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ABSTRACT 

 

Effects of Intra-Articular Lipopolysaccharide Injection on Systemic Cytokine Gene 

Expression and Leukocyte Population in Young Horses. (December 2011) 

Carrie Lynn Mueller, B.S., University of Wisconsin-River Falls 

Co-Chairs of Advisory Committee: Dr. Dennis Sigler 

 Dr. Josie Coverdale 

 

Nineteen yearling Quarter Horses were utilized in a randomized, complete block 

design to evaluate systemic cytokine gene expression and circulating leukocyte 

population in young horses following an intra-articular lipopolysaccharide (LPS) 

challenge.  Horses were administered an injection of 0.25 ng (n = 7) or 0.50 ng (n = 6) of 

LPS or lactated Ringer′s solution (n = 6; control).  Blood was collected via jugular 

catheter at pre-injection h 0 and at 2, 6, 12, and 24 h following aseptic injection of the 

left radiocarpal joint.  Aseptic arthrocentesis was performed at the same times to sample 

synovial fluid for a companion study.  Total RNA was isolated from leukocytes using a 

commercially available kit and real-time PCR was used to determine relative gene 

expression of the cytokines; interleukin (IL)-1beta (β), IL-6, IL-8, IL-10, and tumor 

necrosis factor-alpha (TNF-α).  Determination of total leukocyte subpopulations and 

differentials was performed by Texas Veterinary Medical Diagnostic Laboratory.   

Data were analyzed using the PROC MIX procedure of SAS.  Gene expression 

of all cytokines analyzed was unaffected by treatment.  However, changes over time 

were observed in some cytokines.  Interleukin-1β was increased above baseline at 6, 12, 
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and 24 h (P = 0.04), IL-6 was decreased slightly at 6 and 12 h and then increased at 24 h 

(P = 0.002), and TNF-α was increased at 6 and 12 h (P = 0.01).  Only IL-8 exceeded a 2-

fold change in expression (P = 0.01), peaking at 12 h and indicating greater 

responsiveness to arthrocentesis than was observed in the other cytokines.  No treatment 

effects on the leukocyte population were observed; however, total circulating leukocytes 

increased over time (P = 0.04), peaking at 6 h post-injection. Similarly, an increase over 

time was observed in monocytes (P = 0.002) and in platelets (P = 0.01) at 24 h post-

injection.  

The results indicate that regardless of treatment, a mild immune response was 

elicited, likely due to repeated arthrocentesis. Future experiments should consider the 

effects of arthrocentesis and potential systemic inflammatory response, even in control 

animals, when administering intra-articular LPS to young horses. 
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CHAPTER I 

INTRODUCTION 

 

Osteoarthritis and associated musculoskeletal injuries are commonly accepted as 

the most prevalent source of lameness in the equine athlete.  From an epidemiological 

standpoint, joint disease has been deemed the primary source of inferior performance 

and inability to compete in the racehorse (Jeffcott et al., 1982; Wilsher et al., 2006).  In 

one study, of 1,042 horses admitted to a large animal clinic for signs of lameness, 42% 

had lameness related to joint disease (Todhunter and Lust, 1990).  The economic impact 

of this loss of performance is significant and demonstrates the need for investigation of 

this condition.  Several experimental models have been developed such that the 

pathogenesis of joint disease may be studied as well as the effectiveness of potential 

treatment options.  Previous studies have included intra-articular injection of the polyene 

antibiotic, filipin (McIlwraith et al., 1979), sodium monoiodoacetate (Trotter et al., 

1989), and articular particles (Hurtig, 1988).  While useful, these models all utilize 

primary cartilage destruction and fail to investigate the effects of synovial membrane 

inflammation alone on articular cartilage metabolism.  

Intra-articular injection of Escherichia coli-derived lipopolysaccharide (LPS) has 

been used successfully as a method of inducing temporary inflammation in adult horses 

to mimic the progression of joint disease (Firth et al., 1987; Palmer and Bertone 1994;  

De Grauw et al., 2009).  While this model has been useful, to our knowledge the model  

____________ 
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has thus far been applied solely to skeletally mature horses.  Because the highest 

competitions in many performance disciplines such as futurities are limited to horses in 

their 3-year-old years, adolescent horses enter rigorous training regimens at an early age.  

The immature skeletal structure of a young horse in training is subject to repeated stress 

which induces inflammation and may ultimately lead to articular degradation.  Models 

for experimentally-induced inflammation designed for the mature horse may not be 

appropriate for the growing horse due to factors including differences in body size, 

biomechanical forces, and immunological development.  It has been suggested that the 

structures involved in osteoarthritis may be affected differently by trauma, degeneration, 

or osteochondrosis due to age (Goodrich and Nixon, 2006).  Thus, determining an 

appropriate dosage of LPS and establishing a model for investigating joint degradation 

in a horse at this stage of maturity would be beneficial. 

Previous studies have typically focused on biomarkers derived from synovial 

fluid to detect articular degradation.  While this approach is beneficial in providing 

insight into the current condition of a particular joint, this methodology fails to consider 

the overall health and immune status of the animal.  It is unknown whether a horse 

exhibiting signs of lameness may be experiencing a systemic inflammatory response.  If 

this is the case, management decisions should take into consideration this potential 

overstimulation of the immune system. 

Furthermore, the potential correlation between joint degradation and alterations 

in systemic biomarkers may provide a less invasive alternative for assessing the current 

status of joint health as well as providing early detection of complications prior to when 
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clinical signs become apparent.  Gene expression of pro-inflammatory cytokines derived 

from synovial fluid has been successfully used as an indirect marker of joint disease 

(Lipsky et al., 1989).  We hypothesize that analyzing the peripheral blood gene 

expression of a panel of cytokines known to be crucial mediators of the inflammatory 

response will enable determination of whether a systemic inflammatory response occurs 

in conjunction with a localized inflammatory insult.  Therefore, the objectives of the 

current study were to: 

1.) quantify and compare the total circulating leukocyte population and determine 

cellular differential; and  

2.) evaluate the peripheral blood gene expression of a panel of principal cytokines 

involved in the inflammatory cascade in yearling horses following an intra-articular LPS 

injection at different dosage levels. 
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CHAPTER II 

REVIEW OF THE LITERATURE 

 

Anatomy of the Synovial Joint 

 The purpose of a synovial joint is to facilitate movement as well as disperse and 

transmit biochemical load.  Its structure consists of two or more articulating bone 

surfaces, articular cartilage, the joint cavity, and the joint capsule.  The capsule functions 

in conjunction with neighboring ligaments to maintain the proper position of the 

articular surfaces.  This capsule consists of a superficial avascular, fibrous layer (stratum 

fibrosum) and a deeper, secreting layer (stratum synoviale), also referred to as the 

synovial membrane.  The synovial membrane is a vascular connective tissue that 

secretes synovial fluid and contains synoviocytes, which perform phagocytosis and 

synthesize inflammatory mediators including prostaglandins, proteases, and interleukin 

(IL)-1 (Goodrich and Nixon, 2006).  The joint cavity refers to the space between the 

adjacent bones of the joint which is surrounded by the joint capsule.  This cavity is 

small, filled with synovial fluid, and is enclosed by the synovial membrane.  Synovial 

fluid is a lubricating fluid containing ions and molecules similar to those found in blood 

plasma, with the addition of a high concentration of hyaluronan.  Synovial fluid contains 

approximately 10% polymorphonuclear leukocytes with the remaining volume 

consisting of mononuclear cells (predominantly monocytes, lymphocytes, synovial 

lining cells; Helal and Karadi, 1968). 
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 A layer of hyaline cartilage known as articular cartilage covers the articular 

surface.  Its approximate composition is 75% water, 15% type II collagen, 10% 

proteoglycans, and 2% chondrocytes (Poole, 2001).  The type II collagen fibrils form a 

network containing proteoglycans and hyaluronan, which provide compressive stiffness 

and tensile strength to the articular cartilage.  The proteoglycans are actively turned over 

via synthesis by chondrocytes and degradation by extracellular proteinases, resulting in a 

delicate equilibrium.  Under normal conditions, the stringent regulation of this matrix 

homeostasis is achieved through cytokines, growth factors, and proteinases (Tyler, 

1991).   

Pathology of Osteoarthritis 

 Osteoarthritis is a degenerative, chronic disease which occurs when there is an 

imbalance of extracellular matrix destruction and repair and is characterized by erosion 

of type II collagen and cartilage-specific proteoglycans (Todhunter et al., 1996).  

Numerous causes of osteoarthritis have been implicated; however, the most prevalent 

cause in young horses is trauma and the concomitant synovitis (McIlwraith and Trotter, 

1996).  Repetitive overuse and deficiencies in conformation are contributing factors due 

to excessive biomechanical forces overwhelming the structural integrity of the legs.  The 

joints of the young horse, favoring tissue turnover and growth, have higher synthesis 

rates of total protein and stromelysin in articular cartilage as well as greater metabolic 

activity overall when compared with adult horses (Morris and Treadwell, 1994). 

 Typically, the inflammatory process is initiated in the synovial membrane, 

cartilage, or subchondral bone.  While the interactions between tissues are complex and 
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not fully understood, some traumatic event triggers the release of inflammatory 

mediators, principally cytokines IL-1 and TNF-α, from the primary tissue of insult.  

These cytokines inhibit proteoglycan synthesis and cause the release of 

metalloproteinases and prostaglandins from synoviocytes and chondrocytes (McIlwraith 

and Trotter, 1996).  In addition, IL-1 stimulates chondrocytes to secrete stromelysin, 

which cleaves collagenase to its active form (Towle et al., 1987).  Cysteine proteases, 

also released from the synovial membrane by IL-1 or TNF-α signaling, digest articular 

cartilage matrix, releasing degradative particles into the synovial fluid (Huet et al., 

1993).  Chondrocytes, synoviocytes, bone cells, and leukocytes release a host of pro-

inflammatory cytokines, which upregulate the activity of various metalloproteinases and 

signal for additional release of inflammatory mediators.  Collagenase is the principal 

proteinase involved, disturbing the triple helix structure and effectively disrupting the 

integrity of collagen tissue.   

This imbalance of metabolism results in a loss of proteoglycans and collagen 

from the articular matrix as well as the subsequent biomechanical failure and pain 

associated with osteoarthritis (Poole, 1990).  As degradation ensues, proteoglycan 

particles from the cartilage are released into the synovial fluid.  This exacerbates the 

progression of the disease as products of proteoglycan catabolism are antigenic and 

stimulate synovial inflammation (Glant et al., 1993).    

It is well recognized that with current technology, identifying early stages of 

cartilage degradation and resulting osteoarthritis is difficult and often impossible prior to 

the appearance of radiographic evidence.  Much research has been devoted to the 
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development of biomarkers which can be used to monitor degradative changes in the 

articular structures of the joint.  Cytokines, particularly IL-1 and TNF-α, are one such 

area under investigation for potential correlation between gene expression and 

inflammatory status of an individual.   

Cytokines 

Cytokine, also known as peptide regulatory factor, is an expansive term which 

encompasses the small, cell-signaling protein molecules secreted by various cells of the 

body, particularly those of the immune system.  Cytokines influence the function of a 

target cell by altering gene expression in a positive or negative manner.  The cytokine 

family includes the interleukins, lymphokines, and signaling molecules including tumor 

necrosis factor and the interferons.  These polypeptides are structurally diverse but 

possess many shared properties (O’Shea and Murray, 2008). 

 Cytokines are produced in response to inflammatory or antigenic stimuli and can 

exhibit local or systemic effects via autocrine, paracrine, or endocrine actions.  These 

proteins provide a crucial link between innate and adaptive immunity by mediating the 

immune responses of both systems.  Resting lymphocytes and other cell types of the 

immune system do not produce cytokines routinely (Lipsky et al., 1989).  Rather, 

synthesis of cytokines is generally induced by new gene transcription resulting from 

transient transcriptional activation.  The instability of encoding messenger RNA results 

in cytokine synthesis being transient as well.  Further control over cytokine production 

exists in RNA and proteolytic processing.  Upon synthesis, cytokines are secreted in a 

rapid surge (Abbas et al., 2010). 
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Circulating cytokines bind to specific transmembrane receptors which are 

regulated by external signals, such as B or T lymphocyte stimulation.  Other cytokines 

can also up- or down-regulate the expression of receptors.  Cytokines bound to the 

extracellular portion of the receptor initiate intracellular signaling pathways by altering 

gene expression in target cells.  Typical effects induced by cytokines include lymphocyte 

differentiation and activation of effector cells.  The secretion of cytokines triggers a 

cascade of events which has diverse effects on cells involved in immunity and 

inflammation.  Cellular responses are tightly regulated through negative feedback 

mechanisms and inhibitors, and signals are fine-tuned through the synergistic and 

antagonistic properties of cytokines (Abbas et al., 2010). 

The biomedical field has expressed an increasing interest in cytokine therapy as 

more is discovered about the mechanisms of action and effects of individual cytokines.  

Certain cytokines are commonly used as therapeutic agents as well as targets for 

antagonists in many inflammatory and immune diseases (Abbas et al., 2010).  A 

difficulty with this approach, however, is the pleiotropic and redundant tendencies of 

cytokines; treatment with one cytokine may have unintended additional effects, while an 

antagonist against one cytokine may not be effective due to compensation by other 

cytokines. The inflammatory cascade initiated by cytokine release is crucial to the 

pathological events that ensue, and thus understanding these events is fundamental to 

effectively disrupting the cascade and preventing damaging biochemical changes.   
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Tumor Necrosis Factor-alpha 

Tumor necrosis factor-alpha (TNF-α) is considered to be the primary mediator of 

the acute inflammatory response and is responsible for systemic complications derived 

from serious infections.  TNF-α is primarily secreted by activated mononuclear 

phagocytes; however, additional sources include antigen-stimulated T cells, natural killer 

cells, and mast cells.  The strongest stimulus for macrophage secretion of TNF-α is the 

interaction of Toll-like receptors with LPS and other microbial products (Abbas et al., 

2010).  Natural killer cells and T lymphocytes produce interferon-gamma, which 

amplifies TNF-α production by LPS-stimulated macrophages.  Activation and 

recruitment of neutrophils and monocytes to sites of infection are the primary roles of 

TNF-α.  This is accomplished through a variety of actions.  Tumor necrosis factor-α 

stimulates chemokine production by macrophages, which generates leukocyte 

chemotaxis and recruitment.  Additionally, TNF-α initiates IL-1 secretion, induces 

apoptosis, and stimulates endothelial cells to produce adhesion molecules for leukocyte 

accumulation.  When acute trauma is severe, TNF-α is produced in substantial quantities 

and causes systemic pathologic anomalies (Abbas et al., 2010).  Séguin and Bernier 

reported that TNF-α disrupts the synthesis of articular cartilage matrix and glycoproteins 

during inflammation by down-regulating link protein and type II collagen formation at 

the transcriptional level (2003).   

 

 

 



 10 

Interleukin-1 

Many of the cytokines which are synthesized by leukocytes and exhibit their 

effects on leukocytes are classified as interleukins.  Interleukin-1 exists in two isoforms 

(alpha and beta) and is released from a multitude of cells including macrophages, 

neutrophils, epithelial cells, and endothelial cells.  However, the largest amounts of IL-1 

seem to be released from mononuclear phagocytic cells at sites of inflammation (Lipsky 

et al., 1989).  It is typical for these cells to store large amounts of IL-1 in the cytoplasm, 

ready for release upon stimulation.  While sharing less than 30% amino acid homology, 

IL-1α and IL-1β appear to share the same surface receptor and have similar biologic 

activities (Auron et al., 1984).  Equine IL-1 produced from peripheral blood monocytes 

stimulated with LPS has been identified as the equine form of IL-1β (May et al., 1990).  

Both equine IL-1α and IL-1β inhibit proteoglycan synthesis of articular cartilage 

explants (Takafuji et al., 2002).  The IL-1β precursor is inactive and must be cleaved 

enzymatically, which is likely the rate-limiting step in IL-1 secretion (Dinarello, 1989).  

This cytokine works in conjunction with TNF-α to mediate the host inflammatory 

response.  It also stimulates the secretion of other inflammatory cytokines including IL-2 

and IL-6 and induces cytokine receptors to be expressed on T cells and hemopoietic 

stem cells (Dinarello, 1989).     

Extensive research implicates TNF-α and IL-1 as the key mediators in the 

progression of joint disease.  Numerous in vitro studies support the notion that these 

cytokines work synergistically with almost identical effects, stimulating proteinase 

synthesis by chondrocytes and production of neutral metalloproteinases (Dinarello, 
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1986; Ratcliffe et al., 1986; Loyau and Pujol, 1990).  Injection of IL-1 into the knee 

joints of mice stimulates in vivo proteoglycan degradation and inhibits resynthesis (van 

Beuningen et al., 1991).   

Interleukin-6 

 Another cytokine integral to both innate and adaptive immunity is IL-6.  The 

presence of microbes, IL-1, and TNF-α stimulate synthesis of IL-6 by cells including 

mononuclear phagocytes, endothelial cells, and fibroblasts.  Interleukin-6 contributes to 

the acute-phase response by inducing synthesis of hepatic acute-phase proteins and 

stimulating neutrophil production from bone marrow progenitors.  Stimulating B 

lymphocytes and pro-inflammatory cytokine production, serving as a growth factor for 

myeloma cells, and inhibiting regulatory T cells are additional attributes of IL-6 (Abbas 

et al., 2010).  High synovial fluid concentrations of IL-6 have been reported in an equine 

severe joint disease model (Bertone et al., 2001) as well as in humans with progressive 

rheumatoid arthritis (Kutukculer et al., 1998).   

Interleukin-8 

 Interleukin-8 is classified as a chemotactic cytokine, or chemokine.  Its primary 

purpose is to induce chemotaxis in neutrophil granulocytes.  Interleukin-8 functions as a 

mediator of the innate immune system and is secreted by cells with toll-like receptors.  

Production of IL-8 has been reported in vitro in LPS-stimulated macrophages, 

endothelial cells, and fibroblasts (Larsen et al., 1989).  A synovial fluid source of this 

cytokine has not been demonstrated (Lipsky et al., 1989), thus its potential effects in the 

peripheral blood merit investigation. 
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Interleukin-10 

Interleukin-10 is an important cytokine in the anti-inflammatory cascade and is 

produced chiefly by macrophages as well as regulatory T lymphocytes.  The primary 

role of IL-10 is to inhibit the pro-inflammatory effects of activated macrophages, mainly 

by down-regulating reactions which produce inflammatory products such as IL-12, 

interferon-gamma, and class II major histocompatibility complex (MHC) surface 

molecules.  Interleukin-10 impairs the activation of T lymphocytes and abolishes cell-

mediated immune reactions, limiting and ultimately terminating inflammatory reactions.  

The TNF-α-induced release of prostaglandin E2, a crucial mediator of inflammation, is 

also impeded by IL-10 (Alaaeddine et al., 1999).  Consequently, IL-10 is considered to 

be a critical signal for the regulation of both innate and cell-mediated inflammatory 

responses. 

Synovial Fluid Cytokines as Biomarkers for Joint Disease 

Previous work has largely relied upon biomarkers within the synovial fluid to 

assess joint condition.  Cytokines are crucial mediators of the inflammatory response, 

and pro-inflammatory cytokines have been used widely as indirect markers of joint 

disease (Lipsky et al., 1989).  In a study evaluating the usefulness of several synovial 

fluid cytokines to detect, diagnose, and characterize joint disease, it was found that IL-6 

was an excellent marker, being both sensitive and specific; presence of synovial fluid IL-

6 indicated joint disease and was highly correlated to synovial fluid leukocyte counts 

(Bertone et al., 2001).  The same study, which used ELISAs on synovial fluid samples 

from 119 joints, identified TNF-α and IL-1β as good predictors of joint disease (Bertone 
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et al., 2001).  All three of these cytokines have been determined to be fundamentally 

involved in stimulating an acute inflammatory response (Molloy et al., 1993) as well as 

synovial metabolism, joint inflammation, and stimulating articular cartilage degradation 

(Shinmei et al., 1989).  Studies have reported increased expression of IL-1β and TNF-α 

in the synovial fluid of osteoarthritic horses (Alwan et al., 1991; Hawkins et al., 1993), 

indicating their usefulness as secondary biomarkers of joint degradation. 

The anti-inflammatory cytokines detected at increased levels in synovial fluid of 

osteoarthritic joints are IL-4, IL-10, and IL-13 (Sutton et al, 2009).  An in vitro study 

investigating LPS-stimulated human monocytes reported the production of high levels of 

IL-10, which strongly inhibited the expression of IL-1α, IL-1β, IL-6, IL-8, TNF-α, and 

granulocyte colony-stimulating factor (de Waal Malefyt et al., 1991).  This inhibition has 

been reported to be similar in both the synovial fluid and peripheral blood mononuclear 

cells (Hart et al., 1995).   

Systemic Cytokine Response to Intravenous LPS Infusion 

To our knowledge, cytokine expression in equine plasma has not been measured 

in response to an intra-articular LPS challenge.  However, LPS has been alternatively 

introduced in several studies investigating equine response to endotoxin.  MacKay and 

colleagues (1991) identified TNF as a critical early mediator in the cellular response to 

LPS based on its effects on cytotoxicity in an in vitro study.  Inflammatory cytokine 

expression has also been evaluated in peripheral blood of horses following an 

intravenous infusion of LPS.  Up-regulation of IL-1α, IL-1β, IL-6, IL-8, and TNF-α was 

quantified by real-time PCR, with expression peaking at 60 min (IL-1α, IL-1β, IL-6, and 
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TNF-α) and 90 min (IL-6) post-infusion (Nieto et al., 2009).  A similar increase in serum 

IL-1β, IL-6, and TNF-α was reported in intra-arterially LPS-challenged rats (Givalois et 

al., 1994).  Lipopolysaccharide appears to reliably induce a detectable alteration in gene 

expression of several cytokines involved in the inflammatory cascade. 

Intra-Articular Injection of LPS to Induce Acute Inflammation 

LPS Structure 

Previous studies in numerous species have utilized intra-articular LPS injection 

to induce temporary inflammation.  As the name indicates, LPS is a molecule consisting 

of a polysaccharide covalently-linked to a lipid moiety.  An O-specific chain and core 

oligosaccharide are anchored in the outer bacterial membrane and attached to lipid A, 

which is a phosphorylated glucosamine disaccharide linked to several fatty acids.   The 

Lipid A portion is responsible for the endotoxic effects of LPS (Silipo et al., 2002; 

Figure 1). 
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Figure 1. Lipid A structure of Escherichia coli (Adapted from Silipo et al., 2002).   

GlcN = glucosamine. 

 

Lipopolysaccharide is a major structural component of the cell wall of gram-

negative bacteria and acts as a strong endotoxin.  Its ability to elicit in vivo cartilage 

degradation has been previously demonstrated in horses (De Grauw et al., 2009) and 

rabbits (Sáez-Llorens et al., 1991).  In vitro studies have produced similar effects in 

cartilage of equine (Todhunter et al., 1996), bovine (Morales et al., 1984), and canine 

(Todhunter et al., 1995) species.  Lipopolysaccharide is recognized by Toll-like receptor 

4, which activates macrophages to release cytokines (principally TNF, IL-1, and IL-6) 

and initiate an inflammatory cascade (Warren et al., 2010).  The primary cytokine 



 16 

released in response to LPS is TNF-α, which then stimulates the release of a number of 

products from macrophages and initiates the cascade of events which may ultimately 

lead to septic shock or death (Mathison et al., 1988).  

Previous Studies Utilizing Intra-Articular LPS 

Hawkins et al. (1993) reported that injection of 3 μg of LPS into the 

antebrachiocarpal joint of horses resulted in signs of acute synovitis (increased surface 

temperature of LPS-injected carpi, increased synovial fluid leukocyte count, increased 

prostaglandin E2) within 2 h of injection.  These findings are in agreement with Jacobsen 

et al. (2006), who reported fever, tachycardia, tachypnea, acute lameness, and joint 

swelling within 4-8 h following 1 μl and 3 μl LPS injection.  An even larger dosage of 

0.1 μg of LPS/kg has elicited acute fever, depression, increased pulse and respiratory 

rates, and lameness in ponies (Firth et al., 1987).  Palmer and Bertone (1994) sought to 

compare dosage levels of 0.125 ng, 0.17 ng, 0.25 ng, 0.5 ng, 25 ng, and 5,000 ng of LPS 

per joint in adult horses.  The authors reported signs of endotoxemia (i.e., fever, 

depression, lack of appetite, severe lameness) at doses larger than 0.5 ng per joint 

(Palmer and Bertone 1994).  At 12 h post-LPS injection, the magnitude of systemic signs 

presented by these horses required that they be treated with phenylbutazone and 

excluded from the remainder of the study. 

The dosage of 0.5 ng LPS successfully altered markers of collagen II turnover 

(collagenase cleavage neopeptide and carboxypeptide) and inflammatory mediators 

(prostaglandin E2, substance P, and bradykinin) when injected into the midcarpal joint of 

adult horses (De Grauw et al., 2009).  These data suggest that investigation of varying 
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dosage levels is warranted, specifically for the target population of adolescent equines, 

which has thus far been largely underrepresented in studies of equine joint health.  

Ideally, the lowest effective dosage that elicits detectable joint inflammation should be 

employed.  This is to minimize discomfort to the experimental subject as well as to more 

accurately mimic the pathophysiology of equine joint disease.  While injection of large 

doses of LPS elicits rapid, significant changes, these models represent a severe arthritis 

or acute joint sepsis.  A model which induces a less severe synovitis would more 

accurately mimic the progression of joint disease in a typical clinical case and thus may 

prove more beneficial for making inferences about the development of osteoarthritis and 

developing preventative strategies to combat early progression of the disease.   

In addition, it is of note that studies of this nature often treat each experimental 

animal with intra-articular LPS, utilizing the contralateral joint as a saline-injected 

control (Hawkins et al., 1993; De Grauw et al., 2009).  This may be of importance, as an 

earlier study has reported signs of synovitis, enhanced cytokine immunoreactivity, and 

cartilage degradation in the saline-injected, contralateral joint of horses injected with 

LPS (Todhunter et al., 1996).  These findings are in agreement with studies which have 

observed loss of proteoglycans in the saline-injected joint contralateral to either the 

hyaluronate-polylysine-injected joint in rabbits (Smith et al., 1994) or the IL-1-injected 

joint in rats (Chandrasekhar et al., 1992).  Saline solution injections did not appear to 

directly cause proteoglycan loss, as control animals treated with saline alone experienced 

no alterations in proteoglycan content (Smith et al., 1994).  Rather, these results suggest 

a potential systemic effect induced by the inflammatory agent.  It is possible that 
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cytokine-producing leukocytes may have been recruited and released into circulation, 

ultimately reaching the contralateral joint and altering proteoglycan metabolism at this 

site as well as the primary site of insult.  Alterations in serum concentrations of a direct 

indicator of the predominant protein in cartilage (N-propeptide of type IIA procollagen) 

have been reported in human osteoarthritic patients, indicating that systemic effects are 

generated by the disease (Garnero et al., 2002).  Due to the potential for unintended 

systemic consequences, an investigation into the effects of a singular intra-articular 

challenge utilizing appropriate controls is clearly warranted. 

Conclusion 

In summary, osteoarthritis is a prevalent disease which contributes profound 

losses to the performance horse industry.  The mechanisms of the disease are poorly 

understood, and a reliable early detection method has not been developed.  Current 

models for the disease utilize the adult horse; however, a young horse model may be 

more appropriate due to industry standards placing high physical demands on skeletally 

immature horses.  While numerous studies have utilized primary cartilage destruction to 

investigate the pathophysiology of osteoarthritis, synovial inflammation has been largely 

ignored.  However, research suggests that inflammatory cytokines are crucial bio-

signaling molecules which have a large role in the development of osteoarthritis by 

stimulating chondrocytes and synoviocytes to secrete cartilage-degrading proteinases.  

The use of these proteins as biomarkers may provide a more practical, less invasive 

means of monitoring joint health and identifying individuals at risk for development of 

osteoarthritis.  Reported systemic alterations in response to both osteoarthritis and a 



 19 

single inflammatory insult merit the use of a separate group of control animals, a 

measure not typically practiced in prior studies.  Therefore based on previous literature, 

a study utilizing a young horse model to investigate the potential systemic effects of a 

single, intra-articular challenge with separate control animals may provide valuable 

insight on the metabolic response to synovial inflammation in the young horse.   
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CHAPTER III 

MATERIALS AND METHODS 

 

All procedures were approved by the Texas A&M University Institutional 

Animal Care and Use Committee (AUP #2010-221).   

Animals and Treatments 

Nineteen yearling Quarter Horses from the Texas A&M University Horse Center 

herd were utilized in a randomized, complete-block design.  Horses were of similar 

breeding and aged 184 to 327 d with initial BW ranging from 220 to 384 kg.  Horses 

were blocked by age, sex, and BW and randomly assigned within block to one of three 

treatments.  Treatments were an injection containing 0.25 ng (n = 7) or 0.5 ng (n = 6) of 

LPS or lactated Ringer′s solution (n = 6; control).  The LPS was obtained from E. coli 

055:B5 and diluted in sterile lactated Ringer’s solution to the desired concentration.   

 Horses were housed in groups of four or five by BW in 25 m x 25 m dry lots for 

a back-grounding period of 21 d prior to the start of the study.  Throughout the 

experiment horses were group fed by pen and received approximately 1% BW (as fed) 

of a commercially prepared pelleted concentrate (Producers 14% Horse Pellet, 

Producer’s Cooperative Association, Bryan, TX; Table A.1) and 1.5% BW (as fed) of 

Coastal Bermudagrass hay (Cynodon dactylon; Table A.1), divided into two daily 

feedings.  Biweekly BW measurements were determined using a digital platform scale 

(CAS Corp. Seoul, Rep. of Korea) and diets were adjusted accordingly.  Horses were 

provided free access to water at all times.  Throughout the back grounding period horses 
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were individually handled a minimum of two times per week to mimic procedures used 

throughout the LPS challenge, with activities including being haltered, standing tied, 

leading quietly at the walk and trot, walking across the scale, and picking up both front 

feet.   

LPS Challenge (Time 0) 

On the day of the LPS challenge, horses were individually confined in 3 m x 3 m 

stalls and had a 14-gauge catheter inserted aseptically in the left jugular vein following 

subcutaneous administration of 1.5 ml sterile lidocaine hydrochloride 2% (RXV 

Products, Westlake, TX).  Catheters were maintained every 2 h throughout the sampling 

period with 6 ml of heparinized saline solution.  Horses were unobtrusively monitored 

for at least 2 h following catheter placement prior to sample collection.  Subsequently, 

time 0 was established, and heart rate (HR) and respiratory rate (RR) were recorded as 

well as rectal temperature via thermometer.  Each horse was then removed from its stall 

and trotted in-hand across the concrete barn-aisle for determination of a lameness score, 

according to the American Association of Equine Practitioners’ (AAEP) lameness 

grading system (range 0-5, with 0 assigned to horses with no detectable lameness and 5 

for non-weight bearing lameness; AAEP 1999).  The same evaluators scored all 19 

horses for consistency.  Circumference of the left carpal joint, which had been clipped 

24 h prior, was measured in centimeters using a flexible measuring tape at the level of 

the accessory carpal bone by a single observer.  The carpus was prepared immediately 

prior to arthrocentesis by scrubbing the surface, alternating diluted Betadine scrub and 

70% isopropyl alcohol.  A licensed veterinarian from the Texas A&M University Large 
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Animal Clinic (College Station, TX) performed arthrocentesis of the left radiocarpal 

joint, extracting synovial fluid samples with a 20-gauge needle and 6-ml syringe.  

Synovial fluid samples were processed for analysis of markers of joint inflammation and 

cartilage markers in a related study (Lucia et al., 2011).  Immediately following synovial 

fluid aspiration, 0.8 ml was injected into the same joint containing LPS according to 

assigned treatments.    

Blood Sampling 

Subsequently, blood was collected via the jugular catheter into 

ethylenediaminetetraacetic acid (EDTA)-containing evacuated tubes (Kendall Co., 

Mansfield, MA).  Air-dried, unstained blood-smear slides were prepared from each 

sample and accompanied chilled blood collection tubes which were promptly transported 

to the Texas Veterinary Medical Diagnostic Laboratory (College Station, TX) for 

analysis.  Total leukocyte population was determined using a hematology analyzer 

(Abbott CELL-DYN 3700, Global Medical Instrumentation, Inc., Ramsey, MN) and 

differentials were determined manually.  An additional 8 to 10 ml peripheral blood 

sample collected into tubes containing EDTA was passed through a LeukoLOCK™ 

filter
1
 to capture the total leukocyte population for later gene expression analysis.  Filters 

were flushed with 3 ml of phosphate-buffered saline (PBS) to remove residual red blood 

cells and 3 ml of RNAlater™ solution
1
 to stabilize RNA.  Stabilized filters were stored 

at room temperature for 24 h, at which point trapped leukocytes were lysed with 2.5 ml 

of LeukoLOCK™ lysis/binding solution
1
 and the lysate was collected in 15-ml conical  

____________ 
1
 Ambion Inc, Austin, TX 
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tubes and stored at -80°C until further analysis. 

Post-Injection Hours 2, 6, 12, 24 

Horses were maintained in stalls under constant supervision for the 24 h duration 

of the sample collection period.  Determination of vital signs, lameness scores, joint 

circumference, and synovial fluid collection occurred at 2, 6, 12, and 24 h post-injection 

of LPS.   

Laboratory Analysis 

RNA Isolation 

RNA-containing lysate was thawed at 23°C and RNA was extracted from the 

total leukocyte population using a commercial system (LeukoLOCK™ Total RNA 

Isolation System, Ambion Inc, Austin, TX) following the manufacturer’s protocol.  

Briefly, nuclease-free water was added to each tube along with proteinase K and 

incubated for 5 min at 23°C with intermittent inversion to degrade cellular proteins.  

Isopropyl alcohol (100%) and 50 μl of RNA binding beads were added to each tube, 

mixed, and incubated at 23°C with intermittent mixing for 5 min to allow RNA to bind 

to the beads.  Beads were pelleted using a centrifuge at 2,000 x g for 3 min (5810R, 

Eppendorf North America, Westbury, NY).  Supernatant was aspirated and discarded.  

Beads were then washed twice with a wash solution and transferred to a 1.5-ml 

microcentrifuge tube.  Samples were spun in a centrifuge (5415C, Eppendorf North 

America, Westbury, NY) at 16,000 x g for 30 s to pellet the beads and supernatant was 

discarded upon aspiration.  A second wash solution was added, followed by brief 

centrifugation and aspiration as described.  An optional DNase treatment included with 



 24 

the kit was then performed.  A master mix of DNase and a buffer solution was added to 

each tube, which was then agitated gently for 10 min at 23°C to release nucleic acids 

from RNA binding beads and degrade genomic DNA.  Lysis/binding solution and 100% 

isopropyl alcohol were added and tubes were incubated at room temperature for 3 min.  

Two further cycles of centrifugation, aspiration, and washing steps were repeated.  

Following the final aspiration, tubes were left open at room temperature for 3 min to 

allow residual liquid to evaporate.  Approximately 150 μl of an elution solution was 

added to the tubes which were then mixed vigorously for 30 s.  A final centrifugation at 

16,000 x g for 2 min pelleted the beads, and the RNA-containing supernatant was 

aspirated and transferred to a microcentrifuge tube and stored at -20°C. 

Treatment for DNA Contamination 

Nucleic acid concentration and purity were assessed using a micro-volume 

spectrophotometer (NanoDrop 1000, Thermo Scientific, Wilmington, DE).  Samples 

were treated to remove residual contaminating DNA using a commercial kit (TURBO 

DNA-free™ Kit, Ambion Inc, Austin, TX) using the manufacturer’s protocol.  Briefly, 

15 μl of provided 10X DNase Buffer and 1 μl DNase were added to each 

microcentrifuge tube containing RNA and gently mixed.  Following 20 min incubation 

at 37°C, 16.6 μl of resuspended DNase Inactivation Reagent was added.  The tubes were 

mixed thoroughly and incubated 5 min at 23°C.  Finally, tubes were centrifuged at 

10,000 x g for 1.5 min.  Purified RNA was transferred to a fresh tube and nucleic acid 

concentration and purity were reassessed by spectrophotometry.  Samples were then 

stored at -20°C until further analysis. 
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cDNA Synthesis 

 DNase/RNase-free distilled H20 was used to dilute samples such that each aliquot 

contained 500 ng of RNA and had a final volume of 10 μl.  Synthesis of cDNA was 

performed using the SuperScript III First-Strand Synthesis System for RT-PCR 

(Invitrogen Corporation, Grand Island, NY) following the manufacturer’s instructions.  

Briefly, 2 μl of cDNA first-strand mix consisting of equal parts oligo (dT)20 and dNTPs 

were added to each tube and mixed gently.  Tubes were incubated on a thermal cycler at 

65°C for 5 min, then at 4°C for at least 1 min.  A cDNA master mix was prepared and 10 

μl were added to each reaction, followed by incubation on the thermal cycler at 50°C for 

50 min, then at 85°C for 5 min.  Subsequently samples were diluted with 28 μl nuclease-

free water so that the final concentration of cDNA was 10 ng/μl and aliquots were stored 

at -80°C. 

Primer and Probe Sequences 

Previously designed equine-specific sequences for B2M, IL-6, and IL-8 were 

used (Nerren, 2008) as well as for IL-10 (J. Nerren, unpublished data).  Specific primer-

probe premixes were designed for equine TNF-α and IL-1β using the Assays-by-Design 

software program (Applied Biosystems, Foster City, CA).  All sequences are listed in 

Table 1. 
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Real-Time PCR 

 Quantitative real-time polymerase chain reaction (PCR) was carried out in 10-μl 

reactions, each containing 1 μl template cDNA and 5 μl TaqMan Universal Master Mix 

II (Applied Biosystems, Foster City, CA).  The remaining volume consisted of either 0.5 

μl primer-probe premix and 3.5 μl nuclease-free water (Invitrogen Corporation, Grand 

Island, NY; TNF-α, IL-1β), or 0.45 μl of each primer, 0.5 μl probe, and 2.6 μl water 

(B2M, IL-6, IL-8, IL-10).  A GeneAmp 7500 Sequence Detection System was used for 

all cDNA amplification and data analysis (Applied Biosystems, Foster City, CA).  The 

thermal profile consisted of an initial hold at 50ºC for 2 min, followed by denaturation at 

95°C for 10 min, then 40 cycles of 95°C for 15 s, 60°C for 60 s.  

 Beta-2 Microglobulin (B2M) served as the endogenous control and was used to 

normalize all resulting cycle threshold (Ct) values.  Target genes were calibrated to 

baseline expression (Time 0) and relative expression levels were determined using the   

2
-ΔΔC

T method of quantification (Livak and Schmittgen, 2001). 
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Table 1. Oligonucleotide primer and probe sequences for equine cytokine targets and 

endogenous control. 

Gene  Primer/probe Sequence (5’-3’) 

B2M* 

 

Forward 

Reverse 

Probe 

CGGGCTACTCTCCCTGACT 

GGGTGACGTGAGTAAACCTGAAC 

CCGTCCCGCGTGTTC 

   

IL-1β Forward 

Reverse 

Probe 

GAATGACCTGTTCTTTGAGGAGGAT 

GAGCTGAGGTCCAGGTCTTG 

AAGCTGCCCTTCATCTGT 

   

IL-6* Forward 

Reverse 

Probe 

GAAAAAGACGGATGCTTCCAATCTG 

TCCGAAAGACCAGTGGTGATTTT 

CAGGTCTCCTGATTGAAC 

   

IL-8* Forward 

Reverse 

Probe 

GCCACACTGCGAAAACTCA 

GCACAATAATCTGCACCCACTTTG 

ACGAGCTTTACAATGATTTC 

   

IL-10**  Forward 

Reverse 

Probe 

GACATCAAGGAGCACGTGAACTC 

CAGGGCAGAAATCGATGACA 

AGCCTCACTCGGAGGGTCTTCAGCTT 

   

TNF-α Forward 

Reverse 

Probe 

TTACCGAATGCCTTCCAGTCAAT 

GGGCTACAGGCTTGTCACT 

CCAGACACTCAGATCAT 

* (Nerren, 2008) 

** J. Nerren, unpublished data
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Statistical Analysis 

All data were analyzed as a randomized complete block design using the PROC 

MIXED procedure of SAS (SAS v 9.1; SAS Inst. Inc., Cary, NC).  Treatment, time, and 

their interaction were included in the model.  Main effects were considered significant 

when P ≤ 0.05 and a trend toward significance when P ≤ 0.10. 
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CHAPTER IV 

RESULTS AND DISCUSSION 

 

Physical Parameters 

No effects of treatment were observed on heart rate, respiratory rate, or rectal 

temperature (P = 0.77, P = 0.16, and P = 0.60 respectively; Table 2).  However, all three 

decreased over time (P < 0.01).  This change can be attributed to the young horses 

becoming acclimated to the repeated handling procedures, resulting in a diminished 

stress response.  This finding agrees with that of Palmer and Bertone (1994), who 

observed no changes in peripheral temperature, pulse rate, or respiratory rate in horses 

that received intra-articular injection of 0.125 ng, 0.17 ng, 0.25 ng, or 0.5 ng LPS.    

At 0 h post-injection, all horses were determined to be clinically sound (lameness 

score 0).  Lameness scores increased across all groups over the 24 h following LPS 

challenge, with peak scores ranging from 1 to 2, regardless of treatment (P < 0.01; Table 

3).  This observation demonstrates the necessity for studies utilizing repeated 

arthrocentesis to include a group of control animals so that effects of treatment are not 

confounded by changes associated with repeated arthrocentesis alone.   
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Additionally, the lameness scores of horses receiving any dosage of LPS 

injection were increased at 12 and 24 h post-injection compared to the control group (P ≤ 

0.05).  These data suggest that the effect of the endotoxin was sufficient to induce 

discomfort beyond that induced by arthrocentesis alone.  While lameness was still 

evident at the conclusion of the 24 h study, we predict that this would have been 

resolved within 48 h, as was the case in the Palmer and Bertone study (1994), which 

reported lameness scores ranging from 1 to 3 in the 36 h following LPS injection of up 

to 0.5 ng but all lameness was resolved by 48 h post-injection.   

Treatments did not affect joint circumference (P = 0.96); however, circumference 

increased 0.8 to 1.5 cm above baseline in all groups regardless of treatment (P < 0.05; 

Table 4).  Once again this observation can be attributed to the process of repeated 

arthrocentesis, and the merit of having a control group in similar studies is clearly 

warranted.  We expect that this mild joint effusion would have been resolved within 48 h 

post-injection, as was observed in the Palmer and Bertone study (1994) which elicited a 

similar increase in joint circumference of 1 to 1.5 cm at the LPS dosages up to 0.5 ng. 
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Table 2.  Least square means for heart rate (HR), respiration rate (RR), and rectal 

temperature (RT) by treatment across yearling Quarter Horses for a 24 h period in 

response to intra-articular lipopolysaccharide (LPS) injection of 0.25 ng, 0.5 ng, or 0 ng 

(control). 

Treatment 

  0 ng LPS 0.25 ng LPS 0.5 ng LPS SE 

HR (beats/min)    

 0 48.5
a,b,c

 46.5 48.5
a
 1.61 

 2 49.5
a
 45.5 48.5

a
 1.61 

 6 45.5
b,e

 45.5 46.5
a
 1.61 

 12 45.0
c,e

 44.5 42.5
b
 1.61 

 24 42.0
d,e

 43.0 41.5
b
 1.61 

RR (breaths/min)    

 0 19.0
a
 16.0

a,b
 17.5

a
 1.41 

 2 19.5
a
 16.0

a
 16.5

a
 1.41 

 6 14.5
b
 12.5

b,c
 13.0

b
 1.41 

 12 12.5
b
 11.0

c
 13.0

b
 1.41 

 24 12.5
b
 10.0

c
 11.0

b
 1.41 

RT (°C)    

 0 38.1
a
 37.9

a,b
 38.1

a,b
 0.14 

 2 38.1
a
 38.0

a,e
 38.1

a,b
 0.14 

 6 37.9
b
 37.9

b
 37.9

a
 0.14 

 12 38.2
a
 38.1

c,e
 38.1

b
 0.14 

 24 37.8
b
 37.7

d
 37.7

c
 0.14 

a-e
Within a column for a given parameter, means that do not have a common superscript 

differ (P ≤ 0.05). 

 

Table 3. Lameness scores (grading system 0-5, AAEP 1999) in yearling Quarter Horses 

over the 24 h period following intra-articular lipopolysaccharide (LPS) injection of 0.25 

ng, 0.5 ng, or 0 ng (control).  

Treatment  Hour    

 0 2 6 12 24 SEM 

Control 0.0
a
 0.8

b
 1.0

b
 1.0

b
 0.8

b
 0.22 

0.25 ng LPS 0.0
a
 1.7

b
 1.5

b
 1.7

†b
 2.0

†b
 0.22 

0.50 ng LPS 0.0
a
 1.2

b
 1.3

b
 1.7

†b
 1.7

†b
 0.22 

†
Indicates significant difference within a column (P ≤ 0.05). 

a-c
Within a row, means that do not have a common superscript differ (P ≤ 0.05). 
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Table 4. Carpal circumference (cm) in yearling Quarter Horses over the 24 h period 

following intra-articular lipopolysaccharide (LPS) injection of 0.25 ng, 0.5 ng, or 0 ng 

(control).   

Treatment  Hour    

 0 2 6 12 24 SEM 

Control 28.3a,b 28.8a 29.4b 29.7b 29.8b 0.66 

0.25 ng LPS 28.3a 28.5a 28.8a 29.4b 29.7b 0.66 

0.50 ng LPS 28.5a 29.0b 29.0b 29.3b 29.3b 0.66 
a-bWithin a row, means that do not have a common superscript differ (P ≤ 0.05). 

 

Circulating Leukocyte Population 

Similar studies have focused on biomarkers of inflammation located in the 

synovial fluid rather than peripheral blood.  Synovial fluid leukocyte data have been 

reported but to our knowledge, there are relatively few published accounts of leukocyte 

dynamics in the peripheral blood over the course of an intra-articular LPS challenge.  

The current study aimed to quantify and compare the total circulating leukocyte 

population and determine cellular differential in yearling horses following an intra-

articular LPS injection at different dosage levels.  No effects of LPS treatment were 

observed on the total leukocyte count or differential.   

Similarly, no changes in systemic leukocyte totals or differentials were observed 

when ponies received an intra-articular LPS injection of 0.02 μg/kg of bodyweight; 

however, peripheral blood was analyzed only at 0 and 8 h post-injection (Todhunter et 

al., 1996).  Hawkins et al. (1993) analyzed equine peripheral blood leukocyte counts at 

nine time intervals concluding at 144 h following intra-articular injection of 3 μg LPS 

and also reported no changes due to treatment.  These findings as well as those of the 

current study are in agreement with Palmer and Bertone (1994), who reported no 
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changes in total peripheral leukocyte count in any horse, regardless of intra-articular LPS 

dosage ranging from 0.125 ng to 5,000 ng.  Palmer and Bertone (1994) observed an 

alteration in peripheral blood leukocyte differential only at the 5,000 ng dose; however 

this is exponentially larger than the dosage levels (0.25 ng and 0.5 ng LPS) utilized in 

the current study.  It is likely that our LPS dosages were not large enough to induce a 

detectable deviation in systemic leukocyte dynamics.   

However, in the current study, total circulating leukocytes increased over time, 

regardless of treatment (P = 0.04; Table 5), with the highest values at 6 and 24 h post-

injection.  Similarly, an increase over time was observed in subpopulations of monocytes 

(P = 0.002; Table 6) and in platelets (P = 0.01; Table 7) by 24 h post-injection.  These 

observations further reinforce the conclusion that repeated sterile arthrocentesis alone is 

sufficient to induce physiological changes, including hematological parameters.  

Nevertheless, the magnitude of these changes is minor and mean effects are well within 

the accepted reference ranges.  A similar study found that 24 h was the most sensitive 

time to detect changes induced by repeated arthrocentesis in the equine midcarpal joint 

(White et al., 1989).  Thus, future studies might benefit from including sampling time 

points beyond 24 h to further characterize these changes and identify the duration of the 

response until return to baseline values.    
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Table 5. Blood leukocyte count (cells × 1,000/μl) in yearling Quarter Horses over the 24 

h period following intra-articular lipopolysaccharide (LPS) injection of 0.25 ng, 0.5 ng, 

or 0 ng (control).   

Treatment  Hour    

 0 2 6 12 24 SEM 

Control 9.8 9.6 9.8 9.6 10.4 0.95 

0.25 ng LPS 10.3a,b 10.2a 11.5c 10.9a,b 10.9a,c 0.95 

0.50 ng LPS 10.5 11.1 11.1 11.2 10.7 0.95 
a-c

Within a row, means that do not have a common superscript differ (P ≤ 0.05). 

 

 

Table 6. Blood monocyte count (%) in yearling Quarter Horses over the 24 h period 

following intra-articular lipopolysaccharide (LPS) injection of 0.25 ng, 0.5 ng, or 0 ng 

(control).   

Treatment  Hour    

 0 2 6 12 24 SEM 

Control 1.2
a,b

 1.0
a
 0.6

a,b
 1.4

a,b
 2.8

b
 0.81 

0.25 ng LPS 1.4
a
 1.4

a
 1.4

a
 1.1

a
 3.4

b
 0.81 

0.50 ng LPS 1.7
a,b

 1.2
a
 1.2

a,b
 0.8

a
 3.0

b
 0.81 

a-b
Within a row, means that do not have a common superscript differ (P ≤ 0.05). 

 

 

Table 7. Blood platelet count (cells × 1,000/μl) in yearling Quarter Horses over the 24 h 

period following intra-articular lipopolysaccharide (LPS) injection of 0.25 ng, 0.5 ng, or 

0 ng (control).   

Treatment  Hour    

 0 2 6 12 24 SEM 

Control 217a,b,c 258a,b 202c 242a,b,c,d 275d 27 

0.25 ng LPS 231a 234a,b 225a,b 253a,b 280b 27 

0.50 ng LPS 242a,b 245a,b 219a,b 210a 265b 27 
a-d

Within a row, means that do not have a common superscript differ (P ≤ 0.05). 
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Cytokine Gene Expression 

Relative gene expression of IL-1β, IL-6, IL-8, IL-10, and TNF-α in the peripheral 

blood following an intra-articular LPS challenge was quantified using real-time PCR.  

Data were analyzed using the equation,  

target amount = 2
-ΔΔC

T, 

where ΔΔCt = (CT,target – Ct,B2M)Time x – (Ct,target – Ct,B2M)Time 0. 

Time x is post-injection hour 2, 6, 12, or 24 and Time 0 represents the 1X expression of 

the target gene normalized to B2M.   

Interleukin-1β 

No treatment effects were observed on IL-1β (P = 0.90); however, an effect of 

time was observed (P = 0.04; Table 8). 

 

Table 8. Relative systemic gene expression
a
 of IL-1β in yearling Quarter Horses over 

the 24 h period following intra-articular lipopolysaccharide (LPS) injection of 0.25 ng, 

0.5 ng, or 0 ng (control).   

Treatment  Hour    

 0 2 6 12 24 SEM 

Control 1.00
b
 0.99

b
 1.46

b,c
 1.93

c
 1.44

b,c
 0.24 

0.25 ng LPS 1.00
b
 1.55

c,d
 1.30

b,d
 1.39

b,d
 1.54

b,d
 0.22 

0.50 ng LPS 1.00 1.32 1.45 1.41 1.25 0.24 
a
Data were normalized to the house keeping gene B2M and calibrated to baseline 

expression (time 0).   
b-d

Within a row, means that do not have a common superscript differ (P ≤ 0.05). 

 

Interleukin-6 

Treatment did not affect  IL-6 expression (P = 0.18); however, an effect of time 

was observed (P = 0.002; Table 9). 
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Table 9. Relative systemic gene expression
a
 of IL-6 in yearling Quarter Horses over the 

24 h period following intra-articular lipopolysaccharide (LPS) injection of 0.25 ng, 0.5 

ng, or 0 ng (control).   

Treatment  Hour    

 0 2 6 12 24 SEM 

Control 1.00 0.83 0.76 0.75 0.79 0.15 

0.25 ng LPS 1.00
b
 1.27

c
 0.99

b
 0.91

b
 1.36

c
 0.13 

0.50 ng LPS 1.00
d,e,f

 1.19
b,d

 0.78
c,f

 0.87
c,e

 1.20
b,d

 0.15 
a
Data were normalized to the house keeping gene B2M and calibrated to baseline 

expression (time 0).   
b-f

Within a row, means that do not have a common superscript differ (P ≤ 0.05). 

 

Interleukin-8 

No treatment effects were observed on IL-8 (P = 0.24), but time did affect 

expression (P = 0.01; Table 10). Interleukin-8 was the only cytokine to surpass a 2-fold 

change in expression, which is conventionally considered the threshold for meaningful 

alterations in gene expression.  This finding may reflect the recruitment of 

polymorphonuclear (PMN) leukocytes, which secrete large quantities of IL-8.  As a 

chemokine, IL-8 stimulates and regulates migration of leukocytes from the blood to the 

tissues.  Its production is enhanced by IL-1 and TNF-α (Lipsky et al., 1989), thus it is 

possible that slight increases in IL-1 and TNF-α expression acted synergistically to 

amplify IL-8 gene expression in the peripheral blood in response to repeated 

arthrocentesis.  Future investigators may consider separateing PMN cells and peripheral 

blood mononuclear cells to explore cytokine expression from distinct subpopulations 

rather than the total circulating leukocyte population, as reported here.  

While statistically insignificant, IL-8 appears to be the most responsive to 

repeated arthrocentesis of the cytokines analyzed here and may be considered for future 
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studies which utilize peripheral blood cytokines as markers of inflammatory response.  

Increases in synovial fluid cytokine expression or immunoreactivity in response to small 

amounts of LPS injection have been reported (Hawkins et al., 1993; Todhunter et al., 

1996; Bertone et al., 2001).  This suggests that the response to intra-articular endotoxin 

injection is more readily detected locally within the synovial fluid.     

 

Table 10. Relative systemic gene expression
a
 of IL-8 in yearling Quarter Horses over 

the 24 h period following intra-articular lipopolysaccharide (LPS) injection of 0.25 ng, 

0.5 ng, or 0 ng (control).   

Treatment  Hour    

 0 2 6 12 24 SEM 

Control 1.00
b
 1.90

b
 3.63

b
 8.87

c
 4.62

b
 1.66 

0.25 ng LPS 1.00 1.52 0.97 2.43 1.53 1.53 

0.50 ng LPS 1.00 1.16 1.19 1.63 1.26 1.66 
a
Data were normalized to the house keeping gene B2M and calibrated to baseline 

expression (time 0).   
b-c

Within a row, means that do not have a common superscript differ (P ≤ 0.05). 

 

Interleukin-10 

Treatment did not affect  IL-10 expression (P = 0.48).  However, trends toward 

both a time effect and a treatment x time interaction were observed (P = 0.08 and P = 

0.07, respectively; Table 11). 
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Table 11. Relative systemic gene expression
a
 of IL-10 in yearling Quarter Horses over 

the 24 h period following intra-articular lipopolysaccharide (LPS) injection of 0.25 ng, 

0.5 ng, or 0 ng (control).   

Treatment  Hour    

 0 2 6 12 24 SEM 

Control 1.00 0.96 1.02 0.85 1.06 1.10 

0.25 ng LPS 1.00
b
 1.36

c
 1.04

b
 0.96

b
 0.93

b
 0.09 

0.50 ng LPS 1.00 1.15 1.08 1.10 1.15 0.10 
a
Data were normalized to the house keeping gene B2M and calibrated to baseline 

expression (time 0).   
b-c

Within a row, means that do not have a common superscript differ (P ≤ 0.05). 

 

Tumor Necrosis Factor-α 

No treatment effects were observed on TNF-α (P = 0.71); however, time 

influenced expression (P = 0.01; Table 12).   

 

Table 12. Relative systemic gene expression
a
 of TNF-α in yearling Quarter Horses over 

the 24 h period following intra-articular lipopolysaccharide (LPS) injection of 0.25 ng, 

0.5 ng, or 0 ng (control).   

Treatment  Hour    

 0 2 6 12 24 SEM 

Control 1.00 1.08 1.31 1.14 1.19 0.17 

0.25 ng LPS 1.00
b
 1.36

b,d
 1.35

b,d
 1.55

c,d
 1.04

b
 0.16 

0.50 ng LPS 1.00
b
 1.17

b,d
 1.27

b,d
 1.52

c,d
 1.08

b
 0.17 

a
Data were normalized to the house keeping gene B2M and calibrated to baseline 

expression (time 0).   
b-d

Within a row, means that do not have a common superscript differ (P ≤ 0.05). 

 

Intravenous infusion of LPS has been previously shown to up-regulate gene 

expression of inflammatory cytokines including IL-1α, IL-1β, IL-6, IL-8, and TNF-α in 

horses, while expression levels remained at baseline for saline-treated control horses 

(Nieto et al., 2009).  These findings confirm that LPS is a potent agonist for inducing 
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inflammatory cytokine release.  It is possible that the low response to LPS in the current 

study may be attributed to the intra-articular route of administration.  The associated 

inflammatory response might have been limited to local recruitment of leukocytes within 

the synovial fluid, which would account for the failure to detect a pronounced systemic 

response.   

Synovial Fluid Biomarkers    

 A concurrent study analyzed markers of inflammation and articular cartilage 

metabolism in synovial fluid extracted at 0, 2, 6, 12, and 24 h (Lucia et al., 2011).  Lucia 

et al. (2011) detected no changes in collagenase cleavage neopeptide, a marker of 

catabolic type II cartilage metabolism; however, both prostaglandin E2 (a critical 

inflammatory mediator) and carboxypeptide (an established indicator of anabolic type II 

cartilage turnover) were linearly influenced by treatment, with concentrations increasing 

with LPS dosage (P ≤ 0.01).  This observation indicates that a difference of only 0.25 ng 

LPS was successful in inducing dosage-dependent effects in a young horse model.  

Further investigation with more than 2 dosage levels would be beneficial in identifying 

the most appropriate level of intra-articular LPS injection for the young horse.  In 

addition, all three biomarkers were influenced by time (P ≤ 0.01; Lucia et al., 2011), 

further suggesting a role of repeated arthrocentesis in modifying physiological 

parameters.     
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CHAPTER V 

SUMMARY 

 

 Previous work has established LPS as a useful model for inducing temporary 

inflammation in the mature equine for the purpose of investigating the progression of 

joint disease.  However, little research has been devoted to developing an appropriate 

model for use in the young horse.  With many athletic competitions limited to horses 

during their 3-year-old years, the industry is requiring horses to undergo rigorous 

training regimens at a young age, prior to skeletal maturity.  Thus, investigation into a 

model of acute inflammation for this stage of musculoskeletal development is clearly 

warranted.  In addition, the potential for a systemic effect of the inflammatory agent has 

been given little attention in previous studies and merits exploration.  The existence of 

such an effect would produce confounding results and may affect conclusions drawn 

from similar studies which use the common approach of employing a saline-injected 

contralateral joint as the control.   

 The results of the current study indicate that a singular intra-articular injection of 

0.25 ng or 0.50 ng LPS did not alter the total circulating leukocyte population or 

differential in yearling horses.  However, an effect of time was observed in total 

leukocytes as well as in cellular subpopulations of monocytes and platelets.  This 

response is likely due to the repeated arthrocentesis procedure.  Similarly, intra-articular 

injection of 0.25 ng or 0.50 ng LPS did not affect the expression of five cytokines which 

are crucial to the inflammatory cascade.  Once again an effect of time was observed, 
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indicating that the repeated arthrocentesis alone was sufficient to induce mild changes in 

expression levels which were similar across all groups.  Increased concentrations of IL-8 

suggest possible recruitment of PMN leukocytes in response to arthrocentesis.  Future 

studies may benefit from investigating the use of alternative biomarkers of inflammation 

in the peripheral blood and synovial fluid which may prove more sensitive to 

physiological changes.  

 From these results, we conclude that performing repeated arthrocentesis on a 

particular joint likely stimulates a mild inflammatory response, inducing effects which 

can be manifested systemically.  Including a negative control might be beneficial to 

establish physiological normal values for the parameters measured.  Future studies of a 

similar nature should utilize a separate group of control animals to eliminate any 

confounding effects of treatment and arthrocentesis.   
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APPENDIX A 

DIET 

Table A.1 Nutrient Composition (DM) of Diet Fed to Yearling Quarter Horses. 

 

Item Pelleted concentrate
1
 Hay

2
 

DM, % 87.76  91.34 

CP, % 17.60  8.90 

ADF, % 11.39  33.45 

NDF, % 23.79  59.71 

Ca, % 0.83  0.37 

P, % 0.68  0.14 

K, % 1.37  1.10 

Mg, % 0.33  0.19 

Na, % 0.21  0.09 

S, % 0.38  0.24 

Al, ppm 170.00  457.00 

Co, ppm 1.53  1.02 

Cu, ppm 53.20  9.28 

Fe, ppm 261.00  704.00 

Mn, ppm 128.00  33.70 

Mo, ppm 1.44  2.03 

Zn, ppm 110.00  29.20 

DE, Mcal/lb 1.52  1.15 
 

1
 Commercially prepared pelleted concentrate (Producers 14% Horse Pellet, Producer’s 

Cooperative Association, Bryan, TX). 
2
 Coastal Bermudagrass (Cynodon dactylon). 
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APPENDIX B 

PHYSICAL PARAMETERS 

 

Figure B.1  Lameness scores (grading system 0-5, AAEP 1999) in yearling Quarter 

Horses over the 24 h period following intra-articular lipopolysaccharide (LPS) injection 

of 0.25 ng, 0.5 ng, or 0 ng (control).  

 

 

 
 

Figure B.2  Carpal circumference (cm) in yearling Quarter Horses over the 24 h period 

following intra-articular lipopolysaccharide (LPS) injection of 0.25 ng, 0.5 ng, or 0 ng 

(control). 
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APPENDIX C 

LEUKOCYTES 

 

Figure C.1  Blood leukocyte count (cells × 1,000/μl) in yearling Quarter Horses over  

the 24 h period following intra-articular lipopolysaccharide (LPS) injection of 0.25 ng, 

0.5 ng, or 0 ng (control). 

 

 

 

Figure C.2  Blood monocyte count (%) in yearling Quarter Horses over the 24 h period 

following intra-articular lipopolysaccharide (LPS) injection of 0.25 ng, 0.5 ng, or 0 ng 

(control). 
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Figure C.3  Blood platelet count (cells × 1,000/μl) in yearling Quarter Horses over the 

24 h period following intra-articular lipopolysaccharide (LPS) injection of 0.25 ng, 0.5 

ng, or 0 ng (control). 
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APPENDIX D 

GENE EXPRESSION 

 

Figure D.1  Relative systemic gene expression of IL-1β in yearling Quarter Horses over 

the 24 h period following intra-articular lipopolysaccharide (LPS) injection of 0.25 ng, 

0.5 ng, or 0 ng (control). 

 

 

 

Figure D.2  Relative systemic gene expression of IL-6 in yearling Quarter Horses over 

the 24 h period following intra-articular lipopolysaccharide (LPS) injection of 0.25 ng, 

0.5 ng, or 0 ng (control). 
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Figure D.3  Relative systemic gene expression of IL-8 in yearling Quarter Horses  

over the 24 h period following intra-articular lipopolysaccharide (LPS) injection of 0.25 

ng, 0.5 ng, or 0 ng (control). 

 

 

 

Figure D.4  Relative systemic gene expression of IL-10 in yearling Quarter Horses  

over the 24 h period following intra-articular lipopolysaccharide (LPS) 

injection of 0.25 ng, 0.5 ng, or 0 ng (control). 
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Figure D.5  Relative systemic gene expression of TNF-α in yearling Quarter Horses 

over the 24 h period following intra-articular lipopolysaccharide (LPS) injection of 0.25 

ng, 0.5 ng, or 0 ng (control). 
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