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ABSTRACT 

 

Identification of Significantly Regulated Genes in the Estrogen Induced Gallus gallus 

Liver Over a 24-Hour Time Course. (December 2011) 

Erica Renee Trojacek, B.S.; B.S., Texas A&M University 

Chair of Advisory Committee: Dr. Rosemary Walzem  

 

In birds, estrogen is a strong stimulator of gene programs that regulate the 

formation of very low density lipoproteins (VLDL).  Apolipoprotein-B (ApoB) is an 

integral part of very low density lipoproteins.  In mammals, the rate of ApoB synthesis is 

controlled by post-translational means.  In contrast, estrogen treated birds show changes 

in ApoB transcript level; in a natural setting, the bird‟s metabolism and transcription are 

in great flux due to yolk formation.  Besides the ApoB gene, the entire complement of 

genes that is necessary to form a VLDL is not known.  To determine the genes that play 

a role in the formation of VLDL 7-10d old chicks were injected with estrogen at several 

time points over a 24hr period.  Following exsanguinations by cardiac puncture, livers 

were removed and RNA was extracted.  The RNA was quantified and hybridized to 

microarrays using a dual-dye system.   Slides were scanned and analyzed, and features 

were extracted.  To qualify microarray results, quantitative real time PCR (q-RTPCR) 

was done on a selection of genes. 
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Previous studies had shown that approximately 200 genes are upregulated by the 

treatment of hormone naïve chickens with estrogen.  As a result of our liver 

transcriptional profiling, we identified 1,528 genes at 1.5hrs, 1,931 genes at 3hrs, 2,398 

genes at 6hrs, 2,356 at 12hrs, and 1,713 genes at 24hrs following estrogen exposure.  We 

determined that these regulated genes include those responsible for the transcription of 

RNA used to create the gene products that serve as components of VLDL itself or that 

act in VLDL assembly.  These include genes encoding structural proteins, like ApoB, 

and genes encoding assembly-related proteins.  Of the differentially expressed genes as 

compared to time 0, there were approximately 30% which were unannotated with 

regards to function limiting conclusions.  We hope to determine the function of these 

genes and to annotate them based on this information.  
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NOMENCLATURE 

 

ApoB Apolipoprotein B 

ApoB100 Apolipoprotein B100 

FDR False discovery rate 

MTP Microsomal triacylglyceride transfer protein 

nt Nucleotide 

q-value Adjusted p-values found using an optimized FDR approach 

RER Rough endoplasmic reticulum 

SER  Smooth endoplasmic reticulum 

TAG Triacylglycerol 

VLDL Very low density lipoprotein 

VLDLy Yolk-targeted very low density lipoprotein 
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CHAPTER I 

INTRODUCTION AND LITERATURE REVIEW 

 

Lipoprotein Particle 

Lipoproteins are macromolecular structures that are composed of phospholipid, 

cholesterol, cholesteryl esters (CE), triacylglycerol (TAG), and apolipoprotein; of these 

components, cholesterol, apolipoproteins, and phospholipids are on the surface and 

TAGs and CE are located in the core.  Different lipoprotein classes contain unique 

apolipoproteins on the surface which serve as receptor ligands, enzyme cofactors, and 

lipid transfer carriers.  In addition, the classes differ in diameter, density, and lipid 

fractions.   

Specifically, very low density lipoproteins (VLDLs) are a class of lipoproteins 

that contain triacylglyceride (TAG), phospoholipid, cholesterol, CE and the ApoB 

protein [1].  The source of the phospholipids, CE and cholesterol that make up a VLDL 

is variable, and can either be from de novo synthesis or preexisting pools [2].  Immediate 

precursors to TAGs destined for VLDL inclusion are hepatic fatty acids derived from de 

novo synthesis from acetyl CoA or from uptake of free fatty acids from the circulation 

[3].  The mass distribution of this macromolecular structure is 43.7-60.1% TAG, 11-

14.2% cholesteryl esters, 5.1-8.4% free cholesterol, 19.7-22.6% phospholipids, and 4.1-

11.1% protein [4].   
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The apolipoproteins associated with lipoproteins contribute to the lipoprotein‟s 

structure and stability.  There is a difference in molecular weight and the theoretical 

isoelectric point (pI) between the apolipoproteins (Table 1).  The primary apolipoprotein 

of TAG rich lipoproteins (VLDL, intermediate density lipoproteins (IDL), low density 

lipoproteins (LDL), and portomicrons in the chicken) is ApoB.  Each VLDL contains 

one ApoB100 molecule [5] and is 250-800 Å in diameter [6].  In addition to ApoB100, 

VLDLy in chickens contain one other apolipoprotein, very low density lipoprotein II 

(ApoVLDL-II).  In humans, VLDL can contain ApoB100, ApoE, and isoforms of  apoC 

[7]. 

Apolipoproteins have two roles in the body: structure and signaling.  Through 

these two functions, apolipoproteins provide the means for the regulated transport and 

metabolism of nutrient cargo that they convey.  Very low density lipoproteins, IDLs, 

LDLs, high density lipoproteins (HDL), and portomicrons in chickens are essential for 

normal growth and development by acting as the structures that allow dietary and de 

novo synthesized lipids to be shuttled through the blood to tissues for use as fuel or for 

storage [8-10].  In addition, these macromolecules transport essential fatty acids, fat 

soluble vitamins and hormones, pigments, phytosterols, hydrophobic bile acids, 

signaling lipids, and other elements.  The other necessary function of apolipoproteins is 

signaling; the signaling lipids transported by lipoproteins include sphingomyelin, 

ceramides, lysophosphatidylcholine, and diacylglycerides.   

Overall, lipoproteins are remarkable macromolecular structures that have unique 

characteristics for each of the density classes.  They perform vital roles in the body and 
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Table 1: Apolipoprotein characteristics.  Approximate molecular weight (MW) and 

theoretical isoelectric points (pI) of various apolipoproteins found in avian species.  

Calculations of theoretical pI were done with ExPASy. [11] 

Apolipoprotein Approximate MW 

(kDa) 

Theoretical pI 

Apo B 550 6.59 

Apo A-I 28 5.26 

Apo C-I 6.6 7.93 

ApoVLDL II 9.3 9.21 
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contain unique proteins to help carry out these roles.  The focus of this study is the 

identification of genes involved in the hepatic assembly of VLDL, which is the precursor 

particle to LDL, an atherogenic lipoprotein.   

Lipoprotein Particle Formation 

Lipoproteins can form intracellularly or extracellularly.  Hepatic VLDL synthesis 

constitutes a highly specialized form of post-translational protein modification of 

ApoB100 referred to as ApoB-LP assembly.  This assembly process occurs intracellularly 

and engages several subcellular compartments.  The complete assembly process and 

intracellular locations of ApoB-LP assembly are unknown and continue to be studied.  

However, a general outline of events broken into broad subprocesses with many 

individual steps creating two intermediate particles, is relatively well agreed upon 

(Figure 1).  The first of the two intermediate particles is the small, ApoB100 containing 

particle found in the rough endoplasmic reticulum (RER), and the second intermediate 

particle is the ApoB-less, large lipid filled particle formed within the smooth 

endoplasmic reticulum (SER).  In step 1, translation and simultaneous folding to form 

the tertiary structure of ApoB occurs.  This folding creates a lipid binding cavity that 

MTP, in step two, begins to deposit small amounts of TAG into.  Steps 3 and 4 go into 

more detail of the vital role MTP plays in transferring lipid to the first step particle.  Step 

5 depicts the completion of the first step particle and its liberation from the ribosome 

down the secretory pathway towards the SER.  The large, protein free second step 

particle then meets the first step particle in step 6.  The events leading to the formation 

of the large, ApoB-less particle are largely unknown.  The sequence of events leading to 
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assembly of TAG-rich ApoB-LP has been defined using a variety of techniques 

including in situ antibody mapping to track the subcellular movement of ApoB, pulse-

chase experiments with radioactive precursors of both lipids and proteins, and 

measurement of pertinent enzymatic activities in subcellular fractions [12].   

Alexander, Hamilton, and Havel in the late 1970‟s used electron microscope 

imaging of immuno gold particles to locate significant sub-cellular sites involved in 

ApoB-LP assembly; two broad steps were seen to encompass the assembly of an ApoB- 

LP.  The trio found that ApoB is synthesized within the RER [13] as are CE [14].  The 

TAG-rich ApoB-less particle originates in the SER where TAGs and cholesterol are 

synthesized [6].  The ER is a true membrane, and organized as a lipid bilayer.  

Orientation of the hydrophobic elements (fatty acyl chains of phospholipids and rings 

and side chains of cholesterol) of the lipid bilayer perpendicular to the surface of the 

membrane creates a hydrophobic region suitable for TAG and CE accumulation [12].  

The ability of membranes to bud off enables the vesicular mode of protein transport 

through the ER [15].  The actual initiator or nucleation event leading to VLDL assembly 

is unknown.  It is a point of contention whether VLDL assembly is most closely linked 

to the synthesis of TAG or CE [16-18].  Most likely, TAGs are at least equal to CE in 

their ability to initiate VLDL assembly in the laying hen [12]. 

The first step ApoB-lipid complex converges with the ApoB-free TAG-rich core 

second step particle formed within the SER [12].  Chaperone proteins are likely involved 

in this convergence.  Studies in cultured cells found the chaperone proteins glucose 
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Figure 1. General outline of the two step model of VLDL assembly.  Lipid is added 

to ApoB co-translationally, mediated by MTP.  After release from the ribosome, the first 

step particle travels to the junction of the SER.  It can then fuse with the large TG 

containing second step particle forming mature VLDL. [19] 
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regulated protein 94 kDa, glucose regulated protein 78 kDa, calreticulin, and cyclophilin 

B active in ApoB folding [20].  In addition to chaperone proteins, intracellular lipid 

transporters and nuclear factors are expected to be involved in ApoB-LP assembly, such 

as hepatic nuclear factor-α (HNFα) and sterol regulatory element-binding protein 

cleavage-activating protein (SCAP) [21, 22].  ApoB100 translocation across the ER 

membrane creates a steady-state pool of membrane-associated ApoB [1].  A major 

determinant of the ApoB100 translocation is the microsomal TAG transfer protein (MTP), 

an ER luminal protein with lipid transfer activity [1].  It is thought that the MTP protein 

is located at the site of ApoB translocation and facilitates regulated transfer of lipids and 

folding of ApoB as it exits the ribosome and enters the ER lumen [23].  It is expected 

that MTP gene expression will increase following estrogen treatment: this theory is 

directly testable. 

Specialized tubules transport the particle, now a nascent lipoprotein, to the Golgi 

apparatus where concentration occurs in secretory vesicles [6].  These secretory vesicles 

transfer to the sinusoidal surface where the particles are secreted into the space of Disse 

by fusion of the vesicular membrane with the plasma membrane of the hepatocytes [6].  

In both male and immature female birds, dietary and liver-synthesized fats leave the 

liver as TAG-rich VLDL for metabolism by extrahepatic tissues [12]. 

  Clearly the assembly of a VLDL is a complex, multi-variable process.  The 

exact details of this process are not wholly known.  A candidate gene method was 

utilized as our strategy to identify candidates in a first-pass approach to assess gene 

involvement in assembly.  Candidate genes were selected according to reports in the 
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peer-reviewed literature that, when the gene in question was absent or altered VLDL 

assembly failed or was otherwise compromised, the gene was shown or speculated to be 

involved in assembly of an apoB-LP or to be a structural part of an apoB-LP, the gene 

was shown or speculated to be estrogen responsive, or the gene was responsible for a 

protein involved in making lipids or transporting lipids.  This list of candidate genes is 

shown in Table 2.  

VLDLy 

VLDLy is a remarkable lipoprotein species that is unique to oviparous species 

and has a complex assembly process.  VLDLy depend on estrogen exposure for specific 

assembly.  VLDLy contain two lipoproteins, ApoB100, which is regulated 

transcriptionally in birds: a unique trait as compared to mammals, and ApoVLDL-II [1].   

In laying hens, VLDLy are synthesized to deliver all TAG contained in the yolk-

follicles during egg production [12].  Enrichment in TAG and smaller diameter (30nm vs 

60nm) than VLDL allows for this specialized yolk deposition [24].  It has been proposed 

that the small diameter of VLDLy avoided the probable size exclusion properties of the 

granulosa basal lamina of the ovarian follicle [25].  In actively laying hens, the uniform 

diameter of 30 nm diameter is indicative of VLDLy synthesis and secretion [12].   

In a natural egg-laying cycle, estrogen and progesterone produced by the ovarian 

follicles initiate and control VLDLy synthesis and egg production [12].     
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Table 2: Candidate genes grouped by differential expression as compared to 

time 0.  

 

Genes With Significant Change Genes Without Significant Change 

Fatty Acid Synthase (FAS) Sterol Regulatory Element Binding 

Protein Cleavage-Activating Protein 

(SCAP) 

Diacylglycerol O-Acyltransferase 2 

(DGAT2) 

Sterol Regulatory Element Binding 

Protein (SREBP) 

Glycerol-3-phosphate acyltransferase-2 

(AGPAT-2) 

ATP citrate lyase (ACLY) 

Glycerol-3-phosphate acyltransferase-3 

(AGPAT-3) 

Acetyl-CoA Carboxylase (ACC) 

Thyroid hormone responsive spot 14 

(THRSP) 

Stearoyl CoA desaturase (D9D) 

Ferritin repressor protein (aconitase 1) Fatty acid elongase (ELOVL) 

Cytochrome P450, family 51 (CYP51) 6-phosphogluconate dehydrogenase 

(PGD) 

Squalene synthase (FDFT1) Protein Kinase, AMP-activated, beta 2 

(PRKAB2) 

3-hydroxy-3-methylglutaryl-Coenzyme 

A synthase 1 (HMGCS1) 

Hepatic Nuclear Factor alpha (HNFα) 

Microsomal Triglyceride Transfer 

Protein (MTP) 

Vitamin D3 receptor (VDR) 

Heat Shock Protein 70 (HSP-70) Calreticulin (CALR) 

Heat Shock Protein 90 kDa beta 

(GRP94) 

Acetyl-CoA Acetyltransferase 1 

(ACAT1) 

Heat Shock 70kDa Protein 5 (HSPA5) Acetyl-CoA Acetyltransferase 2 

(ACAT2) 

Heat Shock Protein Cognate Beta 

(HSPCB) 

Carboxylesterase B (CES2) 

Apolipoprotein B (ApoB) ADP-ribosylation factor 1 binding protein 

(ARF1BP) 

Riboflavin Binding Protein (RBP) 3-hydroxy-3-methylglutaryl-CoA 

reductase (HMGCR) 

Dolichyl Pyrophosphate Phosphatase-1 

(DOLPP1) 

Farnesyl Diphosphate Synthase (FDPS) 

Phosphatidylethanolamine N-

methyltransferase (PEMT) 

Lipin 1 (LPIN1) 

Choline Kinase (CHK) Peroxisomal 2,4-dienoyl-CoA Reductase
 

(DECR2) 

Very low density lipoprotein II 

(ApoVLDL-II) 

acyl-CoA synthetase long-chain family 

member 6 (ACSL6) 
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Table 2 Continued 

Genes With Significant Change 

 

Genes Without Significant Change 

Vitellogenin I (VTGI) Aldo-keto reductase family 1, member B1 

(AKR1B1) 

Liver Fatty Acid Binding Protein 

(FABP) 

Phosphatase and actin regulator 3 

(PHACTR3) 

Lipoprotein Lipase (LPL) SAM domain, SH3 domain and nuclear 

localisation signals protein 1 (SAMSN1) 

VLDL receptor (VLDLR) Ribosomal Protein S9 (RPS9) 

Cell death-inducing DFFA-like effector 

a (CIDEA) 

RNA polymerase III (DNA directed) 

polypeptide F, 39 kDa (POLR3F) 

Diazepam Binding Inhibitor (DBI) peptidylprolyl isomerase B (cyclophilin 

B) (PPIB) 

Malic enzyme 3 (ME3) Mitogen Activated Protein Kinase 12 

(MAPK12) 

Carboxy-terminal domain, RNA 

polymerase II, polypeptide A 

phosphatase, subunit 1 (CTDP1)  

Apolipoprotein E receptor 2 (LRP8) 

Forkhead Box A2 (FOX A2) Delta-6 fatty acyl desaturase (D6D) 

Insulin Induced Gene 1 (INSIG 1) Delta-5 fatty acyl desaturase (D5D) 

Fas associated factor family member 2 

(Ubxd8)   
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Estrogen changes the assembly of these unique VLDLy particles and also 

influences the transcription and stabilization of mRNA of specific gene transcripts to 

achieve desired effects.  The net consequence of estrogen induced changes in hepatic 

lipid and protein metabolism in birds is the production of small VLDL with distinctive 

changes in chemical composition. 

Estrogen appears to selectively alter gene expression to support massive 

increases in ApoB-LP assembly and secretion necessary to sustain yolk formation.  

Some genes necessary in yolk formation process are termed “estrogen dependent” while 

others are modulated by, but not dependent on, the hormone [26].  It has been shown in 

several studies that estrogen induces the synthesis of the egg specific proteins 

ApoVLDL-II and vitellogenin (VTG) [26-30].  Specific induction profiles for increases 

in protein synthesis following estrogen treatment differ for ApoB, ApoVLDL-II and the 

VTGs [26, 28, 31-33].  A study by Kirchgessner in 1987 illustrated that administration 

of estrogen produced a six fold increase in ApoB mRNA in the liver [34].  In a study by 

Capony and Williams, in response to estrogen treatment, ApoB synthesis increased 

sharply after a lag period of 1.5hrs, reached a maximum at 15-24hrs, and then returned 

to the control level [35]. 

Janero and Lane showed in a pulse-chase study that VLDL particle assembly 

requires about 30 minutes [36]. Using estrogen induced avian parenchymal liver cells, 

they determined that phospholipids were secreted in a biphasic pattern, the first secretion 

wave occurred 5-15 minutes into the chase, and the second wave after 30 minutes. 
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Appearance of radio-labeled TAGs occurred 20-25 minutes into the chase, and 

apolipoproteins were secreted after 30-35 of chase time [36].   

The yolk-specific proteins whose synthesis is induced by estrogen include VTG, 

ApoVLDL-II, and riboflavin binding protein (RBP); ApoVLDL-II is associated with 

VLDLy assembly, and all three are part of yolk assembly.  The gene expression of these 

three genes can be used to judge the efficacy of exogenous estrogen treatment.  The 

genes encoding ApoVLDL-II and VTGII exhibit estrogen-dependent nuclease 

hypersensitive sites, and an estrogen receptor-binding region has been identified on 

VTGII [34].   

Following induction of the synthesis of yolk-specific proteins, hepatic VLDLy 

apoprotein composition changes [37-39].  Instead of containing the usual ApoB plus 

about five other apoproteins, VLDLy contains predominantly ApoB plus one other 

apoprotein, ApoVLDL-II [37-39].  Competitive exclusion of other apoproteins from the 

surface of VLDLy by ApoVLDL-II is believed to be responsible for the simplicity of 

VLDLy‟s apoprotein content [38].  ApoVLDL-II synthesis accounts for 11% of soluble 

protein synthesized in the liver following a single estrogen injection [40].  Estrogen acts 

to stabilize the ApoVLDL-II mRNA, while estrogen removal selectively destabilizes the 

transcript [26, 33].  Estrogen‟s presence specifically stabilizes the mRNA by inducing 

the formation of a poly-adenosine tail, thus increasing the mRNA‟s half life and leading 

to an accumulation of ApoVLDL-II mRNA [41].  This is why VLDLy, through the 

action of ApoVLDL-II, continues to be produced approximately 24hrs after a single dose 

of estrogen [42].  Estrogen also appears to stimulate the rate of transcription of the 



13 

 

ApoVLDL-II gene prior to stimulation of lipid synthesis and ApoVLDL-II mRNA 

increases 100-fold within 3 hours of treatment [39].   

Estrogen induces ApoVLDL-II synthesis by directly inducing transcription of 

ApoVLDL-II mRNA [26].  ApoVLDL-II mRNA was shown to increase 12 fold after 

approximately fifty hours of estrogen exposure in rooster liver in a study done by Chan 

et al. [42]; VTG mRNA was shown to increase several thousand fold after 24hrs in a 

study done by Deeley et al. [43].     

 ApoVLDL-II contains two 82-amino acid residues linked by a single disulfide 

bond at residue 76 [44].  ApoVLDL-II is unique to avian species.  ApoVLDL-II is found 

in the chicken as a homodimer, with each subunit being 9 kDa [45].  Conversely, in 

other avian species like the quail, ApoVLDL-II is found as a monomer.  Both 

monomeric and dimeric forms inhibit LPL [46].  The typical metabolic course of TAG-

rich VLDL in non-egg laying states ends in TAG hydrolysis by the enzyme LPL [47].  

Hepatic VLDL assembly processes are retooled to form VLDLy in response to an 

estrogen dependent transcription program.  These VLDLy are unique among TAG rich 

lipoproteins as they resist hydrolysis by LPL [12].  The presence of ApoVLDL-II in 

VLDLy is believed to mediate the reduction in this lipoprotein‟s diameter [12], possibly 

by competitively excluding other exchangeable apoproteins, such as ApoC-II, from the 

surface of VLDLy causing LPL resistance [38]. 

  VTGs are ancient, very high density lipoproteins, responsible for lipid transport 

and protein storage that are not physically associated with VLDLy, but play a role in 

yolk formation [48].  Deeley showed that VTG is the only phosphoprotein present in the 
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plasma of the estrogen treated rooster [27].  There are three VTGs, one major (VTGII) 

and two minor (VTGI and VTGIII) protein isoforms.   Avian VTG is composed of two 

polypeptides, each having a molecular weight of 240,000, and is actually a cryptic 

peptide that becomes the egg yolk phosphoproteins lipovitellin and two phosvitins, one 

with a molecular weight of 28,000 and the other 34,000 [27].  In the yolk, the products 

form granules, which also contain lipids and metals, including zinc, which were carried 

into the yolk with the VTG [49].   

For oviparous species, vitamin delivery to the oocyte is a special challenge which 

must occur prior to egg fertilization and laying [50].  Avian RBP is a 29 kDa 

phosphoglycoprotein, which is a necessary component of chicken eggs; it supplies the 

oocyte and egg white with the riboflavin necessary to sustain embryonic development 

[50].  A study by Mac Lachlan showed that RBP associates with VTG in serum, 

“piggybacking” with VTG into the growing oocyte through the interaction of VTG with 

the 95 kDa VLDL/VTG receptor [50].  

The vital apolipoprotein in VLDLy particles is ApoB100, which is an amphipathic 

protein that is synthesized in the liver as a 4536-amino acid polypeptide [5].  It has five 

secondary structural domains and contains an oddly large number of cysteine residues in 

disulfide linkages which are believed to be essential for VLDL assembly [5].  ApoB100 

serves as the ligand for the ApoB receptor.  The receptor binding domain of ApoB100 

includes a cluster of positively-charged residues at amino acids 3359-3367 [5].   

ApoB100 is a positive risk factor in the development of atherosclerosis in humans 

and it is present in the arterial wall in atherosclerotic lesions [2].  A study by Williams 
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showed that ApoB correlated significantly (p<0.05) inversely with HDL cholesterol, 

LDL size, and insulin sensitivity, and positively with body mass index, waist 

circumference, TG, DBP, systolic blood pressure, 2-hour and fasting glucose and insulin 

levels, CRP, fibrinogen, PAI-1, and both common and internal carotid artery intima-

media thicknesses (IMTs); this makes ApoB concentration an important risk factor for 

developing heart disease [51].   

The ApoB100 protein remains on the ApoB-LP molecule from synthesis to 

degradation because ApoB100 does not undergo exchange reactions [2].  It is insoluble, 

susceptible to degradation, oxidative cleavage, and aggregation [2].  The quality and 

amounts of VLDLy that are assembled and secreted are controlled at several points 

within the apoB assembly process [13, 52].  The first hypothetical sorting site is during 

translation and translocation of a growing ApoB peptide chain [12].  ApoB100 that is not 

translocated to the lumen of the RER is then included into the outer leaflet of the ER 

where it is eventually degraded by intracellular proteases [12].  Sorting of ApoB100  at 

this step controls the amount of ApoB100 available for VLDL assembly [12].  The second 

sorting step follows translocation of nascent ApoB100 and  depends on neutral lipid 

availability for lipoprotein core formation [12].  The ApoB100, at this second sorting site, 

must achieve sufficient TAG and cholesterol ester to gain a buoyant density of 1.0063 

g/mL [53].  If this does not occur, then the particle is termed “misfolded” with regard to 

ApoB conformation; thus, it is sorted for degradation [52].  A final sorting step occurs 

immediately post secretion at the surface of the hepatocyte, where overly small VLDL 

are endocytosed by the LDL receptor [54]. 
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A lipoprotein unique to egg-laying species, VLDLy has been shown to have a 

complex assembly process that produces a specialized particle that is vital to the growing 

bird.  It is useful to experimentation that VLDLy depend on estrogen exposure for 

specific assembly.  This fact allows for induced VLDLy assembly to occur within an 

experimental environment with application of exogenous estrogen.    

Animal Model Selection 

Of particular interest is the physiologic difference between egg laying organisms 

and mammals, whose offspring are of placental origin.  It is possible to take advantage 

of the developmental strategy of birds to study very low density lipoproteins (VLDL).  

In humans, ApoB-LP can contain one of two isoforms of ApoB: ApoB100 and ApoB48; 

this is believed to be the same in rats and rabbits [55, 56].  Mouse and hamster models 

also contain both ApoB100 and ApoB48 [57].  ApoB48 is a product of ApoB mRNA 

editing by the enzyme APOBEC-1, expressed in the human small intestine [55].  This 

editing changes a glutamine codon to a stop codon, thus creating a shorter transcript that 

encodes a protein that has a molecular weight approximately 48% of an apolipoprotein.  

Human liver does not edit ApoB because it does not express APOBEC-1 [55].   

Avian species do not edit ApoB100 mRNA as do mammals; their intestines, as 

well as livers, produce full-length ApoB100 [1].  In contrast, isolated rat liver and rat 

hepatocytes in culture produce both ApoB48 and ApoB100, making them less useful for an 

ApoB100 centered study [58].  Also, assembly processes may not be equivalent between 

rodent and avian species.  The chicken, Gallus gallus, produces ApoB100 in the kidney, 

intestine, and liver, as shown through in a study by Blue, where in vitro pulse labeled 
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tissues were measured in a double antibody procedure [59].  Only ApoB100 synthesis in 

liver is increased by elevation of plasma estrogen, making the chicken a useful model 

organism for the selective study of ApoB100.   

Estrogen treatment of male birds mimics the effects of female sexual maturation 

and increases ApoB-LP assembly in male birds fourfold 16hrs after injection [60].  In 

one study, 60 mg of 17-β estradiol dissolved in 1.5 ml sodium benzoate was needed for 

maximal effectiveness in inducing hepatic synthesis of VLDL in 2.0-4.5 kg White 

Leghorn roosters [60].  Estrogen induction of male chicks is one of the techniques 

applied in this thesis. 

In mammals, a constant supply of ApoB100 supports VLDL assembly due to the 

constitutive expression of the gene [61, 62].  The fixed rate of gene expression in 

mammals demanded that non-transcriptional mechanisms be used to explain changes in 

ApoB100 secretion rates with various treatments [12]. 

Genes Thought to be Involved in ApoB-LP Assembly 

Genes shown to be critical for VLDLy formation in various knockout models are 

ApoB [63], MTP [20], and DGAT-2 [64], among others.  ApoB is a gene that is 

responsible for the ApoB100 protein; ApoB100 is a necessary structural and functional part 

of VLDLy [1].  MTP is an ER luminal protein with lipid transfer activity [1].  It is 

thought that MTP facilitates regulated transfer of lipids and folding of ApoB as it exits 

the ribosome and enters the ER lumen [23].  Diacylgylcerol phosphate acyl transferase 2 

(DGAT-2, E.C. 2.3.1) is an enzyme that catalyzes the acylation of diacylglycerol, which 

is necessary for the formation of TAG [65].   
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Two other genes expected to supply the fatty acids required for the massive 

demand for acylglycerol lipid components following estrogen mediated induction of 

VLDLy assembly and secretion were fatty acid synthase (FAS, E.C. 2.3.1.85) and acetyl 

Co-A carboxylase (ACC, E.C. 6.4.1.2).  Fatty acid synthase was selected as it is a key 

enzyme in fatty acid synthesis, catalyzing the synthesis of long chain fatty acids through 

the condensation of acetyl-CoA and malonyl-CoA in a complex seven-step reaction [66].  

Acetyl Co-A carboxylase is the rate limiting enzyme in fatty acid synthesis; it catalyses 

the carboxylation of acetyl-CoA to malonyl-CoA.  Malonyl-CoA synthesized by ACC is 

a critical regulator of lipid metabolism, and plays roles in the regulation of oxidation and 

synthesis of fatty acids [67].   

When cells are exposed to stressful conditions, including heat shock, a small 

number of highly conserved proteins, known as heat shock proteins (HSP), must be 

quickly expressed as part of an important survival response.  Heat shock protein, 

particularly HSP-70, can repair proteins that unfold, misfold or aggregate upon stress, 

assisting in the recovery of the cell [68], and is believed to be a key chaperone in 

ApoB100 folding [69].  HSP-70 may play an important role in cell survival by 

interfering with apoptotic programs [70].  Overexpression of HSP-70 during heat shock 

may protect cells from stress-induced apoptosis preventing the activation of pro-caspases 

9 and 3 [70].  VLDL assembly requires several cell process that work in a synchronized 

fashion.  This puts stress on the cell and calls HSPs into play to elicit a survival 

response.   
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 Malic enzyme (E.C. 1.1.1.40) catalyzes the oxidative decarboxylation of malate 

to pyruvate and CO2, simultaneously generating NADPH from NADP+ [71].  In the 

avian liver, most of the NADPH used by FAS to catalyze the synthesis of the fatty acid 

palmitate (16:0) is generated by malic enzyme [72].   

Circadian Rhythms  

Circadian rhythms are known patterns of biochemical, physiological, or 

behavioral processes that occur in a cyclic pattern.  Circadian rhythms are endogenous to 

an organism and can be adjusted by external cues such as the environment.  The primary 

environmental cue seen in nature is sunlight.  It is known that genes related to lipid 

synthesis will vary in a circadian manner [73, 74].  Due to this fact, all animals used in 

this study were sacrificed at the same time of day (approximately 17:00) and at the same 

nutritional status to minimize circadian variations between the animals.  

Much of circadian science is based on the concept of zeitgeber, meaning “time 

giver” in German.  Zeitgeber is any exogenous cue that synchronizes an organism‟s 

endogenous clock to earth‟s light/dark cycles.  Light is the strongest zeitgeber for both 

plants and animals.  

 There are two locations of organs and tissues, central and peripheral, which 

control circadian rhythms; these tissues are termed oscillators.  In avian species, the 

central part of the circadian system is made up of the suprachiasmatic nucleus, retina, 

and the pineal gland [75].  Peripheral oscillators are present in tissues including the heart 

and liver [76].  These central and peripheral oscillators interconnect to synchronize 

phase relationships inside the organism to the external environment [77]. 
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Transcriptional Profiling 

Transcriptional profiling is a method to measure gene expression within a 

controlled setting, such as disease vs. non-disease state; it can be done by using various 

techniques that measure the levels of transcription in a tissue of interest.  The most 

common method of transcriptional profiling is through microarray.  Transcriptional 

profiling is useful because it can give an overall “snapshot” of what is occurring at the 

cell at one point in time.  A limitation is that annotation of the profiled genes must be 

adequate for results and conclusions from transcriptional profiling to be made. 

Prior to gene transcriptional profiling, messenger RNA (mRNA) that are gene 

transcripts must be extracted from tissue and its quality assessed.  This extract will 

contain transcripts of both “genes of interest” that may have been identified by some 

prior knowledge, as well transcripts for which the experimentor has no prior 

expectations.  Microarray studies are a powerful approach to discover new genes of 

interest.  An estimate of the quality of the initial transcript collection extracted from the 

tissue typically involves both spectrophotometric and electrophoretic analyses. 

Spectrophotometrically, mRNA‟s absorbance should be measured at 230 nm, 260 

nm, and 280 nm.  High quality mRNA extracts possess specific (optimal) ratios of 

optical absorbance at certain wavelengths, namely 260/280 and 260/230.  Both ratios 

give information on the quality of the mRNA.  The 260/280 value estimates the level of 

protein contamination in the mRNA sample; the ideal range of this value is 1.7-2.0.  The 

260/230 value estimates the level of organic contamination of the mRNA, and the 

desired range of this ratio is 2.0-2.3.  Solutions of extracted mRNA that have optimal 
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values for these two ratios are assumed to be relatively free of protein and other organic 

contaminants and suitable for use in transcriptional profiling studies.   

An additional method to judge the quality of the mRNA is the use of agarose gel 

electrophoresis.  This is a method to separate nucleic acids by length.  An electric field is 

applied to the gel to move the negatively charged nucleic acids through the gel.  Shorter 

nucleic acids migrate through the agarose faster than longer nucleic acids due to the 

increased ease of transport of smaller particles through the pores of the gel.  Intercalation 

of ethidium bromide between RNA bases provides a means of band identification.  High 

quality RNA should have one bright, distinct band at 18S and another at 28S.  Any 

samples in which bands were smeared or that did not have bright bands must be purified 

or re-extracted.   

To validate outcomes of transcriptional profiling through microarray, a second, 

independent method to assess changes in gene expression should be applied to sample 

mRNA.  Quantitative real time polymerase chain reaction (q-RTPCR) is one such 

independent method.  In q-RTPCR, a so-called “housekeeping gene”, that is, a gene that 

is expressed at the same level at all times in each sample are measured along with genes 

of interest.  The genes β-actin and glyceraldehyde-3-phosphate dehydrogenase (GAPDH, 

E.C. 1.2.1.12) are often used as housekeeping genes to normalize each gene of interest.  

Comparing the level of expression of the housekeeping gene to the level of expression of 

the gene of interest gives the level of expression of the gene of interest relative to a 

constant value.  In this way, changes in gene expression can be estimated. 
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The recent development of microarray technology, along with specific arrays for 

various species including the chicken, has allowed for extensive analysis of genetic 

markers and pathways.  A large collection of EST‟s enabled the creation of high density 

microarrays [78].  Tissue specific, as well as global, microarrays have been created for 

the chicken.  These arrays include a 3,011 lymphocyte array [79], a 3,072 intestinal array 

[80], an 11K heart specific array [81], a 14,718 macrophage specific array [82], a 13K 

cDNA chicken genome array [83], a 5K immune related array [83, 84], a 20K long oligo 

chicken genome array [85], and a 33K Affymetrix chicken genome array [86].  

There are several classes of microarray technology.  Affymetrix was the pioneer 

in this field with the GeneChip platform.  GeneChip technology is based on short, 

single-stranded DNA segments, or oligonucleotides, that are built to order by chemical 

synthesis [87].  High density arrays are constructed using light directed DNA synthesis, 

namely photolithography and solid-phase DNA synthesis [87].  The photolithographic 

technique uses a silicon substrate onto which photochemically removable protecting 

groups are attached [88].  Light is directed through a photolithographic mask to produce 

specific photodeprotection on the chip surface [88].  Specific deoxynucleosides are then 

incubated with the surface and chemical coupling to the surface occurs; using new masks 

the process is repeated until the chip of 25-mer probes is complete [88].  Advantages to 

the GeneChip are in silico design and probe redundancy, present because multiple 

independent oligonucleotides are designed to hybridize to different regions of the same 

RNA [88].   
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Agilent (Palo Alto, CA, US) uses inkjet printing through phosphoramidite 

((RO)2PNR2) chemistry to carry out in situ synthesis of 60-mer oligonucleotide probes 

on or near the surface of the microarray slide [89].  In a study by Hughes, it was found 

that 60-mer arrays can reliably detect transcript ratios at one copy per cell in complex 

biological samples, and that these arrays are compatible with different sample 

amplification and labeling techniques [89].  An advantage to Agilent technology is that 

Agilent probes are 60-mer oligonucleotides, while GeneChip probes are only 25, making 

the Agilent probes more site-specific.  In addition, the Agilent probes are able to reliably 

detect transcript ratios of one copy per cell in complex samples.   

The Agilent 60-mer oligonucleotide 44K chicken array was developed in 2008 

by a group at Texas A&M University [90]. The 44K array consists of 42,034 features, or 

individual spots on the array which hybridize to a specific oligonucleotide sequence, 

based on the whole chicken genome sequence plus 1264 positive control features and 

153 negative control features [90].   

 The development of microarray technology has opened countless doors allowing 

whole-genome research.  These highly specific slides also allow the researcher to create 

a specialized array, focus on a set of particular genes or encompassing an organism‟s 

genetic makeup.  With this technology, transcriptional profiling is quickly and easily 

accomplished.  The custom 44K Agilent array was utilized for the current study, as it is 

based upon the chicken‟s whole genome sequence. 
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Bioinformatic Analysis of Transcription Data 

 A series of basic steps are followed to process microarray derived data for 

transcriptional profiling:  1. Normalize the raw data outputs using technique-specific 

software   2. Remove any background technique generated noise (a form of systematic 

error)  3. Normalize the data to determine significance of individual data points  4. 

Carry out specialized statistical methods to answer specific questions  5. Use literature 

and online databases to determine the identity or homology of specific gene sequences if 

annotation is unavailable.  Annotation is the process by which important pieces of 

information about a particular gene‟s raw gene sequence or gene product function are 

added to a database.  This includes describing different sections of the raw gene 

sequence as protein-coding, nonfunctional, or regulatory, as well as providing links to 

publications that describe gene product function, regulation or similarity to other coding 

regions. 

To determine if results are statistically meaningful, and the gene of interest is 

present, significance can be assessed by using the statistical formula and significance 

boundaries of the researcher‟s choice.  In this particular study, transcription data was 

analyzed using Lowess normalization and a significance level of p<0.05 was chosen.  

Lowess normalization allows the researcher to correct for background signal, and 

determine that a gene is expressed at a level above or below that background signal.  

After statistically meaningful results are determined, the researcher is able to use the 

genes expressed differently from background signal to cluster genes and do further gene 

identification, annotation, analysis.   
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There are countless online databases that are useful tools for analyzing nucleotide 

sequence for similarity and identity, finding gene localization, and determining gene 

pathways, among others.  NCBI BLAST (http://blast.ncbi.nlm.nih.gov/Blast.cgi) can 

identify similarities in gene sequences with great speed [91].  NCBI also has a feature 

termed Homologene which is an automated system for detecting homologs among the 

annotated genes of several completely sequenced eukaryotic genomes, including those of 

chickens, mice, and humans [91].  

The Database for Annotation, Visualization and Integrated Discovery (DAVID) 

is a database used for large scale functional annotation of identified genes [92, 93].  It 

utilizes a gene list and gene background, both entered by the user.  The program then 

uses available online resources, including the Gene Ontology project, to compare the 

“interesting” gene list to the background.  According to DAVID, a “good” gene list 

contains many important markers, including containing a reasonable number of genes 

(100-2,000), and passing the statistical threshold for selection in the particular 

experiment being done [92, 93].  For example, in the estrogen induction experiment, the 

statistical threshold for inclusion of a particular gene‟s outcome in a DAVID analysis 

was a signal to noise ratio (SNR) greater than three at a minimum of one sampling point, 

and a significance of p<0.05 after Lowess normalization [94].  Importantly, in 

experiments where two fluorescent dyes (red and green) are used, intensity-dependent 

variation in dye bias may introduce spurious variations in the collected data. Lowess 

normalization merges two-color data, applying a smoothing adjustment that removes 

such variation [95].  This correction is “Step2” in transcriptional profiling data analysis 

http://blast.ncbi.nlm.nih.gov/Blast.cgi
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for this specific technique.  After this process the transcripts for which sufficient 

statistical confidence exists to declare the gene “present” in the sample will have been 

identified.  This dataset can be subjected to further statistical analysis to determine 

whether experimental treatments alter the relative amounts of each transcript that is 

present.   

Gene Ontology (GO) is a collaborative effort to address the need for consistent 

descriptions of gene products in different databases [96].  Within GO, three structured, 

controlled “vocabularies” (ontologies) describe gene products in a species-independent 

manner [96].  The three ontologies are molecular function, cellular component, and 

biological process.  Cellular component describes a component of the cell that is part of 

some larger object.  Molecular function represents activities rather than the entities 

(molecules or complexes) that perform the actions.  They do not specify where or when, 

or in what context, the action takes place.  Biological process describes a series of events 

accomplished by one or more ordered assemblies of molecular functions [96].  These 

events must have more than one distinct step.  Determining biological process data, 

including signal transduction and specific gene/protein interactions is a long term 

objective of this work.  

GeneCards is an easy to use, searchable online database that integrates 

information from several online databases onto one page for each gene.  The data 

presented on the GeneCards site is extracted or linked to over 80 external databases and 

digital sources [97].  The data for each available gene includes function, sequences, 

orthologs, variants, aliases, and pathways, among many other pieces of information. 
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In all, transcriptional analysis can give a rich dataset of significant values.  

Further statistical analysis can give interesting clusters and patterns of data, and are 

invaluable to a whole-genome array experiment.  Online databases sponsored by the 

government, institutes of higher education, and non-profit groups lend insight to genes 

whose function or homology is unknown, further enriching the experiment outcomes. 

Conclusion 

In conclusion, the assembly of VLDL (and VLDLy) is a complex process that is 

incompletely understood.  The chicken has frequently been used for studies of VLDL 

assembly since massive increases in plasma VLDL occur in response to exogenous 

estrogens in the rooster or with the onset of egg laying in the hen [60].  In avian species, 

the liver is the main site of de novo fatty acid synthesis, accounting for 95% in young 

chicks [98-100].   

 The current study hypothesized that estrogen induction will selectively alter 

hepatic gene expression to facilitate VLDLy assembly and secretion.  An underlying 

assumption in this study was that the same processes used to assemble VLDL operate 

during VLDLy assembly, albeit perhaps modified to accommodate the inclusion of 

ApoVLDL-II into VLDLy structure.  We further hypothesized that by measuring 

changes in hepatic gene expression in relation to time following estrogen exposure  

requisite changes in cellular processes to “retool” VLDL assembly for VLDLy 

assembly, including a general up regulation of all gene products required for ApoB-LP 

assembly, that all components of that assembly process might be identified.   
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 Objectives of this study included: using the estrogen induced chick model to 

identify which genes are expressed before and at each of five time points following a 

maximally stimulating estrogen dose, characterizing identified genes using publically 

available databases, correlating changes in gene expression with phenotypic changes in 

plasma lipoproteins and selected tissue weights, determining whether anticipated 

changes in ApoB gene expression could be used to identify other genes associated with 

VLDLy assembly processes.   

 It is hoped that this project will lead to a better understanding of the assembly of 

VLDLy particles.  This study is a first-pass analysis of the feasibility of using gene 

transcription assays to characterize the assembly of a VLDLy.  Information gained on 

gene expression patterns and experimental techniques from this project will benefit 

future gene-centric projects focusing on particle assembly. 
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CHAPTER II 

MATERIALS AND METHODS 

 

Animal Subjects: Experiment 1 

A total of twenty-four, 7-10 day old chicks were studied in the microarray 

survey.  The chicks were maintained at the Texas A&M University Poultry Research and 

Teaching Facility in accordance with AUP #2009-245.  The chicks were fed a 

nutritionally adequate non-purified grower ration (Table 3) in routine use at the TAMU 

Poultry Research and Teaching Facility.   

Animal Subjects: Experiment 2 

To compare a natural estrogen cycle to the artificially induced model employed 

in Experiment 1, twelve female Lohmann birds were studied during the pullet/layer 

transition.  Four pre-production pullets (15wk 4d), four immediate pre-production hens 

(16wk 3d), and four egg-laying hens (26wk 1d) were used.  The hens were maintained at 

the Texas A&M University Poultry Research and Teaching Facility.  Pullets were 

provided the same non-purified grower ration (Table 3) until transfer to a nutritionally 

adequate layer ration at 16 weeks of age (Table 4).  This feed is in routine use at the 

TAMU Poultry Research and Teaching Facility and is provided for ad-libitum 

consumption according to AUP#2009-245.  The hens were not fasted prior to tissue 

sampling.   
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Table 3: Chick grower ration. 

Ingredient  

Corn (%) 64.21 

Soybean Meal (%) 23.60 

Limestone (%) 10.09 

Biofos (%) 1.17 

Salt (%) 0.46 

Vitamins Mix (%) 0.25 

DL-MET98 (%) 0.17 

Trace Minerals Mix (%) 0.05 

Calculated composition  

Protein (%) 2.319 

Calcium (%) -0.027 

AV Phosphate (%) 0.829 

TSAA (%) 2.544 

Sodium (%) -0.052 

ME (kcal/kg) 2733.21 
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Table 4. Composition of the basal diet - pre lay. 

Ingredient  

Corn (%) 70.3 

Soybean Meal (%) 22.7 

Limestone (%) 5.29 

Biofos (%) 1.02 

Salt (%) 0.38 

Vitamins Mix (%) 0.25 

DL-MET98 (%) 0.05 

Trace Minerals Mix (%)  

Calculated composition 2.974 

Protein (%) -0.037 

Calcium (%) 0.818 

AV Phosphate (%) -0.0618 

TSAA (%) 2909.22 



32 

 

Treatment and Sampling Protocol: Experiment 1 

The experiment was conducted in a way that produced different lengths of 

exposure to exogenous estrogen, but tissue was collected at the same “clock hour” for all 

birds (Table 5).  Four chicks were injected with 10 mg/kg diethylstilbesterol in extra 

light olive oil (Star, Borges USA, Fresno, CA) at the start of experimentation and at four 

time points following [101].   

Injections occurred 12 hours, 18 hours, 21 hours, and 22.5 hours before liver 

harvest (Figure 2).  Four chicks served as vehicle-injected controls and were killed at 

time zero.  This scheme generated four chicks that were exposed to estrogen for each of 

the following lengths of time: 0, 1.5, 3, 6, 12, 24 hours.  Dosing was timed so that all 

birds were killed at constant clock hour, specifically 17:30h.   

This component of the experimental design aimed to remove any changes in gene 

expression due to circadian rhythms.  Birds were anesthetized in a chamber filled with 

4% isoflurane (IsoFlo, Abbott Laboratories, Abbott Park, Illinois) and 96% oxygen 

(Praxair, College Station, TX).  Birds were checked to ensure full anesthetization had 

occurred by observing animal reaction to an abdominal skin pinch.  After full 

anesthetization occurred, the bird was removed from the chamber and transferred to a 

prepared surgical table; a face mask was attached to the bird to provide continued 

sedation.  Birds were exsanguinated by cardiac puncture; their livers were removed 

rapidly and immediately frozen on dry ice in between two pieces of foil.  After freezing 

the livers were sealed between the foil pieces and placed into a -80C freezer.  

Precaution was taken with the foil to avoid any contamination of the foil prior to use and 
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Table 5. Estrogen induction and sacrifice time course. 

Length of Estrogen Exposure (hrs) 

 

Time of Estrogen Injection 

 

Time of Sacrifice 

 
24.0 Day 1  17:30 Day 2  17:30 

12.0 Day 2    5:30 Day 2  17:30 

6.0 Day 2  11:30 Day 2  17:30 

3.0 Day 2  14:30 Day 2  17:30 

1.5 Day 2  16:00 Day 2  17:30 

0.0 Day 2  17:30 Day 2  17:30 
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Figure 2. Estrogen induction flowchart. 

  

Day 1 – 17:30 

Inject 4 chicks 

Day 2 – 05:30 

Inject 4 chicks 

Day 2 – 11:30 

Inject 4 chicks 

Day 2 – 14:30 

Inject 4 chicks 

Day 2 – 16:00 

Inject 4 chicks 

Day 2 – 17:30 

Inject 4 chicks 
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to avoid the foil becoming frozen in folds of the livers during freezing.   

Treatment and Sampling Protocol: Experiment 2 

Hens received an electric current to the temple using a SKVS electric stunning 

knife (Pickwick-Knase, Eden Prairie, MN), and their throats were punctured.  Blood was 

collected from the neck and stored on ice in 10 mL Vacutainer (Beckton Dickinson, 

Franklin Lakes, NJ) collection tubes.  Livers were removed, weighed, and immediately 

frozen on dry ice as described for Experiment 1.  The hen‟s body weight, liver weight, 

pelvic width at midpoint of the ischium, ovary weight, oviduct weight, ovarian status, 

and follicle presence and weight were recorded  

Biochemical Measurements: Experiment 2 

A portion of the processed plasma was sent to the Texas Veterinary Medical 

Diagnostic Laboratory on the campus of Texas A&M University for 17β-Estradiol 

quantification. Estrogens were extracted from plasma using 1.0 mL of dichloromethane 

and  0.5 mL plasma sample.  After extraction, the sample was dried under a stream of 

nitrogen and rehydrated with phosphate buffered saline; 200 µl was used in duplicate for 

radioimmunoassay.  The Siemens Estradiol Double Antibody Kit #KE2D1 (Siemens, 

Munich, Germany) was used for analysis.  The sample was incubated with antibody 

supplied with the kit for 2hrs, and then incubated for 1hr with the tracer supplied with 

the kit.  Finally, the antibody bound fraction was precipitated and counted using a 

Genesys 5000 gamma counter Model LTI505 (Laboratory Technologies, Inc., Maple 

Park, IL).  
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Lipoprotein Diameter Measurements: Experiment 2 

 Reduction in VLDL particle diameter is characteristic of VLDLy formation. In 

order to determine whether patterns of gene expression coincided with this physiological 

marker, VLDL diameters were determined in intact female chickens undergoing the 

pullet/layer transition. Venous blood samples were placed in a pre-chilled Sorvall RT-

6000B (Thermo Fisher Scientific Inc., Asheville, NC) tabletop refrigerated centrifuge 

and spun for 30 minutes.  The plasma was removed from the tubes and transferred to 

collection tubes containing EDTA.  One milliliter of plasma was put into each 

UltraClear centrifuge tube catalog # 344624 (Beckman Coulter, Inc., Brea, CA).  Five 

milliliters of d=1.0255 solution was added to total 6 mL per tube with a final density of 

1.022 g/mL.  The tubes were placed in a Beckman TFT 44.5 rotor (Beckman Coulter, 

Inc., Brea, CA) and subjected to ultracentrifugation at 14˚ C at a speed of 40,000 RPM 

for 18 hours with a maximum temperature of 25˚ C using a Beckman L8-70M 

Ultracentrifuge (Beckman Coulter, Inc., Brea, CA).    

 After centrifugation was complete, the diameters of lipoproteins recovered from 

the floating lipid layer were measured using a Nanotrac NPA 250 (Microtrac software 

version 10.5, Clearwater, FL).  Each sample was analyzed in triplicate with a 

measurement time of 60 seconds for individual measurements, with the following 

parameters: particle refractive index=1.46, transparent/irregular particle, density=0.98, 

fluid refractive index=1.34, high temperature=26C, viscosity=0.889, low 

temperature=20C, fluid viscosity=1.002, analysis option=high sensitivity, 

perspective=number, progression=geometric 8 root. 
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Molecular Measurements: Experiment 1 

RNA was extracted from all livers using the Ribopure kit using approximately 

10-15 mg of tissue and according to standard kit protocol (Ambion, Inc., Foster City, 

CA).  Tissues were homogenized using a VWR VDI 12 SI homogenizer (VWR 

International, Radnor, PA).  The concentration (ng/uL), level of organic contamination 

(260/230 ratio) and level of protein contamination (260/280 ratio) of each sample was 

determined using a NanoDrop spectrophotometer (Thermo Scientific, Waltham, MA).  

Samples with ratios outside of the desired range (1.7-2.0 for 260/280 and 2.0-2.3 for 

260/230) were concentrated using Ambion‟s (Ambion, Inc., Foster City, CA) sodium 

acetate precipitation of small nucleic acids protocol by combining the total RNA with 

0.1 vol 3.0 M sodium acetate (Ambion, Inc., Foster City, CA), 3 vol 100% ethanol 

(KOPTEK, King of Prussia, PA), and 3 vol of 70 µg glycogen, Lot #411291 (Illumina, 

Inc., San Diego, CA).  Mixtures were then placed in a -80°C freezer for fifteen hours.  

The samples were centrifuged at 14,000 rpm at 4˚C for fifteen minutes.  The supernatant 

was removed and 200 µL of 75% ethanol was added to the pellet.  The pellet and 75% 

ethanol were centrifuged for five minutes at 8,000 rpm at 4˚C.  The supernatant was 

carefully removed from the tube, and the pellet was allowed to air dry for five minutes in 

the same tube, on ice, with the tube opening parallel to the surface of the ice.  The 

samples were then diluted to 800 ng RNA/µL in RNAse free water to a total volume of 

40 µL.  To do this, the sample concentration was measured using a NanoDrop 

spectrophotometer (Thermo Scientific, Waltham, MA).  The formula (800 

ng/µL)*(40µL)/(concentration in ng/µL) was used to determine the volume of RNA to 
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add to make 40 µL at a final concentration of 800 ng/µL.  The amount of RNAse free 

water to add was determined by subtracting the volume of RNA stock solution added, 

using the above calculation, from 40 µL.  The resulting samples were stored at -80˚C 

until used.   

Additional confidence in the integrity of the RNA was sought through the use of 

denaturing agarose gel electrophoresis.  100 mL of 1% denaturing agarose gel was made 

by combining 1.0 g agarose (Bio-Rad, Hercules, CA) with 90 mL of RNase free water in 

an Erlenmeyer flask.  The flask was heated in the microwave until the agarose was 

melted, and then placed in a 60C water bath until flask temperature was equilibrated.  

10 mL of NorthernMAX 10X running buffer (Ambion, Inc., Foster City, CA), and 1.5 

µL of 10 mg/mL ethidium bromide (Promega, Madison, WI) were added to the flask and 

swirled to mix.  The agarose solution was poured into an RNase free BioRad Sub-Cell 

GT System Horizontal Gel Electrophoresis System with a 15x15 cm gel tray size (Bio-

Rad, Hercules, CA).  After the gel hardened, 1X MOPS running buffer (Lonza, Basel, 

Switzerland) was added to cover the gel.  A 1.0 µg aliquot of each sample was combined 

with 2.5X the sample volume of NorthernMAX formaldehyde load dye (Ambion, Inc., 

Foster City, CA) in a 0.2 µL tube.  Prepared sample tubes were thoroughly mixed with a 

VortexGenie (Scientific Industries, Bohemia, New York) and incubated for 10 minutes 

at 65C.  Tubes were removed from the incubation and placed on ice for 5 minutes.  

Samples were loaded into each well and run at 140 volts for 25 minutes.  Bands were 

visualized using a Kodak EDAS 290 Electrophoresis Documentation and Analysis 

System (Kodak, Rochester, NY).  High quality RNA should have one bright, distinct 
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band at 18S and another at 28S.  Intercalation of ethidium bromide between RNA bases 

provides a means of band identification.  Any samples in which bands were smeared or 

that did not have bright bands were purified or re-extracted.  All previously used 

techniques to determine concentration and purity were applied to these subsequent 

samples. 

Highly concentrated RNA samples with clear bands on a denaturing gel and 

acceptable 260/280 and 260/230 ratios were labeled and hybridized to the 44K Agilent 

chicken microarray (Agilent Technologies, Inc., Santa Clara, CA).  Sample labeling was 

accomplished using a dual-dye system, shown in Table 6.   

The Agilent 44K chicken array is a two-color microarray where two different 

cDNA samples, one labeled with one color dye, and one labeled with another color, are 

hybridized to a single probe.  Dual dye systems function to eliminate dye bias, as half 

the control samples on each slide were labeled with cyanine 3 (Cy3) and the other half of 

the control samples labeled with cyanine 5 (Cy5).  The concentration and purity of the 

labeled samples was again measured using a NanoDrop spectrophotometer (Thermo 

Scientific, Waltham, MA) prior to hybridization to a Gallus gallus 44K Agilent array 

containing 43,803 probes [90].  RNA isolated from samples taken at time points 24, 12, 

6, 3, and 1.5 was hybridized with one zero time point control sample. Under this scheme, 

four replicates of the entire time course were generated. 
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Table 6: Microarray dual dye scheme. 

Slide # Array # 
Cy5 Labeled 

Sample # 
Time Point (hr) 

Cy3 Labeled 

Sample # 
Time Point (hr) 

1 

1 6 1.5 h 2 0 

2 7 0 18 1.5 h 

3 34800 1.5 h 9 0 

4 34776 0 34783 1.5 h 

2 

1 11 3.0 h 2 0 

2 7 0 13 3.0 h 

3 34788 3.0 h 9 0 

4 34776 0 34789 3.0 h 

3 

1 5 6.0 h 2 0 

2 7 0 10 6.0 h 

3 34780 6.0 h 9 0 

4 34776 0 34790 6.0 h 

4 

1 3 12.0 h 2 0 

2 7 0 4 12.0 h 

3 34794 12.0 h 9 0 

4 34776 0 34796 12.0 h 

5 

1 8 24.0 h 2 0 

2 7 0 12 24.0 h 

3 34787 24.0 h 9 0 

4 34776 0 34778 24.0 h 
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The slides were incubated at 65C for seventeen hours in Agilent's microarray 

hybridization chambers. After hybridization, arrays were washed according to the 

Agilent Two-Color Microarray-Based Gene Expression Analysis Protocol Version 5.7, 

Manual # G4140-90051 (Agilent Technologies, Inc., Santa Clara, CA).  Labeling, 

hybridization, and washing procedures were all done following Agilent‟s Two-Color 

Microarray-Based Gene Expression Analysis Protocol Version 5.7, Manual # G4140-

90051 (Agilent Technologies, Inc., Santa Clara, CA).   

A 1.0 ug aliquot of total RNA was used to synthesize first-strand cDNA using the 

Thermoscript™ RT-PCR system (Invitrogen, Carlsbad, CA), and utilizing the random 

hexamers provided in the kit in a reaction volume of 20 μL. This reaction was done in a 

MJ Research PTC-200 Peltier Thermal Cycler (Bio-Rad Laboratories, Inc., Hercules, 

CA) with the following program: 94C for 15 min, 30 cycles of 64C for 30 sec, 59C 

for 30 sec, and 72C for 30 sec, and 64C for 15 min.  The resulting cDNA was used to 

amplify GAPDH primers (Sense-5‟-GTGAGTCCACTGGTGTCTTCAC-3‟, Antisense-

5‟-CTTAGCACCACCCTTCAGATG-3‟), using the program: 94C for 15 min, 30 

cycles of 64C for 30 sec, 59C for 30 sec, and 72C for 30 sec, and 64C for 15 min.   

Agarose gel electrophoresis of the amplification products using a 2% agarose gel 

was done to check cDNA integrity.  To make the gel, 150 mL of 1X tris/borate/EDTA 

buffer (TBE) was added to 3 g agarose (Bio-Rad, Hercules, CA).  The flask was 

microwaved until the agarose was melted (approximately one minute on high power).  

Three microliters of 10 mg/mL ethidium bromide (Promega, Madison, WI) was added to 

the agarose solution after approximately one minute, and swirled to mix.  The gel was 



42 

 

poured into a BioRad Sub-Cell GT System Horizontal Gel Electrophoresis System with 

a 15x15 cm gel tray size (Bio-Rad, Hercules, CA) and cooled until solid.  The solidified 

gel was covered with 1X TBE.  A 5 µL aliquot of amplification product and 1 µL of 6X 

blue gel loading dye (New England BioLabs, Ipswich, MA) were used in each well.  The 

amplification products were separated following electrophoresis at 140 volts for 50 

minutes.  Bands were visualized using a Kodak EDAS 290 Electrophoresis 

Documentation and Analysis System (Kodak, Rochester, NY).   

 Seventeen genes that displayed changes in gene expression by microarray 

analysis were chosen for q-RTPCR, with gene choice based upon genes shown to be 

necessary for VLDL assembly found using the literature.  Included in this list were both 

induced and repressed genes that either showed significant change from baseline 

expression levels or did not show a significant change in expression level .  Genes whose 

expression level did not change significantly as judged by microarray analysis were 

amplified using two different time point samples in the q-RTPCR analysis.  Quantitative 

real time PCR was done to determine if microarray outcomes were trustworthy and 

repeatable.  A list of gene symbols, gene names, and primers employed for q-RTPCR are 

shown in Table 7. 

Primers were designed using the Roche Universal Probe Library (Roche Applied 

Science, Indianapolis, IN).  First, the gene‟s nucleotide sequence was found using the 

Ensembl online software (http://uswest.ensembl.org/index.html).   

 

  

http://uswest.ensembl.org/index.html
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Table 7: Primer names and sequences used in q-RTPCR analysis. 

Gene Name GenBank Accession Primers 

HSP-70 NM_001006685 F: TCTGGGCACCACGTATTCTT 

  
R: GGCAATGATCTCCACTTTGC 

Glycerol-3-phosphate 

acyltransferase 
CR385377 F: AGTAAACTGTCGCCTTGCCTA 

  
R: CACCATTCCAGCAGCATTAC 

THRSP AY568628 F: AAGCTCTCACCCGGAGGTA 

  
R: CTCTGACCTTCACCGAGGTT 

LPL BU397801 F: AGAGTGAGAACATTCCTTTCACG 

  
R: GGAAGGAGAAGGTCTTGTTGG 

Apolipoprotein B 

(early sequence) 
M18421 F: TTCAGTCCAATCAGAGATTATGTCA 

  
R: CAGAAGGGTAGATAGTGGGATGTT 

Apolipoprotein B 

(later sequence) 
M18421 F: GCAGCTCAACGTTACAATTCC 

  
R: GCTGCCTACGGTCTTCTTTACA 

Vitellogenin II nm_001031276 F: CAGTAACTGTTGGCTTCCACTG 

  
R: TCTGTTTGTCAGTCAGGCTGTT 

D9D X60465 F: CCTGCGGATCTTCTTGACTATT 

  
R: GGGCCCACTCATAGATGTCA 

ApoVLDL-II M25774 F: ATGGTGCAATACAGGGCATT 

  
R: GTCAATGATGGACTTTGAGTGC 

Cyp 7A AY700578 F: TGGTTTCTTTTTGGGAGGAG 

  
R: TGGAAGGAACCCATTTTCAA 

Ppar-α AF163809 F: AATGGTCCAGGATCTGATGG 

  
R: GGCAAAATTAATGGATGAAGGA 

Fatty Acid Synthase J03860 F: TGAACTGTCCTCCAAGACTGG 

  
R: CTGGGCCTGTCTTCAACACT 

MTP BX934807 F: CCGAATGCAAGAAGTGTCCT 

  
R: AGGATGCATGTGTTCTTTGATG 

Riboflavin Binding Protein X74247 F: GAAGGGGACACCCACAAA 

  
R: TGTGAAGTTTGCATAGCAACAG 

LXR AJ851708 F: GAGCTACAACTCAATGATGCTGA 

  
R: GACTGGTCCTGCACATTCG 

Phosphatidylethanolamine 

N-methyltransferase 
AJ720523 F: CACAATTGCAGTGCTGTACGA 

  
R: GCTCCCTTCTGTTTCTGACG 

Hepatic Nuclear Factor 4-α AY700581 F: CAATGAATACGCCTGCTTGA 

  
R: GGATCGCTCAGTCCTTTGG 
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The sequence was input to the Universal Probe Library Assay Design Center 

(http://www.roche-applied-science.com/sis/rtpcr/upl/ezhome.html) beginning with a > 

symbol and with introns denoted using [].  The choice “Automatically Select an Intron 

Spanning Assay” was clicked.  The first primer option was chosen.  Primers were 

ordered from Integrated DNA Technologies (Integrated DNA Technologies, Coralville, 

Iowa), with a scale of 25 nanomole DNA and with the standard desalting purification 

option chosen.  The GAPDH primer pair sequences were obtained from the Dr. Michael 

J. Bailey lab, and were ordered in the same manner as listed above.  All seventeen 

primers were included in analysis, as no primer dimers were visualized on the melting 

curve during q-RTPCR.  Primer dimers appear on the q-RTPCR graph with two peaks 

instead of a single peak.   

The primers were first amplified using cDNA.  As described in the previous 

paragraph, the integrity of the products of the PCR amplification of the primers was 

determined by separation using electrophoresis on a 2% agarose gel and visualized by 

ethidium bromide staining using a Kodak EDAS 290 Electrophoresis Documentation 

and Analysis System (Kodak, Rochester, NY).  A 5 µL aliquot of amplification product 

and 1 µL of 6X blue gel loading dye (New England BioLabs, Ipswich, MA) were used in 

each well.  The PCR reactions including both forward and reverse primers were 

performed in a 10 ul reaction volume using SYBR Green PCR Master Mix (Applied 

Biosystems, Carlsbad, CA) and sample cDNA, on an ABI Prism 7900HT sequence 

detection system (Applied Biosystems, Foster City, CA). There was one “hot start” 

incubation stage (95°C for 10 min), one cycling stage (40 cycles of 95°C for 15 sec, 

http://www.roche-applied-science.com/sis/rtpcr/upl/ezhome.html
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59°C for 30 sec, and 72°C for 30 sec), and one dissociation curve stage ( 95°C for 15 

sec, 60°C for 15 sec, and 95°C for 15 sec with a 2% ramp rate).  A dissociation curve 

was utilized to distinguish between specific and non-specific amplicons.  GAPDH was 

used as the internal control, or “housekeeping” gene.  GAPDH is a commonly used 

reference gene whose product is necessary to a cell‟s maintenance and survival; it is a 

gene that is expressed in cells at a constant level, therefore it is used as a standard for 

molecular assays [102].  All samples were measured in duplicate qRTPCR 

determinations.  Duplicates were averaged, and the single value used for further 

calculations and statistical analysis.  The comparative Ct method was used to calculate 

the relative gene expression level across the tissues using the ABI PRISM 7700 

Sequence Detection System, User Bulletin #2, part # 4303859 (The Perkin-Elmer 

Corporation, Waltham, MA).   

The relative expression level of each gene in one tissue (ΔCt) was calculated by 

Ct target gene-Ct GAPDH; relative expression of each gene in two different tissues 

(ΔΔCt) was calculated by ΔCt A -ΔCt B (The Perkin-Elmer Corporation, Waltham, 

MA).  The amount of target, normalized to an endogenous reference and relative to a 

calibrator, is given by: 2 
–ΔΔCT

 (The Perkin-Elmer Corporation, Waltham, MA).   

Molecular Measurements: Experiment 2 

RNA was extracted from all livers using the RNeasy Plus Mini Kit (Qiagen, 

Valencia, CA).  The concentration, level of organic contamination (260/230 ratio) and 

level of protein contamination (260/280 ratio) of each sample was determined using a 

NanoDrop spectrophotometer (Thermo Scientific, Waltham, MA).  Samples with ratios 
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outside of the desired range (1.7-2.0 for 260/280 and 2.0-2.3 for 260/230) were re-

purified by combining with 0.1 vol 3M sodium acetate, 3 vol 100% ethanol, and 3 vol 

glycogen and placed in a -80°C freezer for fifteen hours.  The samples were centrifuged, 

supernatant removed, and the resulting pellets washed with 75% ethanol.  Samples were 

then diluted to 800 µg RNA/µL in RNAse free water and replicate aliquots were stored 

frozen at -80C until used.  

A 1.0 ug aliquot of total RNA was used to synthesize first-strand cDNA using 

random hexamers and the Thermoscript™ RT-PCR system (Invitrogen, Carlsbad, CA) 

in a reaction volume of 20 μL. This reaction was done in a MJ Research PTC-200 Peltier 

Thermal Cycler (Bio-Rad Laboratories, Inc., Hercules, CA) with the following program: 

94C for 15 min, 30 cycles of 64C for 30 sec, 59C for 30 sec, and 72C for 30 sec, and 

64C for 15 min.  The resulting cDNA was used to amplify GAPDH primers (Sense-5‟-

GTGAGTCCACTGGTGTCTTCAC-3‟, Antisense-5‟-

CTTAGCACCACCCTTCAGATG-3‟) using the same time/temperature program.   

Agarose gel electrophoresis of the amplification products using a 2% agarose gel 

was conducted as described previously to verify cDNA integrity.  To make the gel, 150 

mL of 1X tris/borate/EDTA buffer (TBE) was added to 3 g agarose (Bio-Rad, Hercules, 

CA).  The flask was microwaved until the agarose was melted.  Three microliters of 10 

mg/mL ethidium bromide (Promega, Madison, WI) was added to the agarose solution 

after approximately 1 minute, and swirled to mix.  The gel was poured into a BioRad 

Sub-Cell GT System Horizontal Gel Electrophoresis System with a 15x15 cm gel tray 

size (Bio-Rad, Hercules, CA) and allowed to solidify at room temperature.  The gel was 
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covered with 1X TBE.  A 5 µL aliquot of amplification product was combined with  1 

µL of 6X blue gel loading dye (New England BioLabs, Ipswich, MA), resulting in a 1X 

concentration of blue gel loading dye in each well.  The gel was run at 140 volts for 50 

minutes.  Ethidium bromide stained bands arising from PCR were visualized using a 

Kodak EDAS 290 Electrophoresis Documentation and Analysis System (Kodak, 

Rochester, NY).   

 The genes listed in Table 7 used to evaluate the microarray outcomes from the 

estrogen induction study were used for quantification of hen mRNA using q-RTPCR.  

The PCR reactions were performed in a 10 ul reaction volume, combining  forward and 

reverse primers with sample cDNA, and using the SYBR Green PCR Master Mix 

(Applied Biosystems, Carlsbad, CA).  Analysis was done on an ABI Prism 7900HT 

sequence detection system (Applied Biosystems, Foster City, CA).  There was one “hot 

start” incubation stage (95°C for 10 min), one cycling stage (40 cycles of 95°C for 15 

sec, 59°C for 30 sec, and 72°C for 30 sec), and one dissociation curve stage ( 95°C for 

15 sec, 60°C for 15 sec, and 95°C for 15 sec with a 2% ramp rate).  GAPDH was used as 

the comparative control in order to control for experimental variations in the amount of 

RNA used for each q-RTPCR reaction as well as batch to batch variation in PCR 

reagents [102].  All of the samples were measured in triplicate. 

The three measurements for each tissue sample were averaged prior to further 

calculation or statistical analysis.  The comparative Ct method was used to calculate the 

relative gene expression level across the tissues. Relative expression level of each gene 

in one tissue (ΔCt) was calculated by: Ct target gene-Ct GAPDH; relative expression of 
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each gene in two different tissues (ΔΔCt) was calculated by: ΔCt A -ΔCt B.  During 

analysis, relative fold change was determined between the pre-production hens and the 

immediate pre-production hens, the pre-production hens and the laying hens, and the 

immediate pre-production hens and the laying hens. 

Bioinformatic Analysis: Experiment 1 

Imaging of the microarray is a first critical step to data analysis for this 

technique.  GenePix Pro 5.0 Personal 4100A array scanner and software (Molecular 

Devices, Sunnyvale, CA), was used to scan the microarrays at the level of 5 µm 

resolution; images from this analysis were saved in TIFF format.  Photomultiplier tube 

(PMT) gains were adjusted individually for each array to achieve a ratio of the overall 

intensities of the two channels (Cy3 and Cy5) of 0.95 to 1.05 [90].  Photomultiplier 

tubes are optical pieces of hardware that convert incident photons into electrons due to 

the photoelectric effect [103].  When an incident photon encroaches on the active surface 

of the photocathode, a photoelectron is generated [103].  The PMTs should be balanced 

so that the fluorescent intensities from both channels (635 nm and 532 nm) are similar 

[104].  The PMTs were adjusted so that the normalization factor, calculated by the 

GenePix Pro software, was close to one.  This optimizes dynamic range of the two 

channels and achieves the best visual effect of an image [104].  Second, each microarray 

feature (spot on the array) was manually identified and extracted by moving and 

changing the size of its feature identifier on the array grid using a GenePix Array List 

(GAL) file.  This was repeated for each of the 43,804 features on each of the twenty 
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arrays using the GenePix Pro 6.0 Software.  This is a total of 876,080 individual 

adjustments. 

The SNR is used to define the detection limit and the optimal PMT gain setting 

of the microarray scanner.  This value is calculated for each array element using the 

difference of the median intensity, minus the median background, divided by the 

standard deviation of the background [105].  The data from a gene feature was 

withdrawn from further analysis if it did not have at least one feature sampling spot on 

one array with an SNR greater than three.  This means that if a gene had SNRs of less 

than three at every sampling spot, the gene was deemed absent under the defined 

experimental conditions.  

Data were normalized using R [106].  Next, Lowess normalization, or locally 

weighted least squares regression, using a mixed linear model was performed with SAS 

(SAS, Cary, NC) to fit a smoothing curve onto the microarray dataset [107].  Lowess 

normalization is used to merge two-color data, such as in microarrays with two dyes 

used, and all samples in the dataset are corrected independently [107].  Genes with a 

significant SNR (SNR>3 at a minimum of one sampling point) and a p-value of less than 

0.05 were termed “significant” and included in further mathematical and statistical 

analysis. In this context the term “significant” implies that the gene is expressed at some 

level within the tissue being analyzed.   

JMP (SAS, Cary, NC) was then used as a comparative tool to determine uniquely 

shared genes between every possible time point combination, namely 1.5hr-3hr, 1.5hr-

6hr, 1.5hr-12hr, 1.5hr-24hr, 3hr-6hr, 3hr-12hr, 3hr-24hr, 6hr-12hr, 6hr-24hr, 12hr-24hr, 
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1.5hr-3hr-6hr, 1.5hr-3hr-6hr-12hr, 1.5hr-3hr-6hr-12hr-24hr, 3hr-6hr-12hr, 3hr-6hr-12hr-

24hr, and 6hr-12hr-24hr.  To use JMP, the following steps were followed: 

 The data from each time point was placed into a single excel file, with data from 

each time point located on individual worksheets within the Excel workbook.   

 JMP was opened.   

 Under the data file, the workbook name containing the individual worksheets 

with the data was chosen.   

 Click the first worksheet to be used in the comparison to activate. 

 Choose “Tables”, and then “Join”. 

 Next, choose the second worksheet to be used in the comparison. 

 The option “Gene Index” under each worksheet was highlighted as the point of 

comparison between the worksheets.  

 “Match” was clicked. 

 The option “Include non-matches” was clicked to include genes which are not 

shared by the two worksheets in the output file.   

 Choose “OK”. 

 A new JMP output file is created that can be saved with a unique file name.   

For genes that were included in JMP outcome files, and were on the array listed 

as “no hits”, “unknown”, or without a description, the GenBank ID was searched within 

the NCBI chicken specific map viewer 

(www.ncbi.nlm.nih.gov/mapview/map_search.cgi?taxid=9031).  To do this, the 

GenBank ID was entered in the “Search for” box and “Find” was clicked.  The search 

http://www.ncbi.nlm.nih.gov/mapview/map_search.cgi?taxid=9031
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results page produces a nucleotide sequence for the GenBank ID of interest.  This 

sequence was entered into the NCBI BLAST [108] program to determine homology to 

genes in other organisms, and to provide further information about the gene in the 

pursuit of gene identification.   

The DAVID web-based software was next used for large scale functional 

annotation of identified genes [92, 93].  The entire list of probes on the array, received 

from the microarray developers, was pasted into the DAVID upload box as a 

background for analysis.  The genes of interest (example: all 1,528 genes, with 

significantly different levels of expression at 1.5 hours when compared to 0.0 hrs) were 

pasted into the upload box as a gene list.  The “Identifier” selected in Step 2 is 

GENBANK_ACCESSION.  “Start analysis” was clicked and then “Functional 

Annotation Tool” was clicked.  Following analysis, the Uploaded List can be removed 

from the “List Tab” and the next set of genes can be input.  The background genes 

remain in the program for these additional analyses.   

Specific Gene Focus: Experiment 1 

 The first gene focused on was TAG hydrolase, an intracellular lipase that is 

believed to catalyze hepatic TAG store mobilization for VLDL assembly.  The term 

“triacylglycerol hydrolase” was searched in the Genecards (www.genecards.org) 

database[97].  Carboxylesterase 1 (CES1) was chosen, as it is an also known as term for 

triacylglycerol hydrolase.  In the section labeled “Gene Function for CES1 gene” the 

Enzyme Number (IUBMB) was noted to be 3.1.1.1.  Next in Uniprot (www.uniprot.org) 

this IUBMB number was searched for further information.   
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 The death domain genes and cell-death-inducing DFF45-like effector (CIDE) 

genes were investigated next.  CIDE genes are a family of cell death activators with 

homology to the 45 kDa subunit of the DNA fragmentation factor that play an important 

role in lipid metabolism[109].  CIDE-B has specifically been shown to mediate VLDL 

lipidation and maturation by interacting with apolipoprotein B [110].    
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CHAPTER III 

ESTROGEN INDUCTION OF MALE CHICKS  

 

Introduction  

The chicken egg is a product of an intense, hormone driven process that creates 

an environment fit for the incubation of a chick embryo.  Important to the chick‟s 

survival is an adequate supply of energy which is shuttled to the egg in the form of 

VLDLy, a TAG rich lipoprotein.  TAG is the most concentrated form of stored energy, 

and the 6.0 g of TAG in an egg yolk is enough for the chick‟s survival prior to hatch [1].  

It has been observed that estrogen treatment of male birds mimics the effects of female 

sexual maturation on circulating lipoprotein profiles [60]; in that same study by Luskey, 

ApoB-LP assembly in male birds was seen to increase fourfold 16 hours after estrogen 

treatment [60].  We hypothesized that inducing seven to ten day old male chicks with 

estrogen would produce effects on hepatic ApoB-LP assembly similar to that of a hen 

reaching sexual maturity.  Expanding on earlier estrogen induction studies, the Agilent 

44K Chicken Array was used to measure levels of individual mRNA transcripts in the 

livers of chicks.   

As all aspects of the VLDL assembly process are not known, microarray 

technology was used to compare the temporal expression patterns of genes in a tissue 

(liver) known to be involved in VLDL assembly under conditions where this process is 

known to be undergoing rapid and massive increases in capacity.  One of our aims was 

to evaluate a strategy to cluster genes with similar kinetic schemes in order to determine 
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whether additional biological inference about their contribution to higher order 

biological processes.  Specifically, we wondered whether previously unrelated genes 

could be specifically associated with VLDL assembly by having a kinetic pattern similar 

to that of ApoB100.  In a second approach a list of candidate genes shown to be essential 

to the VLDL assembly process was identified using peer-reviewed literature.  The 

stipulations for inclusion in the candidate gene list are listed in Chapter I. 

Materials and Methods 

Based on a scheme described in Chapter II, and also described in Table 5 and 

Figure 2, four chicks were exposed to estrogen for each of the following lengths of time: 

0, 1.5, 3, 6, 12, 24 hours post-estrogen exposure.  Birds were killed at a constant clock 

hour by exsanguination via cardiac puncture.  Following full sedation, livers were 

quickly removed and frozen on dry ice.   

RNA was extracted from all livers with the Ribopure kit using approximately 10-

15 mg of tissue and according to standard kit protocol (Ambion, Foster City, CA).  

Following concentration determination, select samples were concentrated using a  

sodium acetate precipitation, thoroughly described in Chapter II.  Denaturing agarose gel 

electrophoresis was done to measure RNA integrity.   

Highly concentrated RNA samples with clear bands on a denaturing gel and 

acceptable 260/280 and 260/230 ratios were labeled and hybridized to an Agilent 

microarray using a dual dye system (Santa Clara, CA).  RNA isolated from samples 

taken at time points 24, 12, 6, 3, and 1.5 was hybridized with one zero time point control 

sample, creating four replicates of the time course. 
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Features were extracted and optimized as listed in Chapter II.  The SNR was 

calculated for each array element using the difference of the median intensity, minus the 

median background, divided by the standard deviation of the background [105].   

Data were normalized using R [106].  Lowess normalization using a mixed linear 

model was performed with SAS (SAS, Cary, NC) [107].  Genes with a p-value of less 

than 0.05 were termed significant and included in analysis.  The program JMP (SAS, 

Cary, NC) was then used as a comparative tool to determine uniquely shared genes 

between every possible time point combination described in Chapter II. 

Unknown sequences of interest were found using the NCBI map viewer 

(www.ncbi.nlm.nih.gov/mapview/map_search.cgi?taxid=9031).  Sequence was entered 

into the NCBI BLAST [108] program to determine homology to genes in other 

organisms, and to identify the gene.  The web-based DAVID software was next used for 

large scale functional annotation of identified genes [92, 93].   

 Total RNA was used to synthesize first-strand cDNA as described in Chapter II.  

cDNA integrity was tested by amplifying GAPDH primers and running the amplification 

product on an agarose gel.  Next, q-RTPCR was used for quantification of seventeen 

genes of interest to qualify microarray results.  All samples were measured in duplicate, 

and values averaged prior to further computational analysis.  Following measurement, 

the comparative Ct method was used to calculate the relative gene expression level.   

A list of candidate genes was created apart from any microarray data (Table 2).  

The stipulations for inclusion in the candidate gene list are listed in Chapter I.  Briefly, 

when the gene in question was absent or altered VLDL assembly failed or was otherwise 

http://www.ncbi.nlm.nih.gov/mapview/map_search.cgi?taxid=9031
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compromised, the gene was shown or speculated to be involved in assembly of an apoB-

LP or to be a structural part of an apoB-LP, the gene was shown or speculated to be 

estrogen responsive, or the gene was responsible for a protein involved in making lipids 

or transporting lipids.  These genes were compared to the results seen in the chick 

estrogen induction model.  It was noted whether the genes on the candidate gene list 

showed significant changes in transcript levels as estimated by binding to microarray 

probes in the chick estrogen induction model.  Next, the genes in the candidate gene list 

were placed into groups with candidate genes that have similar functions or are 

structurally. 

Results 

Seventeen genes were tested using q-RTPCR to qualify the microarray results.  

The coefficient of variation (CV) between the replicate q-RTPCR reactions ranged from 

1%-5%, with a mean CV of 4.1% ± 1.0%.  The outcomes of q-RTPCR are listed in 

Table 8.  For testing purposes, several genes that were not differentially expressed in 

relation to time 0 in the microarray experiment were chosen for q-RTPCR inclusion.  For 

these genes, samples from two different time points were tested using q-RTPCR.  These 

gene names are denoted with a „*‟ in Table 8.  Statistical significance values are 

presented in Table 9.  Standard deviation and standard error of the mean compare the 

raw Ct values from q-RTPCR at one time point.  The student‟s t-test compares the Ct 

values of a gene at the noted time point to the Ct values of the same gene at time 0. 
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Table 8. Fold differences in expression between an internal reference gene 

(GAPDH) and target genes using q-RTPCR.  Those gene names with a * are genes 

tested against samples at two time points for additional confidence. 

Gene Name 1.5hrs 3hrs 6hrs 12hrs 24hrs 

Heat Shock Protein 

70kDa* 
-2.08 - - - -1.45 

Glycerol-3-phosphate 

acyltransferase-3* 
- 1.20 - - -2.56 

Thyroid hormone 

responsive spot 14 
- - -3.33 - - 

Lipoprotein Lipase - - - - -7.69 

Apolipoprotein B (taken 

from early part of ApoB 

sequence) 

-1.39 - - - - 

Apolipoprotein B (taken 

from late part of ApoB 

sequence) 

- - - 10.36 - 

Vitellogenin 1I - 849.70 - - - 

Delta 9 Desaturase* 1.62 - - 2.17 - 

Very low density 

lipoprotein II 
- - 6618.62 - - 

Cytochrome P450, family 

7, subfamily A * 
- 1.38 - 2.95 - 

Peroxisome Proliferator –

Activated Receptor   
- - - -1.43 - 

Fatty Acid Synthase - - -1.67 - - 

Microsomal Triglyceride 

Transfer Protein 
- - - - -4.55 

Riboflavin Binding 

Protein 
- - 33.71 - - 

Liver X Receptor* 1.08 1.53 - - - 

Phosphatidylethanolamine 

N-methyl transferase 
- - - 1.87 - 

Hepatocyte Nuclear 

Factor 4 alpha* 
- - - 1.16 0.76 
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Table 9. Statistical outcomes of chick q-RTPCR results. 

Gene Name Time Point 
Standard 

Deviation 

Standard 

Error of the 

Mean 

Student‟s 

T-Test p 

value 

Heat Shock Protein 

70kDa 
1.5hrs 1.31 0.46 0.06 

Heat Shock Protein 

70kDa 
24hrs 1.38 0.49 0.39 

Glycerol-3-phosphate 

acyltransferase-3 
3hrs 0.94 0.33 0.65 

Glycerol-3-phosphate 

acyltransferase-3 
24hrs 2.00 0.76 0.06 

Thyroid hormone 

responsive spot 14 
6hrs 0.88 0.31 0.06 

Lipoprotein Lipase 24hrs 2.28 0.86 0.01 

Apolipoprotein B 

(early) 
1.5hrs 1.06 0.37 0.48 

Apolipoprotein B (late) 12hrs 0.30 0.14 2.12E-5 

Vitellogenin 1I 3hrs 1.45 0.51 9.39E-8 

Delta 9 Desaturase 1.5hrs 1.41 0.50 0.76 

Delta 9 Desaturase 12hrs 0.92 0.35 0.053 

Very low density 

lipoprotein II 
6hrs 0.59 0.24 7.94E-10 

Cytochrome P450, 

family 7, subfamily A 
3hrs 1.73 0.65 0.81 

Cytochrome P450, 

family 7, subfamily A 
12hrs 1.62 0.57 0.0079 

Peroxisome Proliferator 

–Activated Receptor   
12hrs 0.27 0.10 0.48 

Fatty Acid Synthase 6hrs 0.56 0.21 0.63 

Microsomal 

Triglyceride Transfer 

Protein 

24hrs 3.06 1.08 0.095 

Riboflavin Binding 

Protein 
6hrs 0.95 0.34 2.40E-10 

Liver X Receptor 1.5hrs 0.89 0.31 0.91 

Liver X Receptor 3hrs 0.94 0.33 0.68 

Phosphatidylethanolami

ne N-methyl transferase 
12hrs 0.47 0.16 0.003 

Hepatocyte Nuclear 

Factor 4 alpha 
12hrs 1.24 0.44 0.09 

Hepatocyte Nuclear 

Factor 4 alpha 
24hrs 1.71 0.61 0.68 
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After JMP analysis comparing all possible combinations of time points, it was 

determined that an interesting JMP comparison was the comparison of all possible time 

points (1.5-3-6-12-24).  This comparison determined that 119 genes were differentially 

expressed as compared to time 0 at every time point.  

When the NCBI map viewer was utilized to identify the 119 genes expressed at 

every time point, several interesting points were determined.  Six of the 119 probes (5%) 

showed no identity to annotated amino acid sequences.  Thirty-four of the 119 probes 

(29%) showed 98%, 99%, or 100% of identity to annotated amino acid sequences.  

Fifteen of the 119 probes (13%) showed identity to a predicted, hypothetical, or 

unknown annotated amino acid sequence.  The remaining 53% of genes were identified 

on the Agilent 44K Chicken Array. 

ApoB had five probes on the microarray, each assessing a different region of its 

4536 bases.  The expression patterns of each probe differed (Figure 3).  BX258989 (nt 

2,517 to nt 2,576) had the highest individual fold change of the probes, peaking at a fold 

change of 7.6 at 6 hrs (Figure 3).  BX258989 also had the highest fold change at every 

other time point except for 24 hrs.  At 24 hrs, BU125204 (nt 33,310 to nt 33,369) had the 

highest fold change.  BX935480 (nt 10,608 to nt 10,667) had the lowest fold change at 

1.5, 3, and 6 hrs. CR407271 (nt 27,799 to nt 27,858) had the lowest fold change at 12 

and 24 hrs. CR407271 is located late in the ApoB sequence.   

Candidate genes were chosen, based upon the stipulations listed in Chapter I.  

Briefly, genes that had been shown to significantly impact VLDL assembly or secretion 

in a natural or induced gene absence were included.   
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Figure 3. Expression patterns of five apoB probes analyzed by microarray. 
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When these report findings were compared to the chick estrogen induction data, 

it was seen that expression levels of 31 of the 61 candidate genes found in literature 

(51%) were not significantly different at any time point post estrogen exposure.  Fold 

changes for candidate genes are seen in Table 10.  Of the candidate genes, seven unique 

genes had differential expression in relation to time 0 at all five time points.  Several of 

these seven genes had two probes on the microarray.  The seven genes included 

AGPAT-2, HSP70, ApoB, RBP, VLDLII, VTGI, LPL.  Of the thirty genes with 

differential expression, ten had negative fold changes. 

The candidate genes were next organized into groups involved in similar 

processes.  The first group of genes was the nuclear transcription factors associated with 

either assembly specifically or with genes responsible for particle component synthesis.  

These genes included forkhead box A2 (FOX A2), HNFα, vitamin D3 receptor, and 

calreticulin.  The first, FOX A2, was differentially expressed in relation to time 0 and the 

last three were not.  FOX A2 regulates gene expression in differentiated tissues; it is a 

transcriptional activator for liver-specific genes like albumin and transthyretin. 

Another group included genes known to be involved in VLDL assembly, namely 

ApoB, MTP, choline kinase (CHK, E.C. 2.7.1.32), diacylglycerol O-acyltransferase 2 

(DGAT2, E.C. 2.3.1.20), 1-acylglycerol-3-phosphate O-acyltransferase 3 (AGPAT-3, 

E.C. 2.3.1.51), phosphatidylethanolamine N-methyltransferase (PEMT, E.C. 2.1.1.17), 

which were all regulated at one or more time points.  These genes are directly involved 

in particle component synthesis or putting together the interdependent parts of a VLDL.   
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Table 10. Fold changes of candidate genes whose level of transcription 

differed significantly from 0 hour post estrogen exposure.  Gene names listed 

twice represent a gene with two probes on the microarray.  

Gene Name Accession 1.5hr 3hr 6hr 12hr 24hr 

Fatty Acid 

Synthase 
BU301374 - - - - -1.59 

Diacylglycerol O-

Acyltransferase 2 
BX275561 - -1.43 -1.54 - - 

Glycerol-3-

phosphate 

acyltransferase-2 

BU295914 1.77 2.89 3.57 4.56 1.87 

Glycerol-3-

phosphate 

acyltransferase-3 

CR385377 - - - - -1.67 

Thyroid Hormone 

Responsive Spot 

14 

AY568628 - -1.75 -2.44 - - 

Ferritin repressor 

protein 
D16150 1.46 1.78 1.81 1.84 - 

Cytochrome 

P450, Family 51 
BU467769 - - - - 2.05 

Cytochrome 

P450, Family 51 
BU221671 - - - - 1.78 

Squalene synthase AJ719973 - - -3.13 - - 

HMG CoA 

Synthase-1 
M60657 2.51 2.38 - - - 

Microsomal 

Triglyceride 

Transfer Protein 

BX934807 -1.67 -1.89 -2.17 -2.04 - 

Heat Shock 

Protein 70 
BU308587 -1.75 -2.17 -2.04 -1.72 -1.75 

Heat Shock 

Protein 90 kDa 

beta 

M14772 -2.70 - - - - 

Heat Shock 

70kDa Protein 5 
M27260 -3.13 - - - -2.44 

Heat Shock 

Protein Cognate 

Beta 

X70101 -1.64 -1.79 -1.59 - - 

Apolipoprotein B M18421 1.61 2.39 3.71 4.61 2.74 

Apolipoprotein B BU125204 1.72 2.50 3.30 4.51 2.82 

Riboflavin 

Binding Protein 
X74247 6.27 11.24 20.62 45.22 56.24 
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Table 10 Continued 

 

Gene Name Accession 1.5hr 3hr 6hr 12hr 24hr 

Riboflavin 

Binding Protein 
J03922 4.06 10.47 17.80 59.44 45.53 

Dolichyl 

Pyrophosphate 

Phosphatase-1 

BX932586 - - - - -1.35 

Phosphatidyletha-

nolamine N-

methyltransferase 

AJ720523 - - - 1.93 - 

Choline Kinase CF257275 4.51 5.19 5.10 5.10 - 

Very low density 

lipoprotein II 
M25774 142.32 151.74 177.01 94.06 90.50 

Very low density 

lipoprotein II 
V00449 113.19 102.14 127.13 80.67 75.97 

Vitellogenin I D89547 - 8.13 57.33 
111.7

6 
56.87 

Vitellogenin I BU125536 41.56 163.19 226.93 51.32 65.57 

Liver Fatty Acid 

Binding Protein 
AF380999 - - 2.37 1.62 1.85 

Lipoprotein 

Lipase 
BU397801 -4.00 -7.69 -6.67 -6.25 -2.22 

VLDL receptor X80207 - 1.74 - - - 

Cell death-

inducing DFFA-

like effector a 

BU456248 - - - - 2.39 

Diazepam 

Binding Inhibitor 
BU476960 - - 1.42 1.78 1.74 

Malic enzyme 3 
BQ038051.

2 
- - 2.64 - - 

Carboxy-terminal 

domain, RNA 

polymerase II, 

polypeptide A 

phosphatase, 

subunit 1 

CR387746 - -1.43 -1.49 -1.37 -1.41 

Forkhead Box A2 AF150749 - -1.45 - - - 

Insulin Induced 

Gene 1 
AJ719295 2.33 2.33 - - - 

Fas associated 

factor family 

member 2 

CR387756 - 1.44 - - - 
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Several candidate genes involved in VLDL assembly which were expected to be 

differentially expressed when compared to time 0, but were not, included ACC, lipin 1 

(LPIN1), and fatty acid elongase (ELOVL, E.C. 2.3.1).  A reproduction specific gene 

group was comprised of RBP, VTGI, and ApoVLDL-II.  Transcription of these genes 

was shown by other studies to be estrogen dependent [26-30] and their transcription is 

increased in the presence of estrogen (Figure 4).  ApoVLDL-II‟s transcript is stabilized 

by estrogen [26].  As estrogen declines, ApoVLDL-II is no longer stable and the protein 

is not present.  These genes were all seen to be differentially expressed compared to time 

0 in the estrogen induced chick model (Figure 4). 

A candidate gene group involved in glycerol lipid synthesis included the 

regulated FAS, acyl-CoA:diacylglycerol acyltransferase, 1-AGPAT-2, 1-AGPAT-3, 

thyroid hormone responsive spot 14 (THRSP), and aconitase (E.C. 4.2.1.3).  The genes 

with unchanging expression levels in this group included ATP citrate lyase (ACLY, E.C. 

2.3.3.8), ACC, D9D, ELOVL, 6-phosphogluconate dehydrogenase (PGD, E.C. 1.1.1.44), 

and 5' adenosine monophosphate-activated protein kinase (AMP-K, E.C. 2.7.11). 

Conclusions 

 The results observed from the chick estrogen induction trial aligned with the 

individual steps required for VLDL assembly.  31 out of 61 candidate genes (51%) were 

seen to significantly change at one or more time points.  Vitellogenin I, lipoprotein 

lipase (LPL), and ApoVLDL-II were three genes included on the candidate gene list 

whose expression level was significantly different from 0 time at one or more time 

points.   
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Figure 4. Changes in the expression of estrogen responsive genes following a single 

maximally stimulating estrogen dose.  Note: Vitellogenin I and Very Low Density 

Lipoprotein II data are an average of two probe fold changes. 
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Vitellogenin I, an estrogen responsive gene, peaked at a fold change of 166 at 

3hrs.  Lipoprotein lipase was a gene that was suppressed 8 fold at 3hrs.  ApoVLDL-II, 

another estrogen responsive gene, peaked at a fold change of 177 at 6hrs. 

Not all of the genes expected to be necessary for VLDL assembly were seen to 

be differentially expressed as compared to 0 time across the time course.  This may be 

due to variations in the chicken‟s physiology as compared to a human or mouse model, 

or other variations in the experiment, including factors like feeding state, time of day, or 

physiological stage of the animal.  Alternatively, the expression levels of these genes 

may not have been limiting to increases in VLDL assembly and so alteration in their 

expression was not needed. 

 When observing the 24-hour time course, it was clear that gene programs were 

predominantly working to prepare the cell to produce VLDL for three to six hours post 

estrogen exposure.  These preparatory processes included increases in mRNA 

responsible for ribosome synthesis, specific structural proteins like ApoB and 

ApoVLDL-II, lipids, and expression of proteins that serve to reduce cell stress.  Later 

regulated processes (6-24 hours) were predominately related to lipid filling and lipid 

transport, most likely correlated to the assembly of a VLDL.  This information formed 

the rationale of what we expected the gene expression patterns of the laying hen survey 

to be; the pre-lay transitioning to immediate pre-lay hens were expected to have more 

genes in common with the 0-6 hour chick data, and the laying hen gene expression was 

expected to be more like the 6-24 hour chick data. 
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CHAPTER IV 

NATURAL ESTROGEN EFFECTS ON PULLETS 

 

Introduction 

We hypothesized that patterns of change in mRNA levels of estrogen induced 

male chicks would be similar to those of hens naturally approaching and achieving 

sexual maturity.  To test this idea, changes in gene expression of female chickens 

undergoing the pullet to layer transition were studied.  Towards this end, four pullets, 

15wk 4d old, (~12wk prior to lay), four pullets, 16wk 3d old, (~11wk prior to lay), and 

four hens, 24wk 1d old, (actively laying), were used in this experiment.  The data from 

these twelve birds was compared to the data from the twenty-four estrogen induced 

chicks to identify similarities and differences in expression of seventeen selected genes. 

We expected the same genes whose expression increased massively in the 

estrogen induced chicks at three and six hours to be similarly elevated in laying hens in 

comparison to 15 wk old pullets.  Three hours and six hours were judged “maximal” for 

gene expression.  The pre-production and immediate pre-production hens were expected 

to have similar gene profiles to the chicks exposed to estrogen for 1.5 to 6 hours, 

respectively.  This hypothesis was based on the fact that estrogen is responsible for the 

physiologic and gene expression changes that occur in a hen allowing it to produce an 

egg, and the idea that estrogen levels in a hen are in flux as it reaches sexual maturity.   

 

 



68 

 

Materials and Methods 

Twelve female chickens at different stages of reproductive maturity were studied. 

Four pre-production pullets, four immediate pre-production pullets, and four egg-laying 

hens were used. Hens were killed and blood and livers collected according to section 2. 

Each hen‟s body weight, liver weight, pelvic width at the midpoint of the ischium, ovary 

weight, oviduct weight, ovarian status, and follicle presence and weight were noted.  

After blood processing, the diameters of lipoproteins recovered from the floating 

lipid layer were measured using a Nanotrac UPA 250 (Microtrac software version 10.5, 

Clearwater, FL).  A complete description is found in section two.  A portion of the 

processed plasma was sent to the Texas Veterinary Medical Diagnostic Laboratory on 

the campus of Texas A&M University for 17β-Estradiol quantification to assess estrogen 

levels in the pre-production, immediate pre-production, and laying hens.  Briefly, 1.0 mL 

of dichloromethane was added to 0.5 mL plasma sample to extract estrogens.  Solvent 

was evaporated from plasma extracts, and rehydrated with phosphate buffered saline.  A 

200 µl aliquot of the solubilized extract was used in each duplicate for 

radioimmunoassay using the Siemens Estradiol Double Antibody Kit #KE2D1 

(Siemens, Munich, Germany).  The sample was incubated with antibody supplied with 

the kit for 2hrs, and then incubated for 1hr with the tracer supplied with the kit.  Finally, 

the antibody bound fraction was precipitated and counted using a Genesys 5000 gamma 

counter Model LTI505 (Laboratory Technologies, Inc., Maple Park, IL).  

RNA was extracted from all livers using the RNeasy Plus Mini Kit (Qiagen, 

Valencia, CA).  cDNA was synthesized using random hexamers and the Thermoscript™ 
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RT-PCR system (Invitrogen, Carlsbad, CA).  Second, the cDNA was used to quantify 

the transcript levels of the same seventeen genes used in section three using q-RTPCR.  

See Chapter II for a complete protocol. 

Results 

The pre-production (15wk 4d), immediate pre-production (16wk 3d), and laying 

hens (24wk 1d) had an average body weight of 1033.3 g ± 30.4 g, 1183.8 g ± 50.7 g, and 

1448.5g ± 64.4 g, respectively.  Average liver weight as percent of body weight was 

2.30% ± 0.27% for pre-production, 2.49% ± 0.078% for immediate pre-production, and 

2.48% ± 0.15% for laying hens.  Average pelvic width was 2.71 cm ± 0.085 cm, 5.75 cm 

± 0.32 cm, and 6.38 cm ± 0.24 cm for pre-production, immediate pre-production, and 

laying hens, respectively.  Average ovary weight drastically increased: 0.42 g ±0.073 g 

for pre-production, 0.84 g ± 0.061 g for immediate pre-production, and 57.22 g ± 7.68 g 

for laying hens.  Average oviduct weight increased from 0.56 g ± 0.094 g in pre-

production hens to 15.32 g ± 0.82 g in immediate pre-production hens to 51.69 g ± 5.07 

g in laying hens.  There were no follicles present in the pre-production hens.  There were 

follicles present in one of the immediate pre-production hens; this hen had two follicles, 

F1 of 0.40 g and an F2 of 0.34 g.  The laying hens had multiple follicles.  The average 

weights of follicles F1 through F6 of the laying hens were 12.99 g ± 0.95 g, 12.4 g ± 

1.28 g, 9.67 g ± 1.72 g, 6.68 g ± 1.55 g, 4.52 g ± 1.50 g, and 4.46 g ± 0.30 g, 

respectively.  The average VLDL diameter was 72.40 nm ± 10.18 nm in the pre-

production hens, 21.95 nm ± 0.71 nm in the immediate pre-production hens, and 26.97 

nm ± 0.96 nm in the laying hens.  This physiologic data is summarized in Table 11. 
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Table 11. Hen physiological data.  Each data point is an average of four 

birds.  Note:  Follicles are not present in immature birds, thus follicle weights 

are not available and statistics are not possible. 

Feature Measured 

Pre-Production 

Hens 

Immediate Pre 

Production 

Hens Laying Hens 

Sacrifice Time 14:52 14:43 15:33 

Body Wt 1033.25 g 1183.75 g 1448.50 g 

Liver Wt 23.72 g 29.44 g 35.89 g 

Liver Wt as a % of Body Wt 2.30% 2.49% 2.48% 

Pelvic Width 2.71 cm 5.75 cm 6.38 cm 

Ovary Wt 0.42 g 0.84 g 57.22 g 

Oviduct Wt 0.56 g 15.32 g 51.69 g 

F1 Wt n/a 0.09 g 12.99 g 

F2 Wt n/a 0.10 g 12.40 g 

F3 Wt n/a n/a 9.67 g 

F4 Wt n/a n/a 6.68 g 

F5 Wt n/a n/a 4.52 g 

F6 Wt n/a n/a 4.46 g 

VLDL Diameter  72.40 nm  21.95 nm 26.97 nm 

Plasma Estrogen Levels  109.00 pg/uL 177.95 pg/uL 37.15 pg/uL 
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Average pelvic width was positively correlated with the VLDL diameter (nm) 

when average (Figure 5).  The trend line of average plasma estrogen concentration was 

also negatively correlated with pelvic width, oviduct weight, and liver weight.  

17β-Estradiol analysis showed that the immediate pre-production hens had the 

highest average of plasma estrogen, with 109.0 ± 74 pg/mL. The pre-production hens 

had an average plasma estrogen of 178.0 ± 84 pg/mL. The laying hens had the lowest 

concentration of plasma estrogen, with 40.9 ± 5.5 pg/mL. This general pattern aligns 

with a study by McKeegan which showed that a laying hen‟s plasma estrogen level 

peaks at approximately 200 pg/mL around 15-17 weeks, and drops to approximately half 

of that by 24 weeks [111].  

Seventeen genes were analyzed using q-RTPCR. The pre-production hens were 

compared with the immediate pre-production and the laying hens to determine fold 

changes of gene expression.  In addition, the immediate pre-production hens were 

compared with the laying hens to determine fold changes in gene expression. This data is 

summarized in Table 12.  The average standard deviation for each set of replicates of a 

gene was 1.41.  Six genes showed negative gene expression patterns in relation to 

another maturity group of birds.  Cyp 7A and HNFα were the genes whose expression 

was observed to be both up and down in comparison to one of the other bird age groups.  

VTGII had the highest expression level (1653.2) as compared to time 0 of all 

comparisons, and riboflavin binding protein had the second highest fold change (851.8).   
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Figure 5. Comparison of VLDL diameter trend line to average pelvic width trend 

line. 
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Table 12. Hen q-RTPCR results. 

Gene Name Pre-production and 

immediate pre-

production 

Immediate pre-

production and lay 

Pre-production and 

lay 

 

HSP-70 1.03 3.79 3.92 

1-AGPAT 3 1.39 1.67 2.31 

THRSP -1.06 -2.27 -2.44 

LPL -6.25 -2.04 -12.50 

ApoB (early) 7.06 1.55 10.93 

ApoB (late) 4.58 1.73 7.90 

VTGII 638.36 2.59 1653.20 

D9D -2.44 -1.30 -3.23 

ApoVLDL-II 63.98 3.05 194.87 

Cyp-7A 1.39 -1.89 -1.35 

Ppar-alpha 1.56 1.11 1.73 

Microsomal 

Triacylglyceride 

transfer protein 

(MTP) 

-2.04 -1.43 -2.94 

Riboflavin binding 

protein 
161.50 5.27 851.80 

LXR 1.32 2.00 2.65 

PEMT 1.08 2.20 2.37 

Hepatic Nuclear 

Factor-alpha 
-1.64 10.34 6.34 
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Conclusions 

Physical examination of birds at necropsy showed that pre-production hens‟ 

ovarian status was extremely undeveloped, the immediate pre-production hens‟ ovarian 

status was clearly developing, and the laying hens‟ ovarian status was fully developed.  

This anatomical data combined with physiologic data confirmed that the terms pre-

production, immediate pre-production, and laying hens were correct for the stage of 

sexual development assigned to each group. Based upon the increase in oviduct and 

ovary weight, it was apparent that the hens physically progressed into sexually maturity 

very quickly. 

One interesting find was the concentration of estrogen in the different aged hens. 

We initially expected the laying hens to have the highest level of plasma estrogen of the 

three sets of birds, as they were actively undergoing lay and producing approximately 

one egg per day. What was seen, though, was that the laying hens had the lowest 

concentration of estrogen in the plasma among the three groups. The birds with the 

highest level of estrogen in their plasma were the immediate pre-production pullets, 

which were ~eleven weeks from lay. It can be ruled out that estrogen levels differed due 

to the time of death, because the immediate pre-production pullets were killed from 

14:40 hrs to 14:48 hrs, which was very similar to the time of death of the pre-production 

hens (14:51 hrs to 14:54 hrs). The laying hens had the latest time of death, from 14:58 

hrs to 15:59 hrs. It could be hypothesized that these hens were undergoing drastic 

physiological changes preparing their bodies for egg production.   
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One clue to support this idea is the rapid 27-fold increase in oviduct weight in the 

one week period between the harvest of the pre-production and immediate pre-

production hens.  The average oviduct weight increased from 0.56 g to 15.32 g, as the 

average plasma estrogen concentration increased from 109.00 pg/mL to 177.95 pg/mL. 

The general pattern of change in estrogen concentration observed in our study aligns 

with a study by McKeegan which showed that a laying hen‟s plasma estrogen level 

peaks at approximately 200 pg/mL around 15-17 weeks, and drops to approximately half 

of that by 24 weeks [111]. 

The q-RTPCR analysis showed that VTGII, ApoVLDL-II, and RBP had massive 

upregulation, as expected.  Another interesting thing noticed from q-RTPCR analysis 

was the difference in expression between the two ApoB primers.  The primer which is 

early in the ApoB sequence had a fold change of 10.93 when the pre-production and 

laying hens were compared.  Using this same comparison, the primer localized later in 

the ApoB sequence had a fold change of 7.90.  This differential degree of expression 

was also observed in the microarray results from the estrogen induced chicks (Figure 3).  

It is thought that the placement of the sequence to be amplified plays a role in efficiency 

of the amplification and affects the actual amplification results.  This may be due to the 

aspects of the particular amplification procedure used or simply the length of the mRNA 

sequence. 

The q-RTPCR outcomes from both estrogenized male chicks and female 

chickens at the pullet-layer transition were used in general comparisons to one as a way 

to evaluate the similarity in patterns of gene expression and perhaps provide a 
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physiological frame of reference for the estrogen induction protocol.  Comparisons 

between pre-lay and immediate pre-lay pullet patterns of gene expression were similar in 

magnitude to the changes observed in comparisons of estrogen naïve male chicks to 

those exposed to estrogen for 1.5hr to 6hrs.  Specifically, VTGII had its greatest fold 

change in male chicks during this time frame, and similarly the greatest fold of 166 at 

3hrs in the estrogen induced chick microarray.  In the hen q-RTPCR data, the largest 

fold change was 638, seen when the same pre-lay to immediate pre-lay comparison was 

made.  In just seven days, the hens exhibited massive changes that caused VTGII 

expression to increase.  In the estrogen induced chicks, LPL was suppressed 8 fold at 

3hrs.  In the hens, LPL was maximally suppressed 6-fold when pre-lay and immediate 

pre-lay birds were compared.  ApoVLDL-II, peaked at 6 hrs at a fold change of 177.  

When the pre-lay and immediate pre-lay birds were compared, ApoVLDL-II had its 

maximal fold change of 64.  The estrogen induced chick model clearly provides 

information on an extremely compressed time-scale that seems to be comparable to an 

approximately one week long transition of a pullet to a layer bird. 
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CHAPTER V 

STATISTICAL ANALYSIS OF EXPRESSION KINETICS 

 

Introduction 

From the start of the study, it was a goal to kinetically group genes.  It was hoped 

that kinetic clustering would group genes known to be affected by the presence of 

estrogen and genes involved in VLDL assembly with genes previously unknown to act 

similarly.  The candidate gene approach was helpful for analysis focusing on 

independent time points, but it was not able to capture patterns of change in gene 

expression over time.  Thus, we sought help from statistics experts to achieve this goal. 

The hypothesis of the study was explained to the statistical experts, Dr. Scott 

Schwartz and Dr. Jiawei Wei, members of the Training program in Bioinformatics in the 

Department of Statistics at Texas A&M University.  Simply described, we gave estrogen 

to male chicks, knowing that this causes ApoB gene expression to increase.  In response, 

massive amounts of VLDLy are made.  We believe that if genes follow the same 

expression pattern as ApoB100, there is an enhanced chance that those genes may be 

specifically involved in that assembly process as well. 

By working with Dr. Scott Schwartz and Dr. Jiawei Wei, this aim was achieved 

with the creation of a novel Bayesian model based classification of temporal patterns.  

This modeling system grouped genes based on their simple kinetic patterns, and allowed 

genes some flexibility with regards to which model they fell into.  There were 243 

possible models for each gene to fall into; each of the five time points were classified as 
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up (+1), down (-1) or no change (0).  395 genes with significant q-values were included 

in this portion of analysis.  The group of 395 genes was the most highly significant 

group of genes after false discovery rate (FDR) adjustment was made.  This includes 

removing a percentage of genes with significant p-values believed to be false positives. 

Methodology (taken from Schwartz 2011 Manuscript) 

 An apparent strategy to address this question was to cluster j according to the 

vector {¯ytj : t = 1, · · · , T}, e.g., using a K-means approach [112] or a model based 

approach [113]. We initially employed both options, however, we found that clustering 

did not well discern the kinetic pattern of the elements of {¯ytj : t = 1, · · · , T}. Instead, 

clustering using these methodologies  constructed classifications on the basis of the 

overall magnitudes of the vectors. Thus, for our setting, it appeared that clustering based 

on euclidean metrics of the T dimensional variable {¯ytj : t = 1, · · · , T} was not 

conducive to distinguishing kinetic patterns in ¯ytj . Certainly, there may be some 

potential for addressing pattern identification in our setting via clustering, e.g., using 

some form of standardized data {ztj : t = 1, · · · , T}, but we do not pursue this further 

here. 

Instead, we provide a model framework that characterizes outcomes according to 

their kinetic patterns in {yitj : i = 1, · · · , n; t = 1, · · · , T}. Our methodology has three 

key components: 1. a cumulative mean changing from one time point to the next, 2. a 

variable selection prior that characterizes kinetic patterns, and 3. a hierarchical 

component that for correlated/longitudinal data. Our specification is  
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The j subscripts are retained to emphasize that the univariate data {yitj : i = 1, · · · , n; t 

= 1, · · · , T} is considered independently. Our specification results in a cumulative 

expected value for yitj that is equal to the expected value of the previous time point 

E(yi(t−1)j ) = Bij + Pt−1 k=1 βkj adjusted by some βtj .  That is, E(yitj) = E(yi(t−1)j) + 

βkj . Thus, through this parameterization, the kinetic changes from one time point to 

the next are directly captured. The inclusion of the point mass mixture prior specification 

f(βtj) of Geweke [114] allows for each modeled βtj to either increase, decrease, or not 

affect the expected value accumulated up to the previous time point. Through this 

mechanism, gene j‟s relationship to estrogen exposure over time is characterized 

according to kinetic pattern comprised of up/down/steady transitions in mRNA response 

over time. Finally, we allow each {yitj : t = 1, · · · , T} to have a unique offset Bij = β1j 

+ (Bij − β1j ). This allows the methodology to be applied to longitudinal settings or other 

settings (such as the one we describe in Section 3) where there is correlation between 

{yitj : t = 1, · · · , T}. By specifying Bij as the first level of a hierarchy centered around 

β1j , inference on the correlation is provided by (Bij − β1j ), and full kinetic inference on 

the overall intercept β1j is still available via the point mass mixture prior f(β1j ). If there 
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is no reason to expect {yitj : t = 1, · · · , T} are correlated, as in true cross-sectional data 

settings, Bij and s2j may be simply dropped from the modeling. We explore sensitivity 

of the estrogen data results to this non-correlated specification in Section 3. As always, 

the model will be sensitive to dominating specifications of the prior parameters. Of 

particular interest in this regard is the choice of p, the prior probability of each βtj being 

0. In our experience, p behaves as an analysis tuning parameter. As such, a sensitivity 

analysis over plausible values for p must be implemented to assess the influence of the 

prior specification of p on the results. For example, in our actual analysis we use a subset 

of genes expected to show temporal patterns and so we examine results for p = .5, p = .2, 

and p = .05. This corresponds to a prior belief that 50%, 20%, and 5% of the βtj are 0, 

respectively. In addition to examining sensitivity to p, because the behavior of certain 

genes in response to estrogen exposure is approximately known we may also criticize 

our selections.On a final note, we could incorporate a hierarchical information sharing 

structure by substituting ptj ∼ Beta(aθ, bθ) in place of the single parameter p.  However, 

we feel in the case of T = 5 coefficients, the status dtj of a single βtj would provide 

questionable information regarding the status dt′j of another βt′j , and so we do not 

pursue this extension. 

As noted, our approach for characterizing mRNA estrogen response is to classify 

each gene j by its kinetic pattern:{sign(βtj)dtj : t = 1, · · · , T}. That is, each gene j is 

enumerated according to a model of the form Mj = {m1j , · · · ,mtj}, where mtj ∈  {−1, 

0, 1} and t = 1, · · · , T. For example, the model, or kinetic pattern for the mRNA 

expression data displayed in Figure 1 (see appendix) appears to be MFig1 = {1, 1, 1, 
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1,−1} or up-up-up-up-down, while a gene that is not affected by estrogen should be M0 

= {0, 0, 0, 0, 0} or steady-steady-steady-steady-steady. Note that m1j represents the 

change relative to the baseline, whereas each subsequent mkj for k = 2, · · · , T 

represents the change from the previous time point. The Mj are meant to provide high 

level classification capabilities for distinguishing between various combination of 

increasing, decreasing, and steady kinetic patterns across ordinal treatment regimes t. 

Full inference on {βtj : t = 1, · · · , T} is still available for finer levels of inference, 

should they be required. Once inference on each Mj is complete, classification is 

complete, and inference on specific Mj′ may be compared to that of any other Mk, k 6= j 

for relative classification purposes. In many model selection settings, finding high 

posterior probability models is challenging. It is not a problem here however. First, for a 

small number of time points, there are not very many models, e.g., 35 = 243 when T = 5, 

and so in principal all may be examined. Second, models with high posterior probability 

are in fact easily found under this specification since each βtj is essentially estimating a 

mean. Thus, advanced stochastic search variable selection (SSVS) procedures (see, e.g., 

Hans et al. [115]) are not necessary.   

Results 

By design, there were 3
5
 (243) possible models over five time points; each of the 

395 genes with significant q-values fell into models most closely matching the gene‟s 

individual expression pattern.  Biologically, the most interesting patterns were those 

which included genes known to be related to the ApoB-LP assembly process.  These 

interesting genes include apolipoprotein B (ApoB), ApoVLDL-II, MTP, and AGPAT3, 
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among others.  Along with these noteworthy genes, it was anticipated that additional 

genes related to transport, binding, enzyme activity, and secretion might be identified by 

possession of an expression pattern that corresponded to that of ApoB.   

Analysis based upon a time course gives the ability to tease out necessary and 

possibly unknown components that enable process flow.  An early time course study by 

Janero and Lane determined that VLDL particle assembly required about 30 minutes, 

focusing on apolipoprotein, TAG, and phospholipid secretion rates [36].  Their pulse-

chase study of estrogen induced parenchymal liver cells determined that phospholipids 

were secreted 5-15 minutes into the chase and again after 30 minutes, TAGs were 

secreted 20-25 minutes into the chase, and apolipoproteins were secreted after 30-35 of 

chase time [36].  This secretion pattern gives a basic framework upon which to place 

individual genes involved in production of individual particles. 

The 395 genes with significant q-values were first analyzed using The Database 

for Annotation, Visualization and Integrated Discovery (DAVID) [92, 93].  DAVID 

recognized 101 unique genes (25.57%) and placed them into fourteen functional 

annotation clusters.  Thirteen of the fourteen functional clusters (92.86%) contained at 

least one gene ontology (GO) term containing the key word “fat”.  The cluster with the 

highest enrichment score was involved in lipid transport and lipid localization.   

 The correlated models containing ApoB contained a total of 285 genes.  The 

uncorrelated models containing ApoB contained 233 genes.  When the data were not 

correlated, ApoB statistically fell into four of the possible 243 patterns when p=0.5, one 

pattern when p=0.2 and three patterns when p=0.05.  When the data were correlated,  
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ApoB statistically fell into three patterns when p=0.5, six patterns when p=0.2 and three 

patterns when p=0.05.  At p=0.05, the expression patterns that ApoB matched were the 

same when using the correlated and non-correlated algorithms.  It was interesting that 

out of the 243 patterns, ApoB falls into a limited number of patterns; only ten patterns 

contained ApoB (4.1%).  It should be noted that apolipoprotein-B is a large protein 

(4536 amino acids long) and there are five oligonucleotide probes for ApoB on the 44K 

Agilent Chicken Array.  Only two of the five ApoB probes, M18421 and BU125204, 

had significant q-values and appeared in the analysis.  Interestingly, of the twenty 

models ApoB appeared in across the multiple model analysis, only five of these models 

were representative of both M18421 and BU125204.  These two ApoB probes had 

similar expression patterns, and together guide further comments related to ApoB.   

Several genes appeared to share the kinetic profile of ApoB, appearing in each of 

the three non-correlated groups.  One of these genes is putative porin precursor, which 

functions in ion and general cell transport.  This supports the necessity of transport 

within the cell during a massive upregulation of VLDLy production.  Another gene that 

appeared with ApoB in each of the non-correlated p groups was 1-AGPAT 2.  This gene 

is expected to be upregulated in course with ApoB, as it provides ample phospholipids to 

supply developing VLDLys.  Molybdenum cofactor sulfurase (MOCOS, E.C. 4.4.-) was 

also seen across the three non-correlated groups, probably assisting the process by acting 

as an antioxidant, as VLDL secretion is known to be impaired with oxidative stress in 

the RER [116].  Another gene that was in each of these groups was liver fatty acid 
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binding protein (FABP).  The FABPs act as carriers for fatty acids and other lipophilic 

substances between intra- and extracellular membranes.   

 Like the non-correlated groups, the putative porin precursor appeared in all three 

correlated groups, showing that the expression patterns of this transporter protein and 

ApoB are extremely similar.  Alanine aminotransferase 2 (GPT2, E.C. 2.6.1.2) was also 

seen in each of the three correlated groups.  GPT2 is an enzyme which acts to catalyze 

the reversible transamination between alanine and 2-oxoglutarate to form pyruvate and 

glutamate, processes important in gluconeogenesis and amino acid metabolism.  Fatty 

acid binding protein participates in the uptake, intracellular metabolism and transport of 

long-chain fatty acids.  This gene was seen to follow all three groups.  An interesting 

gene that was seen in this grouping was pescadillo homolog 1 (PES1).  This gene is part 

of the PeBoW complex, which is required for maturation of 28S and 5.8S ribosomal 

RNAs and the formation of the 60S ribosome.  PES 1 was unseen in any ApoB 

containing non-correlated groups, which is likely due to the stricter statistical 

requirements of the non-correlated groups as compared to the correlated groups. 

A gene expected to more closely follow ApoB was VLDL-II.  VLDL-II is an 

inhibitor of LPL, protecting the VLDLy from enzymatic breakdown and allowing the 

deposition of lipid into the developing oocyte [117].  VLDL-II may be a protein present 

in excess or the timing of its expression may be slightly different from that of ApoB.  

Another gene with interesting grouping was VTG.  VTG appeared in two correlated 

groups and in two non-correlated groups.  VTG is a phosphoprotein exclusively 

expressed in the livers of estrogenized birds that is cleaved to form the egg yolk 
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phosphoproteins, lipovitellin, and phosvitin [27].  It was seen to increase expression by 

200-fold in this microarray study.   

 Of the 31 candidate genes that were significantly expressed at one or more time 

points, only eight (26%) fell into at least one Bayesian model.  This may be because not 

all of these genes had a q-value of <0.05, and were not included Bayesian modeling.  

Several of these significantly expressed genes had two representative probes on the 

microarray.  The candidate genes included in Bayesian modeling were ApoB, AGPAT-

2, ApoVLDL-II, VTGI, FABP, RBP, CHK, and LPL.  All eight of these genes fit into at 

least one model in each of the correlated and uncorrelated p=0.05, p=0.20, and p=0.50 

significance groups.  Three genes fell into six models.  These were AGPAT-2 at the 

correlated p=0.20 level, one ApoVLDL-II probe at the correlated p=0.05 level, and 

FABP at the correlated p=0.05 level.  The only similar model between any of these three 

genes was model 105, which fit ApoVLDL-II and FABP.   

 Of the 119 genes that were differentially expressed in relation to time 0 across all 

time points, 37 of the 119 genes (31%) were not included in a correlated Bayesian model 

of any significance level.  Forty of the 119 genes (34%) were included in only one 

Bayesian model in the correlated, p=0.50 significance group.  Twenty-six of the 119 

genes (22%) were included in only one Bayesian model in the correlated, p=0.20 

significance group.  Six of the 119 genes (5%) were included in only one Bayesian 

model in the correlated, p=0.05 significance group.  Of these six groups, model 81 

appeared three times in three different genes (glypican-1 protein, claudin domain 

containing-1 protein, and unknown).  Glypican-1 is a cell surface proteoglycan that bears 
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heparin sulfate, and may regulate cell response to growth factors, cell adhesion 

molecules, and extracellular matrix components [118].    

Conclusions 

From this interaction, I learned how to convey biological messages to non-

biology scholars.  It was important that the statistics experts involved in the project 

understood the basic biology behind the project and knew our precise goals in 

proceeding with the interaction.  From this information and understanding, they would 

be able to apply appropriate statistical methodologies to the data set.   

The Bayesian modeling allowed me to classify genes based upon kinetic patterns, 

a feat otherwise not possible.  The modeling identified several genes following ApoB‟s 

kinetic pattern which were novel to our study, which were PES1, the PeBoW complex, 

and MOCOS.  It also classified several genes in groups not containing ApoB.  These 

genes were expected to be classified along with ApoB.   

It is not possible to determine the nature of the clusters at this point, but as 

annotation knowledge is furthered, determination of the functionality of the clusters may 

be possible.  This interaction was also an important stepping stone to future interactions 

with statisticians using data from future projects in the lab creating large datasets, similar 

to the dataset used in this thesis. 
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CHAPTER VI 

INTEGRATED CONCLUSIONS 

 

This study has shown that estrogen exposure using male chicks followed by 

whole genome microarray analysis produces similar results to previously done estrogen 

induction surveys as well as the events accompanying the natural onset of yolk 

formation.  As technology advances and gene annotation is added, the microarray will 

produce richer, and more extensive data.  Even with the available annotation, this 

chicken microarray project has proven to be a valuable addition to available work on 

VLDL assembly. 

As acquired, the Agilent 44K Chicken array was well annotated for 

immunological and cytokine genes.  In the course of this study, extensive translation of 

feature IDs to current GenBank ID‟s was done.  In addition, annotation of unknown 

feature IDs was added to the array list.  One gene of interest, THRSP, was extensively 

searched using the map viewer and BLAST.  It was determined that THRSP has the 

GenBank accession AJ719312 and its alias, LXR, was listed on the 44K array probe list.   

A candidate gene list was created in this microarray study as a starting point to 

assess the alignment of array results with pertinent findings in published literature.  This 

turned out to be a useful tool, as it showed us that estrogen induction in the male chick 

produces similar, but not exactly identical results to those shown in the murine “knock-

out” literature. 
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Indeed, several genes reported in the literature to be necessary to produce 

functional VLDL were not seen to be differentially expressed in relation to time 0 in the 

estrogen induced chick model.  There are several hypotheses on this seeming 

disagreement.  First, the chicken is a primordial organism that is functionally different 

from the models most used in the studies included in the candidate gene list, i.e. human 

cell cultures, murine, and rat models.  This evolutionary difference may be one reason 

for the difference in VLDL assembly between chickens and other models.  Second, there 

may have been experimental factors that caused the gene expression patterns in the 

estrogen induced chicks to behave differently than the literature proposes.  These factors 

include feeding and fasting states, age of the chicks, sex of the chicks, and time of day of 

harvest.  Specifically, the number of estrogen receptors in a chick‟s liver increases from 

1000 receptors per cell at 1 week after hatch, to 3,500 receptors per cell 6 weeks after 

hatch [119].  In addition, gene knock out studies are “all or nothing” examples of gene 

expression.  In a natural setting such as the one presented, genes may be permissive, 

expressed at low levels at all times, or controlling, with expression playing a regulatory 

role.     

By comparing the microarray data from the estrogen induced male chicks and q-

RTPCR data from female chickens during the pullet/layer transition, it was observed that 

the massively upregulated genes in the estrogen induced chick model behaved similarly 

in both models.  It is important to note that q-RTPCR is a significantly more sensitive 

tool than microarrays, and there was a “cut-off” limit for highly upregulated genes in the 

microarray study.  This means that q-RTPCR fold changes had the potential to be much 
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greater than microarray data for the same gene.  VTGII was one such massively 

upregulated gene; it was included in the 17 genes tested using q-RTPCR.  In the estrogen 

induced chick model using microarray, VTGII had a fold change of 227 at its peak at 6 

hours; using q-RTPCR in the transition pullets, VTGII had a fold change of 1653 when 

the pre-production and laying hens were compared.  At its peak of 6 hours, ApoVLDL-II 

had a fold change of 177 using microarray.  ApoVLDL-II had a fold change of 195 when 

pre-production and laying hens were compared using q-RTPCR.  RBP had a peak fold 

change of 59 at 12 hours using microarray; using q-RTPCR, RBP had a fold change of 

852 when pre-production and laying hens were compared. 

Across all microarray and q-RTPCR surveys, ApoB100, interestingly, had 

different expression patterns related to the location of the probe within the nucleotide 

sequence.  This may be due to efficiency of the methods used, chaperone availability, or 

factors specific to the ApoB100 sequence, but it is beyond the scope of this thesis to 

decipher this variance.   

When the q-RTPCR data from the estrogen induced chicks and data from the 

laying hens was compared, it was observed that the same genes with huge fold changes 

in the chicks had similar results in the hens.  When comparing q-RTPCR data, the 

estrogen induced chick model at 3 hrs showed VTGII had a fold change of 850; VTGII 

had a fold change of 1653 when the pre-production and laying hens were compared.  At 

its peak of 6 hrs, ApoVLDL-II had a fold change of 7430 using q-RTPCR.  ApoVLDL-

II had a fold change of 195 when pre-production and laying hens were compared using 

q-RTPCR.  RBP had a peak fold change of 34 at 6 hours using q-RTPCR; using the 
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same technology, RBP had a fold change of 852 when pre-production and laying hens 

were compared.   

In addition, we were able to show that estrogen induced male chicks exhibit 

similar expression patterns to hens in a pullet to layer transition.  Gene expression from 

1.5 to 6 hrs after estrogen introduction closely mirrored the gene expression patterns 

seen in a hen transitioning from a pullet to a layer.  In a very compressed time-scale, the 

estrogen induced chick model was able to mirror the genetic regulation of the 

approximately one week long transition of a pullet to a layer hen. 
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APPENDIX A 

GLOSSARY OF GENES DISCUSSED 

 

ApoB - This gene product is the main apolipoprotein of chylomicrons and low density 

lipoproteins. It occurs in plasma as two main isoforms, apoB-48 and apoB-100: the 

former is synthesized exclusively in the gut and the latter in the liver. The intestinal and 

the hepatic forms of apoB are encoded by a single gene from a single, very long mRNA. 

The two isoforms share a common N-terminal sequence. The shorter apoB-48 protein is 

produced after RNA editing of the apoB-100 transcript at residue 2180 (CAA->UAA), 

resulting in the creation of a stop codon, and early translation termination. Mutations in 

this gene or its regulatory region cause hypobetalipoproteinemia, normotriglyceridemic 

hypobetalipoproteinemia, and hypercholesterolemia due to ligand-defective apoB, 

diseases affecting plasma cholesterol and apoB levels. [provided by RefSeq]. 

 

Vitellogenin – estrogen responsive gene in oviparous species that binds PL and zinc, is 

deposited in egg yolk. 

 

Riboflavin Binding Protein – an estrogen responsive gene in oviparous species. The 

protein encoded by this gene acts to carry riboflavin into the yolk. Associates with HDL 

and VTG for transport into the follicle. 
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ApoVLDL-II – an estrogen responsive gene in oviparous species. Encodes a protein that 

becomes incorporated in the surface of VLDL particles and inhibits lipase. Is also 

thought to mediate a decrease in VLDL particle diameter. 

 

MTP - MTP encodes the large subunit of the heterodimeric microsomal triglyceride 

transfer protein. Protein disulfide isomerase (PDI) completes the heterodimeric 

microsomal triglyceride transfer protein, which has been shown to play a central role in 

lipoprotein assembly. Mutations in MTP can cause abetalipoproteinemia. [provided by 

RefSeq]. 

 

Clock - This gene encodes a protein that belongs to the basic helix-loop-helix (bHLH) 

family of transcription factors. Polymorphisms within the encoded protein have been 

associated with circadian rhythm sleep disorders. A similar protein in mice is a circadian 

regulator that acts as a transcription factor and forms a heterodimer with aryl 

hydrocarbon receptor nuclear translocator-like to activate transcription of mouse period 

1. [provided by RefSeq]. 

 

PER2 - This gene is a member of the Period family of genes and is expressed in a 

circadian pattern in the suprachiasmatic nucleus, the primary circadian pacemaker in the 

mammalian brain. Genes in this family encode components of the circadian rhythms of 

locomotor activity, metabolism, and behavior. Circadian expression in the 

suprachiasmatic nucleus continues in constant darkness, and a shift in the light/dark 
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cycle evokes a proportional shift of gene expression in the suprachiasmatic nucleus. The 

specific function of this gene is not yet known. [provided by RefSeq]. 

 

Bmal-1 - The protein encoded by this gene is a basic helix-loop-helix protein that forms 

a heterodimer with CLOCK. This complex binds an E-box upstream of the PER1 gene, 

activating this gene and possibly other circadian rhythym-associated genes. Three 

transcript variants encoding two different isoforms have been found for this gene. 

[provided by RefSeq]. 

 

Cry1 – part of clock gene complex that controls circadian rhythms. 

 

Cry2 – cryptochrome 2 (photolyase-like); part of clock gene complex that controls 

circadian rhythms. 

 

SCAP - This gene encodes a protein with a sterol sensing domain (SSD) and seven WD 

domains. In the presence of cholesterol, this protein binds to sterol regulatory element 

binding proteins (SREBPs) and mediates their transport from the ER to the Golgi. The 

SREBPs are then proteolytically cleaved and regulate sterol biosynthesis. [provided by 

RefSeq]. 

 

INSIG2 - The protein encoded by this gene is highly similar to the protein product 

encoded by gene INSIG1. Both INSIG1 protein and this protein are endoplasmic 
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reticulum proteins that block the processing of sterol regulatory element binding proteins 

(SREBPs) by binding to SREBP cleavage-activating protein (SCAP), and thus prevent 

SCAP from escorting SREBPs to the Golgi. [provided by RefSeq]. 

 

SREBP-1 - This gene encodes a transcription factor that binds to the sterol regulatory 

element-1 (SRE1), which is a decamer flanking the low density lipoprotein receptor gene 

and some genes involved in sterol biosynthesis. The protein is synthesized as a precursor 

that is attached to the nuclear membrane and endoplasmic reticulum. Following 

cleavage, the mature protein translocates to the nucleus and activates transcription by 

binding to the SRE1. Sterols inhibit the cleavage of the precursor, and the mature 

nuclear form is rapidly catabolized, thereby reducing transcription. The protein is a 

member of the basic helix-loop-helix-leucine zipper (bHLH-Zip) transcription factor 

family. This gene is located within the Smith-Magenis syndrome region on chromosome 

17. Two transcript variants encoding different isoforms have been found for this gene. 

[provided by RefSeq]. 

 

SREBP-2 - This gene encodes a ubiquitously expressed transcription factor that controls 

cholesterol homeostasis by stimulating transcription of sterol-regulated genes. The 

encoded protein contains a basic helix-loop-helix-leucine zipper (bHLH-Zip) domain. 

[provided by RefSeq]. 
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UBDX8 – official gene symbol replaced by FAF2; The protein encoded by this gene is 

highly expressed in peripheral blood of patients with atopic dermatitis (AD), compared 

to normal individuals. It may play a role in regulating the resistance to apoptosis that is 

observed in T cells and eosinophils of AD patients. [provided by RefSeq] From PNAS 

108(31):2010 Ubxd8 inhibits TG synthesis by blocking conversion of diacylglycerols 

(DAGs) to TGs. Excess unsaturated but not saturated FAs relieve this inhibition. As a 

result, unsaturated FAs are incorporated into TGs, whereas saturated FAs are 

incorporated into DAGs. In vitro, unsaturated but not saturated FAs alter the structure of 

purified recombinant Ubxd8 as monitored by changes in its thermal stability, trypsin 

cleavage pattern, and oligomerization. These results suggest that Ubxd8 acts as a brake 

that limits TG synthesis, and this brake is released when its structure is altered by 

exposure to unsaturated FAs. 

 

Choline Kinase - Choline kinase (CK) and ethanolamine kinase (EK) catalyze the 

phosphorylation of choline/ethanolamine to phosphocholine/phosphoethanolamine. This 

is the first enzyme in the biosynthesis of phosphatidylcholine/phosphatidylethanolamine 

in all animal cells. The highly purified CKs from mammalian sources and their 

recombinant gene products have been shown to have EK activity also, indicating that 

both activities reside on the same protein. The choline kinase-like protein encoded by 

CHKL belongs to the choline/ethanolamine kinase family; however, its exact function is 

not known. Read-through transcripts are expressed from this locus that include exons 

from the downstream CPT1B locus. [provided by RefSeq]. 
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DGAT2 - Acyl-CoA:diacylglycerol acyltransferase, or DGAT (EC 2.3.1.20), is 

responsible for the synthesis of triglycerides. It catalyzes a reaction in which 

diacylglycerol is covalently joined to long chain fatty acyl-CoAs [supplied by OMIM]. 

 

AGPAT-3 - 1-acylglycerol-3-phosphate O-acyltransferase 3; The protein encoded by 

this gene is an acyltransferase that converts lysophosphatidic acid into phosphatidic acid, 

which is the second step in the de novo phospholipid biosynthetic pathway. The encoded 

protein may be an integral membrane protein. Two transcript variants encoding the same 

protein have been found for this gene. [provided by RefSeq]. 

 

AGPAT-2 - 1-acylglycerol-3-phosphate O-acyltransferase 2 (lysophosphatidic acid 

acyltransferase, beta) This gene encodes a member of the 1-acylglycerol-3-phosphate O-

acyltransferase family. The protein is located within the endoplasmic reticulum 

membrane and converts lysophosphatidic acid to phosphatidic acid, the second step in de 

novo phospholipid biosynthesis. Mutations in this gene have been associated with 

congenital generalized lipodystrophy (CGL), or Berardinelli-Seip syndrome, a disease 

characterized by a near absence of adipose tissue and severe insulin resistance. Alternate 

transcriptional splice variants, encoding different isoforms, have been characterized. 

[provided by RefSeq]. 

 

PEMT - phosphatidylethanolamine N-methyltransferase; This gene encodes an enzyme 

which converts phosphatidylethanolamine to phosphatidylcholine by sequential 



114 

 

methylation in the liver. The protein localizes to the endoplasmic reticulum and 

mitochondria-associated membranes. The gene is within the Smith-Magenis syndrome 

region on chromosome 17. Alternate splicing of this gene results in three transcript 

variants encoding two different isoforms. [provided by RefSeq]. 

 

Alpha Tocopherol Associated Protein - SEC14-like 2 (S. cerevisiae). This gene 

encodes a cytosolic protein which belongs to a family of lipid-binding proteins including 

Sec14p, alpha-tocopherol transfer protein, and cellular retinol-binding protein. The 

encoded protein stimulates squalene monooxygenase which is a downstream enzyme in 

the cholesterol biosynthetic pathway. Alternatively spliced transcript variants encoding 

different isoforms have been identified for this gene. [provided by RefSeq]. 

 

FABP - The intracellular fatty acid-binding proteins (FABPs) belongs to a multigene 

family. FABPs are divided into at least three distinct types, namely the hepatic-, 

intestinal- and cardiac-type. They form 14-15 kDa proteins and are thought to participate 

in the uptake, intracellular metabolism and/or transport of long-chain fatty acids. They 

may also be responsible in the modulation of cell growth and proliferation. Fatty acid-

binding protein 3 gene contains four exons and its function is to arrest growth of 

mammary epithelial cells. This gene is a candidate tumor suppressor gene for human 

breast cancer. [provided by RefSeq]. 
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Fatty Acid Synthase - The enzyme encoded by this gene is a multifunctional protein. Its 

main function is to catalyze the synthesis of palmitate from acetyl-CoA and malonyl-

CoA, in the presence of NADPH, into long-chain saturated fatty acids. In some cancer 

cell lines, this protein has been found to be fused with estrogen receptor-alpha (ER-

alpha), in which the N-terminus of FAS is fused in-frame with the C-terminus of ER-

alpha. [provided by RefSeq]. 

 

ATP Citrate Lyase - ATP citrate lyase is the primary enzyme responsible for the 

synthesis of cytosolic acetyl-CoA in many tissues. The enzyme is a tetramer (relative 

molecular weight approximately 440,000) of apparently identical subunits. It catalyzes 

the formation of acetyl-CoA and oxaloacetate from citrate and CoA with a concomitant 

hydrolysis of ATP to ADP and phosphate. The product, acetyl-CoA, serves several 

important biosynthetic pathways, including lipogenesis and cholesterogenesis. In 

nervous tissue, ATP citrate-lyase may be involved in the biosynthesis of acetylcholine. 

Two transcript variants encoding distinct isoforms have been identified for this gene. 

[provided by RefSeq]. 

 

Stearoyl CoA Desaturase - Stearoyl-CoA desaturase (SCD; EC 1.14.99.5) is an iron-

containing enzyme that catalyzes a rate-limiting step in the synthesis of unsaturated fatty 

acids. The principal product of SCD is oleic acid, which is formed by desaturation of 

stearic acid. The ratio of stearic acid to oleic acid has been implicated in the regulation 
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of cell growth and differentiation through effects on cell membrane fluidity and signal 

transduction.  

 

Fatty Acid Elongase - ELOVL5 plays a role in elongation of long-chain 

polyunsaturated fatty acids (Leonard et al., 2000 [PubMed 10970790]).[supplied by 

OMIM]. 

 

PGD - 6-phosphogluconate Dehydrogenase - 6-phosphogluconate dehydrogenase is 

the second dehydrogenase in the pentose phosphate shunt. Deficiency of this enzyme is 

generally asymptomatic, and the inheritance of this disorder is autosomal dominant. 

Hemolysis results from combined deficiency of 6-phosphogluconate dehydrogenase and 

6-phosphogluconolactonase suggesting a synergism of the two enzymopathies. [provided 

by RefSeq]. 

 

AMP-K - protein kinase that phosphorylates and inhibits acetyl-CoA carboxylase 

(ACC); rate-limiting enzyme in malonyl-CoA synthesis [RGD]. 

 

FADS2 - The protein encoded by this gene is a member of the fatty acid desaturase 

(FADS) gene family. Desaturase enzymes regulate unsaturation of fatty acids through 

the introduction of double bonds between defined carbons of the fatty acyl chain. FADS 

family members are considered fusion products composed of an N-terminal cytochrome 

b5-like domain and a C-terminal multiple membrane-spanning desaturase portion, both 
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of which are characterized by conserved histidine motifs. This gene is clustered with 

family members FADS1 and FADS2 at 11q12-q13.1; this cluster is thought to have 

arisen evolutionarily from gene duplication based on its similar exon/intron organization. 

[provided by RefSeq]. 

 

FADS1 - The protein encoded by this gene is a member of the fatty acid desaturase 

(FADS) gene family. Desaturase enzymes regulate unsaturation of fatty acids through 

the introduction of double bonds between defined carbons of the fatty acyl chain. FADS 

family members are considered fusion products composed of an N-terminal cytochrome 

b5-like domain and a C-terminal multiple membrane-spanning desaturase portion, both 

of which are characterized by conserved histidine motifs. This gene is clustered with 

family members FADS1 and FADS2 at 11q12-q13.1; this cluster is thought to have 

arisen evolutionarily from gene duplication based on its similar exon/intron organization. 

[provided by RefSeq]. 

 

ACAT - Acyl-coenzyme A:cholesterol acyltransferase (ACACT; EC 2.3.1.26) is an 

intracellular protein located in the endoplasmic reticulum that forms cholesterol esters 

from cholesterol. Accumulation of cholesterol esters as cytoplasmic lipid droplets within 

macrophages and smooth muscle cells is a characteristic feature of the early stages of 

atherosclerotic plaques (Cadigan et al., 1988 [PubMed 3335499]).[supplied by OMIM]. 
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ACAT 2 - This gene is a member of a small family of acyl coenzyme A:cholesterol 

acyltransferases. The gene encodes a membrane-bound enzyme localized in the 

endoplasmic reticulum that produces intracellular cholesterol esters from long-chain 

fatty acyl CoA and cholesterol. The cholesterol esters are then stored as cytoplasmic 

lipid droplets inside the cell. The enzyme is implicated in cholesterol absorption in the 

intestine and in the assembly and secretion of apolipoprotein B-containing lipoproteins 

such as very low density lipoprotein (VLDL). Several alternatively spliced transcript 

variants of this gene have been described, but their full-length nature is not known. 

[provided by RefSeq]. 

 

Lipin - This gene represents a candidate gene for human lipodystrophy, characterized by 

loss of body fat, fatty liver, hypertriglyceridemia, and insulin resistance. Mouse studies 

suggest that this gene functions during normal adipose tissue development and may also 

play a role in human triglyceride metabolism. [provided by RefSeq]. 

 

PeBoW Complex - A protein complex that is involved in coordinating ribosome 

biogenesis with cell cycle progression. In human, it is composed of Pes1, Bop1, and 

WDR12; in Saccharomyces the proteins are known as Nop7p, Erb1 and Ytm1 

respectively. 

 

PES1 - This gene encodes a nuclear protein that contains a breast cancer associated gene 

1 (BRCA1) C-terminal interaction domain. The encoded protein interacts with BOP1 
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and WDR12 to form the PeBoW complex, which plays a critical role in cell proliferation 

via pre-rRNA processing and 60S ribosomal subunit maturation. Expression of this gene 

may play an important role in breast cancer proliferation and tumorigenicity. 

Alternatively spliced transcript variants encoding multiple isoforms have been observed 

for this gene. Pseudogenes of this gene are located on the long arm of chromosome 4 and 

the short arm of chromosome 9. [provided by RefSeq]. 

 

MOCOW - This gene encodes a nuclear protein that contains a breast cancer associated 

gene 1 (BRCA1) C-terminal interaction domain. The encoded protein interacts with 

BOP1 and WDR12 to form the PeBoW complex, which plays a critical role in cell 

proliferation via pre-rRNA processing and 60S ribosomal subunit maturation. 

Expression of this gene may play an important role in breast cancer proliferation and 

tumorigenicity. Alternatively spliced transcript variants encoding multiple isoforms have 

been observed for this gene. Pseudogenes of this gene are located on the long arm of 

chromosome 4 and the short arm of chromosome 9. [provided by RefSeq]. 

 

WDR12 - This gene encodes a member of the WD repeat protein family. WD repeats 

are minimally conserved regions of approximately 40 amino acids typically bracketed by 

gly-his and trp-asp (GH-WD), which may facilitate formation of heterotrimeric or 

multiprotein complexes. Members of this family are involved in a variety of cellular 

processes, including cell cycle progression, signal transduction, apoptosis, and gene 

regulation. This protein is highly similar to the mouse WD repeat domain 12 protein at 
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the amino acid level. The protein encoded by this gene is a component of a nucleolar 

protein complex that affects maturation of the large ribosomal subunit. 
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