SPECTROSCOPIC STUDIES OF PYRIDINE AND ITS

ISOTOPOMER, 2-FLUORO- AND 3-FLUOROPYRIDINE, 1,3-BUTADIENE AND ITS ISOTOPOMERS

A Dissertation
by
PRAVEENKUMAR BOOPALACHANDRAN

Submitted to the Office of Graduate Studies of Texas A\&M University
in partial fulfillment of the requirements for the degree of
DOCTOR OF PHILOSOPHY

December 2011

Major Subject: Chemistry

SPECTROSCOPIC STUDIES OF PYRIDINE AND ITS

ISOTOPOMER, 2-FLUORO- AND 3-FLUOROPYRIDINE,

 1,3-BUTADIENE AND ITS ISOTOPOMERS

 1,3-BUTADIENE AND ITS ISOTOPOMERS}

A Dissertation
by
PRAVEENKUMAR BOOPALACHANDRAN

Submitted to the Office of Graduate Studies of
Texas A\&M University
in partial fulfillment of the requirements for the degree of
DOCTOR OF PHILOSOPHY

Approved by:

Chair of Committee,	Jaan Laane
Committee Members,	John P. Fackler Steven E. Wheeler
	Karl Aufderheide
Head of Department,	David Russell

December 2011

Major Subject: Chemistry

ABSTRACT
Spectroscopic Studies of Pyridine and its Isotopomer, 2-Fluoro- and 3-Fluoropyridine,
1,3-Butadiene and Its Isotopomers. (December 2011)
Praveenkumar Boopalachandran, B.Tech., University of Madras, India;
M.S., Texas A\&M University-Commerce; M.S., Texas A\&M University
Chair of Advisory Committee: Dr. Jaan Laane

The infrared, Raman and ultraviolet spectra of pyridine- d_{0} and pyridine- d_{5} were recorded and assigned with a focus on the low-frequency vibrational modes in the $\mathrm{S}_{1}\left(\mathrm{n}, \pi^{*}\right)$ electronic excited state. An energy map for the low-frequency modes was constructed and the data for the v_{18} mode allowed a highly anharmonic one-dimensional potential energy function to be determined for the S_{1} excited state. In this $S_{1}\left(n, \pi^{*}\right)$ state, pyridine is quasi-planar and very floppy with a barrier to planarity of $3 \mathrm{~cm}^{-1}$.

The infrared, Raman and ultraviolet spectra of 2-fluoropyridine (2FPy) and 3fluoropyridine (3FPy) have been collected and assigned. For 2FPy about 150 bands were observed for the transitions to the vibronic levels of the $S\left(\pi, \pi^{*}\right)$ state at $38,030.4$ cm^{-1}. For 3FPy more than a hundred absorption bands associated with the $\mathrm{S}\left(\mathrm{n}, \pi^{*}\right)$ state at $35,051.7 \mathrm{~cm}^{-1}$ and about forty broad bands associated with the $S\left(\pi, \pi^{*}\right)$ state at 37,339 cm^{-1} were observed. The experimental work was complemented by ab initio calculations and these also provided calculated structures for $2 \mathrm{FPy}, 3 \mathrm{FPy}$, and pyridine. They showed that the fluorine atom on the ring participates in the π bonding.

The gas-phase Raman spectra of 1,3-butadiene and its $2,3-\mathrm{d}_{2}, 1,1,4,4-\mathrm{d}_{4}$, and d_{6} isotopomers have been recorded with high sensitivity in the region below $350 \mathrm{~cm}^{-1}$, in order to investigate the internal rotation (torsional) vibration. The data for all the isotopomers were then fit using a one-dimensional potential energy function of the form $\mathrm{V}=1 / 2 \sum \mathrm{~V}_{\mathrm{n}}(1-\cos \phi)$. The energy difference between trans and gauche forms was determined to be about $1030 \mathrm{~cm}^{-1}(2.94 \mathrm{kcal} / \mathrm{mol})$, and the barrier between the two equivalent gauche forms to be about $180 \mathrm{~cm}^{-1}(0.51 \mathrm{kcal} / \mathrm{mol})$, which agrees well with high-level $a b$ initio calculations. The results from an alternative set of assignments also fits the data quite well are also presented. Combination and hot band series involving the v_{13} torsional vibration of the trans rotamer were observed for each of the butadiene isotopomers. In addition, the high signal to noise of the Raman spectra made it possible to detect several dozen bands of the gauche rotor which makes up only about 2% of the molecules at ambient temperature.

DEDICATION

To my father, Mr. G. Boopalachandran, and to my mother, Mrs. Vijaya Chandran, for their love and support. Without them, this dissertation would not have seen the light!

ACKNOWLEDGEMENTS

It is a pleasure to thank those who made this doctorate dissertation possible. I owe my deepest gratitude to Dr. Jaan Laane, my research advisor, for his continuous motivation, inspiration and enthusiasm. His guidance has helped me immensely to complete important projects and the writing of this dissertation. I am grateful to my research committee members, Dr. Fackler, Dr. Wheeler and Dr. Aufderheide, for their advice and insightful comments. I would like to thank our collaborator Dr. Norman Craig for providing us butadiene samples for our research and giving us valuable advice in successful completion of our projects. I also would like to thank our other collaborator Dr. Sunghwan Kim for his help in excited state calculations. I deeply appreciate Linda Redd for her kindness and friendship during the time of this research. I am indebted to many of my research group members including Dr. Juan Yang, Dr. Kathleen McCann, Dr. Hee Won Shin and Hye Jin Chun for their help and support. I am grateful to many people in the department of chemistry, Dr. Simon North, the graduate advisor, Sandy Manning and Dr. Lisa Perez for their help and support, as well as the members of the teaching faculty, Dr. Holly Gaede, Dr. Elizabeth Soriaga, and Dr. Vickie Williamson, who have helped me hone my teaching skills. I am forever indebted to my parents for their understanding, endless patience and encouragement. Furthermore, I like to thank Shannon Smith for giving me the moral support and being my best friend during critical times. Finally, I thank God for giving me the confidence and blessings during this research.

TABLE OF CONTENTS

Page

ABSTRACT iii
DEDICATION v
ACKNOWLEDGEMENTS vi
TABLE OF CONTENTS vii
LIST OF TABLES xi
LIST OF FIGURES xv
CHAPTER
I INTRODUCTION 1
Pyridine and Its Isotopomer 2
2-Fluoro- and 3-Fluoropyridine 3
1,3-Butadiene and Its Isotopomers 4
Chloro and Bromopyridine 6
II EXPERIMENTAL METHODS 7
Introduction 7
Infrared Spectra 7
Raman Spectra 9
Electronic Absorption Spectra 10
III THEORETICAL AND COMPUTATIONAL METHODS 11
Introduction 11
Ab initio Calculations 11
Pyridine Ring Bending Potential Energy Function. 12
Potential Energy Function for Internal Rotation 14
CHAPTER Page
IV VIBRATIONAL SPECTRA, STRUCTURE, AND THEORETICAL CALCULATIONS OF PYRIDINE- d_{0} AND - d_{5} IN THEIR GROUND STATES 15
Introduction 15
Experimental 16
Computations 18
Spectroscopic Results 26
V ULTRAVIOLET ABSORPTION SPECTRA OF PYRIDINE-d ${ }_{0}$ AND - d_{5} AND THEIR RING-BENDING POTENTIAL ENERGY FUNCTION IN THE $S_{1}\left(n, \pi^{*}\right)$ STATE 34
Introduction 34
Computations 35
Experimental 36
Absorption Spectra 45
Ring-Bending Potential Energy Function 54
VI VIBRATIONAL SPECTRA, STRUCTURE, AND THEORETICAL CALCULATIONS OF 2-FLUORO- AND 3- FLUOROPYRIDINE IN THEIR GROUND STATES 62
Introduction 62
Computations 63
Experimental 63
Results and Discussion 64
Conclusions 80
VII ULTRAVIOLET ABSORPTION SPECTRA AND STRUCTURE, VIBRATIONS, AND THEORETICAL CALCULATIONS OF 2- FLUORO- AND 3-FLUOROPYRIDINE IN THEIR ELECTRONIC EXCITED STATES 81
Introduction 81
Experimental 82
Computations 83
Results and Discussion 83
Conclusion 109
CHAPTER Page
VIII GAS-PHASE RAMAN SPECTRA AND THE POTENTIAL ENERGY FUNCTION FOR THE INTERNAL ROTATION OF 1,3-BUTADIENE AND ITS ISOTOPOMERS 111
Introduction 111
Experimental 115
Calculations 115
Results and Discussion 130
Conclusion 144
IX GAS-PHASE RAMAN SPECTRA OF COMBINATION AND HOT BANDS ASSOCIATED WITH THE TORSIONAL VIBRATIONS OF TRANS- 1,3-BUTADIENE AND ITS DEUTERATED ISOTOPOMERS 145
Introduction 145
Experimental 146
Spectroscopic Results 147
Conclusion 185
X GAS-PHASE RAMAN SPECTRA OF TRANS- AND GAUCHE- 1,3-BUTADIENE AND THEIR DEUTERATED ISOTOPOMERS 186
Introduction 186
Experimental 188
Theoretical Calculations 190
Results and Discussion 190
Conclusion 230
XI PRELIMINARY STUDIES ON THE VIBRATIONAL SPECTRA, STRUCTURE, AND THEORETICAL CALCULATIONS OF 2- CHLORO- AND 3-CHLOROPYRIDINE AND 2-BROMO- AND 3-BROMOPYRIDINE IN THEIR GROUND STATES 244
Introduction 244
Experimental 247
Theoretical Calculations 247
Results and Discussion 248
XII CONCLUSIONS 260

Page
REFERENCES... 263
VITA ... 270

LIST OF TABLES

TABLEPage1 Observed and calculated vibrational frequencies $\left(\mathrm{cm}^{-1}\right)$ for pyridine- d_{0} in the ground state 22
2 Observed vibrational frequencies $\left(\mathrm{cm}^{-1}\right)$ and assignments for pyridine- d_{0} 23
3 Observed and calculated vibrational frequencies $\left(\mathrm{cm}^{-1}\right)$ for pyridine- d_{5} in the ground state 30
4 Observed vibrational frequencies $\left(\mathrm{cm}^{-1}\right)$ and assignments for pyridine- d_{5} 31
5 Observed and calculated vibrational frequencies $\left(\mathrm{cm}^{-1}\right)$ for pyridine- d_{0} in its ground and excited states 40
6 Ultraviolet absorption spectra for the $\mathrm{n} \rightarrow \pi^{*}$ transition of pyridine- d_{0} 41
7 Low-frequency vibrations $\left(\mathrm{cm}^{-1}\right)$ of pyridine- d_{0} and $-\mathrm{d}_{5}$ 46
8 Observed and calculated vibrational frequencies $\left(\mathrm{cm}^{-1}\right)$ for pyridine- d_{5} in its ground and excited states 49
9 Ultraviolet absorption spectra for the $\mathrm{n} \rightarrow \pi^{*}$ transition of pyridine- d_{5} 50
10 Observed and calculated frequencies $\left(\mathrm{cm}^{-1}\right)$ for the v_{18} vibration of pyridine- d_{0} and pyridine- d_{5} in their $\mathrm{S}_{1}\left(\mathrm{n}, \pi^{*}\right)$ states 58
11 Observed and calculated vibrational frequencies $\left(\mathrm{cm}^{-1}\right)$ for 2- fluoropyridine 69
12 Observed vibrational frequencies $\left(\mathrm{cm}^{-1}\right)$ and assignments for 2- fluoropyridine. 70
13 Observed and calculated vibrational frequencies $\left(\mathrm{cm}^{-1}\right)$ for 3- fluoropyridine 76
14 Observed vibrational frequencies $\left(\mathrm{cm}^{-1}\right)$ and assignments for 3- fluoropyridine. 77

TABLE

Page

15 Vibrational frequencies $\left(\mathrm{cm}^{-1}\right)$ of the ring modes of the fluoropyridines compared to pyridine 79
16 Observed and calculated electronic transition energies $\left(\mathrm{cm}^{-1}\right)$ 87
17 Observed and calculated vibrational frequencies $\left(\mathrm{cm}^{-1}\right)$ for 2- fluoropyridine in its ground and excited states 88
18 Ultraviolet absorption spectra for the $\pi \rightarrow \pi^{*}$ transition of 2 FPy 90
19 Observed and calculated vibrational frequencies $\left(\mathrm{cm}^{-1}\right)$ for 3- fluoropyridine in its ground and excited states 100
20 Ultraviolet absorption spectra for the $\mathrm{n} \rightarrow \pi^{*}$ transition of 3 FPy 101
21 Ultraviolet absorption spectra for the $\pi \rightarrow \pi^{*}$ transition of 3 FPy 106
22 Vibrational frequencies $\left(\mathrm{cm}^{-1}\right)$ comparisons for selected vibrations of the fluoropyridines and pyridine 108
23 Calculated 1,3-butadiene energy and structural parameters as a function of internal rotation angle 117
24 Calculated F values $\left(\mathrm{cm}^{-1}\right)$ for 1,3-butadiene and its isotopomers as a function of internal rotation angle. 118
25 Coefficients $\left(\mathrm{cm}^{-1}\right)$ of the $\mathrm{F}(\varphi)$ expansion 119
26 Potential energy function parameters 121
27 Calculated and observed Raman transitions $\left(\mathrm{cm}^{-1}\right)$ for the internal rotation of 1,3-butadiene- d_{0} 122
28 Calculated and observed v_{12} bands $\left(\mathrm{cm}^{-1}\right)$ for gauche 1,3-butadiene and its isotopomers 131
29 Observed and calculated torsional transitions $\left(\mathrm{cm}^{-1}\right)$ for the isotopomers of 1,3- butadiene 135
30 Observed and calculated torsional transitions $\left(\mathrm{cm}^{-1}\right)$ for the gauche conformers of 1,3-butadiene isotopomers (alternate assignments) 137

TABLE

Page

31 Vibrations of trans- 1,3-butadiene- d_{0} and its isotopomers associated with
hot bands and combinations 155
32 Analysis of hot bands $\left(\mathrm{cm}^{-1}\right)$ of trans-1,3-butadiene- d_{0} for transitions involving the torsional vibration (v_{13}). 156
33 Energy level spacings $\left(\mathrm{cm}^{-1}\right)$ of v_{13} of trans-1,3-butadiene- d_{0} in vibrational excited states 157
34 Analysis of hot bands (cm^{-1}) of trans-1,3-butadiene-2,3- d_{2} involving the torsional vibration (v_{13}) 170
35 Energy level spacings $\left(\mathrm{cm}^{-1}\right)$ of v_{13} of trans-1,3-butadiene-2,3- d_{2} in vibrational excited states 171
36 Analysis of hot bands $\left(\mathrm{cm}^{-1}\right)$ of trans-1,3-butadiene-1,1,4,4- d_{4} involving the torsional vibration (v_{13}) 178
37 Energy level spacings $\left(\mathrm{cm}^{-1}\right)$ of v_{13} of trans-1,3-butadiene-1,1,4,4- d_{4} in vibrational excited states 179
38 Analysis of hot bands (cm^{-1}) of trans-1,3-butadiene- d_{6} involving the torsional vibration (v_{13}) 183
39 Energy level spacings $\left(\mathrm{cm}^{-1}\right)$ of v_{13} of trans-1,3-butadiene- d_{6} in vibrational excited states 184
40 Observed and calculated vibrational frequencies $\left(\mathrm{cm}^{-1}\right)$ and intensities for trans 1,3 -butadiene- d_{0}. 201
41 Observed and calculated vibrational frequencies $\left(\mathrm{cm}^{-1}\right)$ and intensities for trans 1,3-butadiene-2,3- d_{2} 202
42 Observed and calculated vibrational frequencies $\left(\mathrm{cm}^{-1}\right)$ and intensities for trans 1,3-butadiene-1,1,4,4-d 203
43 Observed and calculated vibrational frequencies $\left(\mathrm{cm}^{-1}\right)$ and intensities for trans 1,3-butadiene- d_{6} 204
44 Observed and calculated vibrational frequencies $\left(\mathrm{cm}^{-1}\right)$ and intensities for gauche 1,3-butadiene- d_{0} 205
TABLE Page
45 Observed and calculated vibrational frequencies $\left(\mathrm{cm}^{-1}\right)$ and intensities for gauche 1,3-butadiene-2,3- d_{2} 206
46 Observed and calculated vibrational frequencies $\left(\mathrm{cm}^{-1}\right)$ and intensities for gauche 1,3-butadiene-1,1,4,4- d_{4} 207
47 Observed and calculated vibrational frequencies $\left(\mathrm{cm}^{-1}\right)$ and intensities for gauche 1,3-butadiene-d ${ }_{6}$ 208
48 Observed vibrational frequencies $\left(\mathrm{cm}^{-1}\right)$ and assignments for 1,3- butadiene- d_{0}. 231
49 Observed vibrational frequencies $\left(\mathrm{cm}^{-1}\right)$ and assignments for 1,3- butadiene-2,3- d_{2} 234
50 Observed vibrational frequencies $\left(\mathrm{cm}^{-1}\right)$ and assignments for 1,3- butadiene-1,1,4,4- d_{4} 238
51 Observed vibrational frequencies $\left(\mathrm{cm}^{-1}\right)$ and assignments for 1,3- butadiene- d_{6}. 241
52 Observed and calculated vibrational frequencies $\left(\mathrm{cm}^{-1}\right)$ and intensities for 2- chloropyridine 250
53 Observed and calculated vibrational frequencies $\left(\mathrm{cm}^{-1}\right)$ and intensities for 3- chloropyridine 252
54 Observed and calculated vibrational frequencies $\left(\mathrm{cm}^{-1}\right)$ and intensities for 2- bromopyridine 254
55 Observed and calculated vibrational frequencies $\left(\mathrm{cm}^{-1}\right)$ and intensities for 3- bromopyridine 256
56 Vibrational frequencies $\left(\mathrm{cm}^{-1}\right)$ of the ring modes of the halopyridines compared to pyridine 257
57 Ring bond distances (\AA) and carbon-halogen bond distances (\AA) of halopyridines and pyridine 258

LIST OF FIGURES

FIGURE Page
1 Spectroscopic techniques for the investigation of the vibronic energy levels 8
2 Calculated structures of pyridine- d_{0} in its S_{0} ground electronic state using MP2/cc-pVTZ level of theory 17
3 Liquid, vapor, and calculated Raman spectra of pyridine- d_{0} 19
4 Liquid, vapor, and calculated IR spectra of pyridine- d_{0} 20
5 Comparison between IR and Raman spectra of pyridine- d_{0} 21
6 Liquid, vapor, and calculated Raman spectra of pyridine- d_{5} 27
7 Liquid, vapor, and calculated IR spectra of pyridine- d_{5} 28
8 Comparison between IR and Raman spectra of pyridine- d_{5} 29
9 Far IR spectra of pyridine- d_{0} and pyridine- d_{5} 33
10 Calculated structures of pyridine in their (a) S_{0} ground electronic state at the MP2/cc-pVTZ level of theory and (b) $S_{1}\left(n, \pi^{*}\right)$ state at the CASSCF/6-311++G(d,p) level of theory 37
11a Ultraviolet absorption spectra of pyridine- d_{0} vapors. The wavenumbers shown are relative to the band origins at $34,767.0 \mathrm{~cm}^{-1}$ 38
11 b Ultraviolet absorption spectra of pyridine- d_{5} vapors. The wavenumbers shown are relative to the band origins at $34,945.8 \mathrm{~cm}^{-1}$ 39
12 Energy map for the vibrational levels of pyridine (left) and pyridine- d_{5} (right) in their ground (bottom) and S_{1} excited (top) electronic states 47
13a Ring-bending potential energy functions for pyridine- d_{0} 56
13b Ring-bending potential energy functions for pyridine- d_{5} 57
FIGURE Page
14 Comparison of the ring-bending potential function of pyridine in its $S_{1}\left(\mathrm{n}, \pi^{*}\right)$ state to that in the S_{0} ground state 61
15 Calculated structures of (a) pyridine-d ${ }_{0}$, (b) 2-fluoropyridine, and (c) 3- fluoropyridine in their S_{0} ground electronic state using MP2/cc-pVTZ level of theory 65
16 Liquid, vapor, and calculated Raman spectra of 2-fluoropyridine 66
17 Liquid, vapor, and calculated IR spectra of 2-fluoropyridine 67
18 Comparison between IR and Raman spectra of 2-fluoropyridine 68
19 Liquid, vapor, and calculated Raman spectra of 3-fluoropyridine 73
20 Liquid, vapor, and calculated IR spectra of 3-fluoropyridine 74
21 Comparison between IR and Raman spectra of 3-fluoropyridine 75
22 Calculated structures of pyridine, 2 FPy , and 3 FPy in their $\mathrm{S}_{0}, \mathrm{~S}\left(\mathrm{n}, \pi^{*}\right)$, and $S\left(\pi, \pi^{*}\right)$ states at the CASSCF/6-311++G(d,p) level of theory for the excited states. Ground state structures are from the MP2/cc-pVTZ computation 84
23 Ultraviolet absorption spectra of 2FPy vapors. Wavenumbers are relative to the $\pi \rightarrow \pi^{*}$ band origin at $38,030.4 \mathrm{~cm}^{-1}$ 86
24a Ultraviolet absorption spectra of 3FPy vapors. The spectrum is of approximately 15 Torr of sample. The wavenumber scale is relative to the $n \rightarrow \pi^{*}$ band origin at $35,051.7 \mathrm{~cm}^{-1}$ 97
24b Ultraviolet absorption spectra of 3FPy vapors. The spectrum is of approximately 6 Torr of sample. The wavenumber scale is relative to the $\pi \rightarrow \pi^{*}$ band origin at $37,339 \mathrm{~cm}^{-1}$ 98
25 The (a) trans, (b) gauche, and (c) cis forms of 1,3-butadiene 112
26 Gas-phase Raman spectrum of the torsional vibration of 1,3-butadiene. * for unassigned bands 126

FIGURE

27 Gas-phase Raman spectrum of the torsional vibration of 1,3-butadiene- $2,3-\mathrm{d}_{2} . *$ for unassigned bands 127
28 Gas-phase Raman spectrum of the torsional vibration of 1,3-butadiene- $1,1,4,4-\mathrm{d}_{4}$. for unassigned bands 128
29 Gas-phase Raman spectrum of the torsional vibration of 1,3-butadiene- d_{6}. for unassigned bands 129
30 Gas-phase Raman spectrum of the torsional vibration of 1,3-butadiene at different temperatures. * for unassigned bands 132
31 Theoretical and experimental potential energy functions for the internal rotation of 1,3-butadiene. The literature ECR function is also shown 138
32 Potential energy function and observed Raman transitions for the internal rotation of 1,3-butadiene. Observed infrared transitions are shown as purple lines 139
33 Comparison of potential energy functions determined for 1,3-butadiene isotopomers 140
34 Potential energy function and observed Raman transitions for the internal rotation of 1,3-butadiene (alternate model) 143
35 Raman spectrum showing the relative intensity of the $v_{12}+v_{13}$ sum bands as compared to the v_{9} fundamental band 148
36 Raman spectrum of the 1,3-butadiene $v_{12}+v_{13}$ sum bands originating from $v_{12}=524.6 \mathrm{~cm}^{-1}$. The quantum numbers for the v_{13} mode in the lower and upper states are shown 149
37 Raman spectrum of the 1,3-butadiene $v_{10}+v_{13}$ sum bands originating from $v_{10}=1013.8 \mathrm{~cm}^{-1}$ 150
38 Raman spectrum of the 1,3-butadiene hot band transitions to the $v_{10}+v_{12}$ vibrational excited state 151
39 Raman spectrum of the 1,3-butadiene hot band transitions to the $v_{15}+v_{16}$ vibrational excited state 152
FIGURE Page
40 Energy level diagram for 1,3-butadiene showing transitions to the $v_{10}+$ $\mathrm{n} \nu_{13}$ and $\nu_{12}+\mathrm{n} \nu_{13}$ excited states 153
41 Energy level diagram for 1,3-butadiene showing transitions to the $v_{15}+$ v_{16} and the $v_{10}+v_{12}$ excited states 154
42 Raman spectrum of the Fermi doublet and hot bands for 1,3-butadiene 160
43 Raman spectrum of the 1,3-butadiene-2,3- $\mathrm{d}_{2} v_{12}+v_{13}$ sum bands originating from $v_{12}=480.3 \mathrm{~cm}^{-1}$ 162
44 Raman spectrum of the 1,3-butadiene-2,3- $d_{2} \quad v_{10}+v_{13}$ sum bands originating from $v_{10}=852.0 \mathrm{~cm}^{-1}$ 163
45 Energy level diagram for 1,3-butadiene-2,3- d_{2} showing transitions to the v_{10} and v_{12} excited states 164
46 Raman spectrum of the 1,3-butadiene-2,3- d_{2} hot band transitions to the $2 v_{12}$ excited state. 165
47 Energy level diagram for 1,3-butadiene-2,3-d d_{2} showing hot band transitions to the $2 v_{12}$ excited states 166
48 Raman spectrum of the 1,3-butadiene-2,3- d_{2} hot band transitions to the $v_{10}+v_{12}$ vibrational excited state 167
49 Raman spectrum of the 1,3-butadiene-2,3- d_{2} hot band transitions to the $v_{15}+v_{16}$ vibrational excited state 168
50 Energy level diagram for 1,3-butadiene-2,3- d_{2} showing transitions to the $v_{15}+v_{16}$ and the $v_{10}+v_{12}$ excited states 169
51 Raman spectrum of the 1,3-butadiene-1,1,4,4-d $\mathrm{d}_{4} \quad v_{12}+v_{13}$ sum bands originating from $v_{12}=396.8 \mathrm{~cm}^{-1}$ 173
52 Raman spectrum of the 1,3-butadiene-1,1,4,4-d $\mathrm{d}_{4} \quad v_{10}+v_{13}$ sum bands originating from $v_{10}=955.4 \mathrm{~cm}^{-1}$. 174
53 Energy level diagram for 1,3-butadiene-1,1,4,4- d_{4} showing transitions to the v_{10} and v_{12} excited states 175
FIGURE Page
54 Raman spectrum of the 1,3-butadiene-1,1,4,4- d_{4} hot band transitions to the $v_{10}+v_{12}$ vibrational excited state. 176
55 Energy level diagram for 1,3-butadiene-1,1,4,4-d d_{4} showing transitions to the $v_{10}+v_{12}$ excited states 177
56 Raman spectrum of the 1,3-butadiene- $\mathrm{d}_{6} v_{12}+v_{13}$ sum bands originating from $v_{12}=381 \mathrm{~cm}^{-1}$ 180
57 Raman spectrum of the 1,3-butadiene- d_{6} hot bands to $2 v_{12}$ excited state 181
58 Energy level diagram for 1,3-butadiene- d_{6} showing transitions to the v_{12} and $2 v_{12}$ vibrational excited states 182
59 Calculated structures of 1,3-butadiene (a) trans, (b) gauche in their S_{0} ground electronic state using MP2/cc-pVTZ level of theory 189
60 Gas-phase and calculated Raman spectra of 1,3-butadiene-d d_{0} 191
61 Gas-phase and calculated Raman spectra of 1,3-butadiene- d_{2} 192
62 Gas-phase and calculated Raman spectra of 1,3-butadiene-d ${ }_{4}$ 193
63 Gas-phase and calculated Raman spectra of 1,3-butadiene-d ${ }_{6}$ 194
64 Gas-phase Raman spectrum of 1,3-butadiene in the $200-3200 \mathrm{~cm}^{-1}$ region 195
65 Gas-phase Raman spectrum of 1,3-butadiene in the $200-600 \mathrm{~cm}^{-1}$ region 196
66 Gas-phase Raman spectrum of 1,3-butadiene in the $600-1000 \mathrm{~cm}^{-1}$ region 197
67 Gas-phase Raman spectrum of 1,3-butadiene in the $950-1350 \mathrm{~cm}^{-1}$ region 198
68 Gas-phase Raman spectrum of 1,3-butadiene in the $1350-1800 \mathrm{~cm}^{-1}$ region 199
69 Gas-phase Raman spectrum of 1,3-butadiene in the $2800-3200 \mathrm{~cm}^{-1}$ region. 200
FIGURE Page
70 Gas-phase Raman spectrum of 1,3-butadiene-2,3- d_{2} in the 200-3200 cm^{-1} region 210
71 Gas-phase Raman spectrum of 1,3-butadiene-2,3- d_{2} in the $200-600 \mathrm{~cm}^{-1}$ region 211
72 Gas-phase Raman spectrum of 1,3-butadiene-2,3- d_{2} in the $550-850 \mathrm{~cm}^{-1}$ region 212
73 Gas-phase Raman spectrum of 1,3-butadiene-2,3- d_{2} in the $850-1200$ cm^{-1} region 213
74 Gas-phase Raman spectrum of 1,3-butadiene-2,3-d d_{2} in the $1100-1500$ cm^{-1} region 214
75 Gas-phase Raman spectrum of 1,3-butadiene-2,3-d d_{2} in the $1450-1800$ cm^{-1} region 215
76 Gas-phase Raman spectrum of 1,3-butadiene-2,3-d ${ }_{2}$ in the $2800-3200$ cm^{-1} region 216
77 Gas-phase Raman spectrum of 1,3-butadiene-1,1,4,4- d_{4} in the 200-3200 cm^{-1} region 217
78 Gas-phase Raman spectrum of 1,3-butadiene-1,1,4,4- d_{4} in the $200-600$ cm^{-1} region 218
79 Gas-phase Raman spectrum of 1,3-butadiene-1,1,4,4-d d_{4} in the $650-1100$ cm^{-1} region. 219
80 Gas-phase Raman spectrum of 1,3-butadiene-1,1,4,4-d d_{4} in the $1100-$ $1450 \mathrm{~cm}^{-1}$ region. 220
81 Gas-phase Raman spectrum of 1,3-butadiene-1,1,4,4-d d_{4} in the $1450-$ $1800 \mathrm{~cm}^{-1}$ region 221
82 Gas-phase Raman spectrum of 1,3-butadiene-1,1,4,4-d d_{4} in the 2150- $2600 \mathrm{~cm}^{-1}$ region. 222
83 Gas-phase Raman spectrum of 1,3-butadiene-1,1,4,4-d d_{4} in the 2600- $3200 \mathrm{~cm}^{-1}$ region. 223
FIGURE
84 Gas-phase Raman spectrum of 1,3-butadiene-d d_{6} in the $200-2500 \mathrm{~cm}^{-1}$ region 224
85 Gas-phase Raman spectrum of 1,3 -butadiene- d_{6} in the $200-600 \mathrm{~cm}^{-1}$ region 225
86 Gas-phase Raman spectrum of 1,3-butadiene-d ${ }_{6}$ in the $600-950 \mathrm{~cm}^{-1}$ region 226
87 Gas-phase Raman spectrum of 1,3-butadiene-d d_{6} in the $950-1350 \mathrm{~cm}^{-1}$ region 227
88 Gas-phase Raman spectrum of 1,3-butadiene-d ${ }_{6}$ in the $1400-1800 \mathrm{~cm}^{-1}$ region 228
89 Gas-phase Raman spectrum of 1,3-butadiene- d_{6} in the $2050-2450 \mathrm{~cm}^{-1}$ region 229
90 Calculated structures of (a) pyridine- d_{0}, (b) 2-chloropyridine, and (c) 3- chloropyridine in their S_{0} ground electronic state using MP2/cc-pVTZ level of theory 245
91 Calculated structures of (a) pyridine- d_{0}, (b) 2-bromopyridine, and (c) 3- bromopyridine in their S_{0} ground electronic state using MP2/cc-pVTZ level of theory. 246
92 Liquid and calculated IR spectra of 2-chloropyridine 249
93 Liquid and calculated IR spectra of 3-chloropyridine 251
94 Liquid and calculated IR spectra of 2-bromopyridine 253
95 Liquid and calculated IR spectra of 3-bromopyridine. 255

CHAPTER I

INTRODUCTION

Molecular vibrations have been studied by infrared and Raman spectroscopy for nearly a century. These techniques provided insight into molecular bending and enabled scientists to determine the structure and conformations of a wide variety of molecules. Similarly, ultraviolet absorption spectroscopy has contributed a wealth of information on electronic states. Although these techniques have been used for a long time, advances in instrumentation and computer technology in recent years have allowed more extensive investigation to be carried out that heretofore were not possible. In particular, fourier transform spectroscopy for infrared and ultraviolet absorption along with improved lasers and charge coupled device (CCD) detectors for Raman spectroscopy have been critical. The development of computer programs to complement these spectroscopic studies has also been important for this work.

Several spectroscopic investigations were undertaken in this work. First, the vibrational potential energy function (PEF) in the electronic excited state of pyridine and its $-d_{5}$ isotopomer was investigated. The vibrational energy states of these molecules both in ground and excited states were studied. Second, the ultraviolet absorption spectra, structure and vibrational assignments in their ground and excited states of 2-fluoro- and 3-fluoropyridine were also studied.

This dissertation follows the style of The Journal of Physical Chemistry A.
$A b$ initio and density functional theory (DFT) calculations were carried out to compute the molecular structures and to support the vibrational assignments of the pyridine and fluoropyridine molecules. In addition, preliminary experimental and theoretical studies of the vibrations, and molecular structures of 2-chloro- and 3chloropyridine and 2-bromo- and 3-bromopyridine were carried out in their electronic ground states. Third, the gas-phase Raman spectra of 1,3-butadiene and its 2,3-d d_{2}, $1,1,4,4-\mathrm{d}_{4}$, and d_{6} isotopomers were recorded with high sensitivity. The data in the region below $350 \mathrm{~cm}^{-1}$ for all the isotopomers were then fit using a one-dimensional periodic potential energy function. This provided an understanding of the conformational properties of butadiene. Combination and hot band series involving the torsional vibration and other modes of the trans rotamer were observed in the Raman spectra. From the high sensitive Raman spectra, the Raman bands from the gauche rotor were identified.

PYRIDINE AND ITS ISOTOPOMER

The vibrational spectra of pyridine have been studied in great detail over the past 60 years. ${ }^{1-31}$ In particular the ultraviolet absorption spectra of pyridine vapor has previously been extensively studied and assigned by various authors. ${ }^{1-8}$ However, most studies did not recognize that the out-of-plane ring-bending mode in its $S_{1}\left(n, \pi^{*}\right)$ excited state would be highly anharmonic. In the previous studies, it was reported that pyridine was quasi-planar with a barrier to planarity of about $4 \mathrm{~cm}^{-1} .{ }^{3}$ However, the results of a potential energy calculation were never presented. None of these studies presented a
ring-bending potential energy function. Moreover, previous investigations only allowed a few of the vibrational fundamentals of the excited electronic state to be assigned. ${ }^{3}$

In this work, the infrared and Raman spectra of liquid and vapor-phase pyridined_{0} and its $-d_{5}$ isotopomer, were recorded and the vibrational frequencies of the electronic ground states were assigned. The ultraviolet absorption spectra of pyridine and its $-\mathrm{d}_{5}$ isotopomer associated with its $S_{1}\left(\mathrm{n}, \pi^{*}\right)$ electronic excited state were also recorded and analyzed. The one-dimensional ring-puckering potential functions for the excited state of these molecules were determined. Ab initio and DFT calculations were carried out to compute the molecular structures and to support the vibrational assignments of the twenty-seven fundamentals in the ground and excited states.

2-FLUORO- AND 3-FLUOROPYRIDINE

As a continuation of investigations on molecules of the pyridine family, the infrared, Raman and uv experiments of 2-fluoropyridine and 3-fluoropyridine (hereafter abbreviated as 2FPy and 3FPy) were carried out. Ab initio and DFT calculations were performed to compute the structures of these molecules and to support the vibrational assignments. Both these molecules are planar with C_{s} symmetry. Previous microwave work showed that the substitution of fluorine atoms affected the geometrical structure of the benzene ring. ${ }^{32}$ Similar effects could be expected with the substitution of fluorine atoms in the pyridine ring. J. H. S. Green and co-workers previously reported the infrared and Raman spectra and partial assignments for these molecules in their electronic ground states, but no structural information was reported. ${ }^{33}$

The ultraviolet absorption spectra of 2FPy and 3FPy in the vapor state have been reported in the literature but these spectra were of low quality which limited the extent of the analyses. ${ }^{34,35}$ In 2010 Itoh reported the emission and excitation spectra of both 2FPy and 3FPy vapor. ${ }^{36}$ His data were also of low-resolution and provided limited information on the vibronic energy levels since the focus of the work was primarily on fluorescence yields.

In the present work, the infrared and Raman spectra of liquid and vapor-phase 2 FPy and 3FPy were recorded and the vibrational frequencies of the electronic ground states were assigned. The ultraviolet absorption spectra of 2 FPy and 3 FPy vapors were collected and their vibrational frequencies were assigned in their electronic excited states. The experimental work was complemented by the ground and excited state $a b$ initio and DFT calculations. These also provided calculated structures for $2 \mathrm{FPy}, 3 \mathrm{FPy}$, and pyridine in their ground and excited states.

1,3-BUTADIENE AND ITS ISOTOPOMERS

1,3-Butadiene molecule has been the subject of conformational studies for several decades. ${ }^{37-56}$ The internal rotation about the central carbon-carbon bond of 1,3butadiene can produce trans, cis, or gauche conformations depending on the angle of rotation. The trans conformer has long been known to be the predominant one, but whether the higher energy conformer has a cis or gauche configuration remained a question for many years.

While the early calculations with minimal basis sets predicted the minor conformation to be cis, the recent work consistently showed the gauche form to have a local energy minimum in the potential energy function. ${ }^{49}$ Feller and Craig also reported intensities for infrared and Raman transitions for the gauche rotamer computed with high level basis set. ${ }^{49}$ A potential energy surface in terms of torsional coordinates through the internal rotation of the C-C group was essential to understand how the molecule changes its conformations and which pathways it followed to interconvert from one structure to another. In the present work, an extensive gas-phase Raman investigation was undertaken, including spectra at high temperatures, of 1,3-butadiene and three of its deuterated isotopomers in order to determine the potential energy function that fit the data for all of the isotopic species. The goal was to accurately determine the energy barriers and the energy differences between the different conformations.

Furthermore, the full Raman spectra of these isotopomers were investigated and in the process, the presence of many combination bands and hot bands involving the v_{13} torsional vibration of the trans conformations were discovered. From such studies it was possible to determine how the torsional frequencies changed in vibrational excited states and thus to evaluate how much interaction there was between the torsional motion and other vibrational modes. From the high quality Raman spectra, numerous Raman bands from the gauche rotor which made up only about 2% of the molecular population at ambient temperature were identifed.

In addition, DFT calculations were used to predict the vibrational frequencies of the normal mode assignments of the twenty-four fundamentals in the electronic ground states.

CHLORO AND BROMOPYRIDINE

In order to follow up the work on pyridine and fluoropyridines, chloro- and bromopyridine were also investigated. J. H. S. Green and co-workers have previously reported the infrared and Raman spectra and partial assignments for these molecules in their electronic ground states, but no structural information was reported. ${ }^{33}$ In this study, the infrared spectra were recorded and ground state vibrational frequencies of 2-chloroand 3-chloropyridine, and 2-bromo- and 3-bromopyridine molecules were assigned. DFT calculations were used to predict the vibrational frequencies of the twenty-seven fundamentals.

CHAPTER II

EXPERIMENTAL METHODS

INTRODUCTION

Several experimental spectroscopic techniques were utilized in this work for the vibrational analyses, molecular structure studies and investigation of the vibrational PEFs in the electronic excited states. The spectroscopic techniques used in this research were infrared (IR), Raman and ultraviolet (uv). The different types of transitions are shown in Figure 1. Two of the spectroscopic techniques, IR and Raman, were used for the determination of vibrational energy levels in the electronic ground state. Information on the vibronic energy levels of the electronic excited state was provided by uv spectroscopy. The more specific procedures used for individual molecules will be discussed in the related chapters.

INFRARED SPECTRA

The liquid-phase and vapor-phase mid-infrared spectra were collected on a Bruker Vertex 70 FT spectrometer equipped with a globar light source, a KBr beamsplitter and deuterated lanthanum triglycine sulfate (DLaTGS) detector. The spectra of a capillary film of the liquid were taken by placing a drop of the sample between two polished KBr windows that were 25 mm in diameter and 4 mm in thickness.

Figure 1. Spectroscopic techniques for the investigation of the vibronic energy levels.

The spectra of the sample and reference background were carried out using the same instrumental parameters. The single-beam spectrum of the sample was then ratioed with the background spectrum to get the transmittance spectrum of the sample in the $400-3400 \mathrm{~cm}^{-1}$ spectral region. Typically 512 scans were collected for liquid samples and 1024 scans were collected for vapor samples, and many hundreds of individual spectra were averaged using a resolution of $0.5 \mathrm{~cm}^{-1}$.

The vapor-phase far infrared spectra were also collected on the same instrument, equipped with a mylar beamsplitter, in the $60-600 \mathrm{~cm}^{-1}$ spectral region, in 10 cm cells with polyethylene windows, and a mercury cadmium telluride (MCT) detector. The vapor pressures of the samples were in the range of 10-20 Torr for pyridines and halopyridines. Typically 1024 scans were collected and many individual spectra were averaged using a resolution of $0.5 \mathrm{~cm}^{-1}$.

RAMAN SPECTRA

The Raman spectra of the molecules in the vapor-phase were recorded of samples sealed in specially designed, heatable glass Raman cells (80 mm long by 15 mm in diameter). ${ }^{57}$ The vapor-phase spectra were acquired at room temperature for pyridine and fluoropyridine samples. Spectral acquisition was mostly carried out at room temperature for butadiene samples but for some cases the samples were heated up to approximately 250° C. A Jobin-Yvon U-1000 spectrometer equipped with a liquid nitrogen-cooled charge-coupled device (CCD) detector was used to collect the spectra. The 532 nm line of a frequency-doubled Nd:YAG Coherent Verdi-10 laser was used and
typically operated at 6 watts of power. Spectral scans spanning $60 \mathrm{~cm}^{-1}$ were typically recorded over periods of 4 to 6 hours so that many hundreds of individual spectra could be averaged in the $100-3400 \mathrm{~cm}^{-1}$ spectral region. The spectral resolution was $0.7 \mathrm{~cm}^{-1}$.

The liquid phase Raman spectra were also collected on the same instrument with samples in glass cuvettes using a laser power of 500 mW . The Raman technique was hindered by colored samples which absorb the excitation frequency and thus produce fluorescence which overwhelmed the Raman signal. Thus, purification using vacuum transfer was normally carried out prior to the experiment to eliminate the presence of colored impurities.

ELECTRONIC ABSORPTION SPECTRA

The ultraviolet absorption spectra of the samples in a 23.5 cm glass cell with quartz windows were recorded at ambient temperature on a Bomem DA8.02 fourier transform spectrometer. A deuterium lamp source, a quartz beamsplitter, and a silicon detector were used. Typically 3000 scans at a resolution of $0.25 \mathrm{~cm}^{-1}$ were averaged in the $25000-40000 \mathrm{~cm}^{-1}$ spectral region. Heating the sample was needed for some pyridine samples. The spectra were collected six times for each molecule utilizing different vapor pressures of the samples. The vapor pressures of the samples at room temperature were in the range of 10-20 Torr for pyridine and halopyridine samples.

CHAPTER III

THEORETICAL AND COMPUTATIONAL METHODS

INTRODUCTION

Theoretical calculations were used to compliment the experimental work. First $a b$ initio computations and density-functional theory based on quantum mechanical principles were used to predict molecular structures, energies and vibrational frequencies and intensities. Second, computer programs developed in the Laane laboratories were used to determine one-dimensional potential energy functions which best fit the experimental data for ring puckering and internal rotation vibrations. ${ }^{58-64}$

AB INITIO CALCULATIONS

$A b$ initio calculations utilized the correct Hamiltonian to determine the properties of the molecule. These calculations were based on theoretical principles and universal physical constants without the implementation of experimental data. Several approximations such as time-independent Schrödinger equation and the the BornOppenhimer approximation were implemented in these calculations to be more reliable and efficient. There are several computational methods which were used for molecular structure and conformational studies and determination of Raman and infrared intensities. Computational methods include Harteree-Fock (HF), second-order MøllerPlesset (MP2), coupled cluster (CC) and the density-functional theory (DFT).

In this work, the structures and vibrational frequencies of pyridine $-d_{0}$ and its $-d_{5}$ isotopomer, 2FPy, 3FPy and trans and gauche butadiene and its isotopomers for the electronic ground state were calculated using the Gaussian 03 program package. ${ }^{65} \mathrm{Ab}$ initio second order Moller-Plesset (MP2) level of theory with the cc-pVTZ basis set was used to find the optimized geometry. The DFT-B3LYP level of theory with the 6$311++G(d, p)$ basis set was used to calculate the vibrational frequencies. Based on previous work, a scaling factor of 0.964 was used for the C-H stretching vibrational frequencies and a factor of 0.985 for the lower frequencies. ${ }^{66-70}$

In addition, in collaboration with Sunghwan Kim, the geometries of pyridine $-\mathrm{d}_{0}$ and its $-d_{5}$ isotopomer, 2 FPy and 3FPy molecules in the $S_{0}, S\left(n, \pi^{*}\right)$ and $S\left(\pi, \pi^{*}\right)$ states were optimized at the CASSCF/6-311++G(d,p) level. Based on previous work, a scaling factor of 0.905 was used for all of the vibrational frequencies in the electronic excited states. ${ }^{71}$ All CASSCF computations were performed using the GAMESS package. ${ }^{72}$

PYRIDINE RING BENDING POTENTIAL ENERGY FUNCTION

Low-frequency large-amplitude vibrations such as the out-of-plane ring-bending of pyridine can often be well represented by one-dimensional potential energy functions. The Schrödinger equation

$$
\begin{equation*}
H \Psi=E \Psi \tag{3.1}
\end{equation*}
$$

has the Hamiltonian

$$
\begin{equation*}
\hat{H}(x)=\left(-\hbar^{2} / 2\right) \partial / \partial x\left(g_{44}(x)\right) \partial / \partial x+V(x) \tag{3.2}
\end{equation*}
$$

In Equation (3.2), x is the out-of-plane ring-bending coordinate, $g_{44}(x)$ is a reciprocal reduced mass expansion and $V(x)$ is the potential function.
R. P. Bell ${ }^{73}$ proposed that the ring-puckering vibration of a four-member ring molecule could be represented by a quartic potential energy function of the form

$$
\begin{equation*}
V=a x^{4} \tag{3.3}
\end{equation*}
$$

The Laane laboratory has a long history ${ }^{58-63}$ of studying potential energy functions of large-amplitude vibrations, and the following potential energy function has often been successful in fitting experimental data

$$
\begin{equation*}
V=a x^{4}+b x^{2} \tag{3.4}
\end{equation*}
$$

Equation (3.4), often did a satisfactory job of calculating the vibrational energy levels and the sign of the b determined the conformation of the ring. If b is positive, then the potential function has a single minimum, which indicates a planar conformation. If b is negative, then the potential has a double minimum, indicating a non-planar equilibrium structure. The equilibrium conformation of pyridine is determined by a competition between two opposing forces, ring-angle strain and torsional strain. The ring-angle strain is the restoring force to planarity.

For a molecule that has a non-planar equilibrium conformation, the potential energy parameter b is negative and the barrier to planarity is given by

$$
\begin{equation*}
\text { Barrier }=\frac{b^{2}}{4 a} \tag{3.5}
\end{equation*}
$$

and the puckering coordinate at the energy minima, is given by

$$
\begin{equation*}
\mathrm{x}_{\text {min } i m a}= \pm \sqrt{\frac{b}{2 a}} . \tag{3.6}
\end{equation*}
$$

The kinetic energy expansion in this study was computed using computer programs previously described.

POTENTIAL ENERGY FUNCTION FOR INTERNAL ROTATION

The Hamiltonian for the one-dimensional internal rotation is

$$
\begin{equation*}
\mathrm{H}=-\frac{d}{d \phi} F(\phi) \frac{d}{d \phi}+V(\phi) \tag{3.7}
\end{equation*}
$$

where $F(\phi)$ is the inverse moment of inertia expansion given by

$$
\begin{equation*}
F(\phi)=F_{0}+\sum_{n} F_{n} \cos n \phi . \tag{3.8}
\end{equation*}
$$

and $V(\phi)$ is the potential energy of the form

$$
\begin{equation*}
V(\phi)=\sum_{n} \frac{1}{2} V_{n}(1-\cos n \phi) \tag{3.9}
\end{equation*}
$$

The V_{n} are the potential parameters and ϕ is the angle of internal rotation. In the present work the $F(\phi)$ expansion was calculated by Peter Groner using his Groner FSER program. ${ }^{74}$ The V_{n} values were computed using the VNCOSPX program from the Laane laboratory. ${ }^{64}$

CHAPTER IV

VIBRATIONAL SPECTRA, STRUCTURE, AND THEORETICAL CALCULATIONS OF PYRIDINE-d \mathbf{d}_{0} AND - \mathbf{d}_{5} IN THEIR GROUND STATES

INTRODUCTION

Pyridine belongs to the $\mathrm{C}_{2 \mathrm{v}}$ point group with one C_{2} rotational axis and two reflection planes. It has 27 fundamentals of which 19 are planar modes of A_{1} and B_{2} symmetry species and 8 are non-planar modes of A_{2} and B_{1} symmetry species. All the 27 modes are Raman active and all but the A_{2} vibrations are IR active.

Pyridine is one of the most important model compounds next to benzene for the study of biomolecular interactions and structures. ${ }^{10,25}$ A thorough understanding of the electronic ground and excited states was required along with the knowledge of potential energy function for vibrational and structural analyses. The vibrational spectra and the molecular structure of pyridine have been studied in great detail over the past 60 years. ${ }^{1-}$ ${ }^{31}$ A high quality infrared and Raman study of the liquid spectra have been reported by previous researchers. ${ }^{16}$ However, there was a lack of high quality vapor Raman and infrared data. In the present work, the infrared and Raman spectra of liquid and vaporphase pyridine- d_{0} and its $-\mathrm{d}_{5}$ isotopomer were recorded and the vibrational frequencies of the electronic ground states were assigned. Ab initio and DFT calculations were carried
out to compute the molecular structures and to verify the vibrational assignments of the twenty-seven fundamentals in the ground states.

EXPERIMENTAL

Pyridine- d_{0} and pyridine- d_{5} (99% isotopic purity) were purchased from Aldrich and purified by trap to trap distillation.

The Raman spectra of the molecules in the vapor-phase were recorded of samples sealed in specially designed glass cells were previously described in Chapter II. The vapor pressures of the samples at room temperature were about 15 Torr. A JobinYvon U-1000 spectrometer equipped with a liquid nitrogen-cooled CCD detector was used to collect the spectra. The 532 nm line of a frequency-doubled Nd:YAG Coherent Verdi-10 laser was used and typically operated at 6 watts of power. Spectral scans spanning $60 \mathrm{~cm}^{-1}$ were typically recorded over periods of 4 to 6 hours so that many hundreds of individual spectra could be averaged. The spectral resolution was $0.7 \mathrm{~cm}^{-1}$. The liquid phase Raman spectra were also collected on the same instrument with samples in glass cuvettes using a laser power of 500 mW .

Figure 2. Calculated structures of pyridine $-\mathrm{d}_{0}$ in its S_{0} ground electronic state using MP2/cc-pVTZ level of theory.

The liquid-phase and vapor-phase mid-infrared spectra of these molecules were collected on a Bruker Vertex 70 FT spectrometer equipped with a globar light source, a KBr beamsplitter and deuterated lanthanum triglycine sulfate (DLaTGS) detector. The vapor-phase far infrared spectra ($60-600 \mathrm{~cm}^{-1}$) were also collected on the same instrument equipped with a mylar beamsplitter, and a mercury cadmium telluride (MCT) detector. The vapor pressures of the samples were the same as mentioned for the Raman measurements. Typically 1024 scans were collected using a resolution of $0.5 \mathrm{~cm}^{-1}$.

COMPUTATIONS

The structures and vibrational frequencies of pyridine- d_{0} and pyridine- d_{5} for the electronic ground state were calculated using the Gaussian 03 program package. ${ }^{65} \mathrm{Ab}$ initio second order Moller-Plesset (MP2) level of theory with the cc-pVTZ basis set was used to find the optimized geometry as shown in Figure 2. The DFT-B3LYP level of theory with the $6-311++G(d, p)$ basis set was used to calculate the vibrational frequencies and the infrared and Raman intensities. Based on previous work, ${ }^{66-70}$ a scaling factor of 0.964 was used for the C-H stretching vibrational frequencies and a factor of 0.985 for the lower frequencies.

Figure 3. Liquid, vapor, and calculated Raman spectra of pyridine- d_{0}.

Figure 4. Liquid, vapor, and calculated IR spectra of pyridine- d_{0}.

Figure 5. Comparison between IR and Raman spectra of pyridine $-d_{0}$.

Table 1: Observed and calculated vibrational frequencies $\left(\mathrm{cm}^{-1}\right)$ for pyridine- d_{0} in the ground state

$\mathrm{C}_{2 \mathrm{v}}$	v	Approximate Description	Infrared				Raman ${ }^{\text {a }}$				Calculated ${ }^{\text {b }}$		OBS
			Liquid		Vapor		Liquid		Vapor		v	Intensity	Lit ${ }^{\text {c }}$
$\begin{gathered} \mathrm{A}_{1} \\ \text { (i.p.) } \end{gathered}$	1	C-H stretch	3079	ms	3073 sh	m	3070 sh	(6.8)	3072	(21.3)	3080	$(7,287)$	3094.2
	2	C-H stretch	3052.8	ms	3061	m	3057	(22.7)	3060	(21.3)	3056	$(5,98)$	-
	3	C-H stretch	3025.4	ms	-		3021	(2.3)	3030 br	(1.2)	3034	$(29,99)$	3030.1
	4	Ring stretch	1581.1	vs	1583.6	ms	1581	(4.4)	1583	(1.0)	1599	$(24,14)$	1583.9
	5	Ring stretch	1482.2	S	1483.2	w	1482	(1.6)	1483	(1.7)	1488	$(2,2)$	1483.4
	6	C-H wag	1216.8	ms	1217.8	m	1216	(5.2)	1217	(2.7)	1222	$(5,8)$	1218.0
	7	C-H wag	1068.5	ms	1071.8	m	1068	(1.2)	1071	(0.3)	1076	$(5,1)$	1071.9
	8	Ring bend	1030.5	s	1031.4	m	1030	(83.7)	1031	(100)	1031	$(6,35)$	1031.7
	9	Ring breathing	990.6	S	991.3	m	990	(100)	991	(100)	995	$(5,30)$	991.4
	10	Ring bend	602.9	S	601.3	m	603	(2.0)	601	(0.3)	607	$(4,4)$	601.4
$\begin{gathered} \mathrm{A}_{2} \\ \text { (o.p.) } \end{gathered}$	11	C-H wag	979.9	vw	-	-	979	(4.0)	982 br	(2.3)	981	(0, 0.01)	966
	12	C-H wag	884.2?	vvw	-	-	883	(0.6)	887	(0.2)	879	(0, 0.02)	871
	13	Ring bend	-	-	374.4	w	375 br	(0.2)	-	-	375	(0, 0.04)	373
$\begin{gathered} \mathrm{B}_{1} \\ \text { (o.p.) } \end{gathered}$	14	C-H wag	995.5 sh	m	-	-	995 sh	(23.6)	997	(4.6)	991	(0.02, 0.03)	1007
	15	C-H wag	941.2	vVw	936.2	ms	940 br	(0.3)	-	-	940	(0.02, 0.03)	936.6
	16	C-H wag	747.8	m	743.7	S	748	(0.4)	-	-	746	(12, 0.2)	744.0
	17	Ring bend	704.5	m	699.9	vs	706	(0.4)	-	-	703	$(68,0.03)$	700.3
	18	Ring bend	-	-	403.3	m	406	(1.0)	-	-	411	$(4,0.2)$	403.3
$\begin{gathered} \mathrm{B}_{2} \\ \text { (i.p.) } \end{gathered}$	19	C-H stretch	3079	ms	3067 sh	m	3070 sh	(6.8)	3066	(21.3)	3072	$(25,36)$	3086.9
	20	C-H stretch	3033.6	ms	3031	m	3034	(1.4)	3030 br	(1.2)	3037	$(4,85)$	3042.4
	21	Ring stretch	1573.4	S	1575.9	ms	1573	(3.7)	1577	(0.5)	1593	$(10,9)$	1580.5
	22	Ring stretch	1437.7	vs	1441.8	m	1438	(0.2)	1443	(0.2)	1448	(27, 0.08)	1441.9
	23	C-H wag	1355.3	W	1363.1	vw	1354	(0.3)	-	-	1363	(0.05, 0.2)	1362.3
	24	Ring stretch*	1227.7 sh	-	1227.4	m	1228 sh	(0.0)	1227 sh	(0.3)	1264	$(0.04,2)$	1227
	25	C-H wag	1146.7	ms	1143	mw	1146	(1.2)	-	-	1152	$(2,2)$	1143.3
	26	C-H wag	-	-	-	-	-	-	$1068 ?$	(0.1)	1060	(0.01, 0.3)	1079
	27	Ring bend	653.2	W	-	-	652	(6.5)	654	(0.7)	659	$(0.3,5)$	652

[^0]Table 2: Observed vibrational frequencies $\left(\mathrm{cm}^{-1}\right)$ and assignments for pyridine-d $\mathbf{d}_{\mathbf{0}}$

Raman		IR		Assignment	Inferred
3166	mw	-	-	$2 \mathrm{v}_{4}$	$2 \times 1584=3168$
3158	m	-	-	-	-
3155	m	-	-	-	-
3152	m	-	-	$2 \mathrm{v}_{21}$	$2 \times 1576=3152$
3094	m	3094.0	m	-	-
3092	m			$3 \mathrm{v}_{8}$	$3 \times 1031=3093$
3089	m	3088.3	m	-	-
3072	vvs	3073 sh	m	v_{1}	3072
3066	vvs	3066.8sh	m	v_{19}	3066
3060	vvs	3061	vw	v_{2}	3060
-	-	3043.4	m	-	-
3030 br	s	-	-	$\mathrm{v}_{3} / \mathrm{v}_{20}$	3030
2998	m	-	-	-	-
2958	s	2958.1	vvw	-	-
-	-	2932.9	m	-	-
2879	mw	-	-	-	-
-	-	2801.8	vvw	$\begin{gathered} v_{4}+v_{6} \\ v_{21}+v_{24} \end{gathered}$	$\begin{aligned} & 1584+1218=2802 \\ & 1576+1227=2803 \end{aligned}$
2798	vw	2797.8	vvw	-	-
2789	vw	2789.9	vvw	-	-
2707	w	-	-	-	-
2696	vw	2696.3	vvw	$v_{5}+v_{6}$?	$1483+1218=2701$
-	-	2668.2	vvw	$\mathrm{v}_{22}+\mathrm{v}_{24}$	$1442+1227=2669$
2658	vw	-	-	$\mathrm{v}_{4}+\mathrm{v}_{7}$	$1584+1072=2656$
-	-	2614.1	w	$v_{4}+v_{8}$	$1584+1031=2615$
-	-	2590.3	vvw	$\mathrm{v}_{23}+\mathrm{v}_{24}$	$1363+1227=2590$
-	-	2574.2	vw	$\mathrm{v}_{4}+\mathrm{v}_{9}$	$1584+991=2575$
2495	w	2496.1	vw	-	-
-	-	2476.3	vw	$v_{5}+v_{9}$	$1483+991=2474$
2446	mw	2446.3	w		-
2434	w	-	-	$\begin{gathered} 2 v_{6} \\ v_{23}+v_{26} \end{gathered}$	$\begin{gathered} 2 \times 1218=2436 \\ 1363+1068=2431 \end{gathered}$
2369	w	-	-	$\mathrm{v}_{24}+\mathrm{v}_{25}$	$1227+1143=2370$
2329	vs	-	-	-	-
2288	m	2288.5	w	$v_{6}+v_{7}$	$1218+1072=2290$
2252	w			$\mathrm{v}_{6}+\mathrm{v}_{8}$	$1218+1031=2249$
2211	w	-	-	$\begin{gathered} v_{25}+v_{26} \\ v_{6}+v_{9} \end{gathered}$	$\begin{gathered} 1143+1068=2211 \\ 1218+991=2209 \end{gathered}$
2198	w			-	-
-	-	2183.2	vvw	$\mathrm{v}_{4}+\mathrm{v}_{10}$	$1584+601=2185$

Table 2: (Continued)

Raman		IR		Assignment	Inferred
2092	w	2093.0	w	$\mathrm{v}_{22}+\mathrm{v}_{27}$	$1442+654=2096$
2084	w	2084.5	vvw	$\mathrm{v}_{5}+\mathrm{v}_{10}$	$1483+601=2084$
2062	w	2062.4	w	$2 v_{8}$	$2 \times 1031=2062$
				$\mathrm{v}_{7}+\mathrm{v}_{9}$	$1072+991=2063$
-	-	2021.5	w	$\mathrm{v}_{8}+\mathrm{v}_{9}$	$1031+991=2022$
2018	vw	2016.8	w	$\mathrm{v}_{23}+\mathrm{v}_{27}$	$1363+654=2017$
-	-	1991.8	w	$2 v_{14}$	2 x 997 = 1994
1980	vw	1980.8	w	$2 v_{9}$	$2 \mathrm{x} 991=1982$
-	-	1967.3	w	$2 \mathrm{v}_{11}$?	$2 \mathrm{x} 982=1964$
-	-	1942.5	mw	-	-
-	-	1889.4	mw	-	-
1870	vw	1869.2	m	$2 v_{15}$	$2 \mathrm{x} 936=1872$
				$v_{11}+v_{12}$	$982+887=1869$
-	-	1844.1	m	-	-
1793	vvw	1792.6	m	$\mathrm{v}_{25}+\mathrm{v}_{27}$?	$1143+654=1797$
1725	w	-	-	$\mathrm{v}_{26}+\mathrm{v}_{27}$?	$1068+654=1722$
1599	m	1598.6	m	-	-
-	-	1587.6	vs	-	-
1583	m	1583.6	vvs	v_{4}	1584
1577	w	1575.9	vvs	v_{21}	1576
1555	vs	-	-	-	-
1487	mw	1487.5	vw	$2 v_{16}$	$2 \times 744=1488$
1483	s	1483.2	vw	v_{5}	1483
1443	vw	1441.8	m	v_{22}	1442
1445	w	-	-	$v_{16}+v_{17}$	$744+700=1444$
1399	w	1399.1	m	$2 v_{17}$	$2 \times 700=1400$
				$v_{14}+v_{18}$	$997+403=1400$
-	-	1363.1		v_{23}	1363
1228 sh	mw	1227.4	m	v_{24}	1227
1217	ms	1217.8	m	v_{6}	1218
-	-	1143	mw	v_{25}	1143
1102	m	-	-	$\mathrm{v}_{17}+\mathrm{v}_{18}$	$700+403=1103$
1071	m	1071.8	m	v_{7}	1072
1068	mw	-		v_{26}	1068
1048	w	-	-		
1031	vvs	1031.4	m	v_{8}	1031
997	vs	-	-	v_{14}	997

Table 2: (Continued)

Raman		IR		Assignment	Inferred
991	vvs	991.3	m	v_{9}	991
982 br	s	-	-	v_{11}	982
-	-	936.2	s	v_{15}	936
887	vw	-	-	v_{12}	887
806	mw	-	-	$2 \mathrm{v}_{18}$	$2 \times 403=806$
-	-	743.7	s	v_{16}	744
-	-	699.9	vvs	v_{17}	700
654	mw	-	-	v_{27}	654
601	mw	601.3	vs	v_{10}	601
-	-	525.7	m	-	-
-	-	403.3	vs	v_{18}	403
-	-	374.4	w	v_{13}	374

SPECTROSCOPIC RESULTS

The liquid-phase, vapor-phase, and calculated Raman and infrared spectra of pyridine- d_{0} are shown in Figures 3 and 4, and the comparison between infrared and Raman spectra is shown in Figure 5. The liquid-phase, vapor-phase, and calculated Raman and infrared spectra of pyridine- d_{5} are shown in Figures 6 and 7, and the comparison between infrared and Raman spectra is shown in Figure 8. The low frequency IR spectra of pyridine- d_{0} and pyridine- d_{5} are shown in Figure 9. The observed and calculated vibrational frequencies for pyridine $-\mathrm{d}_{0}$ are summarized in Table 1 and Table 2 presents a tabulation of all the spectral bands including the sum and combination bands. Table 3 summarizes the observed and calculated vibrational frequencies for pyridine- d_{5} and Table 4 presents a tabulation of all the spectral bands including the sum and combination bands of the deuterated molecule.

Except for the vapor-phase Raman spectra of the pyridine- d_{0} and $-\mathrm{d}_{5}$ molecules, which is new in this work, similar experimental results and theoretical calculations have been previously presented. ${ }^{16}$ However, since the main focus of this work was on the electronic excited states of these molecules, it was desirable to verify the ground state data directly.

Figure 6. Liquid, vapor, and calculated Raman spectra of pyridine-d ${ }_{5}$.

Figure 7. Liquid, vapor, and calculated IR spectra of pyridine-d ${ }_{5}$.

Figure 8. Comparison between IR and Raman spectra of pyridine- d_{5}.

Table 3: Observed and calculated vibrational frequencies $\left(\mathrm{cm}^{-1}\right)$ for pyridine- d_{5} in the ground state

$\mathrm{C}_{2 \mathrm{v}}$	v	Approximate Description	Infrared				Raman ${ }^{\text {a }}$				Calculated ${ }^{\text {b }}$		OBS
			Liquid		Vapor		Liquid		Vapor		v	Intensity	$\mathrm{Lit}^{\text {c }}$
$\begin{gathered} \mathrm{A}_{1} \\ \text { (i.p.) } \end{gathered}$	1	C-H stretch	2294 sh	w	-	-	2294	(10.9)	2299	(642)	2284	$(3,126)$	2302
	2	C-H stretch	2269.2	m	2275.6	mw	2270	(1.6)	2275	(55)	2258	$(7,53)$	2277
	3	C-H stretch	2263.7	m	2269 sh	W	-	-	2272 sh	(50)	2244	$(2,18)$	2269
	4	Ring stretch	1550	vs	1553.9	vs	1550	(1.3)	-	-	1558	$(24,12)$	1554
	5	Ring stretch	1340.0	vw	-	-	1339	(0.6)	-	-	1348	$(0.2,1)$	1340
	6	C-H wag	886.7	m	882.5	w	886	(3)	-	-	893	$(3,10)$	882
	7	C-H wag	823.3	ms	823.6	m	822	(1.2)	824	(101)	823	$(8,2)$	824
	8	Ring bend	1009 br		-	-	1007	(4.1)	999	(841)	1007	$(0.6,26)$	1014
	9	Ring breathing	962.5	ms	963.4	m	962	(100)	963	(18)	967	$(3,40)$	964
	10	Ring bend	581.0	m	579.8	mw	581	(0.7)	-	(4)	585	$(3,3)$	579
$\begin{gathered} \mathrm{A}_{2} \\ \text { (o.p.) } \end{gathered}$	11	C-H wag	-	-	-	-	-	-	816 sh	(41)	813	(0, 0.01)	815
	12	C-H wag	690.9	vw	-	-	690	(0.6)	-	-	684	$(0,0.6)$	690
	13	Ring bend	-	-	-	-	326	(0.03)	-		320	$(0,0.01)$	318
$\begin{gathered} \mathrm{B}_{1} \\ \text { (o.p.) } \end{gathered}$	14	C-H wag	-	-	-	-	-	-	828	(90)	829	$(0.4,0.2)$	828
	15	C-H wag	768.1	W	765.2	mw	767	(0.5)	-	(00)	767	$(0.3,0.4)$	765
	16	C-H wag	624.7	W	-	-	624	(2.3)	631 br	(40)	630	$(0.4,5)$	631
	17	Ring bend	531.0	vvs	525.6	vvs	532 br	(0.04)	-	-	526	$(39,0.02)$	526
	18	Ring bend	-	-	365.5	ms	369	(0.1)	-	-	371	$(5,0.03)$	368
$\begin{gathered} B_{2} \\ \text { (i.p.) } \end{gathered}$	19	C-H stretch	2282.6	m	2289	m	-	-	2288	(15)	2274	$(17,11)$	2289
	20	C-H stretch	2249.1	S	2256.5	m	2251 br	(1.5)	2253 br	(20)	2238	$(19,48)$	2257
	21	Ring stretch	1550	vs	1545.1	vs	1550	(1.4)	1546	(5)	1558	$(24,12)$	1546
	22	Ring stretch	1300.0	vvs	1302.6	vs	1300	(0.1)	1303	(169)	1306	$(13,0.06)$	1303
	23	C-H wag	1041.1	vw	-	w	1040	(0.1)	1045	(1653)	1042	(0.07, 0.3)	1046
	24	Ring stretch*	1228.6	mw	1226	vW	1228	(0.2)	1228 sh	(10)	1257	$(0.05,1)$	1226
	25	C-H wag	835.6 sh	m	852.5	vw	835	(1.2)	854 br	(10)	841	$(1,3)$	856
	26	C-H wag	-	-	-	-	-	(1)	-)	823	(0.06, 0.1)	835
	27	Ring bend	624.6	W	625	vvw	-	-	-	-	632	(0.08, 0.08)	626

[^1]Table 4: Observed vibrational frequencies $\left(\mathrm{cm}^{-1}\right)$ and assignments for pyridine-d ${ }_{5}$

Raman		IR		Assignment	Inferred
-	-	3108.8	vvw	$2 v_{4}$	$2 \times 1554=3108$
3063	mw	-	-	-	-
-	-	2878.6	vvw	$v_{1+} v_{10}$	$2299+580=2879$
				$\mathrm{v}_{20+} \mathrm{v}_{27}$	$2253+625=2878$
-	-	2852.4	vvw	$\mathrm{v}_{2+} \mathrm{v}_{10}$	$2275+580=2855$
-	-	2516.1	vvw	$v_{4+} v_{9}$	$1554+963=2517$
-	-	2476.2	mw	-	-
-	-	2454.1	vw	$2 \mathrm{v}_{24}$	$2 \times 1226=2452$
2329	mw	-	-	-	
2299	vvs	-	-	v_{1}	2299
2288	w	2289	m	v_{19}	2288
2275	ms	2275.6	mw	v_{2}	2275
2272 sh	m	2269 sh	m	v_{3}	2272
2253 br	mw	2256.5	m	v_{20}	2253
2237	m	-	-	-	-
2164	mw	-	-	$v_{5+} v_{7}$	1340 liq $+824=2164$
-	-	2154.9	vvw	$\mathrm{v}_{22}+\mathrm{O}_{25}$	$1303+854=2157$
-	-	2136.1	vvw	-	
-	-	2089.9	w	$2 \mathrm{v}_{23}$	$2 \times 1045=2090$
-	-	2079.1	vw	$\mathrm{V}_{24+} \mathrm{O}_{25}$	$1226+854=2080$
-	-	2065.4	w	-	
-	-	1923.1	mw	$2 v_{9}$	$2 \mathrm{x} 963=1926$
-	-	1922.3	m	$v_{5+} v_{10}$	1340 liq $+580=1920$
-	-	1917.9	m	-	-
-	-	1895.1	w	$\mathrm{v}_{23+} \mathrm{v}_{25}$	$1045+854=1899$
-	-	1844.1	mw	$v_{6+} v_{9}$	$883+963=1846$
-	-	1837.2	vw	-	-
1595	w	-	-	$\mathrm{v}_{14+} \mathrm{v}_{15}$	$828+765=1593$
		1553.9	vs	v_{4}	1554
1546	v	1545.1	vs	v_{21}	1545
1536	m	-	-	$2 \mathrm{v}_{15}$	$2 \times 765=1530$
1527	mw	-	-	-	-
-	-	1480.7	vs	$\mathrm{v}_{25+} \mathrm{v}_{27}$	$854+625=1479$
-	-	1464.8	mw	$v_{6+} v_{10}$	$883+580=1463$
-	-	1458.2	w	$v_{14+} v_{16}$	$828+631=1459$
-	-	1401.9	w	$\mathrm{v}_{7+} \mathrm{v}_{10}$	$824+580=1404$
-	-	1354.7	vw	$v_{14+} v_{17}$	$828+526=1354$
1303	w	1302.6	vs	v_{22}	1303
-	-	1250.7	vs	$2 \mathrm{v}_{27}$	$2 \times 625=1250$

Table 4: (Continued)

Raman		IR		Assignment	Inferred
1228 sh	vw	1226	vw	v_{24}	1226
-	-	1198.6	mw	$\mathrm{v}_{14+} \mathrm{v}_{18}$?	$828+366=1194$
-	-	1187.1	m	-	-
1159	vw	-	-	$2 v_{10}$	$2 \times 580=1160$
		-		$v_{16+} v_{17}$	$631+526=1157$
1131	w	-	-	$v_{15+} \mathrm{v}_{18}$	$765+366=1131$
-	-	1096.1	w	$3 v_{18}$	$3 \times 366=1098$
1052	m	-	-	$2 v_{17}$	$2 \times 526=1052$
		1046.2	w	-	-
1039	m	-	-	-	-
999	vs	-	-	v_{8}	999
992	s	-	-	$v_{16+} v_{18}$?	$631+366=997$
972	S	-	-	-	-
963	ms	963.4	m	v_{9}	963
959	s	-	-	-	-
954	s	-	-	-	-
904	s	905.2	m	-	-
901	vs	902.8	w	$v_{17+} v_{18}$	$526+366=892$
890	m	-	-		-
-	-	882.5	w	v_{6}	883
878	ms	-	-	-	-
854 br	vw	852.5	vw	v_{25}	854
824	m	823.6	m	v_{7}	824
	-	816 sh	m	v_{11}	816
-	-	800.7	s	-	-
-	-	765.2	mw	v_{15}	765
-	-	701.6	s	-	-
631 br	mw	-	-	v_{16}	631
-	-	625	vvw	v_{27}	625
-	-	579.8	mw	v_{10}	579.8
-	-	525.6	s	v_{17}	526
-	-	365.5	ms	v_{18}	366

Figure 9. Far IR spectra of pyridine- d_{0} and pyridine- d_{5}.

CHAPTER V

ULTRAVIOLET ABSORPTION SPECTRA OF PYRIDINE-d ${ }_{0}$ AND d_{5} AND THEIR RING-BENDING POTENTIAL ENERGY FUNCTION IN THE $S_{1}\left(n, \pi^{*}\right)$ STATE*

INTRODUCTION

The ultraviolet absorption spectra of pyridine vapor were extensively studied and assigned by Henri and Angenot ${ }^{1}$ in 1936 and by Sponer and Stücklen ${ }^{2}$ in 1946. The band origin was reported to be $34,769 \mathrm{~cm}^{-1}$. The assignments primarily consisted of identifying the numerical values of quantum states but made few correlations to the actual vibrations involved with these. The studies also did not recognize that the B_{1} out-of-plane ring-bending mode in the $S_{1}\left(\mathrm{n}, \pi^{*}\right)$ excited state would be highly anharmonic and of very low-frequency. In 1972 Jessan, Kroto, and Ramsay, in a brief letter to the editor, ${ }^{3}$ reinvestigated the pyridine uv spectrum and assigned five transitions to the v_{18} out-of-plane ring bending mode. In the old traditional literature ${ }^{4}$ this is referred to as $v_{16 \mathrm{~b}}$. These transitions allowed five quantum states of the bending to be determined in the $S_{1}\left(\mathrm{n}, \pi^{*}\right)$ state, and from these the authors concluded that in this excited state the molecule is quasi-planar with a barrier to planarity of about $4 \mathrm{~cm}^{-1}$.

[^2]However, the results of a potential energy calculation were never presented. More recently Villa and co-workers ${ }^{5}$ studied the laser induced fluorescence spectra of jetcooled pyridine and assigned 40 bands up to $2081 \mathrm{~cm}^{-1}$ above the electronic band origin. In 2006 Riese and co-workers ${ }^{6}$ reported the REMPI spectrum of jet-cooled pyridine and also reported assignments for the $S_{1}\left(n, \pi^{*}\right)$ state. Neither of these studies examined the nature of the ring-bending potential energy function. Moreover, their investigations only allowed a few of the vibrational fundamentals of the excited electronic state to be assigned.

In the present study the ultraviolet absorption spectra of both pyridine and its d_{5} isotopomer recorded under high resolution and with high accuracy were reported. From the data, an energy map for the low-frequency vibrations of the electronic excited state was created and the ring-bending data to calculate the potential energy function for that vibration was utilized. The kinetic energy function for the motion was also computed to provide a meaningful assessment of this large-amplitude vibration.

COMPUTATIONS

The structures and vibrational frequencies of pyridine- d_{0} and pyridine- d_{5} for the electronic ground state were calculated using the Gaussian 03 program package. ${ }^{65} \mathrm{Ab}$ initio second order Moller-Plesset (MP2) level of theory with the cc-pVTZ basis set was used to find the optimized geometry. The DFT-B3LYP level of theory with the 6$311++G(d, p)$ basis set was used to calculate the vibrational frequencies. Based on
previous work, ${ }^{66-70}$ a scaling factor of 0.964 was used for the C-H stretching vibrational frequencies and a factor of 0.985 for the lower frequencies.

In addition, in collaboration with Sunghwan Kim, the geometries of the two molecules in the $S_{0}, S\left(n, \pi^{*}\right)$ and $S\left(\pi, \pi^{*}\right)$ states were also optimized at the CASSCF/6$311++G(d, p)$ level, using an active space consisting of 8 electrons (2 lone-pair electrons and 6π electrons) distributed in 7 orbitals (one lone-pair orbital and six π orbitals). The optimized geometries were confirmed to be minima by harmonic vibrational frequency analyses. Based on previous work, a scaling factor of 0.905 was used for all of the vibrational frequencies in the electronic excited states. ${ }^{71}$ All CASSCF computations were performed using the GAMESS package. ${ }^{72}$ Figure 10 shows the calculated structures of pyridine- d_{0} in their ground and electronic excited states.

EXPERIMENTAL

Pyridine and pyridine- d_{5} (99% isotopic purity) were purchased from Aldrich and purified by trap to trap distillation. The ultraviolet absorption spectra of the samples in a 23.5 cm glass cell with quartz windows were recorded at ambient temperature on a Bomem DA8.02 fourier transform spectrometer. Typically 3000 scans at a resolution of $0.25 \mathrm{~cm}^{-1}$ were averaged. The data were collected six times for each molecule utilizing different vapor pressures of the samples in the 10 to 18 Torr range. The far-infrared spectra of the vapor samples in 10 cm cells with polyethylene windows were also recorded in order to determine the wavenumbers of the ring-bending mode for both isotopomers.

Figure 10. Calculated structures of pyridine in their (a) S_{0} ground electronic state at the MP2/cc-pVTZ level of theory and (b) $S_{1}\left(n, \pi^{*}\right)$ state at the CASSCF/6-311++G(d,p) level of theory.

Figure 11a. Ultraviolet absorption spectra of pyridine- d_{0} vapors. The wavenumbers shown are relative to the band origins at $34,767.0 \mathrm{~cm}^{-1}$.

Figure 11b. Ultraviolet absorption spectra of pyridine- d_{5} vapors. The wavenumbers shown are relative to the band origins at $34,945.8 \mathrm{~cm}^{-1}$.

Table 5: Observed and calculated vibrational frequencies $\left(\mathrm{cm}^{-1}\right)$ for pyridine- d_{0} in its ground and excited states

$\mathrm{C}_{2 \mathrm{v}}$	v	Approximate Description	S_{0}		$\mathrm{S}\left(\mathrm{n}, \pi^{*}\right)$				$\mathrm{S}(\pi, \pi *)$	
							OBS	CALC		CALC
			OBS	CALC ${ }^{\text {a }}$	OBS	CALC ${ }^{\text {b }}$	$\mathrm{RAG}^{\text {c }}$	BLPSCK ${ }^{\text {d }}$	CALC ${ }^{\text {b }}$	$\mathrm{BLPSCK}^{\text {d }}$
A_{1}	1	C-H stretch	3072	3080		3074		3100	3055	3079
(i.p.)	2	C-H stretch	3060	3056		3045		3072	3036	3063
	3	C-H stretch	3030	3034		3019		3045	3023	3052
	4	Ring stretch	1584	1599		1507		1532	1499	1700
	5	Ring stretch	1483	1488		1379		1391	1394	1405
	6	C-H wag	1218	1222		1127		1137	1149	1157
	7	C-H wag	1072	1076		987		995	984	988
	8	Ring mode	1031	1031	998	885	995	894	883	891
	9	Ring breathing	991	995	969	857		872	878	885
	10	Ring bend	601	607	542.8	536	542	538	509	511
A_{2}	11	C-H wag o.p.	982	981		811		816	678	699
(o.p.)	12	C-H wag o.p.	887	879	416	469	411	509	590	601
	13	Ring bend o.p.	374	375	326	348	323	387	260	271
B_{1}	14	C-H wag o.p.	997	991		810		814	646	662
(o.p.)	15	C-H wag o.p.	936	940		609		623	573	586
	16	C-H wag o.p.	744	746		496		493	470	470
	17	Ring bend o.p.	700	703		476		477	434	439
	18	Ring bend o.p.	403	411	59.5	87	60	72	244	262
B_{2}	19	C-H stretch	3066	3072		3068		3094	3038	3063
(i.p.)	20	C-H stretch	3030	3037		3021		3046	3024	3051
	21	Ring stretch	1576	1593		1453		1478	1680	1514
	22	Ring stretch	1442	1448		1314		1331	1476	1491
	23	C-H wag i.p.	1363	1363		1271		1285	1337	1348
	24	Ring stretch	1227	1264		1185		1196	1310	1318
	25	C-H wag i.p.	1143	1152		1024		1035	1109	1117
	26	C-H wag i.p.*	1048 ?	1060		787		821	880	889
	27	Ring bend	654	659	635.7	581	633	587	577	581

Abbreviations: i.p., in-plane; o.p., out-of-plane.
${ }^{\text {a }}$ B3LYP/6-311++g(d,p); Frequencies scaled with a scaling factor of 0.985 for frequencies less than $1800 \mathrm{~cm}^{-1}$ and 0.964 for frequencies greater than $1800 \mathrm{~cm}^{-1}$.
${ }^{\mathrm{b}}$ CASSCF/6-311++G(d,p); scaled with a scaling factor of 0.905 .
${ }^{\mathrm{c}}$ Reference 6. ${ }^{\mathrm{d}}$ Reference 12.

Table 6: Ultraviolet absorption spectra for the $\mathbf{n} \rightarrow \pi^{*}$ transition of pyridine- $\mathbf{d}_{\mathbf{0}}$

Frequency (cm^{-1})						
${ }^{\text {a }}$ OBS		SS ${ }^{\text {b }}$	$\mathrm{VAL}^{\text {c }}$	RAG ${ }^{\text {d }}$	Assignment	Inferred
-2249.3	vvw				$6_{1}^{0} 8_{1}^{0}$	-1218-1031 $=-2249$
-1819.7	vvw				$6_{1}^{0} 10_{1}^{0}$	$-1218-601=1819$
-1805.5	vvw				10_{3}^{0}	$3 \mathrm{x}-601=-1803$
-1632	w				$8_{1}^{0} 10_{1}^{0}$	$-1031-601=-1632$
-1218	w				6_{1}^{0}	-1218
-1202	w				10_{2}^{0}	$2 \mathrm{x}-601=-1202$
-1140.0	vvw				25_{1}^{0}	-1143
-1079	w				$6_{1}^{0} 18{ }_{0}^{2}$	$-1218+139=-1079$
-1061.9	w				$10_{2}^{0} 18{ }_{0}^{2}$	$-1202+139=-1063$
-1030.9	mw	-1031			$8{ }_{1}^{0}$	-1031
-945.1	w				-	
-891.1	w				$8_{1}^{0} 18{ }_{0}^{2}$	$-1031+139=-892$
-866.4	vw				-	
-806.0	vw				18_{2}^{0}	$2 \mathrm{x}-403=-806$
-766.3	mw				$10_{1}^{0} 18_{1}^{3}$	$-601-165=-766$
-674.2	w				$6_{1}^{0} 10{ }_{0}^{1}$	$-1218+543=-675$
-646.2	mw				$17_{1}^{0} 18{ }_{0}^{1}$?	$-700+60=-640$
-600.6	vvs	-601			10_{1}^{0}	-601
-595	w				$24_{1}^{0} 27_{0}^{1}$?	$-1227+636=-591$
-538.2	vw				-	
-518.6	mw				$10_{2}^{1} 18_{0}^{2}$?	$-1202+543+139=-520$
-487.4	m				$8{ }_{1}^{0} 10_{0}^{1}$	$-1031+543=-488$
-461.8	vs	-464			$10_{1}^{0} 18{ }_{0}^{2}$	$-601+139=-462$
-458	mw				-	
-394.5	mw				-	
-358 br	mw				-	
-343.8	vs	-345			18_{1}^{1}	$-403+60=-343$
-338	w				-	
-322 br	mw				-	
-308 br	w				-	
-268.1	mw				$18_{2}^{0} 10{ }_{0}^{1}$?	$-2 \times 403+543=-263$
-252.3	mw				$10_{1}^{0} 18_{0}^{4}$	$-601+349=-252$
-228.9	w				-	
-221.6	vvw				$6_{1}^{0} 8_{0}^{1}$	$-1218+998=-220$
-212.8	m				$13_{1}^{1} 18_{1}^{3}$	$-47-165=-212$
-176 sh	w				-	
-165.4	vs	-164			18_{1}^{3}	$-403+238=-165$
-161 sh	w				-	

Table 6: (Continued)

Frequency (cm^{-1})						
		SS ${ }^{\text {b }}$	VAL ${ }^{\text {c }}$	RAG ${ }^{\text {d }}$	Assignment	Inferred
-133 br	vvw				$6_{1}^{0} 10_{0}^{2}$	$-1218+1086=-132$
-114.6	m				10_{2}^{2}	$-2 \times 601+2 \times 543=-116$
-109.7	m				-	
-57.2	s	-58			10_{1}^{1}	$-601+543=-58$
-46.9	vs	-48			13_{1}^{1}	$-374+326=-48$
-41.4	w				-	
-33.4	vvw				81	$-1031+998=-33$
0	vvs	0	0	0	$0{ }_{0}^{0}$	0
5.7 sh	m				-	
12.2 sh	m				-	
41 br	vw				-	
54.8	mw	53			$8_{1}^{0} 10_{0}^{2}$	$-1031+1086=55$
63.3	s	62			$18{ }_{1}^{5}$	$-403+467=64$
72.6	m	72	70	71	-	
80.6	vs	80	79	79	$10_{1}^{1} 18_{0}^{2}$	$-59+139=80.5$
85 sh	w				-	
104 br	vvw				$8_{1}^{1} 18_{0}^{2}$	$-33+139=106$
139.0	vvs	139	139	139	$18{ }_{0}^{2}$	139
144	m				-	
149 br	w				-	
181.9	vs	181			-	
207.1	vs	206			-	
220.7	m				-	
257	vw				-	
262.0	m				-	
278.9	mw				-	
326sh	vw		325	323	$13{ }_{0}^{1}$	326
332.3	vs	331			-	
348.8	s	348	347	345	$18{ }_{0}^{4}$	349
379.8	s	378			$10_{0}^{1} 18_{1}^{3}$	$543-165=378$
395.7	s	396	396	394	$10_{1}^{0} 8{ }_{0}^{1}$	$-601+998=397$
416sh	m			411	$12{ }_{0}^{1}$	416
421.1	s	421			-	
447	w				-	
453.6	w		450		-	
460	w				-	
485.9	s	485	487	487	10_{1}^{2}	$-601+1086=485$
497	w				-	
542.8	vvs	542	543	542	10_{0}^{1}	543

Table 6: (Continued)

${ }^{\text {a }}$ OBS		Frequency (cm^{-1})			Assignment	Inferred
		SS ${ }^{\text {b }}$	VAL ${ }^{\text {c }}$	RAG ${ }^{\text {d }}$		
549	w				-	
579	vw				-	
591.7	vw				$18{ }_{0}^{6}$	592
610	vw				-	
624.7	mw		624		$10_{1}^{2} 18_{0}^{2}$	$486+139=625$
635.7	m	638	635	633	$27{ }_{0}^{1}$	636
652.7	vw				13_{0}^{2}	$2 \times 326=652$
672.7	vs	672	672	672	-	
678	w				$10_{0}^{1} 18_{0}^{2}$	$543+139.0=682$
705	vw				-	
727	vw				-	
753 br	mw		753		-	
774	w	775			$6{ }_{1}^{0} 8_{0}^{2}$	$-1218+2 \times 1997=779$
795 br	w				-	
864	s	864			-	
899	w				-	
910.8	mw		912		$9_{0}^{1} 10_{1}^{1}$	$969-57=912$
924.2	vvw				$10_{0}^{2} 18_{1}^{3}$	$1086-165=921$
951	vvw				-	
968.6	m	968	967		$9{ }_{0}^{1}$	969
997.6	s	995	997	995	$8{ }_{0}^{1}$	998
1010.1	vw				-	
1026.3	vvw				10_{1}^{3}	$-601+3 \times 543=1028$
1054	vw				-	
1087.3	vs	1084	1087		10_{0}^{2}	$2 \times 543=1086$
1094 sh	w				-	
1102 br	vw		1100		-	
1138.5	mw				-	
1182.3	w				-	
1207	w				-	
1218.8	w				$10_{0}^{1} 24{ }_{0}^{1} 27_{1}^{0}$	$542.8+672.7=1215.5$
1227.1	vw				$10_{0}^{2} 18_{0}^{2}$	$139.0+1085.6=1224.6$
1367 sh					-	
1392.2	s		1387		$8_{0}^{2} 10_{1}^{0}$	1997-601 $=1396$
1407.7	vw				-	
1451	w		1454		-	
1461.9	vw				$10_{0}^{3} 18_{1}^{3}$	$1627-165=1462$
1478	vw				-	
1485	vw				-	

Table 6: (Continued)

Frequency (cm^{-1})						
${ }^{\text {a }}$ OBS		SS ${ }^{\text {b }}$	VAL ${ }^{\text {c }}$	RAG ${ }^{\text {d }}$	Assignment	Inferred
1511.1	vvw				$9_{0}^{1} 10{ }_{0}^{1}$	$969+543=1512$
1536.1	s		1535		-	
1539.3	s		1540		$8{ }_{0}^{1} 10_{0}^{1}$	$998+543=1541$
1549	w				-	
1574	vw				-	
1587	vw				-	
1627	s		1636		10_{0}^{3}	$3 \times 543=1629$
1671	mw				-	
1736.3	vvw				$10_{0}^{2} 13_{0}^{2}$	$2 \times 543+2 \times 326=1738$
1763	vw				-	
1769.3	w				$10_{0}^{3} 18_{0}^{2}$	$3 \times 543+139=1768$
1797	vw				-	
1852	m		1847		-	
1916	m		1909		$8{ }_{0}^{1} 10_{0}^{2} 18_{1}^{3}$	$998+1086-165=1919$
1927	vvw				-	
1996.8	mw		1997		$8{ }_{0}^{2}$	$2 \mathrm{x} 998=1996$
2080	m		2081		$8{ }_{0}^{1} 10_{0}^{2}$	$998+1086=2084$
2093	vw				-	
2115	vw				-	
2135.7	vvw				$8_{0}^{2} 18_{0}^{2}$	$1997+139=2136$
2172	vw				10_{0}^{4}	$4 \times 543=2172$
2304	mw				$10_{0}^{4} 18_{0}^{2}$?	$2172+139=2311$
2382	w				-	
2444	w				-	
2502	vw				-	
2537	vw				$8{ }_{0}^{2} 10_{0}^{1}$	$1997+543=2540$
2617	vw				-	
2820	vw				-	
2907	vvw				$9{ }_{0}^{3}$	$3 \times 969=2907$
3070	vvw				-	

Abbreviations: s, strong; m, medium; w, weak; v, very; sh, shoulder; br, broad.
${ }^{\text {a }}$ Relative to band origin at $34,767.0 \mathrm{~cm}^{-1}$
${ }^{\mathrm{b}}$ Reference 2. ${ }^{\mathrm{c}}$ Reference 5. ${ }^{\text {d }}$ Reference 6.

Abstract

ABSORPTION SPECTRA Figure 11a shows the uv absorption spectrum of pyridine and Figure 11b shows the $u v$ absorption spectrum of pyridine $-d_{5}$ relative to the electronic band origins at $34,767.0$ and $34,945.8 \mathrm{~cm}^{-1}$, respectively. Some of the more significant transitions were labeled in the figure utilizing the conventional numbering scheme where v_{27} was the lowest frequency of the B_{2} vibrations. The out-of-plane modes were of A_{2} and B_{1} symmetry so that the out-of-plane ring-bending was v_{18}. Table 5 summarizes the observed and calculated vibrational frequencies of pyridine- d_{0} in its ground and excited states. The more intense absorption bands for pyridine in the -2300 to $+3100 \mathrm{~cm}^{-1}$ region relative to the 0_{0}^{0} band origin are listed in Table 6 along with their assignments. The frequency values are compared to those reported by Sponer and Stücklen (SS), ${ }^{2}$ Villa et al. (VAL), ${ }^{5}$ and Riese et al. (RAG). ${ }^{6}$ The approximate description for each lowfrequency vibration number is given in Table 7 which also lists the generally accepted ${ }^{7}$ vibrational frequencies. It was quite remarkable how well SS did in 1946 in not only recording the absorption frequencies, most to $\pm 1 \mathrm{~cm}^{-1}$, but also in recognizing many of the numerical relationships. For example, the band at $379.8 \mathrm{~cm}^{-1}$ assigned to $10_{0}^{1} 18_{1}^{3}$ (expected near $543-165=378 \mathrm{~cm}^{-1}$) was reported by SS at 378 and assigned as $542-$ 164. Similarly the $8_{0}^{1} 10_{1}^{0}$ band at $395.7 \mathrm{~cm}^{-1}$ (expected near $998-601=397 \mathrm{~cm}^{-1}$) was reported by SS at $396 \mathrm{~cm}^{-1}$ and assigned as $995-601$. However, in 1946 all of the vibrations of pyridine in its ground state had not been assigned so that SS could not correlate the appropriate descriptions with their observed numbers.

Table 7: Low-frequency vibrations $\left(\mathrm{cm}^{-1}\right)$ of pyridine- d_{0} and - d_{5}

		Approximate Description	Pyridine- d_{0}			Pyridine-d ${ }_{5}$		
		S_{0}	S_{1}		S_{0}	S_{1}		
		Lit ${ }^{\text {a }}$	Lit ${ }^{\text {a }}$	This Work	Obs	This Work		
A_{1}	10		Ring bend	601.4	542	542.8	$579.2^{\text {a }}$	510.2
A_{2}	12		$\begin{gathered} \text { C-H wag } \\ \text { (out-of-plane) } \end{gathered}$	871	411	416		
	13	Ring bend (out-of-plane)	373	323	326	$318^{\text {a }}$	279	
B_{1}	18	$\begin{aligned} & \text { Ring bend } \\ & \text { (out-of-plane) } \end{aligned}$	403.3	$59^{\text {b }}$	59.5	$365.5^{\text {c }}$	53.6	
B_{2}	27	Ring bend	652	633	635.7			

${ }^{\text {a }}$ Reference 7. ${ }^{\mathrm{b}}$ Reference 3. ${ }^{\mathrm{c}}$ This work

Figure 12. Energy map for the vibrational levels of pyridine (left) and pyridine- d_{5} (right) in their ground (bottom) and S_{1} excited (top) electronic states.

Moreover, SS did not recognize that v_{18} ($v_{16 \mathrm{~b}}$ in older literature) was highly anharmonic in the excited $\mathrm{S}_{1}\left(\mathrm{n}, \pi^{*}\right)$ state and that frequencies at $-343.8\left(18_{1}^{1}\right),-165.4\left(18_{1}^{3}\right.$), $63.3\left(18_{1}^{5}\right), 139.0\left(18_{0}^{2}\right)$, and $348.8\left(18_{0}^{4}\right)$ were all associated with just the out-of-plane ring-bending motion. This was later realized by Jessan, Kroto, and Ramsay. ${ }^{3}$

In the present study the focus was on correctly identifying the v_{18} bending mode levels. Thus it was important to also consider several of the other lower frequency vibrations, namely v_{13} (A_{2} out-of-plane ring-bending), v_{10} (A_{1} in-plane ring-bending), and $v_{27}\left(B_{2}\right.$ in-plane ring-bending). Figure 12 shows the energy map for these modes in the S_{0} and $\mathrm{S}_{1}\left(\mathrm{n}, \pi^{*}\right)$ states constructed from the data in Figures 11a, 11b and Tables 5 and 8. Table 7 lists the wavenumbers for these modes. It should be noted that the conventional numbering scheme was utilized with the highest frequency in each symmetry block labeled first rather than the traditional one ${ }^{7}$ where v_{1} was the ringbreathing mode. The solid lines indicate observed quantum states whereas the dotted lines represent the expected positions of v_{18} levels in combination with v_{10} or v_{13}. The most dramatic result was for the v_{18} vibration which had its $\mathrm{v}=1$ quantum level in S_{0} at $403.3 \mathrm{~cm}^{-1}$ but declined to $59.5 \mathrm{~cm}^{-1}$ in $\mathrm{S}_{1}\left(\mathrm{n}, \pi^{*}\right)$. In addition, the energy spacings in S_{1} clearly reflected a very non-harmonic pattern. This will be discussed in some detail later. Table 8 summarizes the observed and calculated vibrational frequencies of pyridine- d_{5} in its ground and excited states. Table 9 lists the principal absorption bands and assignments in the -1200 to $+1900 \mathrm{~cm}^{-1}$ region relative to the electronic band origin.

Table 8: Observed and calculated vibrational frequencies $\left(\mathrm{cm}^{-1}\right)$ for pyridine- d_{5} in its ground and excited states

$\mathrm{C}_{2 \mathrm{v}}$	v	Approximate Description	S_{0}		$\mathrm{S}\left(\mathrm{n}, \pi^{*}\right)$		$\begin{gathered} \mathrm{S}\left(\pi, \pi^{*}\right) \\ \mathrm{CALC}^{\mathrm{b}} \end{gathered}$
			OBS	CALC ${ }^{\text {a }}$	OBS	CALC ${ }^{\text {b }}$	
$\begin{gathered} \hline \mathrm{A}_{1} \\ \text { (i.p.) } \end{gathered}$	1	C-H stretch	2299	2284		2278	2261
	2	C-H stretch	2275	2258		2247	2242
	3	C-H stretch	2272 sh	2244		2229	2231
	4	Ring stretch	1554	1558		1456	1441
	5	Ring stretch	-	1348		1174	1169
	6	C-H wag	883	893		951	951
	7	C-H wag	824	823		871	868
	8	Ring mode	999	1007	953.3	812	832
	9	Ring breathing	963	967	907.6?	714	742
	10	Ring bend	580	585	510.2	518	492
$\begin{gathered} \mathrm{A}_{2} \\ \text { (o.p.) } \end{gathered}$	11	C-H wag o.p.	816 sh	813		628	550
	12	C-H wag o.p.	-	684	389?	409	458
	13	Ring bend o.p.	-	320	279	283	227
$\begin{gathered} \mathrm{B}_{1} \\ \text { (o.p.) } \end{gathered}$	14	C-H wag o.p.	828	829		618	543
	15	C-H wag o.p.	765	767		502	452
	16	C-H wag o.p.	631 br	630		459	379
	17	Ring bend o.p.	526	526		358	346
	18	Ring bend o.p.	366	371	53.6	78	222
$\begin{gathered} \mathrm{B}_{2} \\ \text { (i.p.) } \end{gathered}$	19	C-H stretch	2288	2274		2267	2241
	20	C-H stretch	2253 br	2238		2224	2229
	21	Ring stretch	1545	1558		1388	1680
	22	Ring stretch	1303	1306		1206	1426
	23	C-H wag i.p.	1045	1042		1006	1126
	24	Ring stretch	1226	1257		940	1004
	25	C-H wag i.p.	854 br	841		791	802
	26	C-H wag i.p.*	-	823		711	741
	27	Ring bend	625	632		551	554

Abbreviations: i.p., in-plane; o.p., out-of-plane.
${ }^{\text {a }}$ B3LYP/6-311++g(d,p); Frequencies scaled with a scaling factor of 0.985 for frequencies less than $1800 \mathrm{~cm}^{-1}$ and 0.964 for frequencies greater than $1800 \mathrm{~cm}^{-1}$.
${ }^{\mathrm{b}}$ CASSCF/6-311++G(d,p); scaled with a scaling factor of 0.905 .

Table 9: Ultraviolet absorption spectra for the $\mathbf{n} \rightarrow \pi^{*}$ transition of pyridine- \mathbf{d}_{5}

${ }^{\text {a }}$ Frequency $\left(\mathrm{cm}^{-1}\right)$		Assignment	Inferred
-1210	vvw		
-1158.8	vw	10_{2}^{0}	$2 \mathrm{x}-580=-1160$
-1037.1	vvw	$18{ }_{0}^{2} 10_{2}^{0}$	$121-1159=-1038$
-1014	w	-	
-953 br	vvw		
-892.9	w	-	
-879	vw	6_{1}^{0}	-883
-824	vw	$7{ }_{1}^{0}$	-824
-779	w	-	
-739	vw	$10_{1}^{0} 18_{1}^{3}$	$-580-160=-740$
-676	vw	-	
-640	w	-	
-635 sh	w	-	
-579	mw	10_{1}^{0}	-580
-522	w	-	
515	w	-	
-504	w	-	
-473	vvw	$17_{1}^{0} 18{ }_{0}^{1}$	$-526+54=-472$
-458	m	$10_{1}^{0} 18{ }_{0}^{2}$	$-580+121=-459$
-431	vw	-	
-422	vw	-	
-374	vw	$6_{1}^{0} 10_{0}^{1}$	$-883+510=-373$
-344	mw	-	
-326	vw	-	
-311.8	m	18_{1}^{1}	$-366+54=-312$
-278	w	$10_{1}^{0} 18{ }_{0}^{4}$	$-580+301=-279$
-264	w	-	
-235	vw	-	
-226	w	-	
-203.9	vvw	$13_{1}^{1} 18_{1}^{3}$	$-160-39=-199$
-179	m	-	
-159.7	m	18_{1}^{3}	$-366+206=-160$
-144	vw	-	
-126.5	w	-	

Table 9: (Continued)

${ }^{\text {a }}$ Frequency $\left(\mathrm{cm}^{-1}\right)$		Assignment	Inferred
-115.2	vw	$27{ }_{1}^{0} 10{ }_{0}^{1}$?	$-625+510=-115$
-107	vvw	-	
-97.4	vw	-	
-67 sh	w	10_{1}^{1}	$-580+510=-70$
-56	m	9_{1}^{1}	$-963+908=-55$
-39.4	m	13_{1}^{1}	$-318+279=-39$
-18	m	-	
0	vvs	0_{0}^{0}	0
5.9	w	-	
11 sh	m	-	
35	mw	18_{1}^{5}	$-366+399.8=34$
63.3	m	$9_{1}^{1} 18_{0}^{2}$	$-55+121.1=66$
67.8	w	-	
121.1	s	18_{0}^{2}	121.1
126	w	-	
154.6	w	-	
160	vw	-	
170.2	w	-	
177.8	w	-	
201.4	m	$10_{0}^{1} 18{ }_{1}^{1}$	$510-312=198$
208	w	-	
235	vvw	-	
240.6	mw	13_{1}^{2}	$-318+559=241$
269.9	s	-	
300.8	ms	$18{ }_{0}^{4}$	300.8
320 br	w	-	
342	w	-	
364.2	s	-	
374.1	mw	$10_{1}^{0} 8{ }_{0}^{1}$	$-580+953.3=373$
424	vvw	-	
445.5	mw	10_{1}^{2}	$1022-580=442$
458	vvw	-	
494.5	m	-	

Table 9: (Continued)

${ }^{\text {a }}$ Frequency $\left(\mathrm{cm}^{-1}\right)$		Assignment	Inferred
510.2	s	10_{0}^{1}	510.2
542	vw	-	
559	s	13_{0}^{2}	$2 \times 278.6=557.2$
563.9	w	$10_{0}^{1} 18{ }_{0}^{1}$?	$510+53.7=564$
572	mw	-	
580	vw	-	
603	vw	-	
618	vw		
630.2	mw	$10_{0}^{1} 18_{0}^{2}$	$510+121.1=631$
636	vw		
671.9	mw	-	
684.7	mw	-	
707.3	w	-	
715.0	w	-	
747	w	-	
777	w	-	
787.8	mw	-	
802	vw	-	
819.0	mw	-	
831.6	mw	-	
867	vvw	-	
907.6	ms	$9{ }_{0}^{1}$	907.6
953.3	ms	$8{ }_{0}^{1}$	953.3
1021.5	w	10_{0}^{2}	$2 \times 510.2=1020.4$
1029.3	w	-	
1050	w	-	
1072.5	m	$10_{0}^{1} 13_{0}^{2}$	$510.2+559=1069$
1079.5	m	$18{ }_{0}^{2} 8_{0}^{1}$	$121.1+953.3=1074.4$
1115.9	w	13_{0}^{4}	$4 \times 279=1116$
1154.4	w	-	
1218	m	-	
1231	mw	-	
1249.6	w	-	
1270	w	-	

Table 9: (Continued)

${ }^{\text {a }}$ Frequency $\left(\mathrm{cm}^{-1}\right)$		Assignment	Inferred
1311	w	-	
1332	vw	-	
1356	w	-	
1380	vvw	-	
1389.6	vvw	-	$907.6+510=1418$
1424	w	$9_{0}^{1} 10_{0}^{1} ?$	$510+953=1463$
1460 br	m	$10_{0}^{1} 8_{0}^{1}$	$953+2 \times 279=1511$
1508 br	mw	$80_{0}^{1} 13_{0}^{2}$	
1589 br	w	-	
1654 br	vw	-	
1721 br	vw	-	
1760 br	vw	-	
1898 br	vw	-	

Abbreviations: s, strong; m, medium; w, weak; v, very; sh, shoulder; br, broad.
${ }^{\text {a }}$ Relative to band origin at $34945.8 \mathrm{~cm}^{-1}$

The energy levels for v_{10}, v_{13}, v_{18} are also shown in Figure 12. Again the v_{18} bands were highly anharmonic and at greatly reduced frequencies in the $\mathrm{S}_{1}\left(\mathrm{n}, \pi^{*}\right)$ excited state as compared to the ground state.

RING-BENDING POTENTIAL ENERGY FUNCTION

In the S_{0} electronic ground state v_{18} was very nearly harmonic and at a moderately high frequency for a ring-bending mode, $403.3 \mathrm{~cm}^{-1}$ for pyridine and 365.5 cm^{-1} for pyridine- d_{5}. In the $\mathrm{S}_{1}\left(\mathrm{n}, \pi^{*}\right)$ excited state, however, as noted by Jessan, Kroto, and Ramsay, ${ }^{3}$ its frequency dropped dramatically and the energy spacings were far from harmonic. Because v_{18} was much lower in frequency than the other modes in the excited state, its potential energy function was approximated quite well with a one-dimensional model. Laane's laboratory has a long history ${ }^{58-63}$ of studying potential energy functions of large-amplitude vibrations, and a potential energy function of the form

$$
\begin{equation*}
V=a x^{4}+b x^{2} \tag{5.1}
\end{equation*}
$$

often did a satisfactory job of calculating the vibrational energy levels.
The Hamiltonian

$$
\begin{equation*}
\hat{H}(x)=\left(-\hbar^{2} / 2\right) \partial / \partial x\left(g_{44}(x)\right) \partial / \partial x+V(x) \tag{5.2}
\end{equation*}
$$

was utilized, where x is the out-of-plane ring-bending coordinate as previously defined for a six-membered ring. ${ }^{75}$ The reciprocal reduced mass expression $g_{44}(x)$ is coordinate dependent and is expressed as an expansion in terms of x :

$$
\begin{equation*}
\mathrm{g}_{44}=g_{44}^{(0)}+g_{44}{ }_{44}^{(2)} \mathrm{x}^{2}+g_{44}^{(4)} \mathrm{x}^{4}+g_{44}^{(6)} \mathrm{x}^{6} \tag{5.3}
\end{equation*}
$$

The coefficients $g_{44}^{(i)}$ in the expansion were calculated using our previously described computer program. For pyridine the expansions are for S_{0} :

$$
\begin{equation*}
\mathrm{g}_{44}\left(\mathrm{~S}_{0}\right)=0.00924-0.04174 \mathrm{x}^{2}-0.10130 \mathrm{x}^{4}+0.0100 \mathrm{x}^{6} \tag{5.4}
\end{equation*}
$$

and for S_{1} :

$$
\begin{equation*}
\mathrm{g}_{44}\left(\mathrm{~S}_{1}\right)=0.00962-0.04203 \mathrm{x}^{2}-0.0743 \mathrm{x}^{4}+0.8262 \mathrm{x}^{6} \tag{5.5}
\end{equation*}
$$

These were used in the Hamiltonian of Equation (5.2) before the potential energy parameters a and b in Equation (5.1) could be determined.

Utilizing the potential energy programs for calculating the energy levels ${ }^{58-63}$ the optimal values of a and b were determined, which fit the observed ring-bending frequencies for pyridine for its $S_{1}\left(n, \pi^{*}\right)$ state. The resulting function was

$$
\begin{equation*}
\mathrm{V}\left(\mathrm{~cm}^{-1}\right)=6.11 \times 10^{5} \mathrm{x}^{4}-2.73 \times 10^{3} \mathrm{x}^{2} \tag{5.6}
\end{equation*}
$$

where x is given in \AA. The energy level spacings calculated from this function are given in Table 10 and were compared to the experimental values. While the agreement was not nearly as good as we expected for ground state calculations, ${ }^{58-63}$ it showed the onedimensional approximation was quite reasonable for the electronic excited state. The potential function, quantum states, and energy separations are shown in Figure 13a and Figure 13 b for pyridine- d_{0} and for pyridine- d_{5} respectively. The function had a barrier to planarity of $3 \mathrm{~cm}^{-1}$, but the zero-point energy laid above the barrier, so pyridine is best described as a quasi-planar molecule in its $S_{1}\left(n, \pi^{*}\right)$ state. The barrier of $3 \mathrm{~cm}^{-1}$ was virtually identical to the $4 \mathrm{~cm}^{-1}$ value of Jessan, Kroto, and Ramsay, ${ }^{3}$ but in their work no parameters for a potential function were presented.

Pyridine - d_{0}

Figure 13a. Ring-bending potential energy functions for pyridine- d_{0}.

Figure 13b. Ring-bending potential energy functions for pyridine- d_{5}.

Table 10: Observed and calculated frequencies $\left(\mathrm{cm}^{-1}\right)$ for the \mathbf{v}_{18} vibration of pyridine- $\mathrm{d}_{\mathbf{0}}$ and pyridine-d \mathbf{d}_{5} in their $\mathbf{S}_{1}\left(n, \pi^{*}\right)$ states

	${\text { Pyridine- } \mathrm{d}_{0}}$ Separation		Experimental $^{\text {Calculated }^{\mathrm{a}}}$		Pyridine-d ${ }_{5}$	
	Experimental	Calculated $^{\mathrm{a}}$				
$1-2$	59.5	58.5		53.7	49.6	
$2-3$	79.5	84.7		67.1	72.7	
$3-4$	98.9	97.6		84.7	84.0	
$4-5$	110.9	108.1		95.0	93.2	
$5-6$	124.6	124.0				

$$
{ }^{a} V\left(\mathrm{~cm}^{-1}\right)=\left(6.11 \times 10^{5}\right) x^{4}-\left(27.3 \times 10^{2}\right) x^{2}
$$

For comparison purposes, in its S_{0} ground state the ring-bending potential energy was calculated to be

$$
\begin{equation*}
V=2.64 \times 10^{5} x^{2} \tag{5.7}
\end{equation*}
$$

and the molecule was more rigid.
The calculations for pyridine- d_{5} were first carried out using the kinetic energy expansions calculated directly from the reduced mass computer program ${ }^{75}$ and the potential energy function of Equation (5.6). When this was used together for S_{0}, the bending frequency was calculated to be too low, reflecting the fact that the calculated reduced mass ratio $\mu_{\mathrm{d}_{5}} / \mu_{\mathrm{d}_{0}}$ of 1.36 was too high. This has often been observed for isotopomers of other systems ${ }^{66-70}$ and results from the fact that the actual vibration was not purely a ring-bending but had some contribution from other modes which interacted to a small degree. When $\mu_{\mathrm{d}_{5}} / \mu_{\mathrm{d}_{0}}=1.22$ was used, agreement between observed and calculated bending frequencies was obtained using the potential function of Equation (5.7) for the S_{0} state.

For the S_{1} state the computed reduced mass ratio of 1.33 was again too high, but not nearly as much as for the electronic ground state. Since the ring-bending frequency was much lower in S_{1}, it interacted much less with the other vibrational modes and the reduced mass calculation for the pure one-dimensional mode did a much better job of predicting the correct reduced mass ratio. When the $\mu_{\mathrm{d}_{5}} / \mu_{\mathrm{d}_{0}}$ ratio was reduced to 1.26 , the potential energy function in Equation (5.6) for pyridine was effectively used for the d_{5} isotopomer. For this ratio, the kinetic energy expansion for pyridine- d_{5} in its S_{1} state was

$$
\begin{equation*}
g_{44}\left(S_{1}\right)=0.00762-0.02111 x^{2}-0.17403 x^{4}+0.0106 x^{6} \tag{5.8}
\end{equation*}
$$

The calculated energy separations for the ring-bending of pyridine- d_{5} in its S_{1} state are given in Table 10.

The results in Figure 14 compared the $S_{1}\left(n, \pi^{*}\right)$ function to that in S_{0} were more dramatic. Not only did pyridine have a tiny barrier in the excited state, but it also became extremely floppy. This was not at all surprising since the $\mathrm{n} \rightarrow \pi^{*}$ transition decreased the degree of π bonding in the electronic excited state.

Figure 14. Comparison of the ring-bending potential function of pyridine in its $S_{1}\left(n, \pi^{*}\right)$ state to that in the S_{0} ground state.

CHAPTER VI

VIBRATIONAL SPECTRA, STRUCTURE, AND THEORETICAL CALCULATIONS OF 2-FLUORO- AND 3-FLUOROPYRIDINE IN THEIR GROUND STATES*

INTRODUCTION

In Chapter V, the ultraviolet absorption spectrum of pyridine was reported and it showed that the molecule was very floppy and quasi-planar in its $S_{1}\left(\mathrm{n}, \pi^{*}\right)$ electronic excited state. Determination of the potential energy function for the ring-bending vibration showed the barrier to planarity to be only $3 \mathrm{~cm}^{-1}$. This is in contrast to the S_{0} ground state where pyridine is rigidly planar.

In a continuation of the work on the vibrations and structure of pyridine and substituted pyridines in their ground and excited states, this chapter presents the results on two substituted fluoropyridines in their electronic ground states. The infrared and Raman spectra of 2-fluoropyridine (2FPy) and 3-fluoropyridine (3FPy) were analyzed and their vibrational frequencies were determined. Ab initio and DFT computations were carried out to compute the structures of these molecules, complement the experimental work and to support the vibrational assignments.

[^3]
COMPUTATIONS

The structures and vibrational frequencies of 2 FPy and 3 FPy for the electronic ground state were calculated using the Gaussian 03 program package. ${ }^{65} \mathrm{Ab}$ initio second order Moller-Plesset (MP2) level of theory with the cc-pVTZ basis set was used to find the optimized geometry. The DFT-B3LYP level of theory with the $6-311++\mathrm{G}(\mathrm{d}, \mathrm{p})$ basis set was used to calculate the vibrational frequencies and the infrared and Raman intensities. Based on previous work, ${ }^{66-70}$ a scaling factor of 0.964 was used for the $\mathrm{C}-\mathrm{H}$ stretching vibrational frequencies and a factor of 0.985 for the lower frequencies.

EXPERIMENTAL

2FPy and 3FPy (99\% purity) were purchased from Aldrich and purified by trap to trap distillation. The Raman spectra of the molecules in the vapor-phase were recorded of samples sealed in the specially designed glass cells described in Chapter II. The vapor pressures of the samples at room temperature were about 9 Torr for 2FPy and 15 for 3FPy. A Jobin-Yvon U-1000 spectrometer equipped with a liquid nitrogencooled CCD detector was used to collect the spectra. The 532 nm line of a frequencydoubled Nd:YAG Coherent Verdi-10 laser was used and typically operated at 6 watts of power. Spectral scans spanning $60 \mathrm{~cm}^{-1}$ were typically recorded over periods of 4 to 6 hours so that many hundreds of individual spectra could be averaged. The spectral resolution was $0.7 \mathrm{~cm}^{-1}$. The liquid phase Raman spectra were collected on the same instrument with samples in glass cuvettes using a laser power of 500 mW . The liquidphase and vapor-phase mid-infrared spectra of 2FPy and 3FPy were collected on a

Bruker Vertex 70 FT spectrometer equipped with a globar light source, a KBr beamsplitter and deuterated lanthanum triglycine sulfate (DLaTGS) detector. The vapor-phase far infrared spectra $\left(60-600 \mathrm{~cm}^{-1}\right)$ were collected on the same instrument equipped with a mylar beamsplitter, and a mercury cadmium telluride (MCT) detector. The vapor pressures of the samples were the same as for the Raman measurements. Typically 1024 scans were collected using a resolution of $0.5 \mathrm{~cm}^{-1}$.

RESULTS AND DISCUSSION

Structures

Figure 15 shows the calculated structures of 2 FPy and 3 FPy and pyridine in their ground electronic states. The substitution of the fluorine atom on the pyridine ring for the most part had only a minor effect on the ring bond distances and angles. The notable exception was the N-C(F) bond distance for 2FPy which was only $1.313 \AA$ as compared to $1.340 \AA$ for pyridine and $1.344 \AA$ for the other N-C bond of 2FPy. Clearly the substitution of the electronegative fluorine atom resulted in the strengthening of the adjacent $\mathrm{N}-\mathrm{C}$ bond. There was insignificant effect observed for 3FPy since the fluorine atom was distant from the nitrogen atom. The C-F bond distance was $1.338 \AA$ for 2FPy and $1.340 \AA$ for 3 FPy and these values were very similar to the fluorobenzene value of $1.35 \AA$ determined from its microwave spectrum. ${ }^{76,77}$

Figure 15. Calculated structures of (a) pyridine- d_{0}, (b) 2-fluoropyridine, and (c) 3-fluoropyridine in their S_{0} ground electronic state using MP2/cc-pVTZ level of theory.

Figure 16. Liquid, vapor, and calculated Raman spectra of 2-fluoropyridine.

Figure 17. Liquid, vapor, and calculated IR spectra of 2-fluoropyridine.

Figure 18. Comparison between IR and Raman spectra of 2-fluoropyridine.

Table 11: Observed and calculated vibrational frequencies $\left(\mathrm{cm}^{-1}\right)$ for 2-fluoropyridine

Cs	v	Approximate Description	Infrared				Raman ${ }^{\text {a }}$				Calculated ${ }^{\text {b }}$		GKP ${ }^{\text {c }}$
			Liquid		Vapor		Liquid		Vapor		v	Intensity	
A'	1	C-H stretch	3100 sh	w	3100.1	s	3101 br	(6)	3100 br	(9)	3096	$(0.7,100)$	3097
(i.p.)	2	C-H stretch	3100 sh	w	3092.4	s	3101 br	(6)	3092	(42)	3086	$(10,70)$	3094
	3	C-H stretch	3086	mw	3080.9	s	3084	(14)	3080	(56)	3066	$(6,44)$	3074
	4	C-H stretch	3069	mw	-	-	3071	(26)	3077	(60)	3050	$(10,55)$	3074
	5	Ring stretch	1598	vs	1604.5	s	1596	(5)	-	-	1610	$(61,43)$	1598
	6	Ring stretch	1581	vs	1593.0	vs	1579	(4)	-	-	1597	$(79,43)$	1580
	7	Ring stretch	1473	vs	1477.6	vvs	1471	(1)	1478	(2)	1480	$(78,5)$	-
	8	Ring stretch	1436	vs	1438.7	vvs	1434	(0.5)	1439	(2)	1441	$(79,2)$	-
	9	C-H wag	1301	m	1302.9	m	1301	(6)	1303	(18)	1306	$(3,19)$	1303
	10	Ring stretch	1295	m	1286.3	m	-	-	1286	(7)	1289	$(2,14)$	-
	11	C-F stretch	1258 br	vs	1265.9	vs	1259 br	(6)	1265	(22)	1247	$(140,62)$	1249
	12	C-H wag	1143	s	1139.4	vs	1141	(2)	1139	(2)	1148	$(6,10)$	1146
	13	C-H wag	1098	m	1097.9	mw	1096	(8)	1098	(7)	1100	$(3,24)$	1099
	14	C-H wag	1045	m	1044 sh	m	1044	(41)	1045	(182)	1046	$(7,71)$	1045
	15	Ring breathing	994	s	996.6	mw	993	(100)	999	(100)	995	$(6,100)$	996
	16	Ring bend	840	vs	842.3	vs	839	(25)	842	(125)	834	$(36,62)$	828
	17	Ring bend	621	ms	620.1	w	620	(11)	620	(6)	625	$(2,19)$	622
	18	Ring bend	554	s	553.8	m	553	(31)	554	(40)	551	$(6,24)$	556
	19	C-F wag	433	w	432.3	vw	431	(3)	433	(7)	427	$(0.6,0.1)$	-
A",	20	C-H wag	983	w	-	-	982	(3)	982	(2)	979	$(0.1,0.4)$	-
(o.p.)	21	C-H wag	963	w	960.5	mw	962	(0.1)	963	(1)	962	$(1,0.1)$	-
	22	C-H wag	873	w	868.2	mw	870	(0.5)	869	(1)	871	$(1,0.1)$	-
	23	C-H wag	780	vs	780.4	ms	783	(0.6)	-	(1)	781	$(70,1)$	-
	24	Ring twist	733	m	732.5	m	733	(1)	-	-	732	$(6,1)$	-
	25	Ring bend	519	m	517.7	m	517	(2)	-	-	517	$(4,2)$	-
	26	Ring bend	417	m	413.8	mw	416	(0.6)	-	-	419	$(4,0.4)$	-
	27	C-F wag	-	-	-	-	228	(29)	226	(20)	216	$(0,10)$	230

Abbreviations: s, strong; m, medium; w, weak; v, very; sh, shoulder; br, broad; i.p., in-plane; o.p., out-of-plane. ${ }^{\text {a }}$ Relative intensities in parenthesis.
${ }^{\mathrm{b}}$ B3LYP/6-311++g(d,p); frequencies scaled with a scaling factor of 0.985 for frequencies less than $1800 \mathrm{~cm}^{-1}$ and 0.964 for frequencies greater than $1800 \mathrm{~cm}^{-1}$. The calculated relative intensities are shown as (IR, Raman).
${ }^{\mathrm{c}}$ Reference 33.

Table 12: Observed vibrational frequencies (cm^{-1}) and assignments for 2-fluoropyridine

Table 12: (Continued)

Infrared		Raman	Assignment	Inferred	
-		1254	s	$\mathrm{v}_{16}+\mathrm{v}_{26}$	$842+414=1256$
1189.0	w	-		$\mathrm{v}_{24}+\mathrm{v}_{25}$	$733+518=1251$
1139.4	vs	1139	vw	$\mathrm{v}_{21}+\mathrm{v}_{27}$	$961+226=1187$
1097.9	mw	1098	m	v_{12}	1139
1091.5	s	-		v_{13}	1098
1049.2	ms	-	$\mathrm{v}_{22}+\mathrm{v}_{27}$	$868+226=1094$	
-		1045	vvs	$\mathrm{v}_{17}+\mathrm{v}_{19}$	$620+433=1053$
1038.9	s	-	v_{14}	1045	
1033.6	m	1034	m	$2 v_{25}$	$2 \times 518=1036$
996.6	mw	999	vs	$\mathrm{v}_{17}+\mathrm{v}_{26}$	$620+414=1034$
992	mw	992	s	v_{15}	997
-		982	mw	$\mathrm{v}_{18}+\mathrm{v}_{19} ?$	v_{20}
960.5	m	-		v_{21}	$554+433=987$
868.2	m	869	w	v_{22}	982
842.3	vs	842	vvs	v_{16}	961
827.5	m	828	s	$2 \mathrm{v}_{26}$	868
824.1	mw	824	s	hot band	842
780.4	ms	-		v_{23}	$2 \times 414=828$
732.5	m	-		v_{24}	824
620.1	w	620	mw	v_{17}	780
553.8	m	554	s	v_{18}	733
517.7	m	-		v_{25}	620
432.3	vw	433	m	-	v_{19}
413.8	mw			v_{26}	554
-		226	m	v_{27}	518
		210	m	hot band	433

Infrared and Raman Spectra

Figures 16 and 17 show the liquid-phase, vapor-phase, and calculated Raman and infrared spectra of 2FPy, and Figure 18 shows the comparison between infrared and Raman spectrum. Figures 19, 20 and 21 show the spectra for 3FPy. Table 11 summarizes the vibrational data for 2FPy and Table 12 presents a tabulation of all the spectral bands including the sum and combination bands. Table 13 summarizes the data for 3FPy and Table 14 tabulates all of the observed spectral bands for this molecule. Table 15 compares the vibrational frequencies for the ring modes of $2 \mathrm{FPy}, 3 \mathrm{FPy}$, and the unsubstituted pyridine. Green and coworkers ${ }^{33}$ previously made partial assignments for the fluoropyridines and these are also shown in Tables 11 and 13. As expected ${ }^{66-70}$ the cc-PVTZ calculation did a remarkably good job of predicting the frequencies. The average difference between experimental and calculated wavenumbers was less than 7 cm^{-1}. From Table 15 it was also clear that most of the pyridine ring vibrational frequencies were not changed much in 2 FPy and 3 FPy and the highest four ring stretching modes shifted by less than $15 \mathrm{~cm}^{-1}$. The $\mathrm{B}_{2} 1227 \mathrm{~cm}^{-1}$ band of pyridine shifted to $1286 \mathrm{~cm}^{-1}$ in 2 FPy and to $1249 \mathrm{~cm}^{-1}$ in 3 FPy . The two A_{1} stretching modes of pyridine at 1031 and $991 \mathrm{~cm}^{-1}$ shifted to 994 and $842 \mathrm{~cm}^{-1}$ in 2 FPy and to 1022 and 816 cm^{-1} in 3FPy. These vibrational shifts for the fluoropyridines reflected interactions with the C-F stretching which occurred at $1266 \mathrm{~cm}^{-1}$ for 2 FPy and $1228 \mathrm{~cm}^{-1}$ for 3 FPy . The C-F stretching frequencies were comparable to values of $1238 \mathrm{~cm}^{-1}$ for fluorobenzene and $1049 \mathrm{~cm}^{-1}$ for methylfluoride. ${ }^{76-78}$

Figure 19. Liquid, vapor, and calculated Raman spectra of 3-fluoropyridine.

Figure 20. Liquid, vapor, and calculated IR spectra of 3-fluoropyridine.

Figure 21. Comparison between IR and Raman spectra of 3-fluoropyridine.

Table 13: Observed and calculated vibrational frequencies $\left(\mathrm{cm}^{-1}\right)$ for 3-fluoropyridine

Cs	v	Approximate Description	Infrared				Raman ${ }^{\text {a }}$				Calculated ${ }^{\text {b }}$		GKP ${ }^{\text {c }}$
			Liquid		Vapor		Liquid		Vapor		v	Intensity	
$\begin{gathered} \mathrm{A}^{\prime} \\ \text { (i.p.) } \end{gathered}$	1	C-H stretch	-	-	-	-	3069	(14)	3079	(10)	3088	$(2,100)$	3069
	2	C-H stretch	3070	m	3076.5	m	3069	(14)	3075	(16)	3073	$(9,70)$	3058
	3	C-H stretch	-	-	-	-	3056	(12)	3063	(12)	3054	$(7,65)$	3069
	4	C-H stretch	3049	m	3054.1	ms	3047 sh	(8)	3054	(5)	3047	$(14,54)$	3058
	5	Ring stretch	1594	m	-	-	1593	(7)	1594	(2)	1602	$(8,31)$	1594
	6	Ring stretch	1583	s	1588.4	S	1583	(3)	1587 sh	(1)	1596	$(20,28)$	1584
	7	Ring stretch	1478	vs	1480.1	vs	1477	(2)	1480	(1)	1482	$(60,10)$	1480
	8	Ring stretch	1427	vs	1425.8	vs	1427	(1)	1426	(1)	1438	$(52,7)$	1425
	9	C-H wag	1319	w	1315.6	w	1317	(1)	1316	(1)	1323	$(1,2)$	1308
	10	Ring stretch	1248	vs	1249.4	vs	1246	(5)	1249	(10)	1265	$(3,10)$	1247
	11	C-F stretch	1227	vs	1227.4	vs	1224	(9)	1226	(4)	1223	$(131,41)$	-
	12	C-H wag	1189	m	1187.1	m	1187	(6)	1187	(2)	1197	$(3,21)$	1187
	13	C-H wag	1098	ms	1096.0	m	1096	(5)	1096	(3)	1107	$(12,10)$	1095
	14	C-H wag	1038 sh	w	-	-	1037	(100)	1038	(100)	1041	$(0.5,100)$	1038
	15	Ring breathing	1024	ms	1021.8	m	1022	(5)	1022	(4)	1020	$(11,28)$	1023
	16	Ring bend	816 sh	ms	816.4	ms	816	(31)	816	(20)	819	$(16,45)$	818
	17	Ring bend	615	mw	-	-	614	(12)	613	(2)	619	$(4,17)$	616
	18	Ring bend	535	s	533.3	ms	534	(24)	533	(15)	533	$(11,17)$	535
	19	C-F wag	-	-	-	-	398	(2)	398	(1)	390	$(5,1)$	-
$\begin{aligned} & \mathrm{A}^{\prime \prime} \\ & \text { (o.p.) } \end{aligned}$	20	C-H wag	981	vw	974.1	vw	-	-	-	-	966	$(0.1,0)$	982
	21	C-H wag	938	w	934.0	w	932	(1)	-	-	932	$(3,1)$	-
	22	C-H wag	905	w	905.1	w	904	(1)	-	-	905	$(2,1)$	-
	23	C-H wag	804	vs	800.7	vs	-	-	-	-	803	$(41,2)$	-
	24	Ring twist	702	s	701.0	ms	703	(1)	-	-	702	$(29,1)$	702
	25	Ring bend	497	w	506.8	mw	498	(4)	-	-	501	$(0.2,1)$	-
	26	Ring bend	415	mw	411.7	m	414	(2)	-	-	414	$(3,1)$	410
	27	C-F wag	-	-	-	-	242	(33)	239	(6)	231	$(0.6,7)$	244

Abbreviations: s, strong; m, medium; w, weak; v, very; sh, shoulder; br, broad; i.p., in-plane; o.p., out-of-plane.
${ }^{\text {a }}$ Relative intensities in parenthesis.
${ }^{\mathrm{b}}$ B3LYP/6-311++g(d,p); Frequencies scaled with a scaling factor of 0.985 for frequencies less than $1800 \mathrm{~cm}^{-1}$ and 0.964 for frequencies greater than $1800 \mathrm{~cm}^{-1}$. The calculated relative intensities are shown as (IR, Raman).
${ }^{\mathrm{c}}$ Reference 33.

Table 14: Observed vibrational frequencies $\left(\mathrm{cm}^{-1}\right)$ and assignments for 3-fluoropyridine

Infrared		Raman		Assignment	Inferred
-		3079	s	v_{1}	3079
3076.5	m	3075	s	v_{2}	3075
-		3063	s	v_{3}	3063
3054.1	ms	3054	mw	v_{4}	3054
-		3031	m	-	-
3012.9	w	3012	m	$v_{6}+v_{8}$	$1588+1426=3014$
2965.4	vw	-		$2 v_{21}+v_{13}$	$1869+1096=2965$
-		2953	mw	-	-
2902.3	vw	-		$v_{6}+v_{9}$	$1588+1316=2904$
2839.6	vw	-		$v_{6}+v_{10}$	$1588+1249=2837$
2819.9	w	-		$v_{5}+v_{11}$	$1594+1227=2821$
2726.9	w	-		$\mathrm{v}_{7}+\mathrm{v}_{10}$	$1480+1249=2729$
2674.1	w	-		$v_{8}+v_{10}$	$1426+1249=2675$
2573.8	w	-		$\mathrm{v}_{7}+\mathrm{v}_{13}$	$1480+1096=2576$
2516.4	w	-		$\mathrm{v}_{7}+\mathrm{v}_{14}$	$1480+1038=2518$
2496.0	vw	-		$2 \mathrm{v}_{10}$	$2 \times 1249=2498$
2476.2	m	-		$\mathrm{v}_{10}+\mathrm{v}_{11}$	$1249+1227=2476$
-		2445	w	$v_{8}+v_{15}$	$1426+1022=2448$
-		2435	w	$v_{10}+v_{12}$	$1249+1187=2436$
2415.3	w	-	w	$v_{11}+v_{12}$	$1227+1187=2414$
				$\mathrm{v}_{7}+\mathrm{v}_{21}$	$1480+934=2414$
-		2410		$\mathrm{v}_{5}+\mathrm{v}_{16}$	$1594+816=2410$
				$v_{9}+v_{13}$	$1316+1096=2412$
2348.1	w	-		$\mathrm{v}_{10}+\mathrm{v}_{13}$	$1249+1096=2345$
2295.9	w	-		$\mathrm{v}_{7}+\mathrm{v}_{16}$	$1480+816=2296$
				$v_{5}+\mathrm{v}_{24}$	$1594+701=2295$
2243.8	w	-		$v_{8}+v_{16}$	$1426+816=2242$
2223.8	w	-		$v_{12}+v_{14}$	$1187+1038=2225$
				$\mathrm{v}_{10}+\mathrm{v}_{20}$	$1249+974=2223$
2078.9	w	-		$2 \mathrm{v}_{14}$	$2 \times 1038=2076$
2065.2	mw	-		$v_{10}+v_{16}$	$1249+816=2065$
2043.0	w	-		$2 \mathrm{v}_{15}$	$2 \times 1022=2044$
				$\mathrm{v}_{11}+\mathrm{v}_{16}$	$1227+816=2043$
1877.7	mw	-		$\mathrm{v}_{20}+\mathrm{v}_{22}$	$974+905=1879$
1869.3	mw	1869	vw	$2 \mathrm{v}_{21}$	$2 \mathrm{x} 934=1868$
1844.1	m	-		$v_{9}+v_{18}$?	$1316+533=1849$
1829.5	mw	-		$2 v_{25}+v_{16}$	$2 \times 507+816=1830$
-		1594	m	v_{5}	1594
1588.4	s	1587 sh	m	v_{6}	1588
1570.6	m	1570	w	$\mathrm{v}_{14}+\mathrm{v}_{18}$	$1038+533=1571$

Table 14: (Continued)

Infrared		Raman		Assignment	Inferred
1480.1	vs	1480	mw	v_{7}	1480
1436.4	mw	1436	vw	$\mathrm{v}_{14}+\mathrm{v}_{19}$	$1038+398=1436$
1434.1	m	1435	w	$\mathrm{v}_{15}+\mathrm{v}_{26}$	$1022+412=1434$
				$2 v_{26}+v_{17}$	$2 \times 412+613=1437$
1425.8	vs	1426	w	v_{8}	1426
-		1401	mw	$2 \mathrm{v}_{24}$	$2 \times 701=1402$
1387.7	w	-		$\mathrm{v}_{20}+\mathrm{v}_{26}$	$974+412=1386$
1349.3	w	-		$\mathrm{v}_{16}+\mathrm{v}_{18}$	$816+533=1349$
1315.6	w	1316	w	v_{9}	1316
1249.0	vs	1249	s	v_{10}	1249
1227.4	vs	1226	m	v_{11}	1227
1187.1	m	1187	m	v_{12}	1187
1096.0	m	1096	ms	v_{13}	1096
-		1091	m	hot band	1091
-		1066	m	$2 v_{18}$	$2 \times 533=1066$
-		1038	vvs	v_{14}	1038
1021.8	m	1022	m	v_{15}	1022
-		1011	w	$\mathrm{v}_{17}+\mathrm{v}_{19}$	$613+398=1011$
974.1	vw	-		v_{20}	974
934.0	m	-		v_{21}	934
905.1	w	-		v_{22}	905
829.2	mw	829	s	$2 \mathrm{v}_{26}$?	$2 \times 412=824$
816.4	ms	816	s	v_{16}	816
800.7	vs	-		v_{23}	801
-		794	mw	-	-
701.0	ms	-		v_{24}	701
-		613	m	v_{17}	613
533.3	ms	533	ms	v_{18}	533
506.8	mw	-		v_{25}	507
411.7	m	-		v_{26}	412
-		398	vw	v_{19}	398
-		239	m	v_{27}	239
-		224	m	hot band	234

Table 15: Vibrational frequencies $\left(\mathrm{cm}^{-1}\right)$ of the ring modes of the fluoropyridines compared to pyridine

v^{a}	Approximate Description	2FPy	3FPy	Pyridine
5	Ring stretch	1605	1594	1584
6	Ring stretch	1593	1588	1576
7	Ring stretch	1478	1480	1483
8	Ring stretch	1439	1426	1443
10	Ring stretch	1286	1249	1227
15	Ring breathing	997	1022	1031
16	Ring bend (i.p.)	842	816	991
17	Ring bend (i.p.)	620	613	654
18	Ring bend (i.p.)	554	533	601
24	Ring bend (o.p.)	733	701	700
25	Ring bend (o.p.)	518	507	403
26	Ring bend (o.p.)	414	412	375

Abbreviations: i.p., in-plane; o.p., out-of-plane.
${ }^{\text {a }}$ Mode number for 2FPy and 3FPy.

Clearly, in fluorobenzene and the fluoropyridines the higher C-F stretching frequencies reflected interactions with the π bonding within the rings. It was also noteworthy that the two lowest out-of-plane ring vibrations for 2FPy (at 518 and $414 \mathrm{~cm}^{-}$ ${ }^{1}$) were somewhat higher than those for pyridine (403 and $375 \mathrm{~cm}^{-1}$). This indicated that the fluoropyridines were also rigid in their electronic ground state and somewhat more than pyridine itself. As reported in Chapter V , in its $\mathrm{S}_{1}\left(\mathrm{n}, \pi^{*}\right)$ excited state pyridine became very floppy.

There was also little difference between the pyridine and fluoropyridine vibrational frequencies for the C-H stretches ($3030-3095 \mathrm{~cm}^{-1}$), the in-plane C-H wags (1070-1365 cm ${ }^{-1}$), and the out-of-plane C-H wags ($730-1000 \mathrm{~cm}^{-1}$).

CONCLUSIONS

The structures of 2FPy and 3FPy were calculated and the ring bond distances differed little from those of pyridine. The notable exception was that the $\mathrm{N}-\mathrm{C}(\mathrm{F})$ bond distance was shortened in 2 FPy due to π interactions. The frequencies of the ring modes of the fluoropyridines were also similar to those of pyridine itself. The C-F stretching frequencies at $1266 \mathrm{~cm}^{-1}$ for 2 FPy and $1228 \mathrm{~cm}^{-1}$ for 3 FPy reflected bond strengths similar to that in fluorobenzene where $v(\mathrm{C}-\mathrm{F})$ was $1238 \mathrm{~cm}^{-1} .76,77$

CHAPTER VII

ULTAVIOLET ABSORPTION SPECTRA AND STRUCTURE, VIBRATIONS, AND THEORETICL CALCULATIONS OF 2-FLUORO- AND 3-FLUOROPYRIDINE IN THEIR ELECTRONIC EXCITED STATES

INTRODUCTION

This work is the continued investigation of the structure and vibrations of pyridine and substituted pyridines in their ground and excited states. In Chapter V, the ultraviolet absorption spectra of the ring-bending vibration of pyridine and its d_{5} isotopomer were reported and the potential energy function for this motion was determined. This showed the molecule to be quasi-planar and very floppy with a barrier to planarity of only $3 \mathrm{~cm}^{-1}$. In the ground state, this vibration was rigid and nearly harmonic with a relatively high frequency of $403 \mathrm{~cm}^{-1}$. Recently, the infrared and Raman investigation of the vibrations of 2-fluoropyridine (2FPy) and 3-fluoropyridine (3FPy) in their electronic ground states was successfully completed as reported in Chapter VI. In this study, the ultraviolet absorption spectra of these molecules were reported and the vibronic levels in their electronic excited states were assigned. The experimental work was complemented by theoretical computations which were used to calculate molecular structures and vibrational levels in the excited states.

In 1990 Medhi and Medhi ${ }^{34,35}$ reported the electronic absorption spectra of 2 FPy and 3FPy under low resolution. They also reported their wavelength accuracy ranged from ± 0.5 to $\pm 3 \mathrm{~nm}\left(70\right.$ to $400 \mathrm{~cm}^{-1}$!) although their data did not seem to be quite as bad as that. For 2 FPy they reported a $\pi \rightarrow \pi^{*}$ transition at $38,047 \mathrm{~cm}^{-1}$ and a second one at $49,558 \mathrm{~cm}^{-1}$. For 3FPy they observed an $\mathrm{n} \rightarrow \pi^{*}$ transition at $35,066 \mathrm{~cm}^{-1}$, a $\pi \rightarrow \pi^{*}$ at $37,355 \mathrm{~cm}^{-1}$, and another $\pi \rightarrow \pi^{*}$ at $49,674 \mathrm{~cm}^{-1}$. The assignments to $\mathrm{n} \rightarrow \pi^{*}$ or $\pi \rightarrow \pi^{*}$ were supported by ultraviolet spectra of samples in solution. In 2010 Itoh 36 reported the emission and excitation spectra of both 2FPy and 3FPy vapors. His data was also of low-resolution and provided limited information on the vibronic energy levels since the focus of the work was primarily on fluorescence yields.

EXPERIMENTAL

2FPy and 3FPy (99\% purity) were purchased from Aldrich and purified by trap to trap distillation. The ultraviolet absorption spectra of the samples in a 23.5 cm glass cell with quartz windows were recorded at ambient temperature on a Bomem DA8.02 fourier transform spectrometer. Typically 3000 scans at a resolution of $0.25 \mathrm{~cm}^{-1}$ were averaged. The data were collected six times for each molecule utilizing different vapor pressures of the samples. The vapor pressures of the samples at room temperature were about 9 Torr for 2FPy and 15 Torr for 3FPy.

COMPUTATIONS

The structures and vibrational frequencies of pyridine, 2FPy and 3FPy for the electronic ground state were calculated using the Gaussian 03 program package. ${ }^{65} \mathrm{Ab}$ initio second order Moller-Plesset (MP2) level of theory with the cc-pVTZ basis set was used to find the optimized geometry. The DFT-B3LYP level of theory with the 6$311++G(d, p)$ basis set was used to calculate the vibrational frequencies. Based on previous work ${ }^{66-70}$, a scaling factor of 0.964 was used for the C-H stretching vibrational frequencies and a factor of 0.985 for the lower frequencies.

In addition, in collaboration with Sunghwan Kim, the geometries of the three molecules in the $S_{0}, S\left(n, \pi^{*}\right)$ and $S\left(\pi, \pi^{*}\right)$ states were also optimized at the CASSCF/6$311++G(d, p)$ level, using an active space consisting of 8 electrons (2 lone-pair electrons and 6π electrons) distributed in 7 orbitals (one lone-pair orbital and six π orbitals). The optimized geometries were confirmed to be minima by harmonic vibrational frequency analyses. Based on previous work, a scaling factor of 0.905 was used for all of the vibrational frequencies in the electronic excited states. ${ }^{71}$ All CASSCF computations were performed using the GAMESS package. ${ }^{72}$

RESULTS AND DISCUSSION

Excited State Structure

Figure 22 shows the ground $\left(\mathrm{S}_{0}\right)$ and excited state structures calculated for the $\mathrm{S}\left(\mathrm{n}, \pi^{*}\right)$ and $\mathrm{S}\left(\pi, \pi^{*}\right)$ states of the two fluoropyridines. The $\mathrm{S}_{0}, \mathrm{~S}_{1}\left(\mathrm{n}, \pi^{*}\right)$ and $\mathrm{S}_{2}\left(\pi, \pi^{*}\right)$ structures for pyridine were shown for comparison.

Figure 22. Calculated structures of pyridine, 2 FPy , and 3 FPy in their $\mathrm{S}_{0}, \mathrm{~S}\left(\mathrm{n}, \pi^{*}\right)$, and $\mathrm{S}\left(\pi, \pi^{*}\right)$ states at the CASSCF/6$311++G(d, p)$ level of theory for the excited states. Ground state structures are from the MP2/cc-pVTZ computation.

All three molecules were predicted to be planar in both the ground states and excited states with no imaginary frequencies. As expected, in the $\mathrm{S}\left(\mathrm{n}, \pi^{*}\right)$ states most of the bond distances in the rings were increased due to the increased antibonding character, resulting in a π bonding order of 2.5 versus 3 in the S_{0} state. They were further increased in the $S\left(\pi, \pi^{*}\right)$ states where the π bond order drops to 2 . One exception was the $C(F)-C$ bond distance in the $S\left(n, \pi^{*}\right)$ state of 2 FPy where this decreased to 1.343 from $1.391 \AA$. The bond across the ring also slightly decreased to 1.375 from $1.388 \AA$. At the same time, the C-F bond dropped from 1.338 to $1.309 \AA$ reflecting the redistribution of the π bonding character.

For 3FPy the three similar bonds also decreased in bond length, but not nearly so much. Notably the analogous C-C bonds in pyridine decreased somewhat in the $\mathrm{S}_{1}\left(\mathrm{n}, \pi^{*}\right)$ state. The fact that the C-F bond participated in the π bonding system was also evident in the ground state structure of 2 FPy where the $\mathrm{N}-\mathrm{C}(\mathrm{F})$ bond length of $1.313 \AA$ was considerably shorter than the other N-C bond of $1.344 \AA$. Unlike the $S\left(n, \pi^{*}\right)$ state, the $\mathrm{S}\left(\pi, \pi^{*}\right)$ state did not show these unusual decreases in bond distance. All of the bond distances in the rings increased for both of the fluoropyridines. For 2FPy the average CC bond distance increased from $1.390 \AA$ in the ground state to $1.432 \AA$ in the $S\left(\pi, \pi^{*}\right)$ state. 3FPy increased in average value from 1.389 to $1.428 \AA$. The C-N bond distance for the two molecules each increased by about $0.03 \AA$.

Figure 23. Ultraviolet absorption spectra of 2FPy vapors. Wavenumbers are relative to the $\pi \rightarrow \pi^{*}$ band origin at $38,030.4 \mathrm{~cm}^{-1}$.

Table 16: Observed and calculated electronic transition energies (cm^{-1})

Transition	2FPy		3FPy		Py	
	OBS	CALC ${ }^{\text {a }}$	OBS	CALC ${ }^{\text {a }}$	OBS	CALC ${ }^{\text {a }}$
$\mathrm{n} \rightarrow \pi^{*}$	-	39199	35051.7	36617	34767.0	36296
$\pi \rightarrow \pi^{*}$	38030.4	38796	37339	38311	$38350^{\text {b }}$	38312

${ }^{\text {a }}$ CASSCF/6-311++G(d,p) level of theory.
${ }^{\mathrm{b}}$ Reference 79.

Table 17: Observed and calculated vibrational frequencies $\left(\mathrm{cm}^{-1}\right)$ for 2-fluoropyridine in its ground and excited states

$\begin{gathered} \text { Sym } \\ \mathrm{C}_{\mathrm{s}} \end{gathered}$	v	Approximate Description	S_{0}			$\mathrm{S}\left(\pi, \pi^{*}\right)$			$\frac{\mathrm{S}\left(\mathrm{n}, \pi^{*}\right)}{\mathrm{CALC}^{\mathrm{b}}}$
			OBS	CALC ${ }^{\text {a }}$	CALC ${ }^{\text {b }}$	OBS	CALC ${ }^{\text {b }}$	$\mathrm{Lit}^{\text {c }}$	
$\begin{gathered} \mathrm{A}^{\prime} \\ \text { (i.p.) } \end{gathered}$	1	C-H stretch	3100	3096	3246		3066		3089
	2	C-H stretch	3092	3086	3235		3053		3055
	3	C-H stretch	3080	3066	3220		3046		3042
	4	C-H stretch	3077	3050	3211		3032		3021
	5	Ring stretch	1605	1610	1709	1690?	1716		1586
	6	Ring stretch	1593	1597	1690	1489	1507		1438
	7	Ring stretch	1478	1480	1595	1453	1475	1454	1381
	8	Ring stretch	1439	1441	1539	1353	1387		1327
	9	C-H wag	1303	1306	1382	1336	1346		1269
	10	Ring stretch	1286	1289	1362	1220	1214		1168
	11	C-F stretch	1266	1247	1263	1243	1236		1210
	12	C-H wag	1139	1148	1161	1045	1106	1045*	1023
	13	C-H wag	1098	1100	1124	934	920	944*	925
	14	C-H wag	1045	1046	1094	887	880	-	879
	15	Ring breathing	997	995	1050	946	960	-	932
	16	Ring bend	842	834	881	797	765	800	789
	17	Ring bend	620	625	659	532	537	526	554
	18	Ring bend	554	551	586	493	492	487	494
	19	C-F wag	433	427	455	396	399	392	380
$\begin{aligned} & \mathrm{A}^{\prime \prime} \\ & \text { (o.p.) } \end{aligned}$	20	C-H wag	982	979	997	$654{ }^{\text {d }}$	661		822
	21	C-H wag	961	962	973	$591{ }^{\text {d }}$	585		692
	22	C-H wag	868	871	880	$572{ }^{\text {d }}$	555		495
	23	C-H wag	780	781	788	-	457		471
	24	Ring twist	733	732	739	$432{ }^{\text {d }}$	404		455
	25	Ring bend	518	517	537	$322^{\text {d }}$	338		380
	26	Ring bend	414	419	438	$163{ }^{\text {d }}$	235		240
	27	C-F wag	226	216	241	$96^{\text {d }}$	167		40

Abbreviations: i.p., in-plane; o.p., out-of-plane.
${ }^{\text {a }}$ B3LYP/6-311++g(d,p) level of theory; frequencies scaled with a scaling factor of 0.985 for frequencies less than $1800 \mathrm{~cm}^{-1}$ and 0.964 for frequencies greater than $1800 \mathrm{~cm}^{-1}$.
${ }^{\mathrm{b}}$ CASSCF/6-311++G(d,p) level of theory; ground state frequencies are scaled with a scaling factor of 0.985 for frequencies less than $1800 \mathrm{~cm}^{-1}$ and 0.964 for frequencies greater than $1800 \mathrm{~cm}^{-1}$. Excited state frequencies are scaled with a scaling factor of 0.905 .
${ }^{\text {c }}$ Reference 34. * Bands have been reassigned.
${ }^{\mathrm{d}}$ Values given are one half of the observed double quantum jump transition frequencies.

Ultraviolet Absorption Spectra

Figure 23 shows the ultraviolet absorption spectrum for 2 FPy with the wavenumber scale labeled relative to the 0_{0}^{0} band origin for the $\pi \rightarrow \pi^{*}$ transition at $38,030.4 \mathrm{~cm}^{-1}$. Medhi and Medhi ${ }^{34}$ reported this at $38,047 \mathrm{~cm}^{-1}$ but also recognized that their wavelength accuracy was poor. Itoh ${ }^{36}$ did not report an accurate value. Table 16 shows the calculated value for this transition was in quite good agreement at $38,796 \mathrm{~cm}^{-}$ ${ }^{1}$. The calculated value for the $\mathrm{n} \rightarrow \pi^{*}$ transition was $39,199 \mathrm{~cm}^{-1}$, so it was difficult to know whether the $S\left(\pi, \pi^{*}\right)$ or $S\left(n, \pi^{*}\right)$ was lower in energy. Identification of the observed transitions as $\pi \rightarrow \pi^{*}$ was confirmed by the reported spectra in solution. ${ }^{34}$ Selected absorption bands in Figure 23 were labeled with their assignments, and Table 17 summarizes the assignment of the fundamental vibrational frequencies in the $\mathrm{S}\left(\pi, \pi^{*}\right)$ state. The table compares these assignments to the calculated values and to those in the electronic ground state. The calculated values from the B3LYP computation were expected to be more reliable, but the CASSCF values were also shown for comparison. The comparison between observed and calculated values was quite good considering the fact that excited state calculations were less reliable than those for the ground state. Table 17 lists the previously reported values, but several of these were reassigned. In addition, the unconventional vibrational numbering previously used was corrected. In the previous work, ${ }^{34}$ the authors only assigned bands to the in-plane A^{\prime} vibronic levels. However, the double quantum jumps of out-of-plane A" vibrations were expected and most were assigned.

Table 18: Ultraviolet absorption spectra for the $\pi \rightarrow \pi^{*}$ transition of 2 FPy

Frequency $\left(\mathrm{cm}^{-1}\right)$		Lit $^{\mathrm{b}}$	Assignment

Table 18: (Continued)

Frequency (cm^{-1})			Assignment	Inferred
OBS ${ }^{\text {a }}$		Lit ${ }^{\text {b }}$		
-776	vvw		$13_{1}^{0} 26_{0}^{2}$	$-1098+325=-773$
-770	vvw		$\begin{gathered} 22_{1}^{0} 26_{0}^{2} 27_{1}^{0} \\ 24_{1}^{0} 27_{1}^{2} \end{gathered}$	$\begin{gathered} -868+325-226=-769 \\ -733-35=-768 \end{gathered}$
-756	w	-752	-	
-725 sh	w		$17_{1}^{0} 19_{1}^{0} 26_{0}^{2}$	$-620-433+325=-728$
-715	vw	-715	$14_{1}^{0} 26_{0}^{2}$	$-1045+325=-720$
-698	vvw		$1{ }_{0}^{1} 22{ }_{1}^{0} 27_{1}^{0}$	$396-868-226=-698$
-691	vvw	-683	$19_{1}^{0} 27_{2}^{2}$	$-433-259=-692$
-682	vvw		$\begin{gathered} 23_{1}^{0} 26_{0}^{2} 27_{1}^{0} \\ 23_{1}^{0} 27_{0}^{1} \end{gathered}$	$\begin{gathered} -780+325-226=-681 \\ -780+96=-684 \end{gathered}$
-674	vvw		-	
-649	vvw		$\begin{aligned} & 16_{1}^{0} 27_{0}^{2} \\ & 15_{1}^{0} 26_{0}^{2} \end{aligned}$	$\begin{aligned} & -842+191=-651 \\ & -977+325=-652 \end{aligned}$
-629 sh	w		$24_{1}^{0} 26_{0}^{2} 27_{1}^{0}$	$-733+325-226=-634$
-620	m	-622	17_{1}^{0}	-620
-611	vvw		$19{ }_{0}^{1} 23{ }_{1}^{0} 27{ }_{1}^{0}$	$396-780-226=-610$
-597	vvw		$\begin{gathered} 15_{1}^{0} 199_{0}^{1} \\ 18_{0}^{1} 22_{1}^{0} 27_{1}^{0} \end{gathered}$	$\begin{aligned} -997+396 & =-601 \\ 493-868-226 & =-601 \end{aligned}$
-592	vvw	-594	$18_{1}^{0} 19_{1}^{1}$	$-554+396-433=-591$
-553	mw	-549	$18{ }_{1}^{0}$	-554
-547	vvw		$22_{1}^{0} 25_{0}^{1}$	$-868+322=-546$
-534	vw	-531	$1{ }_{0}^{1} 25_{1}^{0} 26_{1}^{0}$	$396-518-414=-536$
-526	vvw		$21_{1}^{0} 24_{0}^{1}$	$-961+432=-529$
-523	vvw		274	$(4 \mathrm{x}-226)+(2 \mathrm{x} 191)=-522$
-509	vvw		$19{ }_{0}^{1} 27_{4}^{0}$	$396-(4 \times 226)=-508$
-500	vvw		26_{2}^{2}	$325-(2 \times 414)=-503$
-484	vvw		$18{ }_{0}^{2} 24_{2}^{0}$	$(2 \times 493)-(2 \times 733)=-480$
-467	vvw		$\begin{gathered} 19_{2}^{1} \\ 18_{0}^{1} 24_{1}^{0} 27_{1}^{0} \end{gathered}$	$\begin{aligned} & 396-(2 \times 433)=-470 \\ & 493-733-226=-466 \end{aligned}$
-453 sh	vvw		$\begin{aligned} & 13_{1}^{0} 25_{0}^{2} \\ & 23_{1}^{0} 25_{0}^{1} \end{aligned}$	$\begin{gathered} -1098+2 \times 322=-454 \\ -780+322=-458 \end{gathered}$
-442	w		$18{ }_{0}^{1} 25_{1}^{0} 26_{1}^{0}$	$493-518-414=-439$

Table 18: (Continued)

Frequency (cm^{-1})			Assignment	Inferred
		$\mathrm{Lit}^{\text {b }}$		
-434	w	-432	19_{1}^{0}	-433
-431	w		$19_{0}^{1} 26_{2}^{0}$	$396-2 \times 414=-432$
-415.2	w	-412	$\begin{gathered} 18_{0}^{1} 27_{4}^{0} \\ 25_{1}^{0} 26_{0}^{2} 27_{1}^{0} \end{gathered}$	$\begin{gathered} 493-(4 \times 226)=-411 \\ -518+325-226=-419 \end{gathered}$
-401.1	w		$14_{1}^{0} 25_{0}^{2}$	$-1045+644=-401$
-388	vvw		$16_{0}^{1} 21{ }_{1}^{0} 27_{1}^{0}$	$797-961-226=-390$
-374 sh	vvw		$17{ }_{0}^{1} 27{ }_{4}^{0}$	$532-(4 \times 226)=-372$
-358.1	mw	-359	$18_{1}^{0} 27_{0}^{2}$	$-554+191=-363$
-349	vw		$\begin{gathered} 199_{0}^{1} 25_{1}^{0} 27_{1}^{0} \\ 15_{1}^{0} 25_{0}^{2} \end{gathered}$	$\begin{gathered} 396-518-226=-348 \\ -997+644=-353 \end{gathered}$
-345	vvw		$23_{1}^{0} 24{ }_{0}^{1}$	$-780+432=-348$
-309 br	w		$16_{0}^{1} 18_{2}^{0}$	$797-(2 \times 554)=-311$
-290.8	m	-288	$\begin{gathered} 17_{1}^{0} 26_{0}^{2} \\ 22_{1}^{1} \end{gathered}$	$\begin{aligned} & -620+325=-295 \\ & -868+572=-296 \end{aligned}$
-287	vw		$25_{1}^{2} 26_{1}^{0}$	$2 \times 322-518-414=-288$
-278	vw		$21_{0}^{1} 22_{1}^{0}$	$591-868=-277$
-259.0	ms	-260	27_{2}^{2}	$-(2 \times 226)+191=-261$
-243.8	m	-248	$\begin{gathered} 19_{0}^{1} 26_{1}^{0} 27_{1}^{0} \\ 19_{1}^{0} 27_{0}^{2} \end{gathered}$	$\begin{gathered} 396-414-226=-244 \\ -433+191=-242 \end{gathered}$
-232	mw	-237	$18_{1}^{0} 26_{0}^{2}$	$-554+325=-229$
-200.3	m	-203	$\begin{aligned} & 11_{1}^{0} 17_{0}^{2} \\ & 16_{1}^{0} 25_{0}^{2} \end{aligned}$	$\begin{gathered} -1266+(2 \times 532)=-202 \\ -842+644=-198 \end{gathered}$
-161.6	s	-168	$\begin{gathered} 16_{0}^{1} 24_{1}^{0} 27_{1}^{0} \\ 15_{0}^{1} 18_{2}^{0} \end{gathered}$	$\begin{gathered} 797-733-226=-162 \\ 946-1107=-161 \end{gathered}$
-157	mw		$19{ }_{0}^{1} 18_{1}^{0}$	$396-554=-158$
-94.6	s	-98	$\begin{aligned} & 19_{1}^{2} 27_{2}^{0} \\ & 24_{1}^{2} 27_{1}^{0} \end{aligned}$	$\begin{gathered} 2 \times 396-433-(2 \times 226)=-93 \\ -733+863-226=-96 \end{gathered}$
-91.1	m		171	$532-620=-88$
-63.1	s	-65	18_{1}^{1}	$493-554=-61$
-61	mw		$12_{0}^{1} 18_{2}^{0}$	$1045-1107=-62$
-8	m		$12{ }_{0}^{1} 17{ }_{1}^{0} 19_{1}^{0}$	$1045-620-433=-8$

Table 18: (Continued)

Frequency (cm^{-1})			Assignment	Inferred
OBS ${ }^{\text {a }}$		$\mathrm{Lit}^{\text {b }}$		
0	vvvs	0	0_{0}^{0}	0
9	mw		$12{ }_{0}^{1} 25_{2}^{0}$	$1045-2 \times 518=9$
44	vw		$\begin{gathered} 17_{0}^{1} 19_{1}^{1} 27_{2}^{0} \\ 16_{1}^{0} 14_{0}^{1} \end{gathered}$	$\begin{gathered} 532+396-433-(2 \times 226)=43 \\ -842+887=45 \end{gathered}$
59	w		$18{ }_{0}^{1} 19_{1}^{0}$	$493-433=60$
87.1	s	83	$18_{1}^{0} 25_{0}^{2}$?	$-554+644=90$
91	vw		$19_{0}^{3} 13_{1}^{0}$	$(3 \times 396)-1098=90$
116	vvw		$15_{0}^{1} 26_{2}^{0}$	$946-(2 \times 414)=118$
157	vvw		$16_{0}^{1} 26_{1}^{0} 27_{1}^{0}$	$797-414-226=157$
181 sh	w		$\begin{aligned} & 17_{0}^{1} 18_{0}^{1} 16_{1}^{0} \\ & 22_{0}^{2} 24_{1}^{0} 27_{1}^{0} \end{aligned}$	$\begin{aligned} & 532+493-842=183 \\ & 1144-733-226=185 \end{aligned}$
191.4	ms	188	27_{0}^{2}	191
202	vvw		$15{ }_{0}^{1} 25_{1}^{0} 27{ }_{1}^{0}$	946-518-226 $=202$
232.5	m	229	$19_{0}^{3} 24_{1}^{0} 27_{1}^{0}$	$(3 \times 396)-733-226=229$
239.7	mw		$\begin{aligned} & 19_{0}^{2} 18_{1}^{0} \\ & 22_{0}^{2} 27_{4}^{0} \end{aligned}$	$\begin{gathered} (2 \times 396)-554=238 \\ 1144-(4 \times 226)=240 \end{gathered}$
270	vvw	264	$18{ }_{0}^{1} 19_{0}^{1} 17_{1}^{0}$	$493+396-620=269$
324.6	m	325	26_{0}^{2}	325
340	vvw		$16{ }_{0}^{1} 27{ }_{2}^{0}$	$797-(2 \times 226)=345$
366	mw		$16_{0}^{1} 19_{1}^{0}$	$797-433=364$
379	mw		$27{ }_{0}^{4}$	$2 \times 191=382$
396	mw	392	$19{ }_{0}^{1}$	396
400	mw		$\begin{gathered} 17_{1}^{1} 18_{0}^{1} \\ 22_{0}^{2} 25_{1}^{0} 27_{1}^{0} \end{gathered}$	$\begin{gathered} -91+493=402 \\ 1144-518-226=400 \end{gathered}$
450	w	447	$14_{0}^{1} 19_{1}^{0}$	$887-433=454$
492.9	m	487	$18{ }_{0}^{1}$	493
532	m	526	$17{ }_{0}^{1}$	532
548	mw	551	$\begin{gathered} 16_{0}^{2} 14_{1}^{0} \\ 19{ }_{0}^{3} 26_{1}^{0} 27_{1}^{0} \end{gathered}$	$\begin{gathered} (2 \times 797)-1045=549 \\ (3 \times 396)-414-226=548 \end{gathered}$
566	vvw		$\begin{gathered} 27_{0}^{6} ? \\ 17_{1}^{0} 19_{0}^{3} \end{gathered}$	$\begin{gathered} 3 \times 191=573 \\ -620+3 \times 396=568 \end{gathered}$
605	m	603	$16_{0}^{2} 18_{1}^{0} 19_{1}^{0}$	$(2 \times 797)-554-433=607$

Table 18: (Continued)

Frequency (cm^{-1})			Assignment	Inferred
OBS ${ }^{\text {a }}$		$\mathrm{Lit}^{\text {b }}$		
644	m	642	25_{0}^{2}	644
692	w	695	$22_{0}^{2} 27{ }_{2}^{0}$	$1144-2 \times 226=692$
736	mw		$19{ }_{0}^{3} 27_{2}^{0}$	$(3 \times 396)-(2 \times 226)=736$
743	mw		$16_{0}^{1} 19{ }_{0}^{1} 27{ }_{2}^{0}$	$797+396-(2 \times 226)=741$
797	vs	800	16_{0}^{1}	797
863	vvw		$24{ }_{0}^{2}$	863
887	w	889	$14{ }_{0}^{1}$	887
934	m		13_{0}^{1}	934
945.5	vs	944	15_{0}^{1}	946
972	vw		$16_{0}^{2} 17_{1}^{0}$	$(2 \times 797)-620=974$
988	w	984	$18{ }_{0}^{2}$	$2 \times 493=986$
1018	w	1017	$17{ }_{0}^{1} 18{ }_{0}^{1}$?	$532+493=1025$
1045	mw	1045	$12{ }_{0}^{1}$	1045
1144	mw	1143	$22{ }_{0}^{2}$	1144
1182	w	1181	21_{0}^{2}	1182
1220	vvw		10_{0}^{1}	1220
1243	mw		11_{0}^{1}	1243
1307	mw	1309	20_{0}^{2}	1307
1336	vw		91	1336
1353	vw		$8{ }_{0}^{1}$	1353
1453	w	1454	$7{ }_{0}^{1}$	1453
1489	vw	1488	$6{ }_{0}^{1}$	1489
1597	m	1598	16_{0}^{2}	$2 \times 797=1594$
1690	vw		$5{ }_{0}^{1}$?	1690
1744.2	m	1745	$15_{0}^{1} 16_{0}^{1}$	$946+797=1743$
1889	mw	1892	15_{0}^{2}	$2 \mathrm{x} 946=1892$
1939	vw		-	
2042	vw	2051	-	
2099	vvw		-	
2131	vvw		-	
2187	w		-	
2267	vw	2269	-	
2406	vw		-	

Table 18: (Continued)

Frequency $\left(\mathrm{cm}^{-1}\right)$			Assignment	
OBS $^{\text {a }}$		Lit $^{\mathrm{b}}$		Inferred
2544	vw			
2592	vvw		-	
2686	w	-		
2833	vw	-		
2989	w	-		

Abbreviations: s, strong; m, medium; w, weak; v, very; sh, shoulder; br, broad.
${ }^{\text {a }}$ Relative to band origin at $38,030.4 \mathrm{~cm}^{-1}$
${ }^{\mathrm{b}}$ Reference 34.

The lower wavenumber transitions of both A^{\prime} and $\mathrm{A}^{\prime \prime}$ vibrations generally corresponded to the strongest absorption bands and agreed reasonably well with the computed values. However, assignments in the table above about $1200 \mathrm{~cm}^{-1}$ were less certain. Assignments of the C-H stretching modes were not attempted. The calculations predicted that the highest wavenumber ring stretching mode would occur near $1700 \mathrm{~cm}^{-1}$ as compared to $1605 \mathrm{~cm}^{-1}$ for the S_{0} electronic ground state. The computed structure for the $S\left(\pi, \pi^{*}\right)$ state did not elucidate this increased value. An observed very weak band at $1690 \mathrm{~cm}^{-1}$ was tentatively assigned to this vibration. Numerous combinations and overtones were observed in addition to the fundamentals. Table 18 summarizes the assignments for the 150 observed absorption bands for 2 FPy .

Although spectra for the $n \rightarrow \pi^{*}$ transition were not observed, the calculated wavenumbers for the vibronic levels in the $\mathrm{S}\left(\mathrm{n}, \pi^{*}\right)$ state are given in Table 17. As noted previously, this state was calculated to be slightly higher in energy than the $S\left(\pi, \pi^{*}\right)$ state. Since it is not known for certain which was S_{1} or S_{2}, the subscript designations for the states were not included.

Figures 24 a and 24 b show the ultraviolet absorption spectrum of 3 FPy , which has its $\mathrm{n} \rightarrow \pi^{*}$ band origin at $35,051.7 \mathrm{~cm}^{-1}\left(35,066 \mathrm{~cm}^{-1}\right.$ reported previously). The $\pi \rightarrow \pi^{*}$ band origin is at $37,339 \mathrm{~cm}^{-1}\left(37,355 \mathrm{~cm}^{-1}\right.$ reported previously). The bands for the $\mathrm{n} \rightarrow \pi^{*}$ were generally sharp and the wavenumber accuracy ranged from $\pm 0.2 \mathrm{~cm}^{-1}$ to ± 2 cm^{-1} in most cases.

Figure 24a. Ultraviolet absorption spectra of 3FPy vapors. The spectrum is of approximately 15 Torr of sample. The wavenumber scale is relative to the $n \rightarrow \pi^{*}$ band origin at $35,051.7 \mathrm{~cm}^{-1}$.

Figure 24b. Ultraviolet absorption spectra of 3FPy vapors. The spectrum is of approximately 6 Torr of sample. The wavenumber scale is relative to the $\pi \rightarrow \pi^{*}$ band origin at $37,339 \mathrm{~cm}^{-1}$.

The $\pi \rightarrow \pi^{*}$ bands were much broader and the band maxima were accurate to about $\pm 5 \mathrm{~cm}^{-1}$. Table 19 summarizes the assignments for the fundamental frequencies of 3 FPy and compares these to the ground state and to previously reported values. ${ }^{35}$ Again, as for 2FPy, double quantum jumps for the out-of-plane $\mathrm{A}^{\prime \prime}$ vibrations were assigned and found in reasonably good agreement with the computed values. Tables 20 and 21 list the assignments for the large number of observed values for the $n \rightarrow \pi^{*}$ and $\pi \rightarrow \pi^{*}$, respectively. Table 22 summarizes the data for the twelve ring vibrations of 2 FPy and 3 FPy in their $S_{0}, S\left(n, \pi^{*}\right)$, and $S\left(\pi, \pi^{*}\right)$ states and compares these to the pyridine values (from Chapters IV and V). The C-F stretching and bending frequencies were also shown. Observed values were shown without parentheses, while computed (scaled) values were given in parentheses. As always, vibrational descriptions were approximate as vibrational coupling was common, especially for the less symmetrical fluoropyridines. Notably the out-of-plane C-F wagging motion mixed heavily with the out-of-plane ring modes.

Table 19: Observed and calculated vibrational frequencies $\left(\mathrm{cm}^{-1}\right)$ for 3-fluoropyridine in its ground and excited states

Sym C_{s}	v	Approximate Description	S_{0}			$\mathrm{S}\left(\mathrm{n}, \pi^{*}\right)$			$\mathrm{S}\left(\pi, \pi^{*}\right)$		
			OBS	CALC ${ }^{\text {a }}$	CALC ${ }^{\text {b }}$	OBS	CALC ${ }^{\text {b }}$	$\mathrm{Lit}^{\text {c }}$	OBS	CALC ${ }^{\text {b }}$	$\mathrm{Lit}^{\text {c }}$
$\begin{gathered} \text { A' }^{\prime} \\ \text { (i.p.) } \end{gathered}$	1	C-H stretch	3079	3088	3238	-	3095			3071	
	2	C-H stretch	3075	3073	3226	-	3069			3048	
	3	C-H stretch	3063	3054	3222	-	3059			3044	
	4	C-H stretch	3054	3047	3208	-	3035			3030	
	5	Ring stretch	1594	1602	1709	1532	1510			1699	
	6	Ring stretch	1588	1596	1696	1519	1488			1512	
	7	Ring stretch	1480	1482	1588	1320	1361		1488	1496	
	8	Ring stretch	1426	1438	1524	1309	1299			1385	
	9	C-H wag	1316	1323	1418	-	1227		1324	1311	
	10	Ring stretch	1249	1265	1340	1199	1185	1204		1265	
	11	C-F stretch	1227	1223	1272	1132	1119		1206	1217	
	12	C-H wag	1187	1197	1181	1005	1037			1122	
	13	C-H wag	1096	1107	1103	997	971			977	
	14	C-H wag	1038	1041	1085	939	935		~ 900	931	923
	15	Ring stretch	1022	1020	1082	790	850			874	
	16	Ring bend	816	819	867	737	768	737	690	751	
	17	Ring bend	613	619	655	540	548	535	500	534	501
	18	Ring bend	533	533	563	517	488		426	467	438
	19	C-F wag	398	390	419	383	384		316	373	
$\begin{aligned} & \mathrm{A}^{\prime \prime} \\ & \text { (o.p.) } \end{aligned}$	20	C-H wag	974	966	981	$799{ }^{\text {d }}$	790			666	
	21	C-H wag	934	932	947	$628{ }^{\text {d }}$	614			605	
	22	C-H wag	905	905	923	$547{ }^{\text {d }}$	545			577	
	23	C-H wag	801	803	811	$493{ }^{\text {d }}$	480			439	
	24	Ring twist	701	702	712	$425^{\text {d }}$	465			387	
	25	Ring bend	507	501	510	$305^{\text {d }}$	277		$298{ }^{\text {d }}$	314	
	26	Ring bend	412	414	436	$227^{\text {d }}$	246	452*	$272^{\text {d }}$	243	
	27	C-F wag	231	231	253	$107{ }^{\text {d }}$	84	211*	$118^{\text {d }}$	166	238*

Abbreviations: i.p., in-plane; o.p., out-of-plane.
${ }^{\text {a }}$ B3LYP/6-311++g(d,p) level of theory; frequencies scaled with a scaling factor of 0.985 for frequencies less than $1800 \mathrm{~cm}^{-1}$ and 0.964 for frequencies greater than $1800 \mathrm{~cm}^{-1}$.
${ }^{\mathrm{b}}$ CASSCF/6-311++G(d,p) level of theory; ground state frequencies are scaled with a scaling factor of 0.985 for frequencies less than $1800 \mathrm{~cm}^{-1}$ and 0.964 for frequencies greater than $1800 \mathrm{~cm}^{-1}$. Excited state frequencies are scaled with a scaling factor of 0.905.
${ }^{\mathrm{c}}$ Ref erence 35.* Bands reassigned; double quantum jumps value given in table.
${ }^{\mathrm{d}}$ Values given are one half of the observed double quantum jump transition frequencies.

Table 20: Ultraviolet absorption spectra for the $\mathbf{n} \boldsymbol{\rightarrow} \pi^{*}$ transition of 3FPy

Frequency (cm^{-1})			Assignment	Inferred
		Lit ${ }^{\text {b }}$		
-1228	vw		11_{1}^{0}	-1227
-1187	vvw		12_{1}^{0}	-1187
-1149	vvw		-	
-1104	vvw		-	
-1071	vvw		18_{2}^{0}	$2 x-533=-1066$
-1038	vw		14_{1}^{0}	-1038
-1023	mw	-1029	15_{1}^{0}	-1022
-967	vw		$12_{1}^{0} 27_{0}^{2}$	$-1187+214=-973$
-928	w		$27{ }_{4}^{0}$?	$2 \mathrm{x}-231=-924$
-887	vvw		$13_{1}^{0} 27{ }_{0}^{2}$?	$-1096+214=-882$
-834	w		-	
-819	vw	-821	26_{2}^{0}	$2 \mathrm{x}-412=-824$
-816	vw		16_{1}^{0}	-816
-807 br	vw		$15_{1}^{0} 27{ }_{0}^{2}$	$-1022+214=-808$
-795	mw	-799	$22_{1}^{0} 27{ }_{0}^{1}$	$-905+107=-798$
-752	vvw		$19_{0}^{1} 22{ }_{1}^{0} 27{ }_{1}^{0}$	$383-905-231=-753$
-698	vvw	-701	$22_{1}^{0} 27{ }_{0}^{1}$?	$-801+107=-694$
-644 br	vw	-654	$12_{1}^{0} 17{ }_{0}^{1}$	$-1187+540=-647$
-614	ms	-618	17_{1}^{0}	-613
-594 sh	w		$24_{1}^{0} 27{ }_{0}^{1}$	$-701+107=-594$
-540 sh	w		$19{ }_{0}^{1} 25_{1}^{0} 26_{1}^{0}$	$383-507-412=-536$
-533	m	-534	$18{ }_{1}^{0}$	-533
-498	m	-501	-	
-490	m		$\begin{aligned} & 25_{1}^{0} 26_{1}^{0} 27_{0}^{4} \\ & 17_{0}^{1} 23_{1}^{0} 27_{1}^{0} \end{aligned}$	$\begin{gathered} -507-412+(2 \times 214)=-491 \\ 540-801-231=-492 \end{gathered}$
-482	w		$20_{1}^{0} 23{ }_{0}^{1}$	$-974+493=-481$
-457	w		$17{ }_{2}^{0} 19{ }_{0}^{2}$	$2 \mathrm{x}-613+2 \times 383=-460$
-416 br	mw		$12_{1}^{0} 19_{0}^{2}$	$-1187+2 \times 383=-421$
-413	w	-411	$15_{1}^{0} 25_{0}^{2}$	$-1022+609=-413$
-409	w		$22_{1}^{0} 23_{0}^{1}$	$-905+493=-412$
-399	m		19_{1}^{0}	-398
-384	w		$\begin{aligned} & 21_{1}^{0} 22_{0}^{1} \\ & 17_{0}^{1} 27_{4}^{0} \end{aligned}$	$\begin{gathered} -934+547=-387 \\ 540-928=-388 \end{gathered}$

Table 20: (Continued)

Frequency (cm^{-1})			Assignment	Inferred
OBS ${ }^{\text {a }}$		Lit ${ }^{\text {b }}$		
-374	vw		$17{ }_{0}^{1} 25_{1}^{0} 26_{1}^{0}$	$540-507-412=-379$
-353	m	-358	-	
-335	w	-339	-	
-330 sh	vvw		$16_{0}^{1} 18_{2}^{0}$	$737+(2 x-533)=-329$
-318	vw		$\begin{gathered} 18_{1}^{0} 27_{0}^{2} \\ 17_{0}^{1} 19_{1}^{0} 27_{2}^{0} \end{gathered}$	$\begin{gathered} -533+214=-319 \\ 540-398+(2 x-231)=-320 \end{gathered}$
-300	vw		$26_{1}^{0} 27{ }_{0}^{1}$	$-412+107=-305$
-287	w		$\begin{aligned} & 15_{1}^{0} 16_{0}^{1} \\ & 17_{0}^{1} 26_{2}^{0} \end{aligned}$	$\begin{aligned} -1022+737 & =-285 \\ 540-2 \times 412 & =-284 \end{aligned}$
-255	m	-260	$\begin{aligned} & 15_{1}^{0} 19_{0}^{2} \\ & 22_{0}^{1} 23_{1}^{0} \end{aligned}$	$\begin{gathered} -1022+(2 \times 383)=-256 \\ 547-801=-254 \end{gathered}$
$-240 \mathrm{br}$	vw		$17_{1}^{0} 19_{1}^{2}$	$-613+2 \times 383-398=-245$
-220	m	-226	$18{ }_{0}^{1} 25_{1}^{0} 27_{1}^{0}$	$517-507-231=-221$
-204	mw		$23{ }_{0}^{1} 24_{1}^{0}$	$493-701=-208$
-174	mw		$21_{0}^{1} 23_{1}^{0}$	$628-801=-173$
-162 br	mw	-157	$\begin{gathered} 19_{0}^{2} 24_{1}^{0} 27_{1}^{0} \\ 19_{1}^{2} 18_{1}^{0} \end{gathered}$	$\begin{aligned} & 2 \times 383-701-231=-166 \\ & 2 \times 383-398-533=-165 \end{aligned}$
-146	vvw		$\begin{gathered} 15_{0}^{1} 24_{1}^{0} 27_{1}^{0} ? \\ 18_{1}^{0} 19_{0}^{1} ? \end{gathered}$	$\begin{gathered} 790-701-231=-142 \\ -533+383=-150 \end{gathered}$
-127	vvw		$15_{0}^{1} 25_{1}^{0} 26_{1}^{0}$	$790-507-412=-129$
-120	vvw		$15_{1}^{0} 18{ }_{0}^{1} 19{ }_{0}^{1}$	$-1022+517+383=-122$
-103 br	mw		$18_{1}^{0} 27_{0}^{4}$	$-533+(2 \times 214)=-105$
-92	mw		-	
-82 sh	vw		16_{1}^{1}	$737-816=-79$
-75	m	-78	$\begin{gathered} 17_{1}^{1} \\ 19_{0}^{1} 27_{2}^{0} \end{gathered}$	$\begin{gathered} -613+540=-73 \\ 383+(2 x-231)=-79 \end{gathered}$
0	vvs	0	00	0
25 sh	w		$19_{0}^{2} 25_{1}^{0} 27_{1}^{0}$	$2 \times 383-507-231=28$
36 sh	mw		$15_{1}^{0} 17{ }_{0}^{1} 18{ }_{0}^{1}$	$-1022+540+517=35$
50 sh	mw		$19_{1}^{0} 26_{0}^{2}$	$-398+454=56$
76	m	74	$18_{1}^{0} 25_{0}^{2}$	$-533+609=76$

Table 20: (Continued)

Frequency (cm^{-1})			Assignment	Inferred
OBS ${ }^{\text {a }}$		Lit ${ }^{\text {b }}$		
84	vw		$16_{1}^{0} 18{ }_{0}^{1} 19_{0}^{1}$	$-816+517+383=84$
117	ms	114	$18{ }_{0}^{1} 19_{1}^{0}$	$517-398=119$
123 sh	vw		$16_{0}^{1} 17_{1}^{0}$	$737-613=124$
134	vvw		$22{ }_{0}^{1} 26_{1}^{0}$	$547-412=135$
143	vvw		$\begin{gathered} 15_{0}^{1} 26_{1}^{0} 27_{1}^{0} \\ 17_{0}^{1} 19_{1}^{0} \end{gathered}$	$\begin{gathered} 790-412-231=147 \\ 540-398=142 \end{gathered}$
180 sh	mw		-	
194	w		$24_{0}^{1} 27_{1}^{0}$	$425-231=194$
202 br	m		$16_{0}^{1} 18_{1}^{0}$	$737-533=204$
214	vs	211	27_{0}^{2}	214
256	mw	248	$17_{0}^{2} 26_{2}^{0}$	$(2 \times 540)+(2 x-412)=256$
279	m	272	$17{ }_{0}^{2} 19_{2}^{0}$	$(2 \times 540)-(2 \times 398)=284$
288 br	w		$20_{0}^{1} 25_{1}^{0}$	$799-507=292$
301	mw	303	$\begin{aligned} & 16_{1}^{1} 19_{0}^{1} \\ & 19_{0}^{2} 27_{2}^{0} \end{aligned}$	$\begin{gathered} -82+383=301 \\ (2 \times 383)+(2 x-231)=304 \end{gathered}$
314	mw		$17{ }_{0}^{1} 18{ }_{0}^{1} 25_{1}^{0} 27_{1}^{0}$	$540+517-507-231=319$
383	m		$19{ }_{0}^{1}$	383
398	m		$15{ }_{0}^{1} 19_{1}^{0}$?	$790-398=392$
440 br	mw		$17{ }_{1}^{1} 18{ }_{0}^{1}$	$-75+517=442$
454	m	452	26_{0}^{2}	454
464 br	vw		17_{1}^{2}	$(2 \times 540)-613=467$
517	ms		$18{ }_{0}^{1}$	517
531 sh	mw		$17_{1}^{0} 19_{0}^{3}$	$-613+3 \times 383=536$
539.5	vs	535	$17{ }_{0}^{1}$	540
593 br	vvw		$19{ }_{0}^{1} 27_{0}^{2}$	$383+214=597$
609	mw	605	25_{0}^{2}	609
616	mw		$18_{1}^{0} 19_{0}^{3}$	$-533+(3 \times 383)=616$
633 br	mw		$18{ }_{0}^{2} 19_{1}^{0}$	$(2 \times 517)-398=636$
645	w		$27{ }_{0}^{6}$	$3 \times 214=642$
670	mw		-	
681	mw	683	$17_{0}^{2} 19_{1}^{0}$	$(2 \times 540)-398=682$
695	w	697	-	
704	vw		-	

Table 20: (Continued)

Frequency (cm^{-1})			Assignment	Inferred
OBS ${ }^{\text {a }}$		Lit ${ }^{\text {b }}$		
724	m		$16_{0}^{1} 19_{1}^{1}$	$737+383-398=722$
737	ms	737	16_{0}^{1}	737
755	mw	753	$17{ }_{0}^{1} 27_{0}^{2}$	$540+214=754$
769	mw		19^{2}	$2 \times 383=766$
785 sh	vvw		-	
790	mw	789	$15{ }_{0}^{1}$	790
799	w		$23{ }_{0}^{1} 25_{0}^{1}$	$493+305=798$
806	vw		-	
832 br	vw	833	-	
849	mw		24^{2}	850
913	w		-	
921	w		$17{ }_{0}^{1} 19{ }_{0}^{1}$	$540+383=923$
939	vw		14_{0}^{1}	939
985 br	m		$23{ }_{0}^{2}$	985
997	m		$13{ }_{0}^{1}$	997
1005	m	1001	$12{ }_{0}^{1}$	1005
1050	w		$21_{0}^{1} 24_{0}^{1}$	$628+425=1053$
1059	w		$17{ }_{0}^{1} 18{ }_{0}^{1}$	$540+517=1057$
1067	m	1065	-	
1076 sh	vw		17_{0}^{2}	$2 \times 540=1080$
1087 sh	w		-	
1093	m	1091	22_{0}^{2}	1093
1110	w		$18{ }_{0}^{1} 19{ }_{0}^{1} 27_{0}^{2}$	$517+383+214=1114$
1132.	mw		11_{0}^{1}	1132
1151	w		193	$3 \times 383=1149$
1188 sh	vvw			
1199	m	1204	10_{0}^{1}	1199
1208 sh	w		$13{ }_{0}^{1} 27_{0}^{2}$	$997+214=1211$
1225	vw		-	
1256 br	mw		21_{0}^{2}	1256
1309	mw		$8{ }_{0}^{1}$	1309
1320	mw		$7{ }_{0}^{1}$	1320
1417	vw		$18{ }_{0}^{2} 19_{0}^{1}$	$2 \times 517+383=1417$
1508 sh	w		$13{ }_{0}^{1} 18{ }_{0}^{1}$	$997+517=1514$

Table 20: (Continued)

Frequency (cm^{-1})			Assignment	Inferred
OBS ${ }^{\text {a }}$		$\mathrm{Lit}^{\text {b }}$		
1519	mw		$6{ }_{0}^{1}$	1519
1532	m	1532	$5{ }_{0}^{1}$	1532
1539	w		$13{ }_{0}^{1} 17{ }_{0}^{1}$	$997+540=1537$
1597	m		20_{0}^{2}	1597
1662	vw		$18{ }_{0}^{1} 19_{0}^{3}$	$517+1151=1668$
1684	w		$17{ }_{0}^{1} 19_{0}^{3}$	$540+1151=1691$
1794	mw		$16_{0}^{1} 17{ }_{0}^{1} 18{ }_{0}^{1}$	$737+540+517=1794$
1918	m		$13{ }_{0}^{1} 17{ }_{0}^{1} 19{ }_{0}^{1}$	$997+540+383=1920$

Abbreviations: s, strong; m, medium; w, weak; v, very; sh, shoulder; br, broad.
${ }^{\text {a }}$ Relative to band origin at $35,051.7 \mathrm{~cm}^{-1}$.
${ }^{\mathrm{b}}$ Reference 35.

Table 21: Ultraviolet absorption spectra for the $\pi \rightarrow \pi^{*}$ transition of 3FPy

Frequency (cm^{-1})			Assignment	Inferred
OBS ${ }^{\text {a }}$		Lit ${ }^{\text {b }}$		
-1019	m	-1023	15_{1}^{0}	-1022
-932	w		$18_{1}^{0} 19_{1}^{0}$	$-533-398=-931$
-569	m	-573	$18{ }_{1}^{1} 27_{2}^{0}$	$-533+426-2 \times 231=-569$
-530	w	-527	$18{ }_{1}^{0}$	-533
-494	m	-491	$14_{1}^{0} 26_{0}^{2}$	$-1038+543=-495$
-460	m	-461	$27{ }_{2}^{0}$	$2 \mathrm{x}-231=-462$
-393	w		$18{ }_{0}^{1} 26_{2}^{0}$	$426-2 \times 412=-398$
-344	vw		$14_{1}^{0} 16_{0}^{1}$	$-1038+690=-348$
-304 br	mw	-304	$14_{1}^{0} 17{ }_{0}^{1} 27{ }_{0}^{2}$	$-1038+500+236=-302$
-283	vvw	-288	$15_{1}^{0} 17{ }_{0}^{1} 27{ }_{0}^{2}$	$-1022+500+236=-286$
-230	w	-230	$16_{0}^{1} 27_{4}^{0}$	$690-4 \times 231=-234$
-155	w		$17_{1}^{0} 188_{0}^{2} 19_{1}^{0}$	$-613+2 \times 426-398=-159$
-121	mw	-122	$14_{0}^{1} 15_{1}^{0}$	$900-1022=-122$
-94	mw	-96	$15_{1}^{0} 17{ }_{0}^{1} 18{ }_{0}^{1}$	$-1022+500+426=-96$
-64	mw	-64	$18{ }_{0}^{2} 25_{1}^{0} 26_{1}^{0}$	$2 \times 426-507-412=-67$
-32 sh	vvw		$17{ }_{0}^{1} 18_{1}^{0}$	$500-533=-33$
-9 sh	m		$19_{0}^{2} 26_{1}^{0} 27_{1}^{0}$	$2 \times 316-412-231=-11$
0	ms		00	0
29 sh	vw	30	$18{ }_{0}^{1} 19_{1}^{0}$	$426-398=28$
88	mw		$14_{0}^{1} 16_{1}^{0}$?	$900-816=84$
107	w	108	$16_{1}^{0} 17{ }_{0}^{1} 18{ }_{0}^{1}$	$-816+500+426=110$
123	mw		$17{ }_{1}^{1} 27_{0}^{2}$	$500-613+236=123$
173	vw		$17{ }_{0}^{2} 26{ }_{2}^{0}$	$2 \times 500-2 \times 412=176$
202	vw	204	$17{ }_{0}^{1} 18_{1}^{0} 27_{0}^{2}$	$500-533+236=203$
236	s	238	$27{ }_{0}^{2}$	236
316	mw	318	19_{0}^{1}	316
410	w	416	$18_{1}^{0} 19_{0}^{3}$	$-533+3 \times 316=415$
426	w	438	$18{ }_{0}^{1}$	426
500	ms	501	$17{ }_{0}^{1}$	500
543	mw	544	26_{0}^{2}	543
596	w		25_{0}^{2}	596
690	m		16_{0}^{1}	690
~ 900	s	923	14_{0}^{1}	900

Table 21: (Continued)

Frequency (cm^{-1})			Assignment	Inferred
OBS ${ }^{\text {a }}$		$\mathrm{Lit}^{\text {b }}$		
1206	w		11_{0}^{1}	1206
1324	w		$9{ }_{0}^{1}$	1324
1488	ms	1489	$7{ }_{0}^{1}$	1488
~ 1830	ms	1841	15_{0}^{2} ?	$2 \mathrm{x} \sim 900=\sim 1800$
2428	mw		-	
2789	mw		-	
2978	vw		$7{ }_{0}^{2}$	$2 \times 1488=2976$

Abbreviations: s, strong; m, medium; w, weak; v, very; sh, shoulder; br, broad.
${ }^{\text {a }}$ Relative to band origin at $37,338.9 \mathrm{~cm}^{-1}$.
${ }^{\mathrm{b}}$ Reference 35.

Table 22: Vibrational frequencies $\left(\mathrm{cm}^{-1}\right)$ comparisons for selected vibrations of the fluoropyridines and pyridine

$v^{\text {b }}$	Approximate Description	S_{0}			$\mathrm{S}\left(\mathrm{n}, \pi^{*}\right)$			$\mathrm{S}\left(\pi, \pi^{*}\right)$		
		2FPy	3 FPy	Py ${ }^{\text {c }}$	2FPy	3 FPy	Py ${ }^{\text {c }}$	2FPy	3FPy	Py ${ }^{\text {c }}$
5	Ring stretch	1605	1594	1584	(1586)	1532	(1507)	1690	(1699)	(1499)
6	Ring stretch	1593	1588	1576	(1438)	1519	(1453)	1489	(1512)	(1680)
7	Ring stretch	1478	1480	1483	(1381)	1320	(1379)	1453	1488	(1394)
8	Ring stretch	1439	1426	1442	(1327)	1309	(1314)	1353	(1385)	(1476)
10	Ring stretch	1286	1249	1227	(1210)	1199	(1185)	1220	(1265)	(1310)
15	Ring breathing	997	1022	1031	(879)	790	(857)	946	(874)	(878)
16	Ring bend (i.p.)	842	816	991	(789)	737	(885)	797	690	(883)
17	Ring bend (i.p.)	620	613	654	(554)	540	636	532	500	(577)
18	Ring bend (i.p.)	554	533	601	(494)	517	543	493	426	(509)
24	Ring twist (o.p.)	733	701	700	(454)	425	(476)	432	(387)	(434)
25	Ring bend (o.p.)	518	507	403	(380)	305	326	322	298	(260)
26	Ring bend (o.p.)	414	412	375	(240)	227	60	163	272	(244)
11	C-F stretch	1266	1227	-	(1168)	1132	-	1243	1206	-
19	C-F wag (i.p.)	433	398	-	(380)	383	-	396	316	-
27	C-F wag (o.p.)	226	231	-	(40)	107	-	96	118	-

Abbreviations: i.p., in-plane; o.p., out-of-plane.
${ }^{\text {a }}$ Values in parentheses are calculated values. CASSCF/6-311++G(d,p) level of theory; scaled with a scaling factor of 0.905 .
${ }^{\mathrm{b}}$ Mode number for 2FPy and 3FPy.
${ }^{\mathrm{c}}$ Values taken from Chapter IV and V.

CONCLUSION

Both the structures and vibronic levels of 2FPy and 3FPy were investigated in their electronic excited states and compared these to those of pyridine. In the $\mathrm{S}\left(\mathrm{n}, \pi^{*}\right)$ states the $\mathrm{N}-\mathrm{C}$ bond distances and the $\mathrm{C}(3)-\mathrm{C}(4)$ and $\mathrm{C}(4)-\mathrm{C}(5)$ all increased, reflecting decreased π bonding. However, the $\mathrm{C}(2)-\mathrm{C}(3)$ and $\mathrm{C}(5)-\mathrm{C}(6)$ bonds decreased in all cases, suggesting an approximate structure. The decrease in the $\mathrm{C}(2)-\mathrm{C}(3)$ bond was especially pronounced for 2 FPy where the fluorine was attached to the $\mathrm{C}(2)$ atom. Notably the C-F bond itself decreased from $1.391 \AA$ in the S_{0} state to $1.343 \AA$ in the $\mathrm{S}\left(\mathrm{n}, \pi^{*}\right)$ state. In the study of the 2 FPy ground state (Chapter VI), the fluorine atom clearly had significant π bonding interactions with the ring. For 3FPy there was considerably less of this effect. The $\mathrm{S}\left(\pi, \pi^{*}\right)$ state structures showed little surprise as all of the N-C and C-C bond distances increased due to the decrease in π bond character.

Although the computation of excited state energy levels was considerably less reliable than for the ground states, the computed electronic transition frequencies agree quite well ($\pm 2 \%$) with those observed. Moreover, the calculated vibrational frequencies agreed in the most part to about 5\%. For the lower frequency large-amplitude, anharmonic modes the agreement was poorer but still provided guidance. In the previous work on pyridine (Chapter V), analysis of its v_{18} ring bending mode at $403 \mathrm{~cm}^{-1}$ in the ground state and $59.5 \mathrm{~cm}^{-1}$ in its $\mathrm{S}_{1}\left(\mathrm{n}, \pi^{*}\right)$ state showed that the rigid pyridine ring in the S_{0} state became very floppy in the excited state. In fact, a tiny barrier to planarity of $3 \mathrm{~cm}^{-1}$ was determined.

For 2FPy and 3FPy the rings remained more rigid in their excited states than pyridine, as the bending frequencies were in the 163 to $272 \mathrm{~cm}^{-1}$ range compared to their ground state. This out-of-plane ring mode was strongly coupled to the out-of-plane C-F wagging motion, which decreased from about $230 \mathrm{~cm}^{-1}$ in the S_{0} states to about $100 \mathrm{~cm}^{-1}$ for the observed excited states. The 2FPy and 3FPy ring rigidity and the strong vibrational coupling reflect the significant role of the fluorine atom in the π bonding in the excited states as well as the ground states.

CHAPTER VIII

GAS-PHASE RAMAN SPECTRA AND THE POTENTIAL ENERGY FUNCTION FOR THE INTERNAL ROTATION OF 1,3BUTADIENE AND ITS ISOTOPOMERS*

INTRODUCTION

The internal rotation about the central carbon-carbon bond of 1,3-butadiene can produce trans, cis, or gauche conformations depending on the angle of rotation, as shown in Figure 25. The trans conformer has long been known to be the predominant one ${ }^{37-39}$, but whether the higher energy conformer has a cis or gauche configuration remained a question for many years. Aston and co-workers ${ }^{40}$ found evidence that a second conformer was present $2.3 \mathrm{kcal} / \mathrm{mol}$ higher in energy from a calorimetric study, but they could not determine its structure. Lipnick and Garbisch ${ }^{41}$ carried out NMR studies at various temperatures and determined the energy difference to be $2.1 \mathrm{kcal} / \mathrm{mol}$. These workers favored the gauche structure for the higher energy form, but their data were not sufficient to rule out the planar cis form. Cole and co-workers ${ }^{42}$ reported the far-infrared spectrum of 1,3-butadiene, and its $1,1,4,4-\mathrm{d}_{4}$ and $-\mathrm{d}_{6}$ isotopomers and observed a series of bands for the v_{13} internal rotation (torsion) for each molecule.

[^4]

Figure 25. The (a) trans, (b) gauche, and (c) cis forms of 1,3-butadiene.

The $0 \rightarrow 1$ transitions were observed at $162.5,149.2$, and $141.7 \mathrm{~cm}^{-1}$ for the $\mathrm{d}_{0}, \mathrm{~d}_{4}$, and d_{6} molecules, respectively. These workers calculated a potential energy barrier of $1900 \pm 800 \mathrm{~cm}^{-1}$ using a quadratic/quartic potential function, but provided no data for a second conformer.

In 1974, Carreira ${ }^{43}$ reported the gas-phase Raman spectrum of 1,3-butadiene and observed seven sub-bands, which were assigned to double quantum jumps of the v_{13} vibration of the trans conformer. He also observed three other features, which he assigned to a cis structure. The data were then used to calculate a periodic potential energy function, which had a barrier of $2504 \mathrm{~cm}^{-1}(7.15 \mathrm{kcal} / \mathrm{mol})$ at 90° rotation where 0° corresponded to the planar trans structure. The energy for the cis form at 180° was calculated to be $873 \mathrm{~cm}^{-1}(2.49 \mathrm{kcal} / \mathrm{mol})$ in reasonable agreement with the earlier studies. ${ }^{40,41}$ Infrared, Raman, and ultraviolet spectroscopy studies of matrix isolated 1,3butadiene ${ }^{44-46}$ also supported the idea that the cis structure was the minor conformer. A 1983 Raman study by Panchenko and co-workers ${ }^{47}$ reported gas-phase Raman spectra for the $2 v_{13}$ regions of 1,3-butadiene and its cis, cis-1,4- d_{2} and $-\mathrm{d}_{6}$ isotopomers. They again assumed the minor conformer to have the cis structure.

In 1991 Engeln and co-workers ${ }^{48}$, referred to as ECR, reported new gas-phase Raman data for 1,3-butadiene and observed new features, which were assigned to the gauche conformer. Notably, they observed a band at $214.9 \mathrm{~cm}^{-1}$, which was attributed to one of the transitions arising from a lower quantum state of the gauche conformer. ECR also calculated a periodic potential function based on $\operatorname{cosn} \varphi$ terms ${ }^{64}$ using $n=1$ to 6 . Although exact values were not reported, the reported V_{n} values correspond to a barrier
between trans and gauche forms of $2075 \mathrm{~cm}^{-1}$, and the gauche form at 138° lies $989 \mathrm{~cm}^{-1}$ higher than the trans structure. The barrier between the two equivalent gauche forms (corresponding to the cis structure) was $408 \mathrm{~cm}^{-1}$.

A number of theoretical calculations have been carried out to determine the energy differences between the 1,3-butadiene conformations beginning as early as 1970 . These were summarized in a recent high level ab initio study by Feller and Craig. ${ }^{49}$ While the early calculations with minimal basis sets predicted the minor conformation to be cis, the recent work has consistently shown the gauche form to have a local energy minimum in the potential energy function. Feller and Craig also reported intensities for infrared and Raman transitions for the gauche rotamer computed with the B3LYP/aug-cc-pVTZ model. ${ }^{49}$

In the present work, an extensive gas-phase Raman investigation was undertaken, including spectra at high temperatures, of 1,3-butadiene and three of its deuterated isotopomers and determined the potential energy function that fit the data for all of the isotopic species. To the best of our knowledge, these spectra have the best signal to noise ratios and have the highest sensitivity of any that have been recorded of these molecules. Improved F-term expansions for each isotopomer were calculated by making use of the calculated structures from the high level $a b$ initio calculations. ${ }^{49}$ The goal was to accurately determine the energy barriers and the energy differences between the different conformations. Numerous Raman bands attributable to the gauche conformation were also observed throughout the entire Raman spectra of all of the isotopomers. These results will be reported in Chapter X.

EXPERIMENTAL

Butadiene was supplied by Aldrich, the $2,3-d_{2}$ species was supplied by CDN Isotopes ($99 \% \mathrm{D}$, Quebec, Canada), and the $1,1,4,4-d_{4}$ and d_{6} species were supplied by Cambridge Isotope Laboratories ($98 \% \mathrm{D}$). Purity of the samples was confirmed by infrared spectroscopy prior to sealing the samples in the cells.

Raman spectra of gas-phase 1,3-butadiene and its isotopomers were recorded for samples with simplified optics at various temperatures sealed in specially designed glass cells which were previously described in Chapter II. A Jobin-Yvon U-1000 spectrometer equipped with a liquid nitrogen-cooled CCD detector was used to collect the spectra. The 532 nm line of a frequency-doubled Nd:YAG Coherent Verdi-10 laser was used and generally operated at 6 watts of power. Spectral regions spanning $60 \mathrm{~cm}^{-1}$ were typically collected over periods of 4 to 6 hours so that many hundreds of individual spectra could be averaged. Spectral acquisition was mostly carried out at room temperature for these samples but for some cases the samples were heated up to approximately $250^{\circ} \mathrm{C}$. The resolution of the spectra was $0.7 \mathrm{~cm}^{-1}$.

CALCULATIONS

Potential Energy Function

Computer program previously described ${ }^{64}$ was utilized to calculate the energy levels and to fit the observed data. The Hamiltonian for the internal rotation is

$$
\begin{equation*}
\mathrm{H}=-\frac{\mathrm{d}}{\mathrm{~d} \phi} \mathrm{~F}(\phi) \frac{\mathrm{d}}{\mathrm{~d} \phi}+\mathrm{V}(\phi) \tag{8.1}
\end{equation*}
$$

and the potential energy function and F value expansion (inverse moment of inertia) are given by

$$
\begin{equation*}
\mathrm{V}(\phi)=\sum_{\mathrm{n}} \frac{1}{2} \mathrm{~V}_{\mathrm{n}}(1-\cos \mathrm{n} \phi) \tag{8.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{F}(\phi)=\mathrm{F}_{0}+\sum_{\mathrm{n}} \mathrm{~F}_{\mathrm{n}} \cos \mathrm{n} \phi \tag{8.3}
\end{equation*}
$$

In his calculation, Carreira ${ }^{43}$ utilized $n=1$ to 4 for $V(\phi)$ while $E C R$ used $n=1$ to 6 . In the present work, the terms up to $\mathrm{n}=6$ was used. For the kinematic F expansion, Carreira had terms up to $n=4$ whereas ECR^{48} also included the small F_{5} term. In the present work, the F_{n} terms up to $\mathrm{n}=6$ was used. Recent high level ab initio calculations ${ }^{49}$ provided the structural data for this molecule at different angles of internal rotation. These data are shown in Table 23 and were used with the Groner FSER program ${ }^{74}$ to calculate the F-term value for different ϕ values (Table 24). In this program, it is assumed that all structural parameters $R(\phi)$ are functions of ϕ defined by

$$
\begin{equation*}
R(\phi)=R(0)+B \cos \phi \tag{8.4}
\end{equation*}
$$

$R(0)$ is the value of the coordinate for the trans conformation at $\phi=0^{\circ}$ and coefficient B is determined from the structures obtained from the ab initio calculations for the gauche conformation at $\phi=144.5^{\circ}$. From the F-term values, the parameters F_{i} in Equation (8.3) were calculated. These results are given in Table 25 for each of the isotopomers. It is interesting to note in Table 23 that the $\mathrm{C}-\mathrm{C}$ bond length increased and the $\mathrm{C}=\mathrm{C}$ bond length decreased slightly as the molecule rotated away from the trans structure reflecting the decrease in conjugation associated with the π orbitals.

Table 23: Calculated ${ }^{\text {a }}$ 1,3-butadiene energy and structural parameters as a function of internal rotation angle

		Bond distances (\AA)		CCC Bond angle $\alpha(123)$
Angle (φ)	Energy $\left(\mathrm{cm}^{-1}\right)$	$\mathrm{r}(\mathrm{C}=\mathrm{C})$	$\mathrm{r}(\mathrm{C}-\mathrm{C})$	
0° (trans)	0	1.3377	123.5°	
40°	1021.2	1.3365	1.4672	123.5°
78^{ob}	2236.4	1.3327	1.4824	123.8°
90°	2157.6	1.3329	1.4818	123.8°
110°	1645.6	1.3322	1.4730	123.8°
144.5° (gauche)	1053.8	1.3362	1.4682	124.4°
$180^{\text {ob }}$ (cis)	1221.3	1.3371	1.4696	126.3°

[^5]Table 24: Calculated F values (cm^{-1}) for 1,3-butadiene and its isotopomers as a function of internal rotation angle

Angle (degrees)	d_{0}	$2,3-\mathrm{d}_{2}$	$1,1,4,4-\mathrm{d}_{4}$	$\mathrm{~d}_{6}$
0	2.7090	2.2834	2.2688	1.9376
22.5	2.7151	2.2887	2.2665	1.9375
45.0	2.7429	2.3103	2.2694	1.9435
67.5	2.8184	2.3636	2.3017	1.9709
90.0	2.9757	2.4677	2.3935	2.0382
112.5	3.2448	2.6357	2.5691	2.1586
135.0	3.6216	2.8563	2.8255	2.3247
157.5	4.0054	3.0663	3.0901	2.4872
180.0	4.1787	3.1569	3.2099	2.5581
202.5	4.0054	3.0663	3.0901	2.4872
225.0	3.6216	2.8563	2.8255	2.3247
247.5	3.2448	2.6357	2.5691	2.1586
270.0	2.9757	2.4677	2.3935	2.0382
292.5	2.8184	2.3636	2.3017	1.9709
315.0	2.7429	2.3103	2.2694	1.9435
337.5	2.7151	2.2887	2.2665	1.9375

Table 25: Coefficients $\left(\mathrm{cm}^{-1}\right)$ of the $F(\varphi)$ expansion

Isotopomer	F_{0}	$\mathrm{~F}_{1}$	$\mathrm{~F}_{2}$	$\mathrm{~F}_{3}$	$\mathrm{~F}_{4}$	$\mathrm{~F}_{5}$	$\mathrm{~F}_{6}$
$\mathrm{~d}_{0}$ calculated	3.1960	-0.6779	0.2333	-0.0534	0.0137	-0.0035	0.0009
$\mathrm{~d}_{2}$ calculated	2.5886	-0.4113	0.1261	-0.0243	0.0054	-0.0010	0.0000
$\mathrm{~d}_{2}$ adjusted	2.7040	-0.4297	0.1317	-0.0254	0.0056	-0.0011	0.0000
$\mathrm{~d}_{4}$ calculated	2.5560	-0.4317	0.1723	-0.0363	0.0095	-0.0023	0.0005
$\mathrm{~d}_{4}$ adjusted	2.5630	-0.4329	0.1727	-0.0364	0.0095	-0.0023	0.0005
$\mathrm{~d}_{6}$ calculated	2.1386	-0.2898	0.1045	-0.0195	0.0045	-0.0009	0.0000
$\mathrm{~d}_{6}$ adjusted	2.2690	-0.3074	0.1109	-0.0206	0.0048	-0.0009	0.0000

$A b$ initio and DFT Calculations

Previous calculations by Feller and Craig were taken to very high levels. ${ }^{49}$ In the present study, computations to include the deuterated isotopomers were performed so that frequency values for both trans and gauche conformations were predicted. In particular, DFT calculations with the B3LYP model and the cc-pVTZ basis set were utilized to provide the theoretical harmonic vibrational frequencies. Based on previous work, ${ }^{66-70}$ a scaling factor of 0.985 was used.

Analysis of Data

In order to assign the spectra of 1,3-butadiene and its three deuterated isotopomers, the following approach was used. First the computed energy values in Table 23 were utilized to calculate the V_{n} terms of Equation (8.2) that best fit these. These V_{n} terms, as well as other values to be discussed below, are given in Table 26. Table 27 shows the calculated Raman wavenumbers $\left(\mathrm{cm}^{-1}\right)$ for the d_{0} molecule based on the theoretical potential function from the $a b$ initio calculation and on the calculated F_{n} terms in Table 25. The table also shows the observed transitions, which will be discussed later. As can be seen, the agreement was remarkably good considering that no adjustments were made on the potential energy terms or the F_{n} values. In Table 27 the single quantum jump transitions from the far-infrared ${ }^{42,50}$ and the double quantum jump transitions from the Raman spectrum in this work for the trans potential well are shown without $\mathrm{a}+$ or - sign since these levels are not degenerate.

Table 26: Potential energy function parameters

Calculation	Parameters (cm^{-1})						Energies ${ }^{\text {a }}\left(\mathrm{cm}^{-1}\right)$		
	V_{1}	V_{2}	V_{3}	V_{4}	V_{5}	V_{6}	$\mathrm{E}_{\text {gauche }}$	$\mathrm{E}_{\text {cis }}$	$\mathrm{E}_{\text {barrier }}$
Theoretical ${ }^{\text {b }}$	507.0	1550.0	739.0	-213.0	-24.8	-3.2	1054	1221	2236
d_{0}	463.6	1551.2	771.0	-225.1	-21.5	17.0	1032	1213	2258
d_{2}	463.6	1541.7	772.6	-228.3	-15.9	16.4	1026	1220	2250
d_{4}	463.6	1535.5	782.6	-217.9	-18.3	12.8	1035	1223	2233
d_{6}	463.6	1557.8	745.3	-215.3	-2.3	0.7	1020	1207	2236
Alternate model									
d_{0}	620.0	1072.2	925.2	-99.2	-57.6	-10.6	1081	1488	1988
d_{2}	620.0	1064.6	916.8	-96.9	-53.0	-9.3	1080	1484	1975
d_{4}	620.0	1134.7	911.0	-123.6	-53.9	-4.6	1093	1477	2032
d_{6}	620.0	1073.1	925.8	-96.7	-60.8	-12.6	1083	1485	1989

${ }^{\text {a }}$ Energies relative to trans conformation.
${ }^{\mathrm{b}}$ Parameters based on energy values in Table 23.

Table 27: Calculated and observed Raman transitions (cm^{-1}) for the internal rotation of 1,3 -butadiene- \mathbf{d}_{0}

	Calculated		
Transition	Theory $^{\mathrm{a}}$	Adjusted $^{\mathrm{b}}$	Observed
trans			
$0-1$	157.0	162.7	162.42^{c}
$1-2$	155.8	160.0	159.91^{c}
$2-3$	154.2	157.3	157.25^{c}
$0-2$	312.7	322.7	322.4
$1-3$	310.0	317.3	317.3
$2-4$	306.6	311.7	311.9
$3-5$	302.5	305.9	306.4
$4-6$	297.9	299.9	300.4
$5-7$	292.7	293.4	293.6
$6-8$	286.8	286.6	286.3
$7-9$	280.1	279.3	279.0
gauche			
$\left(0^{+}-2^{+}\right)$	215.5	213.6	214.9
$\left(0^{-}-2^{-}\right)$	286.5	283.7	282.0
$\left(1^{+}-3^{+}\right)$	268.8	261.2	261.9
$\left(1^{+}-3^{-}\right)$	317.0	314.2	obsc ${ }^{\text {d }}$

${ }^{a}$ Calculated using the theoretical V_{n} values in Table 26.
${ }^{\mathrm{b}}$ Calculated using the V_{n} values for d_{0} in Table 26.
${ }^{\text {c }}$ Reference 50.
${ }^{\mathrm{d}}$ Obscured by stronger trans band.

In the IR spectrum, the transitions are $\mathrm{A}_{\mathrm{g}} \leftrightarrow \mathrm{A}_{\mathrm{u}}$. In the Raman spectrum, they correspond to either $\mathrm{A}_{\mathrm{g}} \rightarrow \mathrm{A}_{\mathrm{g}}$ or $\mathrm{A}_{u} \rightarrow \mathrm{~A}_{\mathrm{u}}$ transitions of the $\mathrm{C}_{2 \mathrm{~h}}$ conformation. The single jump $\mathrm{A}_{\mathrm{g}} \leftrightarrow \mathrm{A}_{\mathrm{u}}$ transitions are symmetry forbidden in the Raman-spectra. There are two equivalent gauche conformations so that the levels for this structure below the barrier at the cis configuration are doubly near-degenerate. These are labeled, following the convention of ECR, ${ }^{48}$ with + or - signs to indicate the lower and higher energy states of the near-degenerate levels. The gauche conformation has C_{2} symmetry so the + states have symmetry species A while the - states are of B symmetry. In principle, the single quantum jumps of the gauche conformer are symmetry allowed for Raman, which have a predicted activity of $2.9 \AA^{4} \mathrm{amu}^{-1}$. Despite heroic efforts, these quantum jumps were not observed in the expected 100 to $200 \mathrm{~cm}^{-1}$ region, where the shoulder of the exciting line interferes. Instead, the observed transitions again correspond to double quantum jumps n^{+}to $\mathrm{n}^{+}+2$ or n^{-}to $\mathrm{n}^{-}+2$.

Utilizing the theoretical V_{n} values as a starting point, they were then adjusted in the VNCOSPX program ${ }^{64}$ to obtain the best frequency fit with the observed data. These calculated values are shown in Table 27 in the "Adjusted" column. For the deuterated isotopomers, the same potential function was then used along with the calculated F_{n} terms in Table 25 to predict the torsional frequencies. In each case, the calculated isotopic shift was greater than that observed. This outcome was not unexpected, since a one-dimensional approximation for the internal rotation was utilized, and this vibration mixed with other motions and to a different degree for each of the isotopomers.

To correct for this effect, the F_{n} values for each isotopomer were adjusted by a ratio that matched the observed isotopic shift for the trans conformer. These values are shown as the "adjusted" terms in Table 25. For the d_{2} and d_{6} isotopomers the F_{n} values were increased about 5% while for the d_{4} there was little change. In general, this adjustment provided fairly good agreement with the observed values. However, in addition to the vibrational mixing producing a decreased isotopic shift, this mixing was expected to alter somewhat the potential energy parameters V_{n}. Hence, after adjusting the F_{n} terms with a fixed ratio, the V_{n} terms were then adjusted to produce the best fit with the experimental data. These adjustments corresponded to only about 1% changes in the energies calculated for different angles of internal rotation. In the discussion below, the results of both the "unadjusted" (Calc I) and "adjusted" (Calc II) calculations for the deuterated isotopomers will be presented.

It should also be noted that the spectral region investigation includes not only the transitions from the trans and gauche wells, but also hot bands from other low-lying vibrations. Notably, the $v_{24}\left(B_{u}\right)$ angle bending vibrational excited state at $299 \mathrm{~cm}^{-1}$ for the trans d_{0} molecule has a population of about 24% of the ground state population and thus a shifted torsional series can arise from this state. Laane's group have observed such "side bands" often in their previous investigation of molecules such as cyclopentane ${ }^{80,81}$ and the trans rotamer of butadiene. Such hot bands can account for several of the unassigned bands in the spectra. In addition, and very importantly, theoretical calculations in this and previous work predict that the gauche rotamer will have its $v_{12}(A)$ angle bending vibration in this region with a predicted activity of $9.3 \AA^{4}$
$a m u^{-1} .{ }^{49}$ For each of the isotopomers, this band has been observed close to the value predicted and with higher intensity than that expected for the torsional series. Notably, in the ECR study, ${ }^{48}$ these workers assigned the v_{12} gauche band to be the $0^{-} \rightarrow 2^{-}$band of the torsional motion.

One other factor to consider during assignments is that the d_{4} and d_{6} isotopomers were stated to be 98% isotopically pure. This composition means that the d_{4} sample would contain about $8 \% 1,1,4-d_{3}$ molecules and the d_{6} would contain about 12% of the three types of d_{5} molecules. These species were expected to give rise to Raman bands from their trans states that are comparable in intensity to those from the gauche states of the primary isotopomers.

While the assignments for the gauche well that best correspond to the theoretically predicted ones was favored, different set of assignments that are similar to those proposed by ECR for the d_{0} molecule were tested. These assignments placed the $1^{+} \rightarrow 3^{+}$band at $214.9 \mathrm{~cm}^{-1}$ rather than the $0^{+} \rightarrow 2^{+}$band. In addition, for this alternative assignment the $0^{-} \rightarrow 2^{-}$transition was ascribed to a band at $275.1 \mathrm{~cm}^{-1}$, whereas ECR had assigned it to $270.8 \mathrm{~cm}^{-1}$, which was the v_{12} band of the gauche form from this study. Also, the band at $261.9 \mathrm{~cm}^{-1}$, which was assigned to $1^{+} \rightarrow 3^{+}$for the first model, was chosen to be $0^{+} \rightarrow 2^{+}$for the alternative model. In addition, the previously unassigned band at $255.3 \mathrm{~cm}^{-1}$ was ascribed to $1^{-} \rightarrow 3^{-}$. With this second set of assignments, the same procedure was followed in order to fit the data for the deuterated isotopomers. Calculations based on both of these assignments will be discussed below.

Figure 26. Gas-phase Raman spectrum of the torsional vibration of 1,3-butadiene. * for unassigned bands.

Figure 27. Gas-phase Raman spectrum of the torsional vibration of 1,3-butadiene-2,3d_{2}. for unassigned bands.

Figure 28. Gas-phase Raman spectrum of the torsional vibration of 1,3-butadiene-$1,1,4,4-\mathrm{d}_{4}$ * for unassigned bands.

Figure 29. Gas-phase Raman spectrum of the torsional vibration of 1,3-butadiene-d d_{6}. * for unassigned bands.

RESULTS AND DISCUSSION

Figures 26 to 29 show the low-frequency spectra for 1,3-butadiene, and its 2,3$d_{2}, 1,1,4,4-d_{4}$, and d_{6} isotopomers. The assignments for the torsional vibrations are shown in each case.

The primary set of assignments based on the theoretical model is shown without parentheses, while the alternative assignments are shown in parentheses. The trans conformation has $\mathrm{C}_{2 \mathrm{~h}}$ symmetry, and the torsion about the double bond $\left(v_{13}\right)$ is of symmetry species A_{u}, for which single quantum transitions are forbidden in the Raman spectrum. However, the allowed double quantum jumps were clearly observed. For the d_{0} molecule Figure 26 shows eight transitions for the trans conformer, which has nondegenerate quantum states. Also prominent is the v_{12} angle bending band for the gauche conformer at $270.8 \mathrm{~cm}^{-1}$. As Table 28 shows, this frequency is in excellent agreement with the DFT calculated value of $269 \mathrm{~cm}^{-1}$. Moreover, shown in the table, this band is also clearly evident in the Raman spectra of the other isotopomers, and in reasonable agreement with the calculated values, although for the d_{4} isotopomer the agreement (249 cm^{-1} observed vs. $231 \mathrm{~cm}^{-1}$ calculated) was the poorest. ECR^{48} had assigned this band for the d_{0} to the $0^{-} \rightarrow 2^{-}$(they reported it to be $269.9 \mathrm{~cm}^{-1}$) and the $214.9 \mathrm{~cm}^{-1}$ band to $1^{+} \rightarrow 3^{+}$. In this work, the latter was assigned to the $0^{+} \rightarrow 2^{+}$and a band at $282.0 \mathrm{~cm}^{-1}$ to the $0^{-} \rightarrow 2^{-}$(Figure 26).

Table 28: Calculated and observed v_{12} bands $\left(\mathrm{cm}^{-1}\right)$ for gauche 1,3 -butadiene and its isotopomers

Isotopomer	Observed	Calculated $^{\mathrm{a}}$	Lit $^{\mathrm{b}}$	Lit $^{\mathrm{c}}$
d_{0}	270.8	269	274	275
$\mathrm{~d}_{2}$	257.4	266	-	-
d_{4}	249.1	231	236	-
d_{6}	238.5	230	234	-

${ }^{\text {a }}$ B3LYP/6-311++g(d,p); frequencies scaled with a scaling factor of 0.985 ; this work.
${ }^{\mathrm{b}}$ Reference 51.
${ }^{\text {c }}$ Reference 49.

Figure 30. Gas-phase Raman spectrum of the torsional vibration of 1,3-butadiene at different temperatures. * for unassigned bands.

The calculated potential energy function has a considerably lower energy barrier than ECR between the two equivalent gauche conformations in agreement with the theoretical potential function. This lower transition state energy primarily accounts for the difference in the consequences of the two assignments. The $1^{-} \rightarrow 3^{-}$transition was calculated by the potential to be at $314.2 \mathrm{~cm}^{-1}$, but this region is obscured by the much stronger bands from the trans well. Several bands in the spectra marked by asterisks were not specifically assigned. As discussed above, bands arising from torsional transitions coupled to the excited states of other low-frequency vibrations such as v_{24} were expected and observed.

Raman spectra at elevated temperatures were collected, and two of these are shown in Figure 30 for the d_{0} molecule. It was hoped deconvoluting the spectra would provide accurate intensity measurements, but the broadening of the bands precluded accuracy. Nonetheless, the spectra show that the bands from the higher quantum levels of the trans conformer as well as levels of the gauche rotamer do increase in relative intensity as expected.

After the adjusted potential energy function for the d_{0} molecule was obtained, the function was used as a starting point with the F_{n} parameters to calculate the frequencies for the isotopomers. As discussed above, the computed F_{n} values predicted isotopic shifts that were too large. These values were scaled up to best fit the transition frequencies for the trans conformer (Table 25).

The results from these calculations are shown as Calc I in Table 29 for the $\mathrm{d}_{2}, \mathrm{~d}_{4}$, and d_{6} molecules. As can be seen, the agreement between observed and calculated values is reasonably good, but differences up to several cm^{-1} are present for the gauche transitions. Recognizing that vibrational mixing with other modes makes the onedimensional approximation imperfect, further small refinements were made to the potential energy parameters. These are shown in Table 26. Table 29 (Calc II) then shows the very good agreement between observed and calculated frequencies for the isotopomers after refinement. All values agree within $2 \mathrm{~cm}^{-1}$. What made this investigation particularly difficult was that only about 2% of the molecules ${ }^{81}$ were in the gauche form at room temperature, so that its Raman bands were very weak. The observation of numerous gauche bands throughout the higher frequency Raman spectrum will be reported in Chapter X , which increased in relative intensity as the temperature rose. Thus, the presence of this gauche form is evident.

Table 29: Observed and calculated ${ }^{\text {a }}$ torsional transitions $\left(\mathrm{cm}^{-1}\right)$ for the isotopomers of 1,3-butadiene

Transition	d_{2}			d_{4}			d_{6}		
	OBS	Calc I	Calc II	OBS	Calc I	Calc II	OBS	Calc I	Calc II
trans-well									
0-1	-	-	-	$149.2{ }^{\text {b }}$	148.7	148.7	$141.7^{\text {b }}$	137.9	141.2
1-2	-	-	-	$146.9{ }^{\text {b }}$	146.6	146.7	-	-	-
0-2	303.8	296.8	303.6	295.3	295.3	295.3	280.9	273.8	280.7
1-3	299.1	292.3	298.7	290.9	291.1	291.3	276.9	270.0	277.1
2-4	294.1	287.7	293.7	286.6	286.7	286.9	273.1	266.0	273.3
3-5	288.9	282.8	288.5	282.1	282.1	282.3	268.9	261.9	269.3
4-6	283.4	277.8	283.1	277.2	277.2	277.4	264.7	257.7	264.9
5-7	276.7	272.6	277.4	272.2	271.9	272.2	260.1	253.3	260.3
6-8	270.4	267.1	271.4	267.5	266.4	266.5	257.2	248.7	255.3
7-9	263.7	261.1	265.1	260.1	260.5	260.5	248.9	243.8	250.0
8-10	-	-	-	-	-	-	244.4	238.7	244.4
gauche-well									
$\left(0^{+}-2^{+}\right)$	194	184.8	193.4	$186 ?$	184.9	187.4	180	166.9	178.6
(0-2)	250.1	241.6	251.2	243.3	241.8	241.9	228.8	213.0	229.4
$\left(1^{+}-3^{+}\right)$	217.7	211.6	217.3	204	212.2	207.1	196.7	178.3	195.1
(1-3)	-	264.1	272.4	263.8	264.3	261.1	obsc ${ }^{\text {c }}$	228.5	246.5
$\left(2^{+}-4^{+}\right)$	281.7	274.7	281.6	270.0	274.7	268.7	251.3	234.3	252.4
(2-4)	302.0	295.3	303.3	289.2	295.0	290.5	obsc ${ }^{\text {c }}$	256.6	273.5

${ }^{\text {a }}$ Calculated frequencies based on F_{n} values from Table 25 and V_{n} values from Table 26. Cal I is from the V_{n} values for d_{0} without refinement and Cal II is from the adjusted V_{n} terms for the individual isotopomers.
${ }^{\mathrm{b}}$ Reference 42.
${ }^{\text {c }}$ Obscured by stronger trans band.

Nonetheless, as can be seen in Figures 26 to 29, a few bands (marked by *) that have not been specifically assigned and could have conceivably come from the gauche transitions. There are three of these in Figure 26 for the d_{0} molecule, including a band of moderate intensity at $296.9 \mathrm{~cm}^{-1}$. This could be a hot band, as discussed, or a difference band such as $v_{22}-v_{23}$. Similarly, the other isotopomers also show such bands, some of which could be from isotopic impurities. This complication is mentioned because an alternative assignment similar to that proposed by ECR cannot be dismissed. In order to evaluate the ECR model, numerous potential energy calculations were carried out starting from their assignments. Observed frequencies and F values were utilized for this purpose, and the $270.8 \mathrm{~cm}^{-1}$ band for the d_{0} molecule as the $0^{-} \rightarrow 2^{-}$transition were no longer used, since this band is clearly v_{12} for the gauche form. After determining the best set of V_{n} values for these assignments, the same potential energy function were utilized for the deuterated isotopomers and the F values were adjusted as before to correct for the isotopic shift. As before, the V_{n} slightly was slightly refined for each of the isotopomers to obtain the best frequency fit. These values are shown in Table 26 for the "Alternative model." The F_{n} values are the same as for the previous assignment (Table 25).

Table 30: Observed and calculated ${ }^{\text {a }}$ torsional transitions $\left(\mathrm{cm}^{-1}\right)$ for the gauche conformers of 1,3 -butadiene isotopomers (alternate assignments)

Transition	d_{0}		d_{2}		d_{4}		d_{6}	
	OBS	CALC	OBS	CALC	OBS	CALC	OBS	CALC
$0^{+}-2^{+}$	261.9	263.6	244.4	245.2	240.2	240.2	225.1	227.0
0-2	275.1	273.0	250.1	249.4	243.3	245.6	228.8	228.5
$1^{+}-3^{+}$	214.9	214.2	204	203.6	198	196.8	196.7	196.0
$1-3$	255.3	255.9	-	231.0	232.2	228.7	-	211.3
$2^{+}-4^{+}$	-	201.9	177	176.9	-	176.8	-	161.6
$2-4$	(255.3) ${ }^{\text {b }}$	256.3	-	226.3	-	227.0	-	202.6

${ }^{\text {a }}$ Calculated frequencies based on F_{n} values from Table 25 and V_{n} values from Table 26.
${ }^{\mathrm{b}}$ Used twice.

Figure 31. Theoretical and experimental potential energy functions for the internal rotation of 1,3-butadiene. The literature ECR^{48} function is also shown.

Figure 32. Potential energy function and observed Raman transitions for the internal rotation of 1,3-butadiene. Observed infrared transitions are shown as purple lines.

Figure 33. Comparison of potential energy functions determined for 1,3-butadiene isotopomers.

Figures 26 to 29 show the assignments for all of the isotopomers for this alternative model within parentheses. These are summarized in Table 30 for all of the isotopic species. Since the trans frequencies, both calculated and observed, were essentially unchanged from those shown in Tables 27 and 29, these are not shown in Table 30. This alternative calculation did just about as well for frequencies as the one described previously. This result was especially true for the d_{0} isotopomer. However, what is not evident in the table is that other significant bands in the spectra such as 180 cm^{-1} for the d_{6} and $217.7 \mathrm{~cm}^{-1}$ for the d_{2} are not accounted for, and these are transitions involving the lower energy gauche quantum states. On the other hand, this alternative assignment did account for different bands that were not assigned in the other model. Moreover, this model did a somewhat better job of fitting the data for the d_{4} isotopomer. What is evident is that the spectra themselves show extra bands, for reasons discussed above, that do not arise from the principal trans and gauche structures, and this complication makes a definitive choice between these two models difficult.

Figure 31 compares the calculated potential energy curves for the primary and alternative models for the d_{0} molecule to the theoretically predicted one. ${ }^{49}$ The potential function reported by ECR^{48} is also shown. Figure 32 shows the energy levels and observed transitions for the primary model, and Figure 33 compares the very slightly different potential functions for the four isotopomers.

As can be seen in Table 26, which lists the calculated and experimental energy differences between the trans, gauche, and cis forms along with the energy barrier, the gauche form is about $1030 \mathrm{~cm}^{-1}(2.94 \mathrm{kcal} / \mathrm{mol})$ higher in energy than the trans
conformer and the cis saddle point is about $180 \mathrm{~cm}^{-1}(0.51 \mathrm{kcal} / \mathrm{mol})$ higher. The corresponding theoretically calculated values are $1054 \mathrm{~cm}^{-1}(3.01 \mathrm{kcal} / \mathrm{mol})$ and $167 \mathrm{~cm}^{-}$ ${ }^{1}(0.48 \mathrm{kcal} / \mathrm{mol})$. The agreement is remarkably good. The trans to gauche barrier is about $2250 \mathrm{~cm}^{-1}(6.43 \mathrm{kcal} / \mathrm{mol})$ as compared to the ab initio value of $2236 \mathrm{~cm}^{-1}$ (6.39 $\mathrm{kcal} / \mathrm{mol}$).

Table 26 also presents the data for the alternative model, and Figure 34 shows the potential function and transitions for this case. As is evident, the primary difference between these assignments is that for this alternative model the barrier of about $405 \mathrm{~cm}^{-1}$ ($1.16 \mathrm{kcal} / \mathrm{mol}$) at the cis configuration is considerably higher. For this model the gauche form is calculated to be about $1080 \mathrm{~cm}^{-1}(3.09 \mathrm{kcal} / \mathrm{mol})$ higher in energy than the trans form in agreement with high level theoretical calculations. However, the disagreement with the theoretical calculations in the height of the cis barrier leads to a preference for the first model.

Figure 34. Potential energy function and observed Raman transitions for the internal rotation of 1,3-butadiene (alternate model).

CONCLUSION

Because of the low abundance at room temperature of gauche-1,3-butadiene ($\sim 2 \%$), it was difficult to obtain gas-phase Raman spectra good enough to accurately determine the internal rotation potential energy function in the vicinity of the gauche rotamer. In this work, the results from hundreds of hours of Raman scans in the lowfrequency region were presented for 1,3-butadiene- d_{0}, and its $2,3-\mathrm{d}_{2}, 1,1,4,4-\mathrm{d}_{4}$, and d_{6} isotopomers. Structural results from high level $a b$ initio calculations were used to obtain reliable internal rotor constants F_{n}. Ab initio calculations were used to obtain a starting point for the calculation of the one-dimensional potential energy function for internal rotation. The experimental results agreed remarkably well with the theoretical calculations, but less well with earlier calorimetric ${ }^{40}$ and NMR studies, ${ }^{41}$ which reported lower energy differences between the two conformations. Nonetheless, the alternative assignment presented in this study cannot be dismissed. This alternative agrees less well with the theoretical computations, but it is not significantly worse in accounting for the observed spectra. The abundance of bands not directly associated with transitions within the one-dimensional potential energy function and from sources such as isotopic impurities and hot bands greatly complicated the analyses and thus has made a clear choice of the correct assignment difficult.

CHAPTER IX

GAS-PHASE SPECTRA OF COMBINATION AND HOT BANDS ASSOCIATED WITH THE TORSIONAL VIBRATION OF TRANS-1,3-BUTADIENE AND ITS DEUTERATED ISOTOPOMERS*

INTRODUCTION

An extensive analysis of the low-frequency, gas-phase Raman spectra for the torsional (internal rotation) vibration of 1,3-butadiene and its $2,3-\mathrm{d}_{2}, 1,1,4,4-\mathrm{d}_{4}$, and d_{6} isotopomers was reported in Chapter VIII. From the data, a one-dimensional periodic potential energy function governing the internal rotation vibration between the trans and gauche rotamers was determined. The trans conformation was the dominant species, whereas the gauche conformation lied $1030 \mathrm{~cm}^{-1}$ higher in energy and was present in about 2% abundance at room temperature. The full gas-phase Raman spectra of these isotopomers were also investigated in search of additional evidence for the elusive gauche rotamer. In the process, the presence of many combination bands and hot bands were discovered involving the torsional vibration, all of which were analyzed to rule out additional evidence for the torsional mode of the gauche rotamer. Torsional hot bands previously have been observed in infrared spectra of 1,3-butadiene. ${ }^{50}$

[^6]From hot bands in infrared and Raman spectra, it is possible to determine how the torsional frequencies change in vibrational excited states and thus to evaluate how much interaction occurs between the torsional motion and other vibrational modes. The results for the Raman spectra are presented here. Because vapor-phase Raman spectra are inherently weak, and because the combination bands and hot bands are much weaker still, the observations presented here are quite unusual. However, Laane's group previously reported Raman combination bands involving the ring-puckering motion for cyclopentene, ${ }^{82}$ silacyclobutane, ${ }^{83}$ and 1,3-disilacyclobutane. ${ }^{84}$ In none of the cases they observed nearly as many combinations and hot band series as reported here. Much of the new detail can be attributed to improved instrumentation, including a 6 watt laser and a CCD detector cooled with liquid nitrogen. In previous work, combination band series were observed in the infrared spectra of molecules with internal rotations ${ }^{85}$ or out-of plane ring vibrations. ${ }^{85-90}$

EXPERIMENTAL

Samples of 1,3-butadiene- d_{0}, and its $2,3-\mathrm{d}_{2}, 1,1,4,4-\mathrm{d}_{4}$, and d_{6} isotopomers were flame-sealed at a pressure of 1 atm . Butadiene was supplied by Aldrich, the 2,3- d_{2} species was supplied by CDN Isotopes (99% D, Quebec, Canada), and the $1,1,4,4-d_{4}$ and d_{6} species were supplied by Cambridge Isotope Laboratories ($98 \% \mathrm{D}$). Purity of the samples was confirmed by infrared spectroscopy prior to sealing the samples in the cells.

Raman spectra of gas-phase 1,3-butadiene and its isotopomers were recorded for samples with simplified optics at various temperatures sealed in specially designed glass
cells which were previously described in Chapter II. ${ }^{91}$ A Jobin-Yvon U-1000 spectrometer equipped with a liquid nitrogen-cooled CCD detector was used to collect the spectra. The 532 nm line of a frequency-doubled Nd:YAG Coherent Verdi-10 laser was used and generally operated at 6 watts of power. Spectral regions spanning $60 \mathrm{~cm}^{-1}$ were typically collected over periods of 4 to 6 hours so that many hundreds of individual spectra could be averaged. The resolution of the spectra was $0.7 \mathrm{~cm}^{-1}$.

SPECTROSCOPIC RESULTS

Table 31 lists the vibrations of the trans rotamer of 1,3-butadiene- d_{0}, and its 2,3$d_{2}, 1,1,4,4-d_{4}$, and d_{6} isotopomers that are relevant to the investigation of the combination bands and hot bands. The Raman values for the Raman active B_{g} modes are from this work while the infrared active A_{u} and B_{u} wavenumbers are from the literature. ${ }^{42,51-53}$ The torsional levels in the excited states of $v_{10}, v_{12}, 2 v_{12}, v_{10}+v_{12}, v_{15}+$ v_{16}, and $v_{23}+v_{24}$ among the four isotopomers were observed. (The $v_{23}+v_{24}$ state is in Fermi resonance with v_{6} for the d_{0} species.) It was quite remarkable to get observable transitions to the overtone state of v_{12} and the $v_{10}+v_{12}$ and $v_{15}+v_{16}$ combination states. Since the v_{10} and v_{12} states were of A_{u} symmetry, the observed combination bands also involved single quantum changes of v_{13}, which was also of A_{u} symmetry, so the transitions were $A_{g} \rightarrow A_{g}$ or $A_{u} \rightarrow A_{u}$. Because of this symmetry requirement, hot bands appeared in the Raman spectrum without an accompanying fundamental transition, which appeared in the infrared spectrum.

Figure 35. Raman spectrum showing the relative intensity of the $v_{12}+v_{13}$ sum bands as compared to the v_{9} fundamental band.

Figure 36. Raman spectrum of the 1,3-butadiene $v_{12}+v_{13}$ sum bands originating from $v_{12}=524.6 \mathrm{~cm}^{-1}$. The quantum numbers for the v_{13} mode in the lower and upper states are shown.

Figure 37. Raman spectrum of the 1,3-butadiene $v_{10}+v_{13}$ sum bands originating from $v_{10}=1013.8 \mathrm{~cm}^{-1}$.

Figure 38. Raman spectrum of the 1,3 -butadiene hot band transitions to the $v_{10}+v_{12}$ vibrational excited state.

Figure 39. Raman spectrum of the 1,3-butadiene hot band transitions to the $v_{15}+v_{16}$ vibrational excited state.

Figure 40. Energy level diagram for 1,3 -butadiene showing transitions to the $v_{10}+\mathrm{n} v_{13}$ and $v_{12}+n v_{13}$ excited states.

Figure 41. Energy level diagram for 1,3 -butadiene showing transitions to the $v_{15}+v_{16}$ and the $v_{10}+v_{12}$ excited states.

Table 31: Vibrations ${ }^{\text {a }}$ of trans-1,3-butadiene- d_{0} and its isotopomers associated with hot bands and combinations

$\mathrm{C}_{2 \mathrm{~h}}$	Approximate Description	d_{0}	$\mathrm{~d}_{2}$	$\mathrm{~d}_{4}$	$\mathrm{~d}_{6}$
$\mathrm{~A}_{\mathrm{u}}$	$\mathrm{v}_{10} \mathrm{C}-\mathrm{H}(\mathrm{C}-\mathrm{D})$ wag	1013.8	852.0	955.4	736
	$\mathrm{v}_{12} \mathrm{CH}_{2}\left(\mathrm{CD}_{2}\right)$ twist	524.6	480.3	396.8	381
	v_{13} torsion	162.4	152.6	149.2	141.7
$\mathrm{~B}_{\mathrm{g}}$	$\mathrm{v}_{15} \mathrm{CH}_{2}\left(\mathrm{CD}_{2}\right)$ wag	918	913	726.1	702
	$\mathrm{v}_{16} \mathrm{CH}_{2}\left(\mathrm{CD}_{2}\right)$ twist	748	742	606.1	603
$\mathrm{~B}_{\mathrm{u}}$	$\mathrm{v}_{23} \mathrm{CH}_{2}\left(\mathrm{CD}_{2}\right)$ rock	990	840	813	730
	$\mathrm{v}_{24} \mathrm{C}=\mathrm{C}-\mathrm{C}$ def	299	287	258	252

[^7]Table 32: Analysis of hot bands $\left(\mathrm{cm}^{-1}\right)$ of trans-1,3-butadiene- d_{0} for transitions involving the torsional vibration (v_{13})

Transition ${ }^{\text {a }}$	$v_{13}{ }^{\text {b }}$	v_{12}		v_{10}		Transition ${ }^{\text {a }}$	$\frac{v_{23}+v_{24}}{v_{\text {obs }}{ }^{e}}$
		$\mathrm{V}_{\text {obs }}{ }^{\text {c }}$	$v_{\text {obs }}{ }^{\text {c }}-v_{12}$	$\mathrm{V}_{\text {obs }}{ }^{\text {d }}$	$v_{\text {obs }}{ }^{\text {d }}$ - v_{10}		
0-1	162.4	682.8	158.2	1172.8	159.0	0-0	1298
1-2	160.0	676.8	152.2	1167.7	153.9	1-1	1301
2-3	157.3	670.5	145.9	1162.6	148.8	2-2	1307
3-4	154.6	664.3	139.7	1157.9	144.1	3-3	1311
4-5	151.8	657.8	133,2	1153.5	139.7	-	-
5-6	148.6	650.7	126.1	1149.0	135.2	-	-
6-7	145.0	644.3	119.7	1145.2	131.4	-	-
7-8	141.3	638.8	114.2	-	-	-	-

${ }^{\text {a }}$ Quantum numbers for the v_{13} torsional vibrational states.
${ }^{\mathrm{b}}$ Reference 92.
${ }^{c} v_{\text {obs }}=v_{12}+(n+1) v_{13}-n v_{13}$.
${ }^{\mathrm{d}} \mathrm{v}_{\text {obs }}=\mathrm{v}_{10}+(\mathrm{n}+1) \mathrm{v}_{13}-\mathrm{n} \mathrm{v}_{13}$.
${ }^{\mathrm{e}} v_{\text {obs }}=v_{23}+v_{24}+(n+1) v_{13}-n v_{13}$.

Table 33: Energy level spacings $\left(\mathrm{cm}^{-1}\right)$ of v_{13} of trans-1,3-butadiene- d_{0} in vibrational excited states

		Vibrationally Excited States				
Spacing	$v_{13}{ }^{a}$	v_{12}	v_{10}	$v_{10}+v_{12}$	$v_{15}+v_{16}$	$v_{23}+v_{24}$
$0-1$	162.4	158.2	159.0	157.2	161.4	165
$1-2$	160.0	156.4	157.3	153.2	158.7	166
$2-3$	157.3	153.7	154.9	151.6	156.1	162
$3-4$	154.6	151.1	152.6	149.7	153.3	-
$4-5$	151.8	148.1	150.2	146.2	150.0	-
$5-6$	148.6	144.7	147.3	-	146.9	-
$6-7$	145.0	142.2	144.8	-	142.1	-

[^8]Torsional combination bands in the infrared involving v_{12} and v_{15} have previously been studied, ${ }^{50}$ but here the observed transitions were $\mathrm{g} \leftrightarrow \mathrm{u}$ and $\Delta \mathrm{v}$ was only 1 for a single mode. Fifteen combination band or hot band series involving the v_{13} torsional mode were observed for butadiene and three of its isotopomers.

1,3-Butadiene-d \mathbf{d}_{0}

Figures 35 and 36 show the Raman sum bands for the $v_{12}+v_{13}$ series for 1,3-butadiene- d_{0}. Figure 35 displays the huge intensity difference between the sum bands near $680 \mathrm{~cm}^{-1}$ as compared to the band for the $v_{9}\left(\mathrm{~A}_{\mathrm{g}}\right)$ angle bending mode at $512 \mathrm{~cm}^{-1}$. Figure 36 displays these bands on an expanded scale. The $v_{10}+v_{13}$ sum band series is shown in Figure 37. Figures 38 and 39 show the hot band series to the $v_{10}+v_{12}$ and v_{15} $+v_{16}$ combination states, respectively. Figures 40 and 41 show the energy level diagrams and the observed transitions for the four bands. As noted above, the quantum number of v_{13} must change along with the quantum number of v_{10} or v_{12} in Figure 40. Because the $v_{10}+v_{12}$ and $v_{15}+v_{16}$ combinations have A_{g} symmetry, the quantum number of v_{13} does not change in the hot band transitions in Figure 41. A stack of v_{13} levels adds to a single excitation of $v_{10}, v_{12}, v_{10}+v_{12}$, and $v_{15}+v_{16}$.

Table 32 gives the frequencies of the bands and the frequency separations from the band origins for $v_{12}+v_{13}$ and $v_{10}+v_{13}$. Table 33 uses this data as well as other hot band data to present the v_{13} energy spacings for the $v_{10}, v_{12}, v_{10}+v_{12}, v_{15}+v_{16}$, and $v_{23}+$ v_{24} vibrationally excited states. As can be seen, the differences between v_{13} levels in the excited states are smaller than for the corresponding differences in the torsion itself,
indicating that the torsional potential becomes somewhat less stiff in the excited states. An exception is the $v_{23}+v_{24}$ excited state where the energy spacings for v_{13} were slightly larger. Differences in the magnitudes of the spacings (about $1 \mathrm{~cm}^{-1}$ for $v_{15}+v_{16}$ up to 7 cm^{-1} for $v_{10}+v_{12}$) reflect the degree of interaction between the v_{13} torsion and these excited vibrational states.

A particularly interesting case for 1,3-butadiene- d_{0} is that for the Fermi doublet near $1290 \mathrm{~cm}^{-1}$, as shown in Figure 42. Ab initio calculations predicted v_{6}, the $\mathrm{A}_{\mathrm{g}} \mathrm{C}-\mathrm{H}$ wag, to be in the $1285-1291 \mathrm{~cm}^{-1}$ range. ${ }^{54}$ The $v_{23}+v_{24}$ sum band, also of A_{g} symmetry, was expected near $990+299=1289 \mathrm{~cm}^{-1}$. Fermi resonance pushed the levels apart to 1278 and $1298 \mathrm{~cm}^{-1}$. Furthermore, hot bands arising from excited v_{13} torsional levels can be seen in Figure 42 for the higher frequency component of the resonance pair. This component, which is an approximately equal mixture of v_{6} and $v_{23}+v_{24}$, has been arbitrarily labeled $v_{23}+v_{24}$. The wavenumbers of the hot bands and the differences are listed in Tables 32 and 33 , respectively. The $1278 \mathrm{~cm}^{-1}$ band also seems to show some hot band structure, but the spacing seems too tight as compared to the higher frequency component of the Fermi resonance.

Figure 42. Raman spectrum of the Fermi doublet and hot bands for 1,3-butadiene.

1,3-Butadiene-2,3-d \mathbf{d}_{2}

For the d_{2} species, as for the d_{0} species, sum bands to the v_{12} and v_{10} excited states are observed (Figures 43 and 44 , respectively), in which the quantum number changes for v_{13} as well as for v_{12} and v_{10}. The energy diagram in Figure 45 shows the levels and the connecting transitions for these two instances. Figure 46 displays the hot band series associated with the $2 v_{12}$ overtone. The corresponding transitions were not observed for the d_{0} species. Because $2 v_{12}$ has A_{g} symmetry, the quantum number of v_{13} did not change in this hot band series. Figure 47 shows the corresponding energy scheme and transitions. The other hot band series observed for the d_{2} species were for $v_{10}+v_{12}$ and $v_{15}+v_{16}$ combinations, which have A_{g} symmetry. Figures 48 and 49 present the observed spectra. The energy level diagram is in Figure 50. As can be seen, the v_{13} quantum number did not change for the $\mathrm{A}_{\mathrm{g}} \rightarrow \mathrm{A}_{\mathrm{g}}$ or $\mathrm{A}_{\mathrm{u}} \rightarrow \mathrm{A}_{\mathrm{u}}$ transitions. Tables 34 and 35 summarize the data.

Figure 43. Raman spectrum of the 1,3 -butadiene- $2,3-d_{2} v_{12}+v_{13}$ sum bands originating from $v_{12}=480.3 \mathrm{~cm}^{-1}$.

Figure 44. Raman spectrum of the 1,3-butadiene-2,3- $\mathrm{d}_{2} \quad v_{10}+v_{13}$ sum bands originating from $v_{10}=852.0 \mathrm{~cm}^{-1}$.

Figure 45. Energy level diagram for 1,3-butadiene-2,3- d_{2} showing transitions to the v_{10} and v_{12} excited states.

Figure 46. Raman spectrum of the 1,3 -butadiene- $2,3-\mathrm{d}_{2}$ hot band transitions to the $2 v_{12}$ excited state.

Figure 47. Energy level diagram for 1,3-butadiene-2,3-d d_{2} showing hot band transitions to the $2 v_{12}$ excited states.

Figure 48. Raman spectrum of the 1,3-butadiene-2,3- d_{2} hot band transitions to the $v_{10}+$ v_{12} vibrational excited state.

Figure 49. Raman spectrum of the 1,3-butadiene-2,3- d_{2} hot band transitions to the $v_{15}+$ ν_{16} vibrational excited state.

Figure 50. Energy level diagram for 1,3-butadiene-2,3- d_{2} showing transitions to the v_{15} $+v_{16}$ and the $v_{10}+v_{12}$ excited states.

Table 34: Analysis of hot bands (cm^{-1}) of trans-1,3-butadiene-2,3- $\mathrm{d}_{\mathbf{2}}$ involving the torsional vibration (v_{13})

Transition ${ }^{\text {a }}$	$\mathrm{v}_{13}{ }^{\text {b }}$	v_{12}		v_{10}		Transition ${ }^{\text {a }}$	$\begin{gathered} 2 v_{12} \\ \frac{v_{\mathrm{obs}}{ }^{e}}{} \\ \hline \end{gathered}$
		$\mathrm{V}_{\text {obs }}{ }^{\text {c }}$	$\mathrm{v}_{\text {obs }}{ }^{\text {c }}$ - v_{12}	$\mathrm{V}_{\text {obs }}{ }^{\text {d }}$	$v_{\text {obs }}{ }^{\text {d }}-\mathrm{v}_{10}$		
0-1	152.6	633.5	153.2	1000.8	148.8	0-0	959.6
1-2	151.2	631.3	151.0	996.9	144.9	1-1	955.8
2-3	147.9	627.4	147.1	994.2	142.2	2-2	952.2
3-4	146.2	622.9	142.6	992.1	140.1	3-3	948.7
4-5	142.7	618.7	138.4	989.9	137.9	4-4	945.5
5-6	140.7	614.3	134.0	986.6	134.6	5-5	942.4
6-7	136.0	610.1	129.8	984.2	132.2		
7-8	134.4	605.6	125.3	982.0	130.0		
8-9	129.3	600.7	120.4	-	-		

${ }^{\text {a }}$ Quantum numbers for the v_{13} torsional vibrational states.
${ }^{\mathrm{b}}$ Reference 92.
${ }^{c} v_{\text {obs }}=v_{12}+(n+1) v_{13}-n v_{13}$.
${ }^{\mathrm{d}} \mathrm{v}_{\text {obs }}=v_{10}+(\mathrm{n}+1) \mathrm{v}_{13}-\mathrm{n} v_{13}$.
${ }^{\mathrm{e}} \mathrm{v}_{\text {obs }}=2 v_{12}+(\mathrm{n}+1) v_{13}-\mathrm{n} \nu_{13}$.

Table 35: Energy level spacings $\left(\mathrm{cm}^{-1}\right)$ of \mathbf{v}_{13} of trans-1,3-butadiene-2,3- \mathbf{d}_{2} in vibrational excited states

		Vibrationally Excited States					
Spacing	$v_{13}{ }^{\mathrm{a}}$	v_{12}	v_{10}	$v_{10}+v_{12}$	$v_{15}+v_{16}$	$2 v_{12}$	
$0-1$	152.6	153.2	148.8	150.8	151.4	148.8	
$1-2$	151.2	150.4	148.7	149.2	150.0	147.6	
$2-3$	147.9	147.3	148.5	145.8	146.9	144.4	
$3-4$	146.2	143.4	145.8	144.2	145.1	143.0	
$4-5$	142.7	142.0	144.0	141.0	141.4	139.6	
$5-6$	140.7	138.3	139.4	-	-	-	
$6-7$	136.0	136.5	138.3	-	-	-	
$7-8$	134.4	131.5	133.8	-	-	-	
$8-9$	129.3	129.5	-	-	-	-	

${ }^{\mathrm{a}}$ Reference 92.

1,3-Butadiene-1,1,4,4-d

For the d_{4}, as for the d_{0} and d_{2} species, sum bands to the v_{12} and v_{10} excited states are observed as shown in Figures 51 and 52, respectively. The energy diagram in Figure 53 shows the levels and the connecting transitions for these two instances. The hot band series observed for the d_{4} species was for $v_{10}+v_{12}$ combination, which has A_{g} symmetry. Figure 54 presents the observed spectra. The energy level diagram is shown in Figure 55. Tables 36 and 37 tabulate the data.

1,3-Butadiene-d 6

Figure 56 shows the sum band to the v_{12} excited states for the d_{6} species. Figure 57 displays the hot band series associated with the $2 v_{12}$ overtone. The corresponding hot band transitions were not observed for the d_{0} and d_{4} species. Figure 58 presents the corresponding energy diagram. Tables 38 and 39 show the data numerically.

Figure 51. Raman spectrum of the 1,3-butadiene-1,1,4,4- $\mathrm{d}_{4} v_{12}+v_{13}$ sum bands originating from $v_{12}=396.8 \mathrm{~cm}^{-1}$.

Figure 52. Raman spectrum of the 1,3-butadiene-1,1,4,4-d $d_{4} \quad v_{10}+v_{13}$ sum bands originating from $v_{10}=955.4 \mathrm{~cm}^{-1}$.

Figure 53. Energy level diagram for 1,3-butadiene-1,1,4,4- d_{4} showing transitions to the v_{10} and v_{12} excited states.

Figure 54. Raman spectrum of the 1,3-butadiene-1,1,4,4- d_{4} hot band transitions to the $v_{10}+v_{12}$ vibrational excited state.

Figure 55. Energy level diagram for 1,3-butadiene-1,1,4,4- d_{4} showing transitions to the $v_{10}+v_{12}$ excited states.

Table 36: Analysis of hot bands $\left(\mathrm{cm}^{-1}\right)$ of trans-1,3-butadiene-1,1,4,4-d d_{4} involving the torsional vibration (v_{13})

		v_{12}			v_{10}	
Transition $^{\mathrm{a}}$	$\mathrm{v}_{13}{ }^{\mathrm{b}}$	$\mathrm{V}_{\text {obs }}{ }^{\mathrm{c}}$	$\mathrm{V}_{\text {obs }}{ }^{\mathrm{c}}-\mathrm{v}_{12}$		$\mathrm{~V}_{\text {obs }}{ }^{\mathrm{d}}$	$\mathrm{V}_{\text {obs }}{ }^{\mathrm{d}}-\mathrm{v}_{10}$
$0-1$	149.2	545.3	148.5		1101.9	146.5
$1-2$	146.1	542.8	146.0		1098.4	143.0
$2-3$	144.8	538.7	141.9		1094.8	139.4
$3-4$	141.8	534.8	138.0		1090.8	135.4
$4-5$	140.3	530.9	134.1		1086.5	131.1
$5-6$	136.9	527.8	131.0		-	-

${ }^{\text {a }}$ Quantum numbers for the v_{13} torsional vibrational states.
${ }^{\mathrm{b}}$ Reference 92.
${ }^{c} v_{\text {obs }}=v_{12}+(n+1) v_{13}-n v_{13}$.
${ }^{\mathrm{d}} \mathrm{v}_{\text {obs }}=\mathrm{v}_{10}+(\mathrm{n}+1) \mathrm{v}_{13}-\mathrm{n} \mathrm{v}_{13}$.

Table 37: Energy level spacings $\left(\mathrm{cm}^{-1}\right)$ of v_{13} of trans-1,3-butadiene $\mathbf{- 1 , 1 , 4 , 4 - d _ { 4 }}$ in vibrational excited states

		Vibrationally Excited States		
Spacing	$v_{13}{ }^{a}$	v_{12}	v_{10}	$v_{10}+v_{12}$
$0-1$	149.2	148.5	146.5	146.2
$1-2$	146.1	146.7	145.7	142.7
$2-3$	144.8	142.0	142.5	141.4
$3-4$	141.8	140.9	140.8	-
$4-5$	140.3	137.9	137.5	-
$5-6$	136.9	137.2	-	-

${ }^{\text {a }}$ Reference 92.

Figure 56. Raman spectrum of the 1,3-butadiene- $d_{6} v_{12}+v_{13}$ sum bands originating from $v_{12}=381 \mathrm{~cm}^{-1}$.

Figure 57. Raman spectrum of the 1,3-butadiene- d_{6} hot bands to $2 v_{12}$ excited state.

Figure 58. Energy level diagram for 1,3 -butadiene- d_{6} showing transitions to the v_{12} and $2 v_{12}$ vibrational excited states.

Table 38: Analysis of hot bands $\left(\mathrm{cm}^{-1}\right)$ of trans-1,3-butadiene- d_{6} involving the torsional vibration (v_{13})

		v_{12}			$2 v_{12}$
Transition $^{\mathrm{a}}$	$v_{13}{ }^{\mathrm{b}}$	$\mathrm{v}_{\text {obs }}{ }^{\mathrm{c}}$	$v_{\text {obs }}{ }^{\mathrm{c}}-v_{12}$	Transition $^{\mathrm{a}}$	$\mathrm{v}_{\text {obs }}{ }^{\mathrm{d}}$
$0-1$	141.7	525.9	145	$0-0$	766.6
$1-2$	139.2	523.5	139.3	$1-1$	763.7
$2-3$	137.7	520.0	135.7	$2-2$	760.9
$3-4$	135.4	516.7	134.4	$3-3$	757.8
$4-5$	133.5	513.4	132.1	$4-4$	752.7
$5-6$	131.2	-	-	$5-5$	750.4

${ }^{\text {a }}$ Quantum numbers for the v_{13} torsional vibrational states.
${ }^{\mathrm{b}}$ Reference 92.
${ }^{\mathrm{c}} \mathrm{V}_{\mathrm{obs}}=\mathrm{V}_{12}+(\mathrm{n}+1) \mathrm{V}_{13}-\mathrm{n} \nu_{13}$.
${ }^{\mathrm{d}} \nu_{\text {obs }}=2 \nu_{12}+(n+1) \nu_{13}-n \nu_{13}$.

Table 39: Energy level spacings of v_{13} of $\left(\mathrm{cm}^{-1}\right)$ of trans-1,3-butadiene- d_{6} in vibrational excited states

		Vibrational Excited States	
Spacing	$v_{13}{ }^{a}$	v_{12}	$2 v_{12}$
$0-1$	141.7	145	138.8
$1-2$	139.2	139.3	136.4
$2-3$	137.7	135.7	134.6
$3-4$	135.4	134.4	130.3
$4-5$	133.5	132.1	131.2

[^9]
CONCLUSION

Several aspects are noteworthy about these results. First, is that all the combinations except for those with the Fermi doublet were with out-of-plane vibrations of the trans-1,3-butadiene, and these modes were the ones expected to couple most strongly to the out-of-plane torsional motion. Despite diligent searching, no combination or hot bands for the gauche conformer were observed. Only about 2% of the molecules at ambient temperature were in the gauche quantum state. Second, transitions to the v_{13} torsional states in vibrational states that were already combinations were observed, namely $v_{10}+v_{12}, 2 v_{12}, v_{15}+v_{16}$, and $v_{23}+v_{24}$. These observations were most unusual. The third result was that the torsional energy spacings were not the same in vibrational excited states as in the ground state, a simple subtraction of the vibrational frequency of the other mode did not yield an accurate determination of what the actual levels for v_{13} were in the ground state of the other vibrations. This effect is evident in Tables 32, 34, 36, and 38. Also, as Tables $33,35,37$, and 39 show, the torsional energy spacings are generally smaller in the vibrational excited states than the ground state with the largest effect for the $v_{10}+v_{12}$ combination state. These smaller energy spacings reflect the fact that the vibrations v_{10} and v_{12}, in particular, can be thought of as being cooperative with the torsional motion in that the internal rotation barrier between the trans and gauche conformations is decreased in these excited states.

The full Raman spectra of 1,3 -butadiene- d_{0}, and its $2,3-\mathrm{d}_{2}, 1,1,4,4-\mathrm{d}_{4}$, and d_{6} isotopomers will be presented in Chapter X. These will show bands from not only the trans conformer but also the gauche conformer.

CHAPTER X

GAS-PHASE RAMAN SPECTRA OF TRANS- AND GAUCHE-1,3BUTADIENE AND THEIR DEUTERATED ISOTOPOMERS

INTRODUCTION

An extensive investigation of the Raman spectra of the internal rotation vibration (torsion) of 1,3-butadiene and its 2,3- $\mathrm{d}_{2}, 1,1,4,4-\mathrm{d}_{2}$, and d_{6} isotopomers was reported in Chapter VIII. The one-dimensional potential energy function determined for this vibration confirmed that the trans rotamer of the molecule is the predominant form ($\sim 98 \%$) and that the gauche rotamer constitutes the remainder of the molecules. This is in accord with recent $a b$ initio calculations. ${ }^{49}$ In addition, the observation of numerous combination and hot band series involving the torsional vibration was reported in Chapter IX. The vibrational spectra of 1,3-butadiene and its isotopomers have been studied many dozens of times (refer to citations in references 1 and 2), but high quality Raman studies of the gas phase have been lacking. Only the 1990 investigation by Wiberg and Rosenberg ${ }^{53}$ is comprehensive. Their spectra were recorded with $2 \mathrm{~cm}^{-1}$ resolution, but additional details were not given and only wavenumber listings for assigned fundamentals were presented. Presumably charge coupled device (CCD) detection, which allows prolonged averaging, was not used and there was no indication that high laser power was available. Consequently, a reinvestigation of the gas-phase Raman spectra of this molecule and its isotopomers was undertaken using high (6W) laser power and CCD detection. This allowed very good signal to noise ratios and very
weak signals detection. Spectra at $260^{\circ} \mathrm{C}$ were also collected. In 2003, the authors published a detailed review describing the methodology for collecting vapor-phase spectra at elevated temperatures. ${ }^{91}$ One of the goals of this study was to identify Raman bands from the gauche rotamer which makes up about 2% of the molecular population at ambient temperature. Previous matrix isolation studies using infrared and Raman spectroscopy have reported the presence of bands due to the gauche form. ${ }^{44,55}$

1,3-Butadiene has 24 vibrations which for the trans rotamer are distributed as

$$
\begin{equation*}
\Gamma_{\text {trans }}=9 \mathrm{~A}_{\mathrm{g}}+4 \mathrm{~A}_{\mathrm{u}}+3 \mathrm{~B}_{\mathrm{g}}+8 \mathrm{~B}_{\mathrm{u}} \tag{10.1}
\end{equation*}
$$

The A_{g} vibrations are expected to produce polarized Raman bands which are sharp and with significant intensity. The B_{g} vibrations are also Raman active but are expected to be weaker and broader. The A_{u} and B_{u} vibrations are infrared active but Raman forbidden. Numerous high quality infrared investigations of 1,3-butadiene and its isotopomers have been published. ${ }^{49}$ The gauche rotamer has C_{2} symmetry and its vibrational symmetry species are

$$
\begin{equation*}
\Gamma_{\text {gauche }}=13 \mathrm{~A}+11 \mathrm{~B} \tag{10.2}
\end{equation*}
$$

and all of the vibrations are symmetry allowed for both infrared and Raman spectra. Again, the totally symmetric vibrations are generally expected to produce the strongest Raman bands.

EXPERIMENTAL

Butadiene was supplied by Aldrich, the $2,3-d_{2}$ species was supplied by CDN Isotopes ($99 \% \mathrm{D}$, Quebec, Canada), and the $1,1,4,4-d_{4}$ and d_{6} species were supplied by Cambridge Isotope Laboratories ($98 \% \mathrm{D}$). Purity of the samples was confirmed by infrared spectroscopy prior to sealing the samples in the cells.

Raman spectra of gas-phase 1,3 -butadiene- d_{0}, and its $2,3-\mathrm{d}_{2}, 1,1,4,4-\mathrm{d}_{4}$, and d_{6} isotopomers were recorded for samples with simplified optics at various temperatures sealed in specially designed glass cells which was previously described in Chapter II. A Jobin-Yvon U-1000 spectrometer equipped with a liquid nitrogen-cooled CCD detector was used to collect the spectra. The 532 nm line of a frequency-doubled Nd:YAG Coherent Verdi-10 laser was used and generally operated at 6 watts of power. Spectral regions spanning $60 \mathrm{~cm}^{-1}$ were typically collected over periods of 4 to 6 hours so that many hundreds of individual spectra could be averaged. The resolution of the spectra was $0.7 \mathrm{~cm}^{-1}$.

Figure 59. Calculated structures of 1,3-butadiene (a) trans, (b) gauche in their S_{0} ground electronic state using MP2/cc-pVTZ level of theory.

THEORETICAL CALCULATIONS

The structures and vibrational frequencies of 1,3 -butadiene- d_{0}, and its $2,3-\mathrm{d}_{2}$, $1,1,4,4-\mathrm{d}_{4}$, and d_{6} isotopomers for the electronic ground state were calculated using the Gaussian 03 program package. ${ }^{65}$ Ab initio second order Moller-Plesset (MP2) level of theory with the cc-pVTZ basis set was used to find the optimized geometry for trans and gauche rotors as shown in Figure 59. The DFT-B3LYP level of theory with the 6$311++G(d, p)$ basis set was used to calculate the vibrational frequencies and the Raman intensities. Based on previous work, ${ }^{66-70}$ a scaling factor of 0.964 was used for the $\mathrm{C}-\mathrm{H}$ stretching vibrational frequencies and a factor of 0.985 for the lower frequencies. The calculated results here will be compared to those of Feller and Craig, ${ }^{49}$ and reference will be made to the potential energy distributions calculated by McKean and co-workers. ${ }^{54}$

RESULTS AND DISCUSSION

Although the Raman spectra of 1,3-butadiene- d_{0}, and its $2,3-\mathrm{d}_{2}, 1,1,4,4-\mathrm{d}_{4}$, and d_{6} isotopomers has been studied previously, there are no high quality figures to show these in the literature.

Figure 60. Gas-phase and calculated Raman spectra of 1,3-butadiene-d ${ }_{0}$.

Figure 61. Gas-phase and calculated Raman spectra of 1,3-butadiene-2,3- d_{2}.

Figure 62. Gas-phase and calculated Raman spectra of 1,3-butadiene-1,1,4,4-d ${ }_{4}$.

Figure 63. Gas-phase and calculated Raman spectra of 1,3-butadiene-d ${ }_{6}$.

Figure 64. Gas-phase Raman spectrum of 1,3-butadiene in the $200-3200 \mathrm{~cm}^{-1}$ region.

Figure 65. Gas-phase Raman spectrum of 1,3-butadiene in the $200-600 \mathrm{~cm}^{-1}$ region.

Figure 66. Gas-phase Raman spectrum of 1,3-butadiene in the $600-1000 \mathrm{~cm}^{-1}$ region.

Figure 67. Gas-phase Raman spectrum of 1,3-butadiene in the $950-1350 \mathrm{~cm}^{-1}$ region.

Figure 68. Gas-phase Raman spectrum of 1,3-butadiene in the $1350-1800 \mathrm{~cm}^{-1}$ region.

Figure 69. Gas-phase Raman spectrum of 1,3-butadiene in the $2800-3200 \mathrm{~cm}^{-1}$ region.

Table 40: Observed and calculated vibrational frequencies $\left(\mathrm{cm}^{-1}\right)$ and intensities for trans 1,3-butadiene-d ${ }_{0}$

$\mathrm{C}_{2 \mathrm{~h}}$	Approximate Description	OBS		Calculated ${ }^{\text {b }}$		$\begin{gathered} \hline \mathrm{OBS} \\ \hline \mathrm{Lit}^{\mathrm{c}} \\ \hline \end{gathered}$
Ag_{g}	$v_{1} \mathrm{CH}_{2}$ antisym str	3099	(3)	3105	(42)	3100
	$\mathrm{v}_{2} \mathrm{CH}_{2}$ sym str	3012.5	(66)	3022	(81)	3013
	v_{3} C-H sym str	3010 sh	(20)	3010	(12)	3013
	$\mathrm{v}_{4} \mathrm{C}=\mathrm{C}$ sym str	1644.3	(100)	1674	(100)	1644
	$v_{5} \mathrm{CH}_{2}$ def	1442.2	(18)	1450	(12)	1441
	v_{6} C-H wag (i.p.)	1277.8	(13)	1293	(20)	1277
	$v_{7} \mathrm{C}-\mathrm{C} \mathrm{str}{ }^{\text {f }}$	1204.2	(19)	1208	(11)	1203
	$v_{8} \mathrm{CH}_{2}$ rock $^{\text {f }}$	888.8	(2)	885	(0.5)	888
	$v_{9} \mathrm{C}=\mathrm{C}-\mathrm{C}$ def	512.2	(39)	510	(3)	512
A_{u}	v_{10} C-H wag (o.p.) ${ }^{\text {g }}$	-	(39)	1039	(0)	1014
	$v_{11} \mathrm{CH}_{2}$ wag	-	-	925	(0)	908
	$v_{12} \mathrm{CH}_{2}{\text { twist }{ }^{\text {g }} \text { r }}^{\text {a }}$	-	-	531	(0)	525
	$v_{13} \mathrm{C}-\mathrm{C}$ tors	322.4 (0-2) ${ }^{\text {d }}$	-	173	(0)	$162.4{ }^{\text {e }}$
Bg_{g}	$v_{14} \mathrm{C}-\mathrm{H}$ wag (o.p.)	977	(0.1)	984	(4)	965
	$v_{15} \mathrm{CH}_{2}$ wag	909.5	(0.1)	924	(3)	908
	$v_{16} \mathrm{CH}_{2}$ twist	748	(0.1)	766	(1)	752
B_{u}	$\mathrm{v}_{17} \mathrm{CH}_{2}$ antisym str	-	-	3105	(0)	3101
	$\mathrm{v}_{18} \mathrm{C}-\mathrm{H}$ str	-	-	3023	(0)	3055
	$v_{19} \mathrm{CH}_{2} \mathrm{sym}$ str	-	-	3019	(0)	2984
	$\mathrm{v}_{20} \mathrm{C}=\mathrm{C}$ antisym str	-	-	1620	(0)	1597
	$\mathrm{v}_{21} \mathrm{CH}_{2}$ def	-	-	1392	(0)	1381
	$v_{22} \mathrm{C}-\mathrm{H}$ wag (i.p.)	-	-	1299	(0)	1294
	$v_{23} \mathrm{CH}_{2}$ rock	-	-	988	(0)	990
	$\mathrm{v}_{24} \mathrm{C}=\mathrm{C}-\mathrm{C}$ def	-	-	292	(0)	$299{ }^{\text {e }}$

[^10]Table 41: Observed and calculated vibrational frequencies $\left(\mathrm{cm}^{-1}\right)$ and intensities for trans 1,3-butadiene-2,3-d \mathbf{d}_{2}

$\mathrm{C}_{2 \mathrm{~h}}$	Approximate Description	OBS		Calculated ${ }^{\text {b }}$		$\begin{array}{\|c} \hline \text { OBS } \\ \hline \mathrm{Lit}^{\mathrm{c}} \\ \hline \end{array}$	$\begin{gathered} \text { CALC } \\ \text { Lit }^{\mathrm{d}} \\ \hline \end{gathered}$
Ag_{8}	$\mathrm{v}_{1} \mathrm{CH}_{2}$ antisym str	3097.6	(10)	3104	(41)	3099	3110
	$\mathrm{v}_{2} \mathrm{CH}_{2}$ sym str	3004.0	(42)	3020	(50)	3005	3022
	v_{3} C-D sym str	2248.5	(9)	2230	(18)	2249	2232
	$v_{4} \mathrm{C}=\mathrm{C}$ sym str	1623.6	(100)	1651	(100)	1613	1629
	$v_{5} \mathrm{CH}_{2} \mathrm{def}$	1427.8	(65)	1434	(26)	1428	1427
	v_{6} C-D wag (i.p.)	935.1	(53)	941	(8)	934	930
	$v_{7} \mathrm{C}-\mathrm{C} \mathrm{str}{ }^{\text {g }}$	1220.1	(8)	1217	(2)	1220	1225
	$v_{8} \mathrm{CH}_{2}$ rock $^{\text {g }}$	882.0	(3)	879	(0.5)	880	872
	$v_{9} \mathrm{C}=\mathrm{C}-\mathrm{C}$ def	496.2	(46)	495	(3)	496	496
A_{u}	v_{10} C-D wag (o.p.)	-		866	(0)	850	855
	$v_{11} \mathrm{CH}_{2}$ wag	-		925	(0)	908	912
	$v_{12} \mathrm{CH}_{2}$ twist	-		488	(0)	480	471
	$v_{13} \mathrm{C}$-C tors	$303.8(0-2)^{\text {e }}$		164	(0)	153	150
B_{g}	v_{14} C-D wag (o.p.)	-		819	(0)	820	819
	$v_{15} \mathrm{CH}_{2}$ wag	911 sh	(0.07)	928	(4)	913	910
	$v_{16} \mathrm{CH}_{2}$ twist	743	(0.05)	760	(1)	745	728
Bu_{u}	$\mathrm{v}_{17} \mathrm{CH}_{2}$ antisym str	-		3104	(0)	3098	3110
	$\mathrm{v}_{18} \mathrm{C}$-D str	-		2232	(0)	2243	2229
	$v_{19} \mathrm{CH}_{2} \mathrm{sym}$ str	-		3020	(0)	3031	3022
	$\mathrm{v}_{20} \mathrm{C}=\mathrm{C}$ antisym str	-		1609	(0)	1586	1580
	$v_{21} \mathrm{CH}_{2}$ def	-		1386	(0)	1374	1373
	$\mathrm{v}_{22} \mathrm{C}-\mathrm{D}$ wag (i.p.)	-		1124	(0)	1127	1131
	$\mathrm{v}_{23} \mathrm{CH}_{2}$ rock	-		844	(0)	$852^{\text {f }}$	839
	$\mathrm{v}_{24} \mathrm{C}=\mathrm{C}-\mathrm{C}$ def	-		282	(0)	$287^{\text {f }}$	284

[^11]Table 42: Observed and calculated vibrational frequencies $\left(\mathrm{cm}^{-1}\right)$ and intensities for trans 1,3-butadiene-1,1,4,4-d \mathbf{d}_{4}

$\mathrm{C}_{2 \mathrm{~h}}$	Approximate Description	OBS		Calculated ${ }^{\text {b }}$		$\begin{gathered} \hline \mathrm{OBS} \\ \hline \mathrm{Lit}^{\mathrm{c}} \\ \hline \end{gathered}$	$\begin{gathered} \text { CALC } \\ \mathrm{Lit}^{\mathrm{d}} \\ \hline \end{gathered}$
$\mathrm{Ag}_{\text {g }}$	$v_{1} \mathrm{CD}_{2}$ antisym str	2316	(0.2)	2312	(17)	2316	2318
	$\mathrm{v}_{2} \mathrm{CD}_{2}$ sym str	2224.5	(8)	2207	(13)	2225	2211
	$v_{3} \mathrm{CH}$ sym str	3012.1	(5)	3014	(35)	3013	3011
	$v_{4} \mathrm{C}=\mathrm{C}$ sym str	1613.7	(100)	1640	(100)	1613	1615
	$v_{5} \mathrm{CD}_{2}$ def	1040.1	(12)	1041	(4)	1040	1040
	v_{6} C-H wag (i.p.)	1296.9	(21)	1304	(9)	1296	1288
	$\mathrm{v}_{7} \mathrm{C}-\mathrm{C}$ str	1168.0	(12)	1172	(11)	1167	1171
	$v_{8} \mathrm{CD}_{2}$ rock	740.0	(5)	735	(1)	740	732
	$v_{9} \mathrm{C}=\mathrm{C}-\mathrm{C}$ def	452.6	(32)	451	(2)	452	453
A_{u}	v_{10} C-H wag (o.p.) ${ }^{\text {h }}$	-		979	(0)	955	951
	$v_{11} \mathrm{CD}_{2}$ wag	-		740	(0)	728	726
	$v_{12} \mathrm{CD}_{2}$ twist $^{\text {h }}$	-		399	(0)	$396.8{ }^{\text {f }}$	393
	$v_{13} \mathrm{C}-\mathrm{C}$ torsion	$295.3(0-2)^{\text {e }}$		158	(0)	$149.2{ }^{\text {g }}$	146
Bg_{g}	v_{14} C-H wag (o.p.)	940	(0.1)	952	(2)	930	910
	$v_{15} \mathrm{CD}_{2}$ wag (o.p.)	726	(0.4)	739	(3)	728	727
	$v_{16} \mathrm{CD}_{2}$ twist	606.1	(0.1)	616	(0.1)	$608^{\text {f }}$	614
B_{u}	$\mathrm{v}_{17} \mathrm{CD}_{2}$ antisym str	-		2311	(0)	2332	2318
	$\mathrm{v}_{18} \mathrm{C}-\mathrm{H}$ str	-		3024	(0)	3020	3018
	$v_{19} \mathrm{CD}_{2}$ sym str	-		2210	(0)	2226	2212
	$\mathrm{v}_{20} \mathrm{C}=\mathrm{C}$ antisym str	-		1555	(0)	1533	1519
	$v_{21} \mathrm{CD}_{2}$ def	-		1026	(0)	1030	1023
	v_{22} C-H wag (i.p.)	-		1278	(0)	1275	1264
	$v_{23} \mathrm{CD}_{2}$ rock	-		812	(0)	813	820
	$\mathrm{v}_{24} \mathrm{C}=\mathrm{C}-\mathrm{C}$ def	-		253	(0)	$257.9^{\text {f }}$	255

${ }^{\text {a }}$ Relative intensities in parenthesis. Observed intensities indicate peak height.
${ }^{\mathrm{b}}$ B3LYP/6-311++g(d,p); frequencies scaled with a scaling factor of 0.985 for frequencies less than $1800 \mathrm{~cm}^{-1}$ and 0.964 for frequencies greater than $1800 \mathrm{~cm}^{-1}$.
${ }^{\mathrm{c}}$ Reference 53. ${ }^{\mathrm{d}}$ Reference 51. ${ }^{\mathrm{e}}$ Reference $92 .{ }^{\mathrm{f}}$ Reference $54 .{ }^{\mathrm{g}}$ Reference 42.
${ }^{\mathrm{h}}$ The CD_{2} twist and CH wag are strongly coupled.

Table 43: Observed and calculated vibrational frequencies $\left(\mathrm{cm}^{-1}\right)$ and intensities for trans 1,3-butadiene-d ${ }_{6}$

$\mathrm{C}_{2 \mathrm{~h}}$$\mathrm{~A}_{\mathrm{g}}$	Approximate Description	OBS		Calculated ${ }^{\text {b }}$		$\begin{gathered} \hline \text { OBS } \\ \hline \mathrm{Lit}^{\mathrm{C}} \\ \hline \end{gathered}$	$\begin{gathered} \text { CALC } \\ \text { Lit }^{\mathrm{d}} \\ \hline \end{gathered}$
	$\mathrm{v}_{1} \mathrm{CD}_{2}$ antisym str	2343.5	(1)	2313	(14)	2343	2319
	$\mathrm{v}_{2} \mathrm{CD}_{2}$ sym str	2265	(9)	2238	(26)	2266	2244
	v_{3} C-D sym str	2212	(3)	2197	(2)	2212	2198
	$v_{4} \mathrm{C}=\mathrm{C}$ sym str	1588.8	(100)	1611	(100)	1589	1587
	$v_{5} \mathrm{CD}_{2}$ def	1047	(2)	1046	(1)	1046	1048
	v_{6} C-D wag (i.p.)	919	(28)	923	(8)	918	913
	$\mathrm{v}_{7} \mathrm{C}-\mathrm{C}$ str	1192	(0.8)	1187	(3)	1192	1180
	$\mathrm{v}_{8} \mathrm{CD}_{2}$ rock	739	(6)	734	(1)	$738{ }^{\text {f }}$	730
	$v_{9} \mathrm{C}=\mathrm{C}-\mathrm{C}$ def	440	(14)	440	(2)	439	441
A_{u}	v_{10} C-D wag (o.p.) ${ }^{\text {g }}$	-		742	(0)	$736{ }^{\text {f }}$	753
	$v_{11} \mathrm{CD}_{2}$ wag	-		731	(0)	719	724
	$v_{12} \mathrm{CD}_{2}$ twist $^{\text {g }}$	-		386	(0)	$381{ }^{\text {f }}$	379
	$v_{13} \mathrm{C}$-C tors	$280.9(0-2)^{\text {e }}$	-	150	(0)	$140^{\text {f }}$	138
Bg_{g}	v_{14} C-D wag (o.p.)	804 br	(0.3)	815	(3)	793	761
	$v_{15} \mathrm{CD}_{2}$ wag	700 br	(0.08)	707	(1)	700	708
	$v_{16} \mathrm{CD}_{2}$ twist	597 br	(0.1)	605	(0.1)	$603{ }^{\text {f }}$	606
$\mathrm{B}_{\text {u }}$	$v_{17} \mathrm{CD}_{2}$ antisym str	-		2312	(0)	2350	2318
	v_{18} C-D str	-		2240	(0)	2266	2241
	$v_{19} \mathrm{CD}_{2}$ sym str	-		2200	(0)	2220	2198
	$\mathrm{v}_{20} \mathrm{C}=\mathrm{C}$ antisym str	-		1540	(0)	1520	1504
	$\mathrm{v}_{21} \mathrm{CD}_{2}$ def	-		1047	(0)	1048	1041
	v_{22} C-D wag (i.p.)	-		1002	(0)	1005	1000
	$v_{23} \mathrm{CD}_{2}$ rock	-		780	(0)	$769{ }^{\text {f }}$	743
	$\mathrm{v}_{24} \mathrm{C}=\mathrm{C}-\mathrm{C}$ def	-		245	(0)	$252^{\text {f }}$	247

${ }^{\text {a }}$ Relative intensities in parenthesis. Observed intensities indicate peak height.
${ }^{\mathrm{b}}$ B3LYP/6-311++g(d,p); frequencies scaled with a scaling factor of 0.985 for frequencies less than $1800 \mathrm{~cm}^{-1}$ and 0.964 for frequencies greater than $1800 \mathrm{~cm}^{-1}$.
${ }^{\mathrm{c}}$ Reference 53. ${ }^{\mathrm{d}}$ Reference 51. ${ }^{\mathrm{e}}$ Reference $92 .{ }^{\mathrm{f}}$ Reference 54.
${ }^{\mathrm{g}}$ The CD_{2} twist and CD wag are strongly coupled.

Table 44: Observed and calculated vibrational frequencies $\left(\mathrm{cm}^{-1}\right)$ and intensities ${ }^{\mathbf{a}}$ for gauche 1,3-butadiene-d ${ }_{0}$

C_{2}	Approximate Description	OBS		Calculated ${ }^{\text {b }}$		OBS ${ }_{\text {Lit }}{ }^{\text {c }}$	OBS Lit $^{\text {d }}$	$\frac{\text { CALC }}{\mathrm{Lit}^{\text {e }}}$
A	$\mathrm{v}_{1} \quad \mathrm{CH}_{2}$ antisym str			3105	(70)	3103	3070	3105
	$\mathrm{v}_{2} \quad \mathrm{CH}_{2}$ sym str	3023	(117)	3027	(143)	3014	3023	3029
	v_{3} CH sym str			3018	(15)	2986	2990	3020
	$v_{4} \mathrm{C}=\mathrm{C}$ sym str	1614.5	(100)	1643	(100)	1633	1633	1646
	$v_{5} \quad \mathrm{CH}_{2} \mathrm{def}$	1428	(30)	1440	(18)	1425	1425	1447
	v_{6} C-H wag (i.p.)	-		1322	(15)			1328
	$v_{7} \quad \mathrm{CH}_{2}$ rock	1051	(20)	1051	(2)	1087	-	1055
	$\mathrm{v}_{8} \mathrm{C}-\mathrm{H}$ wag (o.p.)	993 ?	(13)	1000	(12)	983	984	1007
	$v_{9} \mathrm{CH}_{2}$ wag (o.p.)	-		930	(3)	915	920	938
	$v_{10} \mathrm{C}-\mathrm{C}$ str	869 ?	(1)	868	(2)	-		872
	$v_{11} \mathrm{CH}_{2}$ twist	734	(8)	743	(3)	727	730	748
	$v_{12} \mathrm{C}=\mathrm{C}-\mathrm{C}$ angle bend	270.8	(50)	268	(4)			271
	v_{13} torsion	$214.9\left(0^{+}-2^{+}\right)^{\text {f }}$		154	(1)			158
B	$v_{14} \mathrm{CH}_{2}$ antisym str	-		3103	(3)	3103	3103	3104
	$v_{15} \mathrm{CH}_{2}$ sym str			3021	(11)	3014	3035	3024
	$v_{16} \mathrm{C}-\mathrm{H}$ antisym str			3008	(29)	2986	3010	3009
	$v_{17} \mathrm{C}=\mathrm{C}$ antisym str	-		1663	(2)	1612	1602	1668
	$\mathrm{v}_{18} \mathrm{CH}_{2} \mathrm{def}$	-		1416	(4)	1403	1403	1423
	v_{19} C-H wag (i.p.)	-		1291	(8)	-		1296
	$\mathrm{v}_{20} \mathrm{CH}_{2}$ rock	-		1088	(5)	-	1087	1094
	$\mathrm{v}_{21} \mathrm{C}-\mathrm{H}$ wag (o.p.)	1012?	(12)	1013	(0.2)	996	996	1020
	$\mathrm{v}_{22} \mathrm{CH}_{2}$ wag (o.p.)	-		932	(0.5)	914	914	940
	$\mathrm{v}_{23} \mathrm{C}=\mathrm{C}-\mathrm{C}$ angle bend	$589 ?$	(50)	609	(0.2)	596	596	612
	$\mathrm{v}_{24} \mathrm{CH}_{2}$ twist	-		465	(0.4)	470	470	468

${ }^{\text {a }}$ Relative intensities in parenthesis. Observed intensities indicate peak height.
${ }^{\mathrm{b}}$ B3LYP/6-311++g(d,p); frequencies scaled with a scaling factor of 0.985 for frequencies less than $1800 \mathrm{~cm}^{-1}$ and 0.964 for frequencies greater than $1800 \mathrm{~cm}^{-1}$.
${ }^{\mathrm{c}}$ Reference 55. ${ }^{\text {d }}$ Reference 44.
${ }^{\mathrm{e}}$ Reference 49 (B3LYP/aug-cc-pVTZ; frequencies scaled with a scaling factor of 0.985 for frequencies less than $1800 \mathrm{~cm}^{-1}$ and 0.964 for frequencies greater than $1800 \mathrm{~cm}^{-1}$).
${ }^{\mathrm{f}}$ Reference 92.

Table 45: Observed and calculated vibrational frequencies $\left(\mathrm{cm}^{-1}\right)$ and intensities ${ }^{\text {a }}$ for gauche 1,3-butadiene-2,3-d ${ }_{2}$

C_{2}	Approximate Description	OBS		Calculated ${ }^{\text {b }}$	
A	$v_{1} \mathrm{CH}_{2}$ antisym str	3085?	(33)	3104	(67)
	$\mathrm{v}_{2} \mathrm{CH}_{2}$ sym str	3013?	(22)	3022	(78)
	v_{3} CD sym str	-		2233	(31)
	$v_{4} \mathrm{C}=\mathrm{C}$ antisym str	-		1636	(100)
	$v_{5} \mathrm{CH}_{2}$ def	1426	(33)	1432	(24)
	v_{6} C-D wag (i.p.)	1174	(6)	1176	(9)
	$\mathrm{v}_{7} \mathrm{CH}_{2}$ rock	873 ?	(17)	879	(2)
	$v_{8} \mathrm{CD}$ wag (o.p.)	830	(4)	840	(3)
	$v_{9} \mathrm{CH}_{2}$ wag (o.p.)	-		930	(3)
	$v_{10} \mathrm{C}-\mathrm{C}$ str	824	(10)	822	(4)
	$v_{11} \mathrm{CH}_{2}$ twist	-		725	(2)
	$v_{12} \mathrm{C}=\mathrm{C}-\mathrm{C}$ angle bend	257.4	(11)	266	(4)
	v_{13} torsion	$194\left(0^{+}-2^{+}\right)^{\text {c }}$		136	(1)
B	$\mathrm{v}_{14} \mathrm{CH}_{2}$ antisym str	-		3102	(4)
	$v_{15} \mathrm{CH}_{2}$ sym str	-		3021	(7)
	$\mathrm{v}_{16} \mathrm{C}$-D str	-		2222	(18)
	$v_{17} \mathrm{C}=\mathrm{C}$ antisym str	-		1633	(2)
	$v_{18} \mathrm{CH}_{2}$ def	1367	(22)	1393	(8)
	$v_{19} \mathrm{C}-\mathrm{D}$ wag (i.p.)	-		939	(3)
	$\mathrm{v}_{20} \mathrm{CH}_{2}$ rock	1128 ?	(3)	1133	(0.03)
	$\mathrm{v}_{21} \mathrm{C}-\mathrm{D}$ wag (o.p.)	-		859	(0.5)
	$\mathrm{v}_{22} \mathrm{CH}_{2}$ wag (o.p.)	-		930	(2)
	$\mathrm{v}_{23} \mathrm{C}=\mathrm{C}-\mathrm{C}$ angle bend	-		592	(0.2)
	$\mathrm{v}_{24} \mathrm{CH}_{2}$ twist	439	(10)	434	(0.4)

${ }^{a}$ Relative intensities in parenthesis. Observed intensities indicate peak height.
${ }^{\mathrm{b}}$ B3LYP/6-311++g(d,p); frequencies scaled with a scaling factor of 0.985 for frequencies less than $1800 \mathrm{~cm}^{-1}$ and 0.964 for frequencies greater than $1800 \mathrm{~cm}^{-1}$.
${ }^{\mathrm{c}}$ Reference 92.

Table 46: Observed and calculated vibrational frequencies $\left(\mathrm{cm}^{-1}\right)$ and intensities ${ }^{\mathbf{a}}$ for gauche 1,3-butadiene-1,1,4,4-d

C	Approximate Description	OBS		Calculated ${ }^{\text {b }}$		$\frac{\text { OBS }}{\mathrm{Lit}^{\text {c }}}$	$\frac{\text { CALC }}{\text { Lit }^{\mathrm{d}}}$
A	$\mathrm{v}_{1} \mathrm{CD}_{2}$ antisym str	2324 ?	(13)	2312	(25)	2337	2321
	$\mathrm{v}_{2} \mathrm{CD}_{2}$ sym str	2234	(11)	2208	(16)	2228	2213
	$v_{3} \mathrm{CH}$ sym str	3026	(14)	3024	(62)	3025	3024
	$\mathrm{v}_{4} \mathrm{C}=\mathrm{C}$ antisym str	1580	(100)	1600	(100)	1592	1575
	$v_{5} \mathrm{CD}_{2}$ def	1075	(7)	1085	(3)	1084	1077
	v_{6} C-H wag (i.p.)	1307	(9)	1316	(6)	1305	1295
	$\mathrm{v}_{7} \mathrm{CD}_{2}$ rock	-		723	(1)	-	724
	$v_{8} \mathrm{CH}$ wag (o.p.)	929	(3)	935	(5)	927	912
	$v_{9} \mathrm{CD}_{2}$ wag (o.p.)	-		751	(2)	726	741
	$v_{10} \mathrm{C}-\mathrm{C}$ str	972	(2)	980	(7)	944	968
	$v_{11} \mathrm{CD}_{2}$ twist	595	(6)	601	(2)	594	603
	$v_{12} \mathrm{C}=\mathrm{C}-\mathrm{C}$ angle bend	249.1	(11)	231	(2)	-	236
	v_{13} torsion	$186\left(0^{+}-2^{+}\right)^{\text {e }}$		135	(0.7)	-	163
B	$v_{14} \mathrm{CD}_{2}$ antisym str	-		2310	(2)	2337	2319
	$v_{15} \mathrm{CD}_{2}$ str	-		2210	(3)	2228	2213
	$\mathrm{v}_{16} \mathrm{CH}$ sym str	-		3010	(25)	3013	3013
	$v_{17} \mathrm{C}=\mathrm{C}$ antisym str	$1596 ?$	(4)	1614	(2)	-	1576
	$v_{18} \mathrm{CD}_{2}$ def	-		1035	(2)	1031	1032
	v_{19} C-H wag (i.p.)	1292	(13)	1296	(3)	1285	1273
	$v_{20} \mathrm{CD}_{2}$ rock	-		954	(0.7)	-	945
	$v_{21} \mathrm{C}-\mathrm{H}$ wag (o.p.)	-		922	(2)	914	911
	$v_{22} \mathrm{CD}_{2}$ wag (o.p)	-		743	(0.4)	727	734
	$v_{23} \mathrm{C}=\mathrm{C}-\mathrm{C}$ angle bend	-		504	(0.2)	498	512
	$\mathrm{v}_{24} \mathrm{CD}_{2}$ twist	-		368	(0.2)	373	364

${ }^{\text {a }}$ Relative intensities in parenthesis. Observed intensities indicate peak height.
${ }^{\mathrm{b}}$ B3LYP/6-311++g(d,p); frequencies scaled with a scaling factor of 0.985 for frequencies less than $1800 \mathrm{~cm}^{-1}$ and 0.964 for frequencies greater than $1800 \mathrm{~cm}^{-1}$.
${ }^{\mathrm{c}}$ References 44, 55. ${ }^{\mathrm{d}}$ Reference 51. ${ }^{\text {e }}$ Reference 92.

Table 47: Observed and calculated vibrational frequencies $\left(\mathrm{cm}^{-1}\right)$ and intensities ${ }^{\mathbf{a}}$ for gauche 1,3-butadiene-d ${ }_{6}$

| | | Approximate |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| C_{2} | | Description |

${ }^{\text {a }}$ Relative intensities in parenthesis. Observed intensities indicate peak height.
${ }^{\mathrm{b}}$ B3LYP/6-311++g(d,p); frequencies scaled with a scaling factor of 0.985 for frequencies less than $1800 \mathrm{~cm}^{-1}$ and 0.964 for frequencies greater than $1800 \mathrm{~cm}^{-1}$.
${ }^{\mathrm{c}}$ References 44, 55. ${ }^{\mathrm{d}}$ Reference 51. ${ }^{\mathrm{e}}$ Reference 92.

The spectra obtained in the present study of these molecules are the best high quality spectra with the highest signal to noise and highest sensitivity. A large number of figures will be displayed to support that. Figures 60 to 63 present the full gas-phase Raman spectra of the 1,3 -butadiene- d_{0}, and its $2,3-\mathrm{d}_{2}, 1,1,4,4-\mathrm{d}_{4}$, and d_{6} isotopomers. In each case the computed spectra for the trans and gauche rotamers are shown for comparison. The observed spectra match the calculated trans spectra well, since this rotamer makes up $\sim 98 \%$ of the sample. The gauche bands are not evident in these figures. As discussed previously, the trans A_{g} bands are generally sharper and more intense than the broad B_{g} bands. Consequently, the computed spectral bands, all of which are generated with the same band shape, generally match the intensities of the observed A_{g} bands quite well, but appear too narrow with too much peak height for the B_{g} bands. These B_{g} bands are weaker in the first place and the fact that they are broad makes them appear weaker yet.

Figures 64 to 69 show the 1,3-butadiene spectral features in much greater detail. Figures 70 to 76 show the spectral features for the deuterated $2,3-\mathrm{d}_{2}$ isotopomer. Figures 77 to 83 show the spectral features for the deuterated $1,1,4,4-d_{4}$ isotopomer. Figures 84 to 89 show the spectral features for the deuterated d_{6} isotopomer. Tables 40 to 43 tabulate the assignments for the trans rotamers for the four isotopomers and Tables 44 to 47 do the same for the gauche rotamers.

Figure 70. Gas-phase Raman spectrum of 1,3-butadiene-2,3- d_{2} in the 200-3200 cm^{-1} region.

Figure 71. Gas-phase Raman spectrum of 1,3-butadiene-2,3- d_{2} in the $200-600 \mathrm{~cm}^{-1}$ region.

Figure 72. Gas-phase Raman spectrum of 1,3-butadiene-2,3- d_{2} in the $550-850 \mathrm{~cm}^{-1}$ region.

Figure 73. Gas-phase Raman spectrum of 1,3-butadiene-2,3- d_{2} in the $850-1200$ cm^{-1} region.

Figure 74. Gas-phase Raman spectrum of 1,3-butadiene-2,3- d_{2} in the $1100-1500 \mathrm{~cm}^{-1}$ region.

Figure 75. Gas-phase Raman spectrum of 1,3-butadiene-2,3- d_{2} in the $1450-1800 \mathrm{~cm}^{-1}$ region.

Figure 76. Gas-phase Raman spectrum of 1,3-butadiene-2,3- d_{2} in the $2800-3200 \mathrm{~cm}^{-1}$ region.

Figure 77. Gas-phase Raman spectrum of 1,3-butadiene-1,1,4,4- d_{4} in the $200-3200 \mathrm{~cm}^{-1}$ region.

Figure 78. Gas-phase Raman spectrum of 1,3-butadiene-1,1,4,4- d_{4} in the $200-600 \mathrm{~cm}^{-1}$ region.

Figure 79. Gas-phase Raman spectrum of 1,3-butadiene-1,1,4,4- d_{4} in the $650-1100 \mathrm{~cm}^{-1}$ region.

Figure 80. Gas-phase Raman spectrum of 1,3-butadiene-1,1,4,4- d_{4} in the $1100-1450 \mathrm{~cm}^{-}$ ${ }^{1}$ region.

Figure 81. Gas-phase Raman spectrum of 1,3-butadiene-1,1,4,4-d d_{4} in the $1450-1800$ cm^{-1} region.

Figure 82. Gas-phase Raman spectrum of 1,3-butadiene-1,1,4,4-d d_{4} in the 2150-2600 cm^{-1} region.

Figure 83. Gas-phase Raman spectrum of 1,3-butadiene-1,1,4,4-d d_{4} in the 2600-3200 cm^{-1} region.

Figure 84. Gas-phase Raman spectrum of 1,3-butadiene- d_{6} in the $200-2500 \mathrm{~cm}^{-1}$ region.

Figure 85. Gas-phase Raman spectrum of 1,3-butadiene $-d_{6}$ in the $200-600 \mathrm{~cm}^{-1}$ region.

Figure 86. Gas-phase Raman spectrum of 1,3-butadiene- d_{6} in the $600-950 \mathrm{~cm}^{-1}$ region.

Figure 87. Gas-phase Raman spectrum of 1,3-butadiene- d_{6} in the $950-1350 \mathrm{~cm}^{-1}$ region.

Figure 88. Gas-phase Raman spectrum of 1,3-butadiene $-d_{6}$ in the $1400-1800 \mathrm{~cm}^{-1}$ region.

Figure 89. Gas-phase Raman spectrum of 1,3-butadiene- d_{6} in the $2050-2450 \mathrm{~cm}^{-1}$ region.

Numerous overtones, combination bands, and hot bands were observed for the trans rotamers in addition to the bands for the vibrational fundamentals. Tables 48 to 51 tabulate all of the observed Raman bands for the isotopomers.

CONCLUSION

Because of the low abundance ($\sim 2 \%$) of the gauche rotamer, identification of the gauche Raman bands was quite a challenge. In addition to the bands for the trans and gauche fundamentals, the spectra are rich with overtone and combination bands as well as hot bands from low-lying vibrational states. A number of these have been discussed in previous chapters. The gauche bands were assigned on the basis of four criteria. First, their wavenumbers should not differ much from their computed values (generally ± 10 cm^{-1}). Second, their computed intensities should be relatively high, and most therefore would correspond to vibrations of A symmetry. Third, the intensity of the bands should increase significantly with temperature. At $260^{\circ} \mathrm{C}$ the gauche conformer should make up about 12% of the sample. Fourth, the current assignments were compared to the published matrix isolation work. ${ }^{44,55}$ The heated spectra were only obtained for the d_{0} parent sample so the benefit of observing intensity increase upon heating for the deuterated species was precluded. Consequently, the d_{0} assignments are most reliable, and six bands to the gauche rotamer were attributed with confidence. Four other assignments were more speculative. The d_{2} assignments were less reliable for which the spectra were not quite as good, but the spectra and assignments for the d_{4} and d_{6} isotopomers are quite reliable.

Table 48: Observed vibrational frequencies $\left(\mathrm{cm}^{-1}\right)$ and assignments for 1,3-butadiene- $\mathrm{d}_{\mathbf{0}}$

$v_{\text {OBS }}$		Assignment	Inferred
3282.4	mw	$2 \mathrm{v}_{4}$	$2 \times 1644.3=3288.6$
3278.0	mw	$2 v_{21}+v_{9}$?	$2 \times 1381^{\text {a }}+512.2=3274$
3187.7	s	$2 \mathrm{v}_{20}$?	$2 \times 1597^{\text {a }}=3194$
3099	s	v_{1}	3099
3087.6	vvw	$v_{4}+v_{5}$	$1644.3+1442.2=3086.5$
3034.9	m	-	
3023	m	v_{2} (gauche)	3023
3012.5	vvs	v_{2}	3012.5
3010 sh	vs	v_{3}	3010
2961.5	ms	-	
2933.1	w	$2 v_{16}+v_{5}$	$2 \times 748+1442.2=2938$
2923.4	vw	$v_{4}+v_{6}$	$1644.3+1277.8=2922.1$
2912.6	vvw	-	
2877.3	m	$2 v_{5}$?	$2 \times 1442.2=2884.4$
2864.0	vw	$2 v_{23}+v_{8}$?	$2 \mathrm{x} 990{ }^{\text {a }}+888.8=2869$
2842.5	mw	$\mathrm{v}_{4}+\mathrm{v}_{7}$?	$1644.3+1204.2=2848.5$
2757.9	mw	$2 \mathrm{v}_{21}$	$2 \times 1381^{\text {a }}=2762$
2688.5	vvvw	$v_{4}+2 v_{12}$	$1644.3+2 \times 525^{\text {a }}=2694$
2642.6	mw	$v_{5}+v_{7}$	$1442.2+1204.2=2646.4$
2524.5	w	-	
2479.6	vvw	-	
2403.8	mw	$2 v_{7}$	$2 \times 1204.2=2408.4$
2328.6	mw	$v_{5}+v_{8}$	$1442.2+888.8=2331$
2306.1	vvw	$2 v_{9}+v_{6}$	$2 \times 512.2+1277.8=2302.2$
2279.9	vvw	-	-
2152.3	vvw	$v_{4}+v_{9}$?	$1644.3+512.2=2156.5$
2092.5	mw	$v_{7}+v_{8}$	$1204.2+888.8=2093$
2088.2	m	-	
2009.7	vvw	$2 v_{16}+v_{9}$	$2 \times 748+512.2=2008$
1977.1	vvw	$2 \mathrm{v}_{23}$	$2 \mathrm{x} 990{ }^{\text {a }}=1980$
1933.1	vvw	-	
1894.7	w	$v_{20}+v_{24}$	$1597{ }^{\text {a }}+299^{\text {a }}=1896$
1873.9	vw	-	
1822.4	w	-	
1798.8	vw	$2 v_{24}+v_{7}$	$2 \times 299^{\text {a }}+1204.2=1802$
1790.7	w	$v_{6}+v_{9}$	$1277.8+512.2=1790$
1776.2	ms	$2 v_{8}$	$2 \mathrm{x} 888.8=1776.6$
1739.4	w	-	
1715.6	mw	$v_{7}+v_{9}$	$1204.2+512.2=1716.4$

Table 48: (Continued)

$v_{\text {OBS }}$		Assignment	Inferred
1679.6	s	$\mathrm{v}_{21}+\mathrm{v}_{24}$	$1381^{\text {a }}+299^{\text {a }}=1680$
1661.2	vs	$\mathrm{v}_{15}+\mathrm{v}_{16}(0-0)$	$909.5+748=1658$
1660.2	vs	(1-1)	1660.2
1658.9	vs	(2-2)	1658.9
1657.7	s	(3-3)	1657.7
1656.4	s	(4-4)	1656.4
1654.6	mw	(5-5)	1654.6
1652.9	mw	(6-6)	1652.9
1650.0	w	(7-7)	1650.0
1644.3	vvs	v_{4}	1644.3
1614.5	m	v_{4} (gauche)	1614.5
1583.4	w	-	
1536.5	mw	$v_{10}+v_{12}(0-0)$	$1014^{\text {a }}+525^{\text {a }}=1539$
1531.3	mw	(1-1)	1531.3
1524.5	w	(2-2)	1524.5
1518.8	vw	(3-3)	1518.8
1513.9	vw	(4-4)	1513.9
1508.3	vvw	(5-5)	1508.3
1442.2	vs	v_{5}	1442.2
1432.4	mw	$v_{11}+v_{12}$	$908^{\text {a }}+525^{\text {a }}=1433$
1428	w	v_{5} (gauche)	1428
1398.5	m	$v_{8}+v_{9}$	$888.8+512.2=1401$
1311	m	$v_{23}+v_{24}(3-3)$	1311
1307	s	$v_{23}+v_{24}(2-2)$	1307
1301	s	$v_{23}+v_{24}(1-1)$	1301
1298	s	$v_{23}+v_{24}(0-0)$	$990^{\text {a }}+299^{\text {a }}=1289$
1283.6	m	-	
1277.8	vs	v_{6}	1277.8
1204.2	vs	v_{7}	1204.2
1193.5	mw	-	
1172.8	mw	$v_{10}+v_{13}(0-1)$	$1014^{\text {a }}+162.4^{\text {a }}=1176$
1167.7	mw	(1-2)	1167.7
1162.6	mw	(2-3)	1162.6
1157.9	w	(3-4)	1157.9
1153.5	vw	(4-5)	1153.5
1149.0	vvw	(5-6)	1149.0
1145.2	vvw	(6-7)	1145.2
1069.8	w	$v_{11}+v_{13}$	$908^{\text {a }}+162.4{ }^{\text {a }}=1070$
1051	vvw	v_{7} (gauche)	1051
1048.9	vvw	$2 v_{12}$	$2 \times 525^{\text {a }}=1050$

Table 48: (Continued)

$v_{\text {OBS }}$		Assignment	Inferred
1023.2	vvw	$2 v_{9}$	$2 \times 512.2=1024.4$
1012	vvw	v_{21} (gauche)?	1012
993	vvw	v_{8} (gauche)?	993
977	vvw	v_{14}	977
919.5	mw	-	-
909.5	vw	v_{15}	909.5
888.8	ms	v_{8}	888.8
869	w	v_{10} (gauche)?	869
748	w	v_{16}	748
734	vvw	v_{11} (gauche)	734
682.8	m	$v_{12}+{ }_{13}(0-1)$	$525^{\mathrm{a}}+162.4^{\mathrm{a}}=687$
676.8	m	(1-2)	676.8
670.5	m	(2-3)	670.5
664.3	m	(3-4)	664.3
657.8	mw	(4-5)	657.8
650.7	w	(5-6)	650.7
644.3	vw	(6-7)	644.3
638.8	vw	(7-8)	638.8
632.9	vvw	(8-9)	632.9
589	w	v_{23} (gauche)?	589
535.3	w	-	-
512.2	vvs	v_{9}	512.2
322.4	ms	$2 v_{13}(0-2)$ trans	$2 \times 162.4^{\text {a }}=324.8$
317.3	ms	(1-3)	317.3
311.9	ms	(2-4)	311.9
306.4	ms	(3-5)	306.4
300.4	m	(4-6)	300.4
293.6	m	(5-7)	293.6
286.3	m	(6-8)	286.3
282.0	w	($0^{-}-2^{-}$) gauche	$282.0^{\text {a }}$
279.0	w	$2 v_{13}(7-9)$ trans	279.0
275.1	vw	-	
270.8	m	v_{12} (gauche)	270.8
261.9	vvw	$\left(1^{+}-3^{+}\right)$gauche	$261.9^{\text {a }}$
255.3	vvw	-	
226.7	vvw	-	
214.9	vw	$\left(0^{+}-2^{+}\right)$gauche	$214.9{ }^{\text {a }}$

[^12]Table 49: Observed vibrational frequencies (cm^{-1}) and assignments for 1,3-butadiene-2,3-d ${ }_{2}$

$\mathrm{V}_{\text {OBS }}$		Assignment	Inferred
3190.1	mw	$2 \mathrm{v}_{22}+\mathrm{v}_{6}$	$2 \times 1127^{\text {a }}+935.1=3189$
3164.6	ms	-	-
3097.6	s	v_{1}	3097.6
3085	m	v_{1} (gauche)?	3085
3050.9	ms	$v_{4}+v_{5}$	$1623.6+1427.8=3051.4$
3038.6	m	-	
3013	w	v_{2} (gauche)?	3013
3004.0	vs	v_{2}	3004.0
2948.6	m	-	-
2852.1	mw	$2 v_{5}$	$2 \times 1427.8=2855.6$
2840.8	mw	$v_{4}+v_{7}$	$1623.6+1220.1=2843.7$
2831.9	mw	-	
2746.4	w	$2 v_{21}$	$2 \times 1374{ }^{\text {a }}=2748$
2744.1	w	$v_{3}+v_{9}$	$2248.5+496.2=2744.7$
2705.3	mw	-	-
2644.5	mw	$v_{5}+v_{7}$	$1427.8+1220.1=2647.9$
2556.3	mw	$v_{4}+v_{6}$	$1623.6+935.1=2558.7$
2527.9	vw	$\mathrm{v}_{18}+\mathrm{v}_{24}$	$2243^{\text {a }}+287^{\text {a }}=2530$
2501.4	mw	$v_{4}+v_{8}$	$1623.6+882.0=2505.6$
2492.7	m	-	
2437.5	w	$2 v_{7}$	$2 \times 1220.1=2440.2$
2423.2	mw	-	-
2362.8	mw	$v_{5}+v_{6}$	$1427.8+935.1=2362.9$
2308.7	ms	$v_{5}+v_{8}$	$1427.8+882.0=2309.8$
2289.6	mw	$2 \mathrm{v}_{20}-\mathrm{v}_{8}$	$2 \mathrm{x} 1586{ }^{\text {a }}-882.0=2290$
2252.5	vs	$2 \mathrm{v}_{22}$	$2 \times 1127^{\text {a }}=2254$
2248.5	m	v_{3}	2248.5
2232	mw	-	
2211.8	m	-	
2153.4	m	$v_{6}+v_{7}$	$935.1+1220.1=2155.2$
2118.2	vw	$v_{4}+v_{9}$	$1623.6+496.2=2119.8$
2097.5	m	$\mathrm{v}_{7}+\mathrm{v}_{8}$?	$1220.1+882.0=2102.1$
1870.8	mw	$2 v_{6}$	$2 \mathrm{x} 935.1=1870.2$
1840.9	w	$2 v_{12}+v_{8}(0-1)$	$2 \mathrm{x} 480{ }^{\text {a }}+882.0=1842$
1836.2	w	(1-2)	1836.2
1831.5	vw	(2-3)	1831.5
1824.0	mw	$2 v_{15}$	$2 \mathrm{x} 911=1822$

Table 49: (Continued)

$v_{\text {OBS }}$		Assignment	Inferred
1817.1	ms	$\begin{gathered} v_{6}+v_{8} \\ 2 v_{11} \end{gathered}$	$\begin{gathered} 935.1+882.0=1817 \\ 2 \times 908^{a}=1816 \end{gathered}$
1793.3	mw	$2 v_{24}+v_{7}$	$2 \times 287^{\text {a }}+1220.1=1794$
1763.9	vs	$2 v_{8}$	$2 \times 882.0=1764$
1760.3	ms	$\mathrm{v}_{10}+\mathrm{v}_{11}$	$850^{\mathrm{a}}+908^{\mathrm{a}}=1758$
1717.4	mw	$v_{7}+v_{9}$	$1220.1+496.2=1716.3$
1660.7	s	$\mathrm{v}_{21}+\mathrm{v}_{24}$	$1374{ }^{\text {a }}+287^{\text {a }}=1661$
1655.3	vs	$v_{15}+v_{16}(0-0)$	$911+743=1654$
1654.1	vs	(1-1)	1654.1
1652.9	s	(2-2)	1652.9
1651.9	s	(3-3)	1651.9
1650.8	ms	(4-4)	1650.8
1649.5	mw	(5-5)	1649.5
1633 br	m	-	
1623.6	vvs	v_{4}	1623.6
1613.9	vs	-	
1572.4	S	-	
1567.9	s	-	
1560.7	mw	-	
1487.4	mw	$2 v_{16}$	$2 \times 743=1486$
1431.7	vs	$v_{6}+v_{9}$	$935.1+496.2=1431.3$
1427.8	vvvs	v_{5}	1427.8
1426	mw	v_{5} (gauche)	1426
1411.4	vs	$v_{22}+v_{24}$	$1127^{\text {a }}+287^{\text {a }}=1414$
1376.1	s	$v_{8}+v_{9}$	$882.0+496.2=1378.2$
1367	w	v_{18} (gauche)	1367
1329.9	w	-	
1327.5	s	$v_{10}+v_{12}(0-0)$	$850^{\mathrm{a}}+480^{\mathrm{a}}=1330$
1325.7	s	(1-1)	1325.7
1323.7	S	(2-2)	1323.7
1321.6	ms	(3-3)	1321.6
1319.6	m	(4-4)	1319.6
1317.9	m	(5-5)	1317.9
1287.2	ms	-	
1128	vvw	v_{20} (gauche)?	1128
1220.1	vs	v_{7}	1220.1
1179.0	s	-	-
1174	vw	v_{6} (gauche)	1174
1072.3	m	-	-
1059.2	mw	$v_{11}+v_{13}$	$908^{\text {a }}+153^{\text {a }}=1061$

Table 49: (Continued)

$V_{\text {OBS }}$		Assignment	Inferred
1000.8	vvw	$\mathrm{v}_{10}+\mathrm{v}_{13}(0-1)$	$850^{\mathrm{a}}+153^{\mathrm{a}}=1003$
996.9	w	$(1-2)$	996.9
994.2	mw	$(2-3)$	994.2
992.1	w	$(3-4)$	992.1
989.9	vvw	$(4-5)$	989.9
986.6	vvw	$(5-6)$	986.6
984.2	vvw	$(6-7)$	984.2
982.0	vvw	$(7-8)$	982.0
959.6	m	$2 \mathrm{v}_{12}(0-0)$	$2 \times 480^{\mathrm{a}}=960$
955.8	ms	$(1-1)$	955.8
952.2	ms	$(2-2)$	952.2
948.7	ms	$(3-3)$	948.7
945.5	mw	$(4-4)$	945.5
942.4	w	$(5-5)$	942.4
935.1	vvs	v_{6}	935.1
911 sh	vw	v_{15}	911 sh
882.0	s	v_{8}	882.0
873	mw	$\mathrm{v}_{7}($ gauche $) ?$	873
824	vvw	$\mathrm{v}_{10}($ gauche $)$	824
757.3	mw	-	-
743	vw	v_{16}	743
633.5	vw	$\mathrm{v}_{12}+\mathrm{v}_{13}(0-1)$	$480^{\mathrm{a}}+153^{\mathrm{a}}=633$
631.3	m	$(1-2)$	631.3
627.4	ms	$(2-3)$	627.4
622.9	ms	$(3-4)$	622.9
618.7	m	$(4-5)$	618.7
614.3	m	$(5-6)$	614.3
610.1	mw	$(6-7)$	610.1
605.6	w	$(7-8)$	605.6
600.7	w	$(8-9)$	600.7
578.1	m	-	-
575.3	m	$2 \mathrm{v}_{24}$	$2 \times 287^{\mathrm{a}}=574$
572.9	mw	-	-
496.2	vvs	v_{9}	496.2
439	vw	$\mathrm{v}_{24}($ gauche $)$	439
303.8	ms	$2 \mathrm{v}_{13}(0-2)$ trans	$2 \times 153^{\mathrm{a}}=306$
302.0	w	$\left(2^{-}-4\right)$ gauche	302.0^{a}
299.1	ms	$2 \mathrm{v}_{13}(1-3)$ trans	299.1
294.1	ms	$(2-4)$	294.1
288.9	ms	$(3-5)$	288.9

Table 49: (Continued)

$V_{\text {OBS }}$		Assignment	Inferred
283.4	ms	$(4-6)$	283.4
281.7	w	$\left(2^{+}-4^{+}\right)$gauche	281.7^{a}
276.7	ms	$2 \mathrm{v}_{13}(5-7)$ trans	276.7
270.4	m	$(6-8)$	270.4
263.7	m	$(7-9)$	263.7
257.4	mw	$\mathrm{v}_{12}($ gauche $)$	257.4
250.1	mw	$\left(0^{-}-2^{-}\right)$gauche	250.1^{a}
244.4	mw	-	
242.4	w	-	
217.7	vw	$\left(1^{+}-3^{+}\right)$gauche	217.7^{a}
204	vw	-	
194	vvw	$\left(0^{+}-2^{+}\right)$gauche	194^{a}
177	vvw	-	

[^13]Table 50: Observed vibrational frequencies $\left(\mathrm{cm}^{-1}\right)$ and assignments for 1,3-butadiene-1,1,4,4-d ${ }_{4}$

$v_{\text {OBS }}$		Assignment	Inferred
3071.9	w	$2 v_{11}+v_{4}$	$2 \times 728^{\text {a }}+1613.7=3070$
3061.7	mw	$2 \mathrm{v}_{20}$	$2 \times 1533{ }^{\text {a }}=3066$
3026	mw	v_{3} (gauche)	3026
3012.1	s	v_{3}	3012.1
2985.2	w	-	
2901.5	mw	$4 \mathrm{v}_{15}$	$4 \times 726=2904$
2897.1	m	-	
2796.1	w	$2 v_{23}+v_{7}$	$2 \times 813^{\text {a }}+1168.0=2794$
2783.3	w	$v_{4}+v_{7}$	$1613.7+1168.0=2782$
2650.8	vvw	$v_{4}+v_{5}$	$1613.7+1040.1=2653.8$
2560.2	mw	$v_{20}+v_{21}$	$1533{ }^{\text {a }}+1030^{\text {a }}=2563$
2464.4	w	$v_{6}+v_{7}$	$1296.9+1168.0=2464.9$
2358.8	m	$v_{4}+v_{8}$?	$1613.7+740.0=2353.7$
2338.1	m	$\begin{gathered} v_{5}+v_{6} \\ 2 v_{7} \end{gathered}$	$\begin{gathered} 1040.1+1296.9=2337.0 \\ 2 \times 1168.0=2336 \end{gathered}$
2324	w	v_{1} (gauche)	2324
2316	m	v_{1}	2316
2259.2	w	-	
2234	w	v_{2} (gauche)	2234
2224.5	vs	v_{2}	2224.5
2208.3	w	$v_{5}+v_{7}$	$1040.1+1168.0=2208.1$
2056.9	vw	$2 \mathrm{v}_{21}$	$2 \times 1030^{\text {a }}=2060.0$
1904.2	mw	$v_{7}+v_{8}$?	$1168.0+740.0=1908.0$
1858.6	vw	-	
1791.1	mw	$v_{20}+v_{24}$	$1533{ }^{\text {a }}+257.9^{\text {a }}=1791$
1779.2	vw	$v_{5}+v_{8}$	$1040.1+7400=1780.1$
1750.8	w	$v_{6}+v_{9}$	$1296.9+452.6=1749.5$
1658.2	ms	-	
1633.1	vs	-	
1619.6	vs	$v_{7}+v_{9}$	$1168.0+452.6=1620.6$
1613.7	vvvs	v_{4}	1613.7
1598.9	s	$2 v_{13}+v_{6}$	$2 \times 149.2^{\text {a }}+1296.9=1595.3$
1596	m	v_{17} (gauche)?	1596
1580	s	v_{4} (gauche)	1580
1530.1	ms	$2 v_{12}+v_{8}$	$2 \times 396.8^{\text {a }}+740.0=1533.6$
1516.1	mw	-	-
1493.6	mw	$v_{5}+v_{9}$	$1040.1+452.6=1492.7$
1486.9	mw	-	

Table 50: (Continued)

$v_{\text {OBS }}$		Assignment	Inferred
1478.6	ms	$2 \mathrm{v}_{8}$	$2 \times 740.0=1480.0$
1467.8	mw	$2 v_{13}+v_{7}$	$2 \mathrm{x} 149.2^{\mathrm{a}}+1168.0=1466.4$
1453.1	w	$2 \mathrm{v}_{11}$	$2 \times 728^{\text {a }}=1456$
1453.1	w	$2 v_{15}$	$2 \times 726=1452$
1349.7	ms	$v_{10}+v_{12}(0-0)$	$955^{\text {a }}+396.8{ }^{\text {a }}=1352$
1346.7	ms	(1-1)	1346.7
1343.3	m	(2-2)	1343.3
1339.9	w	(3-3)	1339.9
1307	w	v_{6} (gauche)	1307
1296.9	vvs	v_{6}	1296.9
1292	mw	v_{19} (gauche)	1292
1276.9	ms	-	
1256.2	w	$2 v_{24}+v_{8}$	$2 \times 257.9^{\text {a }}+740.0=1255.8$
1248.6	vw	$2 v_{12}+v_{9}$	$2 \times 396.8^{\text {a }}+452.6=1246.2$
1218.7	ms	$2 v_{16}$?	$2 \times 606.1=1212.2$
1194.2	ms	$v_{8}+v_{9}$	$740.0+452.6=1192.6$
1168.0	vs	v_{7}	1168.0
1123.3	mw	$v_{11}+v_{12}$	$728^{\text {a }}+396.8^{\text {a }}=1125.0$
1101.9	mw	$v_{10}+v_{13}(0-1)$	$955^{\text {a }}+149.2^{\text {a }}=1104$
1098.4	mw	(1-2)	1098.4
1094.8	mw	(2-3)	1094.8
1090.8	w	(3-4)	1090.8
1086.5	vw	(4-5)	1086.5
1075	w	v_{5} (gauche)	1075
1040.1	vs	v_{5}	1040.1
1016	w	-	
972	vw	v_{10} (gauche)	972
940	vvw	v_{14}	940
929.4	vw	v_{8} (gauche)	929.4
873.6	m	$v_{11}+v_{13}$	$728^{\text {a }}+149.2^{\text {a }}=877$
806.9	ms	-	
740.0	ms	v_{8}	740.0
726	ms	v_{15}	726
606.1	m	v_{16}	606.1
595 br	w	v_{11} (gauche)	595
580.6	m	$v_{11}-v_{13}$	$728^{\text {a }}-149.2^{\text {a }}=579$
557.9	ms	-	
545.3	mw	$v_{12}+v_{13}(0-1)$	$396.8^{\text {a }}+149.2^{\text {a }}=546.0$
542.8	m	(1-2)	542.8

Table 50: (Continued)

$V_{\text {OBS }}$		Assignment	Inferred
538.7	m	$(2-3)$	538.7
534.8	m	$(3-4)$	534.8
530.9	m	$(4-5)$	530.9
527.8	mw	$(5-6)$	527.8
521.2	m	-	
517.9	m	$2 v_{24}(0-2)$	$2 \times 257.9^{\mathrm{a}}=515.8$
515.8	m	$(1-3)$	515.8
513.9	m	$(2-4)$	513.9
475.9	ms	-	
452.6	vs	v_{9}	452.6
295.3	mw	$2 v_{13}(0-2)$ trans	$2 \times 149.2^{\mathrm{a}}=298.4$
290.9	m	$(1-3)$	290.9
289.2	w	$\left(2^{2}-4^{-}\right)$gauche	289.2^{a}
286.6	m	$2 v_{13}(2-4)$ trans	286.6
282.1	m	$(3-5)$	282.1
277.2	m	$(4-6)$	277.2
272.2	m	$(5-7)$	272.2
270.0	w	$\left(2^{+}-4^{+}\right)$gauche	270.0^{a}
267.5	mw	$2 v_{13}(6-8)$ trans	267.5
263.8	mw	$\left(1^{\prime}-3^{-}\right)$gauche	263.8^{a}
260.1	m	$2 v_{13}(7-9)$ trans	260.1
249.1	mw	$\mathrm{v}_{12}($ gauche $)$	249.1
243.3	m	$\left(0^{-}-2^{-}\right)$gauche	243.3^{a}
240.2	vvw	-	
232.2	mw	-	
207.6	vw	-	
204	vw	$\left(1^{+}-3^{+}\right)$gauche	
198	vw	-	204^{a}
186	vvw	$\left(0^{+}-2^{+}\right)$gauche?	

[^14]Table 51: Observed vibrational frequencies $\left(\mathrm{cm}^{-1}\right)$ and assignments for 1,3-butadiene-d ${ }_{6}$

$v_{\text {Obs }}$		Assignment	Inferred
3169.5	m	-	
3127.9	vvw	$v_{3}+v_{6}$	$2212+919=3131$
3106.6	vvw	$2 v_{12}+v_{1}$	$2 \times 381^{\text {a }}+2343.5=3105.5$
3045.4	vvw	$2 v_{20}$?	$2 \times 1520^{a}=3040$
2786.5	mw	-	
2771.8	mw	-	
2753.3	w	$2 \mathrm{v}_{22}+\mathrm{v}_{8}$?	$2 \times 1005^{\text {a }}+739.2=2749$
2635.6	mw	$v_{4}+v_{5}$	$1588.8+1047=2636$
2565.7	vvw	$v_{20}+v_{21}$	$1520^{\text {a }}+1048^{\text {a }}=2568$
2523.0	m	-	
2515.7	mw	$2 v_{10}+v_{5}$?	$2 \times 736^{\text {a }}+1047=2519$
2505.3	mw	$v_{4}+v_{6}$	$1588.8+919=2508$
2389.2	m	$2 v_{16}+v_{7}$	$2 \times 597+1192=2386$
2387.6	m	$2 v_{7}$	$2 \times 1192=2384$
2371.3	w	-	
2343.5	s	v_{1}	2343.5
2329.5	mw	$v_{4}+v_{8}$	$1588.8+739=2328$
2318	m	v_{1} (gauche)	2318
2265	vs	v_{2}	2265
2255.6	vs	-	
2242.9	s	$2 v_{16}+v_{5}$	$2 \times 597^{\text {a }}+1047=2241$
2237.5	s	$v_{5}+v_{7}$	$1047+1192=2239$
2222	mw	v_{3} (gauche)	2222
2212	vs	v_{3}	2212
2191.3	mw	-	
2175.6	w	$2 v_{11}+v_{8}$	$2 \times 719^{\text {a }}+739=2177$
2151.2	mw	-	
2141.5	vvvw	$2 v_{15}+v_{8}$	$2 \times 700+739=2139$
2119.6	m	-	
2114.9	m	$v_{6}+v_{7}$	$919+1192=2111$
2102.6	w	-	
2092.7	m	$2 v_{5}$	$2 \times 1047=2094$
2083.6	vw	-	
2075.6	m	-	
2051.7	w	-	
2026.3	w	$v_{4}+v_{9}$	$1588.8+440=2029$

Table 51: (Continued)

$v_{\text {OBS }}$		Assignmen	Inferred
1965.6	w	$v_{5}+v_{6}$	$1047+919=1966$
1936.2	mw	$2 v_{16}+v_{8}$	$2 \times 597+739.2=1933$
1932.1	mw	$v_{7}+v_{8}$	$1192+739=1931$
1836.4	vw	$2 v_{6}$	$2 \mathrm{x} 919=1838$
1788.3	vw	$v_{5}+v_{8}$	$1047+739=1786$
1769.1	m	$\mathrm{v}_{20}+\mathrm{v}_{24}$	$1520^{a}+252^{a}=1772$
1746.8	mw	-	
1659.5	s	$v_{6}+v_{8}$	$919+739=1658$
1605.1	ms	$2 v_{14}$	$2 \times 804=1608$
1590.8	vvs	-	
1588.8	vvvs	v_{4}	1588.8
1579	s	v_{4} (gauche)	1579
1576.9	s	-	
1573.9	s	-	
1533.4	w	$2 v_{23}$?	$2 \times 769^{\text {a }}=1538$
1505.9	mw	-	
1502.9	mw	$v_{14}+v_{15}$	$804+700=1504$
1493.2	m	-	
1484.1	m	$v_{5}+v_{9}$	$1047+440=1487$
1476.9	s	$2 v_{8}$	$2 \times 739=1478$
1470.9	mw	$2 v_{10}$	$2 \times 736^{\text {a }}=1472$
1434.3	vw	$2 v_{11}$	$2 \times 719^{\text {a }}=1438$
1400.2	ms	$2 v_{15}$	$2 \times 700=1400$
1391.9	m	-	
1360.4	mw	$v_{6}+v_{9}$	$919+440=1359$
1297.7	vvvw	$v_{15}+v_{16}$	$700+597=1297$
1196.4	ms	$2 v_{13}+v_{6}$	$2 \times 140^{\text {a }}+919=1199$
1192	ms	v_{7}	1192
1172.9	ms	-	
1147.4	ms	$v_{3}-2 v_{12}$	$2212-2 \times 381^{\text {a }}=1450$
1047	vs	v_{5}	1047
1008	m	v_{5} (gauche)	1008
995	m	v_{20} (gauche)?	995
919	vvvs	v_{6}	919
880	vw	v_{19} (gauche)	881
855.3	ms	$v_{11}+v_{13}$	$719^{a}+140^{a}=859$
818	w	v_{6} (gauche)?	818
804	ms	v_{14}	804
794.1	w	$v_{2}-2 v_{10}$	$2265-2 \times 736^{\text {a }}=793$

Table 51: (Continued)

$V_{\text {OBS }}$		Assignment	Inferred
784.2	ms	-	
766.6	mw	$2 \mathrm{v}_{12}(0-0)$	$2 \times 381^{\mathrm{b}}=762$
763.7	mw	$(1-1)$	763.7
760.9	w	$(2-2)$	760.9
757.8	mw	$(3-3)$	757.8
752.7	mw	$(4-4)$	752.7
750.4	w	$(5-5)$	750.4
739	vs	v_{8}	739
734.0	ms	-	
700 br	m	v_{15}	700
597 br	m	v_{16}	597
587	mw	$\mathrm{v}_{11}($ gauche $) ?$	587
525.9	w	$\mathrm{v}_{12}+\mathrm{v}_{13}(0-1)$	$381^{\mathrm{a}}+140^{\mathrm{a}}=521$
523.5	m	$(1-2)$	523.5
520.0	ms	$(2-3)$	520.0
516.7	ms	$(3-4)$	516.7
513.4	m	$2-5)$	513.4
503.6	w	$2 \mathrm{v}_{24}$	$2 \times 252^{\mathrm{a}}=504$
499	vw	$\mathrm{v}_{23}($ gauche $)$	499
440	vvs	v_{9}	440
360	w	$\mathrm{v}_{24}($ gauche $)$	360
280.9	m	$2 \mathrm{v}_{13}(0-2)$ trans	$2 \times 140^{\mathrm{a}}=280$
276.9	ms	$(1-3)$	276.9
273.1	ms	$(2-4)$	273.1
268.9	ms	$(3-5)$	268.9
264.7	ms	$(4-6)$	264.7
260.1	m	$(5-7)$	260.1
257.2	ms	$(6-8)$	257.2
251.3	vw	$\left(2^{+}-4^{+}\right)$gauche	251.3^{a}
248.9	m	$2 v_{13}(7-9)$ trans	248.9
244.4	m	$2 v_{13}(8-10)$ trans	244.4
238.5	m	$v_{12}($ gauche $)$	238.5
233.7	vw	-	228.8^{a}
228.8	vw	$\left(0^{-}-2^{-}\right)$gauche	
225.1	w	-	196.7^{a}
196.7	w	$\left(1^{+}-3^{+}\right)$gauche	180^{a}
180	vvw	$\left(0^{+}-2^{+}\right)$gauche	

[^15]
CHAPTER XI

PRELIMINARY STUDIES ON THE VIBRATIONAL SPECTRA, STRUCTURE, AND THEORETICAL CALCULATIONS OF 2-CHLORO- AND 3-CHLOROPYRIDINE AND 2-BROMO- AND 3BROMOPYRIDINE IN THEIR GROUND STATES

INTRODUCTION

In this chapter the investigation of the structure and vibrations of pyridine and substituted pyridines in their ground and excited states has been extended to chloro and bromopyridines. The extensive investigations of the vibrational analyses of pyridine, 2FPy and 3FPy in their electronic ground and excited states were reported in Chapters IV, V, VI and VII. From the previous fluoropyridine studies it was found that the substitution of a fluorine atom on the pyridine ring results in significant π boding interactions within the ring. Therefore, it was of interest to determine whether similar effects would occur with the substitution of chlorine and bromine atoms on the pyridine ring. Green and co-workers ${ }^{33}$ have previously reported the infrared and Raman spectra and partial assignments for chloro and bromopyridine molecules in their electronic ground states, but no structural information was reported. In the present study, the infrared spectra were recorded and ground state vibrational frequencies of 2-chloro- and 3-chloropyridine, and 2-bromo- and 3-bromopyridine molecules were assigned.

Figure 90. Calculated structures of (a) pyridine- d_{0}, (b) 2-chloropyridine, and (c) 3-chloropyridine in their S_{0} ground electronic state using MP2/cc-pVTZ level of theory.

Figure 91. Calculated structures of (a) pyridine- d_{0}, (b) 2-bromopyridine, and (c) 3-bromopyridine in their S_{0} ground electronic state using MP2/cc-pVTZ level of theory.

DFT calculations were used to predict the vibrational frequencies of the twentyseven fundamentals for each molecule.

EXPERIMENTAL

2-Chloro- and 3-chloropyridine, and 2-bromo- and 3-bromopyridine molecules (99% purity) were purchased from Aldrich and purified by trap to trap distillation. The liquid-phase mid-infrared spectra of these molecules were collected on a Bruker Vertex 70 FT spectrometer equipped with a globar light source, a KBr beamsplitter and deuterated lanthanum triglycine sulfate (DLaTGS) detector. A capillary film of sample between KBr windows was used in each case for mid-infrared experiments. Typically 1024 scans were collected using a resolution of $0.5 \mathrm{~cm}^{-1}$. The liquid-phase far infrared spectra $\left(60-600 \mathrm{~cm}^{-1}\right)$ were also collected on the same instrument equipped with a mylar beamsplitter, and a mercury cadmium telluride (MCT) detector. Liquid films between polyethylene windows were used for far infrared experiments.

THEORETICAL CALCULATIONS

The structures and vibrational frequencies of 2-chloro- and 3-chloropyridine, and 2-bromo- and 3-bromopyridine molecules for the electronic ground state were calculated using the Gaussian 03 program package. ${ }^{65}$ Ab initio second order Moller-Plesset (MP2) level of theory with the cc-pVTZ basis set was used to find the optimized geometry. Figure 90 shows the optimized geometry of 2-chloro- and 3-chloropyridine, and Figure 91 shows the optimized geometry 2-bromo- and 3-bromopyridine. The DFT-B3LYP
level of theory with the $6-311++G(d, p)$ basis set was used to calculate the vibrational frequencies and the infrared intensities. Based on previous work, ${ }^{66-70}$ a scaling factor of 0.964 was used for the C-H stretching vibrational frequencies and a factor of 0.985 for the lower frequencies.

RESULTS AND DISCUSSION

Structures

Figures 92 and 93 show the liquid-phase and calculated infrared spectra of 2chloropyridine (2ClPy) and 3-chloropyridine (3ClPy). The substitution of the chlorine atom on the pyridine ring had only a minor effect on the ring bond distances and angles. The notable exception is the $\mathrm{N}-\mathrm{C}(\mathrm{Cl})$ bond distance for 2 ClPy which is only $1.325 \AA$ as compared to $1.340 \AA$ for pyridine and $1.342 \AA$ for the other N-C bond of 2ClPy. Clearly, the substitution of the electronegative chlorine atom resulted in the strengthening of the adjacent $\mathrm{N}-\mathrm{C}$ bond. There was insignificant effect observed for 3ClPy since the chlorine atom is distant from the nitrogen atom. Here the $\mathrm{N}-\mathrm{C}$ bond distance of $1.337 \AA$ is similar to the $1.340 \AA$ value for pyridine.

Figures 94 and 95 show the liquid-phase and calculated infrared spectra of 2bromopyridine (2 BrPy) and 3-bromopyridine (3 BrPy). The substitution of the bromine atom on the pyridine ring had only a minor effect on the ring bond distances and angles as seen for other halopyridines. The notable exception was the $\mathrm{N}-\mathrm{C}(\mathrm{Br})$ bond distance for 2 BrPy which is only $1.325 \AA$ as compared to $1.340 \AA$ for pyridine and $1.343 \AA$ for the other $\mathrm{N}-\mathrm{C}$ bond of 2 BrPy .

Figure 92. Liquid and calculated IR spectra of 2-chloropyridine.

Table 52: Observed and calculated vibrational frequencies (cm^{-1}) and intensities for 2-chloropyridine

Cs	v	Approximate Description	Infrared		Calculated ${ }^{\text {a }}$		GKP ${ }^{\text {b }}$
					v	Intensity	
A'	1	C-H stretch	3085 sh	mw	3096	(2)	3080
(i.p.)	2	C-H stretch	3073 sh	mw	3085	(15)	3080
	3	C-H stretch	3054	mw	3065	(9)	3057
	4	C-H stretch	3054	mw	3049	(16)	3057
	5	Ring stretch	1579	vs	1588	(61)	1573
	6	Ring stretch	1568	vs	1585	(99)	1565
	7	Ring stretch	1453	vs	1461	(77)	1452
	8	Ring stretch	1420	vs	1427	(100)	1417
	9	C-H wag	1286	m	1295	(3)	1282
	10	Ring stretch	1251	w	1274	(3)	1253
	11	C-H wag	1148	ms	1155	(4)	1146
	12	C-H wag ${ }^{\text {c }}$	1118	vs	1121	(123)	1104
	13	C-H wag	1083	m	1088	(49)	1079
	14	Ring stretch ${ }^{\text {c }}$	1044	m	1047	(17)	1041
	15	Ring bend	990	m	990	(10)	991
	16	C-Cl stretch ${ }^{\text {d }}$	725	s	726	(57)	701
	17	Ring bend	618	m	619	(3)	615
	18	Ring bend ${ }^{\text {d }}$	-		413	(14)	$404^{\text {e }}$
	19	C-Cl wag	-		307	(2)	$315^{\text {e }}$
A"	20	C-H wag	980	w	992	(0.01)	960
(o.p.)	21	C-H wag	960	m	965	(0.4)	934
	22	C-H wag	882	w	880	(0.03)	882
	23	C-H wag	765	vs	765	(84)	761
	24	Ring twist	-		735	(4)	722
	25	Ring bend	481	m	484	(6)	457
	26	Ring bend	-		412	(7)	404
	27	C-Cl wag	-		172	(1)	178

Abbreviations: s, strong; m, medium; w, weak; v, very; sh, shoulder; i.p., in-plane; o.p., out-of-plane.
${ }^{\text {a }}$ B3LYP/6-311++g(d,p); frequencies scaled with a scaling factor of 0.985 for frequencies less than $1800 \mathrm{~cm}^{-1}$ and 0.964 for frequencies greater than $1800 \mathrm{~cm}^{-1}$. The calculated relative intensities are shown in parentheses.
${ }^{\mathrm{b}}$ Reference 33.
${ }^{\text {c }}$ The CH wag and ring stretch are strongly coupled.
${ }^{\mathrm{d}}$ The $\mathrm{C}-\mathrm{Cl}$ stretch and ring bend are strongly coupled.
${ }^{\mathrm{e}}$ Bands have been reassigned.

Figure 93. Liquid and calculated IR spectra of 3-chloropyridine.

Table 53: Observed and calculated vibrational frequencies $\left(\mathrm{cm}^{-1}\right)$ and intensities for 3-chloropyridine

Cs	v	Approximate Description	Infrared		Calculated ${ }^{\text {a }}$		GKP ${ }^{\text {b }}$
					v	Intensity	
$\begin{gathered} \mathrm{A}^{\prime} \\ \text { (i.p.) } \end{gathered}$	1	C-H stretch	3075	mw	3087	(9)	3079
	2	C-H stretch	3075	mw	3071	(24)	3079
	3	C-H stretch	3053 sh	mw	3056	(18)	3052
	4	C-H stretch	3045	m	3045	(35)	3052
	5	Ring stretch	1572	m	1584	(29)	1573
	6	Ring stretch	1565	m	1579	(12)	1569
	7	Ring stretch	1467	vs	1470	(82)	1469
	8	Ring stretch	1416	vs	1425	(100)	1417
	9	C-H wag	1320	mw	1329	(9)	1319
	10	Ring stretch	1226	vw	1255	(1)	1227
	11	C-H wag	1189	mw	1201	(9)	1190
	12	C-H wag	1107	s	1119	(29)	1107
	13	C-H wag	1094	m	1098	(162)	1096
	14	Ring stretch	1036	vw	1041	(6)	1040
	15	Ring bend	1016	vs	1013	(106)	1016
	16	C-Cl stretch ${ }^{\text {c }}$	730	m	727	(50)	730
	17	Ring bend	615	m	617	(15)	615
	18	Ring bend ${ }^{\text {c }}$	426	w	415	(24)	428
	19	C-Cl wag	292	vw	288	(3)	294
$\begin{aligned} & \mathrm{A}^{\prime \prime} \\ & \text { (o.p.) } \end{aligned}$	20	C-H wag	-		977	(0.2)	980
	21	C-H wag	944	w	941	(2)	943
	22	C-H wag	915	w	917	(3)	915
	23	C-H wag	795	s	793	(91)	795
	24	Ring twist	701	s	704	(82)	700
	25	Ring bend	461	vw	465	(0.9)	460
	26	Ring bend	402	w	405	(9)	404
	27	C-Cl wag	-		183	(0.06)	199

Abbreviations: s, strong; m, medium; w, weak; v, very; sh, shoulder; i.p., in-plane; o.p., out-of-plane.
${ }^{\text {a }}$ B3LYP/6-311++g(d,p); frequencies scaled with a scaling factor of 0.985 for frequencies less than $1800 \mathrm{~cm}^{-1}$ and 0.964 for frequencies greater than
$1800 \mathrm{~cm}^{-1}$. The calculated relative intensities are shown in parentheses.
${ }^{\mathrm{b}}$ Reference 33.
${ }^{\text {c }}$ The $\mathrm{C}-\mathrm{Cl}$ stretch and ring bend are strongly coupled.

Figure 94. Liquid and calculated IR spectra of 2-bromopyridine.

Table 54: Observed and calculated vibrational frequencies $\left(\mathrm{cm}^{-1}\right)$ and intensities for 2-bromopyridine

Cs	v	Approximate Description	Infrared		Calculated ${ }^{\text {a }}$		GKP ${ }^{\text {b }}$
					v	Intensity	
$\begin{gathered} \mathrm{A}^{\prime} \\ \text { (i.p.) } \end{gathered}$	1	C-H stretch	3083 sh	mw	3098	(2)	3069
	2	C-H stretch	3070 sh	mw	3084	(15)	3069
	3	C-H stretch	3052	m	3063	(10)	3056
	4	C-H stretch	3052	m	3050	(17)	3056
	5	Ring stretch	1572	vvs	1584	(51)	1573
	6	Ring stretch	1561	vvs	1580	(123)	1565
	7	Ring stretch	1449	vvs	1458	(90)	1452
	8	Ring stretch	1414	vvs	1423	(100)	1417
	9	C-H wag	1283	mw	1294	(2)	1282
	10	Ring stretch	-		1269	(7)	1253
	11	C-H wag	1148	m	1155	(4)	1146
	12	C-H wag ${ }^{\text {c }}$	1106	vvs	1108	(67)	1104
	13	C-H wag	1077	vvs	1079	(87)	1079
	14	Ring stretch ${ }^{\text {c }}$	1042	m	1044	(28)	1041
	15	Ring bend	987	m	987	(10)	991
	16	C-Br stretch ${ }^{\text {d }}$	700	vs	702	(52)	701
	17	Ring bend	614	m	615	(3)	615
	18	Ring bend ${ }^{\text {d }}$	312	w	304	(9)	315
	19	C-Br wag	261	vw	256	(3)	265
$\begin{aligned} & \mathrm{A}^{\prime \prime} \\ & \text { (o.p.) } \end{aligned}$	20	C-H wag	-		991	(0)	960
	21	C-H wag	960	w	964	(0.4)	934
	22	C-H wag	882	w	883	(0.04)	882
	23	C-H wag	759	vvs	762	(83)	761
	24	Ring twist	727	w	731	(2)	722
	25	Ring bend	467	m	472	(6)	457
	26	Ring bend	404	w	409	(7)	404
	27	C-Br wag	-		154	(2)	178

Abbreviations: s, strong; m, medium; w, weak; v, very; sh, shoulder; i.p., in-plane; o.p., out-of-plane.
${ }^{\text {a }}$ B3LYP/6-311++g(d,p); frequencies scaled with a scaling factor of 0.985 for frequencies less than $1800 \mathrm{~cm}^{-1}$ and 0.964 for frquencies greater than $1800 \mathrm{~cm}^{-1}$. The calculated relative intensities are shown in parentheses.
${ }^{\mathrm{b}}$ Reference 33.
${ }^{\text {c }}$ The CH wag and ring stretch are strongly coupled.
${ }^{\mathrm{d}}$ The $\mathrm{C}-\mathrm{Br}$ stretch and ring bend are strongly coupled.

Figure 95. Liquid and calculated IR spectra of 3-bromopyridine.

Table 55: Observed and calculated vibrational frequencies $\left(\mathrm{cm}^{-1}\right)$ and intensities for 3-bromopyridine

Cs	v	Approximate Description	Infrared		Calculated ${ }^{\text {a }}$		GKP ${ }^{\text {b }}$
					v	Intensity	
$\begin{gathered} \mathrm{A}^{\prime} \\ \text { (i.p.) } \end{gathered}$	1	C-H stretch	3071 sh	mw	3088	(10)	3082
	2	C-H stretch	3071 sh	mw	3071	(27)	3082
	3	C-H stretch	3050 sh	mw	3058	(17)	3052
	4	C-H stretch	3043	m	3045	(40)	3052
	5	Ring stretch	1571	ms	1581	(37)	1573
	6	Ring stretch	1557	m	1573	(14)	1559
	7	Ring stretch	1463	vs	1467	(80)	1467
	8	Ring stretch	1413	vs	1422	(100)	1415
	9	C-H wag	1319	w	1330	(14)	1320
	10	Ring stretch	1244 br	vw	1252	(1)	1221
	11	C-H wag	1190	mw	1202	(10)	1189
	12	C-H wag	1095	m	1119	(20)	1094
	13	C-H wag	1086	m	1084	(117)	1087
	14	Ring stretch	1025	mw	1038	(3)	1024
	15	Ring bend	1007	vs	1007	(173)	1008
	16	C-Br stretch ${ }^{\text {c }}$	704 sh	ms	703	(50)	705
	17	Ring bend	613	m	614	(17)	614
	18	Ring bend ${ }^{\text {c }}$	319	vw	312	(10)	319
	19	C-Br wag	246 ?	vvw	242	(2)	246
$\begin{aligned} & \mathrm{A}^{\prime \prime} \\ & \text { (o.p.) } \end{aligned}$	20	C-H wag	978 sh	vw	978	(0.2)	978
	21	C-H wag	944	w	942	(1)	944
	22	C-H wag	916	w	919	(2)	915
	23	C-H wag	792	vs	790	(103)	792
	24	Ring twist	700	vs	701	(83)	699
	25	Ring bend	448	vw	450	(1)	447
	26	Ring bend	399	w	401	(10)	401
	27	C-Br wag	-		163	(0.1)	182

Abbreviations: s, strong; m, medium; w, weak; v, very; sh, shoulder; br, broad; i.p., inplane; o.p., out-of-plane.
${ }^{\text {a }}$ B3LYP/6-311++g(d,p); frequencies scaled with a scaling factor of 0.985 for frequencies less than $1800 \mathrm{~cm}^{-1}$ and 0.964 for frequencies greater than $1800 \mathrm{~cm}^{-1}$. The calculated relative intensities are shown in parentheses.
${ }^{\mathrm{b}}$ Reference 33.
${ }^{\text {c }}$ The $\mathrm{C}-\mathrm{Br}$ stretch and ring bend are strongly coupled.

Table 56: Vibrational frequencies $\left(\mathrm{cm}^{-1}\right)$ of the ring modes of the halopyridines compared to Pyridine

$v^{\text {a }}$	Approximate Description	Pyridine	2FPy	3FPy	2ClPy	3 ClPy	2BrPy	3BrPy
5	Ring stretch	1584	1605	1594	1579	1572	1572	1571
6	Ring stretch	1576	1593	1588	1568	1565	1561	1557
7	Ring stretch	1483	1478	1480	1453	1467	1449	1463
8	Ring stretch	1443	1439	1426	1420	1416	1414	1413
10	Ring stretch	1227	1286	1249	1251	1226	$1253{ }^{\text {b }}$	1244
11	C-X stretch ${ }^{\text {d }}$	-	1266	1227	725	730	700	704
15	Ring stretch	1031	997	1022	1044	1036	1042	1025
16	Ring bend ${ }^{\text {d }}$ (i.p.)	991	842	816	990	1016	987	1007
17	Ring bend (i.p.)	654	620	613	618	615	614	613
18	$\begin{aligned} & \text { Ring bend }{ }^{\text {d }} \\ & \text { (i.p.) } \end{aligned}$	601	554	533	$404{ }^{\text {c }}$	426	312	319
24	Ring bend (o.p.)	700	733	701	$722^{\text {b }}$	701	727	700
25	Ring bend (o.p.)	403	518	507	481	461	467	448
26	Ring bend (o.p.)	375	414	412	$404{ }^{\text {b }}$	402	404	399

Abbreviations: i.p., in-plane; o.p., out-of-plane.
${ }^{\text {a }}$ Mode number for 2FPy and 3FPy.
${ }^{\mathrm{b}}$ From Refrence 33. Not observed in this work.
${ }^{\mathrm{c}}$ From Refrence 33. Band has been reassigned.
${ }^{\mathrm{d}}$ The C-X stretching vibration is strongly coupled to a ring bending (v_{16} for 2FPy and 3FPy and v_{18} for $2 \mathrm{ClPy}, 3 \mathrm{ClPy}, 2 \mathrm{BrPy}$ and 3 BrPy).

Table 57: Ring bond distances (\AA) and carbon-halogen bond distances (\AA) of halopyridines and pyridine

Bond distances	Pyridine	2FPy	3FPy	2ClPy	3ClPy	2BrPy	3BrPy
$\mathrm{N}(1)-\mathrm{C}(2)$	1.340	1.313	1.338	1.325	1.337	1.325	1.337
$\mathrm{C}(2)-\mathrm{C}(3)$	1.392	1.391	1.389	1.394	1.394	1.394	1.394
$\mathrm{C}(3)-\mathrm{C}(4)$	1.391	1.387	1.384	1.389	1.390	1.389	1.390
$\mathrm{C}(4)-\mathrm{C}(5)$	1.391	1.394	1.391	1.393	1.391	1.393	1.391
$\mathrm{C}(5)-\mathrm{C}(6)$	1.392	1.388	1.392	1.390	1.392	1.390	1.392
$\mathrm{C}(6)-\mathrm{N}(1)$	1.340	1.344	1.340	1.342	1.340	1.343	1.340
$\mathrm{C}-\mathrm{X}$	-	1.338	1.340	1.737	1.729	1.890	1.877

The substitution of the electronegative bromine atom results in a slight strengthening of the adjacent $\mathrm{N}-\mathrm{C}$ bond, but the effect is much less than for 2 FPy or 2ClPy. The bromine substitution had an insignificant effect on the ring bond lengths of 3 BrPy , as was the case for 3 FPy and 3 ClPy .

Infrared Spectra

Tables 52 and 53 summarize the observed and calculated vibrational frequencies for 2 ClPy and 3ClPy. Tables 54 and 55 summarize the observed and calculated vibrational frequencies for 2 BrPy and 3 BrPy . Green and coworkers ${ }^{33}$ previously made partial assignments for these molecules and these are also shown in Tables 52, 53, 54 and 55. As expected, ${ }^{66-70}$ the cc-PVTZ calculation did a remarkably good job of predicting the frequencies. The average difference between experimental and calculated wavenumbers was less than $8 \mathrm{~cm}^{-1}$. From Table 56 it is also clear that most of the pyridine ring vibrational frequencies were not changed much in $2 \mathrm{ClPy}, 3 \mathrm{ClPy}, 2 \mathrm{BrPy}$ and 3 BrPy and the highest four ring stretching modes shifted by less than $18 \mathrm{~cm}^{-1}$. The values of 2FPy and 3FPy are also shown for comparison in the table. The ring bond distances and the C-halogen bond distances of $2 \mathrm{FPy}, 3 \mathrm{FPy}, 2 \mathrm{ClPy}, 3 \mathrm{ClPy}, 2 \mathrm{BrPy}$ and 3BrPy are compared to pyridine in Table 57.

The results for the chloro and bromo pyridines are consistent with those for 2 FPy and 3FPy. The motivation for obtaining the data for the ground states of these molecules was to prepare for the spectroscopy of the electronic excited states.

CHAPTER XII

CONCLUSIONS

Several spectroscopic techniques were utilized in this work, including infrared (IR), Raman and ultraviolet (UV) absorption techniques, to study the vibrational energy states of molecules in their electronic ground and excited states. The vibrational potential energy functions (PEFs) for the electronic excited ground and excited states were investigated. Ab initio and DFT calculations were carried out to compute the molecular structures and to support the vibrational assignments.

First, the infrared and Raman spectra of liquid and vapor-phase pyridine- d_{0} and pyridine- d_{5} were used to assign the vibrational frequencies of the electronic ground states. The ultraviolet absorption spectra of pyridine- d_{0} and pyridine- d_{5} were used to assign the vibrational levels in the $S_{1}\left(n, \pi^{*}\right)$ electronic excited states. In addition, the PEF for the ring-bending was determined and this showed the molecule to be very floppy and quasi-planar in the excited state with a barrier to planarity of $3 \mathrm{~cm}^{-1}$. Furthermore, ab initio and DFT calculations were carried out to compute the molecular structures and to verify the vibrational assignments of the twenty-seven fundamentals.

Second, the infrared, Raman and uv experiments of 2-fluoropyridine (2FPy) and 3-fluoropyridine (3FPy) were carried out. Ab initio and DFT calculations were performed to compute the structures of these molecules and were compared to those of pyridine. The ring bond distances differed little from those of pyridine in their electronic ground states. The notable exception was that the $\mathrm{N}-\mathrm{C}(\mathrm{F})$ bond distance was shortened
in 2 FPy due to π interactions but for 3FPy there was considerably less of this effect. The structures and vibronic levels of 2FPy and 3FPy in their electronic excited states were also investigated and compared to those of pyridine. For the $S\left(\pi, \pi^{*}\right)$ state all of the N-C and C-C bond distances increased due to the decrease in π bond character. The frequencies of the ring modes of the fluoropyridines were also similar to those of pyridine itself. Unlike pyridine, which is very floppy in its electronic excited state, the 2 FPy and 3 FPy rings remain more rigid. These out-of-plane ring modes were also strongly coupled to the out-of-plane C-F wagging motion. In addition, the investigation of the structure and vibrations of pyridine and substituted pyridines were extended to chloro and bromopyridines. From fluoropyridines, it was found that the substitution of fluorine atoms resulted in significant π boding interactions within the ring. Similar effects were observed with the substitution of chlorine and bromine atoms in the pyridine ring. In the study, the infrared spectra, molecular structure and ground state vibrational assignments of 2-chloro- and 3-chloropyridine, and 2-bromo- and 3bromopyridine molecules were reported. DFT calculations were used to compute the structures and to predict the vibrational frequencies of the twenty-seven fundamentals.

Furthermore, the full Raman spectra of of 1,3-butadiene and and its 2,3- d_{2}, $1,1,4,4-\mathrm{d}_{4}$, and d_{6} isotopomers were investigated. Also, the gas-phase Raman spectra of these isotopomers were recorded with high sensitivity in the region below $350 \mathrm{~cm}^{-1}$, and the internal rotation (torsional) vibration was investigated. The data for all the isotopomers were then fit using a one-dimensional potential energy function of the form $\mathrm{V}=1 / 2 \sum \mathrm{~V}_{\mathrm{n}}(1-\cos \phi)$. The results from an alternative set of assignments also fit the data
quite well for all of the isotopomers presented. This provided an understanding of the conformational properties of butadiene. In addition, combination and hot band series involving the v_{13} torsional vibration and other out-of-plane modes of the trans rotamer were observed for each of the butadiene isotopomers. Furthermore, the high signal to noise of the Raman spectra made it possible to detect several bands of the more intense trans rotor and several bands of the less intense gauche rotor, which made up only about 2% of the molecules at ambient temperature.

REFERENCES

1. Henri, V.; Angenot, P. J. Chim. Phys. 1936, 33, 641.
2. Sponer, H.; Stücklen, H. J. Chem. Phys.1946, 14, 101.
3. Jesson, J. P.; Kroto, H. W.; Ramsay, D. A. J. Chem. Phys.1972, 56, 6257.
4. Wilmhurst, J. K.; Bernstein, H. J. Can. J. Chem. 1957, 35, 1183.
5. Villa, E.; Amirav, A.; Lim, E. C. J. Chem. Phys. 1988, 92, 5393.
6. Riese, M.; Altug, Z.; Grotemeyer, J. J. Phys. Chem. Chem. Phys. 2006, 8, 4441.
7. Wiberg, K. B.; Walters, V. A.; Wong, K. N.; Colson, S. D. J. Phys. Chem. 1984, 88, 6067.
8. Wong, K. N.; Colson, S. D.; J. Mol. Spectrosc. 1984, 104, 129.
9. Mochizuki, Y.; Kaya, K.; Ito, M. J. Chem. Phys. 1978, 69, 935
10. Cai, Z. L.; Reimers, J. R. J. Phys. Chem. A. 2000, 104, 8389.
11. Fischer, G.; Cai, Z. L.; Reimers, J. R. J. Phys. Chem. A. 2003, 107, 3093.
12. Becucci, M.; Lakin, N. M.; Pietraperzia, G.; Salvi, P. R.; Castellcui, E.; Kerstel, E. R. J. Chem. Phys. 1997, 107, 10399.
13. Wilmshurst, J. K.; Bernstein, H. J. Can. J. Chem. 1957, 35, 1183.
14. Stidham, H. D.; DiLella, D. P. J. Raman Spectrosc. 1979, 83, 180.
15. Wong, K. N.; Colson, S. D. J. Phys. Chem. 1983, 87, 2102.
16. Klots, T. D. Spectrochim. Acta.1998, 54A, 1481.
17. Long, D. A.; Murfin, F. S.; Thomas, E. L. Trans. Faraday Soc. 1963, 59, 12.
18. Long, D. A.; Thomas, E. L. Trans. Faraday Soc. 1963, 59, 783.
19. Innes, K. K.; Roos, I. G.; Moomaw, W. R. J. Mol. Spectrosc. 1988, 132, 492.
20. DiLella, D. P.; Stidham, H. D. J. Raman Spectrosc.1980, 92, 90.
21. Stidham, H. D.; DiLella, D. P. J. Raman Spectrosc. 1980, 94, 247.
22. Ozon, Y.; Maehara, M.; Nibu, Y.; Shimada, H.; Shimada. R. Bull. Chem. Soc. Jpn. 1986, 59, 1617.
23. Chirico, R. D.; Steele, W. V.; Nguyen, A.; Klots, T. D.; Knipmeyer, S. E. J. Chem. Thermodyn. 1996, 28, 797.
24. Walters, V. A.; Snavely, D. L.; Colson, S. D.; Wiberg, K. B.; Wong, K. N. J. Phys. Chem. 1986, 90, 592.
25. Partal, F.; Fernández Gómez, M.; López González, J. J.; Navarro, A.; Kearley, G. J. Chem. Phys. 2000, 261, 239
26. Zerbi, G.; Crawford, B.; Overend, J. J. Chem. Phys. 1963, 381, 127.
27. Kakiuti, Y.; Akiyama, M.; Saito, N.; Saito, H. J. Mol. Spectrosc. 1976, 61, 164.
28. Mochizuki, Y.; Kaya, K.; Ito, M. J. Chem. Phys. 1976, 65, 4163.
29. Wu, D. Y. Journal of the Chinese Chemical Society, 2003, 50, 735.
30. Olsher, U. J. Chem. Phys. 1977, 66, 5242.
31. Olsher, U.; Lubart, R.; Brith, M. Chem. Phys. 1976, 17, 237.
32. Sharma, S. D.; Doraiswamy, S. J. Mol. Spectrosc. 1975, 57, 377.
33. Green, H. S.; Kynaston, W.; Paisley, H. M. Spectrochim. Acta. 1963, 19, 549.
34. Medhi, K. C.; Medhi, R. N. Spectrochim. Acta. 1990, 46A, 1169.
35. Medhi, K. C.; Medhi, R. N. Spectrochim. Acta.1990, 46A, 1333.
36. Itoh, T. Chem. Phys. Lett. 2010, 491, 29.
37. Almenningen, A.; Bastiansen, O.; Traetteberg, M. Acta Chem. Scand. 1958, 12,1221.
38. Kuchitsu, K.; Fukuyama, T.; Morimo, Y. J. Mol. Struct. 1968, 1, 463.
39. Craig, N. C.; Groner, P.; McKean, D. C. J. Phys. Chem. A. 2006, 110, 7461.
40. Aston, J. G.; Szasz, G.; Woolley, H. W.; Brickwedde, F. G. J. Chem. Phys. 1946, 14, 67.
41. Lipnick, R. L.; Garbisch, E. W., Jr. J. Am. Chem. Soc. 1973, 95, 6370.
42. Cole, A. R. H.; Green, A. A.; Osborne, G. A. J. Mol. Spectrosc. 1973, 48, 212.
43. Carreira, L. A. J. Phys. Chem. 1975, 62, 3851.
44. Arnold, B. R.; Balaji, V.; Michl, J. J. Am. Chem. Soc. 1990, 112, 1808.
45. Fisher, J. J.; Michl, J. J. Am. Chem. Soc. 1987, 109, 1056.
46. Squillacote, M. E.; Sheridan, R. S.; Chapman, O. L.; F. Anet, F. A. L. J. Am. Chem. Soc. 1979, 101, 3657.
47. Panchenko, Y. N.; Abramenkov, A. V.; Mochalov, V. I.; Zenkin, A. A. J. Mol. Spectrosc. 1983, 99, 288.
48. Engeln, R.; Consalvo, D.; Reuss, J. Chem. Phys. 1992, 160, 427.
49. Feller, D.; Craig, N. C. J. Phys. Chem. 2009, 113, 1601.
50. Craig, N. C.; Sams, R. L. J. Phys. Chem. A 2008, 112, 12637.
51. Panchenko, Yu. N.; De Maré, G. R. J. Struct. Chm. 2008, 49, 235.
52. Craig, N. C.; Davis, J. L.; Hanson, K. A.; Moore, M. C.; Weidenbaum, K. J.; Lock, M. J. Mol. Struct. 2004, 695, 59.
53. Wiberg, K. B.; Rosenberg, R, E. J.Am. Chem. Soc. 1990, 112, 1509.
54. McKean, D. C.; Craig, N. C.; Panchenko, Y. N.; J. Phys. Chem. A, 2006, 110, 8044.
55. Furukawa, Y.; Takeuchi, H.; Harada, I.; Tasumi, M. Bull. Chem. Soc. Jpn. 1983, 56, 392.
56. Craig, N. C.; Moore, M. C.; Patchen, A. K.; Sams, R. L. J. Mol. Spectrosc. 2006, 235, 181.
57. Haller, K.; Chiang, W.-Y.; del Rosario, A.; Laane, J. J. Mol. Struct. 1996, 379, 19.
58. Laane, J. Intl. Rev. in Phys. Chem. 1999, 18, 301.
59. Laane, J. J. Phys. Chem. 2000, 104A, 7715.
60. Laane, J.; Takahashi, H.; Bandrauk, A. (eds.), Springer, Berlin, Germany 1999, 3-35.
61. Yang, J.; Wagner, M.; Okuyama, K.; Morris, K.; Arp, Z.; Choo, J.; Meinander, M.; Laane, J. J. Chem. Phys. 2006, 125, 034308.
62. Yang, J.; Wagner, M.; Laane, J. J. Phys. Chem. A. 2006, 110, 9805.
63. Yang, J.; Laane, J. J. Elec. Spectrosc. 2007, 45, 156.
64. Lewis, J. D.; Malloy, T. B., Jr.; Chao, T. H.; Laane, J. J. Mol. Struct. 1972, 12, 427.
65. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara,
M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P.Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03, Revision C.02; Gaussian, Inc., Wallingford CT, 2004.
66. Yang, J.; McCann, K.; Laane, J. J. Mol. Struct. 2004, 339, 695.
67. Yang, J.; Choo, J.; Kwon, O.; Laane, J. Spectrochim. Acta Part A. 2007, 68, 1170.
68. Autrey, D.; Yang, J.; Laane, J. J. Mol. Struct. 2003, 661, 23.
69. Al-Saadi, A. A.; Laane, J. J. Mol. Struct. 2007, 830, 46.
70. Autrey, D.; Choo, J.; Laane, J. J. Phys. Chem. A. 2001, 105, 10230.
71. Yang, J.; Wagner, M.; Laane, J. J. Phys. Chem. A. 2007, 111, 8429.
72. Schmidt, M. W.; Baldridge, K. K.; Boatz, J. A.; Elbert, S. T.; Gordon, M. S.; Jensen, J. H.; Koseki, S.; Matsunaga, N.; Nguyen, K. A.; Su, S. J.; Windus, T. L.; Dupuis, M.; Montgomery, J. A. J. Comput. Chem. 1993, 14, 1347.
73. Bell, R. P. Proc. R. Soc. London, Ser. A 1945, 183, 328-337.
74. Groner, P.; Johnson, R. D.; Durig, J. J. Mol. Struct. 1986, 142, 363.
75. Strube, M. M.; Laane, J. J. Mol. Spectrosc. 1988, 129, 126.
76. Nygaard, L.; Bojesen, I.; Pedersen, T.; Rastrup-Anderson, J. J. Mol. Struct. 1968, 2, 209.
77. Lipp, E. D.; Seliskar, J. J. Mol. Spectrosc. 1978, 73, 290.
78. Kondo, S.; Koga, Y.; Nakanaga, T. J. Phys. Chem. 1986, 90, 1519.
79. Olsher, U. Spectrochim. Acta. 1978, 34A, 211.
80. Laane, J.; Lord, R. C., J. Chem. Phys. 1967, 47, 4941.
81. Laane, J. J. Phys. Chem. A 2000, 104, 7715.
82. Chao, T. H.; Laane, J. Chem. Phys. Lett. 1972, 14, 595.
83. Lewis, J. D.; Chao, T. H.; Laane, J. J. Chem. Phys. 1975, 62, 1932.
84. Irwin, R. M.; Laane, J. J. Mol. Spectrosc. 1978, 70, 307.
85. Laane, J.; Nour, E. M.; Dakkouri, M. J. Mol. Spectrosc. 1983, 102, 368.
86. Kelly, M. B.; Laane, J.; Dakkouri, M. J. Mol. Spectrosc. 1989, 137, 82.
87. Blanke, J. F.; Chao, T. H.; Laane, J. J. Mol. Spectrosc. 1971, 38, 483.
88. Klots, T.; Sakurai, S.; Laane, J. J. Chem. Phys. 1998, 108, 3531.
89. Rosario, A.; Bitschenauer, R.; Dakkouri, M.; Haller, K.; Laane, J. J. Phys. Chem. A 102 1998, 102, 10261.
90. Jagodzinski, P. W.; Irwin, R. M.; Cooke, J. M.; Laane, J. J. Mol. Spectrosc. 1980, 84, 139.
91. Laane, J.; Haller, K.; Sakurai, S.; Morris, K.; Autrey, D.; Arp, Z.; Chiang, W.-Y.; Combs, A. J. Mol. Struct. 2003, 650, 57.
92. Boopalachandran, P.; Craig, N.; Groner, P.; Laane, J. J. Phys. Chem. A 2011, accepted.

VITA

Name: Praveenkumar Boopalachandran
Permanent Address: Department of Chemistry 3255 TAMU
College Station, TX 77843-3255

Email Address: praveen.tamu@gmail.com
Education: B.Tech., Chemistry, University of Madras, Chennai, India, 1999
M.S., Chemistry, Texas A\&M University-Commerce, Commerce, Texas, USA, 2003
M.S., Chemistry, Texas A\&M University, College Station, Texas, USA, 2006

Ph.D., Chemistry, Texas A\&M University, College Station, Texas, USA, 2011

[^0]: Abbreviations: s, strong; m, medium; w, weak; v, very; sh, shoulder; br, broad; i.p., in-plane; o.p., out-of-plane.
 ${ }^{\text {a }}$ Relative intensities in parenthesis.
 ${ }^{\mathrm{b}}$ B3LYP/6-311++g(d,p); frequencies scaled with a scaling factor of 0.985 for frequencies less than $1800 \mathrm{~cm}^{-1}$ and 0.964 for frequencies greater than $1800 \mathrm{~cm}^{-1}$. The calculated relative intensities are shown as (IR, Raman).
 ${ }^{\mathrm{c}}$ Reference 7.

[^1]: Abbreviations: s, strong; m, medium; w, weak; v, very; sh, shoulder; br, broad; i.p., in-plane; o.p., out-of-plane.
 ${ }^{\text {a }}$ Relative intensities in parenthesis.
 ${ }^{\mathrm{b}}$ B3LYP/6-311++g(d,p); frequencies scaled with a scaling factor of 0.985 for frequencies less than $1800 \mathrm{~cm}^{-1}$ and 0.964 for frequencies greater than $1800 \mathrm{~cm}^{-1}$. The calculated relative intensities are shown as (IR, Raman).
 ${ }^{\text {c }}$ Reference 7.

[^2]: * Reprinted with permission from "Ultraviolet Absorption Spectra of Pyridine- d_{0} and $-\mathrm{d}_{5}$ and their Ring-Bending Potential Energy Fnction in the $\mathrm{S}_{1}\left(\mathrm{n}, \pi^{*}\right)$ State" by Boopalachandran, P.; Laane, J., 2008. Chem. Phys. Lett., 462, 178-182, Copyright 2008 by Elsevier.

[^3]: * Reprinted with permission from "Vibrational Spectra, Structure, and Theoretical Calculations of 2-Fluoro-and 3-Fluoropyridine in their Ground States" by Boopalachandran, P.; Laane, J., 2011. Spectrochimica Acta Part A, 79, 1191-1195, Copyright 2011 by Elsevier.

[^4]: * Reprinted with permission from "Gas-Phase Raman Spectra and the Potential Energy Function for the Internal Rotation of 1,3-Butadiene and its Isotopomers" by Boopalachandran, P.; Craig, N.; Groner, P.; Laane, J., 2011. J. Phys. Chem. A, In press, by American Chemical Society.

[^5]: ${ }^{\mathrm{a}}$ Reference 49.
 ${ }^{\mathrm{b}}$ Transition state.

[^6]: * Reprinted with permission from "Gas-Phase Raman Spectra of Combination and Hot Bands Associated with the Torsional Vibrations of Trans- 1,3-Butadiene and its Duterated Isotopomers" by Boopalachandran, P.; Craig, N.; Laane, J., 2011. J. Mol. Spectrosc. A, In press, by Elsevier.

[^7]: ${ }^{a}$ Vibrational frequencies of A_{u} and B_{u} are taken from References 42, 51-53.

[^8]: ${ }^{\mathrm{a}}$ Reference 92.

[^9]: ${ }^{\mathrm{a}}$ Reference 92.

[^10]: ${ }^{\text {a }}$ Relative intensities in parenthesis. Observed intensities indicate peak height.
 ${ }^{\mathrm{b}}$ B3LYP/6-311++g(d,p); frequencies scaled with a scaling factor of 0.985 for frequencies less than $1800 \mathrm{~cm}^{-1}$ and 0.964 for frequencies greater than $1800 \mathrm{~cm}^{-1}$.
 ${ }^{\mathrm{c}}$ Reference 53. ${ }^{\mathrm{d}}$ Reference 92 . ${ }^{\mathrm{e}}$ Reference 56.
 ${ }^{\mathrm{f}}$ The C-C stretch and CH_{2} rock are strongly coupled.
 ${ }^{\mathrm{g}}$ The CH wag and CH_{2} twist are strongly coupled.

[^11]: ${ }^{\text {a }}$ Relative intensities in parenthesis. Observed intensities indicate peak height.
 ${ }^{\mathrm{b}}$ B3LYP/6-311++g(d,p); frequencies scaled with a scaling factor of 0.985 for frequencies less than $1800 \mathrm{~cm}^{-1}$ and 0.964 for frequencies greater than $1800 \mathrm{~cm}^{-1}$.
 ${ }^{\mathrm{c}}$ Reference 53. ${ }^{\mathrm{d}}$ Reference 51. ${ }^{\mathrm{e}}$ Reference $92 .{ }^{\mathrm{f}}$ Reference 52.
 ${ }^{\mathrm{g}}$ The C -C stretch and CH_{2} rock are strongly coupled.

[^12]: ${ }^{\mathrm{a}}$ References 53, 56, 92.

[^13]: ${ }^{\mathrm{a}}$ References 52, 53, 92.

[^14]: ${ }^{\mathrm{a}}$ References 42, 53, 53,92.

[^15]: ${ }^{\mathrm{a}}$ References 42, 52, 53, 92.

