/(2
*Distance(Atom1,Atom2)*Distance(Atom2,Atom3))) 
   return acos(value) 
} 
 
function asin(x) { return (180/3.141592)*atan2(x, sqrt(1-x*x)) } 
 
function acos(x) { return (180/3.141592)*atan2(sqrt(1-x*x), x) } 
 
function atan(x) { return (180/3.141592)*atan2(x,1) } 
 
function Dihedral(Atom1,Atom2,Atom3,Atom4) { 
#  print at[Atom1],x[Atom1],y[Atom1],z[Atom1] 
#  print at[Atom2],x[Atom2],y[Atom2],z[Atom2] 
#  print at[Atom3],x[Atom3],y[Atom3],z[Atom3] 
#  print at[Atom4],x[Atom4],y[Atom4],z[Atom4] 
   B1x=x[Atom2]-x[Atom1] 
   B1y=y[Atom2]-y[Atom1] 
   B1z=z[Atom2]-z[Atom1] 
   B2x=x[Atom3]-x[Atom2] 
   B2y=y[Atom3]-y[Atom2] 
   B2z=z[Atom3]-z[Atom2] 
   B3x=x[Atom4]-x[Atom3] 
   B3y=y[Atom4]-y[Atom3] 
   B3z=z[Atom4]-z[Atom3] 
#  print "B1",B1x,B1y,B1z 
#  print "B2",B2x,B2y,B2z 
#  print "B3",B3x,B3y,B3z 
   modB2=sqrt((B2x^2)+(B2y^2)+(B2z^2)) 
#  print "modB2",modB2 
# yAx is x-coord. etc of modulus of B2 times B1 
   yAx=modB2*(B1x) 
   yAy=modB2*(B1y) 
   yAz=modB2*(B1z) 
# print "yA",yAx,yAy,yAz 
# CP2 is the crossproduct of B2 and B3 
   CP2x=(B2y*B3z)-(B2z*B3y) 
   CP2y=(B2z*B3x)-(B2x*B3z) 
   CP2z=(B2x*B3y)-(B2y*B3x) 
# print "CP2",CP2x,CP2y,CP2z 
   termY=((yAx*CP2x)+(yAy*CP2y)+(yAz*CP2z)) 
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# print "termY",termY 
# CP is the crossproduct of B1 and B2 
   CPx=(B1y*B2z)-(B1z*B2y) 
   CPy=(B1z*B2x)-(B1x*B2z) 
   CPz=(B1x*B2y)-(B1y*B2x) 
# print "CP",CPx,CPy,CPz 
   termX=((CPx*CP2x)+(CPy*CP2y)+(CPz*CP2z)) 
#print "termX",termX 
#  return atan2(termX,termY) 
  dihed4=(180/3.141592)*atan2(termY,termX) 
# print "dihed4",dihed4 
  return dihed4 
} 
 
 
 

PERTURBATIO� METHOD 

 For this method anharmonic frequency calculations were ran in Gaussian’09. 

Upon completion, the average vibrational geometry at 0 K was obtained and an NMR 

calculation was performed to determine the chemical shifts of the quarternary carbon in 

the d6-bromonium cation. 

 

Anharmonic Calculation MPW1PW91/6-31+G**  

mpw1pw91-anharmlog 
 mpw1pw91 freq calc of d6-bromonium 
mPW1PW91/6-31+G** 
E(RmPW+HF-PW91) = -2807.44363249 
 
Zero-point correction= 0.147523 (Hartree/Particle) 
Thermal correction to Energy= 0.157899 
Thermal correction to Enthalpy= 0.158843 
Thermal correction to Gibbs Free Energy= 0.112318  
Sum of electronic and ZPE= -2807.296109 
Sum of electronic and thermal Energies= -2807.285733 
Sum of electronic and thermal Enthalpies= -2807.284789 
Sum of electronic and thermal Free Energies= -2807.331314 
 
       E      CV        S 
    KCal/Mol Cal/Mol-K Cal/Mol-K 
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Total 99.083 37.856 97.920 
 
6 -0.703663 0.741537 0.000182 
6 -0.705891 -0.739725 0.000268 
6 -0.969988 -1.504278 1.261993 
35 1.270784 -0.001681 -0.000424 
6 -0.970926 -1.504081 -1.261393 
6 -0.965527 1.506826 1.262087 
6 -0.967149 1.506735 -1.261364 
1 -0.620326 1.015486 -2.166900 
1 -2.053363 1.641106 -1.337144 
1 -0.517109 2.497942 -1.202451 
1 -0.513750 2.497258 1.203341 
1 -2.051486 1.643110 1.338133 
1 -0.619328 1.014772 2.167402 
1 -0.522470 -2.496056 -1.203029 
1 -2.057375 -1.636802 -1.336847 
1 -0.623656 -1.013022 -2.166845 
1 -0.520060 -2.495605 1.203728 
1 -0.623408 -1.012807 2.167483 
1 -2.056232 -1.638620 1.337350 
 

Anharmonic Calc. B3LYP/6-31G*--Hydrogen Phthalate—atom10 is 
18

O 

hydro-phthal-anharm-atom10-O18 
 anharmonic-freq calc of hydro-phthal-atom10 is O18 
B3LYP/6-31G* 
E(RB+HF-LYP) = -608.856465241 
 
Zero-point correction= 0.113435 (Hartree/Particle) 
Thermal correction to Energy= 0.122949 
Thermal correction to Enthalpy= 0.123894 
Thermal correction to Gibbs Free Energy= 0.077781 
Sum of electronic and ZPE= -608.743031 
Sum of electronic and thermal Energies= -608.733516 
Sum of electronic and thermal Enthalpies= -608.732572 
Sum of electronic and thermal Free Energies= -608.778685 
 
       E      CV        S 
    KCal/Mol Cal/Mol-K Cal/Mol-K 
Total 77.152 35.722 97.052 
 
 C,0,0.,-1.4432536102,1.3752619006 
 C,0,0.,-0.2024393756,0.7112147683 
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 C,0,0.,-0.2024393756,-0.7112147683 
 C,0,0.,-1.4432536102,-1.3752619006 
 C,0,0.,-2.655866388,-0.6979216838 
 C,0,0.,-2.655866388,0.6979216838 
 C,0,0.,1.0011954358,1.6838257741 
 O,0,0.,0.7616625836,2.8952317201 
 C,0,0.,1.0011954358,-1.6838257741 
 O,0,0.,2.1964623586,1.1912785529 
 H,0,0.,-1.4030352726,-2.4589515822 
 H,0,0.,-3.5921277413,-1.2538890651 
 H,0,0.,-3.5921277413,1.2538890651 
 H,0,0.,-1.4030352726,2.4589515822 
 O,0,0.,0.7616625836,-2.8952317201 
 O,0,0.,2.1964623586,-1.1912785529 
 H,0,0.,2.2051040196,0. 
 
 

Anharmonic Calc. B3LYP/6-31G*--Hydrogen Phthalate—atom8 is 
18

O 

hydro-phthal-anharm-atom8-O18 
 anharmonic-freq calc of hydro-phthal-atom8 is O18 
B3LYP/6-31G* 
E(RB+HF-LYP) = -608.856465233 
 
Zero-point correction= 0.113444 (Hartree/Particle) 
Thermal correction to Energy= 0.122959 
Thermal correction to Enthalpy= 0.123903 
Thermal correction to Gibbs Free Energy= 0.077783 
Sum of electronic and ZPE= -608.743022 
Sum of electronic and thermal Energies= -608.733507 
Sum of electronic and thermal Enthalpies= -608.732563 
Sum of electronic and thermal Free Energies= -608.778682 
 
       E      CV        S 
    KCal/Mol Cal/Mol-K Cal/Mol-K 
Total 77.158 35.705 97.066 
 
6 0.000000 1.375262 -1.442553 
6 0.000000 0.711215 -0.201738 
6 0.000000 -0.711215 -0.201738 
6 0.000000 -1.375262 -1.442553 
6 0.000000 -0.697922 -2.655165 
6 0.000000 0.697922 -2.655165 
6 0.000000 1.683826 1.001896 
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8 0.000000 2.895232 0.762364 
6 0.000000 -1.683826 1.001896 
8 0.000000 1.191279 2.197163 
1 0.000000 -2.458952 -1.402334 
1 0.000000 -1.253889 -3.591427 
1 0.000000 1.253889 -3.591427 
1 0.000000 2.458952 -1.402334 
8 0.000000 -2.895232 0.762364 
8 0.000000 -1.191279 2.197163 
1 0.000000 0.000000 2.205805 
 
 

Listing of Dynamics Programs for Program Suite PROGDY� 

1. Program progdynstarterHP 

#!/bin/bash 

#progdynstarterHP, made to use high-precision modes from Gaussian output with 
freq=hpmodes 
#updated to create a random number file temp811 that is used by proggenHP 
#version September 16, 2005, made for workstations 
#version August 2007 to allow periodic copying of g09.log to dyn putting it under 
control of progdynb 
#version Feb 2008 moves variables like the scratch directory and location of randgen to 
the beginning 
#version March 2008 added proganal reporting to points 1 and 2 
#version Jan 2009 fixed bug generator of having proganal run twice in checking for 
complete runs 
#version May 2009 Echeck catches bad energies after only one point, other lines written 
simpler, triple while loop, revised comments 
#version Aug 2010 isomernumber adds words to ease parsing, increased elements up to 
bromine, runpointnumber checked for more appropriate restarts 
# 
#LIMITATIONS - standard version only handles elements up to bromine, must change 
program to do higher atomic numbers 
#   only handles up to 4000th excited state for modes - this could start to affect the 
initialization of classical modes or transition vectors at 
#    extremely high temperatures 
#   The routine that checks whether the actual energy approximately equals the desired 
energy checks for lines containing "SCF Done" or "EUMP2 =" or " Energy=" 
#   This should handle ordinary calculations HF, DFT, ONIOM, and MP2 calculatons 
but the routine in prog2ndpoint would have to be changed for other calcs. 
# 
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#                                        OUTLINE 
# A. initilize to perform Gaussian jobs and know where we are 
#    start loop 
# B. if no file named "skipstart" then generate a new isomer.  Instructions: Get rid of 
skipstart to start new isomer. 
#    the B loop generates geoPlusVel, adds it to geoRecord, generates and runs first and 
second points, and sets up for continuous loop 
# C. loop over propagation steps 
# 
#  AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 
#origdir, randdir, scratchdir, g09root, logfile all may need varied from system to system 
and assigned here or by program calling this one 
export LC_ALL=C 
export g09root=/usr/local/g09 
source $g09root/g09/bsd/g09.profile 
origdir=`pwd` 
cd $origdir 
logfile=xlog 
randdir=~/bin 
scratchdir=$1 
proggramdir=~/a1 
freqfile=~/a1/freqinHP 
echo ORIGDIR: 
echo $origdir 
echo SCRATCHDIR: 
echo $scratchdir 
echo PROGGRAMDIR: 
echo $proggramdir 
 
rm -f nogo    # assume that if someone is starting a job, they want it to go. 
rm -f diagnostics # contains extra info from start of progFS 
 
#### Triple 'while' loop - will have to break multiple times to get out, but advantage is 
ability to control starting over 
while (true) 
do 
 
# As long as there is a file "goingwell" the program will not exit entirely by itself 
rm -f goingwell 
while (true) 
do 
#  BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB 
   if (test -f skipstart) then 
      echo "skipping start and continuing from previous runs" 
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   else 
#  
B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1 
generate geoPlusVel and first input file 
      if [ `cat runpointnumber` = "1" ]; then 
         echo "XXXX did not complete first point so new isomer started" >> dynfollowfile 
      fi 
      if [ `cat runpointnumber` = "2" ]; then 
         echo "XXXX did not complete second point so new isomer started" >> 
dynfollowfile 
      fi 
      if [ `cat runpointnumber` = "3" ]; then 
         echo "XXXX did not complete third point so new isomer started" >> dynfollowfile 
      fi 
      cd $origdir 
      $randdir/randgen > temp811 
# the next 8 lines would have to be changed to use low-precision modes 
      awk '/        1         2         3         4/,/Harmonic frequencies/ {print}' $freqfile > 
temp401 
      awk '/Frequencies --/ {print $3;print $4;print $5;print $6;print $7}' temp401 > 
tempfreqs 
      awk '/Reduced masses/ {print $4;print $5;print $6;print $7;print $8}' temp401 > 
tempredmass 
      awk '/Force constants/ {print $4;print $5;print $6;print $7;print $8}' temp401 > 
tempfrc 
      awk '/0/ && ((length($1) < 2) && ($1 < 4)) {print}' temp401 > tempmodes 
      awk '/has atomic number/ {print}' $freqfile > tempmasses 
      awk '/Standard orientation:/,/tional const/ {if ($3==0) print}' $freqfile > 
tempstangeos 
      awk -f $proggramdir/proggenHP $freqfile > geoPlusVel 
      if (test -f isomernumber) then 
         cp isomernumber temp533 
         awk 'BEGIN {getline;i=$1+1;print i,"----trajectory isomer number----"}' temp533 
> isomernumber 
         rm temp533 
      else 
         echo "1 ----trajectory isomer number----" > isomernumber 
      fi 
      echo 1 > runpointnumber 
      rm g09.com 
      awk -f $proggramdir/prog1stpoint isomernumber > g09.com 
#  
B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B
2B2  if first part successfule then clean up and run the first input file, otherwise die 
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      if (test -s g09.com) then 
         rm tempfreqs tempredmass tempfrc tempmodes tempstangeos tempmasses 
temp401 temp811 
         cat isomernumber >> geoRecord 
         cat geoPlusVel >> geoRecord 
         rm -f goingwell 
         cd $scratchdir 
         cp $origdir/g09.com $scratchdir/g09.com 
         $g09root/g09/g09 $scratchdir/g09.com > $scratchdir/g09.log 
         cd $origdir 
         grep 'Normal termination' $scratchdir/g09.log > goingwell 
         if (test -s goingwell) then 
            cat $scratchdir/g09.log >> dyn 
            cp $scratchdir/g09.log olderdynrun 
         else 
            cp $scratchdir/g09.log $origdir/g09.log 
            break 
         fi 
      else 
         break 
      fi 
#  
B3B3B3B3B3B3B3B3B3B3B3B3B3B3B3B3B3B3B3B3B3B3B3B3B3B3B3B3B3B3B
3B3 if B2 worked then you are here.  create 2nd point, run it, and set up for propagation 
loop 
      rm g09.com 
      echo 2 > runpointnumber 
      awk -f $proggramdir/prog2ndpoint $scratchdir/g09.log > g09.com 
# before we decide to run this, check the energy 
      awk -f $proggramdir/proganal $scratchdir/g09.log >> dynfollowfile 
      rm -f tempdone 
      tail -1 dynfollowfile | awk '/XXXX/ {print}' > tempdone 
      if (test  -s tempdone) then 
         rm -f dyn 
         rm -f traj 
         echo 0 > runpointnumber 
         break 
      fi 
      if (test -s g09.com) then 
         rm -f goingwell 
         cd $scratchdir 
         cp $origdir/g09.com $scratchdir/g09.com 
         $g09root/g09/g09 $scratchdir/g09.com > $scratchdir/g09.log 
         cd $origdir 
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         grep 'Normal termination' $scratchdir/g09.log > goingwell 
         if (test -s goingwell) then 
            cp $scratchdir/g09.log olddynrun 
            cat $scratchdir/g09.log >> dyn 
            awk -f $proggramdir/proganal $scratchdir/g09.log >> dynfollowfile 
            awk '/Input orientation/,/Distance matrix/ {print}' olddynrun | awk '/   0   / 
{print}' > old 
            awk '/Input orientation/,/Distance matrix/ {print}' olderdynrun | awk '/   0   / 
{print}' > older 
            echo 3 > runpointnumber 
            awk -f $proggramdir/progdynb olddynrun > g09.com 
            rm -f old older 
         else 
            cp $scratchdir/g09.log $origdir/g09.log 
            break 
         fi 
      else 
         break 
      fi 
# we've just completed a start, so lets skipstart until instructed otherwise 
      echo "forward" > skipstart 
   fi 
# Reverse trajectories starter routine 
   if [ `cat skipstart` = "reverserestart" ]; then 
      cd $origdir 
      rm g09.com 
      echo 1 > runpointnumber 
      awk -f $proggramdir/prog1stpoint isomernumber > g09.com 
      if (test -s g09.com) then 
         rm -f goingwell 
         cd $scratchdir 
         cp $origdir/g09.com $scratchdir/g09.com 
         $g09root/g09/g09 $scratchdir/g09.com > $scratchdir/g09.log 
         cd $origdir 
         grep 'Normal termination' $scratchdir/g09.log > goingwell 
         if (test -s goingwell) then 
            cp $scratchdir/g09.log olderdynrun 
         else 
            cp $scratchdir/g09.log $origdir/g09.log 
            break 
         fi 
      else 
         break 
      fi 
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      rm g09.com 
      echo 2 > runpointnumber 
      awk -f $proggramdir/prog2ndpoint $scratchdir/g09.log > g09.com 
      awk -f $proggramdir/proganal $scratchdir/g09.log >> dynfollowfile 
      rm -f tempdone 
      if (test -s g09.com) then 
         rm -f goingwell 
         cd $scratchdir 
         cp $origdir/g09.com $scratchdir/g09.com 
         $g09root/g09/g09 $scratchdir/g09.com > $scratchdir/g09.log 
cd $origdir 
         grep 'Normal termination' $scratchdir/g09.log > goingwell 
         if (test -s goingwell) then 
            cp $scratchdir/g09.log olddynrun 
            cat $scratchdir/g09.log >> dyn 
            awk -f $proggramdir/proganal $scratchdir/g09.log >> dynfollowfile 
            awk '/Input orientation/,/Distance matrix/ {print}' olddynrun | awk '/   0   / 
{print}' > old 
            awk '/Input orientation/,/Distance matrix/ {print}' olderdynrun | awk '/   0   / 
{print}' > older 
            echo 3 > runpointnumber 
            awk -f $proggramdir/progdynb olddynrun > g09.com 
            rm -f old older 
         else 
            cp $scratchdir/g09.log $origdir/g09.log 
            break 
         fi 
      else 
         break 
      fi 
# we've just completed a reversestart, so lets skipstart until instructed otherwise 
      echo "reverse" > skipstart 
   fi 
 
#  
END_of_B___END_of_B___END_of_B___END_of_B___END_of_B___END_of_B_
__END_of_B___END_of_B___ 
 
#  
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCC  propagation loop 
   while (true) 
   do 
#increment runpointnumber 
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      cp runpointnumber temp533 
      awk 'BEGIN {getline;i=$1+1;print i}' temp533 > runpointnumber 
      rm temp533 
      rm -f goingwell 
      cd $scratchdir 
      cp $origdir/g09.com $scratchdir/g09.com 
      $g09root/g09/g09 $scratchdir/g09.com > $scratchdir/g09.log 
      cd $origdir 
      grep 'Normal termination' $scratchdir/g09.log > goingwell 
      if (test -s goingwell) then 
         cp olddynrun olderdynrun 
         cp $scratchdir/g09.log olddynrun 
         awk '/Input orientation/,/Distance matrix/ {print}' olddynrun | awk '/   0   / {print}' 
> old 
         awk '/Input orientation/,/Distance matrix/ {print}' olderdynrun | awk '/   0   / 
{print}' > older 
         awk -f $proggramdir/progdynb olddynrun > g09.com 
         rm -f old older 
      else 
         cp $scratchdir/g09.log $origdir/g09.log 
         break 
      fi 
 
# here is a cool link that lets you interupt the dynamics with a short job, then 
# it automatically goes back to the dynamics  just make the file 'detour' and it 
# will delete detour, run run.com, then go back to dynamics 
      if (test  -f detour) then 
         rm detour 
         date >> $logfile 
         cat run.com >> $logfile 
         cp run.log temp.log 
         cd $scratchdir 
         $g09root/g09/g09 $origdir/run.com > $origdir/run.log 
         cd $origdir 
      fi 
 
#stop it all nicely by creating a nogo file 
      if (test  -f nogo) then 
         break 
      fi 
 
#figure out if this isomer is done 
      awk -f $proggramdir/proganal $scratchdir/g09.log >> dynfollowfile 
      rm -f tempdone 
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      tail -2 dynfollowfile | awk '/XXXX/ {print}' > tempdone 
      if (test  -s tempdone) then 
         if [ `awk '/reversetraj/ {if ($1=="reversetraj") print $2}' progdyn.conf` = "true" ]; 
then 
            if [ `cat skipstart` = "reverse" ]; then 
               rm -f skipstart 
               rm -f geoPlusVel 
               rm -f olddynrun 
               rm -f olderdynrun 
               a=`awk '{print $1}' isomernumber` 
               mv traj traj$a 
               mv dyn dyn$a 
            fi 
            if [ `cat skipstart` = "forward" ]; then 
               echo reverserestart > skipstart 
            fi 
         else 
            rm -f skipstart 
            rm -f geoPlusVel 
            rm -f olddynrun 
            rm -f olderdynrun 
            a=`awk '{print $1}' isomernumber` 
            mv traj traj$a 
            mv dyn dyn$a 
       fi 
            if [ `cat skipstart` = "forward" ]; then 
               echo reverserestart > skipstart 
            fi 
         else 
            rm -f skipstart 
            rm -f geoPlusVel 
            rm -f olddynrun 
            rm -f olderdynrun 
            a=`awk '{print $1}' isomernumber` 
            mv traj traj$a 
            mv dyn dyn$a 
         fi 
         break 
      fi 
   done 
#  
END_of_C_Loop____END_of_C_Loop____END_of_C_Loop____END_of_C_Loop__
__END_of_C_Loop____END_of_C_Loop____ 
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# We've got to break a second time to get out of this loop 
# if we really want to quit.  Otherwise, it will start over 
# at the top 
   if (test  -f nogo) then 
      break 
   fi 
   if (test  -s goingwell) then 
      echo "starting a new point or a new direction" 
   else 
      break 
   fi 
done 
   if (test  -f nogo) then 
      break 
   fi 
   if (test  -s goingwell) then 
      echo "starting a new point or a new direction2" 
   else 
      break 
   fi 
done 
exit 0 
 
 

2. Program proggenHP 

 

BEGIN { 
# Aut 2010 changes classicalSpacing to 2 and upped possible excited states to 4000 
# Jan 2009 - a number of little changes to improve reporting, precision, etc, specification 
of displacement on particular modes 
# Jan 2009 cannonball trajectories.  adds desired energy to initial velocities based on file 
cannontraj, so one can shoot toward a ts 
# updated Nov 2008 to incorporate running DRPs 
# updated Nov 2008 to allow for start without an initial freq calc using classical = 2 
# updated Aug 2008 added to atom list to handle a large number of atoms without 
changes needed 
# updated June 2008 to incorportate new method for choosing displacements with 
initialdis 2 
# updated Jan 17 2008 - bug fix for > 99 atoms, 300 excitations of low modes possible 
# version August 2007 - incorporates classical trajectory calculation option 
#also allows listing of number of imaginary frequencies 
# version Sept 16, 2005 - incorportates searchdir but not yet rotation 
# now reads random numbers from temp811, starting at a random place 
# The input files are generated before this and are tempfreqs, tempredmass, 
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# tempfrc, tempmodes, and tempstangeos. 
# It will count the number of atoms. 
 
# default parameters, including quassiclassical, no displacements, transition state, not a 
DRP 
# do not change these - rather, change progdyn.conf to set the parameters 
initialDis=0; timestep=1E-15; scaling=1.0; temp=298.15 
classical=0; numimag=1; DRP=0; cannonball=0 
charge=0; multiplicity=1; method="HF/3-21G"; memory=20000000 
diag=1; checkpoint="g09.chk"; searchdir="positive"; boxon=0 
boxsize=10; maxAtomMove=0.1; title1="you"; title2="need" 
title3="a"; title4="progdyn.conf"; processors=1; highlevel=999 
conver1=4.184E26 #dividing by this converts amu angs^2 /s^2 to kcal/mol 
 
#initialization and constants 
for (i=1;i<=10000;i++) {disMode[i]=-1} 
i=1;j=1;k=1 
c=29979245800; h=6.626075E-34; avNum=6.0221415E23 
RgasK=0.00198588; RgasJ=8.31447 
numAtoms=0; atomnumber=0; classicalSpacing=2 
zpeGauss=0; zpeGaussK=0; zpePlusE=0; potentialE=0 
 
# read progdyn.conf for configuration info 
blankLineTester=10 
while (blankLineTester>1) { 
   getline < "progdyn.conf" 
   if ($1=="method") method=$2 
   if ($1=="charge") charge=$2 
   if ($1=="multiplicity") multiplicity=$2 
   if ($1=="memory") memory=$2 
   if ($1=="processors") processors=$2 
   if ($1=="checkpoint") checkpoint=$2 
   if ($1=="diagnostics") diag=$2 
   if ($1=="initialdis") initialDis=$2 
   if ($1=="timestep") timestep=$2 
   if ($1=="scaling") scaling=$2 
   if ($1=="temperature") temp=$2 
   if ($1=="searchdir") searchdir=$2 
   if ($1=="classical") classical=$2 
   if ($1=="numimag") numimag=$2 
   if ($1=="highlevel") highlevel=$2 
   if ($1=="boxon") boxon=$2 
   if ($1=="boxsize") boxsize=$2 
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   if ($1=="DRP") DRP=$2; if (DRP==1) classical=2 #this lets one start a DRP from a 
point that is not a freq calc 
   if ($1=="maxAtomMove") maxAtomMove=$2 
   if ($1=="cannonball") cannonball=$2 
   if ($1=="displacements") disMode[$2]=$3 
   if ($1=="controlphase") controlPhase[$2]=$3 
   if ($1=="title") { 
      title1=$2 
      title2=$3 
      title3=$4 
      title4=$5 
      } 
   blankLineTester=length($0) 
   } 
 
if (diag>=1) print "***************** starting proggen *****************" >> 
"diagnostics" 
if (diag>=1) print "method,charge,multiplicity,memory" >> "diagnostics" 
if (diag>=1) print method,charge,multiplicity,memory >> "diagnostics" 
if (diag>=1) print "processors,checkpoint,title,initialdis,timestep,scaling,temperature" >> 
"diagnostics" 
if (diag>=1) print 
processors,checkpoint,title1,title2,title3,title4,initialDis,timestep,scaling,temp >> 
"diagnostics" 
if (diag>=1) print 
"classical,numimag,highlevel,boxon,boxsize,DRP,maxAtomMove,cannonball" >> 
"diagnostics" 
if (diag>=1) print 
classical,numimag,highlevel,boxon,boxsize,DRP,maxAtomMove,cannonball >> 
"diagnostics" 
 
# put geometries into array, also figure out number of atoms 
# note that this picks out the last geometry in a file, assuming 
# that if there is an optimization followed by a freq, nothing else follows 
# kludgy - repeats last line twice - must be a better way 
do { 
   getline < "tempstangeos" 
   if (oldline==$0) $0="" 
   oldline=$0 
   atom = $1 
   if (atom>numAtoms) numAtoms=atom 
   atNum[atom]=$2 
   geoArr[atom,1]=$4; geoArr[atom,2]=$5; geoArr[atom,3]=$6 
   velArr[atom,1]=0; velArr[atom,2]=0; velArr[atom,3]=0 
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   } 
while (length($0) > 0) 
 
#output the number of atoms, used in many routines 
print numAtoms 
 
# put in atomic symbols and atomic weights - assigns a default mass but then reads it 
from tempmasses when possible 
for (i=1;i<=numAtoms;i++) { 
   getline < "tempmasses" 
   if (atNum[i]==1) {atSym[i]="H";atWeight[i]=1.00783} 
   if (atNum[i]==2) {atSym[i]="He";atWeight[i]=4.0026} 
   if (atNum[i]==3) {atSym[i]="Li";atWeight[i]=6.941} 
   if (atNum[i]==4) {atSym[i]="Be";atWeight[i]=9.012} 
     if (atNum[i]==5) {atSym[i]="B";atWeight[i]=10.811} 
   if (atNum[i]==6) {atSym[i]="C";atWeight[i]=12.} 
   if (atNum[i]==7) {atSym[i]="N";atWeight[i]=14.007} 
   if (atNum[i]==8) {atSym[i]="O";atWeight[i]=15.9994} 
   if (atNum[i]==9) {atSym[i]="F";atWeight[i]=18.9984} 
   if (atNum[i]==10) {atSym[i]="Ne";atWeight[i]=20.1797} 
   if (atNum[i]==11) {atSym[i]="Na";atWeight[i]=22.989} 
   if (atNum[i]==12) {atSym[i]="Mg";atWeight[i]=24.305} 
   if (atNum[i]==13) {atSym[i]="Al";atWeight[i]=26.98154} 
   if (atNum[i]==14) {atSym[i]="Si";atWeight[i]=28.0855} 
   if (atNum[i]==15) {atSym[i]="P";atWeight[i]=30.9738} 
   if (atNum[i]==16) {atSym[i]="S";atWeight[i]=32.066} 
   if (atNum[i]==17) {atSym[i]="Cl";atWeight[i]=35.4527} 
   if (atNum[i]==18) {atSym[i]="Ar";atWeight[i]=39.948} 
   if (atNum[i]==19) {atSym[i]="K";atWeight[i]=39.0983}  
   if (atNum[i]==20) {atSym[i]="Ca";atWeight[i]=40.078} 
   if (atNum[i]==21) {atSym[i]="Sc";atWeight[i]=44.96} 
   if (atNum[i]==22) {atSym[i]="Ti";atWeight[i]=47.867} 
   if (atNum[i]==23) {atSym[i]="V";atWeight[i]=50.94} 
   if (atNum[i]==24) {atSym[i]="Cr";atWeight[i]=51.9961} 
   if (atNum[i]==25) {atSym[i]="Mn";atWeight[i]=54.938} 
   if (atNum[i]==26) {atSym[i]="Fe";atWeight[i]=55.845} 
   if (atNum[i]==27) {atSym[i]="Co";atWeight[i]=58.933} 
   if (atNum[i]==28) {atSym[i]="Ni";atWeight[i]=58.693} 
   if (atNum[i]==29) {atSym[i]="Cu";atWeight[i]=63.546} 
   if (atNum[i]==30) {atSym[i]="Zn";atWeight[i]=65.38} 
   if (atNum[i]==31) {atSym[i]="Ga";atWeight[i]=69.723} 
   if (atNum[i]==32) {atSym[i]="Ge";atWeight[i]=72.64} 
   if (atNum[i]==33) {atSym[i]="As";atWeight[i]=74.9216} 
   if (atNum[i]==34) {atSym[i]="Se";atWeight[i]=78.96} 
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   if (atNum[i]==35) {atSym[i]="Br";atWeight[i]=79.904} 
   if (atNum[i]==46) {atSym[i]="Pd";atWeight[i]=106.42} 
   if (atNum[i]==53) {atSym[i]="I";atWeight[i]=126.90447} 
# gets actual weight from freqinHP when possible so a prior calc with readisotopes gets 
you isotopic substitution 
   if ((i<100) && ($9>0)) atWeight[i]=$9 
   if ((i>99) && ($8>0)) atWeight[i]=$8 
 
   if ((diag>1) && (i==1)) print 
"atNum[i],atSym[i],atWeight[i],geoArr[i,1],geoArr[i,2],geoArr[i,3]" >> "diagnostics" 
   if (diag>1) print atNum[i],atSym[i],atWeight[i],geoArr[i,1],geoArr[i,2],geoArr[i,3] >> 
"diagnostics" 
   } 
 
# read in frequencies, scale them, read in Reduced masses, read in force 
#constants, replace negative frequencies by 2 wavenumbers 
numFreq=3*numAtoms-6 
for (i=1;i<=numFreq;i++) { 
   $0="" 
   getline < "tempfreqs" 
   freq[i]=$0*scaling 
   if (freq[i]<0) freq[i]=2 
   } 
for (i=1;i<=numFreq;i++) { 
   $0="" 
   getline < "tempredmass" 
   redMass[i]=$0 
   if (redMass[i]=="") redMass[i]=1. 
   } 
for (i=1;i<=numFreq;i++) { 
   $0="" 
   getline < "tempfrc" 
   frc[i]=$0 
   if (frc[i]=="") frc[i]=0.0001 
   if (frc[i]==0) frc[i]=0.0001 
   if ((diag>1) && (i==1)) print "freq[i],redMass[i],frc[i]" >> "diagnostics" 
   if (diag>1) print freq[i],redMass[i],frc[i] >> "diagnostics" 
   } 
 
# read in the modes - note that trajectories always need a freq calc with freq=hpmodes 
unless classical=2 
if (classical!=2) { 
   for (i=1;i<=numFreq;i+=5) { 
      for (j=1;j<=(3*numAtoms);j++) { 
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         getline < "tempmodes" 
         mode[i,$2,$1]=$4; mode[i+1,$2,$1]=$5; mode[i+2,$2,$1]=$6; 
mode[i+3,$2,$1]=$7; mode[i+4,$2,$1]=$8 
         } 
      } 
   } 
if (diag>2) {for (i=1;i<=numFreq;i++) {print mode[i,1,1],mode[i,1,2],mode[i,1,3] >> 
"modesread"}} 
 
# if doing a cannonball trajectory, read in the vector 
if (cannonball>0) { 
   for (i=1;i<=numAtoms;i++) { 
      getline < "cannontraj" 
      cannonArr[i,1]=$1; cannonArr[i,2]=$2; cannonArr[i,3]=$3 
      } 
   } 
 
# collect a series of random numbers from file temp811, generated from an outside 
random number generator called by prodynstarterHP 
# read from temp811, starting at a random place 
srand(); tester=rand()*1000 
for (i=1;i<=tester;i++) getline < "temp811" 
for (i=1;i<=numFreq;i++) { 
   getline < "temp811"; randArr[i]=$1 
   getline < "temp811"; randArrB[i]=$1 
   getline < "temp811"; randArrC[i]=$1 
} 
# for a QM distribution for a harmonic oscillator in its ground state, we want to generate 
a set of random numbers 
#between -1 and 1 weighted such that numbers toward the center are properly more 
common 
i=1 
while (i<=numFreq) { 
   if ((initialDis==2) || (disMode[i]==2)) { 
      getline < "temp811" 
      tempNum=2*($1-.5) 
      prob=exp(-(tempNum^2)) 
      getline < "temp811" 
      if ($1<prob) { 
         randArrD[i]=tempNum 
         i++ 
         } 
      } 
   if ((initialDis!=2) && (disMode[i]!=2)) i++ 
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   } 
 
# to start without normal modes or frequencies we need to just pick a random direction 
for the motion of each atom, requiring 3N random numbers 
for (i=1;i<=numAtoms;i++) { 
   for (j=1;j<=3;j++) { 
   getline < "temp811" 
   if ($1>0.5) randArrE[i,j]=1 
   if ($1<.5) randArrE[i,j]=-1 
      } 
   } 
 
# determine energy in each normal mode 
for (i=1;i<=numFreq;i++) { 
   zpeJ[i]=0.5*h*c*freq[i]       #units J per molecule 
#if classical, treat as modes spaced by classicalSpacing wavenumbers 
   if (classical==1) zpeJ[i]=0.5*h*c*classicalSpacing  # the zpe is not used when 
classical but the spacing is used to calculate the E in mode 
   zpeK[i]=zpeJ[i]*avNum/4184    #units kcal/mol 
   if (temp<10) vibN[i]=0        # avoids working with very small temperatures - if the 
temp is too low, it just acts like 0 K 
   if (temp>=10) { 
      zpeRat[i]=exp((-2*zpeK[i])/(RgasK*temp)) 
      if (zpeRat[i]==1) zpeRat[i]=.99999999999 
      Q[i]=1/(1-zpeRat[i]) 
      newRand=randArr[i] 
      vibN[i]=0 
      tester=1/Q[i] 
#     get up to 4000 excitations of low modes 
      for (j=1;j<=(4000*zpeRat[i]+2);j++) { 
         if (newRand>tester) vibN[i]++ 
         tester=tester+((zpeRat[i]^j)/Q[i]) 
         } 
      } 
   } 
 
# figure out mode energies and maximum classical shift and then actual shift 
# also calculated total energy desired for molecule 
desiredModeEnK=0 
for (i=1;i<=numFreq;i++) { 
   modeEn[i]=(zpeJ[i]*1E18)*(2*vibN[i]+1) # units here are mDyne Ansgroms for 
compatability with Gaussian force constants 
   if (classical==1) modeEn[i]=(zpeJ[i]*1E18)*2*vibN[i]    #no zpe when classical 
   modeEnK[i]=zpeK[i]*(2*vibN[i]+1) 
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   if (classical==1) modeEnK[i]=zpeK[i]*2*vibN[i]          #no zpe when classical 
   desiredModeEnK=desiredModeEnK + modeEnK[i] 
# no 1/2 hv for imaginary frequencies 
# treating modes with frequencies <10 as translations, ignoring their zero point energies 
   if (freq[i]<10) modeEn[i]=(zpeJ[i]*1E18)*(2*vibN[i]) 
   maxShift[i]=(2*modeEn[i]/frc[i])^0.5 
   if (initialDis==2) shift[i]=maxShift[i]*randArrD[i] 
   if (initialDis==1) shift[i]=maxShift[i]*(2*(randArrC[i]-0.5)) 
   if (initialDis==0) shift[i]=0 
# lines below allow for setting of displacement mode for individual modes 
# It used to be necessary to use disMode 10 to turn off displacements for a mode, but 
hopefully that bug is killed and you can use disMode 0 
   if (disMode[i]==2) shift[i]=maxShift[i]*randArrD[i] 
   if (disMode[i]==1) shift[i]=maxShift[i]*(2*(randArrC[i]-0.5)) 
   if (disMode[i]==10) shift[i]=0 #kept for backward compatability 
   if (disMode[i]==0) shift[i]=0 
# no displacements along imaginary frequencies and very low ones - it is better to treat 
these 
# as translations - employing a shift can give you initial weird geometries 
   if (freq[i]<10) shift[i]=0 
   if (numimag==1) shift[1]=0 
   if (numimag==2) shift[2]=0 
   } 
for (i=1;i<=numFreq;i++) { 
   if ((diag>1) && (i==1)) print 
"zpeJ[i],zpeK[i],zpeRat[i],Q[i],vibN[i],modeEn[i],maxShift[i],shift[i]" >> "diagnostics" 
   if (diag>1) print zpeJ[i],zpeK[i],zpeRat[i],Q[i],vibN[i],modeEn[i],maxShift[i],shift[i] 
>> "diagnostics" 
   } 
 
# multiply each of the modes by its shift and add them up 
# Do not do this if classical=2 
if (classical!=2) { 
   for (i=1;i<=numFreq;i++) { 
      for (j=1;j<=numAtoms;j++) { 
         for (k=1;k<=3;k++) { 
            shiftMode[i,j,k]=mode[i,j,k]*shift[i] 
            geoArr[j,k]=geoArr[j,k]+shiftMode[i,j,k] 
            } 
         } 
      } 
   } 
 
#now start toward velocities 
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for (i=1;i<=numFreq;i++) { 
   kinEn[i]=100000*(modeEn[i]-0.5*frc[i]*shift[i]^2)  # the 100000 converts to g 
angstrom^2 s^2 
   vel[i]=(2*kinEn[i]/(redMass[i]/avNum))^0.5        # in angstrom / s 
#use searchdir in progdyn.conf to control the direction for trajectories started from a 
saddle point 
   if (numimag>1) numimag=1  #only the first freq can be sent in the searchdir direction, 
the rest go in a random direction 
   if (i>numimag) { 
      if (randArrB[i]<0.5) vel[i]=-vel[i] 
      } 
   if (i==numimag) { 
      if (searchdir=="negative") vel[i]=-vel[i] 
      } 
   if ((diag>1) && (i==1)) print "vel[i]" >> "diagnostics" 
   if (diag>1) print vel[i] >> "diagnostics" 
   } 
 
# if controlphase is being used, set the velocity on particular modes as positive or 
negative as requested 
for (i=1;i<=numFreq;i++) { 
   if ((controlPhase[i]=="positive") && (vel[i]<0)) vel[i]=-vel[i] 
   if ((controlPhase[i]=="negative") && (vel[i]>0)) vel[i]=-vel[i] 
   } 
 
# multiply each of the modes by its velocity and add them up 
# Do not do this if classical=2 
if (classical!=2) { 
   for (i=1;i<=numFreq;i++) { 
      for (j=1;j<=numAtoms;j++) { 
         for (k=1;k<=3;k++) { 
            velMode[i,j,k]=mode[i,j,k]*vel[i]*timestep 
            velArr[j,k]=velArr[j,k]+velMode[i,j,k] 
            } 
         } 
      } 
   } 
 
# to start without normal modes or frequencies we figure out the energy per atom based 
on 1/2RT in degree of freedom 
if (classical==2) { 
   degFreedomEnK=temp*RgasK 
   degFreedomEnJ=degFreedomEnK/(avNum/4184) 
   cartEn=degFreedomEnJ*1E18 
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   kinEnCart=100000*cartEn 
#print degFreedomEnK, degFreedomEnJ, cartEn, kinEnCart 
   for (i=1;i<=numAtoms;i++) { 
      for (j=1;j<=3;j++) { 
         velArr[i,j]=randArrE[i,j]*timestep*(2*kinEnCart/(atWeight[i]/avNum))^0.5 
         if (DRP==1) velArr[i,j]=0 
         } 
      } 
   } 
 
# calculate the KE in the modes at this point 
KEinitmodes=0 
for (j=1;j<=numAtoms;j++) { 
   KEinitmodes=KEinitmodes + 0.5*atWeight[j]*(velArr[j,1]^2 + velArr[j,2]^2 + 
velArr[j,3]^2)/((timestep^2)*conver1) 
   } 
 
# if doing a cannonball, adjust multiplier until extra energy is correct 
if (cannonball>0) { 
   multiplier=1; tester=0; tolerance=.1 
   while (tester==0) { 
      KEinittotal=0 
      for (j=1;j<=numAtoms;j++) { 
         cannonvelArr[j,1]=velArr[j,1]+multiplier*cannonArr[j,1]; 
cannonvelArr[j,2]=velArr[j,2]+multiplier*cannonArr[j,2]; 
cannonvelArr[j,3]=velArr[j,3]+multiplier*cannonArr[j,3] 
         KEinittotal=KEinittotal + 0.5*atWeight[j]*(cannonvelArr[j,1]^2 + 
cannonvelArr[j,2]^2 + cannonvelArr[j,3]^2)/((timestep^2)*conver1) 
         } 
      if (KEinittotal>(KEinitmodes+cannonball+tolerance)) 
multiplier=multiplier*0.98901364 
      if (KEinittotal<(KEinitmodes+cannonball-tolerance)) multiplier=multiplier*1.01 
      if ((KEinittotal<(KEinitmodes+cannonball+tolerance)) && 
(KEinittotal>(KEinitmodes+cannonball-tolerance))) tester=1 
      } 
   for (j=1;j<=numAtoms;j++) { 
      velArr[j,1]=velArr[j,1]+multiplier*cannonArr[j,1]; 
velArr[j,2]=velArr[j,2]+multiplier*cannonArr[j,2]; 
velArr[j,3]=velArr[j,3]+multiplier*cannonArr[j,3] 
      } 
   } 
 
#output the new geometry. 
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# ****** this section changed for special experiment for cyclopentadiene.  do not use 
this for other cases 
# atWeight[4]=140.0001 
# ****** line below added for special experiment switching mass from 12 to 140, 
keeping momenta the same 
#velArr[4,1]=velArr[4,1]/11.66667; velArr[4,2]=velArr[4,2]/11.66667; 
velArr[4,3]=velArr[4,3]/11.66667 
for (j=1;j<=numAtoms;j++) { 
   printf("%2s % .7f % .7f % .7f %9.5f 
\n",atSym[j],geoArr[j,1],geoArr[j,2],geoArr[j,3],atWeight[j]) 
   } 
 
#output the velocities and calculate the total kinetic energy overall 
KEinittotal=0 
for (j=1;j<=numAtoms;j++) { 
   KEinittotal=KEinittotal + 0.5*atWeight[j]*(velArr[j,1]^2 + velArr[j,2]^2 + 
velArr[j,3]^2)/((timestep^2)*conver1) 
   printf("% .8f % .8f % .8f \n",velArr[j,1],velArr[j,2],velArr[j,3]) 
   } 
 
#anything else I add to the file will not affect the trajectories but will keep a record and 
be good for analysis 
for (i=1;i<=numFreq;i++) { 
   if (initialDis==0) printf("%.6f   % .6f    %4i    % 1.4e       % .6f %1i\n", randArr[i], 
randArrB[i], vibN[i], vel[i], shift[i], disMode[i]) 
   if (initialDis==1) printf("%.6f   % .6f    %4i    % 1.4e       % .6f %1i\n", randArr[i], 
randArrC[i], vibN[i], vel[i], shift[i], disMode[i]) 
   if (initialDis==2) printf("%.6f   % .6f    %4i    % 1.4e       % .6f %1i\n", randArr[i], 
randArrD[i], vibN[i], vel[i], shift[i], disMode[i]) 
   } 
print "temp ",temp 
print "initialDis",initialDis 
print "classical",classical 
print "timestep",timestep 
print "numimag",numimag 
OFMT = "%.3f" 
print "Total mode energy desired=",desiredModeEnK 
print "KE initial from modes=",KEinitmodes,"   KE initial total=",KEinittotal 
if (cannonball>0) print "cannonball",cannonball,"  cannon Energy=",KEinittotal-
KEinitmodes 
if (boxon>0) print "boxsize",boxsize 
if (DRP>0) print "DRP",DRP,"   maxAtomMove",maxAtomMove 
if (DRP>0) print maxAtomMove > "maxMove" 
}  # End of BEGIN 
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/Zero-point correction/ {zpeGauss=$3} 
/zero-point Energies/ {zpePlusE=$7} 
END { 
zpeGaussK=zpeGauss*627.509 
potentialE=zpePlusE - zpeGauss 
OFMT = "%.6f" 
print "Gaussian zpe=",zpeGauss,"or",zpeGaussK,"kcal/mol  E + zpe=",zpePlusE,"  
potential E=",potentialE 
print "" #will use blank line to mark end of geoPlusVel file 
} 
 

3. Program prog1stpoint 

 

BEGIN { 
# aug 2010 changed so that it is more careful in reading in from geoPlusVel 
#     removed some default parameters that should always be defined 
# Jan 2009 - a number of little changes to improve reporting, precision, etc 
# aug 2008 added to atom list so handles H to Cl without change needed 
# version Feb 2008 incorporates methodfile, boxon and boxsize, though this point 
unaffected by box 
# version Jan 2008 - allows for ONIOM jobs, fixed atoms 
# version Sept 2005 - incorportates meth3, meth4, meth5, meth6, but not yet rotation 
# this program creates the first input file for g09 
# the title should be changed as appropriate 
# the isomer number comes from a file isomernumber 
 
# default parameters, including quassiclassical, no displacements, transition state, not a 
DRP 
# do not change these - rather, change progdyn.conf to set the parameters 
initialDis=0; timestep=1E-15; scaling=1.0; temp=298.15 
classical=0; numimag=1; DRP=0; cannonball=0 
memory=20000000 
diag=1; checkpoint="g09.chk"; searchdir="positive"; boxon=0 
boxsize=10; maxAtomMove=0.1; title1="you"; title2="need" 
title3="a"; title4="progdyn.conf"; processors=1; highlevel=999 
 
#initialization 
i=1;j=1;k=1 
c=29979245800; h=6.626075E-34; avNum=6.0221415E23 
RgasK=0.00198588; RgasJ=8.31447 
numAtoms=0; atomnumber=0 
 
# read progdyn.conf for configuration info 
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blankLineTester=10 
while (blankLineTester>1) { 
   getline < "progdyn.conf" 
   if ($1=="method") method=$2 
   if ($1=="method2") meth2=$2 
   if ($1=="charge") charge=$2 
   if ($1=="multiplicity") multiplicity=$2 
   if ($1=="memory") memory=$2 
   if ($1=="processors") processors=$2 
   if ($1=="checkpoint") checkpoint=$2 
   if ($1=="timestep") timestep=$2 
   if ($1=="diagnostics") diag=$2 
   if ($1=="method3") meth3=$2 
   if ($1=="method4") meth4=$2 
   if ($1=="method5") meth5=$2 
   if ($1=="method6") meth6=$2 
   if ($1=="highlevel") highlevel=$2 
   if ($1=="fixedatom1") fixedatom1=$2 
   if ($1=="fixedatom2") fixedatom2=$2 
   if ($1=="fixedatom3") fixedatom3=$2 
   if ($1=="fixedatom4") fixedatom4=$2 
   if ($1=="methodfile") methodfilelines=$2 
   if ($1=="killcheck") killcheck=$2 
   if ($1=="title") { 
      title1=$2 
      title2=$3 
      title3=$4 
      title4=$5 
      } 
   blankLineTester=length($0) 
   } 
 
if (diag==1) print "***************** starting prog1stpoint *****************" >> 
"diagnostics" 
if (diag==1) print "method,charge,multiplicity,memory" >> "diagnostics" 
if (diag==1) print method,charge,multiplicity,memory >> "diagnostics" 
if (diag==1) print "processors,checkpoint,title" >> "diagnostics" 
if (diag==1) print processors,checkpoint,title1,title2,title3,title4 >> "diagnostics" 
 
getline < "isomernumber" 
isomernum = $1 
#read in number of atoms, geometry, masses, and velocity from geoPlusVel 
getline < "geoPlusVel" 
numAtoms=$1 



 152 

# geometry 
for (i=1;i<=numAtoms;i++) { 
   getline < "geoPlusVel" 
   weight[i]=$5 
   atSym[i]=$1 
   for (j=1;j<=3;j++) { 
      geoArr[i,j]=$(1+j) 
      } 
   } 
#velocities not needed for 1st point 
for (i=1;i<=numAtoms;i++) { 
   getline < "geoPlusVel" 
   for (j=1;j<=3;j++) { 
      velArr[i,j]=$j 
      } 
   } 
 
print "%nproc=" processors 
print "%mem=" memory 
if (killcheck!=1) print "%chk=" checkpoint 
print "# " method " force scf=(tight,nosym) " 
if (meth2=="unrestricted") print "guess=mix" #for unrestricted calculations 
if (length(meth3)>2) print meth3 
if (length(meth4)>2) print meth4 
print "" 
# make the title four words exactly, leaving out spaces if necessary 
print title1,title2,title3,title4 
print "runpoint 1" 
print "runisomer ", isomernum 
print "" 
print charge,multiplicity 
} 
 
END { 
for (i=1;i<=numAtoms;i++) { 
   printf("%s %.7f %.7f %.7f",atSym[i],geoArr[i,1],geoArr[i,2],geoArr[i,3]) 
   if (i>highlevel) printf(" %s","M") 
   print "" 
   } 
print "" 
if (length(meth5)>2) print meth5 
if (length(meth6)>2) print meth6 
if (methodfilelines>=1) { 
   for (i=1;i<=methodfilelines;i++) { 
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      getline < "methodfile" 
      print $0 
      } 
   } 
print "" 
} 
 

4. Program prog2ndpoint 

BEGIN { 
#Aug 2010 added etolerance to make it controllable from progdyn.conf, made it so that 
DRP does not check energy 
# aug 2008 added to atom list so handles 1 to 17 without change needed 
# version Feb 2008 incorporates methodfile, boxon and boxsize, though this point 
unaffected by box 
# version Jan 2008 - allows for ONIOM jobs, fixed atoms 
# version Sept 9, 2005 - incorportates meth3, meth4, meth5, meth6, but not yet rotation 
# read progdyn.conf for configuration info 
 
# default parameters, including quassiclassical, no displacements, transition state, not a 
DRP 
# do not change these - rather, change progdyn.conf to set the parameters 
initialDis=0; timestep=1E-15; scaling=1.0; temp=298.15 
classical=0; numimag=1; DRP=0; cannonball=0 
memory=20000000 
diag=1; checkpoint="g09.chk"; searchdir="positive"; boxon=0 
boxsize=10; maxAtomMove=0.1; title1="you"; title2="need" 
title3="a"; title4="progdyn.conf"; processors=1; highlevel=999 
etolerance=1 
 
#initialization 
i=1;j=1;k=1 
c=29979245800; h=6.626075E-34; avNum=6.0221415E23 
RgasK=0.00198588; RgasJ=8.31447 
numAtoms=0; atomnumber=0 
 
blankLineTester=10 
while (blankLineTester>1) { 
   getline < "progdyn.conf" 
   if ($1=="method") method=$2 
   if ($1=="method2") meth2=$2 
   if ($1=="charge") charge=$2 
   if ($1=="multiplicity") multiplicity=$2 
   if ($1=="memory") memory=$2 
   if ($1=="processors") processors=$2 
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   if ($1=="checkpoint") checkpoint=$2 
   if ($1=="timestep") timestep=$2 
   if ($1=="diagnostics") diag=$2 
   if ($1=="method3") meth3=$2 
   if ($1=="method4") meth4=$2 
   if ($1=="method5") meth5=$2 
   if ($1=="method6") meth6=$2 
   if ($1=="highlevel") highlevel=$2 
   if ($1=="fixedatom1") fixedatom1=$2 
   if ($1=="fixedatom2") fixedatom2=$2 
   if ($1=="fixedatom3") fixedatom3=$2 
   if ($1=="fixedatom4") fixedatom4=$2 
   if ($1=="DRP") DRP=$2 
   if ($1=="methodfile") methodfilelines=$2 
   if ($1=="killcheck") killcheck=$2 
   if ($1=="etolerance") etolerance=$2 
   if ($1=="reversetraj") reversetraj=$2 
   if ($1=="title") { 
      title1=$2 
      title2=$3 
      title3=$4 
      title4=$5 
      } 
   blankLineTester=length($0) 
   } 
 
if (diag>=1) print "***************** starting prog2ndpoint *****************" >> 
"diagnostics" 
if (diag>=1) print "method,charge,multiplicity,memory" >> "diagnostics" 
if (diag>=1) print method,charge,multiplicity,memory >> "diagnostics" 
if (diag>=1) print "processors,checkpoint,title" >> "diagnostics" 
if (diag>=1) print processors,checkpoint,title1,title2,title3,title4 >> "diagnostics" 
 
#get the isomer number from file 
getline < "isomernumber" 
isomernum = $1 
 
#get forward or reverse from skipstart if it exists 
getline < "skipstart" 
trajdirection = $1 
 
print "%nproc=" processors 
print "%mem=" memory 
if (killcheck!=1) print "%chk=" checkpoint 
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print "# " method " force scf=(tight,nosym) " 
if (meth2=="unrestricted") print "guess=mix" #for unrestricted calculations 
if (meth2=="read") print "guess=tcheck" #for reading orbitals from check, sometimes 
faster, sometimes not 
if (length(meth3)>2) print meth3 
if (length(meth4)>2) print meth4 
print "" 
print title1,title2,title3,title4 
print "runpoint 2" 
print "runisomer ", isomernum 
print "" 
print charge,multiplicity 
 
# ok, now we have to figure the second point.  this should be 
# x(t) = x + v*t + 1/2*F*t^2/m 
# so we need to set up arrays for position, velocity, and force 
 
#read in number of atoms, geometry, masses, and velocity from geoPlusVel 
getline < "geoPlusVel" 
numAtoms=$1 
# geometry 
for (i=1;i<=numAtoms;i++) { 
   getline < "geoPlusVel" 
   weight[i]=$5 
   atSym[i]=$1 
   for (j=1;j<=3;j++) { 
      geoArr[i,j]=$(1+j) 
      } 
   } 
#velocities 
for (i=1;i<=numAtoms;i++) { 
   getline < "geoPlusVel" 
   for (j=1;j<=3;j++) { 
      velArr[i,j]=$j 
      } 
   } 
 
#now we go ahead and add the velocities 
for (i=1;i<=numAtoms;i++) { 
   for (j=1;j<=3;j++) { 
      arr[i,j]=velArr[i,j]+geoArr[i,j] 
      if (trajdirection=="reverserestart") arr[i,j]=geoArr[i,j]-velArr[i,j] 
      } 
   if ((diag>1) && (i==1)) print "geometry after adding velocities" >> "diagnostics" 
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   if (diag>1) print arr[i,1],arr[i,2],arr[i,3] >> "diagnostics" 
   } 
 
#pull out other information useful for testing whether total energy is right or bad 
blankLineTester=10 
while (blankLineTester>1) { 
   getline < "geoPlusVel" 
   if ($4=="desired=") desiredModeEnK=$5 
   if ($4=="modes=") { 
      KEinitmodes=$5 
      KEinittotal=$9 
      } 
   if ($11=="potential") potentialE=$13 
   blankLineTester=length($0) 
   } 
#get initial geometry into file traj 
print numAtoms >> "traj" 
print potentialE,title1,title2,title3,title4,"runpoint 1 ","runisomer ",isomernum >> "traj" 
for (i=1;i<=numAtoms;i++) { 
   print atSym[i],geoArr[i,1],geoArr[i,2],geoArr[i,3] >> "traj" 
   } 
} # end of BEGIN 
 
#pull out the potential energy 
/SCF Done/ || /EUMP2 =/ || / Energy=/ { 
if (($1=="Energy=") && ($3=="NIter="))  newPotentialE=$2 
if ($1=="SCF") newPotentialE=$5 
if ($1=="E2") { 
   tempstring=$6 
   split(tempstring, arr10, "D") 
   newPotentialE=arr10[1]*(10^arr10[2]) 
   } 
newPotentialEK=(newPotentialE-potentialE)*627.509 
} 
 
# now we go ahead and translate the forces and add them 
(/        1    / || /        2    / || /        3    / || /        4    / || /        5    / || /        6    / || /        7    / || /        
8    / || /        9    / || /       10    / || /       11    / || /       12    / || /       13    / || /       14    / || /       
15    / || /       16    / || /       17    / || /       18    / || /       19    / || /       20    / || /       21    / || /       
22    / || /       23    / || /       24    / || /       25    / || /       26    / || /       27    / || /       28    / || /       
29    / || /       30    / || /       31    / || /       32    / || /       33    / || /       34    / || /       35    /) && 
length($3) > 9 { 
i=$1 
for (j=1;j<=3;j++) { 
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   forceArr[i,j]=$(2+j)    #the raw units of the forces are Hartree/Bohr 
   } 
if ((diag>1) && (i==1)) print "i,weight[i],forceArr[i,1],forceArr[i,2],forceArr[i,3]" >> 
"diagnostics" 
if (diag>1) print i,weight[i],forceArr[i,1],forceArr[i,2],forceArr[i,3] >> "diagnostics" 
} 
 
END { 
#put out Echeck but only if not a DRP 
if (DRP==0) { 
   print "trajectory #",isomernum >> "Echeck" 
   print "point 1 potential E=",newPotentialEK,"   point 1 kinetic E=",KEinittotal,"  
Total=",newPotentialEK+KEinittotal >> "Echeck" 
   print "desired total energy=", desiredModeEnK >> "Echeck" 
   if ((newPotentialEK+KEinittotal)>(desiredModeEnK+etolerance)) print "XXXX bad 
total Energy" >> "Echeck" 
   if ((newPotentialEK+KEinittotal)<(desiredModeEnK-etolerance)) print "XXXX bad 
total Energy" >> "Echeck" 
   } 
# turn the forces into motion 
for (i=1;i<=numAtoms;i++) { 
   for (j=1;j<=3;j++) { 
# conversions here take force to J/angstrom, 1E20 converts to kg angstroms / s^2, then 
mult time (s^s) and divide by weight in kg to get angstroms 
      
forceArr[i,j]=0.5*1E20*forceArr[i,j]*627.509*(4184/(0.529177*avNum))*(timestep^2)/
(weight[i]/(avNum*1000)) 
# for simplicity, DRPs will throw away the forces at the second pont.  This means that if 
we are not at a saddlepoint, point 2 = point 1 but this is a minor waste 
      if (DRP==1) forceArr[i,j]=0 
      arr[i,j]=arr[i,j]+forceArr[i,j] 
# if atoms are fixed, replace calcd new position by original position 
      if ((i==fixedatom1) || (i==fixedatom2) || (i==fixedatom3) || (i==fixedatom4)) 
arr[i,j]=geoArr[i,j] 
      } 
   if ((diag>1) && (i==1)) print "i,weight[i],forceArr[i,1],forceArr[i,2],forceArr[i,3]" >> 
"diagnostics" 
   if (diag>1) print i,weight[i],forceArr[i,1],forceArr[i,2],forceArr[i,3] >> "diagnostics" 
   printf("%s %.7f %.7f %.7f",atSym[i],arr[i,1],arr[i,2],arr[i,3]) 
   if (i>highlevel) printf(" %s","M") 
   print "" 
   } 
print "" 
if (length(meth5)>2) print meth5 
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if (length(meth6)>2) print meth6 
if (methodfilelines>=1) { 
   for (i=1;i<=methodfilelines;i++) { 
      getline < "methodfile" 
      print $0 
      } 
   } 
print "" 
#get second geometry into file traj 
print numAtoms >> "traj" 
print newPotentialE,title1,title2,title3,title4,"runpoint 2 ","runisomer ",isomernum >> 
"traj" 
for (i=1;i<=numAtoms;i++) { 
   print atSym[i],arr[i,1],arr[i,2],arr[i,3] >> "traj" 
   } 
} 
 
 

5. Program progdynb 

BEGIN { #this is the main routine for generating new .com files by the Verlet 
algorithym 
# Aug 2010 increased elements handled automatically but only up to bromine! 
# Jan 2009 - a number of little changes to improve reporting, precision, etc 
# Nov 2008 added ability to handle DRPs 
# Aug 2008 added long list of atoms to handle 1-17 without change 
# May 2008 added option to put out velocities in vellist - make diag=3 
# version Feb 2008 incorporates methodfile, boxon and boxsize 
# version Jan 2008 incorporates fixed atoms, oniom, and velocity damping 
# version August 2007 incorporates keepevery to decrease size of dyn file 
# version Sept 11, 2005 - incorportates meth3, meth4, meth5, meth6, but not yet rotation 
 
# default parameters, including quassiclassical, no displacements, transition state, not a 
DRP 
# do not change these - rather, change progdyn.conf to set the parameters 
initialDis=0; timestep=1E-15; scaling=1.0; temp=298.15 
classical=0; numimag=1; DRP=0; cannonball=0 
memory=20000000 
diag=1; checkpoint="g09.chk"; searchdir="positive"; boxon=0 
boxsize=10; maxAtomMove=0.1; title1="you"; title2="need" 
title3="a"; title4="progdyn.conf"; processors=1; highlevel=999 
damping=1 
 
#initialization 
i=1;j=1;k=1 
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c=29979245800; h=6.626075E-34; avNum=6.0221415E23 
RgasK=0.00198588; RgasJ=8.31447 
numAtoms=0; atomnumber=0 
conver1=4.184E26 #dividing by this converts amu angs^2 /s^2 to kcal/mol 
OFS="     " 
 
# read progdyn.conf for configuration info 
blankLineTester=10 
while (blankLineTester>1) { 
   getline < "progdyn.conf" 
   if ($1=="method") method=$2 
   if ($1=="method2") meth2=$2 
   if ($1=="charge") charge=$2 
   if ($1=="multiplicity") multiplicity=$2 
   if ($1=="memory") memory=$2 
   if ($1=="processors") processors=$2 
   if ($1=="checkpoint") checkpoint=$2 
   if ($1=="timestep") timestep=$2 
   if ($1=="diagnostics") diag=$2 
   if ($1=="method3") meth3=$2 
   if ($1=="method4") meth4=$2 
   if ($1=="method5") meth5=$2 
   if ($1=="method6") meth6=$2 
   if ($1=="highlevel") highlevel=$2 
   if ($1=="keepevery") keepevery=$2 
   if ($1=="fixedatom1") fixedatom1=$2 
   if ($1=="fixedatom2") fixedatom2=$2 
   if ($1=="fixedatom3") fixedatom3=$2 
   if ($1=="fixedatom4") fixedatom4=$2 
   if ($1=="boxon") boxon=$2 
   if ($1=="boxsize") boxsize=$2 
   if ($1=="DRP") DRP=$2 
   if ($1=="maxAtomMove") maxAtomMove=$2 
   if ($1=="methodfile") methodfilelines=$2 
   if ($1=="killcheck") killcheck=$2 
   if ($1=="damping") damping=$2 
   if ($1=="title") { 
      title1=$2 
      title2=$3 
      title3=$4 
      title4=$5 
      } 
   blankLineTester=length($0) 
   } 
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if (diag>=1) print "***************** starting progdynb *****************" >> 
"diagnostics" 
if (diag>=1) print "method,charge,multiplicity,memory" >> "diagnostics" 
if (diag>=1) print method,charge,multiplicity,memory >> "diagnostics" 
if (diag>=1) print "processors,checkpoint,title" >> "diagnostics" 
if (diag>=1) print processors,checkpoint,title1,title2,title3,title4 >> "diagnostics" 
 
# get number of atoms and weights from geoPlusVel, and previous geometries from old 
and older 
getline < "geoPlusVel" 
numAtoms=$1 
for (i=1;i<=numAtoms;i++) { 
   getline < "geoPlusVel" 
   weight[i]=$5; atSym[i]=$1 
   } 
 
for (at=1;at<=numAtoms;at++) { 
   getline < "old" 
   oldarr[at,1]=$4; oldarr[at,2]=$5; oldarr[at,3]=$6 
   } 
 
for (at=1;at<=numAtoms;at++) { 
   getline < "older" 
   olderarr[at,1]=$4; olderarr[at,2]=$5; olderarr[at,3]=$6 
   } 
 
#for DRPs read in oldAdjForces and maxAtomMove 
if (DRP==1) { 
   for (at=1;at<=numAtoms;at++) { 
      getline < "oldAdjForces" 
      oldForce[at,1]=$1; oldForce[at,2]=$2; oldForce[at,3]=$3 
      } 
   getline < "maxMove" 
   if (($1<maxAtomMove) && ($1>0)) maxAtomMove=$1 
   if (maxAtomMove<0.000001) maxAtomMove=0.000001 
   } 
 
# record atom velocities for IVR analysis.  This is actually the velocity in the previous 
run, which is the easiest to calculate. 
getline < "isomernumber" 
isomernum = $1 
getline < "runpointnumber" 
runpointnum = $1 
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if (diag==3) print "runpoint ",runpointnum-1,"runisomer ",isomernum >> "vellist" 
for (at=1;at<=numAtoms;at++) { 
   atomVel=((oldarr[at,1]-olderarr[at,1])^2 + (oldarr[at,2]-olderarr[at,2])^2 
+(oldarr[at,3]-olderarr[at,3])^2)^.5 
   KEatomstotal=KEatomstotal+0.5*weight[at]*(atomVel^2)/((timestep^2)*conver1) 
   if (diag==3) print atomVel >> "vellist" 
   } 
apparentTemp=KEatomstotal*2/(3*RgasK*numAtoms) 
if (diag==4) print "KEatomstotal",KEatomstotal,"apparent Temperature",apparentTemp 
>> "vellist" 
} 
 
#pull out the potential energy 
/SCF Done/ || /EUMP2 =/ || / Energy=/ { 
if (($1=="Energy=") && ($3=="NIter="))  newPotentialE=$2 
if ($1=="SCF") newPotentialE=$5 
if ($1=="E2") { 
   tempstring=$6 
   split(tempstring, arr10, "D") 
   newPotentialE=arr10[1]*(10^arr10[2]) 
   } 
} 
 
#must adjust next line for weird atoms 
(/        1    / || /        2    / || /        3    / || /        4    / || /        5    / || /        6    / || /        7    / || /        
8    / || /        9    / || /       10    / || /       11    / || /       12    / || /       13    / || /       14    / || /       
15    / || /       16    / || /       17    / || /       18    / || /       19    / || /       20    / || /       21    / || /       
22    / || /       23    / || /       24    / || /       25    / || /       26    / || /       27    / || /       28    / || /       
29    / || /       30    / || /       31    / || /       32    / || /       33    / || /       34    / || /       35    /) && 
length($3) > 9 { 
i=$1 
for (j=1;j<=3;j++) { 
   forceArr[i,j]=$(2+j)    #the raw units of the forces are Hartree/Bohr 
   } 
if ((diag>1) && (i==1)) print "i,weight[i],forceArr[i,1],forceArr[i,2],forceArr[i,3]" >> 
"diagnostics" 
if (diag>1) print i,weight[i],forceArr[i,1],forceArr[i,2],forceArr[i,3] >> "diagnostics" 
} 
 
END { 
#############routine for DRPs############## 
if (DRP==1) { 
   maxForce=0;oscillTest=0 
   for (i=1;i<=numAtoms;i++) { 
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      for (j=1;j<=3;j++) { 
# conversions here take force to J/angstrom, 1E20 converts to kg angstroms / s^2, then 
mult time (s^s) and divide by weight in kg to get angstroms 
         
forceArr[i,j]=1E20*forceArr[i,j]*627.509*(4184/(0.529177*avNum))*(timestep^2)/(wei
ght[i]/(avNum*1000)) 
         oscillTest=oscillTest+forceArr[i,j]*oldForce[i,j] 
         if (forceArr[i,j]>maxForce) maxForce=forceArr[i,j] 
         if ((0-forceArr[i,j])>maxForce) maxForce=-forceArr[i,j] 
         } 
      if (i==1) printf("% .8f % .8f % .8f \n",forceArr[1,1],forceArr[1,2],forceArr[1,3])  > 
"oldAdjForces" 
      if (i>1) printf("% .8f % .8f % .8f \n",forceArr[i,1],forceArr[i,2],forceArr[i,3])  >> 
"oldAdjForces" 
      } 
   print "oscillTest ",oscillTest >> "oldAdjForces" 
   if (oscillTest<0) { 
      maxAtomMove = maxAtomMove*0.5 
      print maxAtomMove > "maxMove" 
      } 
   if (oscillTest>0) { 
      maxAtomMove = maxAtomMove*1.2 
      print maxAtomMove > "maxMove" 
      } 
   print "maxAtomMove ",maxAtomMove >> "oldAdjForces" 
   forceMult=maxAtomMove/maxForce 
   for (i=1;i<=numAtoms;i++) { 
      for (j=1;j<=3;j++) { 
         newarr[i,j]=oldarr[i,j]+forceMult*forceArr[i,j] 
         } 
      } 
   } 
######## 
 
#############normal routine for Verlet ############## 
if (DRP==0) { 
   for (i=1;i<=numAtoms;i++) { 
      for (j=1;j<=3;j++) { 
# conversions here take force to J/angstrom, 1E20 converts to kg angstroms / s^2, then 
mult time (s^s) and divide by weight in kg to get angstroms 
         
forceArr[i,j]=1E20*forceArr[i,j]*627.509*(4184/(0.529177*avNum))*(timestep^2)/(wei
ght[i]/(avNum*1000)) 
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         if ((diag>1) && (i==1)) print "i,weight[i],forceArr[i,1],forceArr[i,2],forceArr[i,3]" 
>> "diagnostics" 
         if (diag>1) print i,weight[i],forceArr[i,1],forceArr[i,2],forceArr[i,3] >> 
"diagnostics" 
         newarr[i,j]=oldarr[i,j]+damping*(oldarr[i,j]-olderarr[i,j])+forceArr[i,j] 
         if ((i==fixedatom1) || (i==fixedatom2) || (i==fixedatom3) || (i==fixedatom4)) 
newarr[i,j]=oldarr[i,j] 
#turn around atoms outside the box 
         if (boxon==1) { 
            if (newarr[i,j]>boxsize) if (oldarr[i,j]>olderarr[i,j]) 
newarr[i,j]=oldarr[i,j]+damping*(olderarr[i,j]-oldarr[i,j])+forceArr[i,j] 
            if (newarr[i,j]<-1*boxsize) if (oldarr[i,j]<olderarr[i,j]) 
newarr[i,j]=oldarr[i,j]+damping*(olderarr[i,j]-oldarr[i,j])+forceArr[i,j] 
            } 
         } 
      } 
   } 
######## 
 
if ((runpointnum % keepevery)==0) system("cat g09.log >> dyn") 
print "%nproc=" processors 
print "%mem=" memory 
if (killcheck!=1) print "%chk=" checkpoint 
print "# " method " force scf=(maxcycle=200) " 
if (meth2=="unrestricted") print "guess=mix" #for unrestricted calculations 
if (meth2=="read") print "guess=tcheck" #for reading orbitals from check, sometimes 
faster, sometimes not 
print "pop=none " 
if (length(meth3)>2) print meth3 
if (length(meth4)>2) print meth4 
print "" 
print  title1,title2,title3,title4 
print "runpoint ",runpointnum 
print "runisomer ",isomernum 
if (DRP==1) print "maxForce and forceMult and 
maxAtomMove",maxForce,forceMult,maxAtomMove 
print "" 
print charge,multiplicity 
print numAtoms >> "traj" 
print newPotentialE,title1,title2,title3,title4,"runpoint ",runpointnum,"runisomer 
",isomernum >> "traj" 
for (i=1;i<=numAtoms;i++) { 
   printf("%s %.7f %.7f %.7f",atSym[i],newarr[i,1],newarr[i,2],newarr[i,3]) 
   printf("%s %.7f %.7f %.7f",atSym[i],newarr[i,1],newarr[i,2],newarr[i,3]) >> "traj" 
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   print "" >> "traj" 
   if (i>highlevel) printf(" %s","M") 
   print "" 
   } 
   print "" 
   if (length(meth5)>2) print meth5 
   if (length(meth6)>2) print meth6 
   if (methodfilelines>=1) { 
      for (i=1;i<=methodfilelines;i++) { 
         getline < "methodfile" 
         print $0 
         } 
      } 
   print "" 
} 
 

6. Program randgen 

 

# c program 
# this can be replaced by a more reliable random number 
# generator when available on a system 
#include <stdio.h> 
#include <stdlib.h> 
 
int a,b,c; 
double d; 
 
int product(int x, int y); 
 
int main(void) 
{ 
   int count=1; 
   srand48(time (0)); 
   while (count<=10000) 
   { 
      d = drand48(); 
      printf ("%.20f\n", d); 
      count++; 
   } 
   return 0; 
} 
 

7. Program proganal 
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BEGIN { 
getline < "isomernumber" 
isomer=$1 
} 
/ Dichlorovinylketone/ { 
   printf("%s %s %s %s %s %s   ",$1,$2,$3,$4,$6,$8) 
   runpoint=$6 
   } 
/Standard orientation/,/Rotational constants/ { 
   if (($1>.5) && ($1<27)) { 
      A[$1]=$4;B[$1]=$5;C[$1]=$6 
      } 
   } 
 
END { 
   C10Cl11=Distance(10,11) 
   Cl9C10=Distance(9,10) 
   S7C10=Distance(7,10) 
      printf("%s %.3f %s %.3f %s %.3f 
","C10Cl11",C10Cl11,"Cl9C10",Cl9C10,"S7C10",S7C10) 
      if (runpoint>500) { 
         print "Too many points.  XXXXMT" 
         movedyn(isomer) 
         movetraj(isomer) 
         } 
      if (Cl9C10>2.1) { 
         print "Inversion Product XXXX" 
         movedyn(isomer) 
         movetraj(isomer) 
         } 
      if (C10Cl11>2.1) { 
         print "Retention Product XXXX" 
         movedyn(isomer) 
         movetraj(isomer) 
         } 
      if (S7C10>3.5) { 
         print "Floated off XXXX" 
         movedyn(isomer) 
         } 
 
system("date '+%b:%d:%Y %T'") 
   system("tail -1 Echeck | grep XXXX") 
   } 
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function Distance(Atom1,Atom2) { 
  return sqrt((A[Atom1]-A[Atom2])^2 + (B[Atom1]-B[Atom2])^2 + (C[Atom1]-
C[Atom2])^2) 
} 
 
function Angle(Atom1,Atom2,Atom3) { 
   value=((-
Distance(Atom1,Atom3)^2+Distance(Atom1,Atom2)^2+Distance(Atom2,Atom3)^2)/(2
*Distance(Atom1,Atom2)*Distance(Atom2,Atom3))) 
   return acos(value) 
} 
 
function asin(x) { return (180/3.141592)*atan2(x, sqrt(1-x*x)) } 
 
function acos(x) { return (180/3.141592)*atan2(sqrt(1-x*x), x) } 
 
function atan(x) { return (180/3.141592)*atan2(x,1) } 
 
function Dihedral(Atom1,Atom2,Atom3,Atom4) { 
   B1x=A[Atom2]-A[Atom1] 
   B1y=B[Atom2]-B[Atom1] 
   B1z=C[Atom2]-C[Atom1] 
   B2x=A[Atom3]-A[Atom2] 
   B2y=B[Atom3]-B[Atom2] 
   B2z=C[Atom3]-C[Atom2] 
   B3x=A[Atom4]-A[Atom3] 
   B3y=B[Atom4]-B[Atom3] 
   B3z=C[Atom4]-C[Atom3] 
   modB2=sqrt((B2x^2)+(B2y^2)+(B2z^2)) 
# yAx is x-coord. etc of modulus of B2 times B1 
   yAx=modB2*(B1x) 
   yAy=modB2*(B1y) 
   yAz=modB2*(B1z) 
# CP2 is the crossproduct of B2 and B3 
   CP2x=(B2y*B3z)-(B2z*B3y) 
   CP2y=(B2z*B3x)-(B2x*B3z) 
   CP2z=(B2x*B3y)-(B2y*B3x) 
   termY=((yAx*CP2x)+(yAy*CP2y)+(yAz*CP2z)) 
# CP is the crossproduct of B1 and B2 
   CPx=(B1y*B2z)-(B1z*B2y) 
   CPy=(B1z*B2x)-(B1x*B2z) 
   CPz=(B1x*B2y)-(B1y*B2x) 
   termX=((CPx*CP2x)+(CPy*CP2y)+(CPz*CP2z)) 
  dihed4=(180/3.141592)*atan2(termY,termX) 



 167 

  return dihed4 
} 
 
function killdyn(isomer) { 
   system("rm -f dyn") 
} 
 

 

8. progdyn.conf 

 

#This is the configuration file for PROGDYN.  This file is read by progdynstarterHP and 
# the awk programs proggenHP, prog1stpoint, prog2ndpoint, and progdynb. 
#The programs won't read anything past the first blank line, 
#and this file must end with a blank line. 
#The program has a number of default values but they are unlikely to be what you want. 
#Do not delete lines - rather, comment out lines for unwanted options. 
#The values here are read repeatedly and most can be changed in the middle of running 
jobs 
#***The keywords are case sensitive.  The following keywords should always be 
defined:*** 
#***method, charge, multiplicity, memory, processors, title 
#*** method --The following word is copied exactly to the gaussian input file. 
method B3LYP/6-31+G** 
#*** method2 --The options here are restricted, unrestricted, and read. restricted is the 
default 
#If the method is U..., put unrestricted here and the .com files will have in them 
guess=mix. 
#If you put read here, the .com files will contain guess=tcheck, which sometimes makes 
things faster, sometimes not. 
#The use of read requires a specifically defined checkpoint file name using the keyword 
checkpoint. 
method2 restricted 
charge -1 
multiplicity 1 
processors 4 
#*** memory --The following "word" is copied exactly to the gaussian input file after 
%mem=. 
memory 7200mb 
#*** killcheck and checkpoint -- You can use a specifically defined checkpoint file 
name by putting 
#the name after the keyword checkpoint.  This is necessary if you use the read option 
with method2. 
#Defined checkpoint names are an unnecessary modest hastle and if you do not want to 
bother, use killcheck 1 
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killcheck 1 
#checkpoint dyn20.chk 
#*** diagnostics -- 0 prints out nothing extra, 1 (default) prints out extra stuff to a 
#file "diagnostics", 2 adds more stuff, 3 adds velocities to a file "vellist" 
#4 adds the apparent temperature to vellist, but this is meaningless with quasiclassical 
calculations 
diagnostics 0 
#*** title -- the title keyword must be followed by exactly four words 
title Dichlorovinylketone quasiclassical trajectories 298.15 
#*** initialdis -- 0 (default) turns off displacement of the normal modes, so that all 
trajectories start from the same place 
# and only the energies and signs of the motion in the modes are randomized 
# 1 gives a flat distribution of displacements where all of the possible values are equally 
likely 
# 2 (recommended) gives a QM-like gaussian distribution of displacements, so that 
displacements in the middle are more likely than 
# those at the end by 1/e 
initialdis 0 
#*** timestep -- this is the time between points in the trajectory.  Typical values would 
be 1E-15 or 0.5E-15 or 0.25E-15 
timestep 1E-15 
#*** scaling -- this lets you scale the gaussian frequencies by a constant 
scaling 1.0 
temperature 298.15 
#*** method3, method4, method5, and method6 -- These keywords let you add extra 
lines to the gaussian input file. 
#method3 and method4 add lines at the top of the input after the lines defining the 
method, and 
#this is useful to implement things like the iop for mPW1k 
#method5 and method6 add lines after the geometry, after a blank line of course 
#only a single term with no spaces can be added, one per method line.  Here are some 
examples to uncomment if needed 
#method3 IOp(3/76=0572004280) 
#method3 scrf=(pcm,solvent=ethanol) 
#add the line below with big structures to get it to put out the distance matrix and the 
input orientation 
#method3 iop(2/9=2000) 
method4 scrf=(pcm,solvent=ethanol) 
#method5 radii=bondi 
#method6 
#*** methodfile -- This keyword lets you add more complicated endings to gaussian 
input files 
#such as a gen basis set.  Put after the keyword the number of lines in a file you create 
called 
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#methodfile that contains the test you want to add to the end of the gaussian input 
methodfile 0 
#*** numimag --This tells the program the number of imaginary frequencies in the 
starting structure. 
#if 0, treats as ground state and direction of all modes is random 
#if 1, motion along the reaction coordinate will start out in the direction defined by 
searchdir 
#if 2, only lowest freq will go direction of searchdir and other imag mode will go in 
random direction 
numimag 0 
#*** searchdir -- This keyword says what direction to follow the mode associated with 
the imaginary frequency. 
#The choices are "negative" and "positive".  Positive moves in the direction defined in 
the gaussian frequency calculation 
#for the imaginary frequency, while negative moves in the opposite direction.  The 
correct choice can be made either 
#by a careful inspection of the normal modes and standard orientation geometry, or by 
trial and error. 
searchdir positive 
#*** classical --  for quassiclassical dynamics, the default, use 0.  for classical dynamics, 
use 1 
#if there are no normal modes and the velocities are to be generated from scratch, use 
classical 2 
classical 0 
#*** DRP, saddlepoint, and maxAtomMove --to run a DRP use 'DRP 1' in the line 
below, otherwise leave it at 0 or comment it out 
#the treatment of starting saddlepoints is not yet implemented so use saddlepoint no 
#if DRP shows oscillations then decrease maxAtomMove 
DRP 0 
saddlepoint no 
maxAtomMove 0.01 
#*** cannonball -- The program can "fire" a trajectory from a starting position toward a 
particular target, such as toward 
#a ts.  To use this, make a file cannontraj with numAtom lines and three numbers per 
line that defines the vector 
#for firing the trajectory, relative to the starting geometry's standard orientation.  The 
number following cannonball sets 
#the extra energy being put into the structure in kcal/mol 
#cannonball 10 
#*** keepevery --This tells the program how often to write the gaussian output file to 
file dyn, after the first two points. 
#Use 1 for most dynamics to start with, but use a higher number to save on disk space or 
molden loading time. 
keepevery 1 
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#*** highlevel --For ONIOM jobs, the following line states the number of highlevel 
atoms, 
#which must come before the medium level atoms.  Use some high value such as 999 if 
not using ONIOM 
highlevel 999 
#*** fixedatom1, fixedatom2, fixedatom3, and fixedatom4 - These fix atoms in space. 
#Fixing one atom serves no useful purpose and messes things up, while fixing two atoms 
#fixes one distance and fixing three has the effect of fixing three distances, not just two 
#in current form fixed atoms only are meant to work with no displacements, that is, 
initialdis=0 
#fixedatom1 2 
#fixedatom2 3 
#fixedatom3 19 
#*** boxon and boxsize - With boxon 1, a cubic box is set such that atoms that reach the 
edge 
#are reflected back toward the middle.  Useful for dynamics with solvent molecules.  
This is a crude 
#implementation that is ok for a few thousand femtoseconds but will not conserve 
energy long term. 
#Set the box size so as to fit the entire initial molecule but not have too much extra 
room. 
#The dimensions of the box are two times the boxsize, e.g. boxsize 7.5 leads to a box 
that is 15 x 15 x 15 angstroms 
#boxon 0 
#boxsize 7.5 
#*** displacements -- This keyword lets you set the initialdis of particular modes by 
using a series of lines of the format 
# displacements NumberOfMode InitialDisForThatMode, as in the example below. You 
should be able to do as many of these as you like 
# you might consider this for rotations where a straight-line displacement goes wrong at 
large displacements 
# The choices for InitialDisForThatMode are 0, 1, 2, and 10, where 10 does the same 
thing as 0 but is maintained for now because 
# a previous version of the program had a bug that made 0 not work. 
#displacements 1 10 
#*** etolerance --This sets the allowable difference between the desired energy in a 
trajectory and the actual 
#energy, known after point 1 from the potential energy + the kinetic energy in the initial 
velocities. 
#The unit is kcal/mol and 1 is a normal value for mid-sized organic systems.  For very 
large and floppy molecules, a larger value 
#may be needed, but the value must stay way below the average thermal energy in the 
molecule (not counting zpe). 
#If initialdis is not 0 and few trajectories are being rejected, decrease the value. 
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etolerance 1 
#*** controlphase --It is sometimes useful to set the phase of particular modes in the 
initialization of trajectories. 
#The format is controlphase numberOfModeToControl positive or controlphase 
numberOfModeToControl negative. 
#*** damping -- The damping keyword lets you add or subtract energy from the system 
at each point, by multiplying the velocities 
#by the damping factor.  A damping of 1 has no effect, and since you mostly want to 
change the energy slowly, normal values range 
#from 0.95 to 1.05.  The use of damping lets one do simulated annealing - you add 
energy until the structure is moving enough 
#to sample the kinds of possibilities you are interested in, then you take away the energy 
slowly. 
damping 1 
#*** reversetraj --This keyword sets the trajectories so that both directions from a 
transition state are explored. 
#reversetraj true 
 
 
#updated Aug 9, 2007 to include the possibility of classical dynamics by the keyword 
classical 
#updated Jan 2008 to include fixed atoms, ONIOM jobs, keepevery, and box size 
#update Feb 2008 to include methodfile parameter 
# updated Nov 2008 to allow for start without an initial freq calc using classical = 2 
# update Aug 2010 to include etolerance, damping controlphase and reversetraj 
 
~ 
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