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ABSTRACT 

 

Freeway Short-term Traffic Flow Forecasting by Considering Traffic Volatility 

Dynamics and Missing Data Situations. (August 2011) 

Yanru Zhang, B.S., Beijing Jiaotong University 

Chair of Advisory Committee: Dr. Yunlong Zhang 

 

Short-term traffic flow forecasting is a critical function in advanced traffic 

management systems (ATMS) and advanced traveler information systems (ATIS). 

Accurate forecasting results are useful to indicate future traffic conditions and assist 

traffic managers in seeking solutions to congestion problems on urban freeways and 

surface streets. There is new research interest in short-term traffic flow forecasting due 

to recent developments in ITS technologies. Previous research involves technologies in 

multiple areas, and a significant number of forecasting methods exist in literature. 

However, forecasting reliability is not properly addressed in existing studies. Most 

forecasting methods only focus on the expected value of traffic flow, assuming constant 

variance when perform forecasting. This method does not consider the volatility nature 

of traffic flow data. This paper demonstrated that the variance part of traffic flow data is 

not constant, and dependency exists. A volatility model studies the dependency among 

the variance part of traffic flow data and provides a prediction range to indicate the 

reliability of traffic flow forecasting. We proposed an ARIMA-GARCH (Autoregressive 

Integrated Moving Average- AutoRegressive Conditional Heteroskedasticity) model to 
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study the volatile nature of traffic flow data. Another problem of existing studies is that 

most methods have limited forecasting abilities when there is missing data in historical 

or current traffic flow data. We developed a General Regression Neural 

Network(GRNN) based multivariate forecasting method to deal with this issue. This 

method uses upstream information to predict traffic flow at the studied site. The study 

results indicate that the ARIMA-GARCH model outperforms other methods in non-

missing data situations, while the GRNN model performs better in missing data 

situations. 
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NOMENCLATURE 

 

ARIMA Autoregressive Integrated Moving Average 

ATIS  Advanced Traveler Information Systems 

ATMS  Advanced Traffic Management Systems  

GARCH AutoRegressive Conditional Heteroskedasticity 

GRNN  General Regression Neural Network 

HA   Historical Average 

MAPE  Mean Absolute Percentage Error 

RMSE  Root Mean Square Error 

VAR  Vector AutoRegression 
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1. INTRODUCTION: THE IMPORTANCE OF RESEARCH 

 

 

Traffic flow is the study of interactions among vehicles, drivers, and 

infrastructures. The major objective of traffic flow study is to understand and develop an 

optimal road network that can efficiently move traffic and ease traffic congestion. One 

major area in traffic flow study is the ability to forecast traffic flow in the next few 

minutes: in other words, short-term traffic flow forecasting. This section introduces the 

importance of this research, traffic stream properties and other critical issues related with 

short-term traffic flow forecasting.  

Short-term traffic flow forecasting is a critical function in advanced traffic 

management systems (ATMS) and advanced traveler information systems (ATIS). 

Accurate forecasting results can indicate future traffic conditions, which support the 

development of proactive traffic control strategies in ATMS; provide real-time route 

guidance in ATIS; and evaluate proactive traffic control and real-time route guidance 

strategies, as well. Because traffic flow forecasting can assist in seeking solutions to 

traffic congestion on urban freeways and surface streets, there is new research interest in 

short-term traffic flow forecasting due to recent developments in ITS technologies. 

 

 

 

 

 

This thesis follows the style of Journal of Transportation Engineering. 
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Vehicular traffic, as a stream or a continuum fluid, has several parameters 

associated with it: flow, density, and speed. These parameters provide information 

regarding the nature of traffic flow and are indicators that detect variations in traffic 

flow. Because a traffic stream is not uniform but varies over time and space, 

measurement of traffic flow is in fact the sampling of random variables. The forecasting 

result of traffic flow is not an absolute value, but estimated values based on experimental 

data. This research will use some statistical methods to analyze the traffic flow patterns 

and fit appropriate models based on the study of the underlining traffic flow patterns.  

 

1.1 Traffic Stream Properties 

Traffic flow (rate), speed, and density are three basic parameters that describe 

traffic conditions. The values of these parameters are crucial elements in evaluating the 

near future traffic conditions; thus, the predicted values assist traffic system operators 

and road users to modify their strategies in using the roadway system efficiently. One 

should have a brief knowledge of traffic flow parameters before study traffic flow 

forecasting methods. The following is a brief introduction of three fundamental traffic 

flow parameters: flow, speed, and density. 

1.1.1 Flow 

Typically, there are two ways of detecting the number of vehicles passing a 

certain point of the roadway: volume and flow rate. The Highway Capacity Manual 

2000(HCM 2000) defines traffic volume as ―the total number of vehicles that pass over a 

given point or section of a lane or roadway during a given time interval; volumes can be 
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expressed in terms of annual, daily, hourly, or sub-hourly periods.‖ On the other hand, 

the traffic flow rate is defined as ―the equivalent hourly rate at which vehicles pass over 

a given point or segment of a lane or roadway during a given time interval of less than 1 

h, usually 15 min‖. Traffic volume reflects the actual number of vehicles been observed 

along a roadway during a certain time period. The time interval of the volume data can 

be larger than one hour. Traffic flow rate, different from traffic volume, is collected for 

intervals of less than one hour—usually fifteen minutes, and is expressed as vehicles per 

hour. In other words, traffic flow rate is not the actual number of vehicles observed on 

the roadway for an hour but ―an equivalent hourly rate.‖ Normally, volume and flow 

reflect traffic demand—the number of vehicles or drivers who desire to use a given 

roadway facility in a specific time interval. However, in near capacity situations, flow 

will be constrained by roadway capacity. Volumes will reflect capacity in this kind of 

situation. 

Traffic volume varies in both time and space. Traffic volume obtained at 

different time intervals can be different. It can vary month-to-month, day-to-day, hour-

to-hour and within an hour. Traffic volume patterns day-to-day often show remarkable 

similarity and these patterns are useful for prediction. Usually, traffic pattern differ 

between Weekdays and Weekends due to different travel demand. Within a day, traffic 

volume can also vary significantly. There are usually two peaks during a typical day: 

rush hours or peak hours, once in the morning and once in the evening. The spatial 

distribution of the traffic volume patterns can also be different, due to the different 

roadway capacities, traffic demand, and other factors. Usually, the farther apart of the 
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locations, the more different the traffic flow patterns of these locations. On the other 

hand, traffic flow data obtained from two closely spaced detectors often show 

similarities. Later sections will discuss multivariate forecasting that makes use of the 

spatial correlations of traffic data. 

1.1.2 Speed 

Speed is a quality measurement of travel since the travelers are more concerned 

about the time they spend on the road, which is related to travel speed. The definition of 

instantaneous speed is  

     
  

  
 , (1) 

where   is the length of the path traveled until time t,   represent different vehicles. In the 

literature, there are several different ways of calculating the average speed of a group of 

vehicles. One way is by taking the arithmetic mean of the observed data. This is termed 

the time mean speed, and the equation is as below: 

   ̅  
 

 
∑   

 
    ,  (2) 

where   is the number of vehicles passing the fixed point. The other way is the space 

mean speed: the total length of a roadway segment divided by the total time used to 

travel this segment. The time mean speed is always greater than or equal to the space 

mean speed.  

1.1.3 Density 

Density is the number of vehicles observed and measured over a certain road 

segment. If only point detectors are available, one derives it from other variables, either 
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from speed and flow or from occupancy. Several equations exist to derive density from 

other parameters. However, most equations are only valid under certain conditions. 

1.2 Short-term Traffic Flow Forecasting 

There are two categories of traffic flow forecasting: long-term and short-term. 

Long-term traffic flow forecasting is mostly used for planning purpose. The short-term 

traffic flow forecasting usually finds its application in traffic operations, particularly in 

intelligent transportation system. Short-term traffic flow forecasting bases the 

predictions on using the current and the historical data to predict the traffic flow 

information for the next 5 to 30 minutes (Sun and Zhang 2007).   

Different forecasting time intervals will have different effect on the forecasting 

accuracy. Usually, the forecasting accuracy improves as the time interval becomes 

larger. This is because the variance of traffic flow decreases as traffic flow is aggregated 

into longer time intervals. A study by Guo et al. (2007) felt that the establishment of the 

time interval for data collection is critical in determining the nature and utility of traffic 

flow data. In his research, various data collection time intervals were investigated. A 

wide spectrum of data collection time intervals from 20 seconds to 30 minutes and 

forecasting methods for each of these time intervals was studied. His study results 

indicated that the longer the data collection interval, the more stable the traffic flow data. 

The purpose for data use is another criterion that determines the forecasting interval. For 

example, if we use it in proactive signal timing design, information about future traffic 

flow in the next traffic circle will be critical. The HCM2000 suggests using a fifteen-
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minute traffic flow rate for operational analyses. This study focuses on short-term traffic 

flow forecasting using a five-minute time interval.  

There are two general categories of short-term traffic flow prediction methods: a 

univariate and a multivariate forecasting method, based on whether or not data from only 

one single location is used. The univariate method studies and forecast traffic flow 

parameters from each detector individually, while the multivariate method takes 

advantage of traffic flow information in nearby locations to forecast traffic flow 

parameters. The univariate method, when compared with the multivariate method, is 

more flexible and can adjust to specific traffic flow characteristics at a certain location. 

The multivariate method, on the other hand, can deal with the missing data by using 

traffic information taken from nearby sites, or those sites with similar traffic flow 

patterns (Kamarianakis and Prastacos 2003). Whether or not to use multivariate or 

univariate forecasting method depends on the traffic characteristics of the studied sites, 

and whether or not there is missing data. If data are obtained from several closely spaced 

detectors and traffic flow at these locations have similar patterns, multivariate model can 

be applied. If data are obtained from loosely spaced detectors, traffic flow at these 

locations may not have significant correlation; univariate forecasting method will 

perform better in this kind of situation.  
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2. INTRODUCTION: PROBLEM STATEMENT 

 

 

This section divides existing univariate traffic flow forecasting methods into five 

subcategories and conducts literature reviews for each of these subcategories. It 

addresses two problems of existing studies—forecasting accuracy and missing data 

situations. It also discusses existing studies on volatility methods and multivariate 

forecasting methods to solve these two problems.   

 

2.1 Existing Univariate Traffic Flow Forecasting Models 

A significant number of univariate traffic flow forecasting models exist in the 

literature. Some of these models gained popularity among researchers and have been 

more thoroughly investigated. This paper divides existing model into several 

subcategories: Heuristic Methods, Linear Methods, Nonlinear Methods, Hybrid 

Methods, and Traffic Theory Methods. 

2.1.1 Heuristic Methods 

Heuristic methods are experience-based problem solving techniques. This kind of 

methods can provide a reasonable solution but not necessarily the best one in situations 

that an exhaustive search is impractical. Existing Heuristic methods in traffic flow 

forecasting area include: Random Walk (which only utilizes the current traffic 

information), Historical Average (predicted values are based on the average of all 

correspondingly observed historical traffic flow data), Informed Historical Average (the 
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combination of a Random Walk method and a Historical Average method) and Urban 

Traffic Control System predictor (UTCS)(William, B.M. 1999). Generally, the Heuristic 

methods are relatively easy to implement and can speed up the process of finding a good 

but not perfect solution. However, they do not investigate the dynamics nature of the 

traffic flow data and only arbitrarily unitizes the historical pattern or current value of the 

traffic flow data in forecasting. 

2.1.2 Linear Methods 

Short-term traffic flow forecasting techniques that are based on linear methods 

assume linear spatial and temporal relationships of traffic flow data. They assume the 

studied data sets are stationary. Exiting linear traffic flow forecasting methods are 

Univariate Box-Jenkins method, Exponential Smoothing method, Spectral Analysis, 

ARIMA model, and Kalman Filter method. 

Ahmed and Cook (1979) investigated the application of the Box-Jenkins 

technique in freeway traffic flow forecasting and concluded that the ARIMA models 

were more accurate than moving-average, double exponential smoothing, and Trigg and 

Leach adaptive methods, in terms of mean absolute error, and mean squared error. 

Nicholson and Swam (1974) studied a short-term traffic flow forecasting method based 

on the spectral analysis of time series. Study results indicate that spectral analysis 

provides reasonable forecasting accuracy on traffic flow with periodic behavior. Davis 

and Nihan (1984) applied time-series methods to freeway level of service estimation. 

The time series method developed in their paper had the ability to detect relatively small 
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average changes in traffic flow characteristics (e.g. peak hour volume and lane 

occupancy), and thus can be related with freeway level of service.  

Wild (1997) developed a pattern based short-term traffic flow forecasting 

methodology. The proposed model forecasts flow by dividing the system into three 

parts: pattern transformation, pattern classification and the choice of a suitable 

comparison pattern. His method is entirely empirical and does not consider theoretic 

relationships of traffic flow data. Williams et al. (1998) applied ARIMA and Winters’ 

exponential smoothing models for traffic flow forecasting. The study results indicate that 

seasonal ARIMA models outperform the Nearest-Neighbor, the Neural Network, and the 

Historical Average classical models that have been previously developed. Ye et al. 

(2006) proposed a Scented Kalman Filter method to estimate flow speeds with single 

loop data. Their study results indicate that the proposed method outperforms other 

methods in forecasting accuracy. Okutani and Stephanedes (1984) developed two short-

term traffic volume prediction models based on Kalman Filtering theory. The most 

recent prediction error is then taking into consideration when performing parameters 

estimation. In addition, by taking into account data from other links can improve the 

forecasting accuracy. 

The linear model assumes linear relationship among traffic flow data and 

provides an easily understood and straightforward expression to traffic flow forecasting. 

However, if nonlinear relationships exist, its forecasting ability will be compromised. 

For example, the ARIMA model predicts future traffic flow information based on its 

historical traffic flow data. Its performance will be affected when handling missing 
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values or responding to unexpected events. Some more complex linear models, like 

Kalman filtering method, require longer training time.   

2.1.3 Nonlinear Methods 

Nonlinear methods relax the assumption of a linear relationship among traffic 

flow data, and thus can represent a nonlinear relationship in historical traffic flow data. 

Some commonly used nonlinear methods in traffic flow forecasting field include 

Wavelet Analysis, Neural Network, and Support Vector Machine methods.  

Xiao et al. (2003) developed a fuzzy-neural network based traffic prediction 

model, which uses the wavelet de-nosing method to eliminate the noise caused by 

random travel conditions. His paper uses wavelet transform to analyze non-stationary 

signals to obtain their trends; uses fuzzy logic to reduce the complexity of the data; and 

uses neural network in increasing the accuracy of the prediction. Chen and Wang (2006) 

decomposed traffic volume data into high frequency and low frequency components by 

using wavelet transform and a neural network method to approximate signals by 

summing up different signal components to get the final prediction results. Dougherty 

(1995) conducted a literature review of Neural Network applications in traffic flow 

forecasting field and identified over 40 papers published between 1990 and 1995. Smith 

and Demetsky (1994) compared a back propagation neural network model with two 

traditional forecasting methods: a historical data based algorithm and a time-series 

model. Their study results showing that the back propagation model had considerable 

potential for the application of short-term traffic flow forecasting. Ledoux (1997) first 

constructed a local neural network on single signalized link and then applied it over 
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junctions of an urban street network. Park et al. (1998) applied a radial basis function 

neural network to freeway traffic volume forecasting and compared it with the Taylor 

series, exponential smoothing method (ESM), double exponential smoothing method, 

and the back propagation neural network (BPN) method. Lam and Toan (2008) applied 

the support vector regression method in travel time prediction. Castro-Neto et al. (2009) 

developed an online-SVR method for short-term traffic flow forecasting under both 

typical and atypical conditions and the study results indicate that the online-SVR method 

outperforms other methods under non-recurring atypical traffic conditions. 

Nonlinear forecasting methods have the ability to model nonlinear relationships 

of traffic flow data. Moreover, they are more flexible in modeling time and space 

relationships of traffic flow data. Most nonlinear forecasting methods have complex 

model procedures, require pre-knowledge of traffic flow information, and are black box, 

i.e. the underlining structure of the model is not clear to users.  

2.1.4 Hybrid Methods 

Voort et al. (1996) developed a hybrid method known as the KARIMA method, 

for use in short-term traffic flow forecasting. A Kohonen map is used to ease the 

classification problem and the forecasting results indicate that this hybrid method out 

performs a single ARIMA model or a back propagation neural network model. Park 

(2002) proposed a hybrid neuro-fuzzy application that first uses a fuzzy C-means (FCM) 

method to classify traffic flow patterns into several clusters and then uses a radial-basis-

function (RBF) neural network to develop a forecast. The study results indicate that the 

hybrid of the FCM and RBF method are promising in traffic flow forecasting. Chen and 
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Wang (2002) proposed a form of neuro-fuzzy systems (NFS) to forecast short-term 

traffic flow and it indicates that the NFS based approach is an effective method for short-

term traffic flow forecasting.  

2.1.5 Traffic Theory Methods 

Based on the theory of ―kinematic waves,‖ Newell (1993) proposed a simplified 

version of kinematic waves to model highway traffic. In his theory, only two waves are 

studied: a forward moving wave for uncongested traffic and a backward moving wave 

for congested situation. Szeto et al. (2009) developed a multivariate, multistep ahead 

traffic flow forecasting model by using a cell transmission model and SARIMA model. 

The proposed model has the ability to capture traffic dynamics, queue spillback and 

traffic pattern seasonality. This study results indicate that the proposed model can predict 

real-times traffic flow in congested situation with frequent queue spillback occurrence. 

Guin (2004) investigated a new approach to incident detection, which is based on the 

assumption that current traffic conditions have the ability to indicate future traffic 

conditions. This approach constructed a discrete state propagation automatic incident 

detection model based on the theory of cell transmission model and was able to predict 

traffic state 20-second ahead.  

 

2.2 Short-comings of Existing Models 

As we discussed in the section 2.1, a significant number of forecasting methods 

exist in the literature and they involve techniques in multiple areas. However, most 

existing studies on univariate models have limitations in two aspects.  
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One of the shortcomings is that existing methods only focus on the expected 

value of traffic flow data in the next few minutes and assume that the variance is 

constant without considering the volatile nature of traffic flow data. However, according 

to the nature of traffic flow data, variability exists. Existing studies have not paid enough 

attention in traffic condition uncertainty forecasting. Here the definition of variability is 

the conditional standard deviation of traffic flow. The ability to capture the uncertainty 

of traffic flow forecasting results can give us more information on traffic conditions over 

the next few time steps. One example is that a sudden drop of traffic flow would occur in 

the congested situations; another example is that a sudden rise of traffic demands leads 

to the increased traffic flow volumes. Because variability is not directly observable, and 

its underlining features are relatively difficult to capture compared with the expected 

value of traffic flow data, most models can only capture the average value of traffic flow 

during a certain time period and cannot capture these unexpected changes which are also 

critical to travelers or transportation system managers.  

The other shortcoming of existing studies is that some methods have limited 

forecasting abilities when part of the data used for forecasting is missing or erroneous. 

While the historical average method is often used to deal with this issue, the forecasting 

accuracy cannot be guaranteed.  

 

2.3 Proposed Methodologies 

The volatility model releases the assumption that the variance part of the time 

series model is constant. This method focuses on the modeling of dependencies among 
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residuals at different time steps. The volatility model provides a confidence interval for 

the forecasting results and is an indicator of the reliability of a predicted value. A limited 

number of literatures references exist in the traffic flow volatility model. Guo et al. 

(2007) developed a combination model based on the SARIMA and  the GARCH method 

to determine the applicable data collection time intervals for short-term traffic condition 

forecasting. This paper use GARCH process to model the conditional variance. 

Kamarianakis et al. (2005) discussed the application of the GARCH model for 

representing the dynamics of traffic flow volatility and aimed at providing better 

confidence intervals for traffic flow forecasting results. The ARIMA-GARCH model 

was also introduced in other papers to forecast travel time variability (Sohn and Kim 

2009; Tsekeris and Stathopoulos 2006). These studies indicate that the traditional time 

series method is promising in capturing the mean values of traffic flow data, while the 

GARCH model can predict time-varying conditional variance. Our research studies the 

application of ARIMA-GARCH model in the freeway traffic flow forecasting area and 

uses the one-step ahead forecasting method to get the expected values of the data and 

reliability. We also studies forecasting performances in both normal situations and 

missing data situations. 

Missing traffic data occurs at certain times and locations due to failures in power 

or communication, malfunctioning devices, or observations which are obviously 

incorrect. The univariate forecasting models will not function well in this situation since 

its forecasting value is based on its own historical data. One should use information from 

other sources to deal with the missing data problems. Multivariate models consider 
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traffic flow information from other detectors and have the potential to deal with missing 

data. Upstream and downstream flows can have influence on traffic flow at studied site. 

An increased traffic volume in an upstream location may result in the increase of volume 

in a downstream location when there are no major access points between these two 

locations. Even if there are access points between the two locations, a correlation of flow 

may also exist between these two locations. A multivariate model takes into 

consideration correlation of flows among different locations. It can also potentially 

improve model performance when missing data exists for one detector.  

In recent years, interests have risen in multivariate traffic flow forecasting as 

traffic flow information in road networks become more readily available. Chang et al. 

(2000) utilized data from adjacent roads while performing traffic flow forecasting, but 

the information of the adjacent road still was not used to its full potential. Yin et al. 

(2002) forecasted the downstream flow by utilizing upstream flows in the current time 

interval and chose a fuzzy-neural model as the forecasting methodology. Pfeifer and 

Deutsch (1980) studied the multivariate method, predicted traffic parameters in a road 

network, and used the space-time autoregressive integrated moving average model to 

forecast. Kamarianakis and Prastacos (2003) applied the STARIMA methodology to 

represent traffic flow patterns in an urban network. In their research, the STARIMA 

model incorporated spatial characteristics by using weighted matrices, which were 

estimated based on the distances between data collection points. Jin and Sun (2008) 

applied multitask learning (MTL)-based neural networks to urban vehicular traffic flow 

forecasting. The authors incorporated traffic flows at different locations into the input 
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layer of the back propagation (BP) neural network. Although the study results show that 

the MTL in BP neural networks are promising and are effective approaches for traffic 

flow forecasting, they do not consider the spatial correlations. Sun and Zhang (2007) 

modeled traffic flows along adjacent road links in a transportation network similar to a 

Bayesian Network.  

This research uses the VAR model and the GRNN model to perform traffic flow 

forecasting in missing data situations. The VAR model is an extension of an ARIMA 

model in the multivariate analysis field. The VAR model use historical traffic flow data 

obtained from two closely spaced detectors to forecast future flow information at these 

two detectors. The assumption of the GRNN model is that the upstream freeway traffic 

flow data can provide adequate information to forecast of down-stream traffic flow. If 

large percentages data missing from a certain detector, traffic flow information from its 

closest up-stream detector is used as the model input to predict next time step traffic 

information at the point of interest.  
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3. UNIVARIATE TRAFFIC FLOW FORECASTING 

 

 

Traffic flow data is predominantly collected at detectors, such as inductive loop 

detectors (ILDs), microwave detectors, and video detectors at certain points. These kinds 

of data collection technologies are capable of providing volume counts and speed data 

during a specified time period. If properly installed and maintained, one can obtain 

historical and current traffic flow data from these devices. Thus, the traffic flow data can 

provide real time traffic flow information for road users and managers. While the current 

traffic information is important, the information arrives too late for the purpose of 

proactively managing and coordinating the control of traffic. Knowledge of the near 

future traffic information is critical for proactive control systems. Because a traffic 

stream varies over both time and space, traffic flow data detected at different times and 

different locations are parameters of statistical distribution: not absolute numbers (Lieu 

1999). This section proposes a univariate traffic flow forecasting method to capture the 

time variance of the traffic information. The univariate method studies and forecasts 

traffic flow parameters at each detector individually, without considering the spatial 

correlation of traffic parameters. 

As discussed section 2.1, a significant amount of univariate short-term traffic 

flow forecasting methods exists in the literature. This kind of forecasting methodology 

use both historical and current traffic flow data obtained at the point of interest to predict 

the future roadway conditions. One limitation of existing single-point forecasting 
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methods is that most methodologies only focus on the expected value of traffic-flow data 

and ignore the volatile nature of the traffic stream. Traffic flow varies significantly for 

near congested situations. However, only forecasting the expected value of traffic 

parameters cannot provide adequate information. Accurate predictions of the variance 

part can indicate whether or not there will be a big change in traffic flow over the next 

few minutes. In addition,  by making use of other traffic information (like speed), we can 

also decide if there will be a big drop or increase of traffic flow in the near future; thus 

forecast the traffic condition in the next time step. 

This section presents the application of volatility models in single-point traffic-

flow forecasting. The purpose of this model is to predict the shift of traffic conditions 

based on historical traffic flow data. The basic idea of a volatility model is to first fit the 

expected values of the data set and then assign a volatility model to study the variance 

part. Because existing study results indicate that the ARIMA model provides adequate 

forecasting results for the traffic flow data, we will use the ARIMA model to forecast the 

expected values of the traffic flow data and use the GARCH model to study the variance 

part. The rest of this section introduces theoretical background of ARIMA model, which 

includes order selection, parameters estimation, and data transformation. Then it covers 

the basic concept of a volatility model and two classical volatility models: the ARCH 

and GARCH models. 
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3.1 Autoregressive Integrated Moving-Average (ARIMA) Model 

ARIMA models are one of the most general classes of time series models, in 

which data can be made stationary by transformations such as differencing and logging. 

A non-seasonal ARIMA model is classified as an ARIMA (p,d,q) model, in which: p is 

the number of autoregressive terms, d is the number of non-seasonal differences and q is 

the number of lagged forecast errors (Nau 2005). An understanding of three common 

processes is prerequisite to understand the autoregressive integrated moving average 

(ARIMA) process better. These three processes are autoregressive (AR) model, moving 

average (MA) model, and autoregressive moving average (ARMA) model. 

3.1.1 Three Common Processes 

3.1.1.1 Autoregressive Model   

The basic idea of an autoregressive model is that the current value in the time 

series is a function of its past values. Assume we have a time series dataset{  }, the 

value of    can be represented by its   past values{                }. By looking at 

the autocorrelation function, one can assess the order of p.  

Equation representation of an autoregressive model of order p, abbreviated AR 

(p) is as follows: 

                              (3) 

where   is the extension of past values used for prediction,    is stationary,            

are constants (    ), and    is a Gaussian white noise series with mean zero and 

variance   
 . 
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If using the backshift operator  , the equation becomes as  

           
       

        (4) 

Here the definition of backshift operator is  

           (5) 

Let               
       

 , the equation can be expressed more 

concisely as 

           (6) 

3.1.1.2 Moving Average Model 

The moving average model assumes    is a linear combination of white noise   . 

The definition of moving average model of order q is as 

                              (7) 

where   is lags that are used for the prediction of   ,    is stationary, 

           are constants (    ) and    is a Gaussian white noise series with mean 

zero and variance   
 . 

If we use the backshift operator, and let               
       

  

then 

           (8) 
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3.1.1.3 Autoregressive Moving Average Model 

Another important parametric family of the time series is the autoregressive 

moving-average, or ARMA, processes. The mathematical representation of ARMA (p,q) 

process is as follows:  

                                                     (9) 

in which {  } is stationary,    is a Gaussian white noise series with mean zero 

and variance  
 , and the polynomials (           

 ) and (           
 ) 

have no common factors. 

Let               
       

  and               
    

   
  

The more concise representation of the equation is  

               (10) 

The upper equation indicates that if       , the time series is an autoregressive 

process of order p, and it is a moving-average process of order q if       .  

If the data does not exhibit apparent deviation from stationary and its 

autocovariance function decreasing rapidly, then we can fit an ARMA model to this 

data. If the data does not follow the previous two properties, we can try a transformation 

of the data, which generates a new time series that process the two properties. One of the 

most commonly used transformations is differencing, which leads to the concept of the 

ARIMA model.  
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3.1.2 Autoregressive Integrated Moving-average Model 

The ARIMA model is a generalization of an autoregressive moving average 

(ARMA) model. This model is applied in cases that the original time series data does not 

show evidence of a ARMA model, but proper transformation (corresponding to the 

"integrated" part of the model) of the original data can fit  an ARMA model. 

The ARIMA (p,d,q) model of the time series {       } is defined as  

                    ,{  }         , (11) 

in which      and      are polynomials of degrees p and q respectively, and        

for | |   .  

Some special cases of ARIMA model are ARIMA(0,1,0) - random walk, 

ARIMA(1,1,0) - differenced first-order autoregressive model, ARIMA(0,1,1) - simple 

exponential smoothing model. To identify an appropriate ARIMA model for the studied 

time series data, the first step is finding an appropriate transformation for the data that 

can fit a ARMA (p,q) model. The second step is to decide the order of the ARMA (p , q) 

model, and the last step is parameter estimation. 

3.1.2.1 Transformation Technology 

The first step of time series analysis is to plot the original data. The classical 

decomposition model indicates that a time series data can be decomposed as a trend 

component, seasonal component, and a random noise component. A cursory look at the 

plot of the original data is needed to check whether or not there is an obvious trend or 

seasonal component in the data sets. In a time series analysis, we need to remove the 
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trend and seasonal component, if there is any, to get stationary residuals. A preliminary 

transformation of the data can help to achieve the goal.   

Transformation of original data is one of the most commonly used technologies 

in trend and seasonal components removing. Box and Jenkins (1970) developed an 

approach by applying a differencing operator repeatedly to the original time series data 

until it resembles a realization of some stationary time series {  }. Then we can use the 

theory of the stationary time series {  } to model and forecast the {  } series and hence 

the original time series. In the ARIMA (p,d,q) model fitting process, if the original data 

set shows a slowly decaying positive sample autocorrelation function, we would 

naturally apply the operator       repeatedly until the autocorrelation function show 

rapidly decaying feature. In this model, d represents the number of differencing of 

original data set. 

3.1.2.2 Order Selection and Parameter Estimation 

After proper transformation, the next step is to select the appropriate order p and 

q for the ARMA model. It is not a wise choice to select p and q arbitrarily large from a 

forecasting point of view. To avoid over-fitting problems, penalty factors is introduced 

to discourage the fitting of models with too many parameters. Some widely used criteria 

for model selection are FPE, AIC, and BIC criteria of Akaike and AICC. The best model 

is selected based on the smallest value of one for these criteria.   

The R Language uses two methods for parameter estimation: maximum 

likelihood and minimize conditional sum-of-squares. If there are no missing values in 
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the original data, the default method is to use conditional-sum-of-squares to find starting 

values, then using maximum likelihood to find the optimal parameters. 

 

3.2 Volatility Models 

In statistics, heteroscedastic, or heteroskedastic is a sequence of random variables 

that has different variances. Traditional forecasting methods assume constant variance of 

the data when perform forecasting. If heteroscedastic exist, the crucial question is the 

prediction accuracy of the model. In this case, the critical issue is to model the variance 

part of the error terms and then to find out what makes them large.  

A cursory look at traffic flow data indicates that the variances of traffic flow data 

over some time periods are greater than that at other time periods. A volatility measure-

like a standard deviation- can be used in accident, congestion, and abnormal situations. 

While many specifications only consider the expected value of traffic flow data and have 

been used in traffic flow forecasting, virtually no methods have been used for the 

variance forecasting before the conditional heteroscedastic models were introduced. 

Some time series data is serially uncorrelated but dependent. The basic idea of the 

volatility models is to capture the dependency in this kind of time series data. The 

structure of the model can be writen as the sum of the mean and the variance: 

         , (12) 

where    is the observed data at time t, here it represents traffic flow data at time t, 

       |      is the conditional mean of   ,      , which denotes the information set 

available at time t-1 and    is the variance of   . 

http://en.wikipedia.org/wiki/Statistics
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Most existing prediction models concentrate on the conditional mean part and 

assume that the variance part simply satisfies the white noise properties. Although this 

assumption simplifies the structure of the fitted model, the prediction accuracy can be 

compromised. Conditional heteroscedastic models relax the assumption and treat    as 

conditionally heteroscedastic. So the following expression of      is: 

      √   , (13) 

where    is independent and identically distributed with zero mean and unit variance and 

       
 |     . 

Equation (13) indicates that the conditional distribution of    is independent and 

identically distributed with zero mean and variance of   . Volatility models are 

concerned with time-evolution of the conditional variance of traffic flow data.  Different 

ways to address the conditional variance of    leads to different heteroscedastic models. 

3.2.1 AutoRegressive Conditional Heteroskedasticity (ARCH) Model 

In 1982, Engle proposed the ARCH model, which is the first model that provides 

systematic framework for volatility analysis. The basic idea of the ARCH model is that 

the conditional variance is a linear combination of past sample variance. An ARCH (q) 

model assumes that 

      √   (14) 

       ∑       
  

   , (15) 

where {  } is a sequence of independent and identically distributed random variables 

with mean zero and variance 1, which often assumes to follow a standard normal, 
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standard student-t or generalized error distribution. The structure of the model indicates 

that large past sample variance leads to large conditional variance for the innovation   , 

which further indicates that larger past value of sample variance tends to be followed by 

another large sample variance. In other words, if the past value of variance is large, the 

probability of obtaining a large variance is greater than that of obtaining a small 

variance. 

3.2.2 Generalized Autoregressive Conditional Heteroskedasticity (GARCH) Model 

Although the structure of the Autoregressive Conditional Heteroskedastic 

(ARCH) model is simple and easy to understand, many parameters are often required to 

adequately describe the volatility process of a time series. Bollerslev (1986) proposed a 

useful extension known as Generalized Autoregressive Conditional Heteroskedasticity 

(GARCH) model based on the idea of the ARCH process, allowing for a much more 

flexible lag structure. The idea of the extension of the ARCH process in the GARCH 

model resembles the extension of the AR process in the ARMA process.  

      √  , (16) 

       ∑       
  

    ∑       
 
   , (17) 

in which        ,                   ,             ,, and 

∑          
         
   . 

For    , the process becomes the ARCH (q) process, and for p=q=0, the 

process becomes white noise. The difference between the GARCH and the ARCH 
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process is that the GARCH (p, q) process not only has past model sample variances but 

also has lagged conditional variance, as well. 
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4. MULTIVARIATE TRAFFIC FLOW FORECASTING METHOD  

 

 

A univariate model only considers historical traffic flow data from a single point. 

In other words, the current or future value of the data set is explained only by its own 

past or current values. Although the univariate forecasting results indicate that historical 

traffic flow data can provide adequate information for future traffic condition, the 

forecasting accuracy will be affected when part of the historical data is missing for that 

particular detector. In this situation, one should consider other influential factors to 

improve the forecasting accuracy. The multivariate forecasting methods consider traffic 

information in upstream locations when performing forecasting. Two different methods 

are used: one is the Vector Autoregression (VAR) model and the other is General 

Regression Neural Network (GRNN). This section studies the forecasting performance 

of these two models by considering upstream information. 

According to traffic flow theory (Lieu 1999), locations are important to the study 

of traffic variables. A simple example that explains the influence of locations at closely 

spaced segments of roadway is shown in Figure 1.The simple representation of the 

speed-flow curve will be used to illustrate the problem. One assumption is made in this 

example, the underlining speed-flow curves of these three locations are the same. To not 

oversimplify the problem, a major entrance and an exit ramp are added to between 

locations A and B and, B and C. The entrance ramp will add a considerable flow to 

location B and the exit ramp will remove a significant portion of traffic flow at location 
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B. So traffic demand at location B will be the highest. When location B reaches its 

capacity, traffic flow at this point reach the highest value (location A in Figure 1.). A 

queue will back up towards upstream traffic, location A will have a stop and go traffic 

(point B in Figure1.). At the same time, because there is an exit ramp between location B 

and C, traffic demand at location C will less than that at location B and it will not reach 

its capacity. This example indicates that locations are important to traffic flow characters 

in different road segments. In this example, if all locations do not reach their capacity, 

their flow at these three road segments should all at its upper part of the curve. If 

Location B reaches its capacity and results in back-up effect to location A, flow rate at 

location A will decrease and flow rate at location B will reach its highest value.  

 

 Figure 1. Effect of locations to traffic flow patterns (Lieu 1999) 
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Since traffic flow will be influenced by its upstream and downstream flow rates, 

one should consider its upstream and downstream information when study flow 

characteristics at point of interest. As for prediction purposes, upstream traffic flow at 

time t will, to a certain extent, influence downstream traffic in the near future. 

Considering the upstream traffic information may lead to more accurate forecasting 

results. Driven by this, we proposed two multivariate traffic flow forecasting methods in 

the following subsections.  

 

4.1 Vector Autoregression (VAR) Model 

An ARIMA model only study past values of one time series. The vector 

autoregression (VAR) model is an extension of the univariate autoregressive model and 

it is one of the most successful and easy to understand models in the multivariate time 

series analysis. The VAR model explains a studied time series not only based on its own 

past values but also based on other variables. It is proven to be an efficient multivariate 

forecasting model in economic and financial time series field. It is also a flexible model 

that can represent the correlation of multiple time series.   

Before conducting the analysis of relationships between two times series data, a 

test for unit roots is needed. If the two studied time series models have unit root, we need 

to figure out whether or not there is a common stochastic trend in these two models. The 

augmented Dickey–Fuller test (ADF) developed by Said and Dickey (1984) provides a 

general approach for unit root testing. The null hypothesis of this test is unit root exists 
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in the model. So the smaller the p-value is, the more unlikely there is a unit root in the 

model.  

An autoregressive model can be treated as a simple regressor on several time 

series variables and it can capture the evolution and the interdependencies between 

multiple time series. Its matrix notation is: 
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The above equation is a VAR(p) model that involves k variables. In the equation, 

  is the intercept,   is the parameter for the model and   is white noise. 

This study focuses on the bivariate vector autoregressive model with two 

dependent time series      and     .  The simplest form of the VAR model is VAR (1), in 

which only two explanatory variables are included:         and       . The equations of 

the VAR (1) model are: 

                               (18) 

                               (19) 

There are two assumptions in the error term: the expected values of the residuals 

are zero and the two error terms are uncorrelated. In the vector autoregression model, 

expected traffic flow information at studied location is a linear combination of historical 

traffic flow data from the upstream location and the studied location.  

The order selection of the VAR model is a trade-off between the forecasting 

accuracy and abbreviate of the model. If the lag length is too short, the equation cannot 
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provide adequate information and can lead to inefficient estimators. On the other hand, 

the degree of freedom will decrease with an increasing number of parameters, which 

also will lead to inefficient estimators. Determination of the lag length of the VAR 

model can be obtained from the autocorrelation plot or based on the smallest AIC. 

 

4.2 General Regression Neural Network (GRNN) Model  

GRNN is derived from the RBF neural network. Its theoretical background is 

general regression analysis. The formula for the regression is shown in equation (20). 
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Equation (20) indicates that the estimation of output  ̂ given input   is the 

weighted average of each training sample  . Each    is weighted according to the 

exponential value of its Euclidean distance from  . Normal distribution is used as the 

probability function and the mean is each training sample   . The standard deviation or 

the smoothness parameter   is subject to the searching process. GRNN can solve 

nonlinear problems without having to estimate many parameters, and its training time is 

shorter compared with other BP methods. Thus, GRNN is used as forecasting 

methodology in this study. 

The structure of the GRNN is shown in Figure 2. The GRNN model has four 

layers: input, hidden, summation and output. Functions of each layer are introduced 

below: 
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 Figure 2. Structure of general regression neural network 

 

 

Input Layer:  The number of neurons in the input layer is equal to the number of 

predictor variables and each    represents a predictor variable. The function of input 

layer is to standardize the range of the values so that it ranges from -1 to 1, and feed 

standardized values to the second layer-hidden layer. 

Hidden (Pattern) Layer:  The hidden layer computes the exponential value of the squared 

Euclidean distance between predictor variable   and training sample   . Then the result 

   is forwarded to the summation layer. 
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Summation Layer: There are two kinds of neurons in summation layer: One kind of 

neuron is a denominator summation unit and it is the denominator of equation (20). It 
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adds up the values that come from each of the hidden layers. Equation (22) represents 

the denominator summation unit.   
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The other kind of neuron is the numerator summation unit and it is the numerator of 

equation (20). It also adds up the weighted values that come from each of the hidden 

layers. The weight for the     neuron in the pattern layer and the     neuron in 

summation layer is    . Equation (23) is the representation of the numerator summation 

unit. 

 




n

i

iijNj kjpyS
1

,...,2,1

 (23) 

Output Layer: The output layer divides the numerator summation unit    by 

denominator summation unit    and use it as the value of the predicted target. 
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5. DATA DESCRIPTION AND APPLICATION 

 

 

This study uses traffic data collected from six radar sensors located on U.S. 

Highway 290 (or U.S. 290) to conduct model fitting and forecasting. U.S. 290 is an east-

west U.S. Highway located within the state of Texas. The studied segment (Northwest 

Fwy) begins at Sam Houston Tollway and ends at the junction of Farm to Market Road 

1960(FM1960) and U.S.290. Figure (3) shows the locations of the six detector sites. 

Since the traffic flow is directional, we use data from northwest bound direction for 

model training and forecasting. The IDs of the detectors from Southeast to Northwest are 

1090, 3441, 3878, 2782, 3935, and 3998. Measurements take place every 30 seconds and 

collected information includes volume, speed, and occupancy.  

Traffic flow data from January 1, 2008 to February 5, 2008 are used and have 

been aggregated into five minutes data points. For each day, there are 288 data points, 

thus the total number of data points used is 10,368. For the purpose of model 

comparison, we choose the 288 data points obtained from February 5, 2008 for model 

prediction. Table (1) shows detailed information about the data collected from these 

detectors. 

 

 



 

 

3
6

 

 

Figure 3. Radar detector locations for sites of interest 
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 Table 1 Information of six detectors at studied sites 

Detector Information 

Detector 

ID 
Name 

Data 

Interval 

# 

Lanes 

# WB 

Lanes 

Distance to 

the Next 

Detector 

1090 US-290 Northwest@Senate IB 5 min 4 1 1.2252 Miles 

3441 US-290 Northwest@FM-529 OB 5 min 7 4 0.2545 Miles 

3878 US-290 Northwest@Jones IB 5 min 6 3 0.6050 Miles 

2782 US-290 Northwest@Jones OB 5 min 7 4 0.5554 Miles 

3935 US-290 Northwest@West IB 5 min 6 3 0.9760 Miles 

3998 US-290 Northwest@Eldridge IB 5 min 6 3 
 

 

 

 

Before analyzing  traffic flow data, we need a cursory look at a plot of the 

original data. Based on empirical experience, traffic flow data show strong periodic 

features and comparing traffic volume patterns day to day indicates remarkable 

similarity. In order to give us a general idea of what daily traffic flow data looks like, we 

choose to plot five-day traffic flow data from February 1, 2008 to February5, 2008.. 

Figure 4. and Figure 5. are five-day traffic flow data obtained from detector 1090, 

detector 3441, detector 3878, detector 2782, detector 3935, and from detector 3998. 
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 Figure 4. Traffic Flow Data from February 1, 2008 till February5, 2008(1) 
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 Figure 5. Traffic Flow Data from February 1, 2008 till February5, 2008(2) 

 

 

Close inspection of five-day traffic flow data from these six detectors indicates 

that there are missing data samples from detectors 3878, 3935, and 3998. For the entire 

study data set, there are 3.12% missing data from detector 1090, 0.28% missing data 

from detector 3441 and 0.087% missing data from detector 2782. For detectors 3878, 

3935 and 3998, there was more missing data. The percentages of missing data are 
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31.04%, 8.76% and 7.06%, respectively. For the study’s dataset, if there is no data 

obtained during a certain time period, the traffic flow value for that period is either -1 or 

-99. As shown in Figure 2, there are some points that have values go below to zero 

which cannot be in real case. It was therefore necessary to find a proper strategy to 

identify the missing data.   

 

5.1  ARIMA-GARCH Model Fitting 

5.1.1 ARIMA Model Fitting 

Because an ARIMA model requires relatively small number of sample data, for 

the ARIMA model fitting process, we use the first 4 day flow data for model training 

and apply the one step forecasting method for the prediction of the fifth day’s traffic 

flow data. 

We first plotted the ACF and PACF of traffic flow obtained from each detector 

as shown in Figure 6. and Figure 7. Although there are some differences for each plot of 

ACF and PACF values, they show common features: the ACF plots of all traffic flow 

data indicate that the auto-correlation function for the original data decreasing slowly. 

Common practice is to transform the original data to get a lower order model, which we 

are more familiar with. Further steps are needed in this case. 
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 Figure 6. ACF and PACF plots of traffic flow data(1) 
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Figure 7. ACF and PACF plots of traffic flow data(2) 

 

 

If the original dataset show a slowly decaying positive sample autocorrelation 

function, one should apply the differencing operator repeatedly until the autocorrelation 

function shows a rapidly decaying feature. Figure 8. and Figure9. are the ACF and 

PACF plot of differenced flow data at lag 1.The plots indicate that the differenced flow 

can be a MA(1) model since the ACF is zero except for lag 1. 
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Figure 8. ACF and PACF plots of differenced traffic flow data (1) 
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Figure 9. ACF and PACF plots of differenced traffic flow data (2) 
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As seen in Section 3, if we let tX  and ( )t tY I B X   be flow and differenced 

flow at time t, respectively, then we can set the model as the followings: 

 

                                      

 

The original flow tX  is a ARIMA(0,1,1) model, in which the AR order is 0, the degree 

of differencing is 1, and the MA order is 1. Parameter   is the only parameter that needs 

to be estimated when fitting an ARIMA(0,1,1) model. The one step forecasting method 

is used in model prediction.  A least squared error is used to fit the parameters of the 

model. The predicted value    is based on its previous values{           }; 288 data 

points are used for model fitting. Figure 10 and Figure 11 are plots of original data and 

forecasting results: 
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Figure 10. Forecasting results of ARIMA based traffic flow forecasting model(1) 
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Figure 11. Forecasting results of ARIMA based traffic flow forecasting model(2) 

 

 

Forecasting results of the ARIMA model for the six studied sites are represented 

in these figures, a red dash line represents the one step forecasting results and the black 

line is the field data obtained from detectors. These figures show that the ARIMA model 

can provide adequate forecasting results based on the historical traffic flow information.  

However, as we inspect forecasting results for detectors 3878,  3935 and 3998 carefully, 

most original traffic flow data points (the black line) were below zero during time steps 
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120 to 130 and from 270 to 288. The forecasted results at these points were also 

approximately zero. This indicates that if missing data exits for a particular time periods, 

the forecasting results will be affected. ARIMA model can give us very nice forecasting 

results only if the historical data we obtained is complete and accurate.   

5.1.2 GARCH Model Fitting 

The previous section indicates that ARIMA model is capable at capturing the 

expected values of traffic flow data. During non-peak traffic flow conditions, the 

variance of the flow data is very small and the expected value of traffic flow data can be 

approximately the actual value of traffic flow data. However, in accident, peak, and 

abnormal traffic flow situations, the variance of traffic flow data can be very large. Only 

relying on the expected forecasting value cannot provide adequate information either for 

road users or traffic operation mangers to make proper decision. It is critical for us to 

know whether if there is a big jump in traffic flow variation. By taking into 

consideration other additional information (for example: speed data), one can figure out 

the traffic conditions for the next time step. Thus, in this section, we focus on the 

application of GARCH model. 

The first step is to plot the residuals of the ARIMA model. The upper left plot in 

Figure (12) indicates that the residuals are not white noise and certain patterns still exist 

in the dataset. In order to further check if some patterns exist in the data, sample ACF 

and PACF of various functions of residuals are plotted. The upper right figure is the 

ACF plot of residuals series. It suggested that there are no serial correlations. The lower 

left figure is the absolute value of the residuals while the lower right figure is the 



49 

 

squared value of the residuals. These two plots suggested that residuals are not serially 

independent. All these three plots suggested that the residuals are serially uncorrelated 

but dependent. To capture such dependency in residuals leads to more accurate 

forecasting results.  

 

 

Figure 12. Residual analysis  
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A GARCH model is used to analyze the variance part of the traffic data. The 

basic idea of the volatility model (GARCH model) is to find a mean structure model first 

and then apply the GARCH model to the residual part. In this section, we will use 

ARIMA (0, 1, 1) to represent the expected value of traffic flow data and apply the 

GARCH model to predict the confidence interval of the forecasting results. One step 

forecasting strategy is used.  

If a ARIMA(0,1,1) model is used, the expected value of data is: 

                     (24) 

For the variance part, we use the ARCH model: 

         (25) 

   
     ∑       

  
    ∑       

  
    (26) 

The equation of the joint the ARIMA(0,1,1)-GARCH(1,1) model then gives 

                     (27) 

   
           

        
  (28) 

In the GARCH (1, 1) model, three parameters needed to be estimated:        . 

The maximum likelihood parameter estimation method is used to choose the best 

parameters. Figure (13) is the prediction confidence interval for the residual part of 

traffic flow for Detector 3441. As we can see from this figure, residuals of traffic flow 

continue to be large during certain time periods and the prediction interval has the ability 

to capture the volatility nature of the data set. For example, there is a big change around 
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time step 60, the residuals drop below -20, then rise up and drop down again. The 

predicted confidence intervals show three peaks during this period which give us an 

indication that confidence band that contains the true value of the forecasted traffic flow 

during this period will be larger. The GARCH model provides direct information on how 

reliable the forecasting results are. If we take other information into consideration, such 

as speed or density, then we can figure out possible traffic conditions within the next 

five minutes. 

 

 

 

 
Figure 13. VAR forecasting results—95% prediction interval 
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5.2 Multivariate Forecasting 

Although the univariate model provides promising forecasting results, it cannot 

deal with the missing data situation. As we have discussed before, when data is missing, 

the forecasting accuracy will be affected due to the fact that the univariate forecasting 

method only considers information from one detector.  If data are not available for a 

certain time periods, next time step forecasting cannot be used. The commonly used 

methodology dealing with missing data is to take historical average. However, this 

method lacks theoretical support and the forecasting accuracy cannot be guaranteed. 

Considering the fact that special relationships exists among traffic flow data from 

different detectors, we use the multivariate model to deal with missing data situations.  

Two methods are proposed for missing data situations: the VAR based method 

and the GRNN based method. The VAR based forecasting method uses traffic flow data 

from two detectors: the detector that has missing data and its up-stream counterpart, as 

the model input to forecast the next time step traffic flow. Thus, the forecasting result 

will be based upon traffic information from both its own time series data and the time 

series data from its up-stream counterpart. The VAR based method assumes a linear 

relationship between the two traffic flow series from the closely spaced detectors. The 

structure of the VAR model is simple and the forecasted value can be represented as a  
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linear combination of two time series. The GRNN based method forecast next time step 

traffic flow information for the studied site by only using up-stream traffic information 

as model input. The forecasting results are only based on its upstream information. 

Performance of these two models in data missing situations will be studied in the 

following sections.  

5.2.1 Vector Autoregression (VAR) Model Fitting 

Given the fact that the ARIMA model fits a univariate model well, an extension 

of the univariate autoregressive model-the vector autoregression (VAR) model will be 

the good choice for multivariate traffic flow forecasting. In this study, we will focus on 

the bivariate vector autoregressive model with two dependent time series: traffic flow at 

the up-stream and at the studied site. We divided the six studied sites into three groups: 

Detectors 1090 and 3441 as group one, detectors 3878 and 2782 as group two, detectors 

3935 and 3998 as group three. Then maximum-likelihood estimation (MLE) method is 

used for parameter estimation. Then a one step ahead forecasting strategy is used to 

predict traffic flow on each group. Figure 14 to Figure 16 show the forecasting results: 
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Figure 14. VAR model forecasting results(1) 
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Figure 15. VAR model forecasting results(2) 
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Figure 16. VAR model forecasting results(3) 

 

 

These three plots represent three different situations:  no missing data exists for 

both time series (group one), one detector has missing data (group two) and both 

detectors have missing data (group three).  A cursory look of these three plots indicate 

that: VAR model can provide adequate forecasting of traffic flow data in the next time 

step when no missing data exits; If only one studied series has missing data, the 
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forecasted value will be influenced by the other time series and thus will be higher than 

zero; If both time series have missing data for the same interval, the forecasting result 

during data missing period will stay around or below zero.  

Although the vector autoregressive model takes into consideration the flow 

information from other detectors, the forecasting results are still being affected by the 

missing data. Since the forecasted value is a linear regression function of its own past 

values and the past values of another time series, it will drop down if one or two 

variables go below zero. Another disadvantage of the VAR model is that it can only 

represent the linear relationship among different variables. However, if a nonlinear 

relationship exists between two traffic flow series, it is important to take this into 

consideration when conduct traffic flow forecasting. 

5.2.2 General Regression Neural Network (GRNN) Model Fitting 

The GRNN model belongs to the category of probabilistic neural networks, 

which only need a smaller fraction of the training samples compared to back propagation 

neural networks. The advantage of the GRNN model is that it converges to the 

underlying function of the data without preliminary knowledge of the data. It is a very 

useful tool to perform predictions.  

As we mentioned before, spatial correlations exist among traffic flow data.  Up-

stream traffic information can be used to predict down-stream traffic information in the 

next few time steps. If there is missing data for the studied site, traffic information from 

its up-stream location can be used to perform forecasting without information at the 

studied site. In this section, we will focus on using up-stream traffic flow information to 
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predict traffic at the studied site to deal with the missing data problem. The first step is 

model training. In this step, historical traffic flow data from both upstream detector and 

detector of interest are used as model input and model output respectively. This step is 

aimed at training the neural network. The second step is forecasting. Once the model 

training is completed, one can use the current upstream traffic flow information as model 

input to predict future traffic flow information at a studied detector. Figure 17 shows the 

GRNN model development process.  

 

 

 

 

Figure 17. GRNN model development 
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Detectors 3878, 3935 and 3998 are chosen as the locations of interest, since they 

all have missing data on February 5
th

, 2008. The forecasting strategy is that if there is 

missing data for the studied detector, then one should search historical traffic flow data 

for its up-stream detectors. If missing data from the nearest detector is not significant, 

then traffic flow data at this detector will be used as the input of the GRNN model and 

historical traffic flow data at the studied detector will be the output of the forecasting 

model. If missing data is also a problem for its nearest up-stream detector, the procedure 

is to find another nearest detector that does not have missing data. In this study, traffic 

flow data from Detector 3441 will be used to predict traffic information for Detector 

3878, traffic flow information from Detector 2782 will be used to forecast traffic flow at 

Detector 3935, and Detector 2782 will be used to predict flow at Detector 3998. Figure 

18 is the forecasting results for Detectors 3878, 3935, and 3998.It indicates that the 

predicted values fit the original data well. Unlike the ARIMA and VAR based 

forecasting methods, the GRNN forecasting results are not affected by the missing data 

since it is only based on the history data from its up-stream detector. 
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Figure 18. GRNN forecating results for three detectors that have missing data 

 

 

5.2.3 Historical Average Model Fitting  

The historical average model simply uses the average value of historical traffic 

flow data to represent future traffic volume. It is based on the seasonal characteristic of 

traffic flow data, e.g. traffic flow patterns day to day often show remarkable similarity 

and these patterns are useful for prediction. The historical average method is easy to 
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understand and implement. It has already been applied to the urban traffic control 

systems (UTCS) (Stephanedes et al. 1981) and other various traveler information 

systems (Jeffrey et al. 1987 and Kaysi et al. 1993). However, it only relies on past traffic 

information and cannot react to dynamic changes of traffic flow.  

The presented model in this study is to find out the average value of past traffic 

volume for each time interval and each site. For example, if we want to predict traffic 

flow at time t on February 5, 2008 we take average of traffic volume at time t in previous 

days. In this study, 35 day traffic volume information is used to predict traffic flow on 

February 5, 2008 and the results of this method will be discussed in section 6.  
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6. MODEL COMPARISON AND ANALYSIS 

 

 

This research studies the ARIMA-GARCH, the VAR, the GRNN, and the 

Historical Average models. Moreover, this study also addresses traffic flow forecasting 

reliability and missing data. The ARIMA-GARCH model is aimed at improving 

forecasting accuracy and reliability in non-missing data situations. In addition, he VAR, 

the GRNN, and the Historical Average models are applied in dealing with missing data 

situations.  

First, model comparison in non-missing data situations are studied. In this part, 

forecasting accuracies of four proposed models are studied. Then, the study also 

discusses model performance in missing data situations. This section presents strengths 

and weaknesses of each model and discusses how to choose a proper model in a certain 

situation. 

 

6.1 Model Comparison in Non-Missing Data Situations 

In order to compare the forecasting accuracy in normal conditions (no missing 

data) numerically, there are two measures of effectiveness: the root mean squared error 

(RMSE) and the mean absolute percentage error (MAPE). The RMSE is representative 

of the size of a ―typical‖ error because it is measured in the same unite as the original 

data. It is more common than the mean squared error (MSE). The MAPE is another 

commonly used measure of effectiveness for purposes of reporting because it is 
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expressed in percentage terms, which give us a general sense of the error even without 

knowledge of what constitutes a ―big‖ error for the data set.  

 

The equation of RMSE is: 
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where     is the actual value,      is the forecast value ,and   is the total number of data 

intervals. 

Table 2. and Table 3. investigate the RMSE and the MAPE values for four 

models: the ARIMA-GARCH, the VAR, the GRNN, and the Historical Average models. 

Because one cannot obtain the true values of traffic flow data at missing data points, we 

omit missing data before calculating the RMSE and MAPE value. From Table 2., the 

RMSEs for each detector from the ARIMA-GARCH model are better than the other 

three models. Table 3.also indicates that the ARIMA-GARCH model outperforms the 

other three models based on the MAPEs criterion. From these results, one can conclude 

that ARIMA-GARCH model performs best among these three models in non-missing 

data situations. As we already discussed in Section 5, the GARCH model is capable of 

modeling variance part of traffic flow. Thus, the GARCH model can provide 

information on how reliable the forecasting accuracy is. The ARIMA-GARCH model 
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provides the best forecasting results among the studied models and it performs well in 

non- missing data situations in traffic flow forecasting.  

 

 

Table 2 RMSE values of four forecasting methods 

RMSE 

  D1090 D3441 D3878 D2782 D3935 D3998 

ARIMA-GARCH 11.78 9.53 4.12 7.19 2.93 7.92 

VAR 15.99 13.36 7.66 9.55 12.06 22.37 

GRNN -- -- 27.82 -- 28.69 34.35 

HA -- -- 59.80 -- 42.17 65.24 

 

 

 

Table 3 MAPE values of four forecasting methods 

MAPE 

  D1090 D3441 D3878 D2782 D3935 D3998 

ARIMA-GARCH 4.61% 3.45% 1.24% 2.33% 0.92% 2.30% 

VAR 6.61% 6.00% 2.73% 3.61% 6.06% 6.08% 

GRNN -- -- 11.93% -- 13.65% 10.48% 

HA -- -- 16.65% -- 15.56% 16.52% 
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Figure 19. RMSE values plots of four forecasting methods 

 

 

 
Figure 20. MAPE values plots of four forecasting methods 

 

 

6.2 Discussion of Model Performance in Missing Data Situations 

Although the ARIMA-GARCH model provides the best forecasting results 

among the four proposed models, missing data will affect its performance. This can be 
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referred in Figure 10. and Figure 11., the numbers -1 or -99 represent the missing data. 

Due to the factor that the ARIMA-GARCH model only relies on historical and current 

flow information on its own time series, it does not have the ability to deal with missing 

data situations. If there is missing data for a certain point, the ARIMA-GARCH model 

will forecast the future traffic flow based on the values at the missing data points (-1 or -

99). As indicated in Figure 10. and Figure 11., forecasted traffic flow values go below 

zero when there is missing data and this situation, which cannot happen in real life.  

This paper proposes the VAR, the GRNN, and the Historical Average models to 

deal with missing data situations. The VAR model forecasts future traffic flow by 

considering historical and current traffic flow information from both its own data sets 

and the data from its up-stream location. Figure 14., Figure 15. and Figure 16. are the 

forecasting results of the VAR model. Although the VAR model has the ability to 

represent a linear relationship among traffic flow information at different locations, it 

does not perform well in missing data situations. In these figures, some forecasted values 

go below zero when there is missing data. Unlike the ARIMA-GARCH and the VAR 

models, the GRNN based forecasting method studies the traffic flow relationship 

between two detectors and forecast future traffic flow by only using flow information 

from the up-stream detector. The GRNN model did better in missing data situations as 

one can see from Figure 18. Although there is missing data  in historical and current 

traffic flow data at the studied site, the GRNN forecasting results are based on traffic 

flow information from its upstream location and are not affected by the missing data. 

This model has the potential for dealing with missing data situations. In literature, 
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another commonly used method in dealing with missing data situations is the Historical 

Average method. In this study, an average of 35 days historical data(from January 1 to 

February 4) at each time point are taken to predict traffic flow information at its 

corresponding time point in February 5. Because both the Historical Average method 

and the GRNN method do not rely on traffic flow information from February 5, we can 

assume no flow information from February 5 is available when forecasting is performed. 

As indicated in Table (2) and Table (3), the GRNN model outperforms the Historical 

Average model based on RMSE and MAPE criteria. Thus, the GRNN model has the 

potential to deal with missing data situations.  
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7. CONCLUSIONS 

 

 

This study addresses Traffic flow forecasting accuracy and missing data 

problems. First, this study introduces the volatility model to study the variance part of 

the traffic flow data, because it has the ability to indicate whether or not there is a big 

change in traffic flow over the next few minutes. By providing prediction confidence 

band for future traffic flow, one can capture the uncertainty of traffic flow forecasting 

results. Second, this study uses the Multivariate methods to ease the missing data 

problem. Two multivariate methods are proposed: the Autoregressive Vector model and 

the General Regression Neural Network model, to forecasting traffic flow in both normal 

and data missing situation. The following part summarizes the findings and conclusions 

of this research: 

1. Seasonal component exists in traffic flow data, which can be removed by one-

step difference of the original data. The differenced traffic flow data are one-step 

correlated. In other word, the increase or decrease of traffic flow data can 

influence the change of traffic flow data in the next time step. The prediction of 

traffic flow data can be made simpler by studying the differenced original traffic 

data.  

2. The ARIMA-GARCH model fits the historical traffic flow data well and 

outperformed the VAR and GRNN models in non-missing data situations. 

However,  there is missing data in historical traffic flow data and it will affect the 



69 

 

forecasting accuracy. Since the idea of the ARIMA-GARCH model is that 

forecasting of future traffic flow is based on the historical traffic flow data, and 

in the ARIMA-GARCH model, the next step forecasting results is closely related 

with its current traffic data. As a result, missing data will influence the 

forecasting accuracy.   

3. The VAR model, an extension of the univariate autoregressive model, uses 

multiple traffic flow data to forecast and can represent the correlations of 

multiple times series. It is very useful if knowledge of correlation among 

multiple times series is needed. However, if one only considers forecasting 

accuracy, the VAR model did not perform well compared with the ARIMA 

model in this study.   

4. The GRNN model has the ability to use upstream traffic information to predict 

studied site. Although the forecasting accuracy is not as good as the ARIMA-

GARCH model in normal situations, it outperforms the ARIMA model and the 

VAR model in missing data situations. Because future traffic flow forecasting 

results of the studied site are solely based on its upstream traffic information, 

even if data are missing at the studied site, the forecasting results will not be 

affected.  
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8. LIMITATIONS AND FUTURE WORK 

 

 

In this study, traffic flow forecasting reliability in non-missing data situations 

and traffic flow forecasting accuracy in missing data situations are studied. The study 

results indicate that the ARIMA-GARCH model outperforms other methods in non-

missing data situations, while the GRNN model performs better in missing data 

situations. Since both models have their own advantages in different situations, the 

future work is to combine these two models to deal with both missing data and non-

missing data situations. 
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