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ABSTRACT 

 

Vitellogenin Receptor and Neuropeptide Receptors Involved in Reproduction of the Red 

Imported Fire Ant (Solenopsis invicta Buren). (December 2011) 

Hsiao-Ling Lu, B.S., National Chung-Hsing University; 

M.S., National Chung-Hsing University 

Chair of Advisory Committee: Dr. Patricia V. Pietrantonio   

 

Social insects have complex forms of social organization.  Molecular 

mechanisms involved in the regulation of their reproduction are not fully understood.  

This dissertation investigated the vitellogenin receptor (VgR), short neuropeptide F 

(sNPF) receptor and two insulin receptors (InRs) in the red imported fire ant Solenopsis 

invicta, focusing on their possible roles in the regulation of queen reproduction.  

Knowledge of these receptors may provide novel ways to manipulate either reproductive 

castes or overall reproductive outcome, diminishing the fire ant impact as invasive pest. 

 Fire ant virgin queens have more abundant VgR (SiVgR) transcripts than newly-

mated queens, but limited egg formation.  To elucidate whether queen maturation 

involved changes in SiVgR expression, we investigated both virgin and mated queens.  

In both queens, immunofluorescence analysis of ovaries revealed differential SiVgR 

localization in early and late stage oocytes; however, mated queens showed higher 

SiVgR expression than virgin queens.  In virgin queens, the SiVgR signal was first 

observed at the oocyte membrane beginning at day 12 post-emergence, coinciding with 
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the maturation period required before a mating flight.  SiVgR silencing in virgins 

through RNA interference abolished egg formation, demonstrating that SiVgR is 

involved in queen ovarian development pre-mating. 

The sNPF and insulin signaling pathways have been implicated in the regulation 

of food intake and body size, and these peptides also play a gonadotropic role in the 

ovaries of some insect species.  To elucidate the sites of action of the sNPF peptide(s), 

the sNPF receptor tissue expression and cellular localization were analyzed in the 

queen brain, subesophageal ganglion (SEG), and ovaries by immunofluorescence. 

Results suggest that the sNPF signaling cascade may be involved in diverse functions, 

and the sNPF peptide(s) may act in the brain and SEG as neurotransmitter(s) or 

neuromodulator(s), and in the ovaries as neurohormone(s).  In addition, to elucidate the 

role of insulin signaling pathway in the fire ant, two putative InRs were cloned.  

Transcriptional expression analyses show that the receptor abundance was negatively 

correlated with body size and nutrition status in fire ant immatures.  In queens, the 

expression of InRs in different queen tissues correlates with tissue requirements for 

queen reproductive physiology and behaviors. 
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CHAPTER I 

 

INTRODUCTION 

 

 

Introduction 

Ants comprise at least one third of the world‟s insect biomass and they are 

fundamental components of both agroecosystems and natural environments [1,2].  They 

play essential roles as natural predators, scavengers in nutrient cycling and some of them 

are of medical importance.  Despite their wide geographic distribution in diverse 

environments, not much is known about the molecular mechanisms of their 

reproduction.  Knowledge of reproduction at this level is also scarce for most insect 

species. 

The red imported fire ant, Solenopsis invicta Buren (Hymenoptera: Formicidae) 

(herein referred to as the fire ant) is an aggressive pest and invaded several countries in 

the world.  When the fire ant was accidentally introduced into the United States in the 

1930‟s, it found an almost ideal environment and quickly became an important 

agricultural and urban pest species [3].  With respect to public health concerns, the 

venom of workers causes small pustules in the skin which can become infected and thus 

be life threatening for humans and animals.   

 
____________ 
This dissertation follows the style and format of FEBS Journal. 
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Fire ant queens have high reproductive ability.  For example, a monogyne queen 

can produce 347 eggs within 2 hours [4].  However, more than 80 years after the initial 

fire ant invasion, knowledge of its reproductive physiology is still insufficient.  Thus, 

this dissertation aims to contribute new knowledge on the physiology and underlying 

molecular mechanisms of fire ant reproduction.  Scientific contributions to topics 

including vitellogenesis, hormonal regulation of insect reproduction, fire ant 

reproductive biology, and hymenopteran genome projects were made.  

 

Vitellogenesis 

 To understand female reproduction, a first step is to understand oogenesis (the 

formation of eggs).  Vitellogenesis is the key control process of oogenesis in oviparous 

animals.  Vitellogenesis involves the synthesis and release of the yolk protein precursor, 

vitellogenin (Vg), from the fat body in insects [5-7] or the liver in vertebrates [8], and 

the incorporation of Vgs into the developing oocyte through the Vg receptor (VgR)-

mediated endocytosis.  Receptor mediated endocytosis is an ubiquitous mechanism for 

internalizing functionally important macromolecules, which was first described in 

animal cells [9].  During VgR-mediated endocytosis, Vg binds to VgR located at the 

oocyte plasma membrane and the ligand–receptor complex is internalized into the oocyte 

cytosol.  After internalization, VgR releases Vg to be stored as vitellin (Vn), the 

nutritional source for egg development, while the VgR is recycled back to the oocyte 

surface [6,7,10-12].  This endocytosis process has been described in several insect 
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species.  Regulation of the VgR expression is one of the key elements in this receptor-

mediated mechanism. 

 

The vitellogenin receptor (VgR) 

Several sequences of VgRs from vertebrates have been reported, including those 

from birds, amphibians and fishes [13-17] and from invertebrates including ticks [18,19], 

shrimp [20], nematode [21], and insects.  Insect VgR genes encode large proteins (180-

214 kDa) which are about twice the size of vertebrate VgRs (95-115 kDa) [6].  In 

insects, the first VgR gene was identified from the fruit fly Drosophila melanogaster and 

was named yolk protein receptor (YPR) or yolkless (yl) [22].  Other insect VgRs were 

cloned from the mosquito Aedes aegypti (L.) [23], the fire ant S. invicta [24], the moth 

Spodoptera litura Fabricius [25], and three cockroach species (Periplaneta americana 

L., Leucophaea maderae (F.), and Blattella germanica (L.)) [26-28].   

Insect VgR belongs to the low-density lipoprotein receptor (LDLR) superfamily 

[29].  This superfamily includes VgR, lipophorin receptors (LpR), and other LDLRs.  

Receptors in this superfamily are characterized by a highly conserved arrangement of 

modular elements which include: 1) the ligand-binding domain (LBD) comprising Class 

A cysteine-rich repeats, 2) the epidermal growth factor (EGF) precursor homology 

domain containing Class B cysteine-rich repeats and YWXD repeats, 3) an O-linked 

carbohydrate domain, 4) a transmembrane domain, and 5) a cytoplasmic tail [29,30].  

Figure 1.1 shows the arrangement of those elements in insect VgRs and LpR, and other 

LDLR superfamily receptors in vertebrates.  Insect VgRs include two copies of the 
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ligand-binding and EGF-precursor domains as compared to insect LpRs, vertebrate 

VgRs and LDLRs.  Insect VgRs can be divided into three types (type I to III) based on 

the number of repeats in the first or second ligand-binding domains.  Type-I includes 

cloned VgRs that have five Class A cysteine-rich repeats in the first LBD and eight such 

repeats in the second LBD.  Insects with this type of VgR include cockroaches (P. 

americana, L. maderae, B. germanica), the mosquito (A. aegypti) and the fruit fly (D. 

melanogaster).  All type-I VgRs contain an O-linked sugar domain except the VgR from 

the fruit fly.  Type-II VgR includes fire ant VgR, and has four repeats in the first LBD 

and lack O-linked sugar domain.  The predicted VgR from the wasp (Nasonia vitripennis) 

(our analyses of XP_001602954) and the honey bee (Apis mellifera) [31] also belong to 

type II VgR with no O-linked sugar domain.  Until the present (2011), there are only two 

recognized types of insect VgRs (type I and type II) [32]; however, recently a moth VgR 

was cloned form S. litura and its gene structure is slightly different than type I or type II 

VgRs [25].  Similarly to the fire ant VgR, the S. litura VgR has four Class A cysteine-

rich repeats in the first LBD and also lacks the O-linked sugar domain; however, there 

are only seven Class A cysteine-rich repeats in the second LBD [25].  Therefore, the 

moth VgR belongs to the type III VgR. 
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Figure 1.1 The arrangement of protein domains in vitellogenin receptors (VgRs) 

and lipophorin receptor (LpR) in insects, and other LDLR superfamily receptors in 

vertebrates.  The common structural elements that are shared among LDLR superfamily 
members are listed on the left.  Insect VgRs include two copies of the ligand-binding and 
EGF-precursor domains [22,24,26-28,33] in contrast to cockroach LpR (only the B. 

germanica LpR is shown; [34]), chicken VgR and vertebrate LDLR (summarized in 
[32]). 
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The fire ant VgR (SiVgR) was the third cloned and characterized VgR in insects.  

Previously Mei-er Chen in Dr. Pietrantonio‟s laboratory determined that the SiVgR 

transcript was detectable in female reproductive pupae (in pupae that will produce 

female reproductives) and its abundance increased with age in virgin queens.  The 

SiVgR gene was only expressed in the ovaries of reproductive females (virgin and mated 

queens), and the transcript was significantly more abundant in virgin queens than in 

newly mated queens [24].  In addition, the overall SiVgR transcript abundance in virgin 

queens was higher than in newly mated queens throughout the colony foundation period 

[35].  The observation of the phenomenon of SiVgR transcripts being present at a high 

level during the pre-vitellogenic period but at a low level during the vitellogenic period 

was attributed to the fact that receptor proteins are believed to recycle during the latter 

[11].  In vitro endocrine regulation studies of newly-eclosed (day 0) virgin queen‟s ovary 

showed that after incubation with 10−6 M methoprene (JH analog) at 27 °C for 24 h, the 

SiVgR transcript was significantly up-regulated (p<0.05) compared to control ovaries 

(ovaries incubated in dimethylsulphoxide (DMSO), or in culture media only) [24].  

Conversely, in ovaries of virgin queens there were no significant differences in relative 

SiVgR transcript abundance between the 20-OH-Ecdysone-treated, and negative control 

tissues incubated with ethanol or culture media only, indicating ecdysone does not 

induce oogenesis in the fire ant [35].  The study of a 1.5-Kb region upstream of the 

mosquito VgR gene ORF (potential promoter region of VgR gene) showed that it 

contains binding sites for the ecdysone regulatory hierarchy early gene products (E74 

and BR-C) and transcription factors (GATA and HNF3/fkh) [36].  Since ecdysone does 
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not induce fire ant SiVgR expression in ovaries in vitro [35], other regulatory elements 

may involved in the regulation of SiVgR gene expression. 

   

Hormone regulation of insect reproduction 

Several hormones control insect vitellogenesis at different times (temporal 

regulation) and in different tissues (spatial regulation).  Juvenile hormone (JH) and/or 

ecdysone are believed to directly induce vitellogenesis and ovary development [7,37].  

In Diptera, such as mosquitoes and fruit flies, JH and ecdysone both stimulate Vg 

synthesis in fat body, while JH stimulates Vg uptake by the oocyte [38-41].  In addition, 

JH controls the formation of ovarian epithelial patency (space between follicular cells 

that allows Vg to pass through and reach oocyte membrane) by regulating follicle cell 

volume [42-45].   

In Hymenoptera with a complex social structure, the role of JH and ecdysone 

remains unclear and appears to have diverged.  In the fire ant, JH appears to regulate 

vitellogenesis and increases SiVgR transcripts in queen ovary while ecdysone has no 

effect [24,46].  In bumble bee, Bombus terrestris, juvenile hormone (JH) and ecdysone 

titers are involved in the regulation of ovary development and cast differentiation 

[47,48].  In contrast, in the queenless ant Streblognathus peetersi, JH suppresses ovarian 

function and ecdysone may stimulate Vg production [49].  Also, JH titers are low in 

female reproductive ants in the genus Diacamma [50].  However, a different situation is 

present in the honey bee, A. mellifera, and the stingless bee, Melipona quadrifasciata, in 

which JH and ecdysteroids are thought to have lost most of their gonadotropic function 
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in adult queens, and JH is suggested instead, to be involved in the regulation of foraging 

ontogeny [51-55]. 

In insects, gonadotropic neuropeptide hormones appear to operate in the central 

nervous system (central function) upstream of the direct inducers (JH and ecdysone) to 

stimulate or inhibit vitellogenesis, and also act directly on peripheral tissues [56].  

Candidate neuropeptides are the short neuropeptide F (sNPF) peptide and insulin-like 

peptides (ILPs) which play a gonadotropic role in some insect species (Figure 1.2).  In 

locust, sNPF increases ovarian growth [57].  In Drosophila, sNPF peptides [58] and NS3 

(a nucleostemin family GTPase) [59] stimulate ILPs synthesis in the brain insulin-

producing cells (IPCs); these ILPs subsequently affect insulin signaling in target tissues 

such as fat bodies.  Drosophila sNPF and sNPF receptor have been shown to be the 

upstream regulators of expression of insulin signaling pathway [58].  The NS3 also 

regulates growth and body size and may act through the serotonergic neurons next to the 

insulin-producing neurons in the brain [59].  In insects including mosquitoes, fruit flies, 

and fire ants, the sNPF receptor transcript is also detected in peripheral tissues; however, 

specific receptor function in these tissues is still unknown.  These unknown roles are 

represented with question marks and dashed lines in Figure 1.2.   
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Figure 1.2. Hormonal control of insect vitellogenesis.  JH stimulates ovarian growth 
and increases SiVgR transcripts in fire ant ovary [24].  In locust, short neuropeptide F 
(sNPF) increases ovarian growth and hemolymph Vg concentration [57].  In Diptera 
(fruit flies, mosquitoes), JH and ecdysone stimulate Vg synthesis in fat body while JH 
stimulates Vg oocyte uptake [41].  In Drosophila, sNPF and sNPF receptor have been 
shown to be the upstream regulators of expression of insulin signaling pathway [58], and 
a GTPase (NS3) also regulates growth and body size and may act through the 
serotonergic neurons next to the insulin-producing neurons in the brain [59].  The 
insulin-like peptides (ILPs) may then increase JH synthesis in CA.  ILPs are also 
synthesized in the ovary, however, this pathway is still unclear.  The Drosophila and 
mosquito insulin receptors are present in the ovary, supporting the ILP roles in the 
oocyte maturation and ovary development [60-63].  Bovine insulin peptides in 
combination with 20-hydroxyecdysone stimulate mosquito ovaries to secrete ecdysone 
[64], and activate Vg gene transcripts in the fat body [65].  Question marks and dashed 
lines represent unknown pathways.  Previously only the SiVgR and the short NPF 
receptor sequences are known from fire ant.  Receptors for these two candidate 
neuropeptide hormones (sNPFs and ILPs) are investigated in this dissertation.  CC = 
corpora cardiaca; CA = corpora allata. 
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In Diptera (flies and mosquitoes), the ILPs regulate JH synthesis in the corpora 

allata in flies [66], stimulate ovaries to secrete ecdysone in mosquitoes, and activate Vg 

gene transcripts in mosquito fat body [64,65,67].  The presence of the insulin receptor in 

the ovary of dipterans supports these ILP roles in the oocyte maturation and ovary 

development [60-63].  In the fire ant, the sNPF receptor transcriptional expression level 

in the queen brain is related to queen feeding status [68].    

In addition to gonadotropins (stimulatory hormones), other peptide hormones 

such as trypsin biosynthesis modulating oostatic factors (TMOF) inhibit the digestive 

enzyme trypsin, consequently lowering the level of free amino acids in the hemolymph 

as nutritional signals, which in turn decreases Vg synthesis in the fat body, suppressing 

ovary growth [69]. 

Two neuropeptide pathways are the focus of this dissertation: the sNPF and 

insulin signaling pathways.  

 

Short neuropeptide F signaling pathway 

Neuropeptides in the neuropeptide F (NPF) family have been identified or 

predicted from genomes of a broad range of invertebrate taxa, including insects [70-74].  

Invertebrate neuropeptides in the NPF family are structurally and functionally related to 

the vertebrate neuropeptide Y (NPY) peptide.  NPY is a highly conserved 36 amino acid 

residue polypeptide and is one of the most abundant neuropeptides in the vertebrate 

central nervous system.  It has significant roles in the regulation of feeding behavior, 
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stress and obesity, blood pressure, anxiety, memory retention, and circadian rhythms 

[75-77].   

In insects, the role of neuropeptides from the NPF family in physiological 

processes such as reproduction, feeding, and digestion, makes them an important subject 

of study.  Neuropeptides in the NPF family are characterized by a conserved 

R(P/L)RFamide motif in the C-terminal sequence and are divided into long and short 

forms [78].  The long NPF peptides (referred to as “NPFs”) range in size from 36 to 40 

amino acid residues ending with –RPRFamide, and the short NPF peptides (sNPFs) 

range in size from 6 to 11 amino acid residues ending with –RLR(F/W)amide.  The long 

NPF signaling pathway is involved in feeding and social behaviors, stress responses, and 

alcohol sedation sensitivity in the fruit fly D. melanogaster [79-87], in hindgut 

contraction in the blood-sucking bug Rhodnius prolixus [88], and in ovarian maturation 

in locusts [89].  Little information was available on the role of the sNPF signaling 

pathway until recent studies in Drosophila.  Four Drosophila sNPF peptides (sNPF-1 to 

-4) are generated from the same sNPF precursor by enzymatic processing and 

modification.  This sNPF peptide precursor was detected in about a thousand neurons in 

the CNS of 3rd instar larvae, and in about five thousand neurons in the CNS of adults 

[90,91].  Drosophila gain-of-function mutants with sNPF over-expression in the nervous 

system display increased food intake, resulting in flies larger than the wild type, while 

loss-of-function mutants exhibit reduced food intake [92].  In Drosophila, sNPF peptides 

are the upstream regulators controlling the expression of insulin-like peptides in the 

brain insulin producing cells [58,93].  It was suggested that the sNPF produced in the fly 
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brain binds to the sNPF receptor and activates the extracellular signal-related-kinase 

(ERK), which results in the turning on of the Drosophila insulin-like peptide genes in 

the insulin producing cells in the brain.  The up-regulated Drosophila insulin-like 

peptides are secreted into the hemolymph and bind to the insulin receptor in target 

tissues which activates the Akt/FOXO/4E-BP pathway [58,93].  In this way, the sNPF 

peptides might modulate insulin signaling in target tissues including growth, 

carbohydrate metabolism, lifespan, reproduction, and JH biosynthesis in Drosophila.  In 

other insects, the sNPF signaling pathway also appears to be involved in feeding 

regulation.  For example, in the fire ants, the sNPF receptor transcripts in the queen brain 

were decreased by starvation suggesting that the sNPF signaling cascade may play a role 

in feeding regulation [68].  Moreover, during diapause, the adult Colorado potato beetle 

is devoid of sNPFs suggesting that the sNPFs might contribute to pre-diapause shifts in 

feeding behavior that lead to larger body size and reserve accumulation [94].  In the 

honey bee Apis mellifera, the sNPF and its receptor transcript expression levels were 

interpreted as associated with worker division of labor and feeding behavior [95,96].  

The sNPF receptor transcript is up-regulated in brains of foragers under food-deprivation 

(without protein) suggesting that foragers are more sensitive to nutritional changes than 

nurses [96]. 

The sNPF signaling pathway appears to be involved in additional functions in 

insects.  For instance, the Colorado potato beetle sNPF peptide, Led-NPF-1, was shown 

to stimulate ovarian development in the locust Locusta migratoria, suggesting a 

potential gonadotropin role of the peptide [57,78].  Functions such as cardio-inhibitory 
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activity on beetles [97] and an inhibition of locomotor behavior and the modulation of 

metabolic stress responses in the fruit fly [98,99] have also been discovered.  In 

Drosophila, the diversity in the function of the sNPF pathway might be explained by the 

broad and abundant distribution of sNPF peptides discovered in the brain.  In addition, 

the sNPF peptides have also been identified in the hemolymph of adult Drosophila, 

suggesting a potential neuroendocrine role [100].  However, the exact neuronal targets of 

the sNPF peptide in adult insect CNS or other tissues are unknown. 

Several physiological events related to sNPFs in insects such as ovarian growth, 

body size control and adult diapause are all indicating that sNPFs may serve a role in the 

up-regulation of JH biosynthesis and also act directly on peripheral tissues.  In contrast 

to the putative role of sNPF signaling pathway inducing or affecting insulin production, 

putative sNPF peptides discovered in the silkworm, Bombyx mori, have allatostatic 

activity (decreasing JH synthesis) in larvae [101].   

The sNPF receptor belongs to the G-protein coupled receptor (GPCR) 

superfamily which is characterized by the standard feature of seven transmembrane 

regions, with the amino terminus located on the extracellular side and the carboxyl 

terminus on the intracellular side of the plasma membrane.  Insect sNPF receptors have 

been cloned and characterized from S. invicta, D. melanogaster, and A. gambiae 

[68,102-104].  The sNPF receptor cloned from the fire ant was the first GPCR identified 

from any ant species [68].  Semi-Q RT-PCR analyses found that the fire ant sNPF 

receptor transcript is present in the brain, midgut, hindgut, Malpighian tubules, fat body, 

and ovaries of mated queens, and a particularly high level of receptor expression was 



  

 

14 

detected in the brain [68].  There is no available information about the localization of 

sNPF receptor in the brain or peripheral tissues in any adult insect; therefore, it is 

important to establish the localization of the sNPF receptor. 

 

Insulin/insulin-like growth factor signaling (IIS) pathway 

In insects, the IIS pathway regulates reproduction, growth, metabolism, and 

longevity [105].  Insect insulin receptors have been cloned from the fruit fly Drosophila 

melanogaster and the mosquito A. aegypti, and were named DIR and MIR, respectively 

[62,106,107].  Most of the functional studies were performed with Drosophila.  Mutant 

Drosophila insulin receptor (DIR) flies showed female sterility, reduced juvenile 

hormone (JH) and ecdysone level, and in the ovary, decreased germline stem cell 

division- and cyst growth-rates.  They also showed reduced cell number and cell size, 

developmental delay, growth-deficiencies and had a longer lifespan [108-112].  Similar 

to what was seen in the receptor (DIR) mutants, ablation of the medial neurosecretory 

cells in the brain, which expressed Drosophila ILP-1, -2, -3, and -5, reduced fecundity, 

and reduced follicle cell proliferation rate, germline stem cell division rate, metabolism 

and growth were observed, and also resulted in a longer lifespan [112-115].  In 

Drosophila, seven ILPs were found, and synergy, redundancy and compensation of the 

expression among these different ILPs were recently demonstrated [116,117].  These 

phenomena make it difficult to study the function of each ILP.  Recently, scientists were 

able to perform the single deletion of each Drosophila ILP to study their individual 

functions.  Flies with a single deletion of ILP-1 to -5 also showed poor fertility and a 
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reduced metabolic activity [118].  Reduced function of the ILP-7 expressing neurons by 

hyperpolarization results in sterility, due to a lack of oviposition [119].  Some of these 

phenotypes are also caused by mutations in downstream components of the IIS pathway, 

such as mutations in chico (insulin receptor substrate) [67,110,120,121], Dp110 (a 

phosphoinositide 3-kinase, PI3-kinase) [122], Akt (a serine/threonine kinase) [123,124], 

or the negative control factor, PTEN [123].  For example, if female flies have a mutated 

gene for the insulin receptor substrate (chico), which normally is phosphorylated by the 

insulin receptor protein tyrosine-kinase activity, they are also sterile and the level of Vg 

and VgR gene expression are reduced [121].  In contrast, overexpression of ILPs results 

in bigger flies because of an increase in both cell number and size in individual organs, 

and to no surprise, this phenotype is insulin receptor-dependent [109,115].   

There is a link between the IIS pathway and JH and ecdysone synthesis and/or 

release in insects.  ILPs may be upstream regulators of JH and ecdysone acting on the 

neuroendocrine system and they may also act directly on peripheral tissues.  Fruit fly 

DIR expressed in the corpus allatum regulates the expression of a key enzyme in JH 

synthesis suggesting that the IIS pathway is required upstream of JH synthesis [125,126].  

Also, female flies with a DIR mutation have reduced JH and their ovaries are arrested at 

the pre-vitellogenic stage, and treatment with a JH analog (methoprene) restores 

vitellogenesis [66,111].  It appears that the activation of the insulin pathway elevates 

ecdysone synthesis in the prothoracic glands both in larvae of Drosophila and silkworm 

[127-131].  In the ovary and fat body of Diptera, insulin peptides (bovine insulin and 

Aedes ILP-3) appear to play a key role in the stimulation of steroidogenesis and yolk 
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uptake in the ovary [61,62,64,67,132,133] and of yolk protein synthesis in the fat body 

[65] which together, regulate vitellogenesis.  In addition, knockdown of the expression 

of AaegPTEN6, an IIS pathway inhibitor in A. aegypti, increases egg production in the 

mosquito [134].  The presence of the DIR and MIR in the ovary of flies and mosquitoes, 

respectively, supports these ILP roles in the oocyte maturation and ovary development 

[60-63].  Recently, a mutual antagonistic relationship between insulin signaling and 

ecdysone signaling was discovered in the fat body of flies [128,135,136], providing 

evidence for more complex regulation mechanisms of the IIS pathway in development 

and growth.    

 In the honey bee, the IIS pathway is involved in caste determination, division of 

labor, and longevity.  The IIS pathway in bees is correlated with longevity which is in 

agreement with findings from Drosophila.  However, the traditional positive relationship 

between body size (nutrition) with the activation of the IIS pathway found in solitary 

insects like Drosophila is more complex in the honey bee [137] and the role of IIS 

pathway in regulation of bee reproduction is still unclear.  Interestingly, two insulin 

receptor fragments were predicted in the honey bee genome.  Recently, two insulin 

receptor fragments were also found in the draft genomes of several ant species [3,138-

141].  The possible roles of two insulin receptors in the fire ant need further 

investigation. 
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Reproductive biology in the fire ant 

Social insects have remarkable forms of social organization with the majority 

exhibiting reproductive division of labor between queen and workers [142].  Only a few 

females (queens) have the privilege of reproductive ability and longevity; most females 

become nonreproductive individuals (workers).  The available knowledge on the 

physiology of fire ant reproduction was previously reviewed [143].  In fire ants, adult 

workers have no ovary and therefore are sterile; the queen has a pair of ovaries 

(polytrophic ovary) with each ovary consisting of 80 to 100 ovarioles [144].  Virgin 

queens (alate, normally are non egg-laying queens with small ovary) and mated queens 

(de-alate, egg-laying queen) differ dramatically in their behavior and physiology (see 

Figure 1.3).  Correspondingly, factors and differentially expressed genes affecting 

muscle histolysis, reproduction, respiratory metabolism and immunity have been 

identified in the two types of queens [145-147].   

In a mature colony, many hundreds of virgin queens take flight to mate when 

certain weather conditions are met.  As outlined below, mating flights and colony 

foundation are controlled by complex gene networks which are regulated by hormones 

and modulated by environmental stimuli.  Newly-emerged virgin queens within a colony 

require around two weeks of maturation time prior to flight and mating 

[143,144,148,149].  However, there is a high cost of reproduction [150] in fire ants 

because this mating-dispersal strategy implies a high risk of mortality because queens 

are eaten either by flying predators or other ants, or die when colony founding is 
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unsuccessful [144].  After a mating flight, the newly-mated queen lands, removes her 

wings (de-alation) and locates a place to found a colony.   

Mated queens that begin to build a new colony do not continuously lay large 

number of eggs like a mated queen within a mature colony; rather, they produce 

typically 30-70 eggs between 24 h to 6 days post-mating, which will give rise to nanitics 

(first cast of workers).  When these embryonated eggs begin to hatch (~7 days post-

mating), mated queens produce trophic eggs (not embryonated) as food to feed the 

developing nanitic larvae until these first worker adults take over the nurturing work in 

the colony [144,151].  The mated queen‟s ovariole is suggested to be gradually 

activated: ovarioles are first activated after mating and then the number of vitellogenic 

follicles in each ovariole increases as the number of larvae in the colony increases [144].  

We suggest that these changes in virgin queens transitioning to newly mated queens to 

finally be mature queens may be also associated with variations in SiVgR expression. 
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Figure 1.3. Biology of fire ant reproduction.  The white area of the graph shows the 
queens present inside the colony and the blue area shows the events after mating flight 
outside the original colony and colony foundation.  Virgin queens and mated queens 
differ in their behavior and physiology.  Newly emerged virgin queens have small 
ovaries and these queens within a colony require around two weeks of maturation time 
prior to flying and mating.  Within a colony, ovary growth in the virgin queens is 
inhibited by the primer pheromone released from the mated queen.  On the other hand, 
newly mated queens produce eggs within 24 h after landing from a mating flight.  
Mating flights and colony foundation are likely controlled by complex gene networks 
which are regulated by hormones and modulated by environmental stimuli.   
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In fire ant queens, the ovarian development and the de-alating behavior is 

correlated with the elevation of JH (as measured in whole body and hemolymph), as 

follows.  In a normal fire ant colony, a primer pheromone released from mated queens 

inhibits the reproduction of virgin queens.  This primer pheromone received by the 

virgin queens‟ antennae suppresses their corpora allata activity and the corresponding 

production of JH and ovary development [46,145,152-156].  Application of JH I, II, and 

III or methoprene (JH analog) to virgin queens resulted in de-alating behavior, ovary 

development and increased fire ant VgR (SiVgR) transcript levels in the ovary; 

ecdysteroids seem to have no effect [24,46,55,155,157].  When separated from mated 

queen primer pheromone, virgin queens are capable of de-alating and becoming 

functional egg layers that produce only unfertilized (haploid) eggs that develop into 

males [1,158].  Isolation of virgin queens (unknown age) from queen primer pheromone 

leads virgin queens to start de-alation around 1-4 days post-isolation.  Oviposition may 

occur around 5 day post-isolation, corresponding with peak production of JH, however, 

fully functional mated queens (egg laying mated queens within a mature colony) have 

higher JH biosynthesis rate and JH level than the virgin queens (0 day post-isolation) 

[158].  The development rate and the size of these virgin queen‟s ovaries are not 

comparable to that of newly-inseminated queens which develop dramatically one day 

after mating.  Oviposition and oogenesis in isolated fire ant virgin queens are also 

associated with a higher dopamine (a biogenic amine) level in the brain which may up-

regulate JH [159].  Taken together, these studies indicate that JH is involved in 
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behavioral (de-alation) and physiological (induction of ovary development) aspects of 

reproductive regulation in fire ant queens. 

 

Hymenopteran genomes improve research in social insects 

 Ants and bees are important model species for studying social behavioral biology.  

In 2006, the honey bee genome sequence was released [160] which was the first genome 

project in social insects.  The availability of honey bee genome sequences allowed 

scientists to clone genes of interest in other social hymenopterans more efficiently, 

specifically the fire ant [161].  For example, we were able to use predicted honey bee 

insulin receptor sequences to design degenerate primers to clone insulin receptors from 

the fire ant.  Therefore, investigating the molecular mechanisms that regulate physiology 

and behaviors in social insects at a large scale of genes has become possible with the 

available genomic information from the honey bee.  However, for shorter sequences like 

the sNPF peptide sequence, the honey bee genome is less useful because peptide 

sequences are difficult to predict.   

 Three years later, a database for ant genomic sequences named “Fourmidable” 

was released (http://fourmidable.unil.ch/) [3]. This database contains expressed sequence 

tag (EST) sequences from two ant species: the red fire ant S. invicta and the black garden 

ant Lasius niger.  The information provided by this EST database allows scientists to 

identify and investigate gene expression differences in a broad scale.  For example, 

genes associated with molecular changes in reproductive roles were studied in fire ant 

virgin queens.  Out of 10,000 genes, 297 genes were up- or down-regulated after queen 

http://fourmidable.unil.ch/
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orphaning (loss of their mother queen) which were identified from queen whole body by 

using microarrays [162].  These candidate genes included genes involved in JH 

metabolism and onset of reproductive development (for example, genes involved in 

olfactory signals).   

In 2010, genomes of three parasitoid Nasonia species (N. vitripennis, N. giraulti, 

and N. longicornis) were released [163].  Almost immediately, the draft genome of six 

species of ants were released, including the fire ant [3], the Argentine ant Linepithema 

humile [138], the carpenter ant Camponotus floridanus [139], the ponerine ant 

Harpegnathos saltator [139], the leaf-cutter ant Atta cephalotes [140] and the red 

harvester ant Pogonomyrmex barbatus [141].  Most of these ant genomes were 

sequenced using the 454 pyrosequencing technology.  For some of them, the assembly of 

sequencing results and the gene annotation were completed in less than one year. 

The release of the fire ant draft genome helps research on this globally 

widespread and invasive species.  There are more than 400 putative olfactory receptors 

identified in the fire ant genome [3].  This is the largest number of olfactory receptors 

reported so far in any insect species and points to the complex social behavior in the fire 

ant.  Similarly, higher number of genes in the JH-binding protein (JHBP) and JH-

epoxide hydrolases (JHEHs) families were annotated from the fire ant than from 

Nasonia and the honey bee [3].  This result indicates that the regulation of JH in fire ants 

is more complex than in wasps and bees.   

 With respect to reproduction, four adjacent copies of Vg genes (Vg-1 to Vg-4) 

were identified in the fire ant genome [3].  It was suggested that gene duplication 

http://genomes.arc.georgetown.edu/cgi-bin/gbrowse/acephalotes_1/
http://genomes.arc.georgetown.edu/cgi-bin/gbrowse/pbarbatus_1/


  

 

23 

occurred twice in the fire ant from an ancestral Vg gene (from wasp and bees) and 

resulted in four Vg genes.  The Vg-2 and Vg-3 are specifically expressed in queens 

while Vg-1 and Vg-4 are preferentially expressed in workers [3]. 

The insulin signaling pathway is an important and essential pathway in insects, 

and therefore it has been specifically investigated in many genome projects.  In the fire 

ant genome sequences, two insulin-like peptides and two insulin receptors were 

predicted; however, these two receptor sequences were incorrectly predicted and 

therefore are still incomplete.  There are two insulin receptor sequences in the genome of 

the honey bee [160]; however, we discovered that one of these two receptors (AmInR-2) 

is incompletely predicted and is missing half of the receptor sequence (β-subunit).  

Subsequently, incorrect predictions of the AmInR-2 orthologs from other ant genomes 

were also reported.  In the genomes of the carpenter ant C. floridanus and the ponerine 

ant H. saltator, four and five genes similar to insulin receptor were annotated, 

respectively, based on annotations of the honey bee sequences (AmInR-2) [139].  

However, we determined that only some of the predicted sequences in each species are 

similar in sequence and in predicted protein structure to the insect insulin receptor. 

These sequences are: “Cflo_05946 and Hsal_09512” (similar to honey bee AmInR-1, 

XM_394771; beebase number GB18331), “Hsal_01375” (similar to honey bee AmInR-2, 

XM_001121597; GB15492), and “Cflo_09206 and Hsal_11112” (similar to honey bee 

insulin-like growth receptor 1, XM_001121628).  All of these sequences are still 

incomplete.  Other sequences are wrongly annotated due to the wrong annotation of the 

honey bee genes.  These genes are “Cflo_02109 and Hsal_08870” (similar to honey bee 
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insulin-like growth factor-2, XM_623411) and “Cflo_03027 and Hsal_02738” (similar 

to the honey bee insulin receptor precursor, XM_397038).  The genes “XM_623411” 

and “XM_397038” in the honey bee are in fact the lysosomal enzyme receptor protein 

(LERP) and the venus kinase receptor (VKR), respectively.  Therefore, the genome 

annotation needs to be interpreted with caution.   

  

Dissertation objectives 

This dissertation provides an integrative understanding of the complex 

reproductive physiology in fire ants, as well as the development of novel experimental 

tool (RNA interference) to accelerate discovery.  The final goal of elucidation of the 

reproductive biology of the fire ant at the molecular level of integration is to discover 

new management methodologies or technologies.  For target validation, we investigated 

candidate receptors: vitellogenin receptor, and neuropeptide receptors (sNPF and insulin 

receptors), the later controlling the signaling cascade of endocrine regulation of 

reproduction in fire ant queens.  These receptors are candidates for disruption of egg 

production in queens and offer potential to manipulate the number of reproductives 

(queens and males) in colonies, thus, diminishing fire ant populations.  Determination of 

the timing of SiVgR expression and its localization in ovaries is the first step toward a 

better understanding of the effectors involved in fire ant reproduction.  We hypothesized 

that SiVgR expression can be silenced or reduced by RNA interference (RNAi).  The 

successful disruption of fire ant ovary development by VgR RNA interference in queen 

ovaries will not only provide us a possible way to disrupt reproduction in fire ants, but 
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also allow the study of other genes‟ functions in queens and in other ant species.  Prior to 

our study, RNAi had never yet been tested in ants.  Elucidation of the localization, 

temporal expression pattern, and the possible roles on regulation of ovary development 

of sNPF receptor and insulin receptors will help to develop a more complete 

understanding of the regulatory networks involved in fire ant reproduction, providing the 

possibility to disrupt oocyte development and ovary development in the future.   

In order to better understand the biological significance of the receptors involved 

in fire ant reproduction, four objectives were pursued in this dissertation, as follows:  

Objective 1: SiVgR transcripts are abundant in virgin (alate) queens.  However, 

there is no evidence that SiVgR protein, the actual functional component, is present, 

inhibited, or correctly localized in the oocyte membrane of virgin queens.  Hypothesis: 

we hypothesize that changes in SiVgR expression and localization will occur during the 

period of maturation of virgin queens.  The expression and localization profiles of the 

SiVgR protein in both virgin and mated queens were studied in this objective. 

 Objective 2: The vitellogenin receptor plays an important role in insect 

vitellogenesis.  We hypothesize that RNA interference will be feasible in ants.  

Hypothesis: disruption of the SiVgR gene function in fire ant virgin queens by injection 

of doubled-stranded RNA should result in disruption of ovary development and egg 

formation. 

Objective 3: The sNPF signaling pathway has been implicated to play a role in 

reproduction and body size control in some insect species.  Hypothesis: if the sNPF 

receptor were indirectly involved in the regulation of reproduction and queen behavior 
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through the central nervous system (CNS), and/or directly involved in ovary 

development through the expression of receptor in the ovaries, expression of the receptor 

protein in the brain and/or ovaries should be observed.  The expression and localization 

profiles of the sNPF receptor in queens were investigated in brain and ovary; the 

distribution of this receptor is unknown in the adult insect brain.   

Objective 4: The insulin/IGF signaling pathway in solitary insects influences 

growth, reproduction, metabolism, and longevity, while in the honey bee, it is linked to 

division of labor, caste differentiation, and foraging behavior.  Two insulin receptors are 

present in the honey bee.  Limited information on this pathway is available in other 

social insects such as ants.  To elucidate the role of IIS pathway in the fire ant, we 

cloned two putative insulin receptors (SiInR-1 and SiInR-2).  Hypothesis: we 

hypothesize that the insulin receptor may be involved in reproductive division of labor 

and queen reproduction in fire ants.  Therefore, the transcriptional expression of two fire 

ant insulin receptors was studied.    

Studies of receptors involved in fire ant reproduction are presented in chapters, 

each covering a different aspect of the project.  The SiVgR protein expression and 

localization studies are presented in Chapter II.  Chapter III focuses on silencing SiVgR 

gene function by RNA interference.  The studies of candidate upstream genes involved 

in the regulation of fire ant reproduction are presented in Chapters IV and Chapter V.  

Chapter IV includes studies on the localization of a sNPF receptor in queen brains and 

ovaries.  In chapter V, we investigated the molecular characterization and transcriptional 

expression analyses of two insulin receptors in fire ants. 
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CHAPTER II 

 

FUNCTIONAL AND SPATIAL ANALYSES OF THE VITELLOGENIN 

RECEPTOR IN FIRE ANT QUEENS* 

 

Introduction 

Vitellogenesis is a key process that controls reproduction in insects .  The 

vitellogenin receptor (VgR) is responsible for egg formation during vitellogenesis in 

insects [6,7,12,37,164].  Although the ovary-specific expression and localization of VgR 

have been reported from Drosophila, mosquitoes, and cockroaches [22,26-28,33], there 

is a paucity of knowledge on VgR physiology in insects of high reproductive capacity, 

such as the queens of social hymenopteran insects.  Most of the available knowledge on 

molecular mechanisms of reproduction in social insects is from the honey bee; however, 

bees have evolved mechanisms different from those in ants and wasps.  Contrary to most 

insects, in bees, VgR is not ovary or queen specific [31].  In addition, JH and ecdysone 

are thought to have lost their gonadotropic functions in adult queen bees and JH is 

suggested to regulate the division of labor, social behavior and colony function [51-55].  

In ant species in which mating flights are a strategic life-history trait for dispersal and 

reproduction, maturation of virgin queens occurs.  However, the specific molecular  

 
____________ 
* Portions of this chapter are reprinted with permission from “Oocyte membrane localization of 

vitellogenin receptor coincides with queen flying age and receptor silencing by RNAi disrupts 
egg formation in fire ant virgin queens” by Lu, H.L., Vinson, S.B., Pietrantonio, P.V. 2009, 
FEBS Journal 276: 3110–3123. © 2009 Blackwell Publishing Ltd. 
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mechanisms that mark this transition and the effectors that control pre-mating ovarian 

growth are unknown.   

In fire ant castes, the fire ant VgR (SiVgR) transcript was analyzed by northern 

blot and results showed that it was present only in the ovaries of reproductive females 

(virgin and mated queens) and was significantly more abundant in virgin queens than in 

newly-mated queens 24 hour after mating [24].  The transcript was not detected in fat 

body of reproductives, male or female, and was also not detected in mRNA extracted 

from the complete body of workers.  The temporal profile of transcriptional expression 

analyzed by semi-Q RT-PCR showed that SiVgR mRNA increased with age in virgin 

queens; the amount being statistically significantly lower in the untanned pupae versus 

virgin queens 60 days after eclosion [24].  The temporal profiles of SiVgR transcription 

from field-collected newly mated queens was also previously examined [35].  The 

results showed that the SiVgR transcripts increased from days 0 to 10 and remained at 

the day-10 level until day-30 post-mating.  SiVgR transcripts increased by day 35, then 

declined following nanitic emergence, at about day 40.  The overall SiVgR transcript 

abundance throughout the study period of 35 days post-mating was lower than in virgin 

queens.  Yet, it is still not known if this high expression of SiVgR transcript in virgin 

queen is accompanied by functional SiVgR protein expression.  We hypothesized that 

the complex mechanism that precisely controls the maturation of virgin queens for flying 

and mating should include regulation of SiVgR expression.  Here we investigated the 

temporal ovarian expression and subcellular localization of the SiVgR in fire ant virgin 

queens and mated queens within the colony, and in field-collected newly-mated queens.   
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Results 

 

Anti-SiVgR antibody production 

All VgRs are members of the low-density lipoprotein receptor (LDLR) 

superfamily [29].  Proteins of this superfamily share some common structural elements 

(See Chapter I).  To select a highly specific sequence of SiVgR to be expressed as 

antigen for antisera production, which would not overlap with sequences of other LDLR 

superfamily members potentially expressed in the ant, structural domains from the fire 

ant VgR (AAP92450), the predicted honey bee VgR (XP_001121707), the wasp VgR 

(XP_001602954), the cockroach B. germanica lipophorin receptor (LpR) (CAL47125), 

and human LDLR (AAA56833) were aligned and their percent identity (%ID) and 

similarity (%SIM) were compared.  The alignment showed that the second YWXD 

repeat region in the first epidermal growth factor (EGF) precursor homology domain is a 

highly variable region among LDLR family members (Figure 2.1A, arrow).  After 

hydrophilicity and antigenicity analyses of the SiVgR amino acid sequence, a fragment 

corresponding to the second YWXD repeat region in the first epidermal growth factor 

(EGF) precursor homology domain (amino acids 648-887) was chosen to produce a 

SiVgR antigen.  The recombinant protein of the bacterial culture (the BL21 (DE3) strain 

transformed with the pET28a-VgR plasmid) was purified under denaturing conditions (8 

M urea) using TALON® metal affinity resin to produce this SiVgR antigen.   

 
 
 
 

http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&val=126540379
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A.  

 

B.  

 

Figure 2.1. Expression of the recombinant antigen for anti-vitellogenin receptor 

(SiVgR) antibody production.  A. Alignment and comparison of structural domains of 
Hymenopteran VgRs, cockroach LpR and human LDLR.  Numbers below domains 
indicate percent identity (% ID) or similarity (% SIM).  The second YWXD repeat 
within the first EGF precursor homology domain exhibited the lowest average similarity 
scores indicating it is a highly variable region among LDLR family members.  The 
cockroach and human LDL receptors are shorter in the N-terminal half, therefore 
percentages of identity and similarity presented for the N-terminal region indicate values 
calculated between the C-terminal half of these receptors and the corresponding N-
terminal half of the S. invicta receptor.  Class A cysteine-rich repeat (A); Class B 
cysteine-rich repeat (B); ligand binding domain (LBD); EGF precursor homology 
domain (EGF) contains Class B cysteine-rich repeats (B) and YWXD repeats (YWXD); 
O-linked sugar domain (O); transmembrane domain (Tm); cytoplasmic tail (C).  B. 
Bacterial culture from the BL21 (DE3) strain (transformed with the pET28a-VgR 
plasmid) was induced with 1mM IPTG for 8 h at 20 °C.  Proteins were analyzed by 10% 
SDS-PAGE; numbers in parenthesis indicate volumes loaded.  Lane 1, Insoluble proteins 
(pellet) after centrifugation of the lysed culture (5 μl); Lane 2, Soluble proteins 
(supernatant) from lysate after centrifugation (5 μl); Lane 3, Unbound proteins after 

batch binding with resin (5 μl); Lane 4, the purified protein in eluant (20 μl).  M: marker. 
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The plasmid, pET28a-VgR, expressed the amino acid sequences 648-887 of 

SiVgR with only an additional N-terminal extension of 32 amino acid residues including 

the His-tag (6 residues) and T7-tag (11 residues) coding sequences.  Purified proteins 

were analyzed by SDS-PAGE (Figure 2.1B) and the analysis showed that the plasmid 

pET28a-VgR expressed a recombinant protein (~30 kDa) after induction by 1mM IPTG, 

as expected (lanes 1 and 2).  The eluant was collected, dialyzed and concentrated for the 

anti-SiVgR antibody production (Figure 2.1B, lane 4). 

 

SiVgR ovarian expression in virgin and mated queens within the colony 

To verify the ovarian-specific expression of SiVgR, membrane fractions of 

different tissues dissected from mated queens were analyzed by western blot (Figure 

2.2).  A band was recognized by the SiVgR antisera only in ovaries (lane 1).  No signal 

was detected in the head (lane 2), fat body (lane 3), or gut (lane 4) of mated queens; nor 

was it detected in the abdomens of adult males (lane 5).  No signal was detected using 

pre-immune serum, as expected (data not shown).  This result shows that the antibody 

raised against a purified SiVgR recombinant fragment was highly specific.  The 

estimated molecular weight of SiVgR was ~202 kDa, corresponding to the predicted 

molecular weight of 201.3 kDa [24].  The molecular weight of SiVgR is similar to that 

of insect VgRs from A. aegypti VgR (205 kDa) [23], B. germanica (202 kDa) [27], P. 

americana (200.5 kDa) [26] and L. maderae (215 kDa) [28], D. melanogaster Yl (210 

kDa) [22], A. mellifera VgR (~ 205 kDa, visualized by ligand blotting) [165], and the 

moth S. litura [25], as well as VgRs from other invertebrates including the tick D. 
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variabilis VgR (196.6 kDa, predicted molecular weight) [18] and the shrimp P. monodon 

VgR (211 kDa) [20].  VgRs from locusts, L. migratoria (180 kDa) and Schistocerca 

gregaria (186 kDa), and also from the polychaetous annelid Nereis virens (190 kDa) 

have not been cloned, but their molecular weights are slightly smaller in size as 

determined by ligand blot analysis [166-168].  In other invertebrates, the estimated 

molecular weight of VgR (230 kDa) from the crab, Scylla serrata, is apparently higher 

[169].  In the nematode, C. elegans, the size of VgR is more similar to VgR from 

vertebrates and is only 110 kDa [21].   

In queen pupae, a detectable level of SiVgR transcripts in the ovaries was 

observed previously; upon eclosion, these levels continued to increase in virgin queens 

up to 60 days of age [24].  It was of interest to determine whether receptor protein 

expression paralleled transcript abundance in these virgin queens.  The SiVgR band was 

recognized by the anti-SiVgR antisera (Figure 2.3A) in western blots of ovary from 

virgin (lane 1) and mated (lane 2) queens.  Analysis of relative band intensity showed 

that the SiVgR signal was much lower in virgin queens than in mated queens 

(virgin/mated queen = 0.578).  No band was detected with pre-immune serum (lanes 3 

and 4).  The localization of SiVgR in queen ovaries was examined by 

immunofluorescence.  Comparison of ovary cross sections from 13 day-old virgin queen 

(Figure 2.3B) and newly-mated queen (24 h post-mating) (Figure 2.3C), showed that 

both the number of developing oocytes and those exhibiting receptor 

immunofluorescence signal was lower in virgin queens than in newly-mated queens.  
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Correspondingly, the size of the ovary in virgin queens was also smaller, about half the 

diameter of that in newly-mated queens. 

 
 
 

 

Figure 2.2. Tissue expression analysis of vitellogenin receptor (SiVgR) by western 

blot.  Membrane proteins (10 μg) from ovary (lane 1), head (lane 2), fat body (lane 3) 

and gut (lane 4) of mated queens, and from abdomen of adult males (lane 5) were 
analyzed by western blot (primary antibody anti-SiVgR antisera, 1:1000).  A band at 
~202 kDa was detected only in ovaries from mated queens (lane 1).  No signal was 
detected in other tissues (lanes 2-5).  M: Marker.   
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A.  

B.     C.  
 

Figure 2.3. Vitellogenin receptor (SiVgR) expression in ovaries of virgin and mated 

queens within the colony and newly-mated queens: western blot and 

immunofluorescence.  A. Membrane protein from ovaries of virgin queens (lanes 1 and 
3; protein from 16 pairs of ovaries) and mated queens (lanes 2 and 4; protein from 4 
pairs of ovaries) was analyzed by western blot (primary antibody: SiVgR antisera in 
lanes 1 and 2 and pre-immune serum in lanes 3 and 4; both antisera 1:1000 dilution).  A 
band at ~202 kDa was recognized by the SiVgR antisera in ovaries from virgin (lane 1) 
and mated queens (lane 2, arrow).  The relative SiVgR band intensity for virgin queens 
with respect to mated queen (lane 1/lane 2) is shown on the right.  M: Marker.  Cross 
sections of ovaries from (B) a 13 day-old virgin queen and (C) field collected newly-
mated queens 24 h post-mating were analyzed by immunofluorescence, arrowheads 
show SiVgR signal.  Ca: Calyx.  Ov: ovary. 
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Temporal analysis of the subcellular distribution of SiVgR 

 To determine the earliest age at which SiVgR is expressed in the oocyte plasma 

membrane, ovaries of virgin queens from day 0 (the day of emergence) to day 14 were 

collected and analyzed by immunofluorescence.  In ovaries of 9- to 11 day-old virgin 

queens, some of the oocytes and trophocytes appeared larger and showed intense SiVgR 

signal in the oocytes, however the signal remained evenly distributed in the oocyte 

cytoplasm; photographs representative of 11 day-old virgin queens are shown in Figure 

2.4 (A).  From 12 to 14 days old, ovaries exhibited a few late-stage oocytes with the 

SiVgR signal localized at the oocyte membrane; photographs representing this period 

from 12- to 13-day-old virgin queens are shown in Figure 2.4 (B and C).  These results 

demonstrated the SiVgR expression begins before queen eclosion and suggest that the 

SiVgR-endocytotic machinery might achieve full functioning 12 days after queen 

eclosion.  No signal was detected with pre-immune serum (Figure 2.4D), as expected. 
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A.   B.  

C.   D.  
 

Figure 2.4. Temporal analysis of the subcellular distribution of vitellogenin 

receptor (SiVgR) in ovaries from virgin queens by immunofluorescence.  SiVgR 
accumulated in the cytoplasm of early stage oocytes (Oo) (A, arrows), and in the plasma 
membrane of late stage oocytes (B-C, arrowheads).  A. Oocytes from an 11 day-old 
queen, notice trophocyte nuclei stained in blue (stars). B. Oocyte from 12 day-old queen. 
C. Oocyte from 13 day-old queen. D. Negative control (pre-immune serum), no signal 
was detected in ovaries from a 9 day-old virgin queen.  Ca: Calyx. 
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In mated queens, SiVgR protein was evenly distributed in the oocyte cytoplasm 

in early-stage oocytes (pre-vitellogenic stage oocytes located towards the distal end of 

ovariole) (Figures 2.5A and 2.5B, arrows).  Consistent with VgR function, the SiVgR 

became progressively more clearly visible in the oocyte plasma membrane of late-stage 

oocytes (vitellogenic stage oocytes) (Figures 2.5B and 2.5C, arrowheads).  No signal 

was detected with pre-immune serum (Figure 2.5D), as expected.  Signal was also 

undetectable with antigen pre-absorbed antiserum (Figure 2.5E) while anti-SiVgR 

antiserum at the same dilution (1:2500) showed a strong signal (data not shown).  

Immunofluorescence with anti-(roach VgR) serum failed to reveal the SiVgR signal 

(Figure 2.5F).  Complementary western blot analysis of endoplasmic reticulum 

membranes (microsomes) from mated queen ovaries revealed a single specific receptor 

band (Figure 2.5G), confirming that the cytoplasmic fluorescent signal observed in 

Figure 2.5 (A-C), corresponded to the SiVgR.  
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G.  
 

Figure 2.5. Vitellogenin receptor (SiVgR) expression in ovaries of fire ant mated 

queens within the colony analyzed by immunofluorescence.  SiVgR accumulated in 
the cytoplasm of early-stage oocytes (Oo) (A and B, arrows), and in the membrane of 
late-stage oocytes (B and C, arrowheads).  C. Cross section of a mature oocyte showing 
SiVgR signal in the membrane, as expected.  No signal was detected in tissues incubated 
with pre-immune serum (D), with anti- SiVgR antiserum pre-absorbed with recombinant 
receptor antigen (E) and with non-specific antisera against cockroach VgR (F).  Star, 
trophocytes nuclei.  G. Ovarian microsomal proteins (10 μg) analyzed by western blot 

(lane 1).  M: Marker. 
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SiVgR expression pattern in newly-mated queens 

To investigate SiVgR expression in queens during the period of colony 

foundation, ovaries from queens at different ages post-mating were dissected and 

analyzed by western blot.  Ovaries from virgin queens collected right before a mating 

flight were also analyzed.  In newly-mated queens, the SiVgR immunoreactive band was 

highly noticeable from 8 h after field-collection and remained high until 10 days after 

field collection (mating) (Figure 2.6, lanes 2-6).  Additionally, SiVgR was constantly 

expressed between 10 and 25 days after mating (Figure 2.6, lanes 6-9).  However, SiVgR 

was not detectable in western blots from ovaries of virgin queens that were collected just 

before the mating flight began (Figure 2.6, lane 1).  This might be due to the low 

receptor expression in virgin queens (only one ovary pair-equivalent protein was 

analyzed), which is confirmed by immunofluorescence (Figures 2.3B and 2.4).  SiVgR 

protein abundance is almost complementary to that of SiVgR mRNA, which is higher in 

virgin than newly-mated queens [24].  Interestingly, SiVgR was also not detectable in 

ovaries from de-alate queens that had taken a mating flight but were not inseminated (no 

white spermatheca found).  In these queens, the receptor was not detectable after 24 h of 

field-collection whereas mated queens showed high expression after that period (Figure 

2.6, lane 10; compare with mated queen, lane 4).  Therefore, we conclude that it is 

successful mating, and not participating in the mating flight per se, that induces high 

SiVgR protein expression in mated queens.   



  

 

40 

 
 

Figure 2.6. Western blot analyses of vitellogenin receptor (SiVgR) in ovaries from 

virgin and field collected newly-mated queens during the period of colony 

foundation.  Total proteins from ovaries of queens at different time-points before and 
after mating were analyzed (equivalent to one pair of ovaries per lane).  The strongest 
SiVgR signals were detected from 8 h until 10 days mated queen (MQ) after collection 
(lanes 2-6, arrow).  SiVgR signals were also constantly detected 10-25 days after 
collection (lanes 6-9).  No signal was detected from virgin (alate) queen (AQ) ovaries 
collected right before mating flights (lane 1) and non-inseminated de-alate queen (NQ) 
ovaries analyzed 24 h after being collected upon landing from mating flights (lane 10).  
Larvae of nanitics (first workers) start to emerge around 7 days after queen mating.  n=5 
ovaries per time point.  M: Marker.   
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Discussion 

 

SiVgR ovarian expression in queens 

The molecular mechanisms of reproductive control in social insects are 

beginning to be understood, mainly through research on social Hymenoptera, 

specifically the honey bee [170,171].  Here we report the first such study on an invasive 

ant species, the red imported fire ant.  The onset of reproduction in fire ants is under 

complex control, involving both environmental and endogenous factors.  These stimuli 

may influence the readiness of virgin queens for a mating flight and upon mating, de-

alation, the sudden increase in vitellogenesis and concomitant ovarian development, and 

the onset of egg-laying behavior.  To begin to dissect the molecular mechanisms of 

reproduction in ants, we investigated the fire ant SiVgR temporal subcellular localization 

in the ovaries of both virgin queens and in mated queens.  

Drosophila yolk protein receptor shares high sequence similarity and identity 

with insect VgRs [164], and therefore the polyclonal antibodies raised against A. aegypti 

VgR also recognize the D. melanogaster yolk protein receptor [172].  However, 

polyclonal antibodies against a VgR from cockroach failed to cross-react with the SiVgR 

(Figure 2.5F).  Therefore, development of a specific SiVgR antibody was necessary.  

SiVgR immunoreactivity analysis indicated that SiVgR is only present in the ovary of 

queens, consistent with its role in Vg uptake for egg development (Figure 2.2).  Reports 

on VgRs from other insect species analyzed by western blot with specific antibodies are 

of similar molecular weight as our result (~202 kDa) [22,23,26-28].  The antibody 
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developed is highly specific and does not cross-react or detect other LDLR family 

receptors (Figures 2.2 to 2.5).  Receptor signal was not observed in membrane 

preparations from head, fat body, gut and male abdomens, verifying receptor tissue 

specific expression in the ovary (Figure 2.2).  In the honey bee, occurrences of Vg and 

VgR in tissues other than the ovary in both queen and worker have been reported, 

suggesting an alternative role of Vg as a food storage protein or as an antioxidant 

[31,51,165,173]. 

Three Vg genes (Vg-1, -2, and -3) have been previously discovered in fire ants 

[147].  Vg1 gene is expressed in all life stages and castes; Vg2 and Vg3 genes are only 

expressed in queens and their expression level is higher in mated queens than in virgin 

queens [147].  Therefore, besides the low expression of SiVgR protein in the virgin 

queens (in this dissertation), the low expression of Vg2 and Vg3 in virgin queens could 

also be another essential control component of fire ant ovary development.  Recently, the 

fourth Vg gene (Vg-4) has been discovered in fire ants and it is only expressed in 

workers with lower expression level than the Vg1 gene [3].  However, we did not detect 

SiVgR expression in workers or queen tissues other than the ovary indicating that the 

fire ant Vg1 and Vg2 are only circulating proteins or must be incorporated through a 

receptor other than SiVgR in target tissues [24].   

Chen in Pietrantonio‟s laboratory previously found that the SiVgR transcript 

level was higher in ovaries from virgin queens than from mated queens at 1-7 days post-

mating (colony foundation period) [24].  Tian et al. who analyzed up-regulated 

transcripts in newly-mated queens versus virgin queens did not identify higher levels of 
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SiVgR expression in mated queens [147], supporting our findings.  However, the SiVgR 

transcript level is lower in virgin queens than in egg-laying mated queens within a 

mature fire ant colony (Lu and Pietrantonio, unpublished data).  We now report that 

despite the elevation of SiVgR transcript level with age in virgin queens [24], the SiVgR 

protein signal is much lower in the ovary of virgin queens than mated queens (Figure 

2.3).  These findings are consistent with the known reproductive inhibition by exposure 

to queen primer pheromone in virgin queens previous to the mating flight and indicate 

that the translational regulation of SiVgR expression is part of the orchestration of 

reproductive inhibition.  Conversely, the mated queen within a colony has high SiVgR 

protein expression, in accordance with its role in continuous egg production.  Honey bee 

VgR transcript level is also higher in the ovary of egg-laying queen within a mature 

colony than in virgin queens [31].  In cockroach, VgR transcript levels are also relatively 

high in the pre-vitellogenic stage ovaries and low in the vitellogenic stage; however, the 

expression of VgR protein was low in the nymphal stage and high during the 

vitellogenic periods [26-28].  In contrast, the level of mosquito VgR transcript and its 

protein start to rise in the ovary one day post-eclosion and continue to rise during the 

pre-vitellogenic and vitellogenic periods, reaching their peak at 24h after a blood meal 

and then decline [23,174].   

 

Subcellular distribution of SiVgR  

The subcellular localization of SiVgR signal was similar in virgin and mated 

queens, i.e. expressed in the cytoplasm of pre-vitellogenic oocytes and in the plasma 
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membrane of vitellogenic oocytes (Figures 2.3 to 2.5).  Although this similar SiVgR 

subcellular distribution was observed in both virgin and mated queens, plasma 

membrane-localized SiVgR signal in virgin queens was not detected until 12 days post-

eclosion (Figure 2.4), significantly later than in newly-mated queens (24 h post-mating) 

(Figure 2.3C).  This age (12 days) coincides with the required virgin queen maturation 

time for flying and mating [143,144,148,149].  These results support the hypothesis that 

after virgin queen eclosion within a mature colony, oocyte development is partially 

suppressed possibly by the queen primer pheromone until virgin queens are ready for a 

mating flight.  Queen primer pheromone may thus prevent virgin queens from competing 

with the mated queen for nutritional resources for reproduction (ovarial inhibition), but 

keeps virgin queens ready for reproductive success after a mating flight when the 

appropriate physical and environmental conditions become available [175,176].  In 

Drosophila, the yolk protein receptor transcript and protein are detected in germ line 

cells (pre-vitellogenic, stage 1 chamber) and receptor protein is evenly distributed 

throughout the oocyte during the pre-vitellogenic stages (stages 1-7) and increases 

remarkably at the oocyte membrane during vitellogenic stages (stages 8-10) [10].  

Similar results were found in cockroach VgRs [26-28].  In fire ants, factors contributing 

to reproductive control via the SiVgR include: (a) functional SiVgR translational 

machinery which may be negatively regulated by low levels of JH in virgin queens; and 

(b) correct localization of the SiVgR protein in the oocyte membrane.  Several proteins 

are involved with the correct transport of yolk protein receptor to the oocyte membrane 

in Drosophila, such as Boca (an endoplasmic reticulum protein) [177], Trailer Hitch (a 
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component of a ribonucleoprotein complex) [178], and Sec5 (the exocyst component in 

endoplasmic reticulum) [179].  Homologues of these genes in fire ants may be 

temporally down-regulated by levels of JH (or other hormones or factors) before 12-14 

days of age in virgin queens in which SiVgR expression is cytoplasmic. 

Our findings suggest SiVgR expression in mated queens during the colony 

foundation period is tightly synchronized with queen egg production (Figure 2.6).  The 

high apparent expression of SiVgR at 8 h to 10 days post-mating is associated with the 

production of eggs that predominantly give rise to nanitics [151].  SiVgR signal declined 

after 10 days and was steady until 25 days post-mating.  The eggs produced during this 

15 day period (before the first worker adults emerged) are predominantly trophic eggs 

and during this period the number of eggs in the ovary is significant higher [180].  It is 

also known that size of trophic eggs is 4x larger than embryonated eggs [181].  

However, the SiVgR signal in ovaries is lower in this period (Figure 2.6, lanes 7-9), 

perhaps suggesting that a large component of trophic eggs might not be Vg or that the 

Vg uptake may be more efficient in trophic eggs if limited SiVgR is present. 

We also observed that ovaries of de-alate queens which were not inseminated 

remain small and show no SiVgR signal similar to these before mating (Figure 2.6, lane 

10).  This result implies that successful insemination of newly-mated queens, but not 

flight only, triggers vitellogenesis.  In addition, the factors linked to this activation might 

not be involved in de-alation [182].  In Drosophila, the sex peptide (transported from 

male to female when mating) and its receptor are essential for triggering the post-mating 
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reproductive switch [183,184].  Sex peptides or other factors might play a similar role in 

fire ant reproduction. 

In insects, JH level is regulated by neuropeptide hormones, biogenic amines and 

other factors [185].  In fire ant virgin queen ovaries in vitro, SiVgR transcript is 

upregulated by the JH analog methoprene [24].  In mosquito, JH is also assumed to 

enhance post-transcriptional control of VgR transcripts in ovary similarly to its effect on 

other transcripts in the fat body [37,186].  However, how VgR expression is hormonally 

controlled in virgin queens needs further investigation.  In Drosophila, the insulin 

signaling pathway may regulate JH synthesis [66] and is necessary for vitellogenesis in 

adults [121] (please see Figure 1.2, Chapter I).  In addition, the sNPF signaling cascade 

is involved in ovarian development in locust [57,78] and is the up-regulator of insulin 

signaling pathway in Drosophila [58].  It appears that JH is the main regulatory hormone 

for ovary development and de-alating behavior in fire ant queens and the SiVgR 

transcript in virgin queen ovaries is up-regulated by the JH analog methoprene in vitro 

[24].  Therefore, VgR regulation appears to be under complex control of nutritional 

signals which regulate JH through several neuropeptide pathways including sNPF and 

insulin pathways, and also perhaps male factors transferred during mating.  This 

conclusion is not inconsistent with the diverse pleiotropic effects of JH and insulin 

signaling known to exist among insects.   

In summary, SiVgR is queen and ovary specific and is critical for egg formation.  

It is successful mating, but not participating in the mating flight per se that induces high 

SiVgR protein expression in mated queens.  In virgin queens, the receptor signal was 
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first observed at the oocyte membrane beginning at day 12 post-emergence, coinciding 

with the required two weeks of maturation before a mating flight.  Thus the correct 

localization of SiVgR in the cell membrane in virgin queens appears to be a legitimate 

physiological marker for virgin queen readiness for a mating flight.  

 

Materials and Methods  

 

Insects 

Polygyne (multiple-queens) colonies of S. invicta were obtained and maintained 

as described previously [24].  All colonies were collected in Brazos County, Texas, and 

tested for free of microsporidium Kneallhazia (Thelohania) solenopsae infection [187].  

The laboratory colonies of S. invicta were housed in plastic trays (27 × 40 × 9 cm, 

Pioneer Plastics Inc.) covered with Fluon (Insect-a-Slip insect barrier, BioQuip Products, 

CA, USA).  Each tray equipped with one nest (14 cm diameter Petri dishes half-filled 

with damp Castone®, Dentsply International Inc., York, PA, USA).  Colonies were 

maintained at 27 ± 2 °C (16L: 8D photoperiod) and fed daily with 20% honey-water, 

cricket carcasses (Flukers, Port Allen, LA, USA), and an artificial diet [188].  Water was 

given ad libitum.  Virgin queens and mated queens were collected from multiple 

polygyne colonies. 

Virgin queens ready to begin a mating flight were collected from the top of 

mounds in the field and their ovaries were dissected after collection.  Newly-emerged 

virgin queens from laboratory colonies were kept in a 3 cm diameter plate nest (half-
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filled with damp Castone®) with holes on the lid to receive care from workers within the 

queenright colony and exposure to primer pheromone from mated queens.  Newly-mated 

queens were collected from the field after mating flights (at about 3-4 pm).  Queens were 

brought to the laboratory and maintained at 27 °C in glass tubes which acted as humidity 

chambers by preparing them half-filling them with water and cotton (please see Mei-er 

Chen‟s dissertation, Figure 5-1 [35]).  These queens will not eat for about one month.  

Ovaries were dissected at 8, 16, and 24 h, and 5, 10, 15, 20, and 25 days after collection, 

respectively.  During dissection, successfully mated queens were identified by observing 

an inseminated large and white spermatheca; only inseminated queens were used as 

“mated queens.” 

 

Anti- SiVgR antisera production 

 To select a highly specific sequence of SiVgR to be expressed as antigen for 

antisera production, structural domains of the hymenopteran VgRs, (fire ant VgR, 

AAP92450, predicted honey bee VgR, XP_001121707, wasp VgR, XP_001602954), B. 

germanica lipophorin receptor (LpR) (CAL47125), and human LDLR (AAA56833) 

were aligned and compared.  The SMART (simple modular architecture research tool; 

http://smart.embl-heidelberg.de) [189,190] was used for identification of modular 

domains that were adjusted by eye, when necessary.  The SignalP 3.0 

(http://www.cbs.dtu.dk/services/SignalP/) and the SigCleave tools (EMBOSS; 

http://mobyle.pasteur.fr/cgi-bin/portal.py?form=sigcleave) were used to predict the 

cleavage sites of the signal peptide.  Percentage identity and similarity for sub-domains 

http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&val=126540379
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were determined by the EMBOSS Pairwise Alignment Algorithms of EBI (European 

Bioinformatics Institute; http://www.ebi.ac.uk/emboss/align). 

After hydrophilicity and antigenicity analyses of the SiVgR amino acid sequence 

by DNASTAR software (DNASTAR Inc., Madison, WI, USA), a fragment 

corresponding to the second YWXD repeat region in the first epidermal growth factor 

(EGF) precursor homology domain (amino acids 648-887) was chosen to produce a 

SiVgR antigen.  The SiVgR fragment was amplified from a SiVgR clone (from Mei-er 

Chen) by PCR and cloned into pCR®2.1-TOPO® vector using the TOPO TA cloning kit 

(Invitrogen, Carlsbad, CA, USA).  Competent cells (Top10F‟, Invitrogen) containing the 

plasmid were grown in Luria–Bertani medium containing 100 μg/ml ampicillin and 

cloned products were isolated by QIAprep Spin Miniprep Kit (Qiagen, Valencia, CA, 

USA).  The plasmid was cut with BamHI and 
SalI and the SiVgR fragment was 

subcloned into BamHI and 
SalI restriction sites in the pET32a(+) vector (Novagen, San 

Diego, CA, USA) with T4 DNA ligase (Promega, Madison, WI, USA).  Competent cells 

(Top10F‟) containing this plasmid (pET32a-VgR) were grown in Luria–Bertani medium 

containing 30 μg/ml kanamycin and cloned products were isolated as above and 

sequenced (ABI PRISM Big Dye Terminator Cycle Sequencing Core kit; ABI 3100 

Sequencer) by the Gene Technology Laboratory (Texas A&M University, College 

Station, TX, USA).  To generate an expression plasmid, this SiVgR fragment was cut 

from the previously generated plasmid (pET32a-VgR) and subcloned into BamHI and 

SalI restriction sites in the pET28a(+) vector (Novagen) with T4 DNA ligase (Promega).  

This pET28a-VgR plasmid expressed the SiVgR fragment with an additional 32 amino 

http://www.ebi.ac.uk/emboss/align


  

 

50 

acid residues at the N-terminus, which included the His-tag sequences for its 

purification.  Plasmid DNA was grown, purified, and sequenced as above for 

verification. 

Escherichia coli strain BL21 (DE3) (Novagen) was then transformed with 

pET28a-VgR plasmid and one positive colony was grown in Luria–Bertani medium 

containing 30 μg/ml kanamycin.  Isopropyl-thio-β-D-galactoside (IPTG) (1mM) was 

added to this bacterial culture (OD600nm=0.6) to induce recombinant protein expression.  

After incubation at 20 °C for 8 h, the culture was centrifuged at 3,000 g for 10 min 

(Beckman Avanti 30 centrifuge, Beckman Coulter, Brea, CA, USA) and the pellet was 

lysed in wash buffer.  Lysate was centrifuged at 10,397 g for 20 min (Beckman Avanti 

30 centrifuge).  Proteins in the supernatant were purified using TALON® metal affinity 

resin (Clontech, Mountain View, CA, USA) following the manufacturer‟s protocol with 

additional 8 M urea added in each step.  Recombinant protein was eluted with 150 mM 

imidazole and analyzed by SDS-PAGE (Figure 2.1B).  The eluant (~10 ml/each 

purification) was collected and dialyzed with decreasing concentrations of urea from 8 to 

7, 6, 4 and 2 M in PBS at 4 °C, each step for 2 h in 10K MWCO SnakeSkin Dialysis 

Tubing (Pierce, Rockford, IL, USA).  The SiVgR recombinant antigen (~30 kDa) was 

concentrated with a 10 kDa Amicon® Ultra-4 Centrifugal Filter (Millipore, Billerica, 

MA, USA) by centrifugation at 4,000 g (SX4750 rotor, Beckman Coulter, Brea, CA, 

USA).  This antigen protein (~0.2 μg in each injection) was injected into two rabbits for 

antibody production (Robert Sargeant‟s Laboratory, Ramona, CA).  Pre-immune sera 
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was collected to be used for negative controls.  The specificity of anti-SiVgR antisera 

was confirmed using western blot analysis.   

 

Tissue preparation and western blot analysis 

 Membrane proteins, microsomes (endoplasmic reticulum) or tissue homogenates 

were analyzed by western blot.  Membrane proteins were extracted from virgin and 

mated queens and males of unknown age (Figures 2.2 and 2.3A).  To confirm receptor 

tissue specific expression, membrane proteins (10 μg/lane) from the ovary, head, fat 

body, gut of mated queens, and abdomen of adult males were analyzed by western 

blotting.  To compare receptor expression between virgin and mated queens (Figures 2.3 

to 2.5), membranes of four pairs of ovaries from mated queens (45.4 μg/lane) and 16 

pairs of ovaries (10.3 μg/lane) from virgin queens were analyzed.  Membranes were 

prepared as previously described with modifications [22,23].  Tissues were dissected and 

homogenized in cold buffer A (25 mM Tris-HCl, pH 7.5, 1 mM EDTA, 1 mM EGTA, 1 

mM dithiothreitol) with protease inhibitors (1 mM phenylmethylsulfonylfluoride, 1 mM 

benzamidine, 1.5 mM pepstatin A, 2 mM leupeptin).  The homogenates were centrifuged 

at 800 g for 5 min and the supernatants were collected and centrifuged at 100,000 g 

(SW28 rotor, Beckman LE80K) for 1 h at 4 °C.  After ultra-centrifugation, the pellets 

were re-suspended in 200 μl cold buffer B (50 mM Tris-HCl, pH 7.5, 2 mM CaCl2) with 

protease inhibitors and stored at -80 °C.  To confirm that oocyte cytoplasmic signal was 

specific for SiVgR, microsomes (10 μg/lane) from mated queen ovaries were prepared as 

described previously [191] and analyzed by western blotting (Figure 2.5G).  To 
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determine receptor expression in mated queens throughout the colony foundation period 

(Figure 2.6), whole ovaries dissected from virgin queens (collected right before a mating 

flight), newly-mated queens at various times post-mating, and non-inseminated queens 

(24 h after collection) were placed in cold buffer A and stored at -80 °C.  Five ovaries 

from each time point were homogenized in buffer A and total protein equivalent to one 

ovary was loaded per lane.   

For western blots, proteins were separated on SDS-PAGE (7.5% gel, Bio-Rad, 

Hercules, CA, USA) and transferred to PVDF (polyvinylidene difluoride) membranes 

(Millipore).  Membranes were blocked for 1 h at room temperature (RT) in 5% non-fat 

milk (Wal-Mart Store Inc.) in TBST (10 mM Tris base, 140 mM NaCl, 0.1% Tween-20, 

pH 7.4) and incubated for 1.5 h with rabbit anti-SiVgR antiserum (fourth bleed; 1:1000) 

in TBST.  After 3 X 10 min washes with TBST, the membrane was then incubated with 

a horseradish peroxidase (HRP)-conjugated goat anti-rabbit IgG antibody (Jackson 

ImmunoResearch, West Grove, PA, USA; 1: 40,000) for 1 h.  After the same washing 

steps, the membrane was visualized using the Enhanced Chemiluminescence System™ 

(Pierce) on X-OMAT film (Kodak, Rochester, NY, USA).  To compare protein 

abundance, the intensity of the SiVgR band (Figure 2.3A) was determined using the 

ImageJ image processing program (http://rsb.info.nih.gov/ij/).   

 

Immunofluorescence analysis 

 Ovaries from 10 each of mated queens, newly-mated queens (24 h post-mating), 

and virgin queens from day 0 (the day of eclosion) up to 14 days post-eclosion, 

http://rsb.info.nih.gov/ij/
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respectively, were dissected under PBS.  Each pair of ovaries was divided into two, one 

individual ovary was included in the experimental group and the other used as a negative 

control.  Ovaries were fixed for 4 h in 4% paraformaldehyde (Sigma-Aldrich, St. Louis, 

MO, USA) in PBS at 4 °C and serially dehydrated in 50%, 70%, 95%, 100% ethanol and 

xylene for 2 X 30 min each at room temperature.  Tissues were then penetrated in 

Paraplast-Xtra (Fisher Scientific, Pittsburgh, PA, USA) at 60 °C for 4 h.  Sections (12 

μm) were cut with a rotatory microtome and placed on Superfrost Plus
TM slides (Fisher) 

and dried for 2 days at 39 °C.  Tissue sections were de-waxed for 2 X 5 min in xylene 

and rehydrated serially for 10 min, each in 100%, 95% and 70% ethanol and in water for 

30 min at room temperature.  After rinsing 2 X 5 min with PBST (PBS containing 0.05% 

Triton X-100), the slides were incubated in blocking solution (5% goat serum and 0.5% 

bovine serum in PBST) for 1 h at room temperature and then incubated overnight in a 

wet chamber at 4 °C with the anti-SiVgR antiserum (1:100) in blocking solution.  The 

slides were also incubated overnight with the pre-immune sera (1:100), anti-SiVgR 

antiserum (4 μl) pre-absorbed for 3 h with 100 μg SiVgR antigen (1:2500), and the 

antisera against B. germanica VgR (a generous gift from Dr. M-D. Piulachs, Spain) 

(1:100) in blocking solution as negative controls.  Washes were for 3 X 10 min in PBST, 

which were subsequently done in this fashion after each incubation step.  Slides were 

incubated with biotinylated goat anti-rabbit IgG (Jackson ImmunoResearch, West 

Grove, PA, USA; 1:200) in blocking solution for 1.5 h and washed, followed by 

incubation with Alexa Fluor 546 Streptavidin (Invitrogen; 1:200) in blocking solution 

for 1 h.  Sections were washed and mounted in Vectashield Mounting medium with 
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DAPI (4'-6-diamidino-2-phenylindole) for nuclear staining (Vector, Burlingame, CA, 

USA) and observed under a Carl Zeiss Axioimager A1 microscope with filters for DAPI 

(G 365 nm, FT 395 nm, BP 445 nm) and Alexa Fluor 546 (BP 546 nm, FT 560 nm, BP 

575-640 nm).  Sections were analyzed and images were obtained with an AxioCam MRc 

color camera (Carl Zeiss) and analyzed with AxioVision image program (Carl Zeiss). 
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CHAPTER III 

 

DISRUPTION OF THE VITELLOGENIN RECEPTOR GENE 

FUNCTION IN VIRGIN QUEENS BY RNA INTERFERENCE* 

 

Introduction  

The formation of eggs in insects requires incorporation of relatively large 

amounts of proteins and lipids which uptake into oocyte involves the function of 

receptors of the low density lipoprotein receptor (LDLR) family.  It is known that VgR 

mediates the uptake of Vg into the oocyte and this is a critical event in vitellogenesis.  In 

fire ant, the transcripts and proteins of SiVgR are only expressed in the queen ovary 

[24,192]; adult workers (which are also females) have no ovary and are sterile.  

Therefore, we hypothesized that RNA interference (RNAi) mediated silencing of the 

SiVgR gene would lead to a phenotype of no (or impaired) egg formation in fire ant 

queens. 

RNAi has been used as a research tool to disrupt the expression of specific genes in a 

wide range of organisms including plants, fungi, invertebrates and mammals [193,194].  

One of common methodologies for RNAi is introducing the double-stranded RNA 

(dsRNA) into the organism to inhibit the expression of the target gene.  The discovery of  

 
____________ 
* 

Portions of this chapter reprinted with permission from “Oocyte membrane localization of 

vitellogenin receptor coincides with queen flying age and receptor silencing by RNAi disrupts 
egg formation in fire ant virgin queens” by Lu, H.L., Vinson, S.B., Pietrantonio, P.V. 2009, 
FEBS Journal 276: 3110–3123. 2009, © 2009 Blackwell Publishing Ltd  
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dsRNA being the potent trigger for RNAi was first reported in the nematode C. elegans 

[195].  Subsequently, RNAi technology made it possible to knock down gene function 

on insects other than model organisms like Drosophila.   

Studies on RNAi silenced genes expressed in the ovaries were reported from 

cockroaches [27,196], ticks [18,197], fruit flies [198-200], the mosquito (A. aegypti) 

[133], and the wasp (N. vitripennis) [201].  Previous research on RNAi treatments with 

VgR dsRNA in invertebrates have been shown effective to knock down VgR gene 

expression in ovary of the German cockroach, B. germanica, the American dog tick, D. 

variabilis, and the shrimp, P. monodon.  Silencing VgR gene expression disrupts Vg 

uptake into the oocyte and thus leads to Vg accumulating in the haemolymph [18,20,27].  

RNAi of VgR gene has not yet been tested in insects with polytrophic ovary.  Silencing 

of lipophorin receptor (LpR, another receptor in the LDLR superfamily) in the ovary and 

the fat body of German cockroach also showed that dsRNA can be applied to silence 

genes expressed in ovary.  The results showed that LpR RNAi treated females have 

lower receptor expression 6 days after treatment, and also contained less apolipophorin I 

in the ovary when compared with controls [27].  However, silencing of LpR has limited 

effect on egg formation or vitellogenesis.   

In Hymenoptera, RNAi has been successfully used to knock down gene 

expression in the honey bee [202-204] and the wasp N. vitripennis [201].  In the honey 

bee, abdominal injection of eggs or newly emerged adult workers with Vg dsRNA 

(derived from a 504 bp Vg coding sequence) disrupts the expression of the Vg gene in 

the adult fat body [203].  Parental RNA interference (pRNAi) was applied in the wasp.  
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The dsRNA derived from the Otd1 gene was injected into female wasp pupae and the 

expression of Otd1 gene in the offspring embryos was tested [201].   

Although when we started this project, there was no other report on silencing a 

gene in the ovary of the hymenopteran insects except the work from Lynch and Desplan 

[201], we hypothesized that silencing VgR gene expression should be feasible in the fire 

ant queen.  RNAi technique would not only allow us to analyze VgR gene function in 

fire ants, but also would aid the study of other insect species in which it is not easy to 

produce transgenic insects, especially social insects in which at most only a few females 

have reproductive ability in a colony.  To demonstrate that RNAi can be an effective tool 

for studying gene functions in queen ovary, we experimented to decrease transcript 

abundance for the Vg receptor and analyzed results by RT-PCR and histochemistry as 

well as by photography of ovaries.  

 

Results 

 

dsRNA synthesis 

The purpose of this study was to silence the Vg receptor gene expression in fire 

ant ovary via microinjection of SiVgR-dsRNA.  For this, high quality dsRNA from two 

regions of the SiVgR were synthesized in vitro using the MEGAscript™ RNAi Kit 

(Ambion).  The SiVgR cDNA clone [24] and the enhanced green fluorescent protein 

(EGFP) clone [205] were used as templates for DNA amplification using gene specific 
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primers (Table 3.1) designed with the T7 RNA polymerase recognition sequence on both 

the sense and antisense strands for respective single stranded RNA synthesis.   

A 691 bp product amplified from the SiVgR clone was used as the DNA template 

for SiVgR-dsRNA1 synthesis (Figure 3.1A, lane 1), and a 611 bp product from EGFP 

was used as a negative control DNA template for syntheses of the EGFP-dsRNA (Figure 

3.1A, lane 2).  After purification of DNA templates, the T7 enzyme was added to each 

transcript template for synthesis of the single stranded RNAs (ssRNAs) (Figure 3.1B, 

lane 1 and 5).  The complementary ssRNAs were incubated at 75 °C for 5 min and then 

cooled-down to room temperature for the annealing of complementary ssRNA into 

dsRNA (Figure 3.1B, lane 2 and 6).  Subsequently, the nuclease (DNase I and RNase) 

was added to digest DNA and ssRNA, but not dsRNA (Figure 3.1B, lane 3 and 7).  In 

the last step, the dsRNA was purified (Figure 3.1B, lane 4 and 8) and the dsRNA was 

resuspended to 1 µg/0.5 µl in elution buffer.   
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Table 3.1   DNA primers used in PCR to generate the templates for double-

stranded RNA synthesis for SiVgR and EGFP. Each of the primers incorporates the 
T7 promoter sequence at the 5‟ end (underlined).  
 

Designation Sequence Orientation 

For SiVgR- dsRNA1 template preparation 

T7-VgRi-f1 
5‟-TAATACGACTCACTATAGGGGCCATCTGC 

AATTATCAACGCCTTTCTTAACGTC-3‟ 
Sense 

VgRi-r1-T7 
5‟-TAATACGACTCACTATAGGGACCACATAC 

TGTGCATCGCGTGAATAAGGTGTC-3‟ 
Anti-sense 

For SiVgR-dsRNA2  template preparation 

T7-VgRi-f4 
5‟-TAATACGACTCACTATAGGGCGTGATCAGG 

TCAAAACGTATTTTCTTCATTT-3‟ 
Sense 

VgRi-r3-T7 
5‟-TAATACGACTCACTATAGGGGCCACAGTCA 

TCCTTTTTATCGCATACTAC-3‟ 
Anti-sense 

For  EGFP-dsRNA template preparation 

T7-P164 
5‟-TAATACGACTCACTATAGGGACGTAAAC 

GGCCACAAGTTCAGCGTGTC-3‟ 
Sense 

P165-T7 
5‟-TAATACGACTCACTATAGGGTCACGAAC 

TCCAGCAGGACCATGTGATC-3‟ 
Anti-sense 
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Figure 3.1. Syntheses and purification of dsRNA from SiVgR and EGFP for RNA 

interference.  (A). SiVgR DNA template-1 (lane 1) and EGFP DNA template (lane 2) 
were PCR amplified and purified from the gel.  (B):  Single stranded RNA (ssRNA) of 
SiVgR and EGFP were transcribed from the DNA template respectively (lane 1 and 5).  
The complementary ssRNA were denatured and re-annealed into dsRNA (lane 2 and 6).  
Nuclease (DNase I and RNase) was added to digest DNA and ssRNA (lane 3 and 7) and 
the SiVgR-dsRNA1 and EGFP-dsRNA were purified by filter cartridge (lane 4 and 8).  
Notice that dsRNA quality and concentration increases greatly after annealing and 
purification.   M: marker. 
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dsRNA injection and RNAi results evaluation 

Red eye reproductive females were selected for dsRNA injection.  Intra-

abdominal injections (0.5µl) of elution buffer (negative control), EGFP-dsRNA (1 

µg/0.5 µl, negative control), or SiVgR-dsRNA1 (1 µg/0.5 µl) were performed (Figure 

3.2A).  After injection, pupae were individually placed with a group of workers and 

brood from the same colony; food, water, and honey (20%)-water were provided (Figure 

3.2B).  Eclosion of red eye reproductive female pupae injected with dsRNA occurred 5-8 

days after injection.  In the first RNAi experiment, the alate rate of emergence was 

calculated in each treatment.  Results showed that the rate of emergence was not 

significant different between treatments (71% in buffer injected alates, 69% in EGFP-

dsRNA injected alates, and 63% in SiVgR-dsRNA1 injected alates; Figure 3.2D).   

RNAi effects were analyzed by semi-Q RT-PCR and immunofluorescence at 0 

(queen eclosion day), 5 or 10 days post-eclosion.  Semi-Q RT-PCR analysis showed 

significantly reduced SiVgR transcripts in queen ovaries derived from SiVgR-dsRNA1 

injected pupae (Figures 3.3A and 3.3B) and immunofluorescence revealed inactive 

ovarioles with stunted oocytes showing no SiVgR signal (Figures 3.3E and 3.3H).  

Conversely, clear SiVgR signal and the formation of eggs were observed in ovaries from 

buffer- (Figures 3.3C and 3.3F) and enhanced green fluorescent protein (EGFP)-dsRNA 

injected (Figures 3.3D and 3.3G) negative controls.   
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A.   B.  

C.  
 

D.  
 

Figure 3.2. RNA interference treatments of fire ant queen pupae and laboratory 

setting.  A: Red eye stage queen pupae were separated from colonies for microinjection.  
Intra-abdominal injections (~0.5 μl) of elution buffer, EGFP–dsRNA or SiVgR-dsRNA1 
were performed using a Femtotip® sterile injection capillary needle (Eppendorf).  B: 
After injection, queen pupae were individually placed with a group of workers (~100) 
and brood (~10); food, water and honey water were provided.  C: Isolated cages 
containing individual queen pupae after RNA interference treatments.  Pupae were 
individually injected with buffer, SiVgR-dsRNA1, or EGFP-dsRNA in each experiment.  
Insects were kept at 27 °C and maintained under a light/dark cycle of 16:8 hours.  D. 
Comparison of emergence rate of buffer, EGFP-dsRNA, and SiVgR-dsRNA1 injection.  
The alate emergence rate is calculated as the number of emerged alates divided by the 
number of injected pupae.  In total, 216 pupae were injected with SiVgR-dsRNA1, 227 
pupae were injected with EGFP dsRNA, and 153 pupae were injected with elusion 
buffer only.   
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Figure 3.3. Results of RNA interference of vitellogenin receptor (SiVgR) in the fire 

ant virgin queens: semi-quantitative RT-PCR and immunofluorescence.  The same 
amount of SiVgR-dsRNA1, EGFP-dsRNA, and buffer were injected into queen pupae 
and the results were analyzed with semi-Q RT-PCR and immunofluorescence.  (A) 
Agarose electrophoresis of semi-Q RT-PCR amplified products (28 PCR cycles for 
SiVgR; 24 PCR cycles for 18S).  Total RNA (0.5 µg) from four ovaries at each time 
point was used as a template.  (B) Semi-Q RT-PCR shows the relative amount of SiVgR 
transcripts in comparison with amplified 18S transcripts in different treatments and age.  
The relative SiVgR transcript level of SiVgR-dsRNA1 treated ovaries is significantly 
lower than buffer- and EGFP-dsRNA- treated ovaries in 5 and 10 day-old virgin queens 
(*Tukey‟s multiple comparison test P < 0.05; **: P < 0.01).  Ovaries from buffer (C), 
EGFP-dsRNA (D) and SiVgR-dsRNA1 (E) injected 10 day-old virgin queens were 
dissected and photos were taken under dissecting microscope.  Bar, 0.5 mm.  Ovaries 
from buffer- (F), EGFP-dsRNA- (G) and SiVgR-dsRNA1- (H) injected 10 day-old 
queens were analyzed by immunofluorescence.  Arrowheads show SiVgR signal in 
control ovaries (F and G), but not in ovaries of queens where pupae had been injected 
with SiVgR-dsRNA1 (H).  
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Results from a second set of RNAi experiments using a different SiVgR target 

region (Figure 3.4) also showed that SiVgR transcripts in day-10 queen ovaries (derived 

from SiVgR-dsRNA2 injected pupae) were significantly reduced when compared with 

EGFP-injected groups.  To eliminate the possibility of non-target effects within the same 

receptor superfamily, semi-Q RT-PCR analysis of a homologous LDLR (2.4 kb  partial 

sequence obtained by Meier Chen in Pietrantonio‟s laboratory) gene expression showed 

that RNAi of SiVgR did not affect LDLR expression in the queen ovary (P=0.193, data 

not shown). 

Analyses of oocyte size and SiVgR immunofluorescence signal showed SiVgR 

RNAi groups were significantly different from controls in days 0, 5 and 10 (Table 3.2).  

SiVgR silencing had a dramatic effect on pre-vitellogenic ovarian growth.  An overall 

delay and inhibition of oocyte growth is demonstrated by the increase in the percentage 

of category II oocytes in the receptor silenced treatment, coupled with a decrease in this 

category in the controls, because more normal oocytes reached category III size during 

this period.  This delay in growth was evidenced from the day of adult eclosion (D0), 

when about 64% of ovaries were inactive and devoid of receptor signal (category I 

oocytes) whereas 100% of control ovaries were growing and containing category II 

oocytes.  The effect continued for 10 days, at which time 44% of ovaries still contained 

only inactive oocytes, devoid of SiVgR signal (category I), 52% of ovaries contained 

category II oocytes, but only 4% of ovaries contained large vitellogenic follicles 

(category III).  In contrast, more than 61% of ovaries from both 10-day-old control 

groups contained at least one large vitellogenic follicle (oocyte > 20 µm; category III) 
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and the category II oocytes have began to decrease to 35-39% in controls, because 

oocytes had already grown.  

 
 
  

A.  

B.  C.  

 

Figure 3.4. Results of silencing of the SiVgR gene by SiVgR-dsRNA2 targeting a 

second region of SiVgR gene.  The same amount (1 µg/0.5 µl) of SiVgR-dsRNA2 and 
EGFP-dsRNA were injected into queen pupae and results were analyzed at day 10 by 
semi-Q RT-PCR.  The relative SiVgR transcript level of SiVgR-dsRNA2 treated ovaries 
is significantly lower than in EGFP-dsRNA treated ovaries (asterisk means P < 0.05).  
EGFP-dsRNA (B) and SiVgR-dsRNA2 (C) injected 10 day-old virgin queens were 
dissected and ovaries were photographed under a dissecting microscope.  Bar, 0.5 mm. 
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Table 3.2 Analysis of SiVgR silencing (RNAi) effect on ovaries from virgin queens 

at days 0, 5 and 10 post-eclosion.  Percentage of ovaries exhibiting oocytes from 
categories I-III as defined by oocyte diameter and SiVgR immunofluorescence (ovary 
classification was mutually exclusive: ovaries were classified by the latest stage oocyte 
observed in each ovary).  The category represents the oocyte growth stage and SiVgR 
signal.  Category I: no oocyte development observed and no SiVgR signal observed; 
Category II: initial oocyte growth (oocyte size <20 µm) and SiVgR signal detected; 
Category III: at least one large vitellogenic oocyte (oocyte size >20 µm) and SiVgR 
signal detected.  (Each pair of ovaries was separated into two individual ovaries, one for 
immunofluorescence analysis and the other for total RNA preparation followed by semi-
Q RT-PCR).    
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Discussion 

 

Test VgR RNAi on virgin queens 

 We developed an RNA interference protocol to disrupt fire ant vitellogenin 

receptor gene function in fire ant virgin queens.  To our knowledge, this was the first 

report of successful post-transcriptional silencing of a VgR in Hymenoptera, as well as 

the first report of RNAi in any ant species when published [192]. 

 In fire ant, the de-alating behavior and the onset of ovarian development in newly 

mated queen happen within 1 day after mating.  Virgin queens are also capable of de-

alating and becoming functional egg layers that produce only unfertilized eggs when 

they are separated from the mated queen primer pheromone.  This indicates that the Vg 

receptor must have the function of uptake of Vg into the oocytes in isolated virgin 

queens.  It is known that the Vg receptor protein is recycled during vitellogenesis in 

many insects.  In order to silence gene expression before receptor protein accumulation 

occurred, microinjection of the SiVgR dsRNA fragment was into the female 

reproductive pupae stage.  Two different pupae stages were tested previously which are 

white (red eye) pupae and dark pupae, respectively.  Injection of dark queen pupae with 

SiVgR-dsRNA1 did not result in SiVgR silencing (data not shown).  The selection of 

white pupae for injection of dsRNA appears to be critical for successful silencing of 

ovarian/embryonic genes in hymenopterans, as also shown earlier in the wasp, N. 

vitripennis [201]. 
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To prevent dsRNA off-target effects, two methodologies were applied to 

designed dsRNA.  First, SiVgR sequences selected for dsRNA synthesis were BLAST 

searched in GenBank and the Fourmidable database, and results showed no significant 

similarity to other genes.  BLAST search allowed us to avoid sequences present in 

multiple genes, thus preventing the identification of false positives through off-target 

effects.  In addition, the presence of CAN repeats (defined as ≥6 repeats of amino acids 

“Cysteine, Alanine, Asparagine”) in the dsRNA have the potential to generate off-target 

effects [206,207].  The SiVgR regions we selected for dsRNA synthesis do not contain 

these repeats.  Second, the RNAi effect was confirmed independently with two non-

overlapping dsRNAs.  SiVgR silencing experiments showed that dsRNA from two 

different receptor regions knocked down SiVgR gene function, which clearly proved a 

targeted effect of SiVgR RNAi on fire ant ovary (Figures 3.3 and 3.4).   

 

VgR RNAi effects 

In SiVgR-dsRNA1 injected pupae, receptor silencing effects were clearly 

detectable from day 0 to day 10 of virgin queen eclosion (Figures 3.3E and 3.3H and 

Table 3.2), although no effect was observed in negative controls.  Although newly 

emerged virgin queens within a colony require around two weeks maturation time and 

then they are ready to fly and mate [143,144,148,149], the ovarian development in the 

isolated D10 virgin queens were obviously accelerated (D10 control groups in Figures 

3.3C, 3.3D, and 3.4B).  The RNAi silencing effect on SiVgR transcript and protein 

persisted for at least 10 days upon eclosion of virgin queens, until approximately the 15th 
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-18th day after dsRNA injection.  However, the RNA silencing effect diminished 

somewhat with time because the percentage of ovaries that exhibited no SiVgR signal 

(category I) in the SiVgR-dsRNA1 injected group declined from 64% (day 0) to 44% 

(day 10) (Table 3.2).  The delay in oocyte growth was evident in that for the control 

groups about 53% of ovaries had category II oocytes within the first 5 days, while the 

SiVgR-dsRNA1 group took 10 days to reach similar percentage (52%) of ovaries with 

category II oocytes.  There was almost no change during the first 5 days in oocyte 

growth for the SiVgR-dsRNA1 group.  In honey bees, the dsRNA can be detected 

endogenously more than 15 days after injection and the activation of RNAi can persist 

more than 21 days after dsRNA delivery [203].  The absence of the RNA dependent 

RNA polymerase in honey bee genome conflicts with this long lasting dsRNA result 

[208]; therefore, this long lasting dsRNA in bees may be due to low capacity of the 

Dicer enzyme system to process a great excess of injected dsRNA. 

 The VgR message is essential and critical for Vg uptake and egg development.  

Silencing of VgR in cockroach, ticks, and shrimp, disrupted Vg uptake into the oocyte 

and lead to Vg accumulation in the hemolymph [18-20,27].  In flies carrying the 

Drosophila female-sterile mutation of VgR, yolkless (yl), flies fail to accumulate yolk 

protein in oocytes and the receptor does not localize in the oocyte plasma membrane 

[10,22,209]. 

 In summary, we have demonstrated that RNAi can be successfully applied to 

silence genes with ovarian expression in the fire ant.  Silencing of SiVgR expression 

leads to impaired ovarian growth and oocyte development in virgin queens, providing 
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evidence that SiVgR may be a promising target for fire ant control.  The development of 

RNAi techniques is particularly important for the control of invasive social insects in 

which the efficiency of production of transgenic insects would be decreased by the fact 

that only a few eggs will produce reproductive individuals.   

 

Materials and Methods  

 

Insects 

 S. invicta were reared as described in Chapter II. 

 

Double-stranded RNA (dsRNA) synthesis 

A SiVgR clone (cloned and published from our lab) [24] was used as a template 

for the synthesis of a 691 bp region of the SiVgR gene (amino acids 648-878) using 

primer set VgRi-f1 (5‟-TAATACGACTCACTATAGGGGCCATCTGCAATTATCAA 

CGCCTTTCTTAACGTC-3‟) and VgRi-r1 (5‟-TAATACGACTCACTATAGGGACCA 

CATACTGTGCATCGCGTGAATAAGGTGTC-3‟) (Table 3.1) which included the T7 

promoter region (underlined).  PCR amplification reactions contained approximately 2 

μg of SiVgR plasmid template, 0.4 μM of each primer, 400 μM of dNTPs, 5 μl reaction 

buffer and 1 μl Taq polymerase (Promega) in a final volume of 50 μl.  The PCR 

conditions were 94 °C for 3 min followed by 39 cycles of 94 °C for 30 s, 65 °C for 1 

min, 72 °C for 1 min; 72 °C for 10 min.  Products were visualized by agarose 

electrophoresis with GelStar™ dye (Lonza Group Ltd, Basel, Switzerland), cut from the 
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agarose gel, and purified using the QIAquick® Gel Extraction Kit (Qiagen).  This PCR 

product was used as the DNA template for the synthesis of SiVgR-dsRNA-1.   

To confirm the observed phenotype was due to specific silencing of the SiVgR 

mRNA, dsRNA synthesized from a second region of SiVgR gene was chosen for RNAi 

experiments.  The SiVgR region corresponding to 677 bp fragment (SiVgR -92 to 585 

bp, non-overlapping with SiVgR-dsRNA1 sequence [24]) was amplified using the 

SiVgR clone with primer set VgRi-f4 (5‟-TAATACGACTCACTATAGGGCGTGATC 

AGGTCAAAACGTATTTTCTTCATTT-3‟) and VgRi-r3 (5‟-TAATACGACTCACTA 

TAGGGGCCACAGTCATCCTTTTTATCGCATACTAC-3‟) (Table 3.1) which 

included the T7 promoter region as well (underlined).  The PCR reaction was seen as 

above and this PCR product was used as the template for synthesis dsRNA named 

SiVgR-dsRNA2.  These target regions were chosen because BLAST searches showed no 

significant similarity to other genes in the GenBank and in the fire ant expressed 

sequence tag (EST) database from Fourmidable (http://fourmidable.unil.ch/), thereby 

decreasing the possibility of off-target effects. 

The EGFP cDNA (Accession #U55763) in the PinPoint™ vector (Promega) 

generously provided by Dr. Craig Coates (TAMU), was used as a template to amplify a 

611 bp product using the primer set T7-P164 (5‟TAATACGACTCACTATA 

GGGACGTAAACGGCCACAAGTTCAGCGTGTC3‟) and P165-T7 (5‟TAATACGAC 

TCACTATAGGGTCACGAACTCCAGCAGGACCATGTGATC3‟) (Table 3.1).  This 

PCR product was used as the DNA template for synthesis of the control EGFP-dsRNA.   

http://fourmidable.unil.ch/
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Purified PCR templates (~2 μg) were used to produce dsRNA using the 

MEGAscript RNAi kit (Ambion, Austin, TX, USA) according to the manufacturer‟s 

instructions.  The synthesis reactions for dsRNA proceeded at 37 °C for 8 h.  After 

synthesis, reactions were denatured at 75 °C for 5 min and allowed to cool down slowly 

in a 65 °C water bath that was turned off, and reactions were incubated until they 

achieved room temperature (approximately for 5 h).  All dsRNA was column-purified 

and eluted in 200 μl elution buffer provided with the kit.  The dsRNA was diluted to 1 

µg/0.5 µl in elution buffer and then aliquoted 10 μl per tube and stored at -80°C until 

use.    

 

dsRNA injection  

“Red eye stage” queen pupae (white in color) were separated from colonies for 

microinjection.  Intra-abdominal injections (~0.5µl) of elution buffer (negative control), 

EGFP-dsRNA (negative control), or SiVgR-dsRNA1 were with a FemtoJet® Micro-

injector (Eppendorf) using a Femtotip® sterile injection capillary needle (Eppendorf).  

After injection, pupae were individually placed with a group of workers (~100) and 

brood (~10) and food, water, and honey (20 : 80 v/v) were provided.  Approximately 200 

pupae were injected with SiVgR-dsRNA1 and EGFP-dsRNA respectively, and about 

150 pupae were injected with buffer only. 

Virgin queens at days 0 (the day of virgin queen emergence), 5 and 10 were 

collected (Figure 3.2D), and the ovaries from four queens were dissected at each time 

point.  Photographs were taken under the dissecting microscope (Olympus, Center 
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Valley, CA, USA).  Each pair of ovaries was separated into two individual ovaries, one 

for immunofluorescence analysis and the other for total RNA preparation followed by 

semi-Q RT-PCR.  These experiments were replicated independently three times.     

To confirm the observed phenotype was caused by specific silencing of the 

SiVgR mRNA, a second RNAi experiment was performed.  Intra-abdominal injections 

(~0.5µl) of SiVgR-dsRNA2 or EGFP-dsRNA were as before and virgin queens were 

collected at day 10 after eclosion and ovaries from four queens were dissected.  These 

experiments were independently replicated three times and evaluation was by 

photography and semi-Q RT-PCR (Figure 3.4).    

 

Semi-quantitative reverse transcription polymerase chain reaction (semi-Q RT-PCR) 

To evaluate the effect of SiVgR RNAi, total RNA from ovaries of virgin queens of 

different ages (0,5,10 day post-eclosion) was extracted with Trizol® reagent (Invitrogen) 

following manufacturer‟s instructions. To prevent potential genomic DNA 

contamination, RNA samples were treated with DNase I (Invitrogen) and DNase was 

removed with Trizol® reagent.  cDNA was synthesized with SuperScript™ III First-

Strand Synthesis System (Invitrogen) using 0.5 μg total RNA and random hexamers.  

PCR amplification reactions contained 2 μl of the diluted cDNA (1:2), 0.4 μM of each 

primer, 400 μM of dNTPs, 1× reaction buffer and 0.4 μl Taq polymerase in a final 

volume of 20 μl.  PCR amplification of SiVgR product (SiVgR ORF from 1473 to 1927) 

was performed using primer set SiVgR-2.3-3-2, 5'-ACAAGAGCCATTCTCTATGACG 

GTCTTTC-3', and SiVgR-2.3-4r, 5'-CTGACCTGAGAGCGGATCAGATATTATATTC 
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AC-3', and the conditions were 94 °C for 3 min; 28 cycles of 94 °C for 30 s, 60 °C for 1 

min, and 72 °C for 1 min; 72 °C for 10 min.  The 18S ribosomal RNA gene transcript 

(GenBank accession number: AY334566) was used as an endogenous control.  18S 

rDNA amplification was performed using primer set 18S-f2, 5'-AAAAGCTCGTAGTT 

GAATCTGTGTCGCAC-3', and 18S-r2, 5'-TAGCAGGCTAGAGTCTCGTTCGTTAT 

CG-3'.  Conditions for the amplification of 18S were identical to those for SiVgR except 

that 24 cycles were used.  The optimal number of amplification cycles was determined 

empirically through preliminary runs.  The PCR products (4 μl) were analyzed on 1% 

agarose gels containing GelStar® nucleic acid stain (BioWhittaker Molecular 

Applications, Walkersville, MD, USA).  Gels were photographed with the Foto/Analyst® 

Investigator system (Fotodyne).  To determine transcript abundance, the intensity of the 

amplified PCR bands was determined using ImageJ.  Relative mRNA expression levels 

from each of the samples were presented as the ratio of the band intensities of the SiVgR 

RT-PCR product over the corresponding 18S RT-PCR product.  The expression ratio 

from the same RT-PCR sample was averaged from two gels to limit the bias.  In the 

RNAi experiment with VgRdsRNA1 (Figure 3.3), three replicates for each injection 

treatment and time point (D0, D5, D10) were analyzed using one way ANOVA followed 

by a Tukey multiple comparison test.  In the RNAi experiment with VgRdsRNA2 

(Figure 3.4), the results were analyzed by t-test.  Statistical analyses were performed 

using SPSS version 15.0 (Chicago, IL, USA) and graphs were obtained using Prism™ 

5.0 (GraphPad, San Diego, CA, USA). 
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To eliminate the possibility of non-target effects of dsRNA, the RT-PCR analysis 

of the expression of a homologous LDLR (2.4 kb partial sequence previously cloned by 

Mei-er Chen in Dr. Pietrantonio‟s laboratory, and it belongs to the same LDLR 

superfamily with VgR) was performed.  PCR amplification of this LDLR product (795 

bp) was performed using primer set LRP 2.4-14 (5‟-AATCGCAGTTCATCCTGGTAC 

C-3‟) and LRP 2.4-15 (5‟-ATTCCGTCGCAGATTGTTACGC-3‟) with Day 10 cDNA 

set obtained from the RNAi experiment with VgRdsRNA1 including injection 

treatments with buffer, EGFP-dsRNA or SiVgR-dsRNA1, respectively.  All conditions 

for amplification of LRP fragment and the analysis of results were identical to those for 

VgR RNAi experiment except that 32 cycles were used for amplification.   

 

Evaluation of RNAi effect by immunofluorescence 

 To objectively quantify the RNAi phenotypic effect, we classified ovaries from 

RNAi virgin queens into three categories based on oocyte size and SiVgR 

immunofluorescence results as ovaries containing follicles with: (I) no developing 

oocytes and no SiVgR signal, (II) initial oocyte growth (size <20 µm) with SiVgR signal, 

and (III) at least one large vitellogenic oocyte (size >20 µm) with SiVgR signal.  The 

size of the vitellogenic oocyte (20 µm in diameter) was estimated based on the 

observation of the fire ant follicles compared to Drosophila oocyte in a stage 7 egg 

chamber, which is the last pre-vitellogenic stage.  Ovaries from virgin queens at 0, 5, and 

10 days old in each treatment were analyzed and compared.  Total ovary numbers 

analyzed for injection treatments with buffer, EGFP-dsRNA or SiVgR-dsRNA1 were as 
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follows: for day 0 (9:15:11), for day 5 (15: 20: 18) and for day 10 (31: 29: 27).  Non-

parametric statistical analyses were performed by SPSS using Kruskal-Wallis test by 

assigning scores to the oocyte categories to compare treatments within each time point. 
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CHAPTER IV 

 

TOWARDS DISCOVERING ROLES OF THE SHORT NEUROPEPTIDE F 

RECEPTOR IN FIRE ANT QUEENS: IMMUNOFLUORESCENCE EXPRESSION 

ANALYSES* 

 

Introduction 

Information processing through neuronal networks in the central nervous system 

(CNS) is achieved through the release of neurotransmitters and/or neuromodulators from 

presynaptic neurons and the receiving of those signaling molecules by their respective 

receptors in the postsynaptic neurons.  Additionally, the released neuromodulators can 

also diffuse and reach out to receptors located at nonsynaptic regions within the CNS.  

Neuropeptides are a complex group of signaling molecules which can act as 

neurotransmitters or neuromodulators within the CNS, and also as circulating 

neurohormones in the hemolymph.  In this way, neuropeptides influence numerous 

physiological processes in invertebrates [90].   

The short neuropeptide F (sNPF) peptide belongs to the neuropeptide F (NPF) 

family.  The sNPF peptide has been identified or predicted from genomes of some insect 

species; however, only few of the respective G protein-coupled receptors (GPCRs) have  

 
____________ 
* Portions of this chapter are reprinted with permission from “Immunolocalization of the short 

neuropeptide F receptor in queen brains and ovaries of the red imported fire ant (Solenopsis 

invicta Buren)” by Lu, H.L., Pietrantonio, P.V. 2011. BMC neuroscience. 12: 57. © 2011 
BioMed Central Publisher. 
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been identified or fully characterized [72,74,95,210-215].  The sNPF peptide is involved 

in food intake and body size regulation in D. melanogaster and is the upstream regulator 

that controls the expression of insulin-like peptides in the larvae brain of this species 

[58,92,93].  In the fire ant and Colorado potato beetle (Leptinotarsa decemlineata), 

sNPF signaling pathways also appear to be involved in feeding regulation [68,94].  

Interestingly, the Colorado potato beetle sNPF peptide, Led-NPF-1, was shown to 

stimulate ovarian development in the locust, suggesting a potential gonadotropin role of 

the peptide [57,78]; however, it is not known if this is the peptide‟s direct effect.  In 

addition, the sNPF peptides have also been identified in the hemolymph of adult 

Drosophila, suggesting a potential neuroendocrine role [100].  Recently, the Drosophila 

sNPF peptide precursor was detected in many neurons located in the central nervous 

system [90,91].  However, the exact targets of the sNPF peptide in the adult insect CNS 

or other tissues are still unknown.   

 The sNPF receptor belongs to the GPCR Rhodopsin family and is an orthologue 

of the vertebrate NPY type 2 (Y2) receptor [102].  Insect sNPF receptors have been 

characterized from S. invicta, D. melanogaster, and A. gambiae [68,102-104].  Ligand-

receptor binding assays of sNPF receptors from D. melanogaster and A. gambiae 

revealed that sNPF peptides that contain nine or more amino acids are more potent than 

those with eight or fewer amino acids [100,103,104,216].  An. gambiae sNPF-1 inhibited 

the production of forskolin-stimulated cAMP by sNPF receptor transfected cells, 

suggesting that the receptor may act via Gi/o signal pathway [104].   
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The fire ant sNPF receptor transcript is present in both central nervous system 

and peripheral tissues as determined by RT-PCR [68].  The Drosophila sNPF receptor 

transcript is present in both central and peripheral nervous systems as detected by in situ 

hybridization analysis of embryos and the RT-PCR analysis of larvae and adults 

[102,103].  The An. gambiae sNPF receptor transcript is also broadly expressed in 

different body parts, but the receptor protein is not detectable in the ovaries by western 

blot [104].  Studies in these three insect species clearly showed that sNPF receptor 

transcripts are expressed in different tissues.  However, because of the presence of the 

sNPF receptor in the nervous system, the RT-PCR results for peripheral tissues shown in 

fire ants and Drosophila are not definitive to establish receptor tissue localization 

because the RT-PCR amplification could potentially arise from neuronal contamination.  

In addition, transcript presence may not be associated with receptor protein expression. 

Therefore, localization of the sNPF receptor is an important step in defining the 

functional sites of the sNPF.  Importantly, to our knowledge, there is currently no report 

on sNPF receptor protein localization in the adult brain or ovaries of any insect species, 

and the role of sNPF in ovarian development is still unknown.  The only 

immunolocalization report is from Drosophila larvae brain in which the receptor protein 

is immunolocalized in a few median neurosecretory cells [58].  Therefore, this study 

focuses on the immunolocalization of a sNPF receptor in the fire ant queen; possible 

roles of sNPF signaling pathway are discussed.  
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Results 

 

 Expression of sNPF receptor in brain and ovaries of fire ant queens 

To demonstrate the specificity of the antibodies developed against the fire ant 

sNPF receptor, we first performed western blot analyses of membrane preparations of 

queen brains, postpharyngeal glands, and ovaries (Figure 4.1).  In the membrane proteins 

from brains of virgin queens, only one band was specifically recognized by the anti-

sNPF receptor antibodies (Figure 4.1A, lane 1).  The estimated molecular weight of the 

sNPF receptor band was ~46.2 kDa, corresponding to the predicted receptor molecular 

weight of 44.8 kDa.  No signal was detected using antigen-preabsorbed antibodies, as 

expected (Figure 4.1A, lane 3).  Similar receptor expression levels were observed in the 

brains of virgin and mated queens (Figure 4.1B, lanes 1 and 2).  The postpharyngeal 

gland in the head of fire ant queen, which occupies a large portion of the head overlaying 

the brain, was used as a negative control tissue.  No signal was detected using either 

anti-sNPF receptor antibodies (Figure 4.1A, lane 2) or antigen-preabsorbed antibodies 

(Figure 4.1A, lane 4), as expected.  In the ovaries, three putative sNPF receptor bands 

(~46.2-, 51.1- and 55.3- kDa) were detected in the mated queen (Figure 4.1B, lane 4), 

but not in the ovaries of virgin queens (Figure 4.1B, lane 3).  These different size bands  

in the mated queen ovaries are likely due to different post-translational modifications 

(including phosphorylation and N-glycosylation), sites for which were predicted in the 

fire ant sNPF receptor protein sequence [68].  
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A.  B.  

Figure 4.1.  Western blot analyses of the sNPF receptor expression in membranes 

from queens.  A: Membrane preparations (100 μg of protein per lane) of virgin queen 
brains and subesophageal ganglion (SEG) (lanes 1 and 3, labeled with B) and 
postpharyngeal glands (lanes 2 and 4, labeled with PG) were analyzed with anti-sNPF 
receptor antibodies (lanes 1 and 2) or with antigen-preabsorbed antibodies (lanes 3 and 
4).  Only one band (~46.2 kDa) was specifically recognized in the brain membranes by 
the anti-sNPF receptor antibodies (lane 1, arrow), and no signal was detected using 
antigen-preabsorbed antibodies, as was expected (lane 3). No signal was detected in the 
membrane proteins from the postpharyngeal glands (lanes 2 and 4).  B: Membrane 
proteins from brains and SEG (100 µg, lane 1 and 2) and ovaries (50 µg, lanes 3 and 4) 
of virgin queens (VQ) and mated queens (MQ) were also analyzed with anti-sNPF 
receptor antibodies.  Similar receptor bands (~46.2 kDa) were detected in the brains of 
virgin and mated queens (lanes 1 and 2, arrow).  The same size band (arrow) was also 
detected in mated queen ovaries (lane 4), but not in those of virgin queens (lane 3).  In 
addition, two putative receptor bands (~55.3- and 51.1-kDa, lane 4, arrowheads) were 
detected in the mated queen ovaries but not in those of virgin queen ovaries (lane 3).  M, 
marker. 
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Distribution of the sNPF receptor in the fire ant queens 

In the virgin queen brains and subesophageal ganglion (SEG), about 164 cells 

distributed in distinctive cell clusters (C1-C9 and C12) or present as individual cells 

(C10, C11) were immunolabeled with sNPF receptor antibodies.  These cells or clusters 

were named as C1 to C12, clockwise, beginning from the mid-superior line in the 

anterior brain view and continuing to the posterior view of brain and the SEG.   Clusters 

C1 to C6 (Figure 4.2A) are thus readily seen in the anterior view during brain whole 

mounts examination and C7 to C12, (Figure 4.2B) are seen in the posterior view while 

C5, C9 and C12 can also be seen dorsally (Figures 4.2C and 4.2D).  Except clusters C1, 

C6 and C12 which are located centrally, other cells or clusters were bilaterally 

symmetrical.  Most of these neurons are located in or near the important sensory 

neuropils.  Strong sNPF receptor signals were observed in clusters C2, C3, and C12 (as 

shown in the figures on pages 85, 87 and 89).  Three different sizes of cell bodies, small 

(~5 μm in diameter), intermediate (~5-10 μm in diameter), and large (~12 μm in 

diameter), were detected with sNPF receptor antibodies.  The C6 cluster only contained 

small cells and C5 contained two large cells and one intermediate size cell, while C10-

C12 cells were exclusively large. The rest of the immunostained cells in other clusters 

were of intermediate size.  We did not observe different receptor distribution in the 

brains of virgin and mated queens.  Therefore, results shown in these figures are only 

from virgin queens.  All subsequent brain images show anterior or posterior brain views 

with the dorsal side up, unless otherwise mentioned. 
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Figure 4.2.  Summary of the localization of the sNPF receptor in the queen brain 

and SEG analyzed by immunofluorescence.  A total of ~164 cells (shown as red dots) 
distributed in 12 cell clusters were identified.  Six clusters of cells are seen in anterior 
view (A) and 6 clusters of cells are seen in posterior view (B) of the queen brain and 
SEG.  Dorsal views of the brain (C and D) show the relative positions of clusters C5, C9 
and C12 cells.  D: Merged image of pictures obtained with red (receptor signal) and blue 
(DAPI labeled in nuclei) filters. 
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Clusters C1 to C6 were observed in the anterior side of the brain.  Cluster C1 

(cells ~5-10 μm) included three unpaired cells located in the superior medial 

protocerebrum (Figures 4.3B to 4.3D).  These cells are reminiscent of the insulin-

producing median neurosecretory cells in Drosophila larvae brains [58].  Cluster C2 

(cells ~5-10 μm) is represented by two groups of ~25 cells each, which are located near 

the lateral calyces (lCa) of the mushroom bodies in the superior protocerebrum (Figures 

4.3E to 4.3L).  These cells surrounded the anterior half-side of the lateral pedunculi 

(lPed) that connects to the lCa (Figures 4.3E to 4.3H).  Out of 25 cells in the cluster C2, 

seven cells that are located closer to the anterior surface of the lCa are likely to be the 

lateral neurosecretory cells (Figures 4.3E to 4.3L, arrowheads).  The cluster C7 also is 

detected in the stacked confocal images (Figures 4.3F to 4.3G) obtained from the 

anterior view and will be described further in Figure 4.5 because it is more clearly 

visible from the posterior side of the brain.  A monoclonal antibody against Drosophila 

choline acetyltransferase was used as a potential neuronal marker for cholinergic 

(acetylcholine-containing) neurons in the fire ant.  Results showed that C2 cells labeled 

with sNPF receptor signals did not co-localize with these labeled by the monoclonal 

antibodies choline acetyltransferase, suggesting that they are not cholinergic neurons and 

may utilize neurotransmitters other than acetylcholine (Figures 4.3M to 4.3P).  Other 

antibodies against Drosophila proteins (including anti-Drosophila fasciclin-II, anti-Repo, 

and anti-Alva antibodies obtained from DSHB [217,218]) also have been utilized to 

clarify the axon tracts or cell types; however, these antibodies failed to specifically 

recognize individual proteins in fire ant brains (data not shown).   
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Figure 4.3.  Distribution of C1 and C2 sNPF receptor immunolabeled clusters observed in the 

anterior queen brain.  A: The relative position of cell clusters C1 and C2 in the anterior side of a queen 
brain are shown in a schematic.  Confocal images obtained with single red channel for the receptor signal 
(D, G, H, J and L) or red merged with cyan (DAPI as a nuclear marker) (B, C, F, I and K) are shown.  B: 
The cluster C1 (arrow) located in the superior medial protocerebrum (smP) is shown in a single confocal 
image.  V: vertical lobe of the mushroom body.  C and D: Higher magnification images of B show that 
three cells (arrows) are detected with sNPF receptor antibodies.  mCa: median calyces.  E-L: The cluster 
C2 (~25 cells) is located near the lateral calyces (lCa) of the mushroom bodies in the superior 
protocerebrum.  The cluster C7 (F and G, thin arrow), seen faintly through the section (because it is close 
to the posterior side of the brain) will be described later in Figure 4.5.  E: A schematic showing the relative 
position of C2 cells near the lCa.  F and G: The cluster C2 cells surround the anterior half-side of the 
lateral pedunculi (lPed).  H:  Higher magnification image of G.  I-L: Out of 25 cells in cluster C2, seven 
cells (arrowheads) located closer to the anterior surface of the lCa are likely lateral neurosecretory cells 
(arrowheads).  Confocal stacked images thickness: 21.42 µm for C and D; 33.66 µm for F-H; 9.24 µm for 
K and L.  M-P: Whole mount image obtained with Axioimager A1 microscope.  M: Double labeling using 
antiserum against sNPF receptor (red, arrow) and monoclonal antibodies against Drosophila choline 
acetyltransferase (green, thick arrow) shows that the C2 cells were not co-localized with putative 
cholinergic neurons.  N: Image of M with red filter. Higher magnification images of dashed rectangular 
areas in M and N are shown in O and P, respectively.     
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 The cluster C3 cells are represented by two groups of eight cells each (cells ~5-

10 μm), symmetrically located in the superior protocerebrum (Figures 4.4A and 4.4B).  

These cells are reminiscent of the Group 4 FMRFamide-like immunoreactive cells 

identified in the honey bee brain [219].  Two groups of six cells (cells ~5-10 μm) named 

cluster C4 were observed symmetrically located in the anterior protocerebrum, extending 

vertically between clusters C3 and C5 (Figures 4.4D and 4.4E).  Cluster C5 contained 

three cells including two large cells and one intermediate cell, all horizontally aligned on 

the superior edge of antennal lobe (Figures 4.4E and 4.4F).  Stronger signals were 

detected in the two larger cells.  In the antennal lobe, anti-choline 

acetyltransferase antibodies (applied as potential markers for cholinergic neurons) 

recognized neurons located symmetrically in the outer-lateral and inferior areas (Figures 

4.4G and 4.4H, arrowheads); however, no cell in the superior edge of the antenna lobe 

was immunolabeled with this antibody.  Therefore, the C5 cells are different from the 

potential cholinergic neurons and may utilize neurotransmitters other than acetylcholine.  

The last cluster of cells observed from the anterior side of the brain was C6 which was 

composed of a group of ~30 small cells (cells ~5 μm).  These cells were centrally located 

at the inferior medial protocerebrum right above the esophageal foramen, near the end of 

mushroom body median lobe (Figures 4.4I and 4.4J).   
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Figure 4.4.  Distribution of C3 to C6 sNPF receptor immunolabeled clusters observed in the anterior 

queen brain.  A: Merged confocal image of pictures obtained with red (receptor signal) and cyan (DAPI 
nuclear staining) channels. B: Image obtained with red channel. In A and B, the cluster C3 (arrow) 
includes a group of eight cells (B, dashed circles) located on each side of the superior protocerebrum (sP) 
near the lateral calyces (lCa).  C: A schematic shows the relative position of clusters C3 to C6 in the brain.  
D-H: Whole mount images obtained with Axioimager A1 microscope (nuclei stained in blue with DAPI).  
D: The cluster C4 includes six cells distributed vertically in the protocerebrum (P).  E: The anterior brain 
view shows the relative position of clusters C4 and C5 (arrows) on each side of the protocerebrum, and the 
cluster C6 (arrowhead) on the inferior medial protocerebrum (imP).  mP, medial protocerebrum; iP,  
inferior protocerebrum (iP); ALo, antennal lobe.  F: A higher magnification image of E showing that the 
cluster C5 contains three cells horizontally aligned on the superior edge of the antenna lobe which is 
nearby the inferior protocerebrum.  G and H: Antiserum against Drosophila choline 
acetyltransferase showed that in the antennal lobes, the putative cholinergic neurons (green; arrowheads) 
are located symmetrically in the outer-lateral and inferior areas of both antennal lobes (left antennal lobe 
shown) and far from the sNPF receptor immunoreactive cluster C5.  Confocal images I and J: I, merged of 
red and cyan channels and J, a red channel image. The cluster C6 includes a group of about 30 cells 
(arrowheads) located at the edge of the inferior medial protocerebrum above the esophageal foramen (I, 
white solid line). Thickness of stacked confocal images: 8.20 µm for A and B; 18 µm for I and J. 
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C7 to C12 were visible in the posterior side of the brain and SEG.  Some cells 

belonging to the anterior cluster C2 that are located between lCa and medial calyces 

(mCa) were also visible from the posterior side of the brain (Figures 4.5B and 4.5C).  

Cluster C7 (cells ~5-10 μm) includes two groups of four cells symmetrically located 

above the central complex in the superior medial protocerebrum (Figure 4.5D), which is 

also named the pars intercerebralis in the honey bee.  These cells could correspond to the 

cluster G4d octopamine-immunoreactive cells found in the honey bee brain [220].  Two 

groups of about 11 cells (cells ~5-10 μm) each, located in the superior protocerebrum 

right below the mCa of the mushroom bodies were named cluster C8 (Figures 4.5E and 

4.5F).  Cluster C9 includes two groups of 4 cells, each located in the inferior lateral 

protocerebrum; these are likely optical projection neurons (Figure 4.5G).  In the 

posterior SEG, large cells (~12 µm) named C10, C11, and C12 were strongly 

immunolabeled with the anti-sNPF receptor antibodies (Figures 4.5H to 4.5L).  C10 and 

C11 are represented each by a single cell on each side of the SEG, and cluster C12 is 

centrally located and includes 5 cells.  The location of C10, C11, and C12 in the fire ant 

brain was very similar to the location of octopamine-immunoreactive neurons in the 

clusters G6b, LV (the lateral ventral), and VUM (the ventral unpaired median) in the 

honey bee brain, respectively [220].   
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Figure 4.5. Distribution of C7 to C12 sNPF receptor immunolabeled clusters observed in the 

posterior queen brain and SEG.  A: The brain schematic shows the relative position of cell clusters C7-
C12.  Confocal images obtained with red channel for receptor signal (C, F, and L) or merged images 
obtained with red and cyan (DAPI as nuclear stain) channels (B, E, and K). B and C: Some of the cells in 
the anterior cluster C2 (arrows) located between the medial calyces (mCa) and lateral calyces (lCa) of the 
mushroom body were also seen from the posterior part of the brain.  D: The cluster C7 includes four cells 
(arrows) located above the fan-shaped body (FB) of the central complex in the superior medial 
protocerebrum (smP) (whole mount image obtained with Axioimager A1 microscope red filter).  E and F: 
The cluster C8 is composed of ~11 cells and is located in the superior protocerebrum (sP) under the mCa.  
G-J: Whole mount image obtained with Axioimager A1 microscope (nuclei in blue).  G: The cluster C9 is 
composed of four cells (arrows) located in the inferior lateral protocerebrum (ilP).  H-J: C10 and C11 are 
represented by one cell each on each side of the subesophageal ganglion (SEG) (arrowheads) and C12 is 
composed of five cells (arrows) centrally located in the SEG.  C10-C12 were strongly immunolabeled and 
their cells were larger in size (12 µm) and similar to the octopamine-immunoreactive cells in the honey 
bee.  I: A C10 single cell is shown.  J: C11 and C12 are clearly shown in a ventral view of SEG.  K: A 
confocal stack of images shows C12 (five cells, arrows).  Thickness of stacked confocal images: 12 µm for 
B and C; 14 µm for E and F; 19.6 µm K and L. 
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The localization of the sNPF receptors in the ovaries of fire ant queens 

 To discover the possible neurohormone role of the fire ant sNPF peptide(s), we 

performed immunolocalization of the sNPF receptor in the ovaries of virgin and mated 

queens.  In the ovaries of both mated queens within a colony (Figure 4.6A, arrow) and 

newly mated queens 24 h after the mating flight (Figures 4.6B and 4.6C, arrows), sNPF 

receptor signals were detected in the posterior end of oocytes at the mid-oogenesis stage.  

Results clearly showed that the receptor signals localized in the oocyte membrane, and 

not in the membrane of follicle cells (Figure 4.6C).  Such signal was not detected in late-

oogenesis stage oocytes in which the nurse cells within the same follicle start to shrink in 

size (Figure 4.6A: F1 and F2, big stars).   

Mated queens within the colony have more mature eggs in each ovariole than 

newly-mated queens; therefore, in the ovariole, the position of the oocytes with receptor 

signals depended upon the status of ovary development.  The receptor signals were also 

detected in the early-oogenesis stage oocytes (oocyte size < 20 µm) of the mated (Figure 

4.6D) and virgin queens (Figure 4.6E).  Notice that the signal is present in the periphery 

of the oocytes.  No signal was detected using either antigen-preabsorbed antibodies 

(Figures 4.6F and 4.6G) or a preimmune antiserum (Figure 4.6H), as expected.  This 

result supports the direct function of the sNPF pathway in stimulating oocyte 

development previously discussed in addition to roles in the modulation of metabolism, 

growth, and feeding.  To our knowledge, this is the first report that a GPCR may be 

associated with the oocyte pole.   
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Figure 4.6.  The immunolocalization analysis of the sNPF receptor in the ovaries of 

fire ant queens.  A schematic (modified from [221]) on the left indicated receptor 
signals (red) were observed in mid- and early-oogenesis oocytes.  A: In mated queens in 
a colony, the sNPF receptor signal was detected in the posterior end of oocytes at the 
mid-oogenesis stage (arrow, oocyte in follicle number three), but not in oocytes at the 
late-oogenesis stage in which nurse cells are reduced in size (big stars, oocytes in 
follicles number 1 and 2).  F1, 2 and 3: follicle numbers counted from the calyx (Ca).  B: 
In newly-mated queens (24 h after mating flight), the receptor signals were also detected 
in a similar stage of developing oocytes as in A.  C: A higher magnification merged 
image of the oocyte posterior end from newly-mated queen ovaries shows a clearly 
receptor signal (red) in the oocyte membrane, but not in the follicle cells (nuclei in blue, 
DAPI label).  D: The receptor signals were also detected in the early-oogenesis stage 
oocytes (oocyte size < 20 µm) of mated queens in a colony.  E: In virgin queen ovaries, 
the receptor signals were detected in the early-oogenesis stage oocytes, similar to the 
mated queen oocytes shown in D.  No signal was detected in negative controls using 
either antigen-preabsorbed antibodies (F and G) or a preimmune antiserum (H).   
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Discussion 

 

Only one form of the sNPF receptor is present in the brains of fire ant queens 

The only previous study in insects describing the molecular weight of the sNPF 

receptor was from An. gambiae.  Two sNPF receptor bands of molecular weight 50- and 

60- kDa were detected in western blot of heads  of An. gambiae [104].  The authors 

indicated that the 60 kDa band might represent either another form of the receptor 

(because there are three predicted start codons in the receptor open reading frame), or 

alternatively, a post-translationally modified receptor.  Unlike this mosquito, there was 

no evidence of an alternative start codon in the fire ant sNPF receptor cDNA [68].  

Western blot analysis of the fire ant sNPF receptor (Figure 4.1) showed that only one 

band at 46.2 kDa was detected in membrane proteins preparations from brains of both 

virgin and mated queens, corresponding to the predicted receptor molecular weight of 

44.8 kDa [68].  In addition, no differential receptor expression level between virgin and 

mated queen brains was found, suggesting that receptor abundance in the brains was 

similar in queens within a colony regardless their insemination status. 

 

Expression of the sNPF receptor in diverse regions of queen brains  

In the queen brain and SEG, we identified a total of ~164 sNPF receptor 

immunolabeled cells, distributed individually or in clusters.  Most of these cells 

localized in important sensory neuropils such as the mushroom bodies, the antennal 

lobes, and the subesophageal ganglia.  These results suggest that the sNPF receptor is 
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involved in the widespread modulation of neuronal activity and subsequently may affect 

various physiological processes and behavioral responses in fire ants.  The pattern of the 

sNPF receptor immunolabeled cells in diverse regions of queen brains coincided with 

the sNPF peptide immunolocalization in the brain of Drosophila.  In Drosophila, in situ 

hybridization and immunohistochemistry analyses have demonstrated that sNPF 

transcript or peptide precursor are present in a significant number of neurons in the brain 

beyond any other neuropeptide found in insects studied so far.  In both larvae and adults 

of Drosophila, sNPF peptide precursor was detected in the mushroom bodies, the SEG, 

and some neurosecretory cells in each hemisphere; in addition, this precursor was also 

present in the fan-shaped body (a substructure of the central complex), the antennal lobe, 

a few clock neurons, the optical lobes, the tritocerebral neuropil of the adult brain, as 

well as in the thoracic-abdominal ganglia of the larvae, and some endocrine cells in the 

larval midgut [91,92,98,99,222-226].  It was suggested that sNPFs are likely to signal 

locally (no volume transmission) as co-transmitters because, first, these sNPFnergic 

neurons do not co-express a transcription factor (DIMM) that is present in most of the 

neurosecretory cells that release amidated peptides, and secondly, these sNPF neurons 

co-localized with other neurotransmitters [91,227].  Only a few neurons that co-express 

both sNPF and DIMM in adult flies are likely to act on target cells located at a distance 

(volume transmission) [90].  There is a paucity of information on the localization of both 

sNPF and its receptor in other insect orders.  Only recently the expression of the sNPF 

transcript was analyzed in the honey bee worker brain, and found bilaterally only in a 

few lateral neurosecretory cells (4-6 pairs).  This expression pattern contrasts with the 
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wide distribution of the sNPF in neurons of fruit flies described above.  Further, the 

sNPF peptide has not yet been isolated from fire ants and there is no available sNPF 

peptide sequence identified from the recently released fire ant draft genome [3]. The lack 

of a cognate peptide has hampered our attempts to prove sNPF receptor functionality in 

a heterologous expression system.  We have identified sNPF receptor immunolabeled 

cells distributed in many important sensory neuropils in queen brains suggesting that 

sNPF peptide function may be more complex and perhaps integrative in fire ant queen 

brains.  However, because our immunolabeling did not stain the terminals of the sNPF 

receptor-labeled neurons we cannot conclude on the nature of these potential networks.   

  

sNPF receptor localization in the protocerebrum of the fire ant brains  

In the brain of fire ant queens, we detected three unpaired sNPF receptor 

immunolabeled cells (cluster C1) located in the superior midline protocerebrum (Figures 

4.3B to 4.3D), where the median neurosecretory cells are located in the honey bee brain 

[228].  In Drosophila larvae, the sNPF receptor was also localized in some of the seven 

insulin-producing median neurosecretory cells and was verified to act as an upstream 

regulator of the insulin signaling pathway [58].  In A. aegypti, however, insulin-like 

peptides were detected in two clusters of lateral neurosecretory cells in the dorsal 

protocerebrum, but not in median neurosecretory cells [229].  It would be interesting to 

know if the regulatory role of the sNPF signaling pathway on insulin production in 

different insects is conserved and thus, to investigate by immunohistochemistry if cells 

in cluster C1 also produce insulin in fire ant queens.   
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The majority of the sNPF receptor immunolocalized cells were near the 

mushroom body in fire ant queens.  In insects, the mushroom body is the main center for 

sensory processing, learning and memory, and the integration of other complex 

behaviors [230].  In Hymenoptera, especially ants, the mushroom bodies are particularly 

developed and may occupy ~40% of the brain volume [231,232].  The insect brain 

structure most similar to the fire ant brain is from the honey bee.  Both insects have large 

mushroom bodies composed of two calyces (lateral and medial calyces), each with a 

peduncle which gives rise to median and vertical lobes.  The calyx is a place where 

olfactory and visual sensory signals originate from the primary sensory neuropils (i.e. 

the antennal and optic lobes) connected to the intrinsic neurons named the Kenyon cells.  

The Kenyon cells consecutively integrate and pass on information within the brain [230].  

We have identified several sNPF receptor immunolabeled cells near the mushroom body 

calyx (clusters C2, C3 and C8) and near the (output) end of the mushroom body median 

lobe (cluster C6) in the queen brains.  Based on the comparison of the location of cluster 

C2 cells with the position of lateral neurosecretory cells in the brains of honey bees 

[228], it is likely that some of the C2 cells might belong to lateral neurosecretory cells 

(Figures 4.3E to 4.3L, arrowheads).  Other neurons in clusters C2 (Figures 4.3E to 4.3H, 

arrows) and C8 (Figures 4.5E and 4.5F) were similar in location to the Clawed II 

Kenyon cells found in the honey bee which are perikarya lying outside the calyx 

[233,234].  This suggests the hypothesis that the sNPF peptide regulates Kenyon cells 

functions in fire ant queens.   
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Cells in the cluster C3 (Figures 4.4A to 4.4B) between the medium and lateral 

calyces of the mushroom bodies are tightly grouped together, reminiscent in location and 

aspect to the group 4 FMRFamide-like immunoreactive cells identified in the honey bee 

brain which have their fibers projected to the lateral protocerebrum [219], but the 

function of FMRFamides in this area of the bee brain is still unknown.   

We can only speculate about the potential brain location of ligand (sNPF) 

producing neurons that may project towards the sNPF receptor identified neurons.  

According to the previous results obtained from Drosophila, none of the local and 

projection interneurons of the antennal lobe expressed sNPF peptide [91].  Therefore, in 

fire ants the sNPFnergic neurons that targeted these cluster C2, C3 and C8 near the 

mushroom bodies might not originate from the antennal lobe.  One of the candidate 

sNPFnergic neurons that projected into this area is the clock neuron (a subset of LNds 

and s-LNvs) identified in Drosophila [223].  It is possible to hypothesize that in fire ant 

queens, the clusters C2, C3, and C8 may be involved in circadian activities controlled by 

the clock neurons.  

The cluster C6 located in the inferior medial protocerebrum is very close to the 

end of mushroom body median lobe (Figures 4.4I and 4.4J).  These C6 cells may 

represent the targets of axon outputs of sNPFnergic Kenyon cells in the queen brains.  In 

Drosophila, the sNPF peptides are the only neuroactive substance that has been clearly 

identified in large subpopulations of intrinsic Kenyon cells, and strong sNPF signals are 

detected in the end (output) of median and vertical lobes in the mushroom bodies 

[91,224].  However, in fire ant brains, we did not detect other receptor signals near the 
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end of the vertical lobe.  This might be due to the largely variant number of Kenyon cells 

between insect species.  For example, in the honey bee each mushroom body has 

~170,000 Kenyon cells [235], much more than in Drosophila (~2,500 Kenyon cells) 

[236].  As a result, the expression of sNPF peptide in the Kenyon cells may also be 

different between insect orders.  In Drosophila CNS, besides the mushroom bodies, the 

sNPF peptides were also localized in the SEG [91].  Thus, it is possible that the C6 cells 

in the fire ant are targeted by the sNPFnergic neurons from both mushroom bodies and 

SEG.   

The central complex has been proposed as a higher center for locomotor control 

that regulates several aspects of walking and flying behaviors [237].  The cluster C7 

localized above the fan-shaped body of the central complex (Figure 4.5D) is similar to 

the cluster G4d octopaminergic neurons in the honey bee brain [220].  Octopamine 

treated honey bees exhibited increased flying and reduced walking behaviors [238].  In 

Drosophila, octopamine is also associated with locomotor behaviors [239].  Interestingly, 

a recent study showed that Drosophila sNPF peptides expressed in the fan-shaped body 

of the central complex was associated to the fine tuning of locomotor activity [99].  

Female flies with reduced sNPF peptide expression in the fan-shaped body increased 

their walking distance and their mean walking speed.  Thus, the relationship between the 

sNPF receptor and locomotor activity (which is regulated by sNPF and octopamine in 

Drosophila or other insects) deserves further investigation in fire ants.  If these were 

related, it will contribute to the understanding of worker foraging behavior, expansion of 

established colonies and in regulation of queen mating flights.  Knowledge of these 
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mechanisms that contribute to colony growth and dispersal may open the possibility of 

controlling this invasive pest. 

In the optic lobs, we detected sNPF receptor signals in four cell bodies (cluster 

C9) in the inferior lateral protocerebrum in the fire ant (Figure 4.5G).  No other sNPF 

receptor signal above background staining was obtained in the optical lobe.  In the desert 

ant, Cataglyphis albicans, the optical projection neurons located in the similar inferior 

lateral protocerebrum region have their dendrites extended to the optic lobes, and their 

axons projected into the mushroom bodies [240].  Therefore, in fire ants, cluster C9 cells 

may function as the optical projection neurons that gather optical information signaling. 

In the brain of adult flies, both the sNPF transcripts and peptides are localized in the 

optic lobes [91,92].   

sNPF receptor localization in the antennal lobe of the fire ant brains 

The antennal lobe is the primary olfactory neuropil.  In the antennal lobe, the 

axons of olfactory receptor neurons from the antennal and the maxillary palps invade 

into the glomeruli where they synapse with dendrites from interneurons.  In queen brains, 

the cluster C5 cells were horizontally aligned on the superior edge of the antennal lobe.  

There are two large cells and one intermediate size cell in the cluster C5 (Figure 4.4F).  

It is possible that these C5 cells act in functionally different ways, and belong to 

different types of interneurons.  In insects, three types of interneurons have been 

distinguished in the antennal lobe: 1) local interneurons that locally interconnect with 

glomeruli; 2) projection neurons that innervate single or several glomeruli and project 

axons through antennocerebral tracts into the protocerebrum; 3) centrifugal neurons that 
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are a diverse grouping of neurons with axons projected into the antennal lobe and 

dendrites reaching to other areas of the nervous system [241].  Cells in the cluster C5 

could be local and/or projection interneurons.  It is speculation; however, this 

localization of the sNPF receptor in queens is in a pattern matching the sNPF peptide 

distribution in Drosophila.  In Drosophila, the sNPF precursor was immunolabeled in 

axons of the olfactory receptor neurons (ORNs) projecting from the antenna and the 

maxillary palps which terminate in 13 glomeruli, with the glomerulus DL3 being 

particularly strongly stained [225].  In the fly‟s anterior dorsal antennal lobes, the 

projection neurons have their dendrites invade into a subset of glomeruli, including 

sNPF-labeled glomeruli, and have their axons projected through the inner 

antennocerebral tract (iACT) to the mushroom body and the lateral horn of the 

protocerebrum [242].  In the fire ant queens, if sNPF peptide(s) were also expressed in 

antennal ORNs, it is possible that the chemosensory and olfactory information 

transmitted through these peptides might be delivered to the projection interneurons in 

the cluster C5 and be further transmitted for integration to the higher brain centers.  In 

addition, the putative cholinergic neurons were only localized in the lateral and inferior 

antennal lobes of the fire ant queen (Figures 4.4G to 4.4H); therefore, C5 cells are likely 

to utilize neurotransmitters other than acetylcholine.   

   

sNPF receptor localization in the SEG of the fire ant brains 

The SEG is the primary center for controlling insect mouth parts.  Important 

modulatory neurons, such as ventral unpaired median (VUM) neurons have their cell 
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bodies in the SEG [243].  In the honey bee, octopaminergic VUM cells innervate the 

neuropils of the SEG, the mandibulla, the antennal lobes, the mushroom bodies, and 

some other parts of the brain [244].  The sNPF receptor immunolabeled cells C10 and 

C11, and the cluster C12 in the SEG of the fire ant brain (Figures 4.5H to 4.5L) were 

comparable to the octopaminergic neurons G6b, LV, and VUM in the SEG of the honey 

bee brain, respectively [220].  In honey bee workers, octopamine modulates diverse 

behaviors including locomotor activity, dance, division of labor, foraging, hygiene, 

defense, and nestmate recognition [238,245-251].  In fire ant workers, it was also found 

that octopamine levels in the brain affect nestmate recognition acuity [252].  However, 

the function of octopamine in the queen brain of both insects is still unknown. It will be 

of interest to test if these sNPF receptor  immunolabeled cells in the fire ant SEG are 

involved in regulation of feeding and/or are octopaminergic neurons.    

 

The expression of the sNPF receptor in fire ant ovaries 

Receptors that influence ovarian growth are critical for egg-laying species, as 

they play a role in oocyte development regulation.  Recently some GPCRs involved in 

meiosis arrest and fertility in vertebrate oocytes were identified [253-256]; yet to our 

knowledge, no GPCR function has been found associated to the polarity of oocytes in 

insects.  Only few receptors from other receptor superfamilies are involved in the follicle 

polarity, such as follicle cell-bound EGF receptor involved in the transduction of oocyte 

anterior/posterior polarity, and Frizzled, involved in the planar polarity signaling 

[257,258].  In fire ants, the sNPF receptor signal detected in the posterior end of the 
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oocytes during mid-oogenesis from both mated queens (Figure 4.6A) and newly-mated 

queens (Figures 4.6B and 4.6C) opens the possibility that the sNPF receptor may be 

involved in oocyte polarity.  To our knowledge, this is the first report of GPCR that has 

been found associated with an oocyte pole in insects.  We also detected the sNPF 

receptor signals in the periphery of early-oogenesis stage oocytes from both mated and 

virgin queens, most likely in the plasma membrane, indicating the sNPF receptor may 

participate in the regulation of initial oocyte growth (Figures 4.6D and 4.6E).  However, 

we did not detect putative receptor bands in membrane preparations from virgin queen 

ovaries by western blot (Figure 4.1B, lane 3).  This might be due to a limited number of 

developing oocytes with corresponding low receptor expression levels in the virgin 

queens which prevented receptor protein detection.  In the past we had a similar 

experience with respect to the lack of detection in western blots from virgin queen 

ovaries with the antibody against the vitellogenin receptor which labeled the ovaries in 

immunohistochemistry but failed to detect the protein in western blots (Chapter II, 

Figures 2.3 and 2.4).  In addition, because two weak bands were also detected by 

western blot in the 60-75 kDa range in both virgin and mated queen ovaries (Figure 1B, 

lanes 3, 4), we are not ruling out the possibility that the fluorescence signals in the early-

oogenesis stage oocytes could represent non-specific antibody binding, to those two 

higher size bands.  If this is the case, then only the signal in the oocyte posterior end in 

the mated queen would be specific sNPF receptor signal. 

Different results on sNPF receptor expression were obtained in the mosquito.  In 

An. gambiae sNPF receptor immunoblot analysis showed that the receptor protein was 
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not detectable in the ovaries of non-blood fed females [104].  Based on our results, we 

concluded that this might be due to the fact that the females were not blood fed and 

therefore the ovaries were underdeveloped.  In Drosophila, sNPF receptor transcripts 

were detected in the ovaries of females of unknown age, and the expression level was 

higher than in the head and body parts [102].  However, in the Flyatlas transcriptome 

data bank which utilized mRNA from 7 day-old adult fly (http://www.flyatlas.org/), the 

sNPF receptor mRNA level in the ovaries was very low when compared to whole flies 

[259].  All together, it seems that the level of sNPF receptor protein abundance in the 

ovaries depends upon the level of the ovary development, mated status, the age of the 

insects and is perhaps different between solitary and social insects.  

In summary, we presented the first comprehensive histochemical analysis of the 

distribution of the sNPF receptor in the adult insect brain.  The sNPF receptor signals 

present in several neuropils in fire ant queen brain and SEG might link the receptor 

signaling pathway to behaviors such as foraging, learning, and food consumption.  The 

localization of the sNPF receptor will allow testing new hypothesis about the potential 

regulatory role of this pathway in insulin-producing cells or octopaminergic cells.  In 

addition, the localization of the sNPF receptor in the developing oocyte points to a direct, 

potentially novel effect of sNPF on the insect ovary.  Still, several questions remain to be 

answered to fully understand the role of sNPF pathway in neuron circuits, in the 

endocrine control of reproduction, and in other, yet unknown functions.  More 

interestingly, the localization of the sNPF receptor in the developing oocyte points to a 

direct, potentially novel effect of sNPF on the ovary in insects.  

http://www.sciencedirect.com/science?_ob=RedirectURL&_method=externObjLink&_locator=url&_cdi=4869&_issn=03010082&_originPage=article&_zone=art_page&_plusSign=%2B&_targetURL=http%253A%252F%252Fwww.flyatlas.org%252F
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Materials and Methods  

 

Insects 

 S. invicta were reared as described in Chapter II. 

 

Anti-short neuropeptide F (sNPF) receptor antibodies 

To determine the antigenic regions of fire ant sNPF receptor (GenBank: 

DQ026281) for anti-peptide antibody production, the hydrophilicity and antigenicity 

profiles of sNPF receptor amino acid sequence were analyzed using DNASTAR and 

ExPAsy software.  Additionally, the N-glycosylation and phosphorylation sites were 

avoided in the selection for the antigenic region.  Due to a very short N-terminal 

sequence present in the receptor before the first transmembrane region (total 23 residues), 

it is difficult to design an antibody against receptor N-terminus.  Therefore, only one 

amino acid region located toward the receptor C-terminus encompassing residues 331 to 

347 of sequence “CRGDKIDNGNNTMQETL” was selected for antibody production.  

Polyclonal anti-peptide antibodies were developed in New Zealand female rabbits by 

Pacific Immunology (CA, USA) and affinity purified.  The synthetic peptide was 

conjugated with keyhole limpet hemocyanin (KLH) for antibody production.  After 

purification, the specificity of the antibodies was verified by ELISA (tested by Pacific 

Immunology, CA) and western blot. 
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Membrane preparations and western blot analysis 

 Membranes for western blot analyses were prepared as described previously with 

minor modifications [192].  Briefly, brains (with SEG) and the postpharyngeal glands 

from about 200 virgin queen heads were dissected in phosphate buffered saline (PBS).  

In addition, brains (with SEG) and ovaries from about 200 virgin queens and 200 mated 

queens were also dissected in PBS.  These tissues were homogenized in cold buffer A 

(25 mM Tris⁄HCl, pH 7.5, 1 mM EDTA, 1 mM EGTA, 1 mM dithiothreitol) with 

Complete Protease Inhibitor Cocktail® (ROCHE) and centrifuged at 10,000 g for 5 min.  

The supernatants were collected and centrifuged at 100,000 g (SW28 rotor, Beckman 

LE80K) for 1 h at 4 °C.  After ultracentrifugation, the pellets were re-suspended in 200 

µl cold buffer B (50 mM Tris ⁄ HCl, pH 7.5, 2 mM CaCl2) with protease inhibitors and 

stored at -80 °C. 

 For western blot analysis, 40 μl membrane proteins (100 µg) with 10 μl 5X SDS 

gel-loading buffer (250mM Tris-Cl, 0.5 M dithiothreitol, 10% SDS, 0.5% bromophenol 

blue, 50% glycerol) were heated at 95°C for 5 minutes.  Samples were separated on 

SDS-PAGE (10% gel, Bio-Rad) and then transferred to PVDF membranes (Millipore).  

Membranes were blocked 1h at room temperature in blocking solution (5% non-fat milk 

in TBST, 10 mM Tris base, 140 mM NaCl, 0.1% Tween-20, pH 7.4) and incubated 

overnight with rabbit anti-sNPF receptor antibodies (1:500) in blocking solution at 4 °C.  

Pre-absorbed anti-sNPF receptor antibodies and pre-immune serum were used as 

negative controls.  Pre-absorbed antibodies were produced by incubating anti-sNPF 

receptor antibodies (4 µg in 10 ml blocking solution) with peptide antigen (500 μg) 
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overnight at 4 °C the day previous to their use.  After 3 X 10 min washes with TBST, the 

membrane was then incubated with a of HRP-conjugated goat anti-rabbit IgG antibody 

(1:40,000) for 1 h.  After the same wash steps, the membrane was visualized by the 

Enhanced Chemiluminescence System™ (Pierce) on film (Kodak). 

 

Brain and SEG whole mount immunofluorescence analysis 

Whole mount immunofluorescence was performed as previously described with 

modifications [260].  Brains of both virgin and mated queens were dissected in PBS and 

transferred into freshly prepared 4% paraformaldehyde in PBS for 2 h at 4 °C for 

fixation.  All subsequent steps were carried out with slow agitation.  The fixatives were 

removed by 3 x 10 min washes with 70% ethanol, on ice.  After rinsed in PBS-0.1% 

Tween (PBST) 2 x 5 min at room temperature, tissues were incubated in 12 μg/ml 

protease K (Sigma-Aldrich) in PBS for 10 min at room temperature.  Tissues were then 

rinsed in PBST 2 x 5 min and then blocked in PBST with 10% normal goat serum (NGS) 

(Sigma-Aldrich) for 24 h at 4 °C.  After blocking, tissues were incubated with primary 

antibody for 48 h at 4 °C.  The primary antibodies diluted in PBST-2% NGS included 

the anti-sNPF receptor antibodies (diluted 1:500) and the anti-Drosophila choline 

acetyltransferase monoclonal antibodies (diluted 1:5; ChAT4B1 obtained from 

Developmental Studies Hybridoma Bank, University of Iowa).  For negative controls, 

anti-sNPF receptor antibodies (1:100 dilution) pre-absorbed with the antigen peptide, 

and pre-immune serum from rabbit (1:1000 dilution) were used as the primary antibody.  

Anti-sNPF receptor antibodies (4 µg in 1 ml PBST-2% NGS) were pre-absorbed with 
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500 μg of antigen peptide overnight at 4 °C incubation one day before used.  

Commercial monoclonal antibodies (Developmental Studies Hybridoma Bank, 

University of Iowa, Department of Biology, Iowa City, IA) against other Drosophila 

proteins Dachshund (Mabdac1-1-s), Elav (Elav-9F8A9), Repo (8D12 anti-Repo), and 

fasciclin II (1D4 anti-Fasciclin II) were also tested as a primary antibody simultaneously, 

however, none of the results showed specific immunolabeling of these proteins in fire 

ant brain.  After incubated with primary antibodies, tissues were washed 4 x 20 min in 

PBST and incubated in a 1:200 dilution of Alexa Fluor 546 goat anti-rabbit IgG or Alexa 

Fluor 488 goat anti-mouse IgG (Invitrogen) overnight at 4 °C.  Tissues were then 

washed 6 x 30 min in PBST and mounted on slides with Vectashield™-DAPI (Vector, 

Burlingame, CA, USA) for nuclear staining.  Results were observed under a Carl Zeiss 

Axioimager A1 microscope.  Images were obtained with an AxioCam MRc color camera 

(Carl Zeiss) and analyzed with axiovision program (Carl Zeiss).  Confocal images were 

taken using FV1000 Confocal microscope (Olympus) in the Microscopy and Imaging 

Center (TAMU) and images were analyzed with the Olympus FV10-ASW program 

(Olympus).  Naming of the brain structures was done following previous publications on 

honey bee [234].  Orientation of neuronal structures was given according to the body 

axis. 

 

Ovary immunofluorescence analysis 

Ovaries of virgin and mated queens within colonies, and ovaries of field-

collected newly-mated queens (24 h after the mating flight) were dissected in PBS and 
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fixed in 4% paraformaldehyde for 4 h at 4 °C.  The procedures of ovary paraffin wax 

blocks and de-waxing and rehydration of ovary sections (12 μm) were as previously 

described [192].  Sections were blocked with 5% goat serum in PBST (0.05% Triton X-

100) 1 h at room temperature and then incubated overnight in a humid chamber at 4 °C  

with the anti-sNPF receptor antibodies (1:1000 dilutions) in the blocking solution.  

Negative control sections were also incubated overnight with the pre-absorbed anti-

sNPF receptor antibodies (1:1000 dilution) or the pre-immune sera (1:500 dilution) in 

blocking solutions.  The preabsorbed anti-sNPF receptor antibodies were produced as 

described above. 
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CHAPTER V 

 

INSECT INSULIN RECEPTORS: INSIGHTS FROM SEQUENCE AND CASTE 

EXPRESSION ANALYSES OF TWO CLONED HYMENOPTERAN INSULIN 

RECEPTOR CDNAS FROM THE FIRE ANT 

 

Introduction 

In invertebrates, there is a single insulin pathway which is ancestral to the two 

mammalian insulin and insulin-like growth factor (IGF) signaling (IIS) pathways and 

their functions are conserved between both animal groups [261-263].  In mammals the 

two pathways coordinate many physiological processes including growth, reproduction, 

blood glucose metabolism, stress resistance, and aging [261-263].  Insulin peptide 

functions primarily in glucose homeostasis and IGFs mainly regulate growth.  

Phylogenetic analyses of mammalian insulin receptors indicate that gene duplication 

occurred twice in mammals, resulting in three receptor genes that evolved from the 

invertebrate ancestral receptor gene [261]. Mammalian receptors belong to the class II 

Receptor Tyrosine Kinase (RTK) family, and are: the insulin receptor, the IGF-1 

receptor, and an orphan receptor named insulin receptor-related receptor.  Each of these 

receptors is synthesized as a single precursor that undergoes proteolytic cleavage to yield 

two subunits, α and β. The functional receptor is composed of two units, each unit 

composed of a transmembrane ß-subunit bound to an extracellular α subunit. The 

tetrameric receptor can be present as a hybrid with α and β subunits belonging to the 
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insulin receptor and/or the IGF-1 receptor.  Five types of functional receptors were 

found to regulate downstream signaling pathways [263].   

In insects, the IIS pathway has been shown to be the key integrative pathway 

regulating insect reproduction, development, metabolism and aging [105,264,265].  

Most of these functional roles are supported by studies from fruit flies (please see 

Chapter I).  However, social insects (the honey bee) evolved different mechanisms than 

solitary insects like Drosophila.  First, the direct relationship between feeding and 

activation of the IIS pathway resulting in increased body size observed in Drosophila is 

more complex in bees.  In bees, the IIS pathway plays a key role in caste differentiation 

(queen vs. worker) [137,266,267].  Caste differentiation is nutritionally based and 

additionally regulated by the TOR pathway; different castes not only differ in size (as 

expected from IIS regulation in dipterans) but also in development of specific body 

structures [268].  Manipulation of diet in early developmental stages resulted in caste-

specific differential expression of genes in the IIS pathway, particularly for the AmILP-1 

and AmInR-2 [267].  In the 3rd instar larvae, a peak of receptor transcript in both AmInRs 

was observed in queen larvae but not worker larvae, and it may be responsible for 

growth rate boosting in queen larvae.  This demonstrates a more dynamic and complex 

role of the IIS pathway in caste differentiation [137].  Furthermore, knockdown of the 

insulin receptor substrate in queen larvae causes development of worker morphology, 

proving that queen development requires IIS signaling [266].  Second, endocrine 

regulation of reproduction is not fully understood in honey bees and neither is the role of 

the IIS pathway in this process.  JH and ecdysone are thought to have lost their 
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gonadotropic functions in bee queens, and JH is believed to regulate worker division of 

labor (e.g., nurses vs. foragers) and social behavior [51-55].  The IIS pathway is also 

involved in bee reproduction and longevity.  Opposite to what would be expected based 

on the involvement of the IIS pathway in reproduction in dipterans, the expression levels 

of honey bee insulin receptor-1 (AmInR-1) in larval ovaries is also lower in queens than 

in workers [137].  Corona et al. proposed that higher nutrition in adult queens results in 

the transcriptional down-regulation of the IIS pathway (AmILP-1, AmInR1 and AmInR2) 

in the head by unknown mechanisms, with the concomitant downstream down-

regulation of JH synthesis resulting in a higher vitellogenin (Vg) level [269].  Vg as a 

signaling molecule maintains the repression of the AmILP-1 in the head, achieving a 

longer life, yet with high reproductive capacity [269].  A complete understanding of the 

IIS pathway role in adult bee reproduction is missing.   

 The knowledge of insect insulin receptors is rapidly evolving, and until recently 

it was believed that insects only had one insulin receptor gene.  The release of the honey 

bee genome revealed two insulin receptor genes (AmInR-1, XM_394771; AmInR-2, 

XM_001121597)[160]; however, the latter is incorrectly predicted.  Draft genomes from 

several ant species including the fire ant were released in the last few months [3,138-

141].  In some of them, more than one insulin receptor genes were specifically annotated 

(Hymenoptera Genome Database).  However, none of these sequences have been 

verified by cDNA cloning, and the biological data on insulin receptors is lacking.  It 

appears that two different insulin receptors are present in social insects and this may 

have biological significance.   

http://hymenopteragenome.org/
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 Ants comprise at least one third of the world‟s insect biomass and are important 

in tropical and warm-temperature forests [1,2].  Their recognized importance is reflected 

in that draft genomes from several ant species including the fire ant were released in the 

past year [3,138-141].  Similarly to bees, in some ant genomes more than one insulin 

receptor gene was specifically annotated; however, none of the predicted full open 

reading frame sequences have been verified by cDNA cloning. In summary, knowledge 

on the role of the IIS pathway in ants is lacking. There is only one study on the queenless 

ponerine ant, Diacamma sp., in which both castes, gamergate (dominant egg layers) and 

workers, have reproductive capacity.  Insulin receptor transcripts were found in the 

ovaries of adult day-7 future gamergate but not in workers of the same age, suggesting 

that this receptor plays a role in ovarian development and reproductive differentiation 

[270].  We investigated the red imported fire ant Solenopsis invicta Buren, an invasive 

species that potentially threatens urban and agricultural landscapes in one half of the 

terrestrial masses worldwide [271]. Unlike the honey bee, JH regulates vitellogenesis 

and reproduction in fire ant queens [24,46,46,158]; fire ant workers are completely 

sterile, like in most ant species.  Therefore, the fire ant provides an evolutionary simpler 

system, intermediate between Drosophila and honey bees for the study of the diverse 

roles of the IIS pathway.  We obtained the cDNA sequence of two insulin receptors from 

fire ant queens and, as a result, we corrected the incomplete prediction of the AmInR-2 in 

the honey bee genome.  In fire ants, we also investigated the transcriptional expression 

of both receptors in different developmental stages, castes and queen tissues.  
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Knowledge of the expression profile of the insulin receptors will help in understanding 

the likely multiple functions of the IIS pathway in the fire ant. 

 

Results 

 

Cloning of fire ant insulin receptors 

The goal of this study was to investigate the IIS pathway in fire ants through the 

estimation of insulin receptors relative transcript abundance during different life stages 

and in various queen tissues.  Because this work began previous to the release of the fire 

ant draft genome, we first analyzed the insulin receptor sequences known from other 

insects to perform a multiple sequence alignment for primer design. We discovered that 

the honey bee AmInR-2 sequence was incompletely predicted and we corrected it. In the 

honey bee genome, an IGF-1 receptor (AmIGF1R, XM_001121628) had been previously 

annotated from the same contig where AmInR-2 is located [160].  After further 

examination of the contig sequence, we found that the AmInR-2 and AmIGF1R are likely 

fragments of the same gene because AmIGF1R is missing the α-subunit sequence and 

AmInR-2 is missing the ß-subunit sequence.  Therefore, we corrected the prediction of 

AmInR-2 sequence (Third party annotation GenBank: BK008012) and utilized this new 

prediction to perform sequence alignment, primer design and subsequent cladistic tree 

analyses. 

Sequence alignments of insulin receptors revealed that residues in the ligand 

binding (LB) domain and the tyrosine kinase (TK) domain were highly conserved.  To 
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clone fire ant insulin receptors, degenerate primers sets were designed first for the TK 

domain to amplify initial receptor fragments from mated queen ovary cDNA.  The 

cloning was completed through RLM-RACE cDNA reactions.  Two insulin receptor 

homologues (likely paralogs) were obtained and designated SiInR-1 and SiInR-2, 

respectively.  SiInR-1 has a complete cDNA length of 5919-bp and contains an open 

reading frame (ORF) that encodes a 1432-residue protein with a predicted molecular 

weight of 163.2 kDa (GenBank accession number JF304723, Figure 5.1).  The complete 

sequence of the SiInR-2 cDNA has a length of 6795-bp and contains an ORF encoding a 

1702-residue protein with the predicted molecular weight of 193.1 kDa (JF304722, 

Figure 5.2).   

 

Insulin receptor cDNA sequences analyses 

Several conserved domains found in insect insulin receptors are present in the 

SiInRs (Figure 5.3).  In SiInR-1, the cleavage site for the signal peptide was predicted at 

residue Q24 (Figure 5.1, vertical arrow).  In the SiInR-2, the N-terminal sequence 

analyzed by TMHMM and SMART programs does not reveal a signal peptide sequence, 

but a hydrophobic region is predicted at residues 162-184 (Figure 5.2; box, underlined).  

This is a putative membrane anchoring sequence such as in DIR [106].  Analyses of the 

region downstream to the anchoring sequence with the Signal IP program predicted a 

putative cleavage site at residue N198 (Figure 5.2, vertical arrow).  This result suggests 

that upon cleavage, the mature α-subunit of SiInR-2 may start at this site. 
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The first predicted domain in the extracellular region of the SiInRs α-subunit is 

the LB domain which contains two ligand-binding loops (L-1 and L-2), with one furin-

like cysteine rich region (Fu) between them.  The ligand-binding loop contains leucine-

rich repeats which are important for ligand binding.  Downstream of L-2, there is the 

fibronectin type 3 (Fn3) domain (Figure 5.1, in bold) containing three Fn3 repeats which 

are important for the formation of two disulphide bonds when the α- and β-subunits 

dimerize.  In SiInR-2, the tetrabasic sequence “RRRR” (residues 907-910) found in the 

second Fn3 repeat is a conserved putative site for receptor post-translational processing 

into α- and β-subunits.  This region was analyzed by the PeptideCutter program 

(ExPASy) which identified three potential cleaving enzymes for this tetrabasic sequence: 

Arg-C proteinase, clostripain, and trypsin.  Unlike SiInR-2, such a tetrabasic conserved 

feature is not present in SiInR-1; however, three putative cleavage sites (K759K760, 

K795K796, and K845K846) were identified in the second Fn3 repeat of SiInR-1.  This 

domain in SiInR-1 was similarly analyzed and the program predicted that trypsin may 

act on these KK sequences.  The second site sequence K795K796 is conserved in AmInR-1, 

indicating this site might be the common processing site for the hymenopteran InR-1.  A 

single transmembrane domain is predicted downstream of the third Fn3 region in both 

SiInRs.  
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         GAAAGAGAGAGCCGTCCGTGGCCGAGAGATAGTGTGCGCGTCGTCGTCGTGTAGT    -1080 

GCGTGCCAGGCTGCCCGCTGCCCCGTGTCAGTGCGCGCGCTCGCCCGCGTGTGTGTATGTGCATCAGTGTTGTGCGGTGCGCGCGCGGTT    -990 

ACCGGTGTGTTGTCTGCTGTCGCCCCGCGCTCCCGCGCGCGTGTGTATACGTTCTCGGAAGAAGAAGCGGAGAGAGACGACGAGTGAGAT    -900 

ATGCCGTTCGCAGCCTCCGTCGCCGCCACCGCCATCGCCACCGCGAGCTACTGCGTGACGAGCTACGACGGTGCCGCGCACGTGAATCGC    -810 

GCGCACGCCGCGACGGACACGTACGACGAGTGATTTCGGAACTGTCGGCATGGCAAGTAATGTGGGACACGGCAACGGTGGCAGTGCTTT    -720 

AGTGATTCTGTTATCGACGCGCCATCGACGTCGGCTAGGTCCACTTTCAGCCGGGGGAACGACGCAGTACCTATACGGCCCACATAATTA    -630 

CGGCGTGCGAGGACGGCGCAATTATGAAGGCCAAAATGTACTTCGTCTTCAATAAGAAGTTGCTGTGAAGAAGATATCGCGGAGGCGTCA    -540 

ATCGCGGTCAATCTTACTTGTTGTTCGCAACCCCTTTGCGGAAGCTCGCGCAACCTCAAGACTTCTGATTCTTCCGGGAAAGGAAACACC    -450 

CCCCGCGAGTTTGAAACCGGGTTACCCGGAGCCCGCACGGGGAAGGGAGAATCGGAGAGGGTTCACGCGAGCCTGGACGAACGCGGACGA    -360 

TCGATCGATTACCCTCCTTGGGGGTGGAAGAGAGGAGGGCGCGTAGGAGGAGGACAAGAGCGCGGAAATAACCCAGAGTGTTTTTCTCGT    -270 

GGGGCAACCGCGTCGCATTTAATCCGCAGTCCACTAATTACTGCCTTTGAGAGGTCCAAGAAAAAGGTCAAACAATCGGACACGATCAAG    -180 

GCTGTGGGCGGGGGAGGAAAGAGCGAACGAAGGAGAAGTAGGGACGAGTTCGTAGGGTCGACTATCAATCGTCGATCAATCAAAGAAAAC     -90 

GAAAGTGGTGGTCGGGGCGGTACGTGGGGATAAGGTCGGGAACGTTCAACGGGAGGCTTTCAAGCGCGCGGTGTTCAATGAGACAAGGAG      -1 

                                        
ATGAAGACGAGGAAGTCGCTGCTGCCGATCGTTCTGTTGTGCGTCACGATGGCGAGCCTGGCGTTCTGCCAGGAGAAAAGGTGGCCGAAA      90 

 M  K  T  R  K  S  L  L  P  I  V  L  L  C  V  T  M  A  S  L  A  F  C  Q  E  K  R  W  P  K       30 

 

GCGGCCACGAAGCACCGGGATAAAAGCGCCAAGGGCAAATACGATCCCGATTACGTGGACAGGATCTGGCAGGAGGAGGAGGAGGAGGAC     180 

 A  A  T  K  H  R  D  K  S  A  K  G  K  Y  D  P  D  Y  V  D  R  I  W  Q  E  E  E  E  E  D       60 

 

TCCGCGGAGTTGTACGATCGGAGCTCCGCGGCCACCGGTTACTACGACTCCAGATCTATGGACACTATGGCCGCTTATAGAAACAACAGG     270 

 S  A  E  L  Y  D  R  S  S  A  A  T  G  Y  Y  D  S  R  S  M  D  T  M  A  A  Y  R  N  N  R       90 

 

GCGATCGAGAAGTCCAGATCCACGGATGTCAGGCCGAAAAATAATCAGCAGTCTAGTCAATCGTCGAACCTACCCAAGTCGCACACGAAA     360 

 A  I  E  K  S  R  S  T  D  V  R  P  K  N  N  Q  Q  S  S  Q  S  S  N  L  P  K  S  H  T  K      120 

 

TCGAGCGAGGAGGTAGGACGAGAGAAAGGACGAAGATATAAAAATATGACGATCGGGGACGGTATTTGTCAGAGCATAGACATCAGGAAC     450 

 S  S  E  E  V  G  R  E  K  G  R  R  Y  K  N  M  T  I  G  D  G  I  C  Q  S  I  D  I  R  N      150 

                                           ▲                   

AGCGTTGACAGTTTCTCGGTACTGAAAGACTGCCGGGTGATCGAGGGCTTCCTGCAAATCGTACTGATTGAGAACAACACCGAGGCGGAC     540 

 S  V  D  S  F  S  V  L  K  D  C  R  V  I  E  G  F  L  Q  I  V  L  I  E  N  N  T  E  A  D      180 

                                                                         ▲ 

TTCGAGAACGTTACCTTCCCGGAGCTGAGAGAAATCACCGGCTACTTTCTTCTGTATCGCGTGGACGGTCTGAAGAGTCTCATCAAACTC     630 

 F  E  N  V  T  F  P  E  L  R  E  I  T  G  Y  F  L  L  Y  R  V  D  G  L  K  S  L  I  K  L      210 

       ▲ 

TTTCCGAATCTCGAGGTAATTAGGGGCGATATACTCCTCACGGACTACGCCTTCATGATTTACGAGATGAAGAACTTGCAAGAGATTGGT     720 

 F  P  N  L  E  V  I  R  G  D  I  L  L  T  D  Y  A  F  M  I  Y  E  M  K  N  L  Q  E  I  G      240 

 

 

Figure 5.1. cDNA sequence of Solenopsis invicta insulin receptor-1, SiInR-1, cloned 

from the ovaries of fire ant mated queens.  The amino acid sequences encoded from 
ORF of SiInR-1 (GenBank accession number JF304723; 5919bp: 5‟UTR, 1135bp; ORF, 
4296bp; 3‟UTR, 488bp) are shown.  The cleavage site at the N-terminus is indicated by 
a vertical arrow.  Predicted ligand-binding loops (L-1 and L-2) in the LB domain in α-
subunit are underlined and highlighted.  The fruin-like cysteine rich (Fu) region in 
between is highlighted.  Three fibronectin type 3 (Fn3) repeats were labeled with (bold 
letters without an underline).  The putative cleavage sites are indicated by a dash 
underline with highlight.  A single transmembrane region in the β-subunit is shaded and 
the juxtamembrane motif (NPXY) next to the transmembrane region is boxed.  The 
highly conserved tyrosine kinase domain in the β-subunit is indicated with bold and 
underlined letters.  Within the tyrosine kinase domain, there are a protein kinases ATP-
binding region signature (double underlined), a tyrosine protein kinases specific active-
site signature (FVHRDLAARNCMV; boxed), a Mg2+ binding region (DFG; boxed), and 
a triple tyrosine cluster (YXXXYY; boxed).  Several modifications were predicted and 
labeled under the residues, including N-glycoslytion sites indicated by black triangle 
(▲), protein kinase C (PKC) phosphorylation sites labeled by black circle (●), cAMP-
dependent protein kinase phosphorylation sites labeled by star (*), casein kinase II 
phosphorylation sites labeled by white diamond (◊).   
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CTCACCAACCTGACAAAGATATCCCGGGGTGGTGTACGTATAGAGAAGAATCCCGCTCTCTGTTTCACGAATACCGTGAATTGGAGTCTC     810 

 L  T  N  L  T  K  I  S  R  G  G  V  R  I  E  K  N  P  A  L  C  F  T  N  T  V  N  W  S  L      270 

       ▲                                                                       ▲ 

ATCGTCCCAGCCGGCGAGAATTTCATTAAAGATAACAGAAACGAGCAGAGTTGCCCGCATGTGAAAGGATGTTCGCAATGTCCTGGCGGT     900 

 I  V  P  A  G  E  N  F  I  K  D  N  R  N  E  Q  S  C  P  H  V  K  G  C  S  Q  C  P  G  G      300 

 

TATTGCTGGACTGCCCAACGCTGCCAGAAGCTAGAGAGACCGAAATGCCACGAGCAGTGTCTCGGGGAATGTTACGGTCCAAGCGATACC     990 

 Y  C  W  T  A  Q  R  C  Q  K  L  E  R  P  K  C  H  E  Q  C  L  G  E  C  Y  G  P  S  D  T      330 

 

GAGTGTTACGTATGCAAGCATTATCGACACGAGGGAAGATGCATTGAAAATTGTCCACCCAATTTATACGCATACCTCTCGAGACGGTGC    1080 

 E  C  Y  V  C  K  H  Y  R  H  E  G  R  C  I  E  N  C  P  P  N  L  Y  A  Y  L  S  R  R  C      360 

 

ATCAGCAAGGACGAATGCCAAGATATGAATCATATTAGAAGATTGACTAAAACGGAGGAAATACAGATATGGCGACCTTTCAAAAATTCA    1170 

 I  S  K  D  E  C  Q  D  M  N  H  I  R  R  L  T  K  T  E  E  I  Q  I  W  R  P  F  K  N  S      390 

 

TGTGTCACTCAATGTCCTGATGGTTACGAGGATTATGTCGACGACAAAAATATAACAGCTTGTCAGGTTTGCACAGGACAGTGCCGTAAA    1260 

 C  V  T  Q  C  P  D  G  Y  E  D  Y  V  D  D  K  N  I  T  A  C  Q  V  C  T  G  Q  C  R  K      420 

                                                 ▲ 

TTCAGTAAAGGTGCCATTATACGCCACATTTCGGACGCTCAGAGTTTTCGTGGTATAACGGTAGTGAAGGGAGCTCTGGAGTTTCAAATT    1350 

 F  S  K  G  A  I  I  R  H  I  S  D  A  Q  S  F  R  G  I  T  V  V  K  G  A  L  E  F  Q  I      450 

 

AGGAATGGCAACCCGAATATAATGAATGAGTTGGCAGACGCGTTCAGTTTAATCGAGGAGATAACCGAGTACCTGAAGATAACGCATTCG    1440 

 R  N  G  N  P  N  I  M  N  E  L  A  D  A  F  S  L  I  E  E  I  T  E  Y  L  K  I  T  H  S      480 

 

TTTCCGATCACGTCGCTGAGCTTCTTCAAGAAACTCAAAGTGATCAAGGGTGAAGGTCTAGATCTTAATAACGCGAGTTTGGTGGTTCTG    1530 

 F  P  I  T  S  L  S  F  F  K  K  L  K  V  I  K  G  E  G  L  D  L  N  N  A  S  L  V  V  L      510 

                                                                      ▲ 

GACAATCCAAATCTTTCCTCTCTCTTCCCGCCATCTCAAACGATAACTATAGAGAATGGCAGACTGTTCTTTCATTACAATCCCAAGCTC    1620 

 D  N  P  N  L  S  S  L  F  P  P  S  Q  T  I  T  I  E  N  G  R  L  F  F  H  Y  N  P  K  L      540 

          ▲ 

TGCCTCTCGAAGATTGAACAGTTTGGTAAAATGGTGAATATCACTAATTTCACGGATCTCGAGGTCCAGCCGGAATCGAACGGCGACAAA    1710 

 C  L  S  K  I  E  Q  F  G  K  M  V  N  I  T  N  F  T  D  L  E  V  Q  P  E  S  N  G  D  K      570 

                                     ▲        ▲ 

GTTGCATGCAACATCGTCAACATAAATATCACGGTGAAAAAACGGGAGGCGGATCACGTGATTCTGAGTTGGGATAGCTATAAGCCGCCG    1800 

 V  A  C  N  I  V  N  I  N  I  T  V  K  K  R  E  A  D  H  V  I  L  S  W  D  S  Y  K  P  P      600 

                         ▲ 

GAGGGCCAACAGCTTCTCAACTATCTGTTAAATTACATAGAAACCGAAAACGAGAACATAACGTATGAAGCGAACGCTTGCGGTAATAAC    1890 

 E  G  Q  Q  L  L  N  Y  L  L  N  Y  I  E  T  E  N  E  N  I  T  Y  E  A  N  A  C  G  N  N      630 

                                                       ▲                             ▲ 

ACGTGGCAAATCATAGACGTCGGTATACCGAGTTGGAATTCGACCGTTTCCAAGTATATCTCGAACTTAAAACCGTATACCAAGTATGCC    1980 

 T  W  Q  I  I  D  V  G  I  P  S  W  N  S  T  V  S  K  Y  I  S  N  L  K  P  Y  T K  Y  A      660 

                                     ▲ 

GCGTATGTGAAAACGTTCACGGCGAGAAACAAGAAGAATTCGAAGAATTCCTTCGTAACTCCGGTGGGTCAATCGGAGATCATCTTCTTT    2070 

 A  Y  V  K  T  F  T  A  R  N  K  K  N  S  K  N  S  F  V  T  P  V  G  Q  S  E  I  I  F  F      690 

 

CGGACGAAGAGCGCGATACCTTCGGTACCGACGAATGTTACCTCGACCGCGATAAGTGACAGTGAAATTCTACTCAAGTGGGCCCCGCCG    2160 

 R  T  K  S  A  I  P  S  V  P  T  N  V  T  S  T  A  I  S  D  S  E  I  L  L  K  W  A  P  P      720 

                                  ▲ 

GTTTATCCGAACGGTCCCATAGGCTACTACATGATCACCAGTATGATTCGATTGGACGACGAGAAATTGGTCGCTTCGCGAGATTACTGT    2250 

 V  Y  P  N  G  P  I  G  Y  Y  M  I  T  S  M  I  R  L  D  D  E  K  L  V  A  S  R  D  Y  C      750 

 

GTCGATACTTTGGTCAACGAAGCTAAGAAGGAGGAGATACACGAAGTGACGATTAAAACGTCATTGGCCGTATCTGCCCGGACTGAGGTC    2340 

 V  D  T  L  V  N  E  A  K  K  E  E  I  H  E  V  T  I  K  T  S  L  A  V  S  A  R  T  E V      780 

 

ATCTCAAATTCTAATTCCTGCTGTGTCAAGGACACAACTCCGAAGAAATCCGAACTATTCTGCCACAAGAATGTGACCATCAGCAATTTG    2430 

 I  S  N  S  N  S  C  C  V  K  D  T  T  P  K  K  S  E  L  F  C  H  K  N  V  T  I  S  N L      810 

                                                                      ▲ 

TCACCCGGCTGGAAGGATTATTGCATCTTTAATAACTATAATTCGCCGGAGAGTAAATTTTATGATATGACGAACAATTTATCCGCTTCA    2520 

 S  P  G  W  K  D  Y  C  I  F  N  N  Y  N  S  P  E  S  K  F  Y  D  M  T  N  N  L  S  A  S      840 

                                                                            ▲ 

ATGCAGGAAGAGAAGAAAAGTGCGACAGACGTTTCGGCTAATGCTGGTAGCGGCAACCATCTGAATGAGGTGCGTTTGTACAACGCCAGT    2610 

 M  Q  E  E  K  K  S  A  T  D  V  S  A  N  A  G  S  G  N  H  L  N  E  V  R  L  Y  N  A S      870 

                                                                                  ▲ 

TCGCAAAATAATACCTACCTTTTGGAGAACTTGCGCCACTACTCTTTATATACTATCACGATCGCCGCATGCGGCGTTAAGATAGATGGC    2700 

 S  Q  N  N  T  Y  L  L  E  N  L  R  H  Y  S  L  Y  T  I  T  I  A  A  C  G  V  K  I  D G      900 

       ▲ 

AATACACCGATGTGCTCGTCCATTCAGTATGCAAATATCCGGACGCTGAAGCGATTGAGCTCGGACGATGTTCAAAACGTGAAGGTCCAC    2790 

 N  T  P  M  C  S  S  I  Q  Y  A  N  I  R  T  L  K  R  L  S  S  D  D  V  Q  N  V  K  V  H      930 

 

GTGACTAACAATACGATAGTCGAAGTCATCTGGGAATCGGTCAAGGATCCAAACGCGTTTACCGTCTCATACACCATTGAGTATACGAAT    2880 

 V  T  N  N  T  I  V  E  V  I  W  E  S  V  K  D  P  N  A  F  T  V  S  Y  T  I  E  Y  T  N      960 

       ▲ 

 

Figure 5.1. Continued. 
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CTGGATGTGAAGGACGCGAAAAGGAGCACCGAGTGCATGCCATACATCGGCCATAAGGAATCCTACATCAATCATTACATCAGAAATCTC    2970 

 L  D  V  K  D  A  K  R  S  T  E  C  M  P  Y  I  G  H  K  E  S  Y  I  N  H  Y  I  R  N  L      990 

 

AGTCCAGGTAGATACAGCCTCAGAATACGCTCCACGTCGCTGGCGGGTGATGGCACCTTCACCAATGTAGTTTACTTCTCGGTTGGTCTA    3060 

 S  P  G  R  Y  S  L  R  I  R  S  T  S  L  A  G  D  G  T  F  T  N  V  V  Y  F  S  V  G  L     1020 

                                                                                     

TCGGATAACAATCAAATAATGATTGTGACGCTGTTGATTCTGGTTTTGCTGTTTATCGTTGTGTTAGTAATAATGCTCCTTATCAGGAAC    3150 

 S  D  N  N  Q  I  M  I  V  T  L  L  I  L  V  L  L  F  I  V  V  L  V  I  M  L  L  I  R  N     1050 

 

CGTCAGAAGAAGAAGACGCAGGAGCGATTGATAGCCAGTGTGAATCCGGATTATATCGAGACCAAGTACGTTGTCGATAACTGGGAAGTA    3240 

 R  Q  K  K  K  T  Q  E  R  L  I  A  S  V  N  P  D  Y  I  E  T  K  Y  V  V  D  N  W  E  V     1080 

             * 

CCCAGGGAAAACGTCGAAATCTTGGAGGAGCTTGGACTGGGTAACTTCGGCATGGTGTATCGAGGTTATCTGGACGGTACCGGACAAGTC    3330 

 P  R  E  N  V  E  I  L  E  E  L  G  L  G  N  F  G  M  V  Y  R  G  Y  L  D  G  T  G  Q  V     1110 

 

GCCATCAAAACGATCTCCGAGAACGCTAGCCAACGAGAAAAGAACGAGTTCCTGAACGAAGCCTCGGTTATGAAGAACTTTTCGACGTGG    3420 

A  I  K  T  I  S  E  N  A  S  Q  R  E  K  N  E  F  L  N  E  A  S  V  M  K  N  F  S  T  W     1140 

          ◊                 
●
◊ 

CACATCATCAAATTACTGGGCGTAGTCTCCATGGGCAATCCGCCATTCGTTATTATGGAGCTCATGGAAAACGGCGATCTGAAAACGTAT    3510 

 H  I  I  K  L  L  G  V  V  S  M  G  N  P  P  F  V  I  M  E  L  M  E  N  G  D  L  K  T  Y     1170 

 

CTGCGCAGGATACGTGACACCCAGATGGTGCCGAATGAATCCAGGATAATAAGAATGGCCGCCGAAATTGCCGACGGGATGGCGTATCTG    3600 

 L  R  R  I  R  D  T  Q  M  V  P  N  E  S  R  I  I  R  M  A  A  E  I  A  D  G  M  A  Y  L     1200 

 

GAGTCGAAGAAATTCGTGCACCGCGATCTCGCCGCCCGCAATTGCATGGTGTCCAAGGATCTGGTCTGCAAGATCGGCGACTTTGGTATG    3690 

 E  S  K  K  F  V  H  R  D  L  A  A  R  N  C  M  V  S  K  D  L  V  C  K  I  G  D  F  G  M    1230 

    
●
 

GCGAGAGATATTTATGAGACCGATTACTACAAGATTGGCAAGAAGGGCCTGCTGCCGATACGCTGGATGGCGCCGGAGAATCTCTCCGAC    3780 

A  R  D  I  Y  E  T  D  Y  Y  K  I  G  K  K  G  L  L  P  I  R  W  M  A  P  E  N  L  S  D     1260 

 

GGCGTATTCACGTCTGATTCGGACGTGTGGTCGTTCGGTGTTGTGCTCTACGAGATACTCACCCTCGCCGAAATACCGTATCAAGGTTTC    3870 

 G  V  F  T  S  D  S  D  V  W  S  F  G  V  V  L  Y  E  I  L  T  L  A  E  I  P  Y  Q  G  F     1290 

             ◊                                               ◊ 

TCGAACGAAGAGGTGCTGCATCACGTGCTACGCAAAGGCATGTTGAATATACCGCGGAACTGTCCCGAAACCATACAAAAGCTCACAGAG    3960 

 S  N  E  E  V  L  H  H  V  L  R  K  G  M  L  N  I  P  R  N  C  P  E  T  I  Q  K  L  T  E     1320 
 
◊                                                                                    

●
 

AAGTGCTTCAAGTGGCGGCCCAGCGAACGACCAACTTTCATGGAGATTGTTTCCGAGTTGGAGCCGTTCCTGGGCCAGGACTTCTGTGAG    4050 

K  C  F  K  W  R  P  S  E  R  P  T  F  M  E  I  V  S  E  L E  P  F  L  G  Q  D  F  C  E     1350 

                      
●
           

 
◊                 ◊ 

AAGTCGTTCTACCACTCCGACGAGGGTATCGAAATACGTAGCCTCGGCATCAAGAAGGTCTATCACAATGCCGCGCCGATTCGATTTCAC    4140 

 K  S  F  Y  H  S  D  E  G  I  E  I  R  S  L  G  I  K  K  V  Y  H  N  A  A  P  I  R  F  H     1380 

 

TGGGGCCACGAGACCGCGAGGTGGGTGAAGGACTTCGAGGACAACGTGACGTTGCTCGATCAGATGAAGGCGGGCACCAGCCGGGGGCGG    4230 

 W  G  H  E  T  A  R  W  V  K  D  F  E  D  N  V  T  L  L  D  Q  M  K  A  G  T  S  R  G  R     1410 

             
●
                                    ◊                          

●
 

ATCTTCAAGAACGGTTTCCAGCACTTCGGTAATGTAACGAACTTCGAGGACGTTCCGCTCGATCGATGAGATTAGTCGGTGTACCGTTGA    4320 

 I  F  K  N  G  F  Q  H  F  G  N  V  T  N  F  E  D  V  P  L  D  R  .                          1432 

                                     ◊ 

ACGGGAAAACTCAACGGAAACGAGATGTAATTGCTTGAAACCGTCTTTGATTACAAAATTCGCGGAAGGACACGTAGATATTAACGTACA    4410 

AACAATACTCAGGGCAATACGCGAGTGGTCTGACGAGGCTGTTGAACGAAAAATACGTAAATATGTTACCAAGTTGCTCGCACGCGCTCG    4500 

TTCGTTCACTTGCTCGCTCGCTCGCCCGCTTGTTCGTTCGTTCGTTCGTTTGTTCGTTCGCTGGCGCGGCGACAAGTGTTTCGTGTCCTT    4590 

CTCTTGTTGCGGATTAAACGTAATCAGTTCTTGACGGTGGATAGCAATACGGAGAGAAGACCTCGCTGCGCGCATCGTCGCGACGGCATA    4680 

TGGAAAAGATGTTCGTAATAGAAGCTAAGCTGTCGAACAATTAGATAAATAAACGTAAGCGCGTAGTGTTTCGTAATAAAAAAAAAAAAA    4770 

AAAAAAAAAAAAAA                                                                                4784 

 

Figure 5.1. Continued. 
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                        GAAAAAACAAACGGATCGGACAGCGGCTCTTGCGTGTTATGCGTACGCGCGTTCGCGGATGTGAGT    -810 

GGTGCTGGTGCCCGTGGAGAAAAGTGATTGCGACATCCTCCATCGGTCCTGAGATCTCTGACGAGGGGGTAATTCTCCGAAGAAAGTGCG    -720 

ACTTGGCGAAGGAAGCGCGAGCGAAGGTGCTGTCGACGCCGAGTGATGACACCCCGATACGCGTCTTGGAGCTTCCGACTAGACGCCGCG    -630 

TCTCGGACGAAAGACTGCTTGGACATTATCGAGGAAGCAGGATCGTCAATATGGTGAGGAATGCACACTGATCGCTGTCGAGATTCTCGA    -540 

TCAACTCGTGGATCTTGAATTGGCGCGCGTTCGGTACAGTCGATGGAGTCGTCTGGTGTGACGAGCCACCGGTAGTGCCGTGGTGCCAAT    -450 

CTTCCAGCAGTCAGCTGATATATATCGCGTACGTACGTGCGTGCGTGTGGTGCGTTCTCTCTGTCTCGTACGCCCACGAAGTGTCCCGAG    -360 

CGGCTACGGGAGGGTCAAGCGAACGCCGACGCCGACGCCGACGCCGACGCCGACGCCGACAAACGTTGAATACGAGCAACGTCGAGAGAG    -270 

AAAGAGAGAGAGAGAGAATGAAAGAAAGAAAAAAAAAGGGACATCTTCGAACGACCGTCGTCGAACTTGTGGTCGCATTGACTCTCGAGC    -180 

CCTCCGTTCGTGCATACGTTCGCGAGAGAGTCGAAGAGCAGCAGGCTGTCGGCGCGCGAGAGCTCGTCGTATCGACAGCGAAGAGATGCG     -90 

ACCCCTTTTACTCTGAATTCGCGGAGAAGGCTAGAGAGTCGTTTTTCCCATCGGGCGGGAACAAGTCTTTCATTCTCTGCCGGTGTGACG      -1 

 

ATGAAGTCCTCGGCCGCGTGTTACGCGCGCAGATTTGGCGGCGTGACGTTTGACGAGAACGAATCGAGCATTGTTGCACCTTTTCTTTCG      90 

 M  K  S  S  A  A  C  Y  A  R  R  F  G  G  V  T  F  D  E  N  E  S  S  I  V  A  P  F  L  S       30 

                                                          ▲           

GAGGCTAATTCTACCACCTGCCACTGCCATTGTCCGTGTGATGCGTTCGAGAGAGACGACGGCGCGTCGTCTCTGTCGACGGCGTGCGAT     180 

 E  A  N  S  T  T  C  H  C  H  C  P  C  D  A  F  E  R  D  D  G  A  S  S  L  S  T  A  C  D       60 

       ▲ 

CTTTGCGAGCGTCTTCGTGGTCAAACGGGCAGATGCTACGATTCGGTGGACCGGGTGGACCGGGTGGACGCCACCGAATGGACGGGGGAC     270 

 L  C  E  R  L  R  G  Q  T  G  R  C  Y  D  S  V  D  R  V  D  R  V  D  A  T  E  W  T  G  D       90 

 

AGTCACGCGGCTGATCGATCATCGAGACGGAAAAGCGATGAGAACGATTTGTCGGTGAACGACTCGCGAGTGACCGTTGAAAAACGCGAC     360 

 S  H  A  A  D  R  S  S  R  R  K  S  D  E  N  D  L  S  V  N  D  S  R  V  T  V  E  K  R  D      120 

                                                          ▲ 

AGAACTTTGAAGTGCGATAGAACTCCGCTCCGCGAATCTTCCGCGAGATGTGCTTCGAGCGTAGTGCGGTGGATCTTCGCGGCCAGATTC     450 

 R  T  L  K  C  D  R  T  P  L  R  E  S  S  A  R  C  A  S  S  V  V  R  W  I  F  A  A  R  F      150 

 

TACGCCGATTTCAAATCGATTGAATGGCGAAGGTTTCTCTGGATCGTTCTCTTCATATTCGCGATATGCAACCTCGCAGCAGCGAACAAC     540 

 Y  A  D  F  K  S  I  E  W  R  R  F  L  W  I  V  L  F  I  F  A  I  C  N  L  A  A  A  N  N      180 

 

                                                      
ATCGCCATCGGCCCTAGCAGAAACAAAGTGTGCCAAAGTATAGACATAAGAAATAACGTGAACGAGTTCTCAAAACTAAAGGGATGCCAA     630 

 I  A  I  G  P  S  R  N  K  V  C  Q  S  I  D  I  R  N  N  V  N  E  F  S  K  L  K  G  C  Q       210 

 

GTGGTCGAAGGCTTCGTACAAATTAGCTTGATCGATCGAGCGGAGCCATTGGACTACGCCAATTTCAGCTTTCCCGAGCTGGTCGAGATC     720 

 V  V  E  G  F  V  Q  I  S  L  I  D  R  A  E  P  L  D  Y  A  N  F  S  F  P  E  L  V  E  I      240 

                                                             ▲ 

ACTGATTTCCTTCTTTTGTACAGGGTAAACGGACTGAAAACCATCGGCCAGCTGTTTCCAAATCTGGCGGTCATTCGCGGTAATTCTCTT     810 

 T  D  F  L  L  L  Y  R  V  N  G  L  K  T  I  G  Q  L  F  P  N  L  A  V  I  R  G  N  S  L      270 

 

ATTATGAATTACGCTCTCATGGCATTCGAGATGATGCATCTTCAGGAAATTGGTCTTCATTCCCTGACAAACATTCTACGTGGATCTGTG     900 

 I  M  N  Y  A  L  M  A  F  E  M  M  H  L  Q  E  I  G  L  H  S  L  T  N  I  L  R  G  S  V      300 

 

CATTTCGAAAAGAACCCGATGCTCTGCTTTGTCGACACGATCGACTGGGATATCATCGCCAAAGCTGGAAATGGAGAGCACTTTATAAAG     990 

 H  F  E  K  N  P  M  L  C  F  V  D  T  I  D  W  D  I  I  A  K  A  G  N  G  E  H  F  I  K      330 

 

GACAATAAGCCATCAAACGGTTGTCCGATGTGCCCTAGAAAATGCCCAACAAGACAGACGAAACCCGATCAGAATTTGTGCTGGAATGTA    1080 

 D  N  K  P  S  N  G  C  P  M  C  P  R  K  C  P  T  R  Q  T  K  P  D  Q  N  L  C  W  N  V      360 

 

CAACACTGCCAACGTATATGTGATCGGAAGTGCGAGGATAGAGCTTGCAACTCTACGGGACAATGCTGCCATCCATTTTGTTTGGGCGGA    1170 

 Q  H  C  Q  R  I  C  D  R  K  C  E  D  R  A  C  N  S  T  G  Q  C  C  H  P  F  C  L  G  G      390 

                                                 ▲ 

TGCACGGGACCGACAGCCAACGATTGTTCCGTTTGCAGAAACGTGGTAATAAACGGCAAAGAGTGCAAAGACCGTTGTCCAAGAGGCAAA    1260 

 C  T  G  P  T  A  N  D  C  S  V  C  R  N  V  V  I  N  G  K  E  C  K  D  R  C  P  R  G  K      420 

 

Figure 5.2. cDNA sequence of Solenopsis invicta insulin receptor-2, SiInR-2, cloned 

from the ovaries of fire ant mated queens.  The amino acid sequences encoded from 
ORF of SiInR-2 (GenBank accession number: JF304722); 6795bp: 5‟UTR, 876bp; ORF, 
5106bp; 3‟UTR, 813bp) are shown. Labeling of features are the same as in the SiInR-1 
sequence (please see figure legend below Figure 5.1), except that a hydrophobic region 
was predicted in SiInR-2, amino acid residues 162-184 (boxed with underline), as a 
putative membrane anchoring sequence.  Three prediction of N-glycoslytion sites near 
N-termius of the SiInR-2 were separately labeled with boxed black triangle (▲) because 
these modifications were predicted before the signaling peptide cleavage site, and 
therefore may not present in receptor protein.    
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TACAAGTTTATGAATCGACGTTGCATCGAAGAATGGGAATGCCGTCAGATGCCAAAGTCGATGTACAAGAATGAAGATGAGATGATAAAG    1350 

 Y  K  F  M  N  R  R  C  I  E  E  W  E  C  R  Q  M  P  K  S  M  Y  K  N  E  D  E  M  I  K      450 

 

CAGCACCCGTACAAGCCGTTTAACGATAGCTGCGTGATCGAGTGTCCTGCAGGTTACATGGAAAGTGAGGATCATGGCAACGTGTCCTGC    1440 

 Q  H  P  Y  K  P  F  N  D  S  C  V  I  E  C  P  A  G  Y  M  E  S  E  D  H  G  N  V  S  C      480 

                      ▲                                                        ▲ 

CAAAAGTGCGAAGGTCGACAGTGCTTGAGAGAATGCTCTGCTGCGAAAGTGATGAGTATCGAAACGGCACAAAAATTGCGTGGATGCACA    1530 

 Q  K  C  E  G  R  Q  C  L  R  E  C  S  A  A  K  V  M  S  I  E  T  A  Q  K  L  R  G  C  T      510 

                                      

CACCTCACGGGTAGCCTTGAGATAGAGATACGCGGTGGCAAAAACATTGTAAAGGAACTCGAGGACAATCTAGGCATGATCGAGGAGATA    1620 

 H  L  T  G  S  L  E  I  E  I  R  G  G  K  N  I  V  K  E  L  E  D  N  L  G  M  I  E  E  I      540 

 

GACGGTTCCTTGAGAATTGTTCGCAGCTTTCCGCTAATATCCCTCAATTTTCTAAAGAATCTGCGCGTGATACGCGGTAACGATTCCGAG    1710 

 D  G  S  L  R  I  V  R  S  F  P  L  I  S  L  N  F  L  K  N  L  R  V  I  R  G  N  D  S  E      570 

                                                                               ▲ 

AGCAAGTACAGTCTCTCCGTCCTCGATAATCAGAACCTTCAGGAACTCTGGGATTGGAACACGCACAAGAACATCACTATTTTGGCCAAA    1800 

 S  K  Y  S  L  S  V  L  D  N  Q  N  L  Q  E  L  W  D  W  N  T  H  K  N  I  T  I  L  A  K      600 

                                                                      ▲ 

ACAGGACCTGCTAGACTCTTTTTTCATTTCAATCCGAAATTGTGTCTGCACGAGATTGAAAAGTTGCGATTGAAGGCCAACTTGGAAGAA    1890 

 T  G  P  A  R  L  F  F  H  F  N  P  K  L  C  L  H  E  I  E  K  L  R  L  K  A  N  L  E  E      630 

 

TTCACCGATCACGACGTGGCGTCTAATAGCAACGGAGACAAAATCGCATGTAACGTCACCGAGCTGGAGACTCGGGTCACTTGGAGGACA    1980 

 F  T  D  H  D  V  A  S  N  S  N  G  D  K  I  A  C  N  V  T  E  L  E  T  R  V  T  W  R  T      660 

                                                    ▲ 

CCTGTGGGAGCTATTATTAAATGGACGGCCTTTAAGCATCACGATATCCGGTCTCTTTTGGGTTACGTTGTTTACTTTATCGAAGCGCCT    2070 

 P  V  G  A  I  I  K  W  T  A  F  K  H  H  D  I  R  S  L  L  G  Y  V  V  Y  F  I  E  A  P      690 

 

AATCAGAACATAACGATGTACGATGGCCGCGATGCTTGTGGCGGTGATGGTTGGCGAGTGGAGGATGTTTCCGCTGACAGTACGACGCTG    2160 

 N  Q  N  I  T  M  Y  D  G  R  D  A  C  G  G  D  G  W  R  V  E  D  V  S  A  D  S  T  T L      720 

       ▲ 

TTTGCCAATCAGACACAGAATAGCACTCATACGGACTTACAAGAGCACCTTCATATACTGACTCAGCTGAAGCCGTATACTCAATATGCT    2250 

 F  A  N  Q  T  Q  N  S  T  H  T  D  L  Q  E  H  L  H  I  L  T  Q  L  K  P  Y  T  Q  Y  A      750 

       ▲           ▲ 

TACTATGTTAAGACTTACACCATAGCCACGGAAAGATCAGGCGCGCAGAGTAAAATCACGTACTTTACGACAAAGCCGGATGCGCCTGGT    2340 

 Y  Y  V  K  T  Y  T  I  A  T  E  R S  G  A  Q  S  K  I  T  Y  F  T  T  K  P  D  A  P  G      780 

                                                                                          

TCGCCCAGAGCTTTATCGACTTGGAGTAATTCTAGCAACGAGTTGGTTATATCCTGGTTTCCGCCGGTTAAAAAAAATGGAAATTTGACG    2430 

 S  P  R  A  L  S  T  W  S  N  S  S  N  E  L  V  I  S  W  F  P  P  V  K  K  N  G  N  L T      810 

                            ▲                                                     ▲ 

CATTATCGAATTGTTGGCCGTTGGGAACCCGATGATCAGAGTTTTATCGACCAAAGGAATTATTGTGACGAACCTATGCCATTGCTTGAG    2520 

 H  Y  R  I  V  G  R  W  E  P  D  D  Q  S  F  I  D  Q  R  N  Y  C  D  E  P  M  P  L  L  E      840 

 

ACAAAATCACCGGAGGAAGTCGTAGCAGAGGAAGAAAAGAAGTATTTCGAGTTAGAGAAAGAGTTTTCGAAAACCGATTCGTGCCTCTGT    2610 

 T  K  S  P  E  E  V  V  A  E  E  E  K  K  Y  F  E  L  E  K  E  F  S  K  T  D  S  C  L  C      870 

 

TCAGATCGAGTAGTGACGGATCAATCGATGCTTGAAAAAGAAGTTTCCAGTTCGATCGCCTTCGAGAACGCGTTACACAATCAGGTTTAT    2700 

 S  D  R  V  V  T  D  Q  S  M  L  E  K  E  V  S  S  S  I  A  F  E  N  A  L  H  N  Q  V  Y      900 

 

ATAAAACGAGCGCAGTCGCGTAGAAGACGCCACACTGATAGTGAAATGTTAATCGCGGCGCAATTAGCCAAAGAGCCCACGTTCAAAAAA    2790 

 I  K  R  A  Q  S  R  R  R  R  H  T  D  S  E  M  L  I  A  A  Q  L  A  K  E  P  T  F  K K      930 

                                

GTTCAGAATTGGGAAAGCATTAGCGATAAAATGGAGAATGGTTCGGTGTTAGTATTCGAACGAATAATACCTAGCACGAATCTTACTTTT    2880 

 V  Q  N  W  E  S  I  S  D  K  M  E  N  G  S  V  L  V  F  E  R  I  I  P  S  T  N  L  T  F      960 

                                     ▲                                         ▲ 

GTCATGAGAAATCTCCGGCATTTTACTGCATACAATATTGAGGTTCAAGCTTGCCGAGAGCTAGATGCGAGTGAATTGAATGATACAAAG    2970 

 V  M  R  N  L  R  H  F  T  A  Y  N  I  E  V  Q  A  C  R  E  L  D  A  S E  L  N  D  T  K      990 

                                                                               ▲ 

AGCAAAAATTGTTCGATGAAGAGTATGAAAACGTATCGTACGTTAGCCATGGAAAACGCAGATAATATTCCACCAAACACTTTTACATTG    3060 

 S  K  N  C  S  M  K  S  M  K  T  Y  R  T  L  A  M  E  N  A D  N  I  P  P  N  T  F  T  L     1020 

       ▲ 

ACTAAATCTGGCGAAAATAACAGTCTCACTATAATTACGTTGTCTTGGGACGAACCGCCTCAACCCAACGGCCTAATAGTCACGTATCAG    3150 

 T  K  S  G  E  N  N  S  L  T  I  I  T  L  S  W  D  E  P  P  Q  P  N  G  L  I  V  T  Y  Q     1050 

                ▲                                                       

ATTGAGTATAAAAGAATTGATATACAAAATATACAAGCAACAGTGGTATGTATCACAAGACGCGACTTTGTCAAACTGGGCAACAGATAC    3240 

 I  E  Y  K  R  I  D  I  Q  N  I  Q  A  T  V  V  C  I  T  R  R  D  F  V  K  L  G  N  R  Y     1080 

                                                                                 

ACCTTGAAGGAACTTCCTGCCGGAAATTATTCTATAAAAGTACGAGCTACCAGTTTAGCTGGAAATGGCGCGTACACCGAAGTGAAATAC    3330 

T  L  K  E  L  P  A  G  N  Y  S  I  K  V  R  A  T  S  L  A  G  N  G  A  Y  T  E  V  K  Y     1110 

                         ▲ 

TTTTCTATAGAGGAATCTGATACACTTAGTGAATTTTGGATTGTCATCTGCTCGATAATTGGCGTTATGACAATAGTAATCATTTTTTTC    3420 

 F  S  I  E  E  S  D  T  L  S  E  F  W  I  V  I  C  S  I  I  G  V  M  T  I  V  I  I  F  F     1140 

 

 

Figure 5.2. Continued. 
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ATAAGCTACGTAATCAAAAAGAAATCAATGAGAAATGTGCCCAGTATGAGGCTTATCGCAACAGTGAATCCAGAATATGTGAGCACCAGT    3510 

 I  S  Y  V  I  K  K  K  S  M  R  N  V  P  S  M  R  L  I  A  T  V  N  P  E  Y  V  S  T  S     1170 

                      *  
●                           ●

 

TACGTGCCGGACGAATGGGAAGTACCCAGAAAAAAAATTCAGTTATTACGAGAATTAGGGAATGGTTCTTTCGGTATGGTATACGAGGGA    3600 

 Y  V  P  D  E  W  E  V  P  R  K  K  I  Q  L  L  R  E  L  G  N  G  S  F  G  M  V  Y  E  G     1200 

 

TTGGCCAAAGACGTCGTAAAAGGCAAACCGGAGGTACGGTGCGCCGTAAAAACCGTAAATGAAAATGCAACCGACCGTGAACGAATAGAA    3690 

 L  A  K  D  V  V  K  G  K  P  E  V  R  C  A  V  K  T  V  N  E  N  A  T  D  R  E  R  I  E     1230 

                                                    ◊                 
●
◊ 

TTCCTTAACGAGGCTTCCGTCATGAAGGCTTTTAACACTCATCACGTTGTCAGACTACTGGGCGTAGTGTCGCAGGGTCAACCTACATTG    3780 

 F  L  N  E  A  S  V  M  K  A  F  N  T  H  H  V  V  R  L  L  G  V  V  S  Q  G  Q  P  T  L     1260 

 

GTAGTTATGGAATTAATGGTGAACGGTGATTTAAAAACGTATTTGAGAAGTCATCGACCAGACGTGTGCGAGAACTCCAAACAACCTCCA    3870 

V  V  M  E  L  M  V  N  G  D  L  K  T  Y  L  R  S  H  R  P  D  V  C  E  N  S  K  Q  P  P     1290 

                                                 
●
 

ACATTAAGAGAAATCCTACAAATGGCGGTCGAAATTGCGGACGGCATGTCTTACCTTTCTGCAAAGAAATTTGTCCATAGAGACTTAGCT    3960 

 T  L  R  E  I  L  Q  M  A  V  E  I  A  D  G  M  S  Y  L  S  A  K  K  F  V  H  R  D  L  A     1320 
 ●
◊
                                                                                       ●

 

GCTCGCAATTGTATGGTAGCTGAGGATCTCACTGTAAAGATCGGTGACTTTGGCATGACGAGAGACATATACGAAACTGATTACTATCGA    4050 

 A  R  N  C  M  V  A  E  D  L  T  V  K  I  G  D  F  G  M  T  R  D  I  Y  E  T  D  Y  Y  R    1350 

                               
●
 

AAAGGATCTAAGGGGCTACTACCAGTCAGATGGATGGCACCAGAAAGTTTGAAGGATGGCGTATTTACCAGTTTCTCTGACGTTTGGAGT    4140 

 K  G  S  K  G  L  L  P  V  R  W  M  A  P  E  S  L  K  D  G  V  F  T  S  F  S  D  V  W  S     1380 

    *                                         
●
◊                       ◊ 

TACGGAGTTGTTCTGTGGGAAATGGTAACGCTCGCTTCGCAGCCATATCAAGGCTTGTCGAATGACCAGGTATTACGTTACGTAATTGAA    4230 

Y  G  V  V  L  W  E  M  V  T  L  A  S  Q  P  Y  Q  G  L  S  N  D  Q  V  L  R  Y  V  I  E     1410 

 

GGAGGAGTTATGGAACGACCAGAAAATTGTCCTGACTCACTGTACAATTTAATGAGACGTACCTGGAATCACAGAGCCACGAGAAGACCT    4320 

 G  G  V  M  E  R  P  E  N  C  P  D  S  L  Y  N  L  M  R  R  T  W  N  H  R  A  T  R  R  P     1440 

                                                                               
●
        * 

ACCTTTATAGACATCGAGACTCTGTTATTGCAAGAAGTTAGTATAGAGGGTTTCGAGAATGTTAGCTTTTATCATAGTCCGGAAGGTATC    4410 

 T  F  I  D  I  E  T  L  L  L  Q  E  V  S  I  E  G  F  E  N  V  S  F  Y  H  S  P  E  G  I     1470 

 ◊ 

GAAGCTCGAAATCAAAATAATTCGCATCCGCCACAAAATGACCAGGATCTAGAAATGGTTGCTTTACAAGATTTACGGGAGGAAGAAATA    4500 

 E  A  R  N  Q  N  N  S  H  P  P  Q  N  D  Q  D  L  E  M  V  A  L  Q  D  L  R  E  E  E  I     1500 

 

GAAGGAGAAGAAGATTCGCCGCTGCGTCAAGACTTTGGCGACTTTGCAAGTTTTGAGCCTCGCAGTATTAAAAATAACTTAAGTCCACAA    4590 

 E  G  E  E  D  S  P  L  R  Q  D  F  G  D  F  A  S  F  E  P  R  S  I  K  N  N  L  S  P  Q     1530 

                                                                
●
 

TACGAAGTAGATTCGTTCGGCGAAACCTCAAAAGCTACTTCTAATTTCCATGACATGAACTCTACAAAAGTACCCAAAGCTGGATTTGAT    4680 

 Y  E  V  D  S  F  G  E  T  S  K  A  T  S  N  F  H  D  M  N  S  T  K  V  P  K  A  G  F  D     1560 

             ◊           
●                                                       ●

 

GAATTCGGCGGTATTTCCGGGGATTCGCTCGTATCTAGTAAGGACACGTTAAACTCGCCTTTTGTAGGCAGCCTTAAATCGGTCAGCTCG    4770 

 E  F  G  G  I  S  G  D  S  L  V  S  S  K  D  T  L  N  S  P  F  V  G  S  L  K  S  V  S  S     1590 

                                  
●
◊
                                                      ●

 

CCTTTTATTTATAAGAAAAGTACTTCTCGCGGTAACGTGAGTCAAAGTTCTCTAGGGAAGTCTGCAAGTCCACAGAGTTTGGTTAAGCGA    4860 

 P  F  I  Y  K  K  S  T  S  R  G  N  V  S  Q  S  S  L  G  K  S  A  S  P  Q  S  L  V  K  R     1620 

                   *  
●
 

AATTTTCTCGACAGCCCAAATCCGTCTAAGCTTCGAGACGATCCCGATTACGAAAACAGGAGTCTTGAAATCATATCGGGTATCGAAAAG    4950 

 N  F  L  D  S  P  N  P  S  K  L  R  D  D  P  D  Y  E  N  R  S  L  E  I  I  S  G  I  E  K     1650 

                                                                            ◊ 

AAGGAGATAATTTCGTTACACGTAGAATTTCCATCGGTAGATGTCATGGACATTCAGATTAACGGTAATAAAACGGAAAATAACAAAAAG    5040 

 K  E  I  I  S  L  H  V  E  F  P  S  V  D  V  M  D  I  Q  I  N  G  N  K  T  E  N  N  K  K     1680 

 

CACACGGGCGATTACATGAACAAATCGGAAACGTTGAATAACGGTTACATCGGTAGTACGACCACGTAGCTTCGCTGTACGAAATTTTAT    5130 

 H  T  G  D  Y  M  N  K  S  E  T  L  N  N  G  Y  I  G  S  T  T  T  .                          1703 

 *    

CACTTGGAGTGAATCGAATATGAGTATTCCAACAAAAAAAAGGCAGTGTCTGTGCCAAATTTTTCCGAGCGTCCTGGATTATCGTTTTGA    5220 

ATGGATTACATCGAGCAGCATTTTTTTTGTACATGAAAAGGATGTTAGTATGTTCTAGCTAACATACAAGTTATACTCATAAGTCTATAT    5310 

TTTAAACGTCTAGACGTGACTAAGAGTAAACAGGTCCTAACAAACAAGTGGAGTTTCCTTATACGGGTGTTACCATGTCTTAATTCCGTC    5400 

TCTCTAAATGTAATTAATATCGCTACGCGTGTACAGTTAATTATATATTTGTTGCGCTGCGATGCATGTTGAAAATAAGCAGCGAATATA    5490 

TTTATATCAGATACTGTCTTTTTGAAGTTGTAGTATATATTAATACGGAGAGTTTACTTTATGCTAAAAACGCCATTATCGTGGAGTTAT    5580 

TACAGACGATTGCGATTCAAGTCAGAATCCTCTCCTCTTGAAATTTGGCCCTACATTGTGAGAAACGTGCAGCCGTCTCATCACCAGTGC    5670 

ACATTATCCATTGACAAGCATGTAGTAACTTCTCTCTACATTAATTACCTAGCGTGTAAGCGTGGATCAAAGAATTAAGCAGGTTTATTA    5760 

TTTATATCCATAGATTTTCATTTTCAGTCGCAAAATGCGCTGTTTTTGCGCAATTTCTGCTGTAATTATACATTGTATAGTATTGGTTTA    5850 

TTTTTTTTCTGAGTTTATAATAAATCTAATAAAAAACCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA                         5919 

 
Figure 5.2. Continued. 
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Figure 5.3. Diagram of quaternary structure and the protein domain organization 

of the insulin receptor.  LBD-1 and LBD-2, ligand binding domains contain leucine-
rich repeats; Fu, furin-like cysteine-rich domain; Fn3-1, Fn3-2, Fn3-3, fibronectin type 3 
domains; TM, transmembrane domain; TK, tyrosine kinase domain; and CT, carboxy-
terminal tail.  Disulfide bonds are shown. 
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The first feature in the intracellular region of both SiInRs is the juxtamembrane 

motif “NPXY” (Figures 5.1 and 5.2).  This NPXY motif in Drosophila DIR binds to the 

N-terminal region of the insulin receptor substrate and is important for the efficient 

phosphorylation of this substrate which is critical for triggering downstream signaling 

events [272].  Following NPXY, there is a TK domain which is responsible for signal 

amplification (Figures 5.1 and 5.2).  Within the TK domain of both receptors, there are 

four conserved features including, 1) the protein kinases ATP-binding region; 2) the 

tyrosine protein kinases specific active-site signature; 3) the triple tyrosine cluster 

(YXXXYY), and 4) the Mg 2+ binding site (DFG). The triple tyrosine cluster constitutes 

the major autophosphorylation site for the mammalian insulin receptor [273]. 

Seven insect insulin receptor sequences (SiInR-1; SiInR-2; DIR; MIR; NvIR; 

AmInR-1; AmInR-2, this study) were analyzed with prediction tools in order to identify 

common sites for potential post-translational modifications (Table 5.1).  Among the 

predicted N-glycoslytion sites, three are conserved among these insulin receptors (group 

1: residues N183, N619, and N933 in SiInR-1 corresponding to N231, N693, and N1026 in the 

SiInR-2).  Likewise, conserved protein kinase C (PKC) and casein kinase II (CKII) 

phosphorylation sites were found in all insulin receptors compared (Table 5.1).  These 

conserved sites may be important for the regulation of insect insulin receptor functions.  

In hymenopteran receptors (groups 2 and 3), some sites were only conserved in the 

group 2 (SiInR-1 and AmInR-1) or in the group 3 (SiInR-2, AmInR-2, NvIR) (Table 5.1, 

shaded).   
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Table 5.1. Conservation of predicted sites for post-translational modifications in 

SiInR-1 and SiInR-2 and in other insect insulin receptors.  The analyses resulted in 
four groups of predicted sites: 1) conserved among all analyzed insulin receptors (SiInRs, 
AmInRs, NvIR, DIR, and MIR); 2) conserved only between InR-1 of hymenopterans 
SiInR-1 and AmInR-1); 3) conserved only among hymenopteran InR-2 (SiInR-2, AmInR-
2, and NvIR); 4) conserved among SiInR-2, AmInR-2, NvIR, DIR, and MIR. In the table, 
the number above each residue indicates its position in the corresponding sequence of 
SiInR-1 or SiInR-2.  For receptors in group 1 underlined residues are those conserved 
among all sequences, and for clarity these residues are not repeated in comparisons of 
groups 2-4.  Residues listed in group 4 are also listed in group 3 in parenthesis.  Residues 
in gray boxes highlight conservation only within the hymenopteran insulin receptors. No: 
no other conserved residue(s) found.  
 

Post-translational 
modifications 

Conservation among insulin receptor 
groups: 

Receptor corresponding 
residues/position 

SiInR-1 SiInR-2 

N-glycoslytion sites  1) All analyzed insulin receptors N183 N619 N933 N231 N693 N1026 

2) SiInR-1, AmInR-1 N135 N175 N514 

N553 N629 N804 
No 

3) SiInR-2, AmInR-2, NvIR  No N648 N790 N808 

4) SiInR-2, AmInR-2, NvIR, DIR, MIR No No 

Protein kinase C 
phosphorylation sites  
(S/T) 
 

1) All analyzed insulin receptors S1120 S1319 T1224 T1437 

2) SiInR-1, AmInR-1 No No 

3) SiInR-2, AmInR-2, NvIR No S1277 S1522 

(T1331 S1366 S1584) 

4) SiInR-2, AmInR-2, NvIR, DIR, MIR No T1331 S1366 S1584 

Casein kinase II 
phosphorylation sites 
(S/T) 

1) All analyzed insulin receptors S1120 S1265 T1332 T1224 S1374 T1441 

2) SiInR-1, AmInR-1 T1281 S1291 S1338 No 

3) SiInR-2, AmInR-2, NvIR  No T1441 

(S1366) 

4) SiInR-2, AmInR-2, NvIR, DIR, MIR  No S1366 

cAMP-Dependent 
protein kinase 
phosphorylation sites  

1) All analyzed insulin receptors None found None found 

2) SiInR-1, AmInR-1   

3) SiInR-2, AmInR-2, NvIR   P1440 (G1352) 

4) SiInR-2, AmInR-2, NvIR, DIR, MIR   G1352 
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Additionally, some sites conserved among group 3 were also found in DIR and 

MIR (residues listed in group 4: SiInR-2, AmInR-2, NvIR, DIR and MIR).  These 

differential conservation of post-translational modification sites between InR-1 and InR-

2 (groups 2-4, Table 5.1), suggests that specific sites may be important for differential 

regulation of InR-1 and InR-2 signaling when both are expressed in the same tissues.   

In the genomes of the carpenter ant Camponotus floridanus and the ponerine ant 

Harpegnathos saltator, four and five insulin receptor genes were identified, respectively 

[139]; however, we determined that only two of them in each species are similar in 

sequence and in predicted protein structure to the insulin receptor.  Two insulin receptors 

are also annotated from the draft genome of the fire ant [3] and the argentine ant [138], 

and we found two by BLAST search in the genome of the leaf-cutter ant [140] and the 

harvester ant [141].  Phylogenetic relationships between insect insulin receptors were 

analyzed in a tree rooted with insulin receptor (Daf2) from the nematode Caenorhabditis 

elegans insulin receptor (Daf2) (Figure 5.4).  The tree shows that InR-1 and InR-2 form 

two distinct clusters and each cluster contains one of the insulin receptor from ants and 

the honey bee.  The InR-2 cluster appears to be the most ancestral in insects and 

included receptors from Diptera, Lepidoptera, and Hymenoptera, each in a separate sub-

cluster.  In the Hymenoptera InR-2 subcluster, SiInR-2 was grouped with one of the 

insulin receptors found in each of the other ant species, and then grouped with the 

insulin receptor from the honey bee (AmInR-1) and wasp (NvIR).  The InR-1 cluster 

contained only hymenopteran receptors.  The presence of two receptor paralogs was also 

predicted in the genomes of the beetle Tribolium castaneum and the aphid 
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Acyrthosiphon pisum; however, these predictions are still incomplete. We did not 

include these receptors into our analyses because wrong sequences may produce 

incorrect cladograms.  

Pairwise alignments of amino acid sequences from each SiInR with other insulin 

receptors (NvIR; DIR; AmInR-1; AmInR-2, this study), respectively, also show that 

SiInR-1 shares high percentage of homology with AmInR-1, and SiInR-2 shares high 

homology with AmInR-2 (Figure 5.5; underlined percentages of identity and similarity). 

Pairwise alignments of sequences from single domains of each SiInR with their 

counterparts from listed insulin receptors were also analyzed.  Higher homologies were 

observed in the L-1, L-2, Fn3-1, Fn3-3, and TK domains (Figure 5.5, shaded boxes).  

Alignment of the amino acid sequences of insulin receptors from S. invicta (SiInR-1 and 

SiInR-2), A. mellifera (AmInR-1 and AmInR-2), and N. vitripennis (NvIR) also shows 

conserved residues are present in the ligand-binding loops (L-1 and L-2) and in the 

tyrosine kinase (TK) domain (Figure 5.6).  
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Figure 5.4. Bootstrap analysis of insect insulin receptors.  The amino acid sequences 
were aligned with ClustalW and a rectangular cladogram was generated with 10,000 
bootstrap replicates and 50% majority-rule consensus using the program PAUP 4.0.  
Bootstrap values over 50% are shown at branch points.  Sequences analyzed include 
insulin receptors from S. invicta SiInR-1 (JF304723) and SiInR-2 (JF304722), D. 

melanogaster (DIR; NP524436), A. gambiae (XP_320130), A. aegypti (MIR; 
AAB17094), Bombyx mori (NP_001037011), N. vitripennis (NvIR; XP_001606180), C. 

floridanus (Cflo_05946 and Cflo_09206), P. barbatus (PB_15423 and PB_12951), Atta 

cephalotes (AC_01463 and AC_00782), Linepithema humile (LH_18746 and 
LH_21623), Harpegnathos saltator (Hsal_09512 and Has_l11112), A. mellifera AmInR-
1 (XP_394771) and AmInR-2 (BK008012), and C. elegans Daf2 (NP_497650).  The tree 
was rooted with the C. elegans insulin receptor Daf2. 
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Figure 5.5. Identity and similarity between SiInR-1 and SiInR-2, and comparisions 

to other insect insulin receptors.  Amino acid sequences from each SiInR were 
compared with their counterparts from the honey bee (AmInR-1; AmInR-2, this study), 
Nasonia (NvIR), and Drosophila (DIR), respectively (labeled “Full”), by pairwise 

alignment algorithms provided by EMBOSS.  Sequences from single domains of each 
SiInR were also compared with their counterparts from AmInR-1, AmInR-2, NvIR, and 
DIR, respectively.  The ligand-binding loops (L-1 and L-2), and the furin-like cysteine 
rich region (Fu), fibronectin type 3 domains (Fn3-1, Fn3-2, and Fn3-3), and tyrosine 
kinase domain (TK) are labeled in the top panel.  Numbers below each domain indicate 
the percentage of identity (ID) or similarity (SIM) between two sequences on the left.  
Higher similarity and identity were observed in L-1, L-2, Fn3-1, Fn3-3, and TK domains 
(labeled with box).  The Fu and Fn3-2 domains show less identity and similarity between 
pairs.  TM: transmembrane region.  
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Figure 5.6. The alignment of the amino acid sequences of insulin receptors from S. invicta (SiInR-1; 

SiInR-2), A. mellifera (AmInR-1; AmInR-2, this study), and N. vitripennis (NvIR) showing structural 

features.  Domains in the SiInR-1 are indicated with a purple line (with dot) above the sequence and 
domains in the SiInR-2 are indicated with a blue line (with diamond) below the sequences. Conserved 
regions can be found in the ligand-binding loops (L-1 and L-2) and tyrosine kinase (TK) domain. 
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Semi-Q RT-PCR analyses the expression of two insulin receptors  

We next compared the developmental profile of SiInRs by semi-Q RT-PCR using 

specific primers for SiInR-1, SiInR-2 and β-actin (as the internal control) to calculate 

relative receptor expression level (Table 5.2).  The SiInR-1 expression level was 

significantly higher in eggs than in most of tested stages, except 4th instar larvae of 

workers and virgin queens and males (E, Figure 5.7).  For SiInR-2, expression level was 

significantly higher in the eggs than in all of other stages (E, Figure 5.7).  Expression 

levels for each receptor were compared between reproductives (R) and workers (W) 

from the last instar (4th) larvae to the adult stage.  Last instar (4th) larvae of reproductives 

and their pharate pupae (p-pupae; R) had significantly lower transcript levels of both 

receptors than the workers at the same stages (Figures 5.7A and 5.7B, respectively).  

Such differences between workers and reproductives (RF; RM) were not observed 

within the white or dark pupae stages, except for transcript levels of InR-2 in white 

pupae in which receptor levels were higher in females (W and RF) than in reproductive 

males (Figure 5.7B).  When comparing white and dark pupae stages within each caste, 

the white pupae had higher levels of SiInRs than the dark pupae (or showed a trend 

towards higher SiInR transcript) in all castes (Figures 5.7A and 5.7B). 

In adults, the expression levels of both receptors in whole bodies of virgin queens 

and males were significant higher than their respective expression in whole bodies of 

workers (Figures 5.7A and 5.7B).  These results are in agreement with the fact that 

reproductive adults may have higher receptor expression levels in gonads, increasing the 
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relative transcript abundance in whole bodies (Figures 5.7A and 5.7B), while workers 

are completely sterile with no ovaries.   

We then compared the overall level of expression between the two receptors 

throughout development (Figure 5.7A vs. 5.7B; Table 5.3).  The SiInR-2 transcripts are 

more abundant than those for SiInR-1, with significance differences for eggs and 

workers in all stages analyzed except dark pupae.  In reproductives, we only observed 

this significantly higher SiInR-2 expression in the white pupae of female reproductives 

(and not in 4th instar larvae, the pharate pupae or adults of reproductives) perhaps 

pointing to the physiological significance of SiInR-2 signaling during this specifically 

critical pupal developmental period. 

 

 

 

Table 5.2. Primers used for amplification of S. invicta insulin receptors (SiInR-1 

and SiInR-2).  The primer set “Si-IR2-f10 and SiIR2-r16” were used to amplify SiInR-1.  
The primer set “Si-IR1-f20 and SiIR1-r11” were used to amplify SiInR-2.  
 

Gene Primer  Sequences 

β-actin Si-actin-f1 5‟-AGCAATGATCTTGATCTTGATGGTTGAGGG-3‟ 

Si-actin-r1 5‟-GTCTCCCACACCGTACCCATTTATGAG-3‟ 

SiInR-1 Si-IR2-f10 5‟-CCACGGATGTCAGGCCGAAAAATAATCAGC-3‟ 

Si-IR2-r16 5‟-TAACCGCCAGGACATTGCGAACATCCTTTC-3‟ 

SiInR-2 Si-IR1-f20 5‟-AATGGCGAAGGTTTCTCTGGATCGTTCTCTTC-3‟ 

Si-IR1-r11 5‟-GGTTTCGTCTGTCTTGTTGGGCATTTTCTAG-3‟ 
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A.  

B.  

 

Figure 5.7. Semi-Q RT-PCR expression analyses of fire ant insulin receptors SiInR-

1 and SiInR-2 in different castes and developmental stages.  A and B: The relative 
amount of SiInR-1 (A) and SiInR-2 (B) transcripts in the whole body of ants in 
comparison to amplified β-actin transcripts are shown.  Eggs (E), 4th instar larvae (4thL) 
and pharate pupae (P-pupae) of workers (W) and immature reproductives (R), white 
pupae and dark pupae or workers, immature reproductive females (RF) and males (RM), 
as well as adult workers, virgin queens (Q), and males (M) were tested.  Three sets of 
independent samples per developmental stage were analyzed. Results of SiInR-1/β-actin 
ratio (A) and SiInR-2/β-actin ratio (B) are shown.  Data in the same figure were analyzed 
together.   Statistically significant differences are indicated above each bar with small 
letters for SiInR-1 (A) and capital letters for SiInR-2 (B).  Stars represent significant 
differences between castes in the same developmental stages (ANOVA, Tukey multiple 
comparison test, *, P<0.05, **, P<0.01).  Comparisons of SiInR-1 vs. SiInR-2 expression 
for each life stage and cast were analyzed by t-test (see Table 5.3).   
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The relative expression of SiInRs from both virgin and mated queens was also 

estimated by semi-Q RT-PCR in the following tissues: 1) Brain-CC-CA (enriched in 

brains but containing some of two neurohemal organs, corpora cardiaca and corpora 

allata); 2) the ovary; 3) the abdominal fat body; 4) the gut.  The highest expression levels 

of both SiInRs in virgin queens (Figure 5.8A) and mated queens (Figure 5.8B) were 

found in the ovaries of queens.  In virgin queens, the expression levels of both SiInRs in 

ovary are significantly higher than their respective levels in the brain-CC-CA and in the 

gut, but not than in abdominal fat bodies (Figure 5.8A). In virgin queens the fat body 

expressed significantly higher levels of both receptors than in gut (Figure 5.8A). This 

correlates with the known storage of energy resources in the fat body of virgin queens.  

In mated queens, the expression levels of both SiInRs in the ovaries are significantly 

higher than their respective expression in all tested tissues (Figure 5.8B). The ovaries 

become the target of vitellogenin acquisition and the level of both receptors in the fat 

body is low and similar to expression in the gut.  We also independently compared the 

expression level of SiInR-1 and SiInR-2 in different tissues (Figure 5.8C) between virgin 

(data from figure 5.8A) and mated queens (data from figure 5.8B).  In the brain-CC-CA, 

the expression of SiInR-1 in virgin queens is significantly lower than its expression in 

the mated queens (p<0.05) (Figure 5.8C).  On the contrary, in the abdominal fat body the 

expression of SiInR-1 in virgin queens is significantly higher than its expression in the 

mated queens.  The expression of SiInR-2 was not significantly different between queens.  
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Table 5.3. Relative transcript expression ratios (with receptor to actin) of SiInR-1 

(Figure 5.7A) and SiInR-2 (Figure 5.7B) were compared within stages and castes 

and analyzed with t-test. *: p<0.05; **: p<0.01; ns, no statistical significant differences 
were found.  
 

Developmental stages Castes t-test  
SiInR-1<SiInR-2 

Eggs (E)  * 

4th instar larvae (4thL) Worker * 

Immature reproductive ns 
pharate pupae (P-pupae) Worker ** 

Immature reproductive ns 
White pupae 
 

Worker ** 

Immature reproductive female 
(RF) 

* 

Immature reproductive male 
(RM) 

ns 

Dark pupae 
 

Worker ns 

Immature reproductive female 
(RF) 

ns 

Immature reproductive male 
(RM) 

ns 

Adult 
 

Worker ** 

Virgin queen ns 

Male ns 
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   C.  

 
Figure 5.8. Semi-Q RT-PCR expression analyses of fire ant SiInR-1 and SiInR-2 in 

different tissues of virgin and mated queens.  Relative amounts of SiInR-1 and SiInR-
2 transcripts with respect to β-actin transcripts in virgin (panel A) and mated (panel B) 
queens are shown.  cDNAs of the brain with corpora cardiaca/ corpora allata (brain-CC-
CA), ovaries, abdominal fat body, and gut from virgin or mated queens were tested.  A: 
In virgin queens, SiInR-1 had significantly higher expression in the ovaries and fat body 
than in the brain-CC-CA and gut.  The SiInR-2 had significantly higher expression in the 
ovaries than in the brain-CC-CA and gut but not different than the expression in the fat 
body.  B: In the mated queens both SiInRs had higher expression in the ovaries than in 
all other tested tissues.  In both virgin (panel A) and mated (panel B) queens, three sets 
of independent samples per tissue were analyzed.  Data for SiInR-1 and SiInR-2 were 
analyzed separately in each figure. Statistically significant differences are indicated 
above each bar with small letters for SiInR-1 and capital letters for SiInR-2 (ANOVA, 
Tukey multiple comparison test).  C. SiInR-1 and SiInR-2 transcripts levels were 
compared between virgin (data from panel A) and mated (data from panel B) queens for 
the four tissues and analyzed with t-test (*: p<0.05). Mated queens had significantly 
higher expression of SiInR-1 in brain-CC-CA and lower expression of SiInR-1 in fate 
body than virgin queens; no statistically significant differences were found between 
queens for ovary and gut (not shown).  For SiInR-2, no statistically significant 
differences were found between queens for all tissues (not shown). 
 

 Brain-CC-CA Ovary Fat body Gut 

SiInR-1 MQ > VQ* MQ = VQ MQ < VQ* MQ = VQ  

SiInR-2 MQ = VQ MQ = VQ MQ = VQ  MQ = VQ  
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Discussion 

 

Two insulin receptors in social insects 

We describe the cloning and the transcriptional expression analyses of two 

putative fire ant insulin receptors, SiInR-1 and SiInR-2, which are the third and fourth 

insulin receptors cDNA cloned from insects, and the first cloned from social insects.  

Although there is evidence for revising the nomenclature of the insect insulin receptors 

annotated so far, until this occurs, and in order to avoid confusion in the literature, the 

nomenclature of SiInRs was based on their sequence similarity to the honey bee insulin 

receptors previously designated AmInR-1 and AmInR-2.  The amino acid sequences of 

SiInRs are characterized by several conserved features of the insulin receptor family.  In 

both SiInRs, sequence structural analyses (Figures 5.1 to 5.3), phylogenetic tree analysis 

(Figure 5.4), and pairwise alignments (Figure 5.5) clearly identify these two receptors as 

insulin receptor orthologs.  The predicted structure of the two SiInRs is slightly different 

from that of the cloned insect insulin receptors DIR and MIR.  The SiInR-2 does not have 

a predicted signal peptide sequence at the N-terminus like the SiInR-1 and MIR have; 

rather, the SiInR-2 has a putative membrane anchoring sequence far downstream from 

the start codon in the N-terminus, similar to the DIR [106,107].  In addition, both SiInRs 

do not have an extra C-terminal extension with four extra NPXY motifs in the β-subunit 

like the DIR has [272], nor do they have a long 3‟UTR like the MIR has [62].  The 

conserved predicted sites for post-translational modifications in both SiInRs and other 

insulin receptors from dipterans and hymenopterans (Table 5.1) suggest that these 
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conserved sites might be important for the regulation of receptor function across insect 

orders.  Positions found to be only conserved within the InR-1 receptors or within the 

InR-2 receptors (Table 5.1) indicate the possibility of differential modification and 

regulation between the two insulin receptors, of importance specifically when both 

proteins may be expressed in the same tissues.   

The cladogram shows that the two fire ant insulin receptors are grouped into two 

different clusters (Figure 5.4), similarly to receptors from other ants and the honey bee.  

This result suggests that gene duplication from an ancestral gene might have occurred, 

resulting in two insulin receptor paralogs in these insects.  Why some insects carry an 

extra insulin receptor and how they coordinate them to regulate downstream pathways 

are both still unknown.  However, the presence of two insulin receptors may represent a 

functional redundancy strategy to ensure accurate development and/or provide functional 

diversity in multiple tissues. Functional diversity for the insulin pathway is likely 

provided by the diverse insulin-like peptides (ILPs) present in each species, the number 

of ILP genes varying from a few to many [267,274].  In Drosophila, the presence of one 

insulin receptor for multiple ligands (Drosophila ILP1-7) indicates that the diverse 

functions of IIS might be due to the diversification of the ligands; that is, ligands may 

modulate IIS pathway outcomes. The synergy, redundancy and compensation of the 

expression between these different ILPs were recently demonstrated [116,117]. In 

genome sequences of the honey bee and the fire ant, however, there are only two ILPs 

present.  Our finding that also two insulin receptors are found in fire ants and other ant 

species suggests that two insulin receptors might provide a similar diversity of 
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regulatory functions for the IIS.  In parasites of humans, the blood flukes Schistosoma 

mansoni and S. japonicum, have two insulin receptors that are differentially localized in 

ovaries and may have different functions [275,276].  This also opens the possibility that 

two receptor genes, may contribute to functional diversification in social insects, similar 

to mammals, including the possibility of hybrid receptor forms.  Further localization of 

both SiInRs in fire ants will clarify this possibility.  

 

SiInRs expressed in different ant’s life stages and queen tissues 

In fire ants, both SiInRs expressed throughout life stages, different castes, and in 

different queen tissues indicating that IIS pathway is important.  The high transcriptional 

expression level of both SiInRs in laid eggs confirms that they may play an important 

role in embryo development.  This was demonstrated in Drosophila, in which loss of 

DIR function resulted in embryonic lethality [107].  In fire ant workers the levels of each 

receptor remained relatively constant from 4th instar larvae through white pupae, 

however, in reproductives there is a significant increase in receptor levels between pre-

pupae and white pupae stages (Figure 5.7).  When comparing the transcriptional 

expression between SiInRs within stages (Table 5.3), the expression levels of the SiInR-

2 were more abundant than the SiInR-1 in most stages.  Statistically significant higher 

expression of SiInR-2 over SiInR-1 was observed in eggs and throughout worker stages 

except dark pupae; however, in reproductive females the higher expression of SiInR-2 is 

only observed in the white pupae.  This indicates that specifically SiInR-2 signaling may 

be more important for regulation during this developmental period.   
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Our results of SiInRs transcriptional expression analyses can be interpreted in the 

context of the different fire ant castes which represent diverse phenotypes with respect to 

nutritional condition, body size and reproductive ability (Figure 5.9A). Although queens 

and workers are both females and diploid, queens are larger and highly reproductive 

while workers are polymorphic (of variable size) and completely sterile. In addition, 

queens are well fed while workers receive less food and nutrition.   The average weight 

of 4th instar larvae and pharate pupae of reproductives in the colonies is ~10 times higher 

than the respective weight of workers at the same developmental stages. Based on the 

known role of the IIS pathway in regulating insect growth and body size, it would 

reasonable to hypothesize that the expression of both SiInRs would be higher in 

reproductive larvae than in worker larvae.  However, the transcriptional expression of 

both SiInRs in larvae and pharate pupae of reproductives is significantly lower than in 

workers at the same respective stages.  The SiInR expression in these stages of ants is, 

therefore, not correlated with their body size and nutritional status.  The InRs in fire ants 

do not appear to have the same role in the regulation of body size as in solitary insects 

such as Drosophila [108,109].  Our results more closely resemble findings in honey bees 

in which receptor expression in queen larvae, although not statistically different than in 

worker larvae (in both 4th and 5th instars), show a lower receptor expression trend  [137].  

However, we have not yet analyzed the receptor protein expression in fire ants and it 

remains possible that discrepancies may exist between transcript and protein expression 

levels.  

 



  

 

139 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.9. Relationship between the transcriptional expression level of insulin 

receptors and fire ant physiology.  Arrow sizes represent the relative amount (or egg 
number) of listed attributes compared between castes (A) or queen mated status (B). 
Arrows with upward diagonal texture represent relative receptor transcript levels. A: The 
relative nutritional status, body size, and reproductive potential and InRs expression 
levels in virgin queens vs. workers are compared.  The transcriptional expression of both 
SiInRs is negatively correlated to nutrition status and body size in virgin queens vs. 
worker ants, indicating a functional difference in social insects vs. solitary insects (e.g., 
Drosophila) for these attributes.  For reproduction, the insulin pathway appears to have a 
conserved function in all insect groups.  Workers have no reproductive ability (presented 
by dash).  Therefore, the high expression of SiInRs in the whole body of queens is 
mainly due to their expression in ovaries for reproductive functions. B. The JH level, 
ovarian development, eggs laid, energy usage, and SiIn-R1 levels in virgin vs. mated 
queens are compared.  In virgin queens, low juvenile hormone (JH) titer prevents 
ovarian growth resulting in low reproductive capacity.  Lower SiInR-1 level in the brain-
CC-CA (brain with corpora cardiaca and corpora allata) in virgin queens vs mated 
queens appears to be associated with lower JH titer in virgin queens. Higher SiInR-1 
expression in the fat body of virgin queens corresponds to storage of reserves for flight 
and future colony founding.  In mated queens, higher SiInR-1 expression in the brain-
CC-CA correlates with higher JH synthesis, which in turn promotes ovarian growth and 
high egg production [24,46,46,158].  The decreased level of SiInR-1 in the fat body in 
mated queens reveals a functional switch of this organ from storage in virgin queens to 
vitellogenin synthesis.   In the ovary, both virgin and mated queens have high expression 
of both receptors which are not statistically significantly different between queens.  
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 In virgin queens within the colony, a primer pheromone released from mated 

queens suppresses their corpora allata activity and the corresponding production of JH.  

JH is the major gonadotropin in fire ants [46,46] and therefore low JH titers suppress 

ovary development [154,155]. Virgin queens have the ability to remain inside the colony 

for long periods of time until physiological and environmental requirements are met for 

their participation in the mating flight.  However, ovary development during this time 

proceeds slowly, with the final localization of the Vg receptor at the oocyte membrane 

[192].  Virgin queens accumulate large energy reserves during this maturation period 

because upon mating, they will not eat until the new colony is established.  The 

relationships among JH level, reproductive ability, nutritional stores utilization and 

SiInRs transcriptional expression in queen tissues (fat body, brain and ovary), between 

virgin and mated queens is summarized (Figure 5.9B).  The IIS pathway is thought to be 

the upstream regulator of JH synthesis in insects [66,111,125,126].  In fire ant virgin 

queens, the observed lower expression of SiInR-1 in the brain-CC-CA vs. mated queens 

(Figure 5.8C) may reflect the low activity of the insulin pathway, with the consequent 

low JH synthesis and titer in virgin queens [158].  On the contrary, the mated queen in a 

mature colony has higher expression of the SiInR-1 in the brain-CC-CA correlating with 

the putative downstream stimulation of JH synthesis and high titer of JH in hemolymph, 

which in turn triggers vitellogenesis.  In both queens, we observed significantly high 

expression of both SiInRs in the ovaries than in most other tested tissues (except virgin 

queen fat body), suggesting that SiInRs are important for ovary development and 

reproduction.  Because both virgin and mated queens are well nourished, it appears that 
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nutritional status is not associated with their reverse, differential expression of SiInR-1 in 

brains-CC-CA (being lower in virgin than in mated queens) and fat body (being higher 

in virgin than in mated queens) (Figure 5.9B).  However the metabolic status of the fat 

body may be different between queens because in virgin queens the fat body has a 

preponderant storage function while in mated queens is dedicated to synthesis and export 

of vitellogenin. Thus, we hypothesize that in virgin queens within the colony the queen 

primer pheromone deactivates or suppresses the insulin pathway-regulated JH synthesis. 

However the insulin pathway is active in fat body, with significantly higher expression 

of SiInR-1, likely associated with fat body nutrient storage and growth during the 

maturation period [143].  High SiInR-1 expression in virgin queen fat body makes 

biological sense because insulin plays an anabolic role in the fat body of insects 

promoting lipid accumulation [277].  In mated queens, however, lower SiInRs levels 

reflect a functional change in the fat body for vitellogenesis, and storage may not be 

required because the queen is constantly fed by workers.  This reduced receptor 

expression in fat body may be reflective of IIS pathway reduced function, contributing to 

high longevity in mated queens. 

In summary, by investigating the insulin pathway in a species of ant in which 

workers have no reproductive ability, the different functions of the insulin pathway in 

nutrition and reproduction can be more clearly distinguished in different castes and 

tissues.  Testable new hypotheses emerging from our study are that SiInR-1 plays roles 

in queen physiology (including fat body energy metabolism) and reproduction, and 

SiInR-2 plays roles in body size growth and development.  The differential expression of 
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SiInRs reveals caste-specific regulation for workers and reproductives, and highlights the 

physiological significance of this IIS pathway in the regulation of queen physiology and 

behavior.  Our results on the IIS pathway in fire ants contributes new knowledge to the 

understanding of other social hymenopterans specially of ant species  in which workers 

have no reproductive capacity.   

 

Materials and Methods  

 

Insects 

S. invicta were reared as described in Chapter II.  For determining receptor 

expression across developmental stages and castes, larvae (4th instar), pupae (pharate, 

white, and dark pupae), and adults of both workers and reproductives were collected 

from more than 6 colonies.  It is difficult to distinguish the sex of reproductive larvae 

and pharate pupae; therefore, reproductives were pooled in these two stages.  Female and 

male reproductive pupae (white and dark) and adults were individually collected.  In 

addition, eggs were also collected from colonies.   

Virgin queens that were likely sexually mature (with liquid-filled crops and 

prominent fat bodies in their abdomens indicating high nutritional status) and mated 

queens within colonies were chosen for these studies.  For receptor tissue expression in 

queens, the brain-CC-CA (enriched in brains but containing some of two neurohemal 

organs, corpora cardiaca and corpora allata and devoid of fat body), ovaries, abdominal 

fat bodies, and guts were dissected individually from both virgin queens and mated 
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queens.  During dissection, successfully mated queens were identified by observing an 

inseminated large and white spermatheca; only inseminated queens were used as „mated 

queens‟.   

To measure the size difference between castes, 4th instar larvae and pharate pupae 

were collected individually for both workers and reproductives castes and each group 

had 40 ants.  Total weight for each group was measured and then divided by 40 to 

calculate their average individual‟s weight.  The average weight for reproductive 4
th 

instar larvae is 0.0297g, for reproductive pharate pupae is 0.0185g, for worker 4th instar 

larvae is 0.00246g, and for worker pharate pupae is 0.00205g. 

 

Identification of the honey bee insulin receptor-2 (AmInR-2) 

Two genes, AmInR-2 (XM_001121597) and AmIGF-1R (XM_001121628) had 

been predicted from the same contig (NW_001253271.1) in NCBI 

(http://www.ncbi.nlm.nih.gov/).  These two genes are located next to each other with 

wrongly predicted 3‟end in AmInR-2 and 5‟end in AmIGF-1R.  The splice site prediction 

tool from the Berkeley Drosophila Genome Project (http://www.fruitfly.org/ 

seqtools/splice.html) was used to identify potential exon−intron boundaries in this contig.  

Identified ORF-containing exons were manually arranged using DNASTAR software 

(DNASTAR Inc.) and translated in silico.  The new corrected AmInR-2 sequence (TPA 

GenBank number: BK008012) was used in subsequent analyses.  

 

 

http://www.ncbi.nlm.nih.gov/
http://www.fruitfly.org/%20seqtools/splice.html
http://www.fruitfly.org/%20seqtools/splice.html
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RT-PCR and RACE 

Amino acid sequences from D. melanogaster DIR (NP_524436), A. aegypti MIR 

(AAB17094), N. vitripennis NvIR (XP_001606180), A. mellifera AmInR-1 (XP_394771) 

and AmInR-2 (BK008012) were aligned using DNASTAR software to identified 

conserved regions.  Sequences in the LB domain and the TK domain were highly 

conserved among these receptors.  Degenerate primer sets were designed first based on 

the nucleotide sequence alignment of the TK domain from NvIR (XM_001606130), 

AmInR-1 (XM_00394771), and AmInR-2 (this work).  Mated queen ovaries mRNA was 

isolated using the DynaBeads® mRNA Direct kit (Invitrogen) and then cDNA was 

synthesized using 0.5 μg mRNA and oligo-dT20 primer using SuperScript™ III First-

Strand Synthesis System (Invitrogen) as per manufacturer‟s specifications.  To amplify 

initial insulin receptor fragments from mated queen ovary cDNA, temperature gradient 

PCR reactions were performed with degenerate primers.  PCR mix contained 2µl cDNA 

(50 x dilution), 1 μl Advantage® 2 Polymerase (Clontech, Mountain View, CA, USA), 

0.4 µM of each primer, 400 µM of dNTPs, 1 x reaction buffer.  Gradient PCR 

parameters were 94 °C for 2 min; 39 cycles of 94 °C for 30 s, 55-60 °C for 1 min, and 72 

°C for 2 min; 72 °C for 10 min.  A secondary reaction with nested primers was 

preformed when necessary.  PCR products were purified using QIAEX II Gel Extraction 

kit (Qiagen), and cloned into pCR2.1 Vector (Invitrogen).  Competent cells (DH5α, 

Invitrogen) containing the plasmid were grown and cloned products were isolated by 

QIAprep Spin Miniprep Kit (Qiagen) and sequenced by the Gene Technology 

Laboratory (Texas A&M University, College Station, TX).  All cDNA fragments were 
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sequenced at least twice.  Two different insulin receptor fragments of similar size 

(~400bp, named arbitrarily IR-1 and IR-2, respectively) were obtained.  IR-1 was later 

found to be part of SiInR-2 gene and IR-2 was found to be part of SiInR-1 gene.  We 

then followed with RT-PCR reactions, each combining specific and degenerate primers 

to obtain further sequence towards the 3‟ and 5‟ ends to obtain these two large genes.  

To obtain the sequence of the SiInR-1, degenerate primer sets were also designed for the 

LB domain.  After specific sequence was obtained, a similar RT-PCR strategy as 

described above was followed to obtain the complete receptor cDNA sequence.   

To obtain full-length cDNA, RNA ligase-mediated (RLM)-cDNA was 

synthesized using GeneRacer™ Kit (Invitrogen) with ovarian mRNA (0.1 μg) as a 

template following manufacturer‟s instructions.  The 5‟ and 3‟ end of receptors were 

obtained using RLM-cDNA (2µl of 50 x dilution) with specific primers designed based 

on the SiInR-1 and SiInR-2 cDNA fragments obtained above.  Touchdown-gradient PCR 

was used and the parameters were 94 °C for 2 min; 10 cycles of 94 °C for 30 sec, 72 °C 

for 1 min (-0.5 °C each cycle), 72 °C for 1.5 min ; 25 cycles of 94 °C for 30 sec, 60-70 

°C for 1 min, 72 °C for 1.5 min; 72 °C for 10 min. The resulting bands were purified, 

cloned and sequenced as described above.   

 

Sequence analyses  

 DNASTAR software was used for analyzing sequences obtained from the 

sequence center.  The BLAST search algorithms at NCBI and Hymenoptera Genome 

Database (http://hymenopteragenome.org/) were used to identify insulin receptor 

http://hymenopteragenome.org/
http://hymenopteragenome.org/
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sequences from other organisms.  Molecular weights for the SiInRs were predicted by 

the Compute pI/Mw program provided by ExPASy (http://ca.expasy.org/tools/).  The 

SMART program provided by EMBL (http://smart.embl-heidelberg.de/) was used for 

identification of modular domains that were adjusted by eye, when necessary.  

Transmembrane region predictions were made using the TMHMM V2.0 

(http://www.cbs.dtu.dk/services/TMHMM/). The SigCleave program from EMBOSS 

(http://emboss.bioinformatics.nl/cgi-bin/ emboss/sigcleave) and SignalP 3.0 program 

(http://www.cbs.dtu.dk/services/) were used to predict the N-terminus signal peptide.  

The PeptideCutter program from ExPASy (http://ca.expasy.org/tools/peptidecutter/) was 

used to identify potential cleaving enzymes in receptor Fn3-2 region.  Amino acid 

sequences of SiInR-1 (JF304723) and SiInR-2 (JF304722), DIR, MIR, AmInR-1, AmInR-

2 and NvIR were aligned using DNASTAR software.  Post-translational modification 

sites in these sequences were predicted using the PPSEARCH program 

(http://www.ebi.ac.uk/Tools/ protein.html) and sites were compared in the alignment. 

 To characterize the identity and similarity between each SiInRs (SiInR-1 and 

SiInR-2) and other insect insulin receptors, each domain from SiInR-1 and SiInR-2 was 

compared with the respective domain from NvIR, DIR, AmInR-1, AmInR-2 (BK008012), 

by EMBOSS pairwise alignment algorithms (http://www.ebi.ac.uk/Tools/emboss/align/ 

index.html) and the percentage of identity and similarity were obtained.   

 For construction of the cladogram, the multiple sequence alignment of insulin 

receptors was constructed with the ClustalW (http://align.genome.jp/) based on the 

BLOSUM protein score matrix.  These sequences include insulin receptors from S. 

http://ca.expasy.org/tools/pi_tool.html
http://ca.expasy.org/tools/
http://www.cbs.dtu.dk/services/TMHMM/
http://emboss.bioinformatics.nl/cgi-bin/
http://www.cbs.dtu.dk/services/
http://www.ebi.ac.uk/Tools/%20protein.html
http://www.ebi.ac.uk/Tools/emboss/align/%20index
http://www.ebi.ac.uk/Tools/emboss/align/%20index
http://align.genome.jp/
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invicta SiInR-1 (JF304723) and SiInR-2 (JF304722), D. melanogaster (DIR; 

NP524436), A. gambiae (XP_320130), A. aegypti (MIR; AAB17094), B. mori 

(NP_001037011), N. vitripennis (NvIR; XP_001606180), C. floridanus (Cflo_05946 and 

Cflo_09206), P. barbatus (PB_15423 and PB_12951), A. cephalotes (AC_01463 and 

AC_00782), L. humile (LH_18746 and LH_21623),  H. saltator (Hsal_09512 and 

Has_l11112), A. mellifera AmInR-1 (XP_394771) and AmInR-2 (this work), and C. 

elegans Daf2 (NP_497650). Aligned sequence consensus were imported into PAUP 

4.0b10 [278] and alignment gaps were treated as missing data.  A neighbor-joining tree 

was generated and rooted using the CeDaf-2, insulin receptor from nematode C. elegans.   

 

Semi-quantitative RT-PCR (semi-Q RT-PCR) 

 To determine the transcriptional expression pattern of SiInRs in the fire ant, ants 

at different developmental stages and castes (~50 mg/each replication) and tissues from 

mated and virgin queens (~40 queens/each replication) were collected and their mRNA 

was extracted as previously mentioned above.  The concentration and purity of mRNA 

was measured by nanodrop (Thermo Scientific, Wilmington, DE). cDNA was 

synthesized using mRNA (0.1 μg) and oligo-dT20 primer as previously mentioned.  

Semi-Q RT-PCR methodology was used to determine the gene expression level.  Several 

specific primer sets and the optimal number of PCR amplification cycles for SiInR-1 and 

SiInR-2 were tested through preliminary runs.  After tested, primer sets Si-IR2-f10/Si-

IR2-r16 and Si-IR1f20/Si-IR1r11 were selected to specific amplify SiInR-1 (613bp) and 

SiInR-2 (583bp), respectively.  PCR amplifications contained 2 µl of the diluted cDNA 
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(2 X dilution), 0.4 µM of each primer, 400 µM of dNTPs, 1 x reaction buffer and 1 µl 

Taq DA polymerase in a final volume of 50 µl.  PCR parameters were 94 °C for 3 min, 

30 cycles of 94 °C for 30 s, 60 °C for 60 s, and 72 °C for 40 s.  The β-actin was used as 

an endogenous control.  A fire ant β-actin fragment (557 bp) was originally obtained 

from PCR amplification of fire ant ovarian cDNA using degenerate primers, Act-3F and 

Act-4R for obtained the tick β-actin [279].  In semi-Q RT-PCR assays, primer set Si-

actin-f1 and Si-actin-r1 was used to specific amplify the fire ant β-actin (519bp) as the 

internal control.  PCR conditions for amplification of actin cDNA were identical to the 

receptor PCR amplification except that 22 cycles were used.  One-tenth of the reaction 

(5 µl) was analyzed by agarose gel (1%) electrophoresis.  Transcript abundance was 

determined based on the intensity of the amplified PCR bands using image J program.  

Relative mRNA expression levels from each of the samples were presented as the ratio 

of the band intensities of the receptor RT-PCR product over the corresponding β-actin 

RT-PCR product.  The expression ratio in the same RT-PCR sample was averaged from 

two gels to limit the bias.  Three replicates for each sample were analyzed using one-

way ANOVA followed by a Tukey multiple comparison test.  T-test was used for 

analyzing receptor expression between two receptors or between virgin and mated 

queens.  Statistical analyses and graphs were performed using prism 4.0 (GraphPad, San 

Diego, CA, USA). 
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CHAPTER VI 

 

CONCLUSIONS 

 

Insect reproduction is controlled by complicated gene networks which are 

regulated by hormones and modulated by environmental stimuli.  Juvenile hormone 

and/or ecdysone are believed to directly induce vitellogenesis.  Neuropeptide hormones 

from the central nervous system appear to be upstream of these direct inducers present in 

the neuroendocrine system, and they may also be released into the hemolymph and act 

directly on peripheral tissues.  This dissertation provides novel contributions to the 

understanding of insect reproductive physiology, biology of receptors from three 

different receptor superfamilies, and the possible roles of these receptors involved in 

endocrine control mechanisms in the red imported fire ant.  These three receptors 

included the Vg receptor, sNPF receptor, and insulin receptors.  The role of these 

receptor signaling pathways in essential physiological processes makes it an important 

subject for study in social insects, especially ants, in which the control of both feeding 

and reproduction is complex and poorly understood.   

Our results on these receptors provide novel information for subsequent studies 

on the regulatory network hierarchy and overall coordination of pathways that control 

fire ant reproduction.  Previously, only the transcript expression levels of Vg and sNPF 

receptors were known from the fire ant queen.  To our knowledge, our work in chapter 

III is the first report of successful RNA interference of a VgR in hymenopterans and is 

the first report of successful RNA interference in any ant species.  Chapter III describes 
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the first cellular localization of a sNPF receptor in the brain, SEG, and ovaries of any 

adult insect.  In chapter V, the molecular characterization of two fire ant insulin 

receptors is studied in the fire ant for the first time.  Insulin receptors cloned in this 

dissertation are the first cloned cDNA of insulin receptors from social insects.  Therefore, 

studies in this dissertation not only fulfill knowledge of fire ant reproductive physiology, 

but also provide novel information helpful for other insect orders.  

Contributions of this dissertation are summarized (Figure 6.1).  First, this 

dissertation focuses on one critical step during vitellogenesis, the expression of a SiVgR 

in the ovaries of fire ant queens which is directly involved in oocyte development and 

egg production.  We found that correct localization for functional SiVgR at the oocyte 

membrane did not occur until 12 days post-eclosion in virgin queens (Figure 6.1, labeled 

with 3).  This time period in virgin queens coincides with the two weeks of maturation 

time required before a mating flight.  Thus, the significant finding is that the previously 

undefined “maturation period” of virgin queens within the colony involves the correct 

localization of the SiVgR in the oocyte membrane.  This correct localization appears to 

be a potential marker for the sexual maturation of queens and their readiness to fly for 

dispersal.  The temporal expression analysis of the SiVgR protein in queens before and 

after mating shows that successfully mating, and not flight only, induces high SiVgR 

protein expression and subsequently egg production in mated queens.  We next 

established the technique of RNA interference to silence gene expression in queen 

ovaries.   
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Figure 6.1. New information provided by this dissertation in the hormonal control of fire ant 

reproduction.  Previously it was known that the mated queens have higher JH level than virgin queens.  
JH increases SiVgR transcripts(1) in the ovary and stimulates vitellogenesis(2) in the fat body 
[24,46,55,155,157].  In the ovaries of virgin queens within a colony, the correct localization for functional 
SiVgR at the oocyte membrane did not occur until 12 days post-eclosion; in the ovaries of mated queens 
within a colony, the SiVgR protein is highly expressed(3).  In the honey bee and fire ant, nutritional 
signals(4) regulate sNPF receptor expression [68,96] and also regulate vitellogenesis [68].  In the fire ant, 
this was demonstrated by starvation of mated queens resulting in reduced sNPF receptor transcripts in 
queen brains and reduced egg laying [68].  The localization of the sNPF receptor in many important 
regions of queen brain(5) including potential insulin-producing cells (IPC) links the receptor signaling 
pathway to behaviors such as foraging, learning, and food consumption.  The sNPF receptor is also 
expressed in the mated queen ovaries and may involve in oocyte development(6).  The sNPF receptor 
transcripts were also detected in the fat body and the gut of queens [68]; however, we  did not detect the 
receptor protein expression in these two tissues using western blot(7).  The expression level of insulin 
receptors is high in the ovaries of both queens and suggests that insulin receptors are important for ovary 
development in queens(8).  In the brain-CC-CA, lower SiInR-1 level is associated with lower juvenile 
hormone (JH) titer in virgin vs. mated queens(9), and higher SiInR-1 expression in the mated queen 
correlates with higher JH synthesis(9) (thick arrows), which in turn promotes ovarian growth. High SiInR-1 
expression in the fat body of virgin queens(10) (smaller receptor icons) corresponds to storage of reserves 
for flight and future colony founding; however, the decreased level of SiInR-1 in the fat body in mated 
queens reveals a functional switch of this organ from storage to vitellogenin synthesis.  Insulin receptors 
transcripts were also expressed in the fat body of both virgin and mated queens, however, the expression 
level was similar in virgin queens vs. mated queens.  Dashed lines represent unknown pathways.  CC: 
corpora cardiaca; CA: corpora allata. 
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We showed that queen ovaries can be atrophied by silencing the expression of 

the SiVgR.  This is the first demonstration of the potential to manipulate reproduction in 

ants and has opened up the possibility of dissecting the gene networks that control 

reproduction and cast differentiation in fire ants. 

 Next, we targeted the potential upstream endocrine regulators in fire ant 

reproduction.  Two candidate receptors were investigated: the sNPF receptor and insulin 

receptors (summarized in Figure 6.1).  In insects, studies regarding the signaling 

pathways for sNPF and insulin-like peptides were until recently only on a very limited 

member of insect orders.  Most of studies are obtained through the advantage of using 

transgenic flies; however, flies perform differently in many physiological and behavioral 

aspects when compared to social insects.  Therefore, it is important to establish new 

knowledge of those two signaling pathways for fire ants. 

With respect to the sNPF signaling pathway, we present evidence that the sNPF 

peptide(s) not only functions as neurotransmitter(s) or neuromodulator(s) within the 

brain and SEG (Figure 6.1, labeled with 5), but also might act as neurohormone(s) 

targeting the ovaries (Figure 6.1, labeled with 6).  A comprehensive investigation of the 

localization of the sNPF receptor in the queen brain and SEG described in this 

dissertation, contributes to understanding the activity of the sNPF peptide in the brain of 

insects.  This knowledge is especially important for social insects that display complex 

social and learning behaviors.  The sNPF receptor signal present in several neuropils 

might link the receptor signaling pathway to behaviors such as foraging, learning, and 

food consumption.  The presence of sNPF receptor in the oocyte suggests that the sNPF 
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signal transduction cascade may potentially play a new role in the oocyte pole and 

perhaps is also involved in oocyte development. 

The insulin signaling pathway is a fundamental pathway that influences growth, 

reproduction, and longevity in solitary insects, and relates to division of labor, caste 

differentiation, foraging behavior, and also longevity in social insects (honey bee).  We 

provide evidence that two insulin receptors are present in the fire ant.  Sequence analyses 

showed that several post-translational modification sites are differentially conserved 

between SiInR-1 and SiInR-2 and other correspondingly social hymenopteran insulin 

receptors suggesting that functional diversification regulation may be present for the two 

receptors.  This is the first such comparison providing evidence for the possible post-

translational differential regulation in both receptors.  The transcriptional expression 

analyses of two insulin receptors revealed that the abundance of both receptors was 

negatively correlated with body size and nutritional status in the larvae and pharate 

pupae of two castes, workers and reproductives.  Thus, the IIS pathway may affect 

growth in fire ants differently than in Drosophila.  In virgin and mated queens, the 

transcriptional expression pattern of both receptors in different tissues appears to 

correlate with tissue requirements for queen reproductive physiology and behaviors 

(Figure 6.1, labeled with 8-11).  Toward the end of this project, the first fire ant genome 

draft was released and partial predicted sequences of two insulin receptor sequences are 

annotated [3], supporting our findings of two insulin receptor genes. 

The sNPF and insulin signaling pathways may involve in many physiological 

functions in fire ants including feeding behavior, JH level, and reproduction.  Therefore, 
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the studies of sNPF receptor and insulin receptors will not only further our 

understanding of the coordination and regulation of fire ant reproduction, but also will 

provide knowledge in the many other physiological processes that may affect colony 

functions.  RNA interference of these two receptors will help to validate the function of 

these two types of receptors.   

Still, several questions remain to be answered to fully understand the role of 

sNPF and insulin signaling pathway in the endocrine control of reproduction and in other, 

yet unknown functions.  These and other studies will be facilitated by the development 

of novel specific antibodies and neuronal markers as the annotation of the fire ant 

genome is completed.   
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 APPENDIX 

 

List of abbreviations: 
SiVgR Solenopsis invicta vitellogenin receptor 
VgR Vitellogenin receptor 
LDLR Low-density lipoprotein receptor 
JH Juvenile hormone 
Vg Vitellogenin 
RNAi RNA interference 
dsRNA Double-stranded RNA 
EGFP Enhanced green fluorescent protein 
sNPF Short neuropeptide F; 
CNS Central nervous system 
mCa Medial calyces 
lCa Lateral calyces 
sP, slP, smP, iP, ilP, imP, 
respectively. 

The superior, the superior lateral, superior medial, 
inferior, inferior lateral, and inferior medial 
protocerebrum, respectively. 

SEG Subesophageal ganglion. 
SiInR Solenopsis invicta insulin receptor 
IIS  Insulin/insulin-like growth factor signaling 
RTK Receptor Tyrosine Kinase 
LB domain Ligand Binding domain 
TK domain Tyrosine Kinase domain 
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