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ABSTRACT 

 

Multiscale Spectral-Domain Parameterization for History Matching in Structured and 

Unstructured Grid Geometries. (August 2011) 

Eric Whittet Bhark, B.S., Boston College; M.S., New Mexico Institute of Mining and 

Technology 

Co-Chairs of Advisory Committee: Dr. Akhil Datta-Gupta 

Dr. Behnam Jafarpour 

 

Reservoir model calibration to production data, also known as history matching, is an 

essential tool for the prediction of fluid displacement patterns and related decisions 

concerning reservoir management and field development. The history matching of high 

resolution geologic models is, however, known to define an ill-posed inverse problem 

such that the solution of geologic heterogeneity is always non-unique and potentially 

unstable. A common approach to improving ill-posedness is to parameterize the 

estimable geologic model components, imposing a type of regularization that exploits 

geologic continuity by explicitly or implicitly grouping similar properties while retaining 

at least the minimum heterogeneity resolution required to reproduce the data. This 

dissertation develops novel methods of model parameterization within the class of 

techniques based on a linear transformation. 

Three principal research contributions are made in this dissertation. First is the 

development of an adaptive multiscale history matching formulation in the frequency 

domain using the discrete cosine parameterization. Geologic model calibration is 

performed by its sequential refinement to a spatial scale sufficient to match the data. The 

approach enables improvement in solution non-uniqueness and stability, and further 

balances model and data resolution as determined by a parameter identifiability metric. 

Second, a model-independent parameterization based on grid connectivity information is 

developed as a generalization of the cosine parameterization for applicability to generic 
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grid geometries. The parameterization relates the spatial reservoir parameters to the 

modal shapes or harmonics of the grid on which they are defined, merging with a 

Fourier analysis in special cases (i.e., for rectangular grid cells of constant dimensions), 

and enabling a multiscale calibration of the reservoir model in the spectral domain. 

Third, a model-dependent parameterization is developed to combine grid connectivity 

with prior geologic information within a spectral domain representation. The resulting 

parameterization is capable of reducing geologic models while imposing prior 

heterogeneity on the calibrated model using the adaptive multiscale workflow. 

In addition to methodological developments of the parameterization methods, an 

important consideration in this dissertation is their applicability to field scale reservoir 

models with varying levels of prior geologic complexity on par with current industry 

standards. 
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1.  INTRODUCTION: RESERVOIR MODEL PARAMETERIZATION                    

FOR HISTORY MATCHING 

1.1  Introduction to the Problem 

Reservoir model calibration to dynamic data, also known as history matching, is an 

essential tool for the prediction of fluid displacement patterns and related decision 

options concerning reservoir management and field development. A primary component 

of history matching is the characterization of subsurface heterogeneity that dominates 

the spatial and temporal variability in displacement behavior according to the existing 

well pattern and schedule. To account for the disparity in resolution of various types of 

dynamic measurements available, from seismic down to the core, data integration 

algorithms must follow suit in their ability to identify and update reservoir heterogeneity 

over a wide range of spatial scales in a manner consistent with and adaptive to data 

resolution. 

The characterization of reservoir heterogeneity typically begins with the conceptual 

geologic model and the identification of regional attributes such as facies or depositional 

sequences, domain boundaries and boundary conditions, and faults or other sources of 

regional hydraulic (dis)continuity. Finer-scale patterns of heterogeneity within regional 

features may then be populated and updated when appropriate. Accordingly, research 

and field application together have emphasized the establishment of reservoir 

engineering workflows that systematically reconcile the geologic model, from the 

regional to grid-cell scale, with multi-resolution static and dynamic data. Related 

approaches to both manual and assisted history matching typically apply a structured 

approach and employ a series of data integration algorithms that are each suited to the 

scale of the estimated features and the type and resolution of the available data (Landa 

and Horne, 1997; Williams et al., 1998; Caers, 2003; Yin et al., 2010; Cheng et al., 

____________ 
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2008). Approaches following this parsimonious rationale integrate data such as 3D/4D 

seismic, formation testing of pressure, pressure transient analysis and production phase 

cuts in a step-wise sequence, beginning at the global scale and often with the most 

simple description, followed by an attempt to update finer-scale details only when 

supported by the data or by related reservoir management decisions. 

Such structured approaches to data integration, whether following a top-down or bottom-

up philosophy, typically use a method of spatial parameter characterization to capture 

relevant geologic features, at the spatial scale(s) of interest, with the ultimate goal of 

reducing the estimable parameter set. It is well understood that the calibration of high-

resolution geologic models poses an underdetermined inverse problem with the number 

of updated reservoir properties defined at individual grid cells considerably larger than 

the number of measured data. In this scenario the updated geologic model, or solution to 

the inverse problem, is always non-unique. Multiple solutions consistent with geologic 

data and interpretation may reproduce the observed flow data but fail to predict future 

performance correctly (Gavalas et al., 1976; Carrera and Neuman, 1986a, 1986b; Yeh, 

1986; Tikhonov and Arsenin, 1977; Tarantola, 2005; Moore and Doherty, 2005; Oliver 

et al., 2008). Therefore, either the explicit or implicit re-definition of spatial properties 

into parameter groups provides a means for regularization by which the inverse problem 

becomes more tractable (McLaughlin and Townley, 1996; Reynolds et al., 1996; 

Doherty, 2003; Carrera et al., 2005). Both approaches to re-parameterization, reviewed 

below, stabilize the solution by imposing one or more assumptions related to the 

underlying geologic model (Carrera and Neuman, 1986a, 1986b; Tikhonov and Arsenin, 

1977; Vasco et al., 1999; Tarantola, 2005; Tonkin and Doherty, 2009; Oliver and Chen, 

2011) and fundamentally exploit the inherent spatial continuity in geologic features, 

strategically grouping like properties while at the same time retaining the heterogeneity 

required to match the data and honor prior information at the appropriate scale (Carrera 

and Neuman, 1986c; Carrera et al., 2005; Yoon et al., 2001; Jafarpour and McLaughlin, 

2009; Kim et al., 2010). 
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1.2  The History Matching Problem 

Before posing the solution to the history matching problem as a re-parameterized 

geologic model in Subsection 1.3, in this subsection (1.2) a formal description of the 

general history matching problem is first presented. The estimation of geologic model 

parameters from field measurements that are related to the states (i.e., pressure, 

saturation) of the reservoir system defines an inverse problem because it is the opposite, 

forward problem that relates known geologic parameters to the unknown or predicted 

reservoir states. In the most general description, history matching problems contain three 

primary components: definition of (1) the forward model, (2) the objective function and 

(3) a scheme for minimization of the objective function by calibrating the estimable 

parameters. 

The forward model is constructed as the system of physical laws that govern the flow 

and transport processes modeled and are used to predict the responses of the reservoir 

system given a set of reservoir parameters. These fundamental laws describing the 

dynamics of the reservoir system include a fluid mass conservation equation(s), Darcy‟s 

flow equation, and equations of state that generally relate pressure, temperature and 

saturation to fluid transport and rock properties. In application, and for the purposes of 

the research presented in this dissertation, the forward model involves numerical 

simulation which may or may not be computationally expensive depending on the type 

of flow and transport processes characterized and their level of spatial and temporal 

characterization. Because all aspects of subsurface reservoir description are uncertain, 

the predictive capacity of the forward model is limited by the accuracy of the reservoir 

model parameters, which must be calibrated to all known static and dynamic 

measurements. In this research we focus on the calibration of static geologic 

heterogeneity, i.e., porosity and permeability, which are only partially known due to 

limited accessibility (e.g., locally at wells) and cost constraints associated with data 

acquisition (e.g., reservoir scale seismic measurements). 
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The objective function in history matching defines a measure of the difference between 

the observed dynamic data and the corresponding predicted or numerically simulated 

responses. In this research these measurements consist of reservoir pressure and fluid 

saturations measured at wells. It is through minimization of the objective function that 

the estimable parameters are calibrated to the dynamic data. Because the reservoir states, 

and therefore the objective function terms, are typically nonlinearly related to the 

reservoir parameters, the process of minimization is iterative. Presented now are the 

forward model (Subsection 1.2.1) and the numerical approach to the solution of the 

history matching problem by iterative minimization of the objective function with a 

nonlinear optimization technique (Subsection 1.2.2). 

1.2.1  Forward Model 

The multiphase petroleum reservoir flow models applied in this dissertation, denoted as 

g[m] and where m represents the set of calibrated geologic parameters, can be described 

in the most general form by the black oil model under the assumption that fluid 

displacement is dominated by viscous forces. In the following formulation 

compressibility and gravity are considered and capillarity neglected, although the 

methods presented are in general independent of the choice of physical mechanisms. The 

phases are referred to as water (w), oil (o) and gas (g). Simultaneous flow of the three 

phases is governed by the following equations (e.g., Datta-Gupta and King, 2007) 
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where the phase velocity is  
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.     (1.3) 

The following variables are defined: Bj is the formation volume factor for phase j, Sj is 

the saturation of phase j, Rso is the solution gas oil ratio, pj is the j phase pressure, s

jq  is 

the source term of phase j, µj is the viscosity of phase j, j is the density of phase j, g is 

acceleration due to gravity, z is depth below a datum, k(x) is the heterogeneous absolute 

permeability field where x denotes a generic spatial location, and krj is the phase-

saturation dependent relative permeability. It is useful to recognize that the model in 

Eqs. (1.1) and (1.2) are general and reduce to two-phase immiscible flow by ignoring the 

gas phase. Further simplification to two-phase incompressible and immiscible flow is 

achieved by Bj = 1 and   0/  tBS jj . The specific forms of the model applied are 

defined in the relevant application sections. 

1.2.2  Inverse Modeling 

In the most simple form, the inverse problem is posed as the nonlinear discrete problem 

  dmg

m



thatsuchFind
         (1.4) 

where, for the purpose of this dissertation, g nonlinearly relates the m-length column 

vector of parameters m, per Eqs. (1.1) and (1.2), to the n-length column vector of the 

model responses or dynamic observation data d. For a suite of plausible reasons 

including measurement errors, modeling errors and incorrect definition of the geologic 

system and fluids models, Eq. (1.4) typically has no solution and is in practice solved by 

minimizing an objective function, f(m), that defines a measure of deviation of the 

modeled responses from those observed. In this dissertation, the solution to the 

parameter estimation (model calibration) problem is therefore posed as an unconstrained 

optimization problem, i.e.,  
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 m

m

m
fmin

thatsuchFind

         (1.5) 

where the parameters m comprise a real vector with at least one component and f is a 

smooth function. Although the global minimum m~  is sought such that    mm ff ~  for 

all m, because of the large parameter dimension combined with the unknown shape of 

the objective function surface, a local minimum that provides adequate minimization of f 

is sought in practice. 

In this dissertation the solution to Eq. (1.5) assumes a deterministic form in which a 

single (uncertain) prior geologic model is updated to achieve the history match. The 

deterministic formulation of this inverse problem is presented next in Subsection 

1.2.2.1, and the numerical approach to parameter estimation is then described in 

Subsection 1.2.2.1.1 using a robust quasi-Newton method. Although not applied, it is 

recognized that the approaches of parameter estimation in this dissertation could also be 

applied in a probabilistic framework. For completeness, an overview of this general 

approach is presented in Subsection 1.2.2.2. 

1.2.2.1  Deterministic Inversion 

To find a local minimum upon traversal of the objective function surface beginning from 

a prior parameter location (corresponding to a prior geologic model), the deterministic 

inversion uses Taylor‟s theorem to define the criteria upon which solution convergence 

is achieved. To establish nomenclature for the coming discussion, Taylor‟s theorem is 

expressed here as 

       ppmpmpmpm tffff  2TT

2

1
     (1.6) 

for  1,0t  and where p is a parameter update vector. A local minimum is deemed 

reached for the parameter set m̂  when two sufficient conditions are met. The first-order 
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condition requires that   0ˆ  mf , or that there is no descent direction at the solution. 

The second-order optimality condition is that  m̂
2 f , if it exists, is positive definite. 

This condition guarantees that the curvature about m̂  is positive, confirming that no 

local descent direction exists. 

Primarily as a result of the nonlinearity of g, the parameters are solved for iteratively 

using, in this dissertation, a line search strategy. Beginning from the prior parameter set 

m0, a direction pk is chosen, where k denotes the current iteration, and a search is 

completed along this direction until an objective function value of satisfactory reduction 

is achieved. The details of the search algorithm and requirements connoted by the term 

„satisfactory‟ are discussed next in Subsection 1.2.2.1.1. This amounts to solving the 

one dimensional minimization problem for the step length , i.e., 

 kkf pm 



0

min .         (1.7) 

A large variety of algorithms in some form complete the iterative line search using 

different search directions, and all are valid so long as the direction is one of descent, 

where kfp T
 is the rate of change in f along the direction p at mk. A commonly applied 

direction, because it considers the curvature of the objective function, is the Newton 

direction. Returning to the second-order Taylor series and using k to indicate the 

iteration, Eq. (1.6) is re-written as 

  pHpfppm kkkk ff TT

2

1
        (1.8) 

where H is the discrete Hessian, which replaces kf
2  in Eq. (1.6) under the assumption 

that kf
2  is sufficiently smooth. The true objective function is now approximated by a 

quadratic model, and the Newton direction can be obtained by finding p that minimizes 
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Eq. (1.8), or by setting the derivative of Eq. (1.8) to zero and solving for p. From this, 

the Newton direction is 

 kk fHp  1
.         (1.9) 

The Hessian must be positive definite if p is a descent direction and can be used in a line 

search. The method of ensuring this condition is discussed below. Notice that a step 

length of unity is implicit in the application of Eq. (1.9) in Eq. (1.7). 

In addition to the requirement that a positive definite Hessian always exists for a useful 

descent direction, the Hessian is often impractical to compute at each iteration, always so 

in high-resolution geologic model calibration. For this reason, in this dissertation a 

quasi-Newton approach is used to determine the descent direction that approximates 

Newton‟s method. The difference is that the actual Hessian, Hk, is approximated at each 

iteration (by Bk) using the information provided by the change in gradient between 

iterations that is related to the curvature of f along the search direction. Relevant details 

of this algorithm are now presented. 

1.2.2.1.1  Numerical Approach to Deterministic Parameter Estimation: BFGS 

     Quasi-Newton Method Inversion 

In this dissertation, the BFGS quasi-Newton algorithm is applied to minimize the data 

misfit objective function, thereby improving estimation of the model parameters as 

explained. In all research applications the routines used are based on the MATLAB® 

optimization toolbox. There are several approaches to the implementation of BFGS, and 

rather than presenting the optimization (for model calibration) as a black-box algorithm, 

this subsection elucidates some key points of the implementation that are used 

throughout this dissertation. The following discussions summarize Nocedal and Wright 

(2006), Oliver et al. (2008) and the MATLAB Optimization Toolbox User‟s Guide 

(2010). 
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The Hessian approximation, which is at the heart of quasi-Newton methods, can be 

fundamentally understood by returning to Taylor‟s theorem. If f is twice continuously 

differentiable (hence the smoothness condition of Eq. [1.8]), then by Taylor‟s theorem 

the perturbed gradient can be expressed as 

      
1

0

2 dttfff ppmmpm .      (1.10) 

By the addition and subtraction of the term  pmf2  to the right hand side of Eq. 

(1.10), and further by assuming that the resultant integral      
1

0

22 dtftf pmpm  is 

negligible as  po , then when m = mk and p = mk+1 – mk, Eq. (1.10) can be expressed 

as 

 kkkkk mmfff   1
2

1 .       (1.11) 

Near the local minimum at m̂  the curvature approximation begins to dominate in Eq. 

(1.11) as the gradient is close to zero, and what is known as the secant equation is then 

achieved, i.e., 

kkk ysB 1           (1.12) 

where kkk mms  1 , kkk ffy  1 , and Bk+1 is the approximated Hessian. The 

subscript k+1 is given to indicate that the update of B at each iteration is forced to satisfy 

the secant equation as a constraint, although it is alone inadequate for exact computation 

of the update. 

In order to achieve a unique update of the Hessian approximation, the additional 

constraints of (1) symmetry, (2) a low-rank difference between Bk and Bk+1 and (3) 

positive definiteness of Bk+1 are required. The method by which this final condition is 
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honored in relation to Eq. (1.12) is described in more detail below as it largely influences 

the line search algorithm. In total, minimization of the problem 

kk

k

yBsBB

BB
B





,tosubject

min

T
        (1.13) 

with use of the Frobenius norm yields a unique solution to B. The solution can be 

rearranged for the update formula 

kk

kk

kkk

kkkk
kk
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ss

ss
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T

T

T

1 
B

BB
BB .       (1.14) 

This solution approach is valid for a broad class of quasi-Newton methods. For the 

BFGS algorithm specifically, the optimization in Eq. (1.13) is posed in terms of the 

inverse Hessian, with equivalent constraints, such that the parameter update vector in Eq. 

(1.9) can be computed directly. 

In terms of implementation, from Eq. (1.14) it is clear that at each accepted (k+1) 

iteration of the minimization, both the new parameter vector and the objective function 

gradient are required at the new parameter location to compute Bk+1 (note that these 

metrics are provided within our history matching algorithms via methods described later 

in the relevant sections of this dissertation). However, the update must be constrained to 

be positive definite so that the resultant direction of search (Eq. [1.9]) is in a descent 

direction. If B is initialized to be positive definite at the start of the optimization, then 

this constraint is guaranteed at all steps k if 0T kk ys . The proof of this statement is 

shown by pre-multiplying Eq. (1.12) by 
T
ks , where Bk+1 is positive definite if the inner 

product 01
T  kkk sBs . In our implementation, Bk=0 is defined as the m  m identity 

matrix. When the objective function surface is not convex, which is typically the case in 

practice, then kk ys
T

 can be negative. In this case, the step length  (Eq. [1.7]) must be 
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constrained to ensure its positivity. This is a primary objective of the BFGS approach.  

In order to describe how this is achieved, a few details of the line search algorithm and 

implementation must first be explained. 

First, at the outset of any given iteration, a step length of unity is selected, and the 

objective function and gradient are computed at the new location. The parameter update 

is accepted if two conditions are met, collectively known as the Wolfe conditions. The 

first requires that a sufficient decrease in the objective function is attained and is 

determined by the inequality 

    kkkkkk cff pfmpm
T

1   ,       (1.15) 

where  1,01c . More specifically, Eq. (1.15) implies that the decrease from point mk is 

proportional to the directional derivative, kk pf
T , by k and must in fact lie below the 

linear function   kkkf pfm
T  throughout parameter space. In application, c1 is 

typically chosen to be << 1 to effectively ensure this condition. The second line search 

condition enforces a parameter update of sufficient distance from the starting point, 

which Eq. (1.15) does not consider, and is enforced by the inequality 

  kkkkkk cf pfppm
T

2
T

  ,       (1.16) 

where  1,11 cc  . Simply stated, the slope of the objective function surface at the trial 

location mk + pk, which is the left hand side of the equation, must be greater than or 

equal to c2 times the slope of the surface at mk. Generally speaking, this condition is 

useful to determine if the step size should be increased if the slope at the trial location 

becomes more negative, or decreased if becoming slightly to strongly positive, thus very 

roughly approximating the convex surface near a local minima. 
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Returning now to the trial step or parameter update at the outset of a given iteration, if 

the Wolfe conditions (which are discussed further below) are not met, then a rather 

complex series of decisions are made based on comparison of both the objective function 

and gradient at the new and previous locations to determine the length of the next trial 

step, which can be backwards or (less commonly) forwards. A general description of the 

multiple conditional scenarios are described in the above-referenced MATLAB® 

documentation, in which it is also stated that the coefficients in Eqs. (1.15) and (1.16) 

are determined in part empirically from algorithmic development using many test cases. 

If the local region of the objective function surface is sufficiently convex, then the 

parameter update vector is immediately accepted following only one or two trials of the 

line search, the step length is re-set to unity, and a new search direction is computed for 

procession to iteration k+1. If non-convex then a cubic polynomial interpolation is 

performed, which requires computation of the gradient at at least three trial locations, to 

locate an acceptable minimum at which 0T kk ys , with k indicating the current iteration. 

This amounts to the location of a sufficiently small gradient term along the polynomial. 

If the line search update kkkk pmm 1  is rearranged for equality with 

kkk mms  1 , then 

 pfpfys
TT

1
T

kkkkk   .        (1.17) 

The gradient term at the (previously selected) kth location, pf
T
k , is always negative; 

therefore, pf
T

1 k  must simply be small enough to ensure that the right hand side of Eq. 

(1.17) is positive. It can also be shown that this condition is in fact guaranteed to hold if 

the Wolfe conditions as stated above are imposed on the line search. 

Finally, as mk approaches a local minimum and the quadratic model become more 

suitable for characterization of the objective function surface, the acceptance rate of the 

update increases and the value of k approaches unity as pf
T
k becomes more accurate. 
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1.2.2.2  Probabilistic Inversion 

The approaches to parameter estimation presented in this dissertation could also be 

applied in a probabilistic framework (Ulrych et al., 2001; Tarantola, 2005) which is 

widely used for uncertainty quantification. The Bayesian approach to stochastic 

inversion seeks to characterize the posterior probability density function (pdf) of the 

unknown parameters by combining observed data (described through a likelihood 

function) with a prior pdf for model parameters (Tarantola, 2005). The analogy to the 

deterministic approach seeks a single solution (e.g., the maximum of the posterior) and 

is limited to simple assumptions for the likelihood and prior (e.g., Gaussian or Laplacian 

pdfs) such that a single mode exists. It also requires that the non-linear forward problem 

can be iteratively linearized and assumes that the prior and likelihood equally contribute 

to the posterior. A more practical alternative is the ensemble methods where the prior 

and posterior pdfs are approximated with a finite number of samples (particles).  The 

main ensemble techniques in subsurface modeling are those that either condition each 

prior sample realization individually on available data (e.g., Sahuquillo et al., 1992; 

LaVenue et al., 1995; RamaRao et al., 1995; Gomez-Hernandez et al., 1997) or those 

that simultaneously update an ensemble of prior sample realizations to generate an 

ensemble of conditional realizations (e.g., Evensen, 1994; Chen and Zhang, 2006; Wen 

and Chen, 2006; Nowak, 2009). A recent review of these techniques can be found in 

Hendricks Franssen et al. (2009). The deterministic approach may be viewed as the 

individual calibration of only one of multiple realizations that together, when combined 

with a likelihood function based on calibration performance, could be used to quantify 

predictive uncertainty as in the GLUE methodology (e.g., Freer et al., 1996). Regardless 

of the conceptual approach to calibration, an effective parameter description such as 

provided by the methods in this dissertation is expected to improve the solution 

procedure. 
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1.3  Parameter Estimation 

Having formally defined the type of history matching problem and the means to the 

solution of m in Eq. (1.4) using a deterministic least-squares formulation, in this 

subsection (1.3) the re-parameterization of m is presented as a method of regularization 

by which the history matching problem becomes more tractable. The broad topic of 

parameterization by linear transformation, which is applied in this research, and its 

general utility in history matching is introduced in Subsection 1.3.1. The application of 

parameterization following the deterministic approach to inversion is then described in 

Subsection 1.3.2. As stated, a single prior geologic model is considered for a history 

match, so the intent of this discussion is to describe how the uncertainty in prior 

information fundamentally determines the manner in which parameterization is applied. 

Last, the general approach of adaptive multiscale parameter estimation is described in 

Subsection 1.3.3 and its suitability for history matching using parameterization by linear 

transformation is verified through a literature review. 

1.3.1  Parameterization by Linear Transformation 

Of the many variants of parameterization methods, this dissertation concentrates on the 

broad class of techniques based on a general linear transformation where the spatial 

parameters are updated in a coordinate system of lower dimensionality that is more 

amenable to their independent estimation. Carrera et al. (2005) review approaches to 

parameterization by linear transformation commonly applied in the petroleum and 

groundwater literature including zonation [also Jacquard and Jain, 1965; Jahns, 1966; 

Chavent and Bissell, 1998; Grimstad et al., 2003], pilot points [also de Marsily, 1978; 

Lavenue and Pickens, 1992; Alcolea et al., 2006] and conditional simulation. They 

succinctly encapsulate all approaches with the general formulation 






m

i

iiv

1

oo uΦvuu         (1.18) 
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where the column vector uo corresponds to a prior model assumption with dimension 

equal to that of the estimable reservoir property field (m), v is a vector of the model 

parameters updated and  is a matrix with columns corresponding to interpolation 

functions that act on v to populate all pertinent cells in the spatial property u. The right-

most term of Eq. (1.18) simply show that the transformation can be computed as a 

weighted linear combination of the matrix columns, where the weights are the estimated 

parameters in the transform domain. Variants of Eq. (1.18) also describe the different 

approaches to linear transformation introduced in this dissertation; however, the matrix 

 is alternatively defined as a linear basis that maps the parameters in v from the 

transform domain in which parameter estimation is performed. These specific forms of 

Eq. (1.18) are presented in the relevant sections below. 

In the application of Eq. (1.18) for history matching, there are three primary 

considerations that require definition: (1) selection of the appropriate basis , (2) 

selection of the reduced number of basis elements or columns of  (relative to the full 

spatial parameter dimension) that are to be applied for geologic characterization, and (3) 

selection of the method of transform parameter estimation. Relative to this research, this 

last point is addressed by use of a deterministic nonlinear optimization and was the topic 

of Subsection 1.2. However, the first two considerations, selection of the 

parameterization basis and the means of model reduction, comprise the remaining focus 

of this dissertation and encapsulate all challenges associated with parameterized model 

calibration. In the remainder of this subsection (1.3.1), linear transform bases commonly 

applied in petroleum reservoir and groundwater model calibration, and the means by 

which they enable a reduced model description, are reviewed. For this a basis is 

categorized as one of two types: constructed from prior geologic information and 

assumptions, or pre-determined and independent of the prior reservoir property model. 
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1.3.1.1  Model-Dependent Transform Bases 

Methods of linear transform dependent on prior model assumptions have commonly 

utilized the parameter covariance matrix. The Karhunen-Loeve transform (KLT) or 

principle component analysis (PCA) has been widely used (Gavalas et al., 1976; 

Karhunen, 1947; Loéve, 1978; Reynolds et al., 1996; Li and Cirpka, 2006; Ma et al., 

2008; Jafarpour and McLaughlin, 2009). In this approach the estimable property defined 

at any grid cell is represented as the linear expansion of the weighted eigenvectors of the 

property covariance matrix. The eigenvectors form the transform basis and are typically 

ranked by their corresponding eigenvalues, from largest to smallest, that are related to 

the variance contribution of each eigenvector to the total parameter variance. The 

expansion is optimal in the mean-squared-error sense among the linear class of 

transformations; therefore, the KLT coefficients present the fewest number of 

parameters that capture the maximum amount of variation for any low-rank 

approximation. Accordingly, the sorted eigenvectors convey larger to smaller scales of 

spatial parameter variation. A limitation of this approach is that in realistic problems 

with high-resolution models, the covariance can be unknown (or uncertain), resulting in 

misleading basis functions when prior model assumptions are incorrect (Jafarpour and 

McLaughlin, 2009). Eigendecomposition of the covariance matrix, required for each 

parameter update, is also prohibitively expensive for high resolution models relative to 

current computational capability. Last, the preservation of moments beyond second-

order (i.e., covariance), as well as complex continuous geologic structures (e.g., channel 

systems), are not guaranteed in the KL expansion during the parameter updates. 

To avoid the expense of eigendecomposition, Li and Cirpka (2006) assume periodicity 

of a random fluctuation in the property heterogeneity used for model calibration, since 

the eigenfunctions of its corresponding periodic covariance are known analytically. The 

corresponding eigenvalues, required for reconstruction of the random function, are then 

computed from a fast Fourier transform. They also generalize the formulation to non-

periodic or unstructured grids by mapping the non-periodic fluctuation to a uniform 
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periodic grid with identical mean and covariance per cell. Sarma et al. (2008) manage 

the expense of eigendecomposition and preserve higher-order statistics representative of 

complex geologic structures by performing the linear expansion in a space of high 

dimensionality, or feature space, in which nonlinear parameter relationships are 

approximately linearized for their uncorrelated updating (see also Section 6). The 

transformation to feature space is performed using a kernel function, with the key 

understanding that application of the kernel function is equivalent to any dot product 

performed in feature space (Schölkopf and Smola, 2002), which in the context of 

parameterization is the forward transform or the action of a basis function on the spatial 

parameter set. A complication with this approach arises for the reverse mapping from 

feature space, known as the pre-image problem, which poses a nonlinear optimization 

problem. The selection of an appropriate kernel function is also subjective, for which 

there are only guidelines, and the correlation of the parameters in feature space cannot be 

inspected. 

1.3.1.2  Model-Independent Transform Bases 

The second category of linear transform bases are model-independent (or generic) and 

therefore rely on a general ability of the basis to efficiently capture and de-correlate the 

information of any function in a low-rank approximation. Two such approaches that 

have recently been applied in subsurface heterogeneity parameterization are the discrete 

cosine transform (DCT) basis (Jafarpour and McLaughlin, 2009) and the discrete 

wavelet transform (DWT) basis (Lu and Horne, 2000; Guan et al., 2004; Sahni and 

Horne, 2005; Jafarpour, 2010), both widely used in image compression (Gonzales and 

Woods, 2002). The DCT, of which there are eight formulations that vary based on the 

assumption of symmetry at domain boundaries, is a type of discrete Fourier transform 

that reconstructs a discrete n-length signal as the sum of n cosine harmonics (Britanak et 

al., 2007). It is the type-II DCT, or DCT-2, that has been applied in the papers cited, a 

technicality that becomes relevant throughout this dissertation. The DWT represents a 

type of basis that, generally speaking, acts as lowpass and highpass filters, or summating 
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and differencing operators, that split the frequency content of a discrete signal into two 

sets of coefficients that represent its low- and high-frequency components without loss 

(Vetterli et al., 2010). One of the DWT‟s main advantages is that the transform 

coefficients simultaneously depict space-frequency resolution permitting representation 

of both smooth and discontinuous spatial features at multiple resolutions. 

The advantages of both the Fourier and wavelet approach are related to the efficiency in 

basis construction and application, optimal compression performance, and adaptation to 

prior model information. The variants of all DCT and DWT bases have analytical 

descriptions and are computed only once for a given estimation problem. The basis 

functions (for either transform) are pairwise orthonormal and therefore the basis inverse, 

required for mapping from the transform to the spatial domain after every parameter 

update, is simply the transpose. For the DCT, maximal compression power results from 

its asymptotic convergence to PCA of a first-order stationary Markov process (Ahmed et 

al., 1974). Approaches to production data assimilation using the DCT also recognize a 

key strength as the ability to capture larger-scales of geologic continuity and hydraulic 

property connectivity in the presence of sparse data with a significantly reduced number 

of parameters (Jafarpour and McLaughlin, 2009). That is, a linear combination of lower-

frequency cosine functions naturally enforces field connectivity structure when 

warranted. For the DWT, optimal compression performance results from its adaptive 

ability to detect and characterize local and global spatial features at different resolutions. 

However, space-frequency localization also presents a limitation in the context of prior 

model assumptions, discussed later in this section. 

In history matching applications, the DCT and DWT parameterizations have been used 

to characterize and calibrate the prior model with a low-rank approximation that captures 

important multiscale and multiresolution features, respectively, that are sensitive to 

production data. The key step of parameter reduction results from the truncation of 

model components in the transform domain that are either shown or assumed to be 

insensitive to the available data. Accordingly, both approaches can benefit from prior 
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information when available by varying the level of model compression or parameter 

reduction, but do not require any knowledge of the prior model for basis construction 

and therefore are not limited to prior assumptions in the case that they may be incorrect 

or uncertain. 

The strengths of the DCT and DWT are, however, coupled with their limitations. The 

DCT, or any Fourier domain representation, does not contain spatial information. 

Updating of a parameter in the transform domain results in a global update of the spatial 

hydraulic property; therefore, the estimation of a local feature in space is dependent 

upon the existence of a suitable linear combination of cosine functions which may not 

exist at a low dimensionality (required for parameterization). Conversely, although the 

DWT is able to update spatial parameters or features locally, the estimation of finer-

scale detail may require additional data types. For example, Lu and Horne (2000) found 

that low-resolution coefficients were identified by production data, but that additional 

seismic information at each grid cell was required to simultaneously resolve finer-scale 

edge information of the coarser scale features. More recently, Jafarpour (2010) used the 

DWT to reconstruct geologic facies from flow data and concluded that the low 

resolution of the data may not allow for full exploitation of the space-frequency 

localization advantage of the wavelets. Regarding practical implementation, both 

traditional Fourier and wavelet approaches are limited to use on uniform structured grids 

due to periodic sampling requirements and have not been applied in the literature to 

irregular corner-point or unstructured grid geometries, although wavelets in general have 

been applied to irregularly discretized signals (Daubechies et al., 1999). 

1.3.2  Consideration of the Prior Model 

An understanding of prior model information is imperative before any form of history 

matching is attempted and, following the previous discussion, the appropriate selection 

of a geologic model parameterization concurrently requires this understanding. The prior 

geologic model can be completely unknown or un-informed, but can also be well-
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informed at high resolution from the integration of multiple static data sources (e.g., well 

logs, seismic surveys, etc.). In this research, prior information in the form of spatially 

continuous geologic features (i.e., porosity, permeability fields) within pre-defined 

structural boundaries, which are assumed known, are considered as the estimable 

parameters. To be clear, parameterization is not applied for the adjustment of the 

stratigraphic or facies structure itself, which falls into the scope of a different intention in 

history matching (Roggero and Hu, 1998; Hoffman and Caers, 2005; Jafarpour and 

Khodabakhshi, 2010; Xie et al., 2010). Therefore, the parameter estimation algorithm, 

regardless of whether a parameterization technique is used, should be adaptive to prior 

model information, as well as to the associated flow and transport behavior (the details 

of such criteria are presented in Section 2). 

In this dissertation, all approaches to parameter estimation are conceptually developed in 

practical consideration of the prior geologic model, again which may be completely un-

informed to well-informed. In the case of an un-informed prior (e.g., a homogenous 

field), the intent of parameter estimation is to identify global features over the complete 

grid or model domain from the production data alone. In the case of a well-informed 

prior, the intention is to minimally update the existing model at locations and spatial 

scales warranted by the production data, and to leave unchanged the field at locations 

either insensitive to or consistent with production data. To provide the flexibility for 

consideration of either case, the parameterization is applied following the approach of 

Eq. (1.18) although using the multiplicative formulation 

Φvuu  o           (1.19) 

where the entrywise product AB of matrices A = (aij) and B = (bij) is aijbij, and uo is the 

prior spatial model. Using this formulation, model updating is performed with a 

multiplier field that is superimposed onto the prior model, at grid cell resolution, with an 

initial value of unity at each grid cell. The multiplier field is characterized in the 

transform domain by a reduced set of spectral coefficients v that represent its scalar 
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projection onto the transformation basis functions, or columns of A. That is, v represents 

the parameters in the transform domain and the product v defines the multiplier field in 

the spatial domain. The specific formulations applied are presented in the relevant 

sections. 

In certain cases, however, where the prior model is too dissimilar to the reference (a 

statement that can only be made using synthetic applications), then a prior multiplier 

cannot be used to achieve a solution and  (in Eqs. [1.18] and [1.19]) must be applied as 

a compression transformation basis. In this case Eq. (1.18) is reformulated as 

Φvu  .          (1.20) 

As introduced in Subsection 1.1, the transformation basis  is used to characterize and 

update the prior model with a low-rank approximation that captures the important, 

typically larger scale, heterogeneity to which the production data are sensitive. 

Therefore, in Eq. (1.20) v represents the scalar projection of the prior model onto basis 

functions that in some manner characterize the important heterogeneity and permit its 

updating by the adjustment of v. Concurrently, parameter reduction is enabled by the 

truncation of spatial features in the prior, to which the data are either shown or assumed 

to be insensitive, by the exclusion of basis functions in  that represent those features. 

1.3.3  Adaptive Multiscale Approaches 

Returning to the structured framework in which the history matching problem was posed 

in Subsection 1.1, and in consideration of the prior model (Subsection 1.3.2), an 

appropriate approach to parameterized history matching is that of adaptive multiscale 

parameter estimation. The motive of this broad class of techniques is to characterize 

geologic features relevant to the data, at spatial locations and scales of interest, to 

achieve a balance between parameter and data resolution while (most importantly) 

reducing the estimable parameter set. This subsection reviews adaptive multiscale 

approaches applied in the literature to establish the suitability of this approach for 
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parameterization by linear transformation, and also importantly to place the 

contributions of this research in context. The applied requirements of this approach for 

use in reservoir model calibration are both presented and exemplified in Section 2 

during a history matching application. 

Adaptive multiscale parameter estimation algorithms, as a rule, rescale the geologic 

model in the spatial domain during some type of iterative sequence, sequentially 

coarsening and/or refining global and local regions of the model based on a pre-defined 

measure. At each step, the „multiscale‟ component enables adjustment of the spatial 

scale over which individual parameters are defined, and the „adaptive‟ component 

enforces these changes in a manner consistent with data sensitivity to the scaled 

parameters. These components together improve the parameter set convergence on a cost 

function surface that increases or decreases in dimension at each step as the set iterates 

toward a local minimum. 

Jahns (1966) performed one of the earliest approaches to adaptive multiscale parameter 

estimation in recognition of the unfavorable influence of over-parameterization and 

parameter correlation on iterative descent behavior and non-uniqueness. He proposed the 

sequential spatial refinement of reservoir parameter groups near wells, suggesting 

guidelines to select the initial scale of parameterization based on the number of data 

available, and terminated the refinement when data misfit updates were below a set 

tolerance. Yoon et al. (2001) also used the approach of uniform global refinement with 

the further aim of achieving a balance between production data and model resolution. 

Then, they conditioned the model to match well data at scales finer than the global 

parameter resolution using a sequential simulation technique based on residuals 

computed at fine-scale measurement locations. 

Subsequent adaptive multiscale methods have been designed to avoid potential over-

parameterization by global refinement and apply a suite of schemes to locally update 

parameter resolution. With the intent of large-scale or global estimation of permeability 
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structure, Grimstad et al. (2004) sequentially refine the number and location of 

parameter zones by selecting at each step the combination that minimizes a quadratic 

misfit or cost function surface. The cost function is efficiently constructed from a linear 

approximation of the data response to parameters and accounts for the influence of data 

error on misfit. Such Adaptive Multiscale Estimation (AME) techniques further require 

strategies for non-uniform grid refinement. The approaches of Chavent and Bissell 

(1998) and Ben Ameur et al. (2002) use the AME paradigm to avoid over-

parameterization at a sequential refinement step by taking advantage of piece-wise 

continuity in parameter zones. They defer to an indicator metric related to the gradient 

contribution per parameter, computed as the sum of adjoint-derived data-misfit 

sensitivities to the immediate-neighbor discontinuity within a refined zone, and retain a 

selected percentage of the most sensitive parameters. Feng and Mannseth (2009) use a 

comprehensive adaptive multiscale approach via a predictor-corrector strategy. The 

predictor step applies AME to develop a coarse and locally refined parameter zonation 

using a linearization of the model output at each refinement step, similar to Grimstad et 

al. (2004), and terminate refinement using a sensitivity-based indicator metric. As with 

the above-mentioned AME methods, the resultant parameter fields may show large 

contrasts in size and parameter values at juxtaposing zones that are inconsistent with 

geologic description, and further do not consider a prior model description, i.e., the 

approaches assume an uninformed prior. These issues are mitigated by the corrector step 

of Feng and Mannseth (2009). They first downscale the estimable property to a smoothly 

varying field consistent with the prior model and well data using a conditioning step of 

Kriging at the gridblock scale, similar to the conditioning step of Yoon et al. (2001). 

Then, a second step of data-misfit minimization is performed at the gridblock scale, 

using a low-order description of the parameter field with smoothly varying basis 

functions related to the prior covariance model, to correct production data misfit 

degraded from Kriging. Although complex, the predictor-corrector scheme is an 

improved data-driven multiscale approach that combines adaptive local refinement and a 
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refinement termination criterion while honoring hard and dynamic data at any scale 

down to the grid cell. 

1.4  Research Objectives and Dissertation Contributions 

The motive of this research is to expand upon the current state of the art in 

parameterization by linear transformation for history matching. In addition to theoretical 

developments, an emphasis is placed on the development of parameterization methods 

that are applicable to large reservoir models, on par with current industry standards and 

computational modeling capabilities, and also varying levels of prior geologic 

complexity. 

There are three primary components of this research. First in Section 2, the DCT 

parameterization is applied in a novel adaptive multiscale history matching workflow in 

the frequency domain. The algorithm performs sequential model refinement by the 

addition of DCT basis elements that represent finer-scale spatial details, enabling the 

successive refinement of heterogeneity up to a spatial scale sufficient to match the 

observed data. Key contributions are the application of quantitative measures to 

demonstrate improvement of iterative solution convergence, and the achievement of a 

balance between model and data resolution. The results establish the validity of the 

proposed adaptive multiscale algorithm in the frequency or spectral domain, which is 

employed in some form throughout this dissertation. 

In Section 3, a new model-independent basis constructed from grid-connectivity 

information is developed as a generalization of the DCT basis. The term „generalized‟ 

refers to the parameterizations generic applicability to any grid structure and domain 

geometry. The development of the grid-connectivity-based transform (GCT) basis 

begins from first principles, merging discrete Fourier analysis and spectral graph theory. 

The basis functions represent the modal shapes or harmonics of the grid, are defined by a 

modal frequency, and converge to the DCT for certain grid geometries and boundary 

assumptions; therefore, reservoir model calibration is performed in the spectral domain 
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and merges with a Fourier analysis in ideal cases. Using an adaptive multiscale 

workflow, the GCT parameterization is successfully applied for history matching of 

several synthetic and semi-synthetic reservoir models of varying geometry and geologic 

complexity, and also of a field case in Section 4. An effort is made to highlight the 

several properties of the GCT basis for which it has a practically efficient construct and 

application. 

As the final research component of this dissertation, Section 5 presents the development 

of a more complex, and also to some extent heuristic, model-dependent transformation 

basis as a special case of the model-independent case (i.e., the GCT). To achieve this, 

grid connectivity is combined with prior model information within an adjacency metric. 

The adjacency information is then transformed to the spectral domain for construction of 

the parameterization basis. The definition of cell adjacency is general for any grid 

geometry and type of prior model heterogeneity; therefore, the adjacency-based 

parameterization retains the same flexibility in application as the GCT. The inclusion of 

prior information into the parameterization can be increased when prior information is 

well informed, and on the contrary when prior information is un-informed or too 

uncertain, the adjacency measures that control the influence the prior incorporation can 

be relaxed to the point that the transform basis reverts to the GCT basis, or to an 

effectively model-independent parameterization. Several examples of this flexibility are 

demonstrated, and guidelines are proposed for construction of the parameterization basis 

for generic geologic heterogeneity. In history matching implementation, the 

parameterization is shown well suited for application in an adaptive multiscale 

workflow, and applications are presented that show the strengths as well as limitations of 

the parameterization. 

Section 6 concluded this dissertation with a summary of the key results of the research 

developments and applications in Sections 2 though 5. Recommendations and proposals 

for further research, extending from the concepts presented in Section 5, are also 

presented. 
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2.  THE DISCRETE COSINE TRANSFORM PARAMETERIZATION: 

ADAPTIVE MULTISCALE HISTORY MATCHING
*
 

2.1  Summary 

History matching problems are typically underdetermined and are at once confronted 

with the problems of solution non-uniqueness, instability, and the requirement to both 

reproduce field observations and provide reliable forecasts. We address these challenges 

with an adaptive multiscale history matching formulation that parameterizes the 

reservoir properties in the frequency domain. The geologic model updating is carried out 

by successively increasing the level of detail up to a spatial scale sufficient to match the 

observed data. Our method begins by constructing a coarse representation of the field 

using the lowest-frequency components of its discrete cosine parameterization. This 

substantially reduces the number of unknown parameters to be resolved during history 

matching, leading to a better posed inverse problem. A gradient-based minimization is 

then performed to match the production data. Next, the updated model is incrementally 

refined in the frequency domain and the minimization is repeated until the data misfit is 

reduced below a pre-specified criterion or until no further improvements are observed. 

During minimization, components of the gradient insensitive to production information 

are removed by a truncated singular value decomposition (TSVD), facilitating iterative 

convergence and providing additional regularization. In this manner a balance is 

achieved between parameter reduction which is required for stability, and the spatial 

resolution of heterogeneity required for reproduction of the production history. The low-

frequency approximation of the permeability field helps to honor geologic continuity and 

is particularly suited for resolving the large-scale heterogeneity that has a dominant 

influence on the field-scale flow regime and production response. Applications of the 

____________ 

*
Part of this section is reprinted with permission from “An Adaptively Scaled 

Frequency-Domain Parameterization For History Matching” by Bhark, E., Jafarpour, B., 

Datta-Gupta, A., 2011. Journal of Petroleum Science and Engineering. 75 (3-4), 289-

303. Copyright 2011 by Elsevier. 

http://www.sciencedirect.com.lib-ezproxy.tamu.edu:2048/science?_ob=ArticleURL&_udi=B6VDW-51P9T9N-1&_user=952835&_coverDate=01%2F31%2F2011&_alid=1712016254&_rdoc=1&_fmt=high&_orig=search&_origin=search&_zone=rslt_list_item&_cdi=5993&_sort=r&_st=13&_docanchor=&view=c&_ct=1&_acct=C000049198&_version=1&_urlVersion=0&_userid=952835&md5=0c79d3f9d57c5007da2bc7f212e55338&searchtype=a
http://www.sciencedirect.com.lib-ezproxy.tamu.edu:2048/science?_ob=ArticleURL&_udi=B6VDW-51P9T9N-1&_user=952835&_coverDate=01%2F31%2F2011&_alid=1712016254&_rdoc=1&_fmt=high&_orig=search&_origin=search&_zone=rslt_list_item&_cdi=5993&_sort=r&_st=13&_docanchor=&view=c&_ct=1&_acct=C000049198&_version=1&_urlVersion=0&_userid=952835&md5=0c79d3f9d57c5007da2bc7f212e55338&searchtype=a
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approach are demonstrated using the SPE10 and PUNQ-S3 models and involve 

waterflood history matching with water-cut and bottom-hole pressure data. Our results 

show that the principle geologic features of the reference field are adequately resolved 

only if we begin at low resolution. As the resolution is iteratively increased, the history 

match is improved while the TSVD step removes insensitive parameter combinations 

thereby decreasing the likelihood of convergence to less plausible local minima. 

Notably, in all our applications an adequate history match is achieved using less than one 

percent of the original parameter dimension, which leads to increased solution stability 

and computational savings in history matching large geologic models. 

2.2  Introduction 

It is understood that the integration of production data into a high-resolution, 

heterogeneous reservoir model involves an underdetermined and ill-posed inverse 

problem that can result in non-unique and potentially unstable solutions. In this section, 

these challenges are at once addressed using a multiscale, frequency-based 

parameterization of the calibrated heterogeneity in an adaptive history matching 

workflow in which the scale is refined to a level of spatial detail justified by the data 

content. Our approach is motivated by the previous development of adaptive approaches 

to parameterization in solving subsurface inverse problems for petroleum reservoirs and 

groundwater models. In this context, the fundamental role of parameterization is to 

describe the geologic model by a reduced number of parameters to remove parameter 

redundancy while retaining important features of the model. 

A review of adaptive multiscale parameter estimation algorithms was presented in 

Subsection 1.2.2. To reiterate the key points of this discussion, the purpose of adaptive 

refinement steps is to improve the parameter set convergence on a cost function surface 

that increases in dimension at each refinement step as the set iterates toward a local 

minimum. Adaptive multiscale approaches, as a rule, rescale the geologic model in the 

spatial domain, sequentially coarsening and/or refining global and local regions of the 
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model based on a pre-defined measure. We posit, and aim for in this analysis, that a 

comprehensive and practical multiscale history matching algorithm should incorporate 

the following three elements: 

(1) The ability to integrate diverse sources of data available for reservoir parameter 

estimation including dynamic data (e.g., production data), hard data (e.g., well log data) 

and qualitative geologic interpretation. 

(2) The capability to adaptively refine regions of the model based on sensitivity to the 

aforementioned data. 

(3) A termination criterion that achieves the level of regularization at which the 

estimable parameters cannot be resolved by the data. 

In this section (2) we introduce a data integration approach that is consistent with 

varying levels of uncertainty in the prior model by characterization of the reservoir 

model in the frequency domain via the discrete cosine parameterization. Similar to the 

above methods, the inverse problem is implicitly regularized by reducing the estimable 

property field to a coarse or low-frequency approximation, and then is adaptively refined 

to a scale at which model and data resolution are balanced as indicated by an 

identifiability metric related to parameter resolution. The compression power of the 

transform permits a description of the model with a significantly reduced number of 

parameters without incorporating irresolvable fine-scale detail. This decreases the 

likelihood of converging to a local minimum related to high-frequency features and also 

permits additional regularization using efficient singular value decomposition of the 

parameter sensitivity matrix. The cosine parameterization is further able to enforce 

continuity, when warranted, in geologic features during model updating without 

introducing unnatural (e.g., blocky) model descriptions that typically result in spatial 

multiscale methods. The approach in general is applicable with and without prior 

models. That is, the method can be applied to estimate unknown global features or to 

minimally update a reservoir model that is already well-defined from other data sources. 
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Last, the method is directly amenable to uncertainty analysis when we consider finer 

levels of detail that cannot be resolved by observations. One way to achieve this goal is 

to use a null space projection analysis. At the solution, local uncertainty can be 

superimposed on the larger-scale reservoir model, within a Monte Carlo framework, in 

order to quantify the local uncertainty around the minimum into which the solution has 

converged. The entire method can be incorporated in a straightforward workflow using a 

commercial simulator. 

In the following subsections, the history matching workflow is first outlined at a high 

level and then individual components of the workflow and their implementation are 

described in detail. The method is demonstrated with a synthetic case where each step of 

the workflow is presented and its utility highlighted. Following a two dimensional 

example, we apply the method to the top five layers of the SPE10 reservoir model to 

demonstrate the effectiveness of the multiscale parameterization approach for solving 

large-scale ill-posed inverse problems. Finally, we history match the PUNQ-S3 reservoir 

model to both demonstrate the practicality of the method and compare our results with 

those from several other papers. We also demonstrate the efficacy of our approach to 

local uncertainty analysis in a production forecast. 

2.3  Methods 

This subsection presents the primary steps of the proposed history matching workflow 

(see the figure on page 31). The method follows a deterministic formulation in which a 

single prior or conceptual geologic model is constructed using all available data and then 

updated via history matching as production data become available. In our formulation, 

the history match consists of minimizing a cost function, presented below in Subsection 

2.3.2, involving the misfit between measured and simulated data by tuning one or more 

estimable reservoir parameters, permeability and porosity in our applications. When a 

standard grid-based spatial description of parameters is used the inverse problem is ill-

posed and requires regularization in the form of prior knowledge. Common forms of 
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prior information typically used include explicitly defined geologic property models 

generated from geostatistical integration of static data, direct or indirect measurements 

of the parameters (e.g., hard data at well locations), or spatial constraints based generally 

on natural geologic continuity, e.g., a smoothness term (Carrera, 1987; Tikhonov and 

Arsenin, 1977; Yeh, 1986). In the approach we have adopted, a deterministic least-

squares formulation penalizing deviation from the dynamic and static (when they exist) 

data misfit is used (Datta-Gupta and King, 2007; McLaughlin and Townley, 1996; 

Menke, 1989; Tarantola, 2005). Here, inclusion of prior knowledge for regularization is 

completed implicitly by providing a coarse description of the reservoir model via 

parameterization. This approach avoids subjective weighting of a prior model term 

explicitly defined in the cost function (Doherty, 2003; Feng and Mannseth, 2009; Parker 

1994). 

It is useful to appreciate an important and powerful property of the discrete cosine 

transform (DCT) parameterization. Generation of the DCT basis does not require, but 

can benefit from, prior knowledge about the property field that includes all static and 

geologic information. Being a generic image compression transform (Gonzales and 

Woods, 2002), the DCT basis is constructed simply from harmonics of the cosine 

function (without needing prior knowledge) and is capable of reducing a significant 

number of spatial parameters while preserving the essential information in a model. 

Therefore, the prior description may vary from completely uninformed to well-informed 

and, together with production data, determines the initial level of parameter compression 

required for model updating. Typically, as more geologic information is available, 

higher-frequency detail in the estimable property is better resolved (assuming sufficient 

data resolution) and less DCT compression is required. Independent of the level of 

parameter compression, the method is amenable to uncertainty analysis of the updated 

geologic properties at all spatial scales. 

The workflow in Fig. 2.1 (1) begins with the definition of the initial geologic model or 

estimable parameter set. In (2) the parameter set is redefined in the frequency domain 
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using the DCT and its low-frequency approximation is constructed by the truncation of 

high-frequency parameters in the transform domain. The level of truncation is related to 

knowledge and confidence in the prior model and also to sensitivity of the production 

data to the DCT coefficients. At the current spatial scale or level of detail, the field is 

next history matched in (3)-(5) using an iterative gradient-based scheme. The transform 

between the spatial and frequency domains is performed at each iteration to generate 

simulated observations during the history matching. Also during each iteration, the 

inversion is stabilized by re-definition of the parameter sensitivity matrix in its compact 

form (4). When a minimization stopping criterion is achieved in (5), we test in (6) if 

either data misfit satisfies a tolerance criterion or if the transform parameters are no 

longer able to be resolved by the production data, the latter step also evaluated against a 

metric. If the answer to either is yes, the workflow is complete. If the answer to both is 

no then the next highest harmonic or level of detail is added to the parameter set in the 

frequency domain and the geologic model is returned to gradient-based minimization. 

The following subsections now explain each step. 

 

Fig. 2.1. Flowchart of the adaptive multiscale history matching workflow. 
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2.3.1  Discrete Cosine Parameterization 

The DCT is a Fourier-based transform designed for signal decorrelation (Britanak et al., 

2007) and commonly used for data compression (Gonzales and Woods, 2002). Jafarpour 

and McLaughlin (2008) recently introduced the DCT for parameterization of spatially-

distributed reservoir properties and have applied it to production data integration. When 

characterized in the frequency domain using the DCT, high-frequency components of 

the reservoir properties insensitive to production data can be removed from the 

estimation problem for a considerably high level of parameter reduction. Thus, the 

primary strengths of this parameterization reside in its ability to reduce the model size 

while retaining larger-scale geologic features, along with the benefits associated with 

frequency domain analysis.  This section introduces the DCT with a focus on its 

suitability for history matching. 

Any practical transform-based parameterization method should be computationally fast, 

maximize information content in the fewest number of transform variables and have 

uncorrelated variables in the transform domain. Transformation by the theoretical 

principle components analysis (PCA), i.e., when the theoretical covariance matrix for the 

model is perfectly known, is optimal in the sense that it yields the lowest root-mean-

square error among all K-term linear approximations (Britanak et al., 2007); however, 

the transform is performed on the parameter covariance matrix which is rarely known in 

practice and the transformation basis is computationally expensive to construct for large 

models as well as misleading if prior model assumptions are incorrect (Jafarpour and 

McLaughlin, 2009). Also, complex geologic features often cannot be adequately 

described using a two-point correlation function. In pursuit of a generic (predetermined), 

input-data independent and decorrelating basis for image compression, the DCT basis 

was initially developed to approximate the PCA basis for a first-order stationary Markov 

process, representative of an auto-regressive process (Ahmed et al., 1974). 

Consequently, the analytical form of the DCT basis is independent of the model to be 

parameterized and is preconstructed off-line, and only once, for a given history-matching 
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problem. Unlike PCA, it does not require the often uncertain prior assumptions required 

to construct a parameter covariance matrix. 

The DCT basis consists of real cosine functions, so the complexity associated with the 

imaginary components of the discrete Fourier transform (DFT) is avoided. For a two-

dimensional Nx × Ny-gridblock reservoir property field where each gridblock represents a 

single estimable parameter u(x,y), the two-dimensional DCT v(r,s) has the following 

form (Gonzales and Woods, 2002): 
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form for Ny and (s) (note for later presentation that the variable t is used to denote 

cosine harmonics in the vertical orientation). Just as the one dimensional transform is 

extended to two dimensions in Eq. (2.1) as the product of cosine functions, the transform 

is readily extended to three dimensions by including a third cosine term. However, using 

the separability property of the DCT basis, transformation of a multidimensional signal 

can be computed as a sequential application of one-dimensional transformations. The 

full-rank transform is lossless, resulting in an equivalent number of transform variables 

v(r,s), or DCT coefficients, as the dimension of the original signal. However, a 

significantly reduced parameterization can be obtained when high frequency detail 

coefficients are eliminated. The retained DCT coefficients in the parameterization, with 

a value corresponding to the amplitude of its associated cosine function, are the 

estimable parameters in the transform domain. 

For an N-length signal, direct construction of the basis by Eq. (2.1) requires N
2
 

operations which, although costly, is acceptable because it is computed only once for a 

given parameter set. The DCT bases may also be computed with a fast Fourier transform 
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(FFT) in approximately Nlog2N operations. When the geologic model is sufficiently 

large, on the order of tens-of-thousands to millions of gridblocks, that the complete basis 

exceeds storage capacity, then the separability property of the DCT can be used to 

perform the transform one dimension at a time for a reduction in memory requirement. 

However, rather than constructing the complete basis, if only a few of the leading basis 

functions (from low to high frequency) are required for parameterization, then the 

analytical solution in Eq. (2.1) can be used to construct only those relevant functions for 

a considerable reduction of computational complexity. 

In this analysis the DCT basis is applied in its matrix form Φ , where v and u are defined 

above and are represented here as vectors. The cosine basis functions correspond to the 

columns of Φ  and are orthogonal.  That is, 

ΦvuuΦuΦv  1T
.       (2.2) 

For history matching, parameter reduction is performed by removing from the estimation 

problem those basis vectors (or columns) of Φ  that correspond to high-frequency cosine 

functions to which the production data are, in general, insensitive, resulting in the 

truncated basis Φ
~

. Fig. 2.2 shows a two-dimensional representation of the sixty-four 

DCT basis vectors that would be used to transform an 8 × 8-gridblock reservoir. The 

basis images are customarily arranged according to their orientation and frequency in a 

descending order from upper left to lower right in the 2D case (e.g., [Gonzales and 

Woods, 2002; Jafarpour and McLaughlin, 2009]). The inclusion of only lower-frequency 

bases Φ
~

 in Eq. (2.2) results in better preservation of geologic continuity and reduces the 

dimension of estimable parameters in v. 
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Fig. 2.2. DCT basis images for a 2-D 8 × 8-gridblock model. The bases are arranged according to their 

spatial orientation (e.g., vertically, horizontally) and from low to high frequency in a descending order 

from upper left to lower right. 

 

 

 

2.3.2  Multiscale Parameter Estimation 

The utility of our approach to history matching is in the selective identification of the 

DCT basis functions required to characterize the geologic model. The first step is to 

parameterize the initial model by a small set of the lowest-frequency basis vectors in 

each spatial orientation. This initial level of truncation is determined from knowledge 

and confidence in the prior model. At the one extreme of a completely uninformed prior 

it may be reasonable to initially characterize the model by only a single DCT coefficient, 

corresponding to the constant basis vector (upper-left corner of Fig. 2.2) that would 

capture the global mean of the field after an inversion. At the other extreme of high 

confidence in the prior model, truncation of the initial model is performed only to the 

extent that some measure of dynamic behavior is honored given the corresponding 

reduction of spatial detail. Both types of approach are demonstrated in this paper. 
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Once defined, the low-frequency approximation of the initial geologic model is updated 

by minimization of an objective function J(v) that considers the squared l2-norm of 

nonlinear dynamic data misfit as well as static data misfit related to observations at 

gridblocks, or 

       
2

2

2/1
2

2

2/1
staticwmobstd ggJ dvΦCdvΦCv        (2.3) 

where g(u) is the nonlinear model relating parameters to observations, dobs is the 

dynamic data vector, and Cd and Cm are the weight matrices that determine the relative 

importance of the elements in the observation and model vectors, respectively (note that 

we have adopted a notation that is consistent with the probabilistic formulation of the 

problem where these weights correspond to covariance matrices). When multiple data 

types with different units and magnitudes are considered in Eq. (2.3), for example water 

production rate and well pressure, the weights along the diagonal of Cd are set equal to 

the datum variance of the corresponding observation misfit. The actual variance per 

datum is unknown in practice and may have multiple sources; therefore, in this analysis 

we assume that the variance associated with each datum is equal to the total data 

variance corresponding to the observation type. The matrix t is the truncated DCT 

basis, dstatic is the static data vector corresponding to measurements at individual 

gridblocks, w 
contains the rows of the truncated basis t corresponding to those 

gridblocks, and  assigns the relative importance to the static misfit term. Note that in 

our examples a misfit term penalizing deviation from the prior model is not included, for 

reasons presented in the following section. 

When J(v) converges at the current scale and data misfit remains unacceptable, the 

parameter set is increased by adding those DCT coefficients corresponding to the next 

highest frequency in each orientation (i.e., x, y and z directions). That is, the next-

highest level of spatial detail is added to the parameter set. In a two-dimensional 

problem, this is equivalent to adding one row and one column of basis functions (as in 
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Fig. 2.2) to t and w in Eq. (2.3). The introduced coefficients are assigned a small 

nonzero value to permit continuous differentiation and do not impact data misfit until 

subsequent iterations when the magnitude of sensitive coefficients increase. 

We recognize that the addition of higher frequency basis vectors can be alternatively 

implemented through a selective procedure, where sensitivity information or solutions 

from previous iterations are used to guide the basis element selection, and have 

considered three such approaches. One alternative presumes that a space-frequency 

relationship exists between the transform parameters, as exists de facto for the variants 

of the discrete wavelet transform (Strang and Nguyen, 1996), where higher-frequency 

parameters are recursively related to lower-frequency parameters in a given spatial 

orientation. Such an approach has been empirically applied for image compression using 

the DCT (Xiong et al., 1996); however, we did not observe an exploitable spatial 

relationship in the DCT coefficient spectrum of reservoir parameter fields. A second 

alternative simply involves a pre-minimization screening procedure in which newly 

incorporated basis functions are added to the model description only if shown sensitive 

in relation to data misfit. This approach requires definition of a subjective sensitivity 

threshold and can be an ambiguous indicator of parameter refinement in the case of 

sensitivity dependence on solution location. We have observed that exclusion of basis 

functions using a sensitivity cutoff computed at a single location on a nonconvex 

response surface may fail to identify important basis functions at later iterates. A third 

approach to adaptive parameterization takes advantage of the potentially compact or 

“sparse” model description in the transform domain. Rather than sequentially 

incorporating spatial detail into the model, all levels of detail or all parameters are 

evaluated simultaneously using a regularization term that effectively promotes the 

removal of redundant parameters, as implied by available observations, from the 

estimation problem (Jafarpour et al., 2010; Li and Jafarpour, 2010). This method is 

currently being researched. 
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In consideration of these alternatives, as a robust solution we have added the basis 

elements uniformly with respect to spatial orientation and used the truncated singular 

value decomposition (TSVD) to implicitly incorporate more sensitive basis vectors, 

ensuring a sensitivity matrix of full column rank by removing insensitive parameter 

combinations. Then, after improvement in the level of spatial detail, J(v) is again 

reduced in an inversion. We refer to each step of spatial refinement and minimization as 

a single multiscale loop (Fig. 2.1). The cycle is repeated until data misfit is acceptable or 

until the parameters can no longer be resolved or identified by the observation data. To 

appreciate the basis upon which we conceptualize parameter identification the 

minimization method must first be presented. 

2.3.3  Numerical Parameter Estimation 

During inversion within a multiscale loop, data misfit in J(v) is iteratively minimized 

using the gradient-based BFGS quasi-Newton method (Nocedal and Wright, 2006). The 

gradient with respect to parameters in the physical or spatial domain is constructed using 

the corresponding parameter sensitivities made available from a commercial reservoir 

simulator using its built-in adjoint method (Schlumberger, 2009). The gradient is 

computed with respect to parameters in the DCT domain by the chain rule of 

differentiation as follows: 

 

         staticwmstaticwobstdobst gg

JJJ

kvΦCkvΦdvΦCdvΦ

v





 1T1T

21


 

   

  
 

  wmstaticwtdobs

wt

g
g

JJJJ

d

dJ

ΦCduΦ
u

u
Cdu

v

vΦ

uv

vΦ

uv

u

uv

u

uv

1T1T

2121

22  


















































.   (2.4) 

Because the inversion at a given spatial scale is based on data misfit reduction alone, it is 

necessary to examine the conditioning and ill-posedness of the inverse problem to assess 
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solution stability and uniqueness. The solution may in reality converge to a non-optimal 

local and potentially unstable minimum. Further, when using a gradient-based scheme, 

insensitive parameter combinations and also correlated parameters should be removed 

before calculating the gradient direction and parameter update step size. We apply two 

approaches of implicit regularization to simultaneously address these issues. 

First, the DCT-based reduction of the parameter vector length improves ill-posedness 

and stability by establishing a nearly even- if not overdetermined inverse problem. The 

low-frequency or lower-order approximation of the model may result in solution bias; 

however, the tradeoff is that the solution is more likely unique (Aster et al., 2005; Vasco 

et al., 1997) and that a finer description of the solution may not be justified given the 

spatially averaged nature of flow observations. Further, the solution is implicitly 

stabilized by the superposition of low-frequency cosine functions, weighted by the 

estimable DCT coefficients, as described in the preceding subsection. 

Second, insensitive parameter combinations are implicitly removed from the inversion 

by using the compact form of the sensitivity matrix, constructed from TSVD, prior to its 

implementation in the gradient in Eq. (2.4). This is performed at each iteration as the 

sensitivity matrix is updated. If the singular value decomposition (SVD) of the weighted 

sensitivity matrix is 

 
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      (2.5) 

where G is the sensitivity matrix, then the compact and more stable (well-conditioned) 

representation of it is T

111 VSU . A condition number of 100 is specified to distinguish the 

model and null spaces V1 and V2, respectively. Although impractical to perform at each 

iteration when the parameter dimension is large, the reduced DCT parameterization 

makes Eq. (2.5) feasible. 
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2.3.4  Adaptive Parameter Estimation 

The adaptive inclusion of higher-frequency DCT coefficients during successive 

multiscale loops is based on parameter identifiability from the data; there is a level of 

spatial detail beyond which the coefficients become insensitive and contribute minimally 

to the solution. Even worse, ad-hoc perturbation of insensitive DCT coefficients can lead 

to artifact features (e.g. high frequency oscillations) in the solution that may not be 

geologically plausible. The sensitivity threshold is identified from analysis of the SVD 

of the weighted parameter sensitivity matrix in Eq. (2.5), per iteration, that describes the 

linear change in simulated observations with respect to the estimated DCT coefficients. 

The columns of V1 define the orthogonal basis for the model space, or resolvable linear 

parameter combinations, and the columns of V2 define the orthogonal basis for the null 

space. The delineation between model and null space is based on a specified condition 

number (that may differ from that used in the TSVD application described in the 

preceding subsection). The dominant components of the columns of V1 indicate the most 

sensitive parameter combinations per iteration. Accordingly, the ability to locally resolve 

each individual coefficient can be quantified by an identifiability index, following the 

nomenclature of Doherty (2008), defined as  





p

i

iiI
1

2

,1V           (2.6) 

or the sum of squares of the ith component across the standardized basis vectors 

spanning V1. The minimum and maximum possible values of Ii are 0.0 and 1.0, 

respectively. When for parameter i the identifiability equals 1.0, then that parameter has 

a zero projection onto the model null space and is therefore perfectly resolved by the 

data, and any error associated with the estimate of parameter i is from data noise alone 

(Aster et al., 2005). During minimization, when the index drops below some threshold at 

a given scale and becomes nearly constant, the inversion is terminated and the parameter 

solution achieved. 
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2.3.5  Uncertainty Analysis 

The adaptive refinement in spatial details ends when the parameter set loses sensitivity 

to observation data and the existing parameter set corresponds to a converged  (in 

general local) solution. Levels of detail at finer spatial scales exist in the true (unknown) 

solution but can only be characterized as uncertainty relative to the observation data 

available. We propose to add fine scale or high-frequency detail representative of local 

uncertainty to the global solution. This is accomplished within a Monte Carlo framework 

and in a manner insensitive to data misfit in order to assess parameter non-uniqueness 

and ultimately production uncertainty. The analysis is comparable to local perturbations 

to characterize the „valley‟ of the objective function minimum into which the solution 

has converged. 

A review of approximation-based approaches to solution uncertainty evaluation in 

nonlinear inverse problems is presented in Oliver et al. (2008). Within the 

comprehensive framework presented, our approach is similar to methods in which a 

stochastic component of estimation error is added to a smooth model solution that 

satisfies the data, e.g., Linearization about the Maximum A Posterior model 

(LMAP). This enables the generation of multiple conditional realizations for evaluation 

of solution non-uniqueness and production uncertainty. The estimation error is 

constructed as a linearized approximation using the sensitivity matrix at the solution, or 

is based on a Taylor expansion in the locality of the global estimate. Our approach 

similarly utilizes a linear error approximation to assess solution uncertainty. However, 

we introduce error at a spatial scale finer than the solution and that cannot be resolved by 

the data, or stated differently, by adding high-frequency parameter variation onto the 

lower-frequency solution. Conditioning is accomplished without additional data-misfit 

minimization by adding only the null space component of model error to the solution 

(Tonkin and Doherty, 2009). 
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The model null space is defined by linear parameter combinations insensitive to the data 

and orthogonal to the solution space (Aster et al., 2005), so parameters reintroduced 

within this subspace do not deteriorate the objective function barring two exceptions that 

are cited below. At the solution, the weighted sensitivity matrix GC
2/1

d
 is computed 

where the number of columns in G  reflects the dimension of the lower-frequency 

solution r plus the number of high-frequency coefficients being introduced.  It is 

important to understand that the sensitivities are computed at the solution using this 

expanded parameter set. The newly-introduced DCT coefficients are assigned a zero 

value, so the expanded solution set is effectively identical to that of the lower-

dimensional set. The model and null space are then identified, and local uncertainty is 

introduced to the solution by adding to it the null space projection of the high-frequency 

coefficients. In other words, higher-frequency cosine functions are being reintroduced to 

the geologic model in a manner that is consistent with data misfit and lower-frequency 

features. If rhf is the column vector of high-frequency coefficients introduced and rcf is 

the update vector expanded to the full parameter dimension, i.e., rcf  = [0
T
 rhf

 T
]

T
 where 

the zero vector has the solution dimension length(r), then the null space projection rproj 

is computed as 

cf

T

proj rVVr 22          (2.7) 

and the final updated solution rupdate is 

  proj

TTT

update r0rr          (2.8) 

where the zero vector in Eq. (2.8) has dimension length(rhf). 

The Monte Carlo approach involves the generation of multiple, randomly-populated 

realizations of rhf to compute multiple updated models rupdate. The components (or DCT 

coefficients) of rhf are populated by sampling from coefficient distributions, which may 

or may not be known, and may also honor the correlation between coefficients if known. 
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The implication that data misfit will not deteriorate by the addition of these parameter 

combinations sometimes fails in practice when the singular value spectrum decreases 

gradually and/or when the objective function surface is locally nonlinear at the solution 

in one or more dimensions. Practical details of this method are presented below for a 

forecast uncertainty analysis in the PUNQ-S3 case. 

2.4  Applications 

We demonstrate the application and advantages of the adaptive multiscale approach 

using two synthetic cases. First, we history match permeability in both a single layer 

(2D) model and five-layer (3D) model using the SPE10 reservoir to substantiate the 

approach and chronologically present the methodology in detail. These cases are also 

intended to show the utility of the method when the prior model is either ill- or well-

informed. Next we illustrate the practicality of the approach using the PUNQ-S3 

reservoir model which replicates a mature field case where the data are more varied and 

prior geologic knowledge is better understood. Here we also demonstrate the approach to 

local uncertainty analysis in a production forecast. The model equations for all cases 

describe two-phase (oil, water) or three-phase (oil, water, gas) incompressible, 

immiscible flow with fluid behavior given by the black-oil equations using the ECLIPSE 

simulator (Schlumberger, 2009). 

2.4.1  SPE10 Top Layer 

A history match is performed on a two-dimensional, 13,200-gridblock isotropic 

permeability field under a two-phase blackoil waterflood simulation with 15 injectors 

and 8 producers. The reference field, based on the SPE10 Model 2 (SPE Comparative 

Solution Project) top layer, and well pattern are shown in Fig. 2.3A. Using the reference 

field, a synthetic observation dataset is constructed consisting of injection-well bottom-

hole pressures (BHP) and water and oil production rates measured at six time intervals 

over a 1,800-day production schedule. The history match is initiated with the 

permeability field in Fig. 2.3B which has correlation lengths similar to those of the 
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reference field but clearly different trends. Therefore, this case tests if the trends and 

continuity of geologic heterogeneity can be identified from production data when the 

prior is incorrect. 

History matching begins with a coarse representation of the initial field as a result of low 

certainty in the prior model. The parameter dimension is reduced from 13,200 gridblock 

permeabilities to only 27 DCT coefficients based on a subjective, static measure of 

regional continuity. The approximated field, shown in Fig. 2.3C, is excessively 

smoothed to permit a large-scale update of the prior but retains its dominant 

heterogeneity features and continuity at the global scale. Fig. 2.4A shows rapid objective 

function convergence through minimization at the first multiscale loop and Fig. 2.4B 

shows the 27-parameter solution. At this frequency the large-scale features of the 

reference field are captured with better solution stability. 

 

 

 

 

Fig. 2.3. The (a) reference permeability field based on the top layer of the SPE10 reservoir model, the (b) 

initial permeability field and (c) its coarse approximation used at the start of the history match, and the (d) 

history matched field. Grid block dimensions are dx × dy = 10 × 20 ft. 
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Fig. 2.4. History matching results at completion of the first multiscale loop. The permeability model in (b) 

is fully described by 27 DCT coefficients. 

 

 

 

At the solution the parameter identifiability index in Fig. 2.4D is shown for each DCT 

coefficient. The spatial representation of each coefficient index corresponds to its spatial 

frequency as exemplified in Fig. 2.2. The indices are close to unity because the 

parameters are well resolved by the data and support further spatial refinement. An 

important comment is required at this point regarding the DCTs ability to de-correlate 

the permeability field as it is directly related to the stability and uniqueness of the 

solution even at this coarse level. Fig. 2.5 shows the individual coefficient contributions 

to the first 10 rows of matrix V1. No single coefficient or subset of coefficients defines 

any of the basis functions, but rather several coefficients contribute in each case. This 

indicates that the best-resolved coefficients (indicated by the identifiability index) are 

correlated and therefore cannot be uniquely determined during the inversion. Correlation 

also degrades the minimization scheme as the columns of G  lose their linear 

independence and GCG
1

d

T   becomes singular, resulting in an ill-conditioned problem. 

This latter point is critical for convergence and demonstrates the utility of the TSVD step 

to enforce numerical stability in the presence of parameter correlation and data 

limitations. However, numerical stability imposed by TSVD does have a drawback. It 
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results in solution bias by way of spatial averaging of the initial model, which is itself 

already a low-frequency approximation by the reduced DCT parameterization. The bias 

results from the truncation of coefficient combinations of non-zero null space projection 

at the singular value threshold and reflects the tradeoff between parameter resolution and 

variability (Tonkin and Doherty, 2009; Vasco et al., 1997). As the number of retained 

singular values used to construct the compact sensitivity matrix increases, bias decreases 

while coefficient resolution and variability increase. 

 

Fig. 2.5. Individual DCT coefficient contributions (vertical axis) on a scale of 0.0 to 1.0 to the first ten 

columns of the model space (horizontal axis) in V1. 

 

 

 

After inversion of the lowest-frequency model in Fig. 2.4B, four more levels of 

refinement up to a maximum of 91 DCT coefficients are used to achieve a history match. 

As per the workflow description, the parameter dimension is increased at each 

refinement step by adding the next highest cosine harmonic in each orientation (e.g., 

from r  s = 3  9 to 4  10 … to 7  13). Fig. 2.6 shows the objective function 

performance and final solution identifiability indices for three of the successive 

multiscale loops. As data misfit decreases and spatial scales become finer, parameter 
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sensitivity decreases. Notice that data misfit reduction also decreases through the 

refinement steps. An increase in the parameter dimension with refinement, in tandem 

with use of a gradient-based minimization scheme, increases the likelihood of 

convergence to a local minimum and accordingly reduces the magnitude of data misfit 

reduction at each successive step (as evidenced in Fig. 2.6). At the final loop, the balance 

between scale and identifiability is met; parameter identifiability indices corresponding 

to the highest-frequency DCT coefficients approach zero and data misfit is acceptable. 

Fig. 2.3D shows the matched permeability field and Fig. 2.7 the simulated versus 

observed pressures and rates. The matched field captures the spatial variability and 

continuity of the reference permeability trends with a parameter compression 

performance of >99 percent. The updates are also global and not focused at wells. When 

using an iterative descent technique, regions of the field sensitive to pressure tend to 

cluster around the point of observation (Vasco et al., 2000) and result in inconsistent 

geological features. We in fact observed that if the initial permeability field is first 

parameterized with 91 DCT coefficients, the same number required to achieve the 

multiscale solution, then the solution immediately converges to a local minimum and 

results in poor data misfit, and also results in model updates primarily near well 

locations that are inconsistent with geologic realism. The results presented, however, 

demonstrate that when initiating the history match with a lower-frequency 

parameterization and then refining with a multiscale approach, global updates are 

enforced  even when sensitivities are locally clustered. Although the estimated field is 

smoothed, reflecting its low-frequency approximation, the minimal data misfits in Fig. 

2.7 confirm that the data do not warrant the inclusion of finer detail in the field. 
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Fig. 2.6. Iterative data misfit minimization behavior and parameter identifiability for three of the five 

multiscale loops required to attain the history match. 
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Fig. 2.7. Oil production rate and injection bottom-hole pressure at all wells corresponding to the simulated 

behavior for the initial and matched models and plotted against the observed responses. 

 

 

 

2.4.2  SPE10 Five Layer Model 

The previous analysis is further developed in a history match of a synthetic three-

dimensional case using the top five layers of the SPE10 model. Results are briefly 

presented here to demonstrate the ability of the DCT parameterization and workflow to 

resolve geologic detail in the vertical as well as horizontal orientation. Also, the initial 

geologic model applied in the history match is a homogenous permeability field, so we 

test if geologic heterogeneity can be identified from production data when the prior is 

completely unknown and sufficient observation data are available. 
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The five-layer model has 66,000 gridblocks and corresponds with the same geologic 

description as the top layer presented above. The production and water injection 

schedules are also identical, as is the observation data set, with the sole difference being 

that injection borehole pressure is assumed measured at each of the layers rather than at 

the bottom hole alone. The vertical pressure gradient at injectors was required to resolve 

vertical property trends through the domain. 

The reference permeability model is shown in Fig. 2.8A and the history matched field in 

Fig. 8B. An identical workflow as used for the top layer history match was repeated, 

only the initial model was compressed in three dimensions using nr  ns  nt = 4 × 10 × 

3 or 120 DCT coefficients. Four multiscale loops were required to achieve the matched 

field using a total of 7 × 13 × 3 or 273 coefficients for a compression performance of 

>99 percent. Within each loop the coefficient dimension was incremented in the 

horizontal plane only. During any of the multiscale refinement steps, the addition of the 

next level of detail in the vertical orientation would have considerably increased the 

parameter dimension, adding nr  ns parameters to the set. Therefore, it was determined 

from engineering judgment that additional vertical detail would be added to the 

parameterization only with the observed inability of horizontal refinement to match the 

data, which did not transpire in this application. In a comparison of the matched and 

reference permeability field (Fig 2.8B), the large-scale features and their continuity are 

well identified. Although not shown, the acceptability of data misfit is implied by the 

well-characterized property trends. The matched field is admittedly smoothed and the 

estimated properties captured approximately; however, the minimization of data misfit 

and low parameter identifiability index at the solution indicate that there is no 

justification for the addition of more global detail. 
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Fig. 2.8. SPE10 5-layer reference permeability field with 66,000 estimable parameters in column (a) 

compared with the history matched field using 273 estimable parameters or low-frequency DCT 

coefficients in column (b). 

 

 

 

2.4.3  PUNQ-S3 Reservoir Model 

The PUNQ-S3 model, designed for Production forecasting with UNcertainty 

Quantification, has been history matched using several approaches and provides a 

standard against which both our adaptive multiscale and uncertainty quantification 

methods can be compared. PUNQ-S3 is a small synthetic case developed from study of a 

real field by Elf Exploration Production. Details of the field are provided in Floris et al. 

(2001) and so here we present only its basic description and focus on the implementation 

of methods relevant to this paper. 

The reservoir model has dimension 19 × 28 × 5 with horizontally uniform gridblocks of 

dimension 180 × 180 m that vary between 1.3 and 8.0 m in the vertical. Only 1,761 
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gridblocks are active. The structural surface map of the reservoir is shown in Fig. 2.9 

with the six production wells identified as black circles. The white circles indicate infill 

wells that are not used in the production scenario. The reservoir is bounded to the north 

and west by a strong aquifer so no water injection is performed, and bounded to the 

south and east by faults. There is an initial gas cap and oil rim as depicted in Fig. 2.9. 

 

Fig. 2.9. Surface elevation map of the PUNQ-S3 reservoir model (taken from Floris et al. [2001]) with 

approximate gas cap, oil rim and aquifer boundaries. 

 

 

 

2.4.3.1  Production Data 

The production schedule provided on the PUNQ-S3 website (PUNQ-S3 Test Case) 

spans 16.5 years. It begins with 1 year of well testing, 3 years of shut-in and 12.5 years 

of field production with a 2-week shut-in each year. Simulated production data of BHP, 

gas-oil ratio (GOR) and water cut (WCT) are provided for each well through the first 8 
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years for the history matching period (green circles in Fig. 2.10). The final 8.5 years are 

used for the production forecast. Oil production is rate-controlled (WOPR) through the 

final 12.5 years at a target of 150 sm
3
/d subject to the minimum BHP constraint of 120 

bars and maximum GOR constraint of 200 sm
3
/sm

3
, beyond which the rate is reduced by 

a constant fraction. During the history match the true WOPR was not honored at all 

wells and times by the prior model, so the WOPR schedule at each well was also 

included in the observation data set where it was subsequently matched exactly during 

the inversion. 

 

Fig. 2.10. Data misfit between the history matched PUNQ-S3 model response (red) and true model 

response (blue). Green circles are measurement data available during the 8-year history matching period. 
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2.4.3.2  Parameter Estimation 

The porosity and permeability fields are updated in the history matching period where 

horizontal and vertical permeability are deterministically defined as a function of 

porosity using an empirical relationship defined from well data in Barker et al. (2001). 

The prior model was constructed from a general geologic description presented in Floris 

et al. (2001) and constrained to measurements at the six producers using Kriging. The 

geostatistical model applied is also presented in Barker et al. (2001). Fig. 2.11 row 1 

shows the true porosity for each of the five layers and row 2 shows the prior model. 

Layers 1, 3 and 5 are generally characterized by high-porosity sand channels embedded 

in floodplain mudstone. Layer 2 is a shale-type sediment deposited in a low-energy 

marine environment with higher-porosity mouthbar deposits, and layer 4 represents 

deltaic-like deposits embedded in low-porosity clays. 

To honor geologic anisotropy of the prior, only nominal truncation of the initial model is 

performed in the DCT domain. To determine this level, the dynamic data (i.e., WCT, 

GOR, BHP) were simulated at multiple levels of truncation, in a descending fashion 

from higher- to lower-frequency representations of the prior, and the threshold at which 

the data began to significantly deteriorate was identified. For example, Fig. 2.12 shows 

that with less than about five-hundred DCT coefficients (nr × ns × nt = 10 × 10 × 5) the 

WCT and WGOR responses begin to deviate from those of the prior model at full spatial 

detail. In fact, inspection of the porosity layers showed that the channel boundaries in 

layers 1, 3 and 5 begin to lose their continuity at this level. 

The history match was initialized with a 9 × 9 × 5 coefficient representation. No 

approximation was performed in the vertical direction in order to retain the sharp 

geological contrast between strata. We note here that the DCT parameterization has been 

applied to and populated the complete rectangular model domain because of its periodic 

sampling requirement; therefore, permeability and porosity at all gridblocks are updated 

in the inversion but ignored at inactive gridblocks during simulation to account for the 
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irregular model boundary. During the workflow only one level of spatial refinement, 

increasing to a 10 × 10 × 5 coefficient representation, was required to match the porosity 

model which demonstrates that the multiscale approach converges to a straightforward 

re-parameterization method when confidence in the prior is high and parameter updates 

are minimal. Data misfit is presented in Fig. 2.10, and Fig. 2.13 row 1 shows the 

matched porosity and row 2 the updated values. The updates have small magnitude and 

are applied globally, per layer, in spatial orientations that honor the heterogeneity of the 

prior. During the course of analysis we observed that different priors, i.e., different 

conceptual models, could be used to achieve equivalent data misfits. This is because the 

observation data are relatively sparse for the 8 year history matching period and leave 

considerable tolerance for non-uniqueness. For example, only one well (11) has water 

breakthrough at the seventh year and two wells (4 and 1) start to produce free gas at the 

4th and 5th years, respectively. In a review of the PUNQ-S3 comparative study, Barker 

et al. (2001) similarly concluded that principle features of the prior do not always 

influence model prediction behavior. For example, one approach to history matching 

using an isotropic prior model achieved accurate forecasts in this clearly anisotropic 

reservoir. It is for this reason that we strictly honor the prior model in this study by 

minimal parameter truncation in the DCT domain. Appropriately, our results 

demonstrate that under the assumption of a well-informed prior our proposed approach 

updates the model in a manner that is consistent with the geologic model and only to the 

level of spatial detail warranted by the data content. 
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Fig. 2.11. PUNQ-S3 reference porosity model (top row) and the prior porosity model (bottom row) 

derived from Kriging and conditioned to measured porosity at each well location per layer. 

 

 

 

 

 

Fig. 2.12. Error in response data at the six PUNQ-S3 producers between the prior model at full resolution 

and its lower-frequency approximations. Error increases as the level of higher-frequency DCT coefficient 

truncation increases. 
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Fig. 2.13. The history matched PUNQ-S3 porosity model using 500 parameters or DCT coefficients (top 

row) and the spatial porosity updates required to achieve the solution (bottom row). 

 

 

 

2.4.3.3  Forecast Uncertainty 

The null space Monte Carlo approach was applied to quantify local solution uncertainty. 

Ten realizations of the matched porosity field were generated by adding detail at only 

the highest frequency. When increasing the level of detail at lower-frequencies, we 

found that the history match was maintained while at the same time the geologic features 

of the prior (e.g., channel widths) were lost, which is consistent with our earlier 

observation that several conceptual models equivalently fit the data. The incorporation 

of detail at the highest-frequency or gridblock scale does not deteriorate the large-scale 

heterogeneity of the prior. We used ten sample sets to approximate the first and second 

order statistics of cumulative oil production (OPC). Detail coefficients populating the 

sets were sampled from the empirical distribution of the lower-frequency solution. We 
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did not account for correlation between samples because this is unknown (without, for 

example, an ensemble). 

Three of the porosity realizations after updating of the solution by Eq. (2.9) are 

presented in Fig. 2.14 and the forecasts through the complete 16.5 year history for all ten 

models are shown in Fig. 2.15. The observation data during the first 8 years remain 

matched, which is a consequence of the null space projection. There is some acceptable 

deterioration of the data misfit at certain wells that could, if required, be resolved in a 

few iterations of minimization. In the forecast period the simulated data begin to deviate. 

There is a bias in the forecast at some of the wells that is maintained in all realizations, 

indicating a bias in the prior model assumptions. Recall that the purpose of uncertainty 

quantification in our approach is to explore uncertainty within the region of the objective 

function minimum and not to explore multiple minima or different conceptual models 

(e.g., different variogram models). Thus, it is expected that all realizations adhere to the 

bias or lack thereof at each well. In Fig. 2.16 we compare the null-space-derived 

uncertainty in OPC with results from previous studies. The true OPC after the simulation 

period is 3.87×10
6
 sm

3
 (Floris et al., 2001) and OPC corresponding to the prior model is 

3.41×10
6
 sm

3
, also plotted in Fig. 2.16, which our history match improves upon. It is 

important to note that we present our recovery forecast as a range whereas the other data 

included show percentiles or a confidence interval. The porosity realizations in Fig. 2.14 

are known to explore the objective function minimum and are not statistical samples, 

corresponding to different prior models, drawn from some assumed distribution. An 

underestimated range of uncertainty is obtained whose bias in OPC is consistent with the 

overestimation of GOR and WCT in Fig. 2.15. 
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Fig. 2.14. Selected Monte Carlo null space realizations of the PUNQ-S3 porosity model, by row, showing 

local solution uncertainty at the grid block scale embedded within the larger-scale global solution. Black 

circles are well locations. 
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Fig. 2.15. Simulated PUNQ-S3 forecast behavior (red lines) capturing local solution uncertainty for ten 

Monte Carlo null space realizations of porosity. 

 

 

 

 
Fig. 2.16. A comparison of forecast cumulative production uncertainty at 16.5 years between this study 

(last column) and compiled analyses presented in Floris et al. (2001) with the true production (horizontal 

dashed line). Cumulative production from the prior model is shown by the red diamond. The comparative 

study presents the 10th, 50th and 90th percentiles.  We present the min, mean and max (in the bar plot) 

because our models are sampled from the same objective function minimum. 
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2.5  Conclusions 

This section presented an approach to data-driven multiscale history matching enabled 

by a compact, frequency-based parameterization of the geologic model using the DCT. 

The flexibility of the parameterization for multiscale characterization was demonstrated 

using three reservoir models in which the low-rank model descriptions benefited from, 

but were not dependent on, prior information. Prior model compression and adaptive 

refinement provided implicit regularization that was shown to improve ill-posedness of 

the underdetermined inverse problem. A history match was achieved when adaptive 

refinement of the model was no longer sensitive to the available data. A key step in 

alleviating the detrimental influence of DCT frequency components insensitive to 

production data was the compact representation of the parameter sensitivity matrix prior 

to its inclusion in the gradient calculation. In all applications, the insensitive frequency 

components were largely associated with the inability of production data to resolve fine 

scales of spatial detail. Accordingly, we exploited this behavior to assess model 

uncertainty at scales finer than the solution, while at the same time honoring the history 

match, using a null space projection technique. 

In the next section we improve upon a limitation of the DCT that impacts the multiscale 

approach to data integration. The DCT parameterization, as presented in this section, is 

constrained to uniformly structured or block-type geologic models, thus we develop a 

generalization of the transform basis suitable also to irregular and unstructured grids. 
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3.  GRID-CONNECTIVITY-BASED PARAMETERIZATION: AN EXTENSION 

OF THE DCT BASIS TO GENERIC GRID GEOMETRIES
*
 

3.1  Summary 

This section presents the development of a novel method of parameterization for 

reservoir heterogeneity characterization to mitigate the challenges associated with the 

nonlinear inverse problem of subsurface flow model calibration. The parameterization is 

developed as a generalization of the DCT basis for generic grid geometries, and is 

performed by the projection of the heterogeneity field onto an orthonormal basis derived 

from the grid connectivity structure. The basis functions represent the modal shapes or 

harmonics of the grid, are defined by a modal frequency, and converge to special cases 

of the discrete Fourier series (e.g., the DCT-2) under certain grid geometries and 

boundary assumptions; therefore, hydraulic property updates are performed in the 

spectral domain and merge with Fourier analysis in ideal cases. Dependence on the grid 

alone implies that the basis may characterize any grid geometry including corner-point 

and unstructured, is model independent, and is constructed off-line and only once prior 

to flow data assimilation. 

We apply the parameterization in an adaptive multiscale model calibration workflow for 

three subsurface flow models. Several different grid geometries are considered. In each 

case the prior hydraulic property model is updated using a parameterized multiplier field 

that is superimposed onto the grid and assigned an initial value of unity at each cell. The 

special case corresponding to a constant multiplier is always applied through the 

constant basis function. Higher modes are adaptively employed during minimization of 

data misfit to resolve multiscale heterogeneity in the geomodel. The parameterization  

 ____________ 

*
Part of this section is reprinted with permission from “A Generalized Grid-

Connectivity-Based Parameterization for Subsurface Flow Model Calibration” by Bhark, 

E., Jafarpour, B., Datta-Gupta, A., 2011. Water Resources Research. 47, W06517, 

doi:10.1029/2010WR009982. Copyright 2011 by the American Geophysical Union. 
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demonstrates selective updating of heterogeneity at locations and spatial scales sensitive 

to the available data, otherwise leaving the prior model unchanged as desired. 

3.2  Introduction 

This section presents the development and application of a general transform basis 

amenable to any flow model grid geometry while imposing basis properties required for 

efficient and practical updating of the geologic model. The basis is derived as the 

eigenvectors of a specific form of the grid Laplacian, imitating Fourier behavior, and 

converges to special cases of the discrete Fourier basis under specific model boundary 

assumptions. The parameterization is achieved by embedding the estimable property 

field at grid cell resolution onto a small number of leading Laplacian eigenvectors to 

reduce the dimensionality of the set, thereby characterizing the property by the modal 

shapes and frequencies of the grid on which it is defined. The conceptual and physical 

meaning behind the spectral analysis of reservoir/aquifer properties from Laplacian 

eigen-projection is presented in Subsection 3.3. 

The transform basis can be constructed from, and therefore the parameterization applied 

to, any grid geometry because the Laplacian matrix is defined from grid connectivity 

information alone. In our formulation the Laplacian is always symmetric, sparse and 

positive semi-definite; therefore, its eigenvalues are non-negative real and increasing 

over a known range and its eigenvectors are orthogonal. This latter property is critical as 

it permits a straightforward inverse transform and improves decorrelation of the 

parameters in the spectral domain. Despite the large dimension of the Laplacian for a 

high-resolution grid, its symmetry and sparse structure permit the efficient 

approximation of only a few leading eigenpairs using an iterative method. Details of the 

Lapacian construct, associated properties and decomposition are presented in 

Subsection 3.3.2 through Subsection 3.3.4. Once constructed, the basis functions are 

fixed throughout data assimilation if the gridding remains unchanged. 
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For model calibration, the transform basis is applied following the general approach used 

for the DCT parameterization in Eq. (2.2), although using a spatial multiplier field posed 

in the multiplicative formulation 

Φvuu  o           (3.1) 

where the entrywise product AB of matrices A = (aij) and B = (bij) is aijbij. In this 

updated formulation, uo is the prior hydraulic property model, pre-constructed from 

available data sources, and v defines the multiplier field in the spatial domain. Model 

updating is therefore performed by the cell-by-cell multiplication of the calibrated 

multiplier field, which has an initial value of unity at each grid cell, with uo. The 

multiplier field is parameterized by a truncated set of spectral coefficients v that 

represent its projection onto a subset of the Laplacian eigenvectors or basis functions, 

each characterizing a unique modal frequency of the grid. Therefore, v represents the 

parameters in the transform domain. We consider a range of cases where the prior model 

is un-informed to well-informed, and also different grid geometries and structure, to 

demonstrate the versatility of this approach to parameterization. 

The intent of parameterized model calibration via Eq. (3.1) is to update aquifer or 

reservoir heterogeneity at locations and spatial scales warranted by the production data, 

and to leave unchanged the hydraulic property at locations either insensitive to or 

consistent with production data. Such levels of detail are attained by sequentially 

refining the multiplier field with the addition of higher modes that successively permit a 

finer-scale description. Additionally, we exploit the geometric flexibility of the 

parameterization to simultaneously update multiple, individual regions of the model that 

are associated with different geologic structures while retaining their distinct features 

during the calibration. 

In Subsection 3.4 the proposed parameterization is applied to calibrate three different 

petroleum reservoir models using production data. The cases consider different grid 
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geometries and structural geologic features to demonstrate the broad diversity of 

geologic description for which the approach is applicable. Subsection 3.5 concludes 

with a summary of key results and a discussion of advantages unique to the grid-

connectivity-based parameterization, as well as limitations. 

3.3  Methods 

This subsection presents a comprehensive development of the new grid-connectivity-

based transform (GCT) basis and its application in multiscale parameter estimation. We 

begin with a presentation of the Laplacian construct and subsequent derivation of the 

transform basis through matrix decomposition. Next, we highlight the unique properties 

of the new basis for which it is amenable to both geologic model description and model 

calibration algorithms and explain the usefulness of these properties from an applied 

viewpoint. In accordance with the basis properties we then describe our conceptual 

approach to model calibration, and present last the proposed multiscale algorithm for the 

calibration of subsurface flow models. 

3.3.1  Generalized Grid Geometry 

The proposed approach to parameterization is founded on the relationship between 

eigenpairs of the grid Laplacian matrix, defined below, and the spatial property field 

overlaid on the grid. It is therefore important to understand properties of the eigenpairs 

for their proper and efficient application in parameterized model calibration. Much 

historical and current research in spectral graph theory relates the structural 

characterization of a grid or mesh with its Laplacian eigenpairs which characterize 

invariant and global structural information regarding topology and geometry (Chung, 

1997; Spielman and Teng, 2007; Zhang et al., 2010). In addition to the following 

presentation, we refer the interested reader to the survey papers of Alliez and Gotsman 

(2005), Sorkine (2005) and Zhang et al. (2010), with particular emphasis placed on the 

last, for a comprehensive review of spectral graph analysis for geometry processing 

problems across a suite of research fields. 



66 

 

For the purpose of parameterization we use a specific Laplacian formulation. Before its 

definition we first define the following relevant graph notation. The grid G = (V, E) is 

defined by a set of N vertices where V is the vertex set and E the edge set. We assume in 

all instances that a hydraulic property field is populated at the grid cell or mesh element 

centers; therefore, all graph definitions pertain to the dual grid (Alliez and Gotsman, 

2005) such that the centroids are considered vertices, represented as their Cartesian 

coordinates, and edges the connection between adjacent centroids. The vertex set is V = 

{1, 2, …, N}, where N is the number of grid cells at which hydraulic properties are 

defined. All grids are assumed undirected, weighted, fully connected and finite. A 

weighted grid implies that each edge between vertices vi and vj is assigned a non-

negative adjacency measure or weight, aij ≥ 0; therefore, non-connected vertices carry a 

weight of zero. In our application weights will always equal unity as no preference is 

given to connectivity information in a certain spatial orientation. The undirected 

definition denotes aij = aji, and fully connected indicates that any vertex can be reached 

stepping from vertex-to-vertex by at least one path from a starting location at any other 

vertex. The case of a graph with multiple connected components is an important 

consideration of greater complexity and is discussed later in this subsection. These 

definitions together characterize the N  N grid adjacency matrix, A, whose entries aij 

are given by 

 



 


otherwise

Ejiif
a ji

0

,1
,          (3.2) 

and the N  N diagonal matrix, D, known as the degree matrix, where the diagonal 

elements equal the degree (di) of each corresponding vertex (vi) which is defined as 

∑
1

.
n

j

iji ad


           (3.3) 
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Of its many definitions, we specifically construct the grid Laplacian as L = D - A 

(Mohar, 1997; Sorkine, 2006; von Luxburg, 2006), or analogously as 

 














.0

,1

otherwise

Eji

jid i

ijL         (3.4) 

The Laplacian is a discrete second-difference operator when applied to a function on the 

grid and is often associated with a finite-difference stencil with action proportional to a 

second derivative. The formulation in Eq. (3.4) is in fact commonly applied in second-

order Tikhonov regularization to enforce parameter updates that are smooth in the 

second derivative sense (Aster et al., 2005).  

Although apparent, it is also worth emphasizing that the Laplacian formulation in Eq. 

(3.4) is amenable to any grid geometry and can honor local discontinuities in a grid, e.g., 

at faults. Every grid will have a unique Laplacian; therefore, construction of the 

transform basis via Laplacian decomposition is completed only once and, further, 

independently of any function defined on the grid. We now present relevant properties of 

Laplacian eigenpairs, beginning with the fundamental observation of how spectral 

analysis of the Laplacian, a local operator, can be used to describe global grid geometry. 

3.3.2  Basis Development: Spectral Analysis of the Grid Laplacian 

The relationship between the Laplacian as a local operator and the global behavior of its 

eigenpairs is rooted in the periodic structure of the Laplacian. For an undirected and 

fully connected graph, the Laplacian in Eq. (3.4) is a circulant matrix, and it is well 

known that the Fourier basis diagonalizes any circulant matrix. Strang (1999) presents 

the eigendecomposition of a symmetric second-difference matrix corresponding to the 

one-dimensional operator shown in Fig. 3.1C. The top and bottom rows of the Laplacian 

in Fig. 3.1C correspond to the left and right boundary cells, respectively, of the one-

dimensional grid in Fig. 3.1A, and the upper-right and lower-left matrix components of -
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1 (in Fig. 3.1C) indicate the periodic boundary extension of the discrete function u on the 

grid (in Fig. 3.1A) from its opposite side. Therefore, relative to Laplacian operation, the 

periodicity of u defined at meshpoints on the grids in Fig. 3.1A and Fig. 3.1B are 

identical despite their difference in geometry. Strang (1999) verifies the eigenvectors ekk 

of the Laplacian in Fig. 3.1C as 

  kNkk
k wwwe 12 ,,,,1           (3.5) 

where w = exp(2i/N), k = 0,1, …, N-1 are the frequencies, i is the imaginary number 

1 , and N is the regular discretization of u. Each vector ek is a discrete Fourier basis 

vector and is, therefore, a complex exponential (i.e., having real and imaginary 

components) and orthogonal to vectors el  k.  

 

Fig. 3.1. (A) Discretization of a 1-D structured graph and (B) its equivalent depiction assuming meshpoint 

boundary symmetry. (C) 1-D circulant Laplacian matrix depicting meshpoint boundary symmetry and (D) 

zero-derivate midpoint boundary symmetry. 

 

 

 

In a seminal paper related to a mesh fairing application, Taubin (1995) first recognized 

that the discrete Fourier transform (DFT) of a function defined at the vertices of a 
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regular n-periodic grid, where n is the number of vertices per grid element, is equivalent 

to the decomposition of the function into a linear combination of the Laplacian 

eigenvectors. He then developed the general case for a variety of alternative weighting 

schemes that vary with grid geometry and connectivity, and observed that if the 

immediate-neighbor structure is retained then the Laplacian eigenvectors can be 

generalized as the “natural vibration modes” or harmonics of the grid surface and the 

corresponding eigenvalues as the “associated natural frequencies”, acknowledging that 

the exact relation to the DFT is lost. Therefore, in the general case where the Laplacian 

is not purely circulant, its eigenvectors permit a Fourier-like description of the function 

defined on a grid. 

While the generalized harmonic behavior of Laplacian eigenvectors provides a 

foundation from which to develop our method of parameterization, it is incomplete and 

as yet is inconsistent with the Laplacian in Eq. (3.4). For this we look to Strang (1999) in 

his derivations of the DCT and discrete sine transform (DST) from decomposition of the 

symmetric second-difference matrix identical to the circulant Laplacian in Fig. 3.1C. 

Through manipulation of the matrix components corresponding to the boundary 

conditions, i.e., the -1 entry at the upper-right and lower-left corner of Fig. 3.1C as 

described above, the eigenvectors can be directly manipulated. Of the many boundary 

assumptions investigated (Strang and Nguyen, 1996), the formulation in Eq. (3.4) is 

equivalent to the boundary conditions implied by the Laplacian in Fig. 3.1D. Relative to 

the annotations in Fig. 3.1A, these boundary conditions correspond to the imposition of 

the zero-derivate of the function (u) at the midpoint between vertices on the left 

boundary, and similarly on the right boundary. For example, at the left boundary a 

symmetric reflection of u is assumed about the point j = -
1
/2 such that u-1 = u0. The 

second difference at this boundary, given by the matrix product of the first row of the 

Laplacian in Fig. 3.1C with the function u, is   10101 2,1 uuuuuL   and is therefore 

equivalent to the same operation using the Laplacian in Fig. 3.1D. Similarly at the right 

boundary, symmetry is assumed about the point j = N-
1
/2 such that uN-1 = uN with the 
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second-difference of 
1212 2   NNNNN uuuuu , again equating the Laplacian operators 

in Figs. 3.1C and 1D for the zero-derivative midpoint boundary condition. It is the left 

boundary condition from which the imaginary sine components of Eq. (3.5) vanish and 

leave real cosine terms, which when combined with the right boundary condition 

uniquely defines the DCT-2. Therefore, in the case of a regular periodic and fully 

connected grid, with either structured (e.g., corner-point) or unstructured geometry, the 

eigenvectors of Eq. (3.4) reduce to the DCT-2, which has been previously applied for 

subsurface heterogeneity parameterization (see Section 1). Derivations of the DCT as 

well as DST variants are presented in Strang (1999). 

3.3.3  Laplacian Properties 

In the previous subsection we presented the relationship between the local structure of 

the Laplacian and the global behavior of its eigenpairs, with a focus on the form of the 

eigenvectors when the grid is of regular periodic structure and fully connected. We now 

look at individual properties of the Laplacian structure and its spectral decomposition 

which are valid regardless of the grid structure and the number of its connected 

components, and which as we later demonstrate are requisite for efficient 

parameterization in practice. 

By construction in Eq. (3.4), L is an N  N real symmetric matrix, which also follows 

from the definition and symmetry of the adjacency (A) and degree matrices (D) in Eq. 

(3.2) and Eq. (3.3), respectively. The eigendecomposition of a real symmetric matrix S 

with dimension N is given by the Spectral Theorem (Lancaster and Tismenetsky, 1985). 

The decomposition of S is 

∑
1

N

i=

T

iii

T λ== vvVVS           (3.6) 
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where V is composed of column eigenvectors,  is the diagonal matrix of the real 

eigenvalues , and the eigenvectors are pairwise orthogonal, i.e., V
T
V = I or ijj

T

i =vv  

for 1  i,j < N, where V
T
 is the transpose and I is the identity matrix. The structure of the 

spectrum is described below in Subsection 3.3.3.2. 

3.3.3.1  Positive Semi-Definiteness 

All other properties of the Laplacian important to parameterization are based on the 

positive semi-definite formulation of Eq. (3.4), verified from the quadratic form of the 

Laplacian 

0Lff
T

          (3.7) 

which holds for any vector f defined on the grid. Through algebraic manipulation, the 

left-hand side of Eq. (3.7) can be redefined as 

   
   

 
   














GEij

jiij

GEij

jiijjiij

TTT

ffa

ffaffa

2

22 2

AffDffLff

      (3.8) 

(Tolliver, 2006). The weights aij are non-negative by definition from Eq. (3.2), therefore 

satisfying Eq. (3.7). Analogous derivations of Eq. (3.8) from a conceptually different 

approach are shown in Zhang et al. (2010) and von Luxburg (2006). 

3.3.3.2  Eigenspectrum 

The primary value of a symmetric positive semi-definite matrix of dimension N is that it 

has N non-negative real eigenvalues with spectrum Ni  ≤≤≤0  , where i is the 

spectral index (Lancaster and Tismenetsky, 1985). For the purpose of parameterization, 

the magnitude of eigenvalues is important in that they represent the modal frequency 
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associated with each Laplacian eigenvector and permit sorting of the vectors from low-

to-high frequencies, with increasing eigenvalue magnitudes associated with increasing 

modal frequencies. This is a direct consequence of the equivalence between the 

Laplacian eigenvectors and the DFT basis (Taubin, 1995; Mohar, 1997). Only a small 

number of the leading eigenvalues sorted from smallest to largest, or from low to high 

modal frequency, are useful for hydraulic property description, and therefore only a 

partial decomposition of the Laplacian is desired. 

A particularly useful property for parameterization is related to the value and 

multiplicity of the smallest eigenvalue. From Eq. (3.8), the Laplacian always has a 

smallest eigenvalue of zero, corresponding to the constant basis function, with 

multiplicity equal to the number of connected components or regions encoded in the 

Laplacian. 

There are multiple ways to verify these properties. Most simply, the row sums of the 

Laplacian equal zero by construction; therefore, from the eigenvalue equation Lx = x 

the eigenvalue  must equal zero when x is a constant vector. An analogous but more 

useful interpretation is to set the relationship in Eq. (3.8) equal to zero when f is an 

eigenvector of L, i.e., 

 
   

0
2
 

 GEij

jiij

T ffaLff .        (3.9) 

The terms equal zero only when ji ff   for all i,j, confirming that the zero eigenvalue 

corresponds to the zero-frequency or constant vector. In this case the sign and magnitude 

of the weight for the zero eigenvalues are irrelevant. The useful implication is that the 

constant basis vector is related to the mean of the property defined on the grid and 

therefore permits uniform updating of the field by a single transform parameter, 

effectively equivalent to application of a constant spatial multiplier (e.g., zonation) as 

traditionally applied in model calibration. 
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To this point we have considered only a fully connected graph; however, by construction 

groundwater model grids may often have multiple independently connected regions 

separated, for example, at faults or structural discontinuities. In this situation a useful 

proposition developed from Eq. (3.9) is that the multiplicity of the zero eigenvalue 

equals the number of connected regions in the grid (Mohar, 1997). Each corresponding 

eigenvector has components of constant value associated with each region and is, 

therefore, an indicator vector of the individual regions (von Luxburg, 2006). That is, the 

inspection of any such eigenvector corresponding to a zero eigenvalue points out all 

connected regions and the boundaries between them. This has several practical uses 

including the automated detection of isolated gridblocks (a common result of 

upgridding), the location of non-neighbor connections, and the location of structural 

discontinuities (usually at faults). This property also implies that multiple regions or 

compartments can be defined by the analyst, based on geologic considerations, fluid 

properties, etc., for individual parameterization and property updating as demonstrated in 

applications below. 

3.3.4  Numerical Eigendecomposition 

Practical application of the parameterization requires the efficient decomposition of the 

Laplacian for large grids at least on the order of hundreds-of-thousands of active cells. 

Accepting that the complete decomposition using a direct method is currently infeasible, 

we take advantage of the sparse symmetric structure of L and use the implicitly restarted 

Lanczos method (IRLM) within the ARPACK (ARnoldi PACKage) subroutines 

(Lehoucq et al., 1998). We now review the algorithm only to a depth that allows an 

understanding of the computational cost. 

The goal of the IRLM is to achieve the truncated k-step Lanczos factorization of L to 

tridiagonal form, 

T
kkkkk erHVLV            (3.10) 
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where Vk is the N  k matrix with orthonormal columns referred to as Lanczos vectors, 

Hk is a symmetric and tridiagonal k  k matrix, the columns of the N  k matrix rk are 

residual vectors such that V
T
r = 0, and ek is an N  k matrix with columns corresponding 

to the k-th axial directions of the basis V. While full matrix decomposition takes O(N
3
) 

operations, the Lanczos expense is O(mM(N)) + O(mN) where m is the maximum 

number of matrix-vector products and M(N) the matrix-vector cost (Trefethen and Bau, 

1997). Conceptually, the first and second terms represent a Krylov basis vector 

computation and its scalar projection onto the Lanczos vectors. Because L is sparse and 

contains non-zero entries (per row) corresponding only to two-point cell connectivity, 

M(N) reduces to O(N) operations multiplied by a small constant equal to the size of the 

Laplacian stencil. 

The Lanczos vectors equal the eigenvectors of L only when r = 0, or when numerically 

orthogonal (Calvetti et al., 1994). However, orthogonality is not achieved in practice 

from projection error and results in spurious eigenvalues, where the error magnitude is 

problem dependent and related to the spacing of the relevant eigenvalues (Golub and 

Van Loan, 1996; Lehoucq et al., 1998). In our application, the parameterization is 

fundamentally based on a few of the lowest modal frequency basis vectors where the 

frequency is determined from the eigenvalue magnitude, so it is important that the 

columns of Vk are re-orthogonalized. It is for this end that we used the IRLM algorithm 

which has several advantageous properties, highlighted below, relative to other re-

orthogonalization approaches (Calvetti et al., 1994; Golub and Van Loan, 1996). The 

basic idea is to iteratively restart a truncated Lanczos factorization (as in Eq. [3.10]) with 

the goal of replacing the first Lanczos vector v1 with Ve1 at each iteration, which 

sequentially approaches a vector that is very close to a linear combination of the actual k 

eigenvectors of L. When this latter condition is satisfied by v1, then f vanishes (Calvetti 

et al., 1994). Of importance, however, is that the number of restarts is unknown 

beforehand. The update of Vk comes from the decomposition of H, which is similar to L, 

by shifted QR iteration to compute its Ritz pairs. The Ritz values become exact 

eigenvalues of L when fk is 0, and the Ritz vectors are used to iteratively update the 
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Lanczos vectors, enhancing and damping the components of v1 in the wanted and 

unwanted directions, respectively, until termination of the algorithm (Lehoucq et al., 

1998). 

The IRLM begins with a prior Lanczos factorization to construct k+p Lanczos vectors, 

T
pkpkpkpkpk   erHVLV ,        (3.11) 

where p is a fixed, small number on the order of k (or possibly smaller). We set p = 

max(k,20). Then, until convergence based on a small tolerance of r, a p-step implicitly 

shifted QR iteration is performed on Hk+p to form QRIH  pk , where Q has 

orthonormal columns, R is upper triangular, and both are square with dimension k+p. 

Next, Vk+p is updated as Vk+pQ, or in other words v1 is updated with the orthogonal 

transformation from the QR-factorization of H (for the purpose stated above), thereby 

re-computing the initial k-step decomposition in Eq. (3.10) with a single matrix product. 

As the final step of each iteration, p additional Lanczos steps are performed to compute a 

new k+p-step Lanczos factorization as in Eq. (3.11). The combined steps of p shifts and 

p Lanzcos steps per iteration require each only p matrix-vector multiplications with L 

(Calvetti et al., 1994). Although complex, the algorithm is efficient when k is modest, 

and the total storage required is fixed and minimally 2Nk + O(Nk), which is 

considerably less than other iterative re-orthogonalization algorithms. 

Through the remainder of this paper we verify that the proposed parameterization is best 

suited for characterization and updating of coarse-scale properties relative to the spatial 

scale of the parameterized region. We do not include or update high-frequency spatial 

variability as in many cases data resolution would not allow for estimation of such fine-

scale details even when they are included; therefore, a highly truncated (k+p step) matrix 

decomposition is not a limiting factor in our approach but is in fact preferred. 
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3.3.5  Conceptual Approach To Parameter Estimation 

In Section 3 we have thus far developed the useful properties of the GCT basis, namely 

its adaptability to any grid structure or sub-grid region, its model independence, pairwise 

orthogonal basis functions, and the relation of such functions to harmonics of the grid 

structure. Together these properties form a flexible construct for parameterization of a 

hydraulic property defined on the grid and permit model calibration to be solved using a 

multiscale approach in the spectral domain. 

3.3.5.1  Prior Model Considerations 

Our approach is conceptually developed in practical consideration of the prior geologic 

model which may be completely un-informed to well-informed. In the case of an un-

informed prior (e.g., a homogenous field), the intent of parameter estimation is to 

identify global features over the complete grid or model domain from the observation 

data alone. We exemplify this approach in Subsection 3.4.1. In the case of a well-

informed prior, the intention is to minimally update the existing model pre-defined from 

other data sources. The parameterization is adaptable to prior information in two ways. 

First, one or more individual regions consistent with different geologic structures (e.g., 

hydrostratigraphic units) can each be assigned a unique basis for local estimation. 

Second, the order of basis function inclusion in the parameterization can be defined from 

prior model compression performance, or using those functions onto which the prior 

model projection magnitude is largest. We apply both approaches to prior model 

adaptation in this subsection. 

Apart from the prior model assumption, as described the model heterogeneity is adjusted 

during the calibration using a multiplier field that is parameterized and sequentially 

updated in the transform domain using a multiscale algorithm. The implementation of 

the algorithm is described in the next subsection. The scalar projection onto the GCT 

basis functions of the multiplier vector u, with dimension nu  1 where nu is the length of 

the estimable property in vector format, is given by 
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ΦvuuΦv  T .         (3.12) 

The nv columns of the matrix  are the pairwise orthogonal basis functions each of 

length nu. The column vector v is the nv-length spectrum of transform coefficients, or the 

parameter set in the transform domain, with dimension equal to the number of basis 

functions in . The inverse transform from the spectral to spatial domain is efficiently 

computed from the orthogonality of the basis. To reiterate,  is a partial decomposition 

of the Laplacian and contains only a few (nv) of the lowest-frequency Lanczos vectors 

corresponding to the smallest (approximated) eigenvalues and sorted in increasing order. 

3.3.5.2  Multiscale Parameter Estimation 

In the multiscale algorithm we update the multiplier u from a low modal frequency or 

coarse spatial description to a higher frequency description. We follow the approach to 

sequential estimation in the frequency domain presented in Bhark et al. (2011b) in which 

similar approaches to data-driven multiscale calibration algorithms are also reviewed 

that, as a rule, rescale the geologic model in the spatial domain via sequential refinement 

or coarsening. The approach of sequential refinement is particularly well suited to our 

current implementation for two reasons in addition to those emphasized in the literature, 

and is appropriate regardless of prior model information and assumptions. 

First, it is geologically consistent to identify or update large- before small-scale 

structures (e.g., the type of depositional environment may influence smaller length scales 

and directions of spatial variability), with the latter becoming insensitive to production 

data beyond some spatial scale (Vasco et al., 1997; Lu and Horne, 2000; Sahni and 

Horne, 2005; Bhark et al., 2011b). In our implementation the sequential refinement of 

the multiplier field does not update the prior model until a level of detail is reached, if 

any, at which the multipliers become sensitive to the data. Our results demonstrate that 

the prior, beginning at the coarsest scale, is not updated when it is either correctly 

defined or insensitive to the data available (e.g., in the case of non-uniqueness). 
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The second motive for multiscale parameterization is related to the compression 

performance of the transform basis. By construction, the GCT basis is well suited for 

low-rank approximation of a function defined over the grid. Recall that in a special case 

the basis reduces to the DCT basis which was initially developed for optimal 

compression performance in the least-squares sense (Ahmed et al., 1974). Although we 

do not compress or low-rank approximate the spatial parameter itself in order to retain 

the prior model at full resolution, strong compression performance directly implies that 

large-scale geologic features can be characterized by the multiplier using only a few 

basis functions. There has in fact recently been a growing body of literature that 

examines the energy compaction performance of Laplacian eigenvectors. In an original 

work, Karni and Gotsman (2000) compressed the geometry of unstructured mesh 

surfaces by projecting the mesh coordinate vectors onto basis functions derived from 

decomposition of the Laplacian as defined in Eq. (3.4). They empirically demonstrated 

significant compression performance or minimal loss in mesh quality by a low modal 

frequency representation, verifying the rapid decrease in transform coefficients when 

sorted from low to high frequency. In a related study Zhang (2004) investigated the 

compression performance, among other matrix-theoretic properties, using eigenvectors 

of four different Laplacian operators and observed an efficient compression for all 

variants. Ben-Chen and Gotsman (2005) showed for two-dimensional triangle meshes 

that if the vertex coordinates are assumed to follow a multivariate Gaussian distribution 

then the eigenspectrum of the Laplacian in Eq. (3.4) provides optimal compression 

performance of the geometry in the least-squares sense. In the following subsection we 

exploit these results and demonstrate through empirical analysis how a spatial property 

can be well defined at multiple scales as the linear combination of the GCT basis 

functions. However, prior to a compression analysis we first present the modal shapes 

associated with individual basis functions for different grid geometries to provide some 

idea of the types of spatial features that are constructed as their linear combination. 
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3.3.5.3  Multiscale Application of Basis Functions 

Three different grid geometries are presented in each row of Fig. 3.2, each applied later 

in a model calibration analysis, along with selected GCT basis functions for each. The 

functions are mapped to their corresponding grid and are ordered left to right from the 

lowest to higher modal frequencies. Recall that the constant basis function, 

corresponding to the zero frequency with a corresponding eigenvalue equal to zero, is 

always first. The inclusion of additional basis functions in the transform of Eq. (3.12), 

i.e., adding from left to right in Fig. 3.2, permits the addition of successively finer spatial 

scales of variation into the multiplier field. Initially all coefficients except that 

corresponding to the constant basis function will have a value of zero; therefore, the 

increase in magnitude of any of these coefficients will add spatial variability as their 

linear combination. 

 

Fig. 3.2. Three different 2-D grid/mesh structures (column 1) and selected corresponding eigenvectors or 

basis functions (columns 2-6) depicting the lowest to higher modal frequencies. 
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In Fig. 3.2 the modal shape associated with each basis function evidently differs with the 

grid shape, structure and geometry. We highlight these relationships in the 

corresponding applications in Subsection 3.4. Here we demonstrate the compression 

performance of the basis for an irregular corner-point grid with a discontinuity at a fault. 

For this example we use a single layer of the Brugge reservoir model (see the field 

description in Subsection 3.4.3) and exhibit the low-rank approximation of a high-

resolution, heterogeneous permeability field representative of a delta plain depositional 

environment. The permeability field at full spatial detail, characterized at 4,922 grid 

cells, is shown at the upper-left in Fig. 3.3. To the right in the figure are its coarse 

approximations using the 5, 10, 20, 30, 50 and 100 leading (or lowest modal frequency) 

basis functions, a selected set of which was shown in row 3 of Fig. 3.2. Even using 10 to 

30 basis functions of the potential total of 4,922, the large-scale heterogeneity is visible 

and indicates that a multiplier could exactly reproduce this field at the same low level of 

parameterization. The compression performance using up to the 500-leading basis 

functions is shown also in Fig. 3.3 at the lower-left. The compression error sharply drops 

as basis functions are added to the field description and indicates strong compression 

performance, a considerable accomplishment for a model-independent basis. If the basis 

functions were applied optimally (i.e., sorted by the magnitude of the transform 

parameters from large to small) then the compression error would smoothly decrease 

with the successively higher-rank approximations; however, this would require prior 

knowledge of the most important basis functions and is in fact the approach that we use 

when the prior is well informed. 
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Fig. 3.3. Compression performance (lower left) of a 2-D permeability field (top left) and low-rank 

approximations of the field at different levels of parameterization (right column). 

 

 

 

We also consider the case of a regionalized geologic model in which structural features 

(e.g., facies) or heterogeneous regions are independently parameterized. The top row of 

Fig. 3.4 shows a two-dimensional high-resolution permeability field that is arbitrarily 

partitioned into three regions based on a threshold that considers the magnitude of 

permeability and distance between each cell. Each subsequent row of Fig. 3.4 shows a 

single basis function for the three regions and corresponds to the same modal frequency, 

from the lowest to higher modes. During model calibration the regions can be either 

independently or simultaneously updated. The key point to now appreciate regarding 

regionalized, multiscale parameterization is that the frequency described by any given 

basis function, with the sole exception of the constant function, scales with the size of 

the region. That is, the term „coarse scale‟ is defined relative to the size of the region. 
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For example, in Fig. 3.4 compare the frequency behavior of the 2
nd

 basis function (row 

3) in the smallest region (column 1) versus largest region (column 3) where the apparent 

„wavelength‟ scales with the size of the region. The implication is that prior geologic 

information should be used to regionalize a hydraulic parameter field, if regionalization 

is appropriate, such that length scales of spatial variability within each are consistent. 

We demonstrate this in two of the applications. 

 

Fig. 3.4. 2-D permeability field (top left) and its partitioning into three regions (top right).  Each row 

below shows a single basis function, per individual region, corresponding to the same eigenvalue rank. 
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3.3.6  Numerical Approach to Parameter Estimation 

This subsection presents the proposed multiscale calibration workflow that is 

summarized in the flowchart in Fig. 3.5. The workflow involves the sequential inclusion 

of basis functions into characterization of the calibrated model through the multiplier 

field. In this study we consider permeability, defined at each grid cell, as the estimable 

property. Before each step of refinement, the permeability is applied in an iterative cycle 

that involves petroleum reservoir flow simulation for computation and subsequent 

minimization of a data misfit cost function. The generalized form of the flow model 

from which cell pressure and saturations are defined in all applications was presented in 

Subsection 1.2.3.1. Before proceeding with the applications, we first define the 

objective function used to quantify misfit between observed and simulated production 

data, and also review the iterative gradient-based scheme used to reduce data misfit. 

 

Fig. 3.5. Model calibration workflow. The images exemplify the prior hydraulic property model and the 

updated parameterized multiplier field. 
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3.3.6.1  Objective Function 

The calibration objective function J(v) is defined upon solution of the flow model for 

cell pressures and saturations using the updated absolute permeability field. The 

objective function is defined as the squared l2-norm of nonlinear dynamic data misfit, 

     
2

2

2/1
obsgJ dvkQv  ,        (3.13) 

where v is the parameter vector in the transform domain (see Eq. [3.12]), g() is the 

nonlinear model relating parameters to observations, dobs is the observed dynamic data 

vector and Q is a diagonal matrix with components equal to the square of each datum 

weight. The permeability field k applied in the flow model is computed as the entrywise 

product of the multiplier field and the prior permeability field k0, and is defined as k = 

exp{(v)ln k0 }. We reiterate that the estimable parameter is the multiplier field, 

denoted as parameter vector v in the transform domain, which we use to update the static 

prior permeability ko to form k. The associated characteristic curves are assumed 

constant at each cell, but may vary from cell-to-cell when warranted by other 

petrophysical measurements or assumptions. 

We recognize that a misfit term penalizing deviation from the prior model may also be 

included if desired. However, as discussed and later demonstrated in applications, the 

multiplier field updates the prior model only when warranted by the production data at 

some spatial scale, otherwise preserving the prior information. 

3.3.6.2  Objective Function Minimization 

The model calibration workflow (Fig. 3.5) begins by considering a small set of the 

lowest modal frequency basis functions to parameterize the unit multiplier field. Data 

misfit in J(v) is iteratively minimized using the gradient-based BFGS quasi-Newton 

method (Nocedal and Wright, 2006). The gradient with respect to parameters in the 

physical or spatial domain is either directly computed through one-sided finite difference 
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perturbation of the transform coefficient or using parameter sensitivities made available 

from a commercial reservoir simulator using its built-in adjoint method (Schlumberger, 

2009). In the latter case, the gradient is computed with respect to parameters in the 

spectral domain by chain rule of differentiation as follows: 

         obs
T
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  (3.14) 

where the vectors with subscript d are transformed to diagonal matrices of equivalent 

dimension to account for the entrywise product. 

When J(v) converges at the current level of parameterization, which is determined by 

either a tolerance in minimum data misfit improvement or by a threshold on the number 

of iterations permitted, the parameter set is increased by adding basis functions to the 

multiplier description. The inclusion of spatial variability into the multiplier, and 

therefore the absolute permeability model, is based on the linear combination of several 

modal frequencies. Therefore, the basis vectors must be added in sets which are 

approximately grouped as the different directional components of the same modal 

frequency. For example, in the special case of a regular periodic grid, i.e., when using 

the DCT basis, the selective addition by directional and frequency components can be 

performed exactly (Bhark et al., 2011b). In the case of irregular geometries, an exact 

relation between modal frequency and direction does not exist, so the grouping of basis 

functions for their sequential inclusion is subjectively determined and based on the 

sensitivity of the case-specific production data to different scales of variability, as we 

perform in the applications. However, in Bhark et al. (2011b) we discuss the 

implementation of higher modes by selective procedures that use sensitivity information 

or solutions from previous iterations to guide basis element selection. Regardless, it is 



86 

 

important to understand that the sole consequence of adding too few basis functions 

during a refinement step is an increase in the overall simulation count. In such an 

instance, parameter updates do not reduce the objective function and the forward 

simulations involved are wasted. On the contrary, the incorporation of too many basis 

functions into the multiplier description in practice results in rapid convergence to a 

local minimum from which the solution cannot recover, and may also result in local 

updates inconsistent with geological description. 

In order to compensate for the informal expansion of the parameter set, in our analyses 

we perform a gradient screening analysis for each basis function within the set prior to 

its incorporation. At no additional computational cost, upon the expansion of the 

parameter set the gradient contribution from each is computed at the first iteration, and 

all parameters that have zero contribution (within some small tolerance) are withheld 

from the inversion at the current scale. At subsequent levels of refinement, any 

previously frozen parameters are again considered in the screening procedure; the 

gradient at a single location on a response surface typically changes with iterates. 

3.3.6.3  Analysis of Data Misfit 

Production data misfit is analyzed from three approaches. First and most importantly, 

when applicable a production forecast is included after the calibration period, over a 

time interval at least one half the duration of the calibration period. Second, the 

production data correlation coefficient, introduced by Cooley and Naff (1990) and 

applied by Hill (1998) and Doherty (2005), is computed for each well response in the 

model over the complete (calibration plus forecast) production period. This metric 

indicates the strength of the linear relationship between the observed and simulated data 

when plotted on opposing axes of a scatterplot, ideally having a slope of unity when the 

intercept equals zero. Following the abbreviations above (see Eq. [3.13]), the correlation 

coefficient R is calculated for an individual well response as 
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where µ is a constant column vector with dimension equal to the number of data (Nd), 

with each vector component equal to  


dN

i

iiid dQN

1

2/11 , and is computed separately for the 

observed (µobs) and simulated data (µsim). R provides a general measure of goodness of 

production data misfit as it is independent of the number of observations considered and 

incorporates data weights, thereby enabling a generic comparative measure between 

different calibration exercises. A value of greater than 0.90 is generally required for data 

misfit to be within acceptable limits (Cooley and Naff, 1990; Hill, 1998). 

The validity of the correlation coefficient assumes normality of the residuals centered at 

zero, so for each production well we compare residual summary statistics against 

observation noise (when available). We posit that for a satisfactory calibration, 

particularly in synthetic modeling scenarios where the distribution of noise is known, the 

residuals should have a mean near zero and a range within that of the artificial noise. 

Outliers corresponding to specific production times and at individual well locations 

indicate misrepresented geologic updating or areas of required re-investigation relative 

to the coarser spatial scales of heterogeneity that are resolved by the available data. 

3.4  Applications 

In this subsection the GCT parameterization is employed in three model calibration 

applications to demonstrate the diversity of subsurface flow models for which the 

workflow is applicable. The prior model assumptions range from the case of completely 

un-informed to well-informed from multiple data sources, and are defined on a suite of 

grid geometries that include unstructured and irregular corner-point cells, local grid 

refinement and discontinuity at faults. We also compare the GCT approach in 
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application with the KLT parameterization to provide insight into its strengths and 

limitation, and also the type of calibration scenarios for which the GCT is best suited. 

3.4.1  Two-Dimensional Unstructured Grids 

This application utilizes simple unstructured triangular grid geometries to demonstrate 

the basis construction and its geometric flexibility. It is also designed to reveal the 

relationship between cell geometry and individual (vector) components of the basis 

functions using a locally refined grid. The two-dimensional grids (previously shown in 

Fig. 3.2) are constructed using the MATLAB® FEM toolbox and are imported to the 

MRST (MATLAB Reservoir Simulation Toolbox) flow and transport simulator (Lie et 

al., 2010). We use MRST to solve the two-phase (oil-water) incompressible pressure 

equation in Subsection 1.2.1 using a mimetic finite-difference pressure solver. The 

saturation solution required for waterflood simulation is solved in sequence after each 

pressure update using an implicit single-point upwind scheme. For the two-phase fluid 

model we define constant fluid densities and viscosities, and specify quadratic relative 

permeability curves with an end-point mobility ratio of 5.0. 

In this exercise we estimate cell permeability by calibrating observed water production 

rates (WPR) on two different grids, one with approximately uniform grid density and 

one with higher density or local refinement near wells, shown in Figs. 3.6A and 3.7A, 

respectively. Both support a nine-spot waterflood pattern with pressure-controlled 

injection and production. Selected leading basis functions for each grid were shown in 

rows 1 and 2 of Fig. 3.2. Both grids have a constant three-point connectivity structure to 

immediate neighbor cells except at boundaries; therefore, the Laplacian eigenvectors 

reduce to the DCT basis (Strang, 1999; Karni and Gotsman, 2000). It is important at this 

point to consider that the Laplacian, and therefore the basis functions, do not consider 

the spatial distance between or the size of cells but only their two-point connectivity. For 

example, the second basis vector of both unstructured grids in Fig. 3.2 corresponds to the 

first cosine frequency 2k/N for k = 1. In the more uniformly gridded case (row 1), the  
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Fig. 3.6. (A) The 2-D reservoir model (homogenous) mesh and well pattern. (B) The reference and (C) 

calibrated permeability field. (D) Spectrum of transform parameters for the reference and calibrated fields. 

(E) Objective function value at successive multiscale iterates and the number of gradient-based 

minimization iterations at each multiscale iterate. 

 

 

 

Fig. 3.7. (A) The 2-D reservoir model (locally refined) mesh and well pattern. (B) The reference and (C) 

calibrated permeability field. (D) Spectrum of transform parameters for the reference and calibrated fields. 

(E) Objective function value at successive multiscale iterates and the number of gradient-based 

minimization iterations at each multiscale iterate. 
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frequency pattern is nearly uniform in the horizontal direction and would be exactly 

uniform in the case of a rectangular grid such that this function would distinguish only 

vertical variability. However, in the case with local refinement (row 2) it becomes 

apparent that the basis function components are simply mapped to their corresponding 

cells, thereby distorting the modal shape. This proves to be a beneficial artifact of the 

Laplacian construct because it enables a finer-scale permeability description in refined 

areas which is appropriate when hydraulic properties are better resolved from 

measurement near these areas, or when the intent of discretization itself is to better 

capture velocities in areas of complex geometry or boundary conditions. 

The reference permeability fields used to generate synthetic WPR observations are 

shown in Figs. 3.6B and 3.7B for the two grids. White noise of up to ±5% of the 

absolute value was added to each datum by random selection from a Uniform 

distribution over that range. The model calibration for both cases is initiated with a 

uniform permeability field; therefore, the intent of the estimation is to identify the global 

heterogeneity over the complete domain. Consistent with the multiscale approach, the 

multiplier field is initially parameterized by the five lowest modes. The objective 

function is then minimized using an iterative descent scheme where the gradient is 

constructed from one-sided finite-difference perturbation of each transform parameter. 

For example, the five parameters at the initial level of parameterization require six 

forward simulations to complete a single iteration. Following a reduction of the objective 

function into a local minimum at this coarse description, the parameter set is updated by 

adding the next five highest modes and again performing iterative minimization. This 

sequence is repeated up to a final parameterization of twenty basis functions for each of 

the cases. Figs. 3.6E and 3.7E show the objective function reduction for each case over 

the four refinement steps required to achieve the calibration. As more basis functions are 

added to the parameter description, both the number of iterations and the relative 

reduction in the objective function are reduced at each refinement step, supporting the 

assumption that it is beneficial to capture larger- before finer-scales of heterogeneity 

when integrating production data into a geologic model. Although not shown, updating 
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all twenty coefficients in a single step results only in local updates near wells that 

provide acceptable data misfit but that are inconsistent with expected geologic 

description. 

The calibrated permeability fields are shown in Figs. 3.6C and 3.7C, and their 

corresponding parameter spectrums in Figs. 3.6D and 3.7D. Note that because the prior 

permeability is uniform, permeability at the solution is related to the multiplier field by a 

constant, i.e., the multiplier field is able to completely characterize heterogeneity over 

the domain. The solution spectrum in each case appropriately shows a gradual decrease 

in parameter magnitudes from lower to higher modal frequencies, corresponding with 

the large-scale and smooth variability depicted in the reference models, and also 

supports the approach of adaptive and sequential refinement. 

The WPR data misfit at each producer for the uniformly and locally refined cases is 

shown in Figs. 3.8 and 3.9, respectively, over a four-year calibration period, plus a two-

year forecast period. Tables 3.1 and 3.2 show WPR misfit metrics per well for the 

respective figures. The response correlation coefficient, R, indicates an acceptable 

response match for all wells over the calibration and forecast period, and the match 

residuals are approximately centered at zero and have a range close to that of the white 

noise added. These results demonstrate that the algorithm identifies multiscale 

permeability heterogeneity that correctly captures the wide range of water breakthrough 

times and the subsequent WPR forecast, as well as the lack of breakthrough at multiple 

producers. Additionally, and in further support of a multiscale approach, notice that 

several smaller-scale features in the reference model for the locally refined grid (Fig. 

3.7B) are not reproduced in the solution (Fig. 3.7C). This demonstrates the relative 

insensitivity of production data to high-frequency heterogeneity, and is verified by the 

acceptable data misfit for WPR. 
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Fig. 3.8. Simulated watercut corresponding to the reference, initial/prior and calibrated permeability fields. 

Well labels correspond to Fig. 3.6A. Responses at time greater than the vertical dashed line at 4 yrs 

represent the forecast period. 

 

 

 

 

Fig. 3.9. Simulated watercut corresponding to the reference, initial/prior and calibrated permeability fields. 

Well labels correspond to Fig. 3.7A. Responses at time greater than the vertical dashed line at 4 yrs 

represent the forecast period. 



93 

 

Table 3.1: Production data misfit metrics of correlation coefficient (R) and the minimum, mean and 

maximum of the fit residual and observation noise for the individual well production responses in Fig. 3.8. 

The simulated production responses correspond to the calibrated permeability field in Fig. 3.6C. 

 

P1 P2 P3 P4 P5 P6 P7 P8

R 0.996 0.986 0.996 0.993 0.993 1.000 1.000 1.000

residual -0.029 -0.049 -0.054 -0.033 -0.033 0.000 0.000 0.000

noise -0.029 -0.036 -0.022 -0.030 -0.038 0.000 0.000 0.000

residual 0.020 -0.007 0.002 0.000 0.009 0.000 0.000 0.000

noise -0.002 0.000 0.004 0.002 -0.006 0.000 0.000 0.000

residual 0.070 0.035 0.034 0.035 0.040 0.000 0.000 0.000

noise 0.027 0.037 0.030 0.035 0.035 0.000 0.000 0.000

Production well (see Figure 6A)

Minimum

Mean

Maximum
 

 

 

 

Table 3.2: Production data misfit metrics of correlation coefficient (R) and the minimum, mean and 

maximum of the fit residual and observation noise for the individual well production responses in Fig. 3.9. 

The simulated production responses correspond to the calibrated permeability field in Fig. 3.7C. 

 

P1 P2 P3 P4 P5 P6 P7 P8

R 0.989 0.997 0.990 0.974 0.994 0.988 0.974 0.998

residual -0.021 -0.045 -0.044 -0.047 -0.031 -0.050 -0.047 -0.030

noise -0.017 -0.028 -0.043 -0.039 -0.033 -0.044 -0.041 -0.030

residual 0.006 -0.008 0.000 -0.008 0.000 -0.002 0.003 0.005

noise 0.002 0.002 -0.009 0.002 0.002 -0.007 0.002 -0.006

residual 0.142 0.027 0.038 0.034 0.032 0.039 0.055 0.031

noise 0.020 0.027 0.034 0.037 0.030 0.043 0.040 0.031

Production well (see Figure 8A)

Minimum

Mean

Maximum
 

 

 

3.4.2  Comparison of the GCT and KLT Parameterization 

Before proceeding with the GCT applications, in this subsection we compare the GCT 

with the well known covariance-based KLT parameterization with the intent of raising 

key points regarding the strengths, limitations and types of modeling applications for 

which the GCT is appropriate. The KLT basis is computed as 

2/1
VΛΦ             (3.16) 

7A) 
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following the nomenclature and definitions in Eqs. (3.12) and (3.13). The covariance 

matrix C can always be constructed empirically as in Eq. (3.17) below, and together with 

the solution of the eigenvalue problem for C, the KLT basis is constructed from the 

decomposition 

     TT
N

j

T
jjN

NN
αVΛαVΛYYYYyyC

2/12/1

1

∑ 11




      (3.17) 

where C is the N  N parameter covariance matrix,  YY   is a set of centered 

realizations (column vectors) yj of length N, and  is a N-length column vector of 

uncorrelated random variables.  Embedded within the application of Eq. (3.17) are the 

following important suppositions. Sufficient information must be available to 

characterize the covariance, either analytically or empirically. In the latter approach, 

construction of C may be computationally daunting (O[N
3
]) for large grids. The re-

parameterized spatial information will be honored with up to a second-order 

characterization, so continuous heterogeneity (e.g., from multi-point geostatistics) is not 

guaranteed to be reproduced after parameter estimation. When prior information in the 

form of directions and scales of spatial variation are approximately correct, the basis 

functions will succinctly update the dominant (large-scale) heterogeneity with a low-

rank parameterization. However, when the prior information in yj is incorrect, inversion 

performance is shown to be poor (Jafarpour and McLaughlin, 2009). 

For comparison with the GCT approach, we use the KLT parameterization to estimate 

cell permeability in the model calibration scenario presented in the previous application 

with the goal of reproducing the reference permeability in Fig. 3.6B from the production 

data. Two parameter estimation examples are performed each using a different 

covariance model, the first corresponding to an isotropic Gaussian variogram model, the 

same model used to generate the reference field (Fig. 3.6B), and the second to an 

incorrect anisotropic Gaussian model. For each, 100 realizations were constructed using 

sequential Gaussian simulation (Pebesma, 2004) to construct C. A single realization 
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corresponding to the isotropic and anisotropic models are respectively shown in Figs. 

3.10A and 3.10D, together with metrics that verify convergence of the covariance for 

each case. In Fig. 3.11 the leading basis functions corresponding to the two KL 

expansions and to the GCT are compared, depicting the types of permeability 

heterogeneity that are defined as their weighted linear combination in each case. The 

parameter estimation is performed using the identical adaptive approach of sequential 

refinement presented previously. The objective function reduction for the two KLT cases 

and the GCT are compared in Fig. 3.12E over the four refinement steps before 

convergence to a local minimum. The KLT case corresponding to the correct covariance 

(or variogram model) has a more efficient minimization because the basis functions 

reflect the same prior information as in the reference model. The corresponding 

calibrated permeability in Fig. 3.12B well captures the global reference heterogeneity 

shown in 3.12A. With the improper covariance assumption, data misfit reduction does 

not perform as well but remains acceptable as a result of heterogeneity non-uniqueness, 

demonstrated by the „calibrated‟ permeability in Fig. 3.12D. Although the error from 

non-uniqueness is obvious in this toy problem and using the most simple of geostatistical 

models, in a field application with more complex heterogeneity such a difference may 

not be known and the actual failure of the calibration non-obvious. 

The two KLT end-member cases of correct and blatantly incorrect prior information 

place the GCT approach in the middle, where the generic form of the basis functions 

adapt to the data misfit when applied sequentially beginning at the coarse scale. The 

decision to use the GCT versus KLT is fundamentally based on uncertainty in the prior. 

The KLT is preferred when the prior is well known because of its optimal variance-

preserving compression, although the above-mentioned limitations must also be 

satisfied. If there is uncertainty in the prior, particularly at larger scales, then the GCT 

provides a parameterization that is unhindered by computational burden and flexible in 

the characterization of multiscale geologic continuity. Further, we demonstrate in the 

next subsection how the prior model, when warranted, can be preserved using the GCT 
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by the selective inclusion of basis functions, an approach not applicable in this 

subsection because we began the inversion using a uniform (i.e., uninformed) prior. 

 

Fig. 3.10. Individual permeability ensemble members corresponding to an (A) isotropic and (B) 

anisotropic covariance model. For each 100-member ensemble, the second column verifies covariance 

convergence of mean and variance for 5 randomly selected cells in the corresponding grids. The third 

column shows the covariance matrix eigen-spectrum for each ensemble. 
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Fig. 3.11. Leading GCT basis functions from low to higher modal frequency (left to right) for the GCT 

parameterization (top row) and for the KLT parameterization using isotropic (middle row) and anisotropic 

(bottom row) covariance models. 

 

 

 

 

 

Fig. 3.12. The (A) reference permeability and calibrated permeability fields corresponding to the (B) KLT 

parameterization with correct covariance assumptions, (C) GCT parameterization, and (D) KLT 

parameterization with incorrect covariance assumptions. (E) shown the objective function minimization 

during upon termination of each multiscale iterate. 
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3.4.3  Brugge Reservoir Model 

In this application we update a high-resolution prior permeability model on an irregular 

and faulted corner-point grid in calibration of the Brugge reservoir model. The Brugge 

model is a synthetic benchmark case developed by TNO (a Dutch organization for 

contract research) to evaluate closed-loop production optimization strategies. Details of 

the comparative project are in Peters et al. (2010). Prior to production optimization the 

project required and provided data for calibration of the permeability field, from which 

we have developed this analysis. The Brugge reservoir properties replicate a North Sea 

Brent-type field within an East-West elongated half-dome with a truncating boundary 

fault at its north edge and a single interior fault. The reservoir model grid, initial oil-

phase saturations, and the well pattern with twenty producer in the dome and ten 

peripheral injectors in the supporting aquifer are shown in Fig. 3.13. The three-

dimensional grid has 44,355 active cells in nine layers, depicted in Fig. 3.14 at the left. 

The flow model is solved using a commercial simulator (Schlumberger, 2009) with fully 

implicit discretization. Production response sensitivities to static grid cell properties (i.e., 

permeability) are derived from the simulators built-in adjoint code. 

 

Fig. 3.13. Initial oil saturation in the Brugge reservoir model. 
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Fig. 3.14. Individual layers (by row) of the Brugge prior permeability model (first column) and calibrated 

model (second column) using a parameterized multiplier field (see Fig. 3.15). 

 

 

 

Production data of WPR, oil production rate (OPR) and bottom-hole pressure (BHP) at 

each producer are provided with the project for a ten year calibration period. Also 

provided are 104 realizations of permeability, porosity and saturation region. In this 

application we update permeability within a single realization by matching WPR and 

BHP at each of the twenty producers. 
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The permeability multiplier field is parameterized based on consistency with the well-

informed prior geologic description. The prior model in Fig. 3.14 at the left shows four 

distinct formations, each of a similar depositional setting, but each with a visibly 

different range of permeability magnitude and scale of variation. Also, the approximate 

correlation length of variability in the vertical direction is apparently at the grid cell 

scale, i.e., features at a single horizontal coordinate are not necessarily correlated in the 

juxtaposing layers regardless of the formation type. For these reasons, each layer is 

individually parameterized, or is assigned a unique GCT basis, for model updating. A 

key point is that the regional definition of the bases from the depositional description 

provides one method by which the GCT parameterization is adaptive to prior 

information. Although not depicted, we found that the parameterization of one or more 

layers together results in the merging of discontinuous vertical features during model 

updating, thereby reducing the prior heterogeneity that is to be preserved. 

Several of the lower frequency functions for a single horizontal layer of the Brugge grid 

were shown in row 3 of Fig. 3.2. Notice that the modal shapes reflected by the basis 

functions beyond the constant function are approximately oriented with the directions of 

maximum and minimum elongation, consistent with the vibrational modes or invariants 

of the grid structure (Chung, 1997), and also honor the discontinuity across the fault. The 

implication of this behavior is that permeability features along these orientations are 

expected to be well characterized by individual basis functions. Model grids are 

generally constructed to conform to geologic understanding, so the parameterization will 

benefit in this case by reducing the number of basis vectors required to capture larger-

scale features with similar primary directional components. 

Prior model heterogeneity is also enforced in the multiscale integration by the selective 

addition of basis functions during sequential updating. In order to determine this 

sequence, each layer of the prior permeability is projected onto the 500 lowest-frequency 

basis functions. For example, the compression performance of the top layer permeability 

was shown in Fig. 3.3. The basis functions are then sorted by their projection magnitude, 
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in descending order, which determines the order in which they are sequentially applied 

in the workflow. This is the second key point regarding the ability of model-independent 

transforms to benefit from prior information when available. 

For the calibration, the multiscale approach begins with the parameterization of the 

multiplier (per layer) using the five leading modes. Then, following minimization of the 

objective function, the parameterization of each layer is updated by the next five modes 

at each successive multiscale step. The multiplier fields at the solution of each step are 

shown in Fig. 3.15. As the level of spatial detail is refined, permeability trends are 

adaptively refined based on their sensitivity to the production data. Sensitive layers 

corresponding to the higher-quality sands (layers 1-2, 6-8 in Fig. 3.14) are more 

impacted and permit updating at higher frequencies. Accordingly, the lowest quality 

sand (layer 9) showed no relative sensitivity to the observations and retained a multiplier 

of unity at the final solution despite its parameterization by twenty-five basis functions. 

The matched permeability field is shown in comparison to the prior model in Fig. 3.14. 

The updates in larger-scale trends are apparent while the high-resolution detail is 

maximally preserved in the updated model. Fig. 3.16 shows the objective function 

reduction over the five multiscale steps required to achieve the calibration, beyond 

which the data misfit would no longer reduce. Notice that as more detail is added to the 

model, both the number of iterations completed at each multiscale step and the reduction 

in the objective function is reduced, again supporting the importance of updating larger- 

before smaller-scale heterogeneity. Last, in Figs. 3.17 and 3.18 the WPR and BHP misfit 

plots are shown, respectively, for each of the twenty production wells. Production misfit 

metrics of R and residual summary statistics are shown for each well response in Table 

3.3. There is an overall acceptable improvement in data misfit (e.g., see R values in 

Table 3.3), although at few wells the misfit remains unchanged or deteriorates as the cost 

of global improvement. In the cases of unacceptable misfit, the addition of higher-

frequency modes to the permeability description does not improve misfit at these wells 

and implies that the global model identified is locally incorrect in these areas. The 

corresponding wells (i.e., P9, P15) are located close to, within a few grid cells of, the 



102 

 

interior fault boundary (Fig. 3.13) and require heterogeneity updating at local, individual 

grid cells to improve the production response misfit (e.g., using a streamline-based 

calibration method to adjust inter-well heterogeneity as demonstrated by Alhuthali et al. 

(2010) for the Brugge reservoir model). In field application, however, such a finding 

should result in re-analysis of geologic and boundary condition interpretations near these 

areas, which calls attention to the fundamental employment of model calibration as an 

analysis tool (i.e., assisted calibration) rather than as a replacement for the analyst (i.e., 

automatic calibration). 

 

Fig. 3.15. Individual layers (by row) of the parameterized multiplier field at termination of the successive 

multiscale iterations (columns) during calibration of the Brugge permeability model. 
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Fig. 3.16. Objective function minimization at multiscale iterates (left) and the number of corresponding 

gradient-based minimization iterates (right) during calibration of the Brugge permeability field. 

 

 

 

 

 

 

Fig. 3.17. Simulated water production rate at each production well corresponding to the reference, 

initial/prior and calibrated Brugge permeability fields. 
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Fig. 3.18. Simulated bottom hole pressure at each production well corresponding to the reference, 

initial/prior and calibrated Brugge permeability fields. 

 

 

 

 

Table 3.3. Production data misfit metrics of correlation coefficient (R) and the minimum, mean and 

maximum of the fit residual for the individual well production responses in Fig. 3.17. Observation 

uncertainty metrics were not provided with the calibration production data set (Peters et al., 2010). Values 

of n/a correspond to observation data sets of zero value for which R cannot be calculated. 

 

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

R n/a 0.961 n/a n/a 0.988 0.986 n/a n/a 0.542 0.989

Min. residual 0.0 -34.8 0.0 0.0 -71.2 0.0 0.0 0.0 -95.0 -72.8

Mean residual 0.0 10.4 21.2 1.4 12.2 26.5 2.6 7.2 -11.3 -14.6

Max. residual 0.0 103.1 144.1 13.5 171.4 101.2 3.4 16.2 23.2 14.1

P11 P12 P13 P14 P15 P16 P17 P18 P19 P20

R 0.984 0.989 0.993 0.986 0.770 0.970 0.900 0.975 0.984 0.995

Min. residual -23.9 -1596.2 -41.4 -110.5 -605.6 -247.2 -258.8 -49.0 0.0 -137.2

Mean residual 62.6 -28.3 11.3 39.2 -278.7 35.9 -24.5 100.3 42.1 -49.6

Max. residual 192.4 2.7 80.7 299.0 103.4 313.1 360.6 439.0 84.8 24.1

Production well (see Figure 17)
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3.4.4  Channel Facies Reservoir Model 

In this application we employ the parameterization in a channelized reservoir model to 

show its utility for characterizing permeability in multiple regions or facies of complex 

geometry. The model is defined on a regular Cartesian grid with dimensions 87  100  

5 and uniform cells of size 40  40  2 feet. The facies geometry is simulated using the 

object-based geologic modeling code FLUVSIM (Deutsch and Tran, 2002) to simulate a 

fluvial depositional environment. The reservoir model in Fig. 3.19 shows the three 

distinct facies considered: a background floodplain shale, reservoir quality channel sands 

and crevasse splay sands, the last formed when the channel is breached. Static reservoir 

conditions, dead oil (i.e., oil containing no dissolved gas) fluid properties and relative 

permeabilities are copied from the SPE10 Model 2 reservoir (Christie and Blunt, 2001) 

which is designed as part of a Brent sequence. We used unconditional sequential 

Gaussian simulation (Pebesma, 2004) within each facies to populate anisotropic 

permeability and defined a constant porosity per region, with all relevant parameters 

listed in Table 3.4. In Fig. 3.20 the reference absolute permeability is shown in each 

layer of the grid in (A) millidarcys (md) and in (B) ln(md), the former depicting spatial 

variability within the sand channels and the latter depicting variability in the shale. 

Using the same model equations and simulator as in Subsection 3.4.3, we applied the 

reference permeability model in Fig. 3.20 in a two-phase waterflood simulation with five 

rate-controlled injection wells to generate reference observations of WPR at the seven 

BHP-controlled production wells. The observation set consists of monthly measurements 

over a two-year period with white noise of up to ±5% of the absolute value of each 

datum added, randomly sampled from a Uniform distribution over that range. For model 

calibration we use a different permeability realization consistent with the parameters in 

Table 3.4 and shown in Figs. 3.20A and 3.20B. The difference at each cell between the 

reference and prior models is shown in Fig. 3.21C and defines the desired permeability 

changes during the inversion. 
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Fig. 3.19. Well pattern and prior permeability field for a three-facies channelized reservoir model 

including a background floodplain shale, reservoir quality channel sands and crevasse splay sands. 

 

 

 

Table 3.4: Variogram parameters for the population of permeability within individual facies of a 

channelized reservoir model. Anisotropy ratio is the ratio of minor range/major range in the horizontal 

plane and is constant with depth. 

 

Facies 

Variogram 

model Azimuth (º) Major range (ft) Aniso. ratio Sill log10(md) Porosity 

Channel Spherical 0 2000 0.25 0.01 2.9777 0.20 

Channel 

splay 
Exponential 90 1000 0.75 0.01 2.6990 0.17 

Shale Exponential 0 1500 1.0 0.10 0.6990 0.05 

 

For the calibration, the prior permeability model is divided into nine regions shown by 

color code in row 1 of Fig. 3.22, each of which is individually parameterized using a 

separate basis. The objective during model updating is to capture the spatial variation 

within the predefined region boundaries, which are assumed known from prior 

knowledge, and not to update the facies structure itself which falls into the scope of a 



107 

 

different intention in flow data assimilation (Roggero and Hu, 1998; Hoffman and Caers, 

2005; Jafarpour and Khodabakhshi, 2010; Xie et al., 2010). A selection of leading basis 

functions, from the zero to higher modal frequencies, is shown for the nine regions in 

Fig. 3.22. Following the multiscale workflow (Fig. 3.5), model calibration was initiated 

by parameterizing a multiplier applied to each region individually with its corresponding 

five leading basis functions. After a reduction of the objective function to a local 

minimum at this coarse level, four additional levels of sequential refinement for up to a 

total of twenty-five basis functions per region were used to achieve the calibration. The 

multiplier field at the final solution is shown in Fig. 3.21A, the matched permeability in 

3.21B and the difference at each cell between the reference and matched permeability 

models in 3.21C. The multiplier field reflects minimal changes (to ln(md)) centered near 

unity and demonstrates the ability to update trends within regions of complex geometry. 

A comparison of the permeability difference maps between the required and observed 

updates (Fig. 3.21C) further demonstrates that the direction of updates (i.e., positive and 

negative) are correctly identified between observation locations. In the areas of data 

insensitivity in the shale layer, the multiplier retains a consistent value of unity through 

the refinement steps and permeability is not updated. The WPR misfit between the prior, 

calibrated and observed (including noise) responses is shown per well in Fig. 3.21D over 

the two-year fitting period and an additional two-year forecast period. The 

corresponding WPR misfit metrics in Table 3.5 show for each well a high value of R, 

>0.98, and a residual range close to that of the white noise added. Altogether, the 

acceptability of the matched production responses, including the match of water 

breakthrough times, and the accuracy of the forecast support the correct identification of 

larger-scale heterogeneity within the geometrically complex regions using the multiscale 

approach. 
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Fig. 3.20. Layers 1 through 5 (from top to bottom) of the reference and prior permeability models in (A) 

millidarcys (md) and in (B) ln(md). (A) depicts spatial variability within sand bodies and (B) the 

variability within the shale. 
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Fig. 3.21. Layers 1 through 5 (from top to bottom) of the calibrated facies model (A) multiplier field and 

(B) permeability field, and (C) the desired versus observed permeability changes during the inversion. (D) 

Simulated water production rate at each well corresponding to the reference, initial/prior and calibrated 

permeability fields. 
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Fig. 3.22. (Row 1) The nine regions, each individually parameterized during model calibration, of the 

facies reservoir model by layer. (Rows 2-6) Selected basis functions for the nine regions. 
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Table 3.5: Production data misfit metrics of correlation coefficient (R) and the minimum, mean and 

maximum of the fit residual and observation noise for the individual well production responses in Fig. 

3.21D. The simulated production responses correspond to the calibrated permeability field in Fig. 3.21B. 

 

LPROD1 LPROD2 LPROD3 LPROD4 RPROD1 RPROD2 RPROD3

R 0.999 0.998 0.998 0.982 0.994 0.999 0.999

residual -6.239 -4.559 -10.378 -8.380 -27.402 -10.490 -4.719

noise -15.108 -8.648 -10.889 -1.032 -7.313 -15.123 -6.964

residual -0.733 -0.670 -0.033 -0.372 -1.575 -2.078 -1.942

noise 2.108 -0.239 -0.653 0.117 0.118 0.960 -0.677

residual 6.335 5.340 16.535 2.995 1.140 7.021 2.084

noise 15.768 9.447 11.913 1.540 6.951 15.150 6.230

Production well (see Figure 19)

Minimum

Mean

Maximum
 

 

 

 

3.5  Conclusions 

In this section a novel method of hydraulic property model parameterization was 

introduced and applied for reservoir model calibration to dynamic data. The 

parameterization is achieved using a transform basis that linearly maps the estimable 

field at grid cell resolution from the spatial to spectral domain in which the calibration is 

performed. The generalized basis functions are defined as the (approximate) 

eigenvectors of the grid Laplacian and converge to special cases of the discrete Fourier 

basis when the grid structure is regular and certain periodic domain boundary conditions 

are assumed. In the general case, the basis functions represent the harmonics of the grid 

structure on which the property is defined and may, but are not required to, have 

similarity with the harmonics of the property. 

By design, the GCT basis consistently provides a flexible and efficient construct for 

parameterization in any groundwater or reservoir model. Dependence on the grid 

connectivity alone implies that the basis can be constructed from, and therefore the 

parameterization applied to, any grid geometry and sub-grid region. The basis functions 

are also computed once and are fixed throughout the calibration workflow, assuming that 

the grid remains unchanged. The sparse symmetric structure of the Laplacain enables the 

efficient iterative approximation of only a few leading (lowest modal frequency) basis 

functions for grids with size on the order of one-million cells. These assertions are 
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verified in the next section, Section 4, as the GCT is applied for the history match of a 

large reservoir model simulating a mature waterflood through a complex geologic model 

characterizing turbidite depositional sequences. 

Perhaps the most appealing feature of the GCT is its prior model independence in 

concert with the flexibility to honor prior information when available. The dominant 

spatial components of the prior heterogeneity can be maintained through the calibration 

by parameterizing individual regions based on geologic structure, and also by the 

inclusion of basis functions in the parameterization onto which the prior model 

projection is greatest. This unique capability comes with a constraint that determines the 

type of calibration scenarios for which the GCT may be appropriate. The spectral 

representation does not contain spatial information and therefore cannot locally 

characterize fine-scale spatial heterogeneity, particularly edge information, with a low-

rank representation required for parameterization. Rather, the GCT is best suited for the 

characterization of larger-scale, potentially but not necessarily continuous, heterogeneity 

and has been theoretically and empirically shown to possess strong generic information 

compression performance. 

When the restriction to coarser-scale model updating is a limitation, two avenues of 

research are proposed that may add to the diversity of calibration scenarios for which the 

parameterization is applicable. These involve the incorporation of more complex 

heterogeneity geometries and prior model information into the Laplacian matrix and, 

therefore, the transform basis. These developments define the subject matter of Section 

5. A second approach based on Kernel methods is discussed in Section 6 and is the 

subject of potential research. 
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4.  GCT PARAMETERIZATION: FIELD APPLICATION
*
 

4.1  Summary 

The GCT parameterization is applied as the primary component of a structured history 

matching workflow for calibration of a field reservoir model. The workflow seamlessly 

integrates production data into the reservoir description from the facies to the grid-cell 

scale. In the first step of the workflow, the GCT is applied to parameterize the reservoir 

permeability using the coarsest scale basis functions to identify the large scale variability 

within and between the facies structures. Additional smaller-scale basis elements are 

then adaptively incorporated to successively refine the model to a level supported by 

data resolution, and are added in a sequence determined by generic modal frequency as 

prior model information is unavailable in this case. In the second and final step of the 

workflow, a streamline-based inversion is performed to locally adjust the reservoir 

model at grid-cell resolution along coarse scale preferential flow paths defined during 

the previous step using the parameterization, as well as by the well pattern. 

The field case models an offshore turbidite reservoir with frequent well intervention 

including shut-ins, recompletions and pattern conversions. The static model has over 

three-hundred thousand cells, a complex channelized interpretation with faults, four 

injector-producer pairs with deviated wells and over eight years of production history 

including water-cut and pressure data. The GCT parameterization effectively updates the 

prior regional permeability at scales and locations warranted by the data, while 

preserving the geologic continuity and avoiding ad hoc redefinition of regions given the 

sparse well pattern. During the subsequent step of heterogeneity refinement along 

streamline trajectories, flow communication through the calibrated permeability field 

____________ 

*
Part of this section is reprinted with permission from “Multiscale Parameterization and 

History Matching in Structured and Unstructured Grid Geometries” by Bhark, E., Rey, 

A., Datta-Gupta, A., Jafarpour, B.,  Paper SPE 141764 presented at the 2011 SPE 

Reservoir Simulation Symposium, 21-23 February 2011, The Woodlands, Texas, USA. 

Copyright 2011 by the Society of Petroleum Engineers. 
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previously unrecognized in static geologic interpretation or manual history matching is 

identified. 

4.2  Introduction 

In field applications, history matching involves the integration of various types of 

dynamic measurements, from seismic down to the core, that capture data across a large 

range of spatial resolutions. Practical data integration algorithms must therefore follow 

suit in their ability to identify and update reservoir heterogeneity over a comparable 

range of spatial scales. Characterization of reservoir heterogeneity typically begins with 

the conceptual geologic model and the identification of regional attributes such as facies 

or depositional sequences, domain boundaries and boundary conditions, and faults or 

other sources of regional hydraulic (dis)continuity. Finer-scale patterns of heterogeneity 

within regional features may then be populated and updated when appropriate. 

Accordingly, research and field application together have emphasized the establishment 

of reservoir engineering workflows that systematically reconcile the geologic model, 

from the regional to grid-cell scale, with multiresolution transient data. Related 

approaches to both manual and assisted history matching typically apply a structured 

approach and employ a series of data integration algorithms that are each suited to the 

scale of the estimated features and the type and resolution of the available data (e.g., 

Landa and Horne, 1997; Williams et al., 2008; Caers, 2003; Cheng et al., 2008; Yin et 

al., 2010). Approaches following this parsimonious rationale integrate data such as 

3D/4D seismic, formation testing of pressure, pressure transient analysis and production 

phase cuts in a step-wise sequence, beginning at the global scale and often with the most 

simple description, followed by an attempt to update finer-scale details only when 

supported by the data or by related engineering decisions. There are in fact many 

instances when characterization at the grid-cell scale is supported, e.g., in mature fields 

with tens to hundreds of wells and decades of production history (e.g., Milliken et al., 

2001; Agarwal et al., 2000) or using 4D seismic data (e.g., Lu and Horne, 2000; 
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Gosselin et al., 2003; Rey et al., 2009). In such cases, a proven and efficient method of 

reservoir model calibration in large, complex geologic models uses streamline-based 

techniques for local model refinement along preferential flow paths defined in the global 

prior model (Wang and Kovscek, 2000;  Caers, 2003). Methods of streamline-based 

reservoir characterization implicitly capture heterogeneity by streamline trajectory and 

density and, accordingly, are well suited for the refinement of local spatial variability 

within regional heterogeneity. 

In this section we propose and employ such a structured history matching workflow that 

adaptively integrates production data into a high-resolution geologic model to bridge the 

gap between automated regional zonation with pixel-based updating. The workflow first 

identifies or updates the prior regional heterogeneity and hydraulic continuity, down to 

the smallest scale supported by the available data, using the GCT parameterization. This 

first component of the workflow is identical to that presented in Subsection 3.3.6 (Fig. 

3.5). In the second and final component of the workflow, a streamline-based history 

match is performed to locally update the reservoir model along streamline paths 

implicitly determined by the larger-scale heterogeneity identified with the 

parameterization, together with the well pattern and schedule. It should be noted that this 

last step is based on the established streamline-based technique of Generalized Travel 

Time Inversion (GTTI). As there is no research contribution but only application, a 

minimal description of the GTTI application is provided sufficient only for a general 

understanding. However, it is important to present this streamline-based component as 

the associated results are relevant to and verify the utility of the GCT parameterization. 

The reader is referred to Bhark et al. (2011c) for a more complete description of the 

GTTI workflow and also for additional references. 

In the remainder of this section, the complete structured history matching workflow is 

applied for a mature offshore reservoir with active reservoir management and extensive 

production data. The numerical simulation model contains more than three-hundred 

thousand cells, a complex depositional sequence of turbidite sands, four pairs of deviated 
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injection and production wells, and more than eight years of production data history 

including bottom hole pressure (BHP) and water cut (WCT) at each producer. We use 

the numerical reservoir model as presented in Rey et al. (2009) who previously 

performed a streamline-based history match of the WCT data and, therefore, rely heavily 

on this reference for geologic interpretation and insight. At the conclusion of this section 

we present a comparison of the reservoir model calibrated in this study with results from 

Rey et al. (2009), and also highlight the strengths of the GCT parameterization and 

GTTI when used in tandem. 

4.3  Reservoir Description 

The reservoir structure and hydrostratigraphy are characterized by a turbidite 

depositional system comprised of multiple sand sequences with highly variable levels of 

geometric overlap and uncertain hydraulic interconnectivity. Several primary sand 

bodies or facies corresponding to uniquely inferred depositional histories were identified 

from integrated seismic interpretation and well log data. In addition to the structure, 

these data were used also to quantify spatial reservoir quality in the static model by the 

net-to-gross (NETG) attribute. Other petrophysical properties including permeability and 

porosity in the dominant facies were then populated in the static model as the average 

property values estimated from the corresponding intersections with well log data. A 

sample cross-section from the seismic interpretation, adapted from Rey et al. (2009), is 

shown in Fig. 4.1A juxtaposed with the interpreted NETG map in (B) and a 

corresponding cross-section in (C) that depicts the individual facies layering. The 

interconnected units are combined with a system of transverse faults relative to the 

direction of sand deposition that are present primarily in the shallower regions of the 

reservoir to the south. Description of the hydraulic continuity across these faults is 

presented in the following discussions when relevant. 

Production well locations and completion intervals were determined by the conceptual 

facies and fault model. Per Rey et al. (2009), the intent of well placement was to 
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complete injector-producer pairs within the reservoir quality facies in an orientation 

thought to improve sweep efficiency. Hydraulic continuity between flow units and 

across faults was then inferred from well pressure data and WCT responses, which we 

discuss below during presentation of the calibration updates. 

 

Fig. 4.1. (A) Schematic depiction of the turbidite depositional interpretation used to develop the reservoir 

model (adapted from Rey et al. [2009]), (B) the NTG interpretation representative of the individual 

turbidite sand bodies identified and (B) a north-south cross-section depicting the individual reservoir 

quality sands. 

 

 

 

4.4  Prior Permeability Model 

Following Rey et al. (2009), in this analysis we calibrate the horizontal absolute 

permeability field to match WCT and BHP production data. For construction of the prior 

permeability model, we assume the most parsimonious description of static reservoir 

properties relative to the geologic description available and rely on the coarse-scale 

parameterization to resolve multiscale heterogeneity. Prior to the streamline-based 

history match of Rey et al. (2009), the associated business unit partitioned the static 

permeability model into forty individual regions to provide flexibility in the description 

of static properties and hydraulic continuity within the interpreted sand bodies (Fig. 

4.1B). They then calibrated intra-region permeability, and placed transmissibility 

multipliers at the interface of several of the regions in order to reconcile the coarse 
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geologic model to production data before performing a streamline-based inversion. We 

discuss their reservoir model later in this subsection. 

For this analysis, we abandon the regionalized model (in Fig. 15 of Rey et al. [2009]) 

and revert to the most fundamental facies structure interpreted from the available data. 

From analysis of PVT properties and permeability-porosity correlations embedded in the 

reservoir, five primary facies comprised of reservoir quality sands were identified. These 

facies, together with the well pattern, are presented in Fig. 4.2 and describe the structure 

of the prior permeability model applied in our analysis. In each facies a constant 

permeability is defined that is computed as the average of all corresponding zones in the 

40-region model from Rey et al. (2009). A uniform permeability represents an un-

informed prior and is a reasonable supposition given that static reservoir properties were 

measured only from well logging at a sub-set of the sparsely located wells. In the 

multiscale component of the history matching workflow, we apply the GCT 

parameterization to perform regionalization, in a geologically consistent manner, by the 

identification of heterogeneity both within and between the facies during a history 

match. 
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Fig. 4.2. The facies model, each with consistent permeability-porosity correlation and PVT properties, 

used to develop the prior permeability model and well pattern. 

 

 

 

4.4.1  GCT Parameterization of Facies Permeability 

For the coarse-scale calibration, the prior permeability field is updated using a 

parameterized multiplier field that we apply individually to each facies. Each multiplier 

field is assigned an initial value of unity at each cell, thereby preserving the prior 

permeability at the start of the workflow, and is subsequently updated by sequential 

refinement as described in the following subsection. In this subsection we first present 

the GCT basis functions used to parameterize the multiplier fields. 

The transformation basis for each of the five facies (Fig. 4.2) is constructed using the 

corresponding grid connectivity information. Rows one and two in Fig. 4.3 show 

selected basis functions for facies 5 and 1, respectively, and are sorted by their 

equivalent eigenvalue ranks from the lowest to highest modal frequencies. For any given 

facies, recall that it is the weighted linear combination of multiple basis functions that 
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describe reservoir heterogeneity, where the weights or spectral coefficients are the 

estimable parameters. 

It is important at this point to reiterate key concepts regarding properties of the basis 

functions that are critical to this multiscale application. To start, the projection of any 

spatial field onto the constant basis function (e.g., column 1 of Fig. 4.3), corresponding 

to the zero modal frequency or zero eigenvalue, results in a single spectral coefficient. 

Adjustment of this coefficient uniformly updates the spatial field and is equivalent to the 

traditional approach using a constant multiplier. If the spatial field has no variability, 

e.g., as for the constant multiplier field of unity, then its transformation to the spectral 

domain will result in a set of spectral coefficients equal to zero except for that coefficient 

corresponding to the constant function. The number of coefficients will equal the 

number of basis functions included in the parameterization. Accordingly, an increase in 

magnitude of any of the initially zero-valued coefficients will add spatial variability to 

the field. The level of spatial detail incorporated will increase with the addition of basis 

functions corresponding to higher modal frequencies, and will also depend on the 

number of cells in the field. With the sole exception of the constant function, the 

„wavelength‟ of a basis function scales with the number of cells in the field such that 

coarse features in a smaller region with few cells may be equivalent to finer-scale 

features described by a basis function of higher modal frequency in a larger region. For 

example, compare the modal shape of the 2
nd

 basis function in row 1 (corresponding to 

the larger facies) versus row 2 (smaller facies) in Fig. 4.3. Both correspond to the second 

lowest modal frequency; however, the length scales of spatial variability that would be 

characterized in the two facies are considerably different. The relevant implication is that 

the reservoir volumes parameterized using this approach should have consistent 

geological properties and length scales of spatial variability. Our choice to parameterize 

the reservoir model by facies in fact demonstrates this concept. The facies are shown to 

represent different depositional sequences from integrated seismic interpretation and 

well data, and therefore are expected to have geological consistency. 
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Fig. 4.3. Leading basis functions, sorted from left to right in order of increasing modal frequency, for 

facies 5 (top) and 6 (top). 

 

 

 

4.5  Coarse-Scale Calibration: Adaptive Multiscale Workflow 

The discussion to this point has describe how the properties of the transform basis form a 

flexible construct for the parameterization of facies permeability, in a manner consistent 

with the conceptual reservoir model structure. The observation data used for the history 

match are WCT and BHP over an approximately eight year period at each of the four 

producers. We note here that the pressure data are assigned less weight for the inversion 

due to a considerable amount of variability in the simulated data that is attributed to 

frequent well intervention in the schedule. Data misfit, characterized using the 

formulation in Eq. (3.13), is reduced using a gradient-based scheme in which the 

gradient is directly computed by one-sided finite-difference perturbation of each 

parameter. Therefore, each iteration required nt + 1 simulations. 

The multiscale inversion begins by simultaneously updating the mean (ln) permeability 

of each flow unit using its zero-frequency or constant basis function. This corresponds to 

parameterization of the multiplier field by only five spectral coefficients, one per facies, 

equivalent to the traditional approach of regional multipliers. The updated multipliers are 

shown in Fig. 4.4A and the corresponding WCT data misfit at each of the producers in 
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Fig. 4.4B. The utility of the mean updates is adjustment of the relative differences in 

regional permeability for improved consistency of time shift and magnitude in the 

overall WCT response at a given producer. In particular, permeability is considerably 

decreased in facies 1 and 6 to lower the magnitude of WCT response at producer P4 (see 

Fig. 4.2), which involves a more complicated response behavior that we discuss below. 

Conversely, permeability is increased in facies 5 to expedite the arrival time at P3 of 

water injected at I3 at the distal down-dip end of this large unit. The improved data 

misfit at P3 suggests that higher permeability in facies 5 would further improve the 

misfit; however, the adjustment of the mean in any of the facies influences production 

responses at all producers, and it was observed that an additional increase in the mean 

permeability of facies 5 has a detrimental effect on the other wells. At P2, the 

considerable improvement in data misfit by the mean update alone indicates that the 

structural model well captures the local flow behavior, which is controlled largely by a 

set of low transmissibility faults (Fig. 4.1) that confine the I2-P2 well pair closely to the 

north and south. In the remaining facies, the multiplier field approximately retains its 

initial value of unity through the inversion, thereby preserving the prior permeability 

model as intended. These observations altogether, in tandem with the unacceptable data 

misfit, promote the inclusion of within-facies heterogeneity through the addition of 

higher modes in transform basis. 

 

 



123 

 

 
Fig 4.4. (A) The calibrated permeability multiplier field, per facies, following updating of the mean 

permeability using the constant basis function and (B) the corresponding WCT misfit. 

 

 

 

Continuing with the multiscale workflow, basis functions were sequentially added to the 

parameterization of each facies permeability field in sets. To reiterate an important point, 

within-facies heterogeneity is derived as the linear combination of multiple basis 

functions; therefore, the addition of basis functions must be performed in sets using a 

scheme that does not permit over-parameterization and subsequent immediate 

convergence of the objective function to a local minimum (Bhark et al., 2010b). In this 

analysis we found that sets of five were sufficient, e.g., after parameterization of a single 

facies permeability field with only the constant basis, the flow unit was sequentially 

parameterized by the leading five basis functions, then the leading ten, and so on at each 

multiscale iterate (Fig. 3.5). This scheme was applied in tandem with the gradient-

screening procedure, described previously in Subsection 3.3.6.2, for the automatic 

removal of insensitive parameters from the inversion at each multiscale iterate. Also, 

upon the addition of spatial detail to each flow unit, we found it critical to freeze the 

parameter corresponding to the constant basis which consistently showed a large 

sensitivity that dominated the parameter update vector. The complete multiscale 

workflow was terminated when the addition of basis functions, as a group over all facies, 

failed to improve data misfit at any of the producers. The refinement of the detail within 



124 

 

an individual facies during the workflow was terminated using the gradient-screening 

criterion. 

The coarse-scale, calibrated multiplier and permeability fields are shown in Fig. 4.5 

along with the number of leading basis functions that were sensitive to the data during 

the history match. A total of 36 parameters were required to characterize the coarse-scale 

reservoir permeability. The multiplier field reflects minimal changes to log-permeability, 

where regions of insensitivity or accurate prior description retain a multiplier of unity 

through the refinement steps, and also demonstrates the ability of the parameterization to 

update regional trends with a geologically consistent description within (sub)domains of 

complex geometry. In the larger flow units, the data supported a maximum of ten 

leading coefficients, in terms of modal frequency, to resolve regional spatial variability 

and were insensitive to the subsequent inclusion of higher modes. However, notice that 

facies 2 could not be resolved beyond adjustment of the mean permeability because the 

data, particularly at P1 (see Fig. 4.2), were insensitive to large-scale heterogeneity in this 

flow unit, indicating a more fundamental model inconsistency than permeability 

heterogeneity. We present a more detailed analysis of the flow behavior and influence of 

the multiscale calibration below with the analysis of the streamline-based inversion. In 

the smaller facies, 1 and 6, only the five leading basis functions were supported for the 

parameterization of each. Recall that the modal frequency corresponding to a basis 

function scales with the number of cell connections (e.g., Fig. 4.3); therefore, five basis 

functions were found sufficient to capture large scale variability in these relatively 

smaller regions. The WCT misfit at each producer, shown in Fig. 4.6, verifies the 

marked improvement in the history match at all wells but P1, the reasons for which are 

presented below. The improvement demonstrates the important influence of regional 

heterogeneity on flow behavior and the efficacy of adaptive refinement in its 

characterization. 
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Fig. 4.5. (A) The calibrated permeability field at the conclusion of the adaptive multiscale workflow 

(Figure 1B) and (B) the number of leading basis functions, per facies, sensitive to the data during the 

coarse-scale inversion. 

 

 

 

 

Fig. 4.6. WCT data misfit corresponding to the calibrated permeability field at the conclusion of the 

adaptive multiscale workflow (Figure 1B). 
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At this point we briefly compare the calibration of regional permeability using the 

proposed multiscale approach with that corresponding to the regionalized model in Rey 

et al. (2009). For this we compare in Fig. 4.7 the horizontal transmissibility ratio, defined 

as the division of the calibrated by prior transmissibility at each cell, corresponding to 

this analysis with that in Rey et al. (2009). However, because we do not have access to 

the prior (non-regionalized) transmissibility field corresponding to Rey et al. (2009), we 

construct the ratio in Fig. 4.7B based on the prior facies model used in this study, which 

is sufficient to highlight the coarse-scale model updates incorporated by the associated 

business unit before they performed a streamline-based history match. Inspection of Fig 

4.7A depicts the increase in transmissibility along the east and west flanks of the model 

and the decrease in the central region, thereby improving flow continuity in the up-dip 

orientation and reducing cross-flow in the perpendicular orientation. In Fig. 4.7B, the 

apparent transmissibility multipliers applied for a coarse-scale history match similarly 

serve to reduce cross flow and improve flow continuity in the up-dip direction. The 

multipliers also create flow barriers at several of the inter-region contacts. Notably, the 

GCT parameterization identifies sharp permeability contrasts at several of these exact 

locations, both between and within facies. We defer to a more detailed analysis of flow 

behavior in this next subsection. 
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Fig. 4.7. Comparison of the horizontal transmissibility ratio (calibrated / prior) corresponding to the 

calibrated permeability field at the conclusion of the adaptive multiscale workflow. 

 

 

 

4.6  Fine-Scale Calibration: GTTI Workflow 

At the conclusion of the coarse scale inversion, the subsequent addition of basis 

functions to the parameterization of any facies does not improve data misfit. We 

therefore assume (with the exception of the P1 response) that the improvement of the 

match requires heterogeneity refinement at scales finer than the GCT is able to resolve 

and progress to inversion with the GTTI technique. 

To briefly review, the GTTI was developed within the class of streamline-based 

inversion techniques inspired by travel time methods for waveform inversion of seismic 

tomography and exploits the similarity between streamline time of flight and the Eikonal 

equation for travel time tomography (Vasco and Datta-Gupta, 2001). There are several 

advantages related to these streamline methods when applied in automatic history 

matching procedures, notably the fast computation of analytical sensitivities of 

production responses to static reservoir properties, and also the quasi-linear properties of 



128 

 

the travel time misfit minimization (Cheng et al., 2005). The GTTI technique is an 

extension of the travel time methods for reservoir property determination under changing 

field conditions (He et al., 2002) and has been demonstrated to improve the history 

match quality during high-resolution model calibration. The gain results from the 

evaluation of data misfit as the single shift in time that maximizes the cross correlation, 

per well, between the observed and simulated production data (Luo and Schuster, 1991; 

He et al., 2002).  

The efficiency in the streamline sensitivity calculation is based on the assumption that a 

small perturbation in the flow properties will modify the arrival time along the 

streamline without altering the streamline trajectory. This assumption permits a simple 

analytical description of how a localized perturbation in conductivity (i.e., a very small 

change in the cell permeability at a particular location along the streamline path) will 

perturb the travel time of a neutral tracer along the streamline, hence the formulation for 

parameter sensitivity. The extension of this concept to multiphase flow requires only the 

specification of chain rule derivatives (Vasco et al., 1999; Cheng et al., 2005; Oyerinde 

et al., 2009). From the analytically-derived sensitivities we define an objective function 

comprised of the data misfit and two regularization terms that aim to preserve the main 

features embedded in the prior model with local continuity, i.e., 

 
22212

RLRRGdR  J .      (4.1) 

In the objective function, d is the vector of the (single) GTTI misfit for each well and G 

is the sensitivity matrix containing the partial derivatives for the arrival of the water to 

each well with respect to the reservoir parameters, i.e., grid cell permeabilities. Each 

component of G is obtained as the summation of the individual streamline contributions 

per well. The quantity R is the vector of changes in the reservoir property. The scalar 1 

determines the relative strength of the “norm” constraint through which the objective 

function is penalized by deviations from the initial model at grid cell resolution. The 

scalar 2 determines the relative importance of the “roughness” constraint which 
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enforces continuity in permeability during model updating and is analogous to 

enforcement of a covariance constraint (Yoon et al., 2001). The smoothness operator L 

is the discrete, two-point model Laplacian defined exactly as in Fig. 3.1, although in Eq. 

(4.1) the Laplacian acts as a local operator. The objective function is reduced through a 

least-squares iterative method until a convergence criterion is satisfied. 

A common difficulty encountered during the GTTI misfit calculation is locating the 

optimal time shift corresponding to the maximum cross-correlation for highly detailed 

production data. Rapid response variations and non-monotonicity result in a non-convex 

cross-correlation profile. Although an obvious solution is to smooth the production 

response, smoothing does not guarantee the elimination of the high frequency variability 

and can degrade the temporal response resolution to the point that the GTTI technique 

reduces to a simple travel time inversion. To prevent this loss in resolution we instead 

use a re-sampling technique that eliminates high-frequency variation while preserving 

the shape of the production response. The production data are sampled at equal volumes 

of produced oil at surface conditions thereby providing a coarser response that retains 

high-resolution relative to produced volumes (Rey et al., 2009). The data misfit plots for 

WCT and BHP at the conclusion of the GTTI inversion are shown in Fig. 4.8 and Fig. 

4.9, respectively. We now describe the matched production response behavior on a well-

by-well basis. 
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Fig 4.8. WCT data misfit corresponding to the calibrated permeability field at the conclusion of the 

streamline-based workflow (Figure 1C). 

 

 

 
Fig. 4.9. BHP data misfit corresponding to the calibrated permeability field at the conclusion of the 

streamline-based workflow (Figure 1C). 
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4.6.1  Influence and Analysis of Calibrated Heterogeneity 

4.6.1.1  Producer P3 

A distinct feature of the calibrated permeability model identified during the 

parameterization component of the workflow is the regional increase in permeability 

along the eastern side of the reservoir. The primary effect of this increase was to reduce 

travel time along the swept path from injection at I3 to production at P3, which is 

consistent with the interpretation in Rey et al. (2009) and is supported by the improved 

WCT misfit during both the coarse- (Fig. 4.6) and fine-scale (Fig. 4.8) inversions. The 

streamline well-allocation and time-of-flight maps in Fig. 4.10 portray the improvement 

in hydraulic continuity between the I3-P3 well pair along the eastern edge. The 

streamline paths also show the reduction in hydraulic continuity from the opposing west 

side of the reservoir, a result that was imposed in the previous history match by the 

inclusion of transmissibility barriers transecting the east and west portions of the 

reservoir (Fig. 4.7). To further improve flow continuity between I3 and P3, Rey et al. 

(2009) used streamline-based updating to increase permeability and match the observed 

WCT, identifying a potential channel (Fig. 26 of Rey et al. [2009]). Consequently, they 

defined a preferential flow path along the collective streamlines between I3 and P3, 

fundamentally based upon the velocity field corresponding to the prior regionalized 

reservoir model. However, the permeability updates exceeded the maximum threshold of 

2 darcys (D) in certain location, up to a maximum of 10 D near the wellbore. 

Conversely, in this analysis geologically consistent regional permeability was first 

updated during the parameterization component of the workflow, which then permitted 

consistent streamline-based permeability updates, the maximum of which barely exceeds 

1 D. The parameterization naturally identified a larger volume for permeability increase 

that is more consistent with permeability constraints rather than relying on the smaller 

volume intersected by streamlines to make the required updates. This result highlights 

the importance of resolving coarse- before fine-scale heterogeneity in history matching, 
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and also the strength of streamline-based methods to refine the model at high resolution 

along prior preferential flow paths. 

 

Fig. 4.10. (A) Streamline allocation traced from P3 for the initial (prior) and final (calibrated) permeability 

models, and (B) corresponding time of flight along streamlines. 

 

 

 

4.6.1.2  Producer P2 

The observed WCT and BHP responses at P2 are well approximated using the prior 

permeability model and are considered history matched following the mean permeability 

update of flow unit 5 (see Fig. 4.4) during the coarse-scale component of the workflow. 

During characterization of the structural model interpretation, the associated business 

unit identified the transecting faults to the north and south of this well pair, shown in 

Fig. 4.1, as flow barriers that constrict the drainage volume of P2 primarily to the region 

between these faults (Rey et al., 2009). The streamline well-allocation and time-of-flight 

maps in Fig. 4.11 demonstrate this flow constriction and, appropriately, show similar 

drainage patterns before and after calibration of the complete reservoir model, which is 
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consistent with the objective of minimally updating the prior model. These results imply 

that the flow unit structure and properties, relative to the static (seismic) and dynamic 

data available, are correctly captured with a simplistic model. This is also consistent with 

our parsimonious conceptual approach to history matching. 

 

Fig. 4.11. (A) Streamline allocation traced from P2 for the initial (prior) and final (calibrated) permeability 

models, and (B) corresponding time of flight along streamlines. 

 

 

 

4.6.1.3  Producer P1 

Per the associated business unit, the pressure response at P1 responded at a later time 

than that predicted upon injection at I1 despite the proximity of the wells and their 

completion in the same flow unit (Rey et al., 2009). In congruence with the prediction of 

an early water breakthrough time at P1 using the prior permeability model, the assisted 

history match was expected to result in a decrease in pressure support at P1 from the 

injector, thereby reducing the transport signature of I1, and also to result in an increase 

in support from the aquifer. The streamline source allocation plots in Fig. 4.12 in fact 

show this modification in flow behavior between the initial and calibrated models. 
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However, in a screening analysis we observed that the permeability in this up-dip region 

of facies 2, particularly between the injector and producer, cannot be sufficiently 

lowered without causing drawdown at P2 to drop below the minimum pressure 

constraint and erroneously decrease the production rate. During attempts at 

heterogeneity refinement, we also observed that a decrease in permeability near the 

injector alone was not sufficient to delay breakthrough. 

At the grid-cell scale, streamlines were also unable to perform the regional changes that 

would reduce communication between the well pair while retaining sufficiently high 

permeability near the well. Unless manually constrained, streamline updating lowered 

permeability along the streamline paths, particularly near the well where grid-cell 

sensitivity is largest, to the point that the minimum pressure constraint was violated. 

Therefore, the calibration was not satisfactorily performed in this region of the reservoir 

such that simulated water breakthrough remains early. The predicted WCT response at 

P1 in Rey et al. (2009) similarly occurs early and was not able to be reconciled by 

permeability adjustment alone. Because neither the parameterization nor streamline-

based components of the workflow were able to reconcile this discrepancy, in this 

scenario we use our history matching approach as a diagnostic tool. The observations 

described suggest the potential inclusion of a flow barrier between the well pair or, more 

likely, a required increase in the facies thickness which may result in the reduced 

transport time desired while retaining sufficiently high permeabilities to support the well 

pressure constraints. 
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Fig. 4.12. (A) Streamline allocation traced from P1 for the initial (prior) and final (calibrated) permeability 

models, and (B) corresponding time of flight along streamlines. 

 

 

 

4.6.1.4  Producer P4 

Flow behavior near P4 proved the most difficult to characterize given the complex 

structure in this region (see Fig. 4.2). Inspection of the initial WCT misfit at P4 and the 

improved WCT after mean permeability updating (Fig. 4.4), together with geologic 

interpretation, suggested that the calibrated model must simultaneously constrain flow 

within flow unit 6, in which P4 is completed, while at the least improving flow 

continuity in flow unit 1, in which I1 is completed. That is, both the simulated 

breakthrough time and overall magnitude of the WCT response had to be simultaneously 

reduced. Notably, these points of reservoir engineering judgment were automatically 

detected during the parameterization component of the workflow in which permeability 

in flow unit 6 was lowered and permeability at multiple spatial scales was increased in 

flow units 1 and 3. The resultant regionalization effectively created flow barriers at the 



136 

 

interface of flow unit 6 with units 1 and 3 which, interestingly, are exactly consistent 

with the placement of transmissibility barriers at this interface by Rey et al. (2009) (Fig. 

4.7B). The streamline well-allocation and time-of-flight maps in Fig. 4.13 exemplify the 

barriers, the decrease in pressure support from I4 following the calibration, and also the 

improvement in aquifer support which permits the earlier breakthrough time to be 

reproduced while at the same time honoring the smaller observed WCT magnitude. To 

reiterate a key point, these updates exemplify a second case that demonstrates the 

significance of characterizing regional before fine-scale heterogeneity. In this example, 

the permeability updates required extend beyond those constrained to streamline paths 

that correspond to the prior permeability model. 

 

Fig. 4.13. (A) Streamline allocation traced from P4 for the initial (prior) and final (calibrated) permeability 

models, and (B) corresponding time of flight along streamlines. 
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4.7  Conclusions 

This section presented the application and efficacy of a structured history matching 

workflow that adaptively integrates multiresolution production data into a high-

resolution geologic model. The workflow first characterizes regional or coarse-scale 

heterogeneity, in a manner consistent with and adaptive to prior information when 

available, using the GCT parameterization. The key properties of the parameterization 

which permit its application to large reservoir models with complex geologic description 

are as follows: 

 Applicability to any grid structural geometry as well as domain boundary 

geometry 

 Prior model independence, with the benefit of honoring prior information when 

available by the inclusion of basis functions into the parameterization that correspond to 

the dominant spatial components of the prior model heterogeneity (Bhark et al., 2011a) 

 Strong generic compression performance, theoretically and empirically 

demonstrated by Laplacian eigenvectors, and guaranteed in the ideal cases of regular 

grid connectivity by convergence of the basis functions to the DCT-2 basis 

 Efficient basis construction on account of the sparse symmetry of the Laplacian 

using the implicitly restarted Lanczos method 

All four attributes are either a direct or indirect consequence of the transform basis 

construction from grid-connectivity information alone. 

The applications of the parameterization in adaptive, multiscale history matching 

demonstrated the geologically-consistent characterization of coarse-scale heterogeneity, 

avoiding the ad hoc definition of regional multipliers or other parameterization schemes 

that can lead to the inclusion of artificial features in the calibrated model. The coarse-

scale updates identified areas of both continuity (smooth transition) and discontinuity 

(sharp contrast) in the property model that, even independent of history matching, 
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provide a useful tool in conceptual geological interpretation and the identification of 

trends. 

Upon characterization of coarse-scale heterogeneity, refined down to the spatial scale 

permitted by the observed data, we used the established streamline-based GTTI 

algorithm to update heterogeneity at the grid-cell scale. The approach to local updating 

is consistent with model characterization using the parameterization; streamline paths 

are implicitly determined by larger-scale heterogeneity together with the well pattern and 

schedule. In addition to improvement of data misfit, a streamline analysis further proved 

useful in identifying modifications in flow behavior resulting from the previous coarse-

scale update, which is a critical component of model calibration analysis. The 

differences in flow behavior and hydraulic reservoir continuity between the prior and 

calibrated models also clearly demonstrated the importance of characterizing global 

before local reservoir heterogeneity. 
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5.  ADJACENCY-BASED PARAMETERIZATION: INCLUSION OF PRIOR 

MODEL WITH GRID CONNECTIVITY INFORMATION 

5.1  Summary 

This section introduces a novel reservoir model parameterization as a special case of the 

grid-connectivity-based transform (GCT) basis, developed in Section 3, for the 

incorporation of prior model information. Just as for the GCT parameterization, the 

reservoir property field is mapped to and updated in a low-dimensional transform 

domain using a linear transformation basis. The transformation basis vectors are the 

eigenvectors of a Laplacian matrix that is constructed using grid connectivity 

information and the main features in a given prior model. Because the grid connectivity 

information is computed only within a small multi-point stencil, the Laplacian is always 

sparse and amenable to efficient decomposition using a variant of the Lanczos algorithm. 

The resulting basis functions are ordered from large to small scale and exhibit both 

generic and prior-specific spatial features. Therefore, the variability in the reservoir 

property distribution can be effectively represented by projecting the property field onto 

subspaces spanned by an increasing number of leading basis vectors, each incorporating 

additional heterogeneity features into the model description. This property lends itself to 

a multiscale history matching algorithm where basis elements are sequentially included 

to refine the heterogeneity characterization to a level of complexity supported by the 

resolution of data. While the method can benefit from prior information, in the extreme 

case where reliable prior knowledge is not available the transformation reduces to a 

discrete Fourier expansion with robust parameterization properties. 

5.2  Introduction 

The original application of reservoir model parameterization for resolving the 

underdetermined and ill-posed problem of history matching is spatial zonation (e.g., 

Jacquard and Jain, 1965; Jahns, 1966) and was reviewed in Subsection 1.1. This section 

presents the development and application of a spectral approach to reservoir 
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heterogeneity zonation that builds upon, or is a special case of, the GCT 

parameterization presented in Section 3. Similar to the GCT parameterization, the 

proposed approach maps and updates the spatial property field in a low-dimensional 

transform domain using a linear transformation basis. The transformation basis vectors 

are constructed as the eigenvectors of a Laplacian matrix that captures adjacency 

information for each cell-pair in the calibrated domain. Although the definition of an 

adjacency metric is generic, in this study cell-to-cell adjacency is characterized by the 

Euclidean distance between the cells, and also by the difference in a static reservoir 

property defined at the cells. Because this approach to spectral, adjacency-based 

parameterization is developed as a special case of the GCT parameterization, which 

provides a spectral representation of grid connectivity information, it is useful to first 

review and understand what the GCT basis functions physically and conceptually 

represent, and how they characterize reservoir heterogeneity. 

Summarizing key points from Subsection 3.3, the GCT basis is defined as the 

eigenvectors of a grid Laplacian, annotated in this section as LGCT, that characterizes the 

complete immediate-neighbor or two-point cell connectivity of the N-cell reservoir grid. 

Recall that the Laplacian is constructed as the difference of the degree matrix (D) and 

grid adjacency matrix (A), i.e., LGCT = D – A. From Eq. (5.1) which defines the 

symmetric N  N matrix A, 

 



 


otherwise

Ejiif
a ji

0

,1
,          (5.1) 

and, following the graph notation from Subsection 3.3, the adjacency measure can be 

viewed as a constant weight of unity between cell i and its nearest-neighbor cells j. D is 

then a diagonal matrix with each element equal to the row sum of A, or equal to the 

number of neighboring cells j with which cell i shares a cell face. Following this 

formulation, LGCT is exactly periodic and naturally defines boundary elements that 

enforce a symmetric reflection of the function across a boundary cell face; therefore, the 
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Laplacian has eigenvectors equal to the DCT-2 basis functions (i.e., a special case of the 

discrete Fourier basis) when the cell connectivity structure is regular (Bhark et al. 2011a; 

Strang, 1999). From this perspective, the GCT parameterization characterizes a 

heterogeneity map as the weighted linear combination of cosine harmonics. From the 

perspective of zonation, each basis vector depicts zones of heterogeneity, e.g., lows and 

highs at specific locations, as the fluctuation or periodicity of the corresponding cosine 

wavelength, which may or may not be similar to the features of the prior model. 

Taubin (1995) also recognized the equivalence of Laplacian eigenvectors, considering 

two-point connectivity of any n-cycle graph, with the discrete Fourier basis. However, 

he extended the adjacency definition to weights of any real non-negative value, still over 

a two-point neighborhood, and made the important observation that the Laplacian 

eigenvectors represent the “natural vibration modes” of the grid with eigenvalues 

corresponding to the “natural frequencies”. Although in this case the exact equivalence 

to Fourier theory is lost, the eigenvectors still reflect modal frequencies useful for 

parameterization, or for a low-rank manipulation of a spatial function (e.g., Zhang et al., 

2010). Therefore, from this more general perspective, the GCT parameterization 

characterizes heterogeneity as the weighted linear combination of grid harmonics, and 

from the perspective of zonation, each basis vector depicts zones of heterogeneity as the 

periodicity of the corresponding modal shape. 

The derivation of the proposed adjacency-based parameterization begins from this point 

and is based on the extension of the adjacency definition in Eq. (5.1) to one that 

considers multi-point connectivity over a larger local neighborhood (i.e., within a 

multipoint stencil), and also the similarity between property values at cells within the 

stencil. This latter component of the adjacency metric incorporates prior model 

heterogeneity in the Laplacian and, therefore, also into the basis vectors. Under this new 

formulation, the periodic action of the Laplacian can be lost. In such a case the basis 

vectors lose their relation to modal grid frequencies and begin to depict spatial 

characteristics of the prior model heterogeneity. This tendency is exacerbated as the 
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weighting function becomes more strict, as explained in detail below. However, when 

the weighting function is relaxed, the Laplacian approaches the form of a periodic 

operator and the parameterization basis approaches the model-independent GCT basis. 

Using this new Laplacian formulation, we posit that a small number of leading Laplacian 

eigenvectors, or basis vectors, can be used to implicitly perform a zonation and 

calibration of prior model heterogeneity to different levels of detail as warranted by 

understanding of the prior model. More specifically, a basis vector can be used to 

characterizes prior model heterogeneity as regions of piecewise continuous vector 

components, naturally depicting spatially continuous zones, at multiple spatial scales 

from the coarse to the fine. In Subsection 5.3, the key components of the basis 

construction are first presented, based on a new adjacency-based formulation of the grid 

Laplacian, and then are combined in Subsection 5.4 to demonstrate how each basis 

vectors performs a unique zonation of the prior model in the spectral domain. In these 

subsections we take care also to highlight the properties of the basis for which it is 

amenable to application for large-scale history matching problems, including efficient 

one-time construction prior to calibration, applicability to any grid geometry, and strong 

compression performance. In Subsection 5.4 we further describe how the proposed 

transform basis lends itself to a multiscale history matching algorithm where basis 

elements are sequentially included to refine the heterogeneity characterization to a level 

of complexity supported by the resolution of data. In the remaining subsections, the 

proposed parameterization is applied for the history match of several reservoir models, 

including the Brugge semi-synthetic field case, using an adaptive multiscale algorithm. 

5.3  Development: Adjacency-Based Transform Basis 

The following subsections present the components of the Laplacian construct and its 

subsequent decomposition for construction of the parameterization basis vectors. 
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5.3.1  Grid Adjacency and Laplacian Matrices 

The parameterization basis is ultimately defined as a set of the grid Laplacian 

eigenvectors, where the adjacency-based Laplacian, LA, is constructed as 

LA = D – A.           (5.2) 

The diagonal degree matrix (D) was defined above and has diagonal elements computed 

simply as the row sums of the adjacency matrix (A). Therefore, it is A that controls the 

structure of the Laplacian. 

Following the graph notation in Subsection 3.3, for each pair of cells i,j over the 

complete graph G, the adjacency measure (aij) can be considered as the weight of the 

edge (eij) connecting the cell pair, as defined in Eq. (5.1). Therefore, all components of A 

for which aij = 0 indicate that G has no edge between cell pair ij. Figs. 5.1A and 5.1B 

depict a simple 3  3 cell grid and the Laplacian matrices LGCT and LA, respectively. 

Each grey line depicts an edge between a cell pair, and the number on the line aij. We 

will return to this figure below. In this study the adjacency measure is defined as the 

product of two exponential similarity metrics (Shi and Malik, 2000), or 
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where xi,j is the cell centroid coordinate, pi,j is the cell property (i.e., prior model) value 

and r is a Euclidean cutoff distance beyond which aij is always equal to zero. The terms 

P and X determine the rate at which the weight decreases from cell i to j for each term 

of aij, so an important point is that both metrics must be „similar‟ for aij to be far from 

non-zero. For comparison, Fig. 5.1A depicts the simple two-point connectivity structure 

and unit (or step function) weighting scheme assumed for construction of the GCT basis 

for the 3  3 cell grid. As noted above, the periodic structure of LGCT in Fig. 5.1A can be 
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lost, as shown in B, when considering adjacency information as defined in Eq. (5.3). 

This concept is expanded upon below. 

 

Fig. 5.1. For the 3  3 cell grid, (A) depicts the two-point connectivity structure with unit (or step 

function) adjacency measure (top) and corresponding Laplacian matrix (bottom) for the GCT 

paramterization, and (B) depicts the analogous cell-pair adjacency measures and Laplacian for the ABT 

parameterization. 

 

 

 

In application, the adjacency parameters P and X of each exponential term in Eq. (5.3) 

are defined indirectly. The value of the corresponding 2-norm (in the numerator of the 

exponential), for both the property measure and for the Euclidean distance measure, at 

which the function is approximately zero (e.g., 0.001) is first defined by the engineer. 

Then, each rate parameter is solved for. For example, Fig. 5.2 depicts how a single term 

of Eq. (5.3) exponentially decreases as determined by the selection of the 2-norm 

tolerance for different tolerance values of 1, 10 and 100. The faster the rate of reduction, 
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the more strict the adjacency measure, and therefore the more dissimilar cell pairs will 

appear in LA. On the contrary, the slower the reduction rate or the more relaxed the 

adjacency measure, the more similar or connected cell pairs appear in LA. Therefore, 

both adjacency parameters ultimately determine the apparent periodicity of the 

Laplacian, which is a key point underscored below. Although definition of the 2-norm 

tolerance for each term of Eq. (5.3), which determines the parameters P and I, is an 

admittedly subjective step, this is in fact a common challenge. Any adjacency metric, 

more commonly known as a kernel function and used in many disciplines (Zhang et al., 

2010), and actually the product of two kernel functions in Eq. (5.3), requires user 

specification of one or more parameters for which there are in general no rules for 

selection (von Luxburg, 2006). We provide guidelines for the adjacency parameter 

selection below in the context of geologic heterogeneity parameterization. 

 

 

 

 

Fig. 5.2. The exponential form of a single term of the cell pair adjacency measure in Eq. (5.3) with the rate 

of decreases determined by selection of the 2-norm tolerance for three different values of 1, 10 and 100. 
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5.3.2  Zonation as a Graph Partitioning Problem 

With the adjacency-based Laplacian (LA) now defined, this subsection explains how the 

eigenvectors of LA naturally characterize and individuate zones of spatial continuity in 

the parameterized field. For this, the zonation problem is posed as a graph partitioning 

problem in the spectral domain, where (following Subsection 3.3) the heterogeneity 

field takes the place of the graph and is fully defined by its vertex and edge set, which 

are in this application characterized by LA. The partitioning of the field can then be 

quantified by a graph cut metric, defined below, that in general seeks an optimal 

segmentation of the cells in the field such that the edge weight, or adjacency, between 

cell pairs within a segment are all large and the adjacencies between segments are all 

small (von Luxburg, 2006). From this perspective, it is the Laplacian eigenvector (f) 

components, when mapped onto the grid, which identify an optimal segmentation of the 

property field. The segmentation f is a column vector of dimension N  1 and is optimal 

only with respect to a specific partitioning or graph cut metric, of which there are many. 

Relative to the intent of heterogeneity parameterization, and consistent with the concept 

of the cell adjacency matrix as defined by Eq. (5.3), f should partition the field such that 

cell property values within individual zones are similar (i.e., have a large adjacency) and 

cell values between two or more zones are as small as possible (i.e., have a small 

adjacency close to zero). 

As will be demonstrated later in this section, a useful partitioning metric for the purpose 

of the proposed parameterization is known as RatioCut, defined as 
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(Hagen and Kahng, 1992; von Luxburg, 2006) where A is a partitioned zone of the 

complete field (as defined by V), A

 

is its mutually exclusive complement and k is the 

total number of zones. The numerator of Eq. (5.4) is the well known graph cut and is 
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central to the concept of heterogeneity zonation for parameterization. For two (i.e., k = 

2) mutually exclusive segments A1 and A2 whose union fully defines V, the cut is 

  




21,

21,

AjAi

ijaAAcut and, conceptually, is equivalent to the sum of all edge weights 

removed between A1 and A2 that form the cut. The denominator in Eq. (5.4) is a measure 

of the size of a segment Ai and is equal to the number of cells within it. For example, Fig. 

5.3 shows two potential graph cuts, identified by the green dashed line, and the 

calculation of both the graph cut (numerator of Eq. [5.4]) and RatioCut for each 

partition. 

The key point is that the minimization of RatioCut can be viewed as a k-segment 

zonation by an eigenvector f, where each zone holds cell pairs of similar weight 

(numerator), balanced by the condition that each segment is of approximately equal size 

(denominator). The minimum, in fact, occurs exactly when the partitions are of equal 

size. Therefore, for the purpose of parameterization we seek the f that minimizes 

RatioCut. Without inclusion of the denominator in Eq. (5.4), the minimum cut tends to 

isolate cells in the field as show in Fig. 5.3A, which is in fact the minimum cut value (or 

the minimum of the numerator in Eq. [5.4] for this specific case). Returning to the 

fundamental application of zonation (or even upscaling, e.g., King [2007]) in reservoir 

engineering, zones are constructed around grid cells of similar (static or dynamic) 

property value, generally minimizing within-zone heterogeneity and maximizing 

between-zone heterogeneity. In Fig. 5.3B, the cut shown is likely that which the engineer 

would select by visual inspection, partitioning the field into the most dissimilar zones of 

high and low cell values. We now show how the optimal f, corresponding to the solution 

that minimizes RatioCut, in fact identifies this partition. 
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Fig. 5.3. Example graph cuts in (A) and (B) with calculation of both the graph cut and RatioCut metric for 

each field, and the 2
nd

 eigenvector of the (C) LGCT and (D) LA Laplacian mapped to the 3  3 grid. 

 

 

 

5.3.3  A Two-Zone Partition (k = 2) 

Hagen and Kahng (1992), who introduced the metric RatioCut, showed that when k = 2 

the optimal solution or zonation of any graph (characterized by LA) is approximated by 

the second eigenvalue of LA, 1, and is characterized on the graph by the corresponding 

eigenvector. To reiterate, in this application the concept of the graph is replaced by the 

parameterized property field. For a theoretical understanding of this proposition, the 

following expands upon relevant concepts from Hagen and Kahng (1992) using notation 

relevant to this study. 
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Consider the optimal zonation corresponding to the minimum of Eq. (5.4) and depicted 

as the piecewise continuous vector 
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where q and p are defined subject to the constraints q,p  0, 1ApN  , 2AqN   and 

1 pq . From this definition, f also satisfies the equality 01f
T , or is orthogonal to 

the constant vector 1. Therefore, f defines an indicator vector that identifies a two-zone, 

piecewise continuous partition of the field when mapped onto the grid. The key 

associations that relate f to the optimal cut can be shown by algebraic equivalence and 

are: 

  fLf A21, TAAcut           (5.6) 

and 

N

AA
T 21 

ff .          (5.7) 

The first in Eq. (5.6) follows conceptually from the relation that fi – fj = 0 when cells i 

and j are within the same zone, and that fi – fj = 1 when cells i and j are in the different 

zones; therefore, the weighted scalar product in Eq. (5.6), where the weights are defined 

by the components of LA, define the graph cut, which to reiterate is the sum of all edge 

weights intersected by the cut. The second equivalence in Eq. (5.7) is shown from the 

relation NAAqpNqNppNqApAq 21
22

2
2

1
2T ff . Therefore, when k = 2, 

RatioCut in Eq. (5.4) can be alternately defined as
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which has the form of the Rayleigh quotient. It was established in Subsection 3.3 that 

LA, when defined as in Eq. (5.2), is symmetric and positive semi-definite with a non-

negative eigenspectrum, and furthermore with a smallest eigenvalue always equal to 

zero and corresponding to the constant eigenvector (i.e., 1). By the Rayleigh-Ritz 

theorem (Lancaster and Tismenetsky, 1985), the minima of Eq. (5.8) are the eigenvalues 

of LA and the corresponding eigenvectors the critical points of the Rayleigh quotient. 

However, under the indicator constraint of Eq. (5.5), the minimization of Eq. (5.8) is a 

NP-hard discrete optimization problem and cannot be solved trivially (Shi and Malik, 

2000). Hagen and Kahng (1992) showed that when this constraint is relaxed such that fi 

can have any real value, then by the Rayleigh-Ritz theorem the second smallest 

eigenvalue is the solution to minimization of RatioCut subject to the aforementioned 

constraints 01f
T

 and 0f . Recall from Eq. (3.8) in Subsection 3.3 that the 

Laplacian, when computed as Eq. (5.2), is always positive semi-definite. The smallest 

eigenvalue (0) of LA is, therefore, always equal to zero and corresponds to the constant 

eigenvector which clearly does not provide a partition of the property field. The relevant 

solution then is 1, with the zonation characterized by the second eigenvector. 

A simple but informative demonstration of this concept is presented in Fig. 5.3D in 

which the second eigenvector of LA (corresponding the property field in Fig. 5.3B) is 

mapped onto the 3  3 grid. The eigenvector components are clearly related to the 

heterogeneity pattern and, by visual inspection, enable a partitioning of the field 

identical to that identified by the minimum RatioCut in Fig. 5.3B (see the green dashed 

line). This is the key utility behind the application of Laplacian eigenvectors for spatial 
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zonation. In fact, spectral clustering algorithms are based on this and similar concepts 

(von Luxburg, 2006; Zhang et al., 2010). It is also useful to compare the second 

eigenvector of LA with that of LGCT, shown in Fig. 5.3C. The heterogeneity captured by 

this eigenvector is related to the grid connectivity harmonics and is unrelated to the 

parameter heterogeneity, therefore providing no utility for zonation in this example. 

As 1 indicates the useful eigenpair when k = 2, a crucial consideration for 

parameterization is the (geometric) multiplicity of the zero eigenvalue, 0. The 

multiplicity of 0 is equal to the number of isolated zones, A1, …, Ak, as defined in LA 

(Mohar, 1997). When k = 1, or when the grid appears fully connected, it was explained 

in Subsection 3.3 that a single zero eigenvalue exists and corresponds to the constant 

eigenvector, 1. Using the adjacency construct, it is highly possible that k > 1, or that 

relative to the components of LA certain groups of cells appear isolated from all others 

when aij = 0 for all cells paired across the k groups. In this case, the number of zero 

eigenvalues equals k, and the corresponding eigenvectors are indicator vectors of 

constant non-zero value over the ith group of cells, for i = 1, …, k (Mohar, 1991; von 

Luxburg, 2006). It is important to understand that, for the purpose of parameterization, 

we seek eigenvectors of approximate piecewise continuous value and not the indicator 

vectors. Although the latter may be quite useful for the identification of prior zones in 

other applications (e.g., clustering), these vectors fix the location and boundaries of the 

different zones which are likely uncertain and require adjustment during calibration of 

the prior. Therefore, in this application only a single constant basis vector is desired for 

updating of the field mean, and the subsequent leading basis vectors are used to update 

heterogeneity as the linear combination of piecewise continuous features. Stated 

differently, we do not seek the indicator vector f in Eq. (5.5) that exactly minimizes Eq. 

(5.8), but rather prefer for a parameterization the second eigenvector corresponding to 

the approximate solution 1 when k = 2. We return to and provide examples of this 

important topic below in Subsection 5.4.1 during the construction and analysis of basis 
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vectors for different prior models, and further explain why and how this effect must be 

avoided for parameterization. 

5.3.4  A Multi-Zone Partition (k > 2) 

The extension of the RatioCut minimization to k zones is required for the use of multiple 

leading eigenvectors for multiscale zonation adjustment. Following the logic of the 

previous subsection, a similar proposition is given by von Luxburg (2006) that relates 

the leading eigenpairs of LA to an optimal zonation of the field. Rather than considering 

the single indicator vector f (Eq. [5.5]) that optimally partitions the field, k > 2 indicator 

vectors can be considered that comprise the columns of matrix F with indicator 

components fi,j for 1  i  N and 1  j  k. Similar to the proposition above, if fi,j can take 

real values and the constraint IFF T  is satisfied (i.e., the indicator vectors are pairwise 

orthogonal), von Luxburg (2006) shows that the general form of RatioCut (Eq. [5.4]) is 

proportional to  FLF A
TTr , where Tr denotes the matrix trace. Using a variant of the 

Rayleigh-Ritz theorem, and again relaxing the indicator constraint on the values of fi,j, 

the minimization of  FLF A
TTr  to identify the k minima of RatioCut are given by the 

matrix F that has the first k eigenvectors of LA as columns. 

Returning now to the application of reservoir heterogeneity parameterization, the leading 

eigenvectors of LA will, to varying degrees, capture multiple zones of spatially 

continuous heterogeneity as piecewise continuous eigenvector components. The 

eigenvalues determine the spatial scales of piecewise continuity in each vector, with 

smaller eigenvalues associated with larger scales of continuity. As an end member, the 

zero eigenvalue (0) corresponds with the constant vector and therefore does not depict 

heterogeneity, but is useful for updating of the field mean. When used together, the 

eigenvectors enable the simultaneous characterization of a large number of prior model 

heterogeneity zones, with the sharpness of the zone borders determined by the strength 

of the adjaceny metric (Eq. [5.3]), and using only a few parameters, typically much less 

than one percent of the property dimension. 
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5.3.5  Numerical Eigendecomposition 

The minimization of Eq. (5.8) and its multi-partition analogue, which are expressed as 

the Rayleigh quotient, is achieved by solving the standard eigenvalue problem. Recalling 

the properties of the Laplacian when constructed as in Eq. (5.2), LA is guaranteed 

symmetric, sparse and positive semi-definite. Therefore, just as for the LGCT, we take 

advantage of these properties and use the implicitly restarted Lanczos method (IRLM) 

within the ARPACK subroutines (Lehoucq et al., 1998) to approximate the leading 

eigenpairs corresponding to the smallest eigenvalues. The approach of iterative restarting 

ensures orthogonality of the Lanczos vectors. As explained in detail in Subsection 3.3.4, 

a highly truncated matrix decomposition is not a limiting factor but is in fact preferred 

for the parameterization as the intent of history matching is to calibrate only coarser 

scale spatial information as a result of limitations in data resolution. 

5.4  Methods: The Application of Parameterization in History Matching 

This subsection describes how the adjacency-based parameterization is applied for 

history matching. Because the parameterization basis can include prior model 

information at various levels depending on the strictness of the adjacency measure, 

which is fundamentally based on the type of prior model heterogeneity, we must now 

also consider various applications of the transform basis. In Subsection 5.4.1 we first 

demonstrate by example how the basis vectors vary as a function of the adjacency metric 

parameters for different types of heterogeneity, and concurrently address the capacity of 

the various bases for low-rank approximation of the prior heterogeneity. To address the 

subjective selection of the adjacency parameters during construction of LA, here we also 

provide guidelines for basis construction as determined by properties required for an 

effective parameterization. In Subsection 5.4.2 we then present the mathematical 

formulation of the parameterization and review its application in an adaptive multiscale 

workflow. As a result of the variability in different types of prior model heterogeneity, 

we explain how the parameterization is applied using either a multiplier field, which 



154 

 

updates the prior at full spatial detail, or using a low-rank approximation of the prior 

when the dominant heterogeneity is at local spatial scales finer than can be resolved by a 

global multiplier field. 

5.4.1  Basis Vector Behavior 

The spatial signature of basis vectors can vary from smooth and apparently model-

independent, converging to Fourier-like behavior at one extreme, to characterizing 

discrete zones of spatial continuity that well depict prior model heterogeneity at the other 

extreme. This variability in behavior depends on the specified rate of exponential 

decrease in both terms of the adjacency measure in Eq. (5.3), relative to the range and 

spatial variability of the prior heterogeneity. To demonstrate these concepts, we present 

the leading basis vectors, for different bases, constructed using two different 2D 

permeability fields. The first field in Fig. 5.4A is characterized by strong anisotropic 

heterogeneity at the coarse scale and continuous (smooth) spatial variability at the fine 

scale, particularly considering cell-to-cell variation. The second permeability field in 

Fig. 5.4B also depicts strong coarse scale anisotropy, but contains large variability at the 

fine scale, often with discrete differences in value between neighboring cells. 

 

 

 

 
 

Fig. 5.4. Permeability fields of (A) weaker and (B) stronger anisotropic, multiscale heterogeity applied in 

construction of adjacency-based transformation bases. 
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Beginning with use of the more continuous permeability field in Fig. 5.4A, in Fig. 5.5 

are shown the ten leading basis vectors for four different constructs of LA. Each case 

uses the same multipoint stencil, or the same value of X, corresponding to a two-step 

connectivity or 25-point stencil (excluding the boundary cases). The parameter P is 

varied from strict to relaxed relative to the user-specified cell property norm tolerance, 

notated as ||p||2 in the figure (or ||pi - pj||2 in Eq. [5.3]). In the most strict case in Fig. 

5.5A, or when the exponential rate of decrease is greatest in the adjacency measure, the 

prior heterogeneity features appear the most represented in the basis vectors. As P is 

relaxed, the piecewise continuous regions of the basis vectors lose their similarity to the 

prior and at the same time begin to assume frequency-like variability. In Fig. 5.5D, ||p||2 

is sufficiently large relative to the difference in permeability at any cell pair within the 

stencil that all values of aij are close to unity, LA converges to a multipoint periodic 

operator, and the basis converges to the GCT basis (actually the DCT-2 basis for this 

regular grid). 

Another important result is the existence of a single zero eigenvalue, and therefore a 

single constant basis vector, for each of the bases (or rows of Fig. 5.5). This implies that 

the field, relative to the components of LA, is fully connected such that any cell can be 

reached stepping from cell-to-cell along at least one path of non-zero aij from a starting 

location at any other cell. Recall that this property is important for an effective 

parameterization as it permits updating of the field mean using a single parameter and, 

further, is equivalent to the traditional application of a zonal multiplier over the 

parameterized region. Therefore, when selecting ||x||2 and ||p||2 for computation of X 

and P (Eq. [5.3]), respectively, it is important that both are sufficiently large to ensure a 

fully connected graph. 

Similar sets of basis vectors, again corresponding to a constant stencil and varying 

values of P, are shown in Fig. 5.6 that are constructed using the permeability field in 

Fig. 5.4B. The same conclusions stated above are true for this case; however, the large 

and often discrete permeability variation between cells in the stencil brings to light 
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challenges that may be faced in an appropriate basis construction. To ensure the 

existence of only a single zero eigenvalue, both the stencil and cell property tolerance 

must be sufficiently large to ensure a fully connected graph. In this case, a 3-step 

connectivity or a 49-point stencil is used (excluding the boundary cases). Even using this 

large stencil together with a relatively large property tolerance ||p||2, the second vector 

in both Figs. 5.6A and 5.6B has the apparent property of an indicator vector. From 

comparison with the permeability field in Fig. 5.4B, these vectors clearly identify an 

isolated group of cells of highly contrasting heterogeneity that are apparently 

disconnected (or have aij = 0) from the remainder of the cells in LA. The corresponding 

eigenvalue for each of these basis vectors is very small and close to zero, hence use of 

the term apparent indictor vector. Clearly this effect is detrimental to parameterization 

as this second basis vector would permit updating of only a single isolated zone. Observe 

also in all rows of Fig. 5.6 that even as the property tolerance ||p||2 becomes large and 

the spatial variability characterized by the basis vectors become more frequency-like, 

regions of the permeability field that have the largest contrasts, both at the fine and 

coarse scale, persist in the basis vectors. 
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Fig. 5.5. Each row lists the ten leading basis vectors (corresponding to the lowest eigenvalues) of a 

different LA constructed using the same multipoint stencil (of two-step connectivity or a 25-point stencil) 

and increasing property difference thresholds, ||p||2, from (A) to (D). The prior permeability model 

applied for definition of LA is in Fig. 5.4A. 
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Fig. 5.6. Each row lists the ten leading basis vectors (corresponding to the lowest eigenvalues) of a 

different LA constructed using the same multipoint stencil (of two-step connectivity or a 25-point stencil) 

and increasing property difference thresholds, ||p||2, from (A) to (D). The prior permeability model 

applied for definition of LA is in Fig. 5.4B. 

 

 

 

Returning now to the more continuous permeability field in Fig. 5.4A and switching 

perspectives regarding the adjacency measure, Fig. 5.7 shows the leading basis vectors 

for several constructs of LA that use different multipoint stencils (or values of X), but a 
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constant cell property threshold, ||p||2. Although the influence of prior heterogeneity is 

slightly degraded as the stencil size increases, the three sets of basis vectors are, from a 

parameterization standpoint, identical. The key observation is that the stencil size has 

less of an influence on basis vector behavior than the cell property differences within the 

stencil. Regardless of the stencil size, a difference in cell property values that exceeds 

the specified threshold will result in a (near) zero adjacency measure or weight, thereby 

disconnecting the cell pair within LA, and resulting in some level of discontinuity 

between these cells in the basis vectors. This insensitivity to stencil size is enhanced 

when considering a spatially continuous property at the fine scale (or the scale of the 

stencil), as depicted in Fig. 5.4A. 

There is, however, more of an importance to the stencil selection when the property 

variability is large at the grid cell scale, as depicted in Fig. 5.4B. In this type of 

(extreme) case, the stencil must be sufficiently large to capture even the smallest level of 

cell continuity as defined within LA, regardless of the value of ||p||2. For example, using 

a 9-point and 25-point stencil, several of the corresponding basis vectors in Figs. 5.8A 

and 5.8B, respectively, are effectively indicator vectors that isolate small cell clusters 

and that have an eigenvalue very close to zero. For reasons discussed earlier, these 

vectors are detrimental to the parameterization and, next, we demonstrate how these 

vectors in fact result in poor heterogeneity compression performance. Regardless, once 

the stencil is achieved that is of sufficient size to capture this continuity (e.g., Fig. 5.8C), 

further increasing its dimension is of little import (as depicted in Fig. 5.7). 



160 

 

 

Fig. 5.7. Each row lists the ten leading basis vectors (corresponding to the lowest eigenvalues) of a 

different LA constructed using the same property difference threshold, ||p||2, and increasing multipoint 

stencils from (A) to (C). The prior permeability model applied for definition of LA is in Fig. 5.4A. 
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Fig. 5.8. Each row lists the ten leading basis vectors (corresponding to the lowest eigenvalues) of a 

different LA constructed using the same property difference threshold, ||p||2, and increasing multipoint 

stencils from (A) to (C). The prior permeability model applied for definition of LA is in Fig. 5.4B. 

 

 

 

The prior model compression performance using all of the bases in Figs. 5.5 thru 5.8 is 

shown in Figs. 5.9 and 5.10 for the permeability fields in Figs. 5.4A and B, respectively. 

As the adjacency measure (Eq. [5.3]) becomes more strict, or as the stencil size and 

property difference tolerance are decreased, the bases represent the prior heterogeneity 

more accurately and the compression performance improves. In fact, the GCT (or DCT) 

basis shows the weakest compression performance of all of the cases, even though the 

GCT is known to provide strong compression of generic signals/images (e.g., Karni and 
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Gotsman, 2000; Zhang, 2004). This same behavior is observed for both of the 

permeability fields in Fig. 5.4. However, notice that when the multiplicity of 0 is 

greater than one (e.g., see the basis vectors in Fig. 5.8A applied in Fig. 10), the GCT 

outperforms the adjacency-based compression until the corresponding indicator vectors 

have all been included and the continuous (rather than indicator) vectors begin to be 

used for the low-rank approximation. Fig. 5.11 exemplifies the approximated 

permeability field in Fig. 5.4A at different compression levels, and Fig. 12 shows the 

same low-rank approximations for the permeability field in Fig. 5.4B. Both include the 

equivalent approximations using the GCT basis. The advantage of the adjacency-based 

compression is apparent in both cases. Multiscale heterogeneity of both continuous and 

apparently discrete descriptions is well captured using only a few of the leading 

adjacency-based basis vectors. On the other hand, the GCT (by design) provides a 

compact representation of the larger scale heterogeneity and captures only smooth 

features, truncating sharper features or edge information. 

Returning now to the application of geologic parameterization for history matching, if 

the prior model is well informed, then it is expected that the dominant heterogeneity (as 

depicted by the basis vector spatial variability) can be calibrated using few parameters 

corresponding to the relevant basis vectors. However, knowledge of prior information is 

always uncertain and, consequently, it may or may not be advantageous to include prior 

information in the parameterization basis despite the demonstrated capability for 

improved prior model compression. This concept is demonstrated in the parameterized 

history matching applications. 
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Fig. 5.9. Prior model compression performance, for the permeability field in Fig. 5.4A, using each of the 

bases depicted in Figs. 5.5 and 5.7. 

 

 

 

 

 

Fig. 5.10. Prior model compression performance, for the permeability field in Fig. 5.4B, using each of the 

bases depicted in Figs. 5.6 and 5.8. 
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Fig. 5.11. Low-rank approximations of the permeability field in Fig. 5.4A using leading basis vectors 

corresponding to the bases identified in Fig. 5.9. 

 

 

 

 

 

Fig. 5.12. Low-rank approximations of the permeability field in Fig. 5.4B using leading basis vectors 

corresponding to the bases identified in Fig. 5.10. 

 

 

 

5.4.2  Multiscale Parameterization and Workflow 

The discussion to this point has been focused on the development of the adjacency-based 

transformation basis, hereafter referred to as the ABT basis, for specific use in reservoir 

model parameterization. To review its advantageous properties for this use, the ABT 
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basis can be constructed for any grid structure or sub-grid region, permits the adaptive 

inclusion of prior model heterogeneity via the adjacency measure, and has pairwise 

orthogonal basis vectors that characterize multiscale spatial variability from the coarse to 

fine scale based on the corresponding eigenspectrum. Together these properties form a 

flexible construct for heterogeneity parameterization that is naturally suited for a 

multiscale application in the spectral domain. 

Following the general approach to parameterization by linear transformation presented 

in Section 1, the spatial parameter field u, defined at each grid cell center over the 

domain of interest, is mapped to the transform domain as 

ΦvuuΦv  T
.        (5.9) 

The vector u has dimension m  1, where m is the discretization of the calibrated field, 

and the column vector v is the nt-length spectrum of transform coefficients, or the 

parameters in the spectral domain. The nt columns of the basis  are the ABT basis 

vectors each of length m. Note that Eq. (5.9) implies pairwise orthogonal basis vectors so 

that the forward and inverse transform bases are efficiently computed through a 

transpose operation. 

As the primary objective of parameterization is to reduce the parameter dimension, in 

this case the dimension of v,  is a compact (truncated) representation and contains only 

a small number of basis leading basis vectors, corresponding to the smallest eigenvalues, 

that are able to capture the most relevant spatial information in a compact form. Further, 

the dimension (or number of columns) in  is adaptively increased during the history 

matching algorithm in order to refine the spatial parameter. The coarsest scale basis 

vectors are applied first to enable updating of large-scale heterogeneity. Then, basis 

vectors corresponding to finer scale features are adaptively included in the basis, 

increasing the number of parameters, and enabling the sequential refinement of details 

only to the spatial scale at which such details can be resolved by the production data. 
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Prior to each step of spatial refinement, the property model is used in the iterative 

minimization of a data misfit objective function that requires the simulation of dynamic 

production responses using the model iterates. The objective function is typically 

defined as the squared l2-norm of nonlinear dynamic data misfit, and is iteratively 

minimized using a quasi-Newton method. Given that we have only a few parameters, the 

gradient with respect to parameters in the transform domain can be directly computed 

through finite-difference perturbation, or alternatively using spatial parameter 

sensitivities made available from a commercial reservoir simulator using its built-in 

adjoint method. The specifics of these approaches were presented in detail in the 

previous subsections, and are pointed out specifically when relevant below. 

When the prior model heterogeneity is well informed (i.e., close to the true 

heterogeneity) or at least thought to be, then the intent of history matching is to update 

the prior heterogeneity at locations and spatial scales warranted by the production data, 

and to leave the property unchanged at locations either insensitive to or already 

consistent with the data. This is achieved by superimposing a multiplier field onto the 

prior model at grid-cell resolution, either over the complete domain or over any sub-grid 

region that requires calibration. The multiplier at each cell is assigned an initial value of 

unity, and it is the multiplier field (or u) that is parameterized as v in Eq. (5.9) and 

calibrated. A complete description of this version of the adaptive multiscale workflow is 

presented in detail in Subsection 3.3.6. 

The inclusion of prior model or cell adjacency information into the transformation basis, 

however, complicates the multiscale approach, so the workflow must be tailored in some 

cases based on the understanding of prior information. When the prior model 

heterogeneity affecting production responses is at the larger scale, or at the scale of the 

well pattern, then the approach of the multiplier field is found appropriate and robust 

over a large range of heterogeneity types. On the contrary, when the prior heterogeneity 

affecting production responses exists at the fine (or grid cell) scale as well as the large 

scale, then a multiplier field (when applied over the reservoir domain) is incapable of 



167 

 

making the required updates with a low-rank approximation required for a practical 

parameterization. In such scenarios, the property field is itself first reduced to a coarse 

approximation, and then is adaptively refined to the scale at which model and data 

resolution become balanced. As exemplified earlier in this section, the compression 

power of the ABT basis permits a low-rank description of the spatial model, 

characterizing dissimilar features relative to the adjacency measure, while smoothing 

over fine scale heterogeneity of small property differences that likely are irresolvable by 

the production data. During iterative calibration, the low-rank approximation of the prior 

decreases the likelihood of solution convergence to a local minimum related to a grossly 

incorrect starting location on the objective function surface, and also to high parameter 

dimensionality. This is the approach to adaptive multiscale model calibration taken in 

Section 2 using the DCT parameterization. 

It should be noted that the latter approach of prior model compression is, in general, not 

preferred because (1) the initial level of truncation must be performed only to the extent 

that some measure of dynamic behavior is honored given the corresponding reduction of 

spatial detail, which is an expensive task, and because (2) the inclusion of the relevant 

basis vectors in the parameterization during refinement is a non-trivial task. These 

subjects were addressed and managed in Section 2. However, in the following 

application subsection, we shown that when prior heterogeneity is strong and exists at 

the fine scale, then a multiplier field cannot be used to achieve a parameter solution and 

the prior must be approximated. Even more, when the prior heterogeneity is not only 

strong but also too far from the actual, then it is possible that a history match is not 

possible, or that no solution exists, because the influence of the incorrect prior 

information in the basis is too dominant. In such cases the incorporation of prior 

information in the basis should be relaxed, ultimately reverting to the GCT 

parameterization. 
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5.5  History Matching Applications 

The intent of this subsection is two-fold, to apply for history matching the theoretical 

constructs of the ABT parameterization presented to this point, and to explore the 

strengths and limitations of the parameterization in order to develop guidelines for 

general application. The subsection begins with the history match of two synthetic 

reservoir models. For this the two permeability fields in Fig. 5.4, representative of two 

extreme types of heterogeneity (relative to the construct of LA), are calibrated using 

several different ABT bases. This broad range of geologic modeling scenarios reveals 

the proper utility of the ABT parameterization for history matching. From this 

foundation, the parameterization is then applied for the history match of the Brugge 

reservoir model, a SPE benchmark case developed after a field case, for which detailed 

prior model information is available. 

5.5.1  Synthetic Model: Weak Multiscale Heterogeneity 

In this subsection we explore the efficacy and any limitations of the ABT 

parameterization in history matching for the case of a geologic model with strong 

anisotropic heterogeneity at the coarse scale and continuous or smooth spatial variability 

at the grid cell scale. Also considered are calibration scenarios in which the prior 

geologic model is either far from or close to the true or reference model. In all scenarios, 

the (prior) permeability field in Fig. 5.4A is calibrated using different ABT bases 

selected from those shown in Figs. 5.5 and 5.7. 

The modeling scenario is a 9-spot waterflood with pressure-controlled production and 

volume-controlled injection at a single domain-centered well in a simple 2D square 

reservoir. The domain dimensions are 1500  1500  30 ft with uniform grid cell 

dimensions of 30 ft per side. The flow model represents a two-phase (oil-water) system, 

with constant fluid densities and viscosities, and quadratic relative permeability curves 

with an end-point mobility ratio of 5.0, solved using a commercial black oil simulator 

with fully implicit discretization. Production response sensitivities to static grid cell 
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properties are derived from the simulators built-in adjoint code. Cell absolute 

permeability is the static parameter calibrated to match observed water production rates 

(WPR) over a four-year history period, plus a subsequent two-year forecast period, at 

each of the eight producers. 

To reiterate the conceptual approach to model updating, the primary objective is to use a 

permeability multiplier field as the updated parameter whenever possible, minimally 

updating the (high resolution) prior model that is assumed to be constructed from static 

data sources. In consideration of the ABT parameterization, a secondary objective is to 

incorporate as much prior information as possible into the transform basis, achieved by 

the use of a strict adjacency metric (Eq. [5.3]) as previously discussed. 

Using the prior permeability field in Fig. 5.4A, we consider three history matching cases 

for which the reference model heterogeneity (used to generate the observation WPR) is 

far from the prior. The prior and reference fields are shown juxtaposed in Figs. 5.13A 

and 5.13B, respectively. Each of the three cases uses a different ABT basis that 

represents (1) the GCT or Fourier-like basis (Fig. 5.5D) constructed using excessively 

relaxed adjacency parameters, (2) an ABT basis with less strict incorporation of prior 

model information (Fig. 5.5B) and (3) more strict incorporation or prior information 

(Fig. 5.5A). The calibrated permeability fields for case (1) through (3) are respectively 

shown in Figs. 5.13C through 5.13E, the features of which are discussed below. 

 

Fig. 5.13. The (A) prior and (B) reference permeability fields applied in a model calibration exercise, 

juxtaposed to the calibrated fields for three cases in (C) through (E) using the different Laplacians as 

labeled in the figure. 
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Following the adaptive multiscale approach to model updating, the parameterized 

multiplier field is successively refined during the gradient-based minimization of WPR 

data misfit. Beginning with a coarse parameterization using only five basis vectors 

corresponding to the smallest eigenvalues of LA (e.g., the first five columns of Fig. 5.5 

or Fig. 5.7), the parameter set is increased by adding the next five basis vectors 

following a reduction of the objective function into a local minimum at this coarse 

description. For the purpose of comparison across the different cases, this sequence is 

repeated until the parameterization incorporates the leading fifty basis vectors, which is 

equivalent to the application of ten multiscale iterates (as defined in Fig. 3.5). The 

sequential evolution of the multiplier field upon local convergence is shown for each of 

the three cases in Fig. 5.14. The corresponding WPR misfits for each of the (three) 

calibrated permeability fields are plotted together in Fig. 5.15, with the root mean square 

error (RMSE) of each calibrated field listed in the figure legend. These collective results 

are now discussed. 

 
 

Fig. 5.14. Calibrated multiplier fields corresponding to the prior model in Fig. 5.13A at successive 

multiscale iterates of the adaptive history matching workflow. Each case uses a different ABT basis as 

listed in the figure. (A) corresponds to the calibrated permeability in Fig. 5.13C, (B) to the field in Fig. 

5.13D and (C) to the field in Fig. 5.13E. 
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Fig. 5.15. Producer WPR data misfit for the three history matching cases depicted in Figs. 5.13 and 5.14. 

 

 

 

In the first case, the Fourier-like ABT basis depicted in Fig. 5.5D is applied as a control 

case. The model-independence of the basis and corresponding spatial symmetry of the 

basis functions guarantees the most flexibility in (multiscale) permeability heterogeneity 

adjustment. From the acceptable WPR misfit in Fig. 5.15, this calibration exercise re-

confirms the ability of the GCT parameterization to update large-scale continuity, even 

in the case of grossly incorrect prior model heterogeneity, as first described in Bhark et 

al. (2011a). Further, it verifies that in the extreme case of an un-informed prior model, 

the ABT parameterization can be constructed and applied for generic heterogeneity 

estimation as LA has a close-to circulant structure. Although data misfit is acceptable, 

the multiplier updates in Fig. 5.14A are overly smooth and inconsistent with the 

permeability streak orientation and scales of spatial variability in the prior. It is from 

solution non-uniqueness, in this case resulting from the general insensitivity of the 

production data to the smaller scale features that define the streaks, that the quality 

history match is feasible. 
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In the second and third cases, the ABT bases depicted in Figs. 5.5B and 5.5A are 

respectively applied for the parameterization and represent the moderate and strict 

incorporation of prior information. Both bases enable an equivalent, acceptable history 

match (Fig. 5.15) because the basis vectors have spatial features and variability in an 

orientation similar to those of the reference permeability, and also because of non-

uniqueness. From visual inspection of the evolving multiplier fields in Fig. 5.14, both 

cases show that the features of the prior model embedded in the basis vectors are 

enhanced when correct, and reduced when incorrect, implicating that the better informed 

the prior, the better the utility of this approach. Although important and beneficial for a 

parameterization, this result also points out a limitation of the ABT parameterization 

when the adjacency measure (Eq. [5.3]) is too strict. The ABT basis vectors in Fig. 5.5A 

display large variability at smaller or local scales, and these local features may manifest 

near observation points when beneficial for the data match. Although desired if the prior 

is close to the true field, if not then such local features can result in artificial artifacts 

near the more sensitive regions surrounding observation points, as shown in Fig. 5.13E. 

This last observation highlights an important point of any parameterization, i.e., that it is 

not beneficial for the parameterization to characterize smaller scale features, particularly 

near observation points, as they are typically exploited by solution non-uniqueness. 

To review the key findings of these three cases, the collective history matching success 

(Fig. 5.15) of all approaches to ABT basis construction demonstrates the flexibility of 

the parameterization to update prior heterogeneity when incorrect using different levels 

of prior information inclusion, from the model-independent to strongly model-dependent 

case. This is fundamentally permitted because of the relatively weak prior heterogeneity 

which affects the parameter estimation in two ways. First, the less heterogeneous the 

static reservoir properties, the more non-unique the production response as many 

geologic scenarios become plausible. Second, and most important to the 

parameterization, the permeability heterogeneity is smooth and therefore weak relative 

to the size of the Laplacian stencils applied. That is, the adjacency metrics that define the 

components of LA always have values far from zero, so the „graph‟ as depicted by LA 
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always appears well connected. As will be demonstrated in the following subsection, the 

consequence of this apparent continuity in Laplacian components indicates that the 

contrast between heterogeneity features of the prior cannot be sharply depicted in the 

basis vectors, thus the ability of the calibrated multiplier fields in this example (Fig. 

5.14) to enhance and degrade the larger scale heterogeneity as required to achieve the 

history match. When stronger heterogeneity is considered, this is not possible. 

A final point is related to the apparent stability of the updated multiplier fields as they 

are sequentially refined in the multiscale workflow (Fig. 5.14). The stability when 

starting from a very low parameterization, using basis vectors corresponding to the 

smallest eigenvalues of LA, supports the use of the multiscale approach with the ABT 

parameterization, independent of the level of prior model inclusion, when it is the larger 

scale heterogeneity that (typically) dominates the production response. Further, it also 

verifies the utility of the strong compression performance of the ABT parameterization 

(e.g., Fig. 5.9) for a considerably low-rank yet effective characterization of 

heterogeneity, effectively incorporating multiscale features of the prior model. 

Using the same prior permeability model (Fig. 5.4A), as stated we also explore the 

behavior of the ABT parameterization for cases where the prior is similar to the 

reference permeability. Two different bases are used, again the Fourier-like basis in Fig. 

5.5D and the less strict ABT basis in Fig. 5.5B. The most strict basis (Fig. 5.5A) is not 

used because of the local heterogeneity features, captured by the basis vectors, that 

manifest in the calibrated field as described. The calibrated permeability fields are 

shown for these two cases in Fig. 5.16, again using a multiplier field (Fig. 5.17), 

juxtaposed to the prior and reference fields. The corresponding WPR misfit plots are 

shown in Fig. 5.18 together with the RMSE of each calibrated field. 
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Fig. 5.16. The (A) prior and (B) reference permeability fields applied in a model calibration exercise, 

juxtaposed to the calibrated fields for two cases in (C) and (D) using the different Laplacians as labeled in 

the figure. 

 

 

 

 

 

Fig. 5.17. Calibrated multiplier fields corresponding to the prior model in Fig. 5.16A at successive 

multiscale iterates of the adaptive history matching workflow. Each case uses a different ABT basis as 

listed in the figure. (A) corresponds to the calibrated permeability in Fig. 5.16C and (B) to the field in Fig. 

5.16D. 



175 

 

 

Fig. 5.18. Producer WPR data misfit for the two history matching cases depicted in Figs. 5.16 and 5.17. 

 

 

 

The history mach quality and RMSE are effectively equivalent for both cases, although 

the case using more prior information (Fig. 5.16D) visually depicts heterogeneity more 

consistent with the reference field. In fact, the sequentially updated multiplier field 

corresponding to this case (Fig. 5.17B) shows the evolution of preferential flow paths 

very similar to reference, enhancing these features in the prior and degrading others that 

are inconsistent. On the contrary, the same evolution of multiplier fields using the 

(effectively) model-independent basis (Fig. 5.17A) captures the smooth global trends of 

the preferential flow paths or streaks in the reference case, but does not depict any of the 

sharper edge information. These results together affirm that when prior information is 

close to the reference, the incorporation of prior information into the parameterization 

can be useful not only for heterogeneity characterization, but also as a diagnostic tool for 

identification of spatial features and length scales that are important or irrelevant to the 

field. 
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5.5.2  Synthetic Model: Strong Multiscale Heterogeneity 

Similar to the previous subsection, in this subsection we also explore the utility and 

limitations of the ABT parameterization in history matching, although for the case of a 

geologic model with strong anisotropic heterogeneity at both the coarse scale and grid 

cell scale. Considered also are calibration scenarios in which the prior geologic model is 

both far from and close to the reference model. In all scenarios, the (prior) permeability 

field in Fig. 5.4B is calibrated using different ABT bases selected from those shown in 

Figs. 5.6 and 5.8. 

Before reviewing results of the individual calibration exercises, the two key findings 

pervasive to all cases are presented. First, regardless of the proximity of the prior to the 

reference model, a multiplier field cannot be used to achieve a solution because the prior 

heterogeneity is sufficiently strong that any incorrect features, at multiple scales, cannot 

be diminished. The prior field in Fig. 5.4B depicts large variability at the fine scale, 

often with discrete differences in value between neighboring cells, that has an important 

impact on waterflood behavior. The basis vectors, on the contrary, are not able adjust 

such fine scale features, particularly when using the approach of sequential refinement 

from the coarse to fine scale. This concept is expanded upon below. Second, recall from 

Subsection 5.4.1 that regions of the permeability field that have the largest contrasts, 

both at the fine and coarse scale, are embedded in the basis vectors even as the adjacency 

measure is relaxed and the spatial variability characterized by the basis vectors become 

more frequency-like. While this was shown beneficial for static compression 

performance (Fig. 5.11), this property can be detrimental for heterogeneity adjustment. 

Therefore, to mitigate these two challenges simultaneously during history matching, a 

low-rank approximation of the prior field is constructed using a few leading basis 

vectors, and is then sequentially refined to the scale at which the data become 

insensitive.  
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Using the prior permeability field in Fig. 5.4B, two history matching cases are 

considered in which the reference permeability heterogeneity is distant from the prior. 

The prior and reference fields are shown juxtaposed in Figs. 5.19A and 5.19B, 

respectively. The two cases use different ABT bases that represents (1) the Fourier-like 

basis (Fig. 5.6D) constructed using excessively relaxed adjacency parameters, and (2) an 

ABT basis with less strict incorporation of prior model information (Fig. 5.5C). Note 

that a solution could not be achieved using more strict ABT bases, e.g., as depicted in 

Figs. 5.5B and 5.5A, because of the limitations discussed in the previous paragraph. The 

calibrated permeability fields for the two cases, now low-rank approximations (Fig. 

5.20), are respectively shown in Figs. 5.19C and 5.19D, and are discussed below. 

 

Fig. 5.19. The (A) prior and (B) reference permeability fields applied in a model calibration exercise, 

juxtaposed to the calibrated fields for two cases in (C) and (D) using the different Laplacians as labeled in 

the figure. 

 

 

 

Using the Fourier-like ABT basis in the first case, the production history is well matched 

as shown in Fig. 5.21, which again supports the generic ability of an (effectively) model-

independent basis to update large-scale continuity, even under such strong heterogeneity 

assumptions. Although the calibrated permeability in Fig. 5.19C is excessively smooth 

and consistent with only the average trends of the reference case, the RMSE is 

considerably lower than for the case using the model-dependent ABT parameterization 

in Fig. 5.19D. This result re-emphasizes the general insensitivity of production data to 

much of the smaller scale heterogeneity. When using the model-dependent 
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parameterization, the calibrated field in Fig. 5.19D begins to depict global heterogeneity 

with orientations consistent with those of the reference field. The history match quality 

is acceptable at all but one well (PROD4) in Fig. 5.21; the local heterogeneity near to 

this well could not be defined as a linear combination of the prior features (at low rank). 

The larger RMSE, relative to the model-independent case, in fact supports the 

conclusion that the prior heterogeneity is incorrect. As for the case of the smoother 

permeability heterogeneity discussed in Subsection 5.5.1, an important result is again 

observed that the calibrated field depicts features of the prior that are enhanced when 

correct, and degraded when incorrect. 

 

Fig. 5.20. Calibrated multiplier fields corresponding to the prior model in Fig. 5.19A at successive 

multiscale iterates of the adaptive history matching workflow. Each case uses a different ABT basis as 

listed in the figure. (A) corresponds to the calibrated permeability in Fig. 5.19C and (B) to the field in Fig. 

5.19D. 

 

 

 



179 

 

 

Fig. 5.21. Producer WPR data misfit for the two history matching cases depicted in Figs. 5.19 and 5.21. 

 

 

 

Using the same prior permeability model (Fig. 5.4B), the behavior of the ABT 

parameterization is also examined for cases where the prior is similar to the reference 

permeability. Two different bases are used, again the Fourier-like basis in Fig. 5.6D as a 

control case for generalized model-independent updating, but now also the most strict 

ABT basis in Fig. 5.6A. Because the prior and reference fields are similar in this 

example, juxtaposed in Figs. 5.22A and 5.22B, respectively, a solution can be achieved 

with a parameterization that strongly incorporates prior information. The corresponding 

calibrated permeability fields, again using a low-rank approximation of the prior model 

(Fig. 5.23), are shown for these two cases in Fig. 5.22 next to the prior and reference 

fields. The corresponding WPR misfit plots are shown in Fig. 5.24 together with the 

RMSE of each calibrated field. 
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Fig. 5.22. The (A) prior and (B) reference permeability fields applied in a model calibration exercise, 

juxtaposed to the calibrated fields for two cases in (C) and (D) using the different Laplacians as labeled in 

the figure. 

 

 

 

 

 

Fig. 5.23. Calibrated multiplier fields corresponding to the prior model in Fig. 5.22A at successive 

multiscale iterates of the adaptive history matching workflow. Each case uses a different ABT basis as 

listed in the figure. (A) corresponds to the calibrated permeability in Fig. 5.22C and (B) to the field in Fig. 

5.22D. 
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Fig. 5.24. Producer WPR data misfit for the two history matching cases depicted in Figs. 5.22 and 5.23. 

 

 

 

The primary observation from the calibration performance of these two cases is the 

achievement of a solution using the strict ABT basis in Fig. 5.6A. A high level of detail 

is permitted in the calibrated field (Fig. 5.22D) using only the fifty leading basis vectors, 

which is a result of the high-resolution features that become embedded in the basis 

vectors when strict adjacency parameters are used in Eq. (5.3). Again, the features of the 

prior consistent with the reference model are enhanced in many areas; however, this 

strict case also shows the inclusion of prior features that are incorrect, which are 

fundamentally permitted from solution non-uniqueness, or in this case data insensitivity 

to these smaller features. It is for this reason that the solution RMSE is considerably less 

than that for the case using the more flexible model-independent basis. However, in this 

example the match quality is unacceptable when using the relaxed or Fourier-like ABT 

basis at well PROD2 in Fig. 5.24. The strong multiscale reference heterogeneity in fact 

presents the first case in which the model-independent basis, with its smooth basis vector 
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variability, cannot sufficiently characterize the large scale heterogeneity to match the 

data. 

To conclude this subsection, it is acknowledged that the calibration approach applied for 

the strong (prior and reference heterogeneity) is somewhat paradoxical. If the ABT 

parameterization can only be applied using a low-rank approximation of the prior model, 

which truncates much of the prior information, then such a strong prior should not be 

used to begin with if so poorly informed. However, this extreme case has proven useful 

in research to demonstrate the limitations and extreme cases for which the ABT 

parameterization has utility. 

5.5.3  Brugge Reservoir Model 

In this subsection the Brugge reservoir model, a SPE benchmark case, is history matched 

through the calibration of reservoir permeability using the ABT parameterization. In 

addition to the abundant production data, the Brugge presents and appropriate 

application because the prior permeability is provided at high resolution and with an 

unknown level of uncertainty. Therefore, we demonstrate the utility of the guidelines 

presented in Subsection 5.4.1 for ABT basis construction, taking care to highlight the 

strengths and limitations of the construct, and further are able to test the capability of the 

resultant basis to update prior information when necessary, or to leave the prior 

unchanged at locations correct or consistent with the data. Finally, as a standard against 

which to compare the ABT performance, the history match is also performed using the 

model-independent GCT basis which, to reiterate, guarantees the most flexibility in 

(multiscale) heterogeneity adjustment. 

5.5.3.1  Reservoir Description 

The Brugge reservoir model is a synthetic benchmark case developed by TNO (a Dutch 

organization for contract research) to evaluate closed-loop production optimization 

strategies. Prior to production optimization the project required and provided data for 
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calibration of the permeability field, from which this analysis is developed. The Brugge 

reservoir properties replicate a North Sea Brent-type field within an East-West elongated 

half-dome with a truncating boundary fault at its north edge and a single interior fault. 

The reservoir model grid, initial oil-phase saturations, and the well pattern with twenty 

producer in the dome and ten peripheral water injectors in the supporting aquifer were 

shown previously in Fig. 3.13. The three-dimensional corner-point grid has 44,355 

active cells in nine layers, each capturing the interior fault. The reader is referred to 

Peters et al. (2010) for a comprehensive description of the geologic, static and dynamic 

model properties. 

Production data of water production rate (WPR), oil production rate (OPR) and bottom-

hole pressure (BHP) at each producer are provided with the project for a ten year 

calibration period. The fluid model characterizes a dead oil; therefore, gas production is 

not considered. Also provided are 104 realizations of permeability, porosity and 

saturation region (based on facies type). In this application we update permeability 

within a single realization (103 of 104) by matching WPR and BHP at each of the 

twenty producers. The nine layers of this prior field are shown in Fig. 5.25A. 
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Fig. 5.25. (A) Prior reservoir model permeability for each of the nine layers of the Brugge reservoir model, 

juxtaposed to the calibrated permeability using the (B) GCT basis and (C) ABT basis. 

 

 

 

5.5.3.2  ABT Parameterization of the Prior Model 

To reiterate, the conceptual approach to spatial model updating is developed in 

consideration of prior information with the intent of updating coarser-scale heterogeneity 

at locations and scales warranted by the data, and to otherwise leave the prior 

unchanged. Although uncertain, we assume that the prior is judiciously constructed from 

multiple static data sources; therefore, the ABT parameterization basis is constructed 

with the intent of maximizing the inclusion of prior model information in the basis while 

satisfying the quantitative requirements required for a useful parameterization, which are 

reviewed below. Further, when applying the parameterization for calibration, the prior 

should be minimally updated, hence the use of a multiplier field. 
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The prior permeability field in Fig. 5.25A shows four distinct formations (layers 1-3, 4-

6, 7-8 and 9), each of a similar depositional setting, but each with a visibly different 

range of permeability magnitude and scale of horizontal variability. In the vertical 

direction, features at a single horizontal grid cell are not necessarily correlated in the 

juxtaposing layers regardless of the formation type. For these reasons, each layer is 

individually parameterized, or is assigned a unique transform basis. The 

parameterization of isolated geo-bodies is in fact one principal method by which prior 

model information is honored, and is enabled by the geometric flexibility of the ABT. It 

was observed during construction of the basis that the parameterization of one or more 

combined layers results in the smoothing of the discontinuous vertical features during 

model updating, thereby degrading the prior model heterogeneity that is to be preserved. 

Table 5.1 lists the adjacency metrics defined for construction of the ABT basis for each 

layer of the prior model. The metrics, or the cell property and distance norm thresholds 

that are used to respectively define P and X in Eq. (5.3), are defined as small as 

possible to maximize the rate of decline of the adjacency function (Fig. 5.2) while at the 

same time satisfying the condition of a 0 multiplicity of unity per layer. The resultant 

(single) constant basis is useful not only for updating of the field mean, but it ensures 

that all successive basis vectors smoothly vary such that their compression performance 

is strong at very low rank (using either a multiplier field or the prior model itself). This 

concept was discussed in detail in Subsection 5.4.1. 

 

 
Table 5.1. Adjacency metrics for the property and distance norm thresholds required for construction of 

the components of LA and, subsequently, for construction of the ABT basis, per layer of the Brugge 

reservoir model. 

Tolerance Unit 1 2 3 4 5 6 7 8 9

||x i  - x j ||2 ft 1,500 1,500 2,000 2,000 2,000 3,000 3,000 3,000 2,000

||p i  - p j ||2 ln  md 1.25 1.25 0.50 0.50 0.50 0.25 0.25 0.25 1.00

Model Layer
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The compression performance of two of the highest quality sand layers is shown in Figs. 

5.26 (layer 1) and 5.27 (layer 7) using the both the GCT and ABT bases for each. The 

low-rank approximations highlight three important points regarding construction of the 

ABT basis (per Table 5.1) and its application to a multiplier field for calibration. 

First, the occurrence of greater spatial property variability, again considering variation 

within a given stencil size, requires the less strict enforcement of the adjacency 

parameters (P, X) to ensure the existence of a single constant basis vector. If this 

variability is particularly large relative to the general trends in the field, or if this 

variability is local, then the resultant basis vectors beyond the constant vector can be 

excessively smoothed, with component variability similar to the GCT, because the 

adjacency measure will be close to unity in most portions of the field. Such a case is 

exemplified in layer 1 in Fig. 5.26. From observation of the prior in Fig. 25A, there are a 

few local areas of high cell-to-cell variability, so the property difference tolerance is 

more relaxed for this layer (see Table 5.1). Correspondingly, the low-rank permeability 

approximations using the ABT basis in Fig. 26B are similar to those using the GCT basis 

in Fig. 26B. That is, relatively few sharp features or edges between high-low 

permeability bodies are captured by the ABT basis, and most features are smoothly 

varying. On the contrary, the more gradually varying permeability in layer 7 (Fig. 

5.25A) permits a more strict adjacency measure tolerance (Table 5.1); therefore, the 

corresponding low-rank approximations using the ABT basis in Fig. 27B better capture 

the abrupt spatial transitions of the prior relative to the smoother description provided by 

the GCT basis (Fig. 27A). 

A second point regarding application of a parameterized multiplier field for calibration is 

that, regardless of the type of basis selected, the compressed fields in Figs. 26 and 27 

demonstrate the compelling utility of a multiplier field. That is, a multiplier could be 

used to exactly reproduce these fields, at the different levels of approximation, using 

only the corresponding number of spectral coefficients (of appropriate value). The 
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implication is that such a field can be used to update a considerable amount of spatial 

variability within any prior model using only a few basis elements. 

A third and important point is related to an additional method by which prior 

information is honored using the parameterization. This is performed by a re-sorting of 

the basis vectors that are used to adaptively update heterogeneity. To determine this 

order, the prior model is first projected onto the complete basis, and the basis functions 

are then sorted in a descending order by the projection magnitude corresponding to each 

basis vector. This determines the order in which the basis vectors are successively 

applied in the parameterization. Further, when completed in this manner a maximal 

compression performance of any k-term compression performance is guaranteed. For 

example, Fig 5.28 shows the prior model compression performance (by RMSE) for 

layers 1 and 7 using the GCT and ABT bases which is, in fact, the order in which the 

low-rank model approximations in Figs. 5.26 and 5.27 are computed. The decrease in 

RMSE is smooth and indicates an optimal ordering of basis vectors. Also note that the 

performance is improved using the ABT basis, again re-affirming that the inclusion of 

prior information improves reproduction of the prior for a given level of approximation.  

Finally, the method of basis re-sorting presented in this discussion is applied in the 

following parameterized calibration of the Brugge permeability model, again because a 

maximal preservation of the prior model is sought. In the case that sub-domains of the 

prior are incorrect, then we rely on the calibrated multiplier fields to indicate these 

locations and, at the least, to serve as a diagnostic tool in this sense. 
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Fig. 5.26. Successive low-rank approximations of layer 1 of the Brugge permeability model using the (A) 

GCT and (B) ABT parameterization bases 
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Fig. 5.27. Successive low-rank approximations of layer 7 of the Brugge permeability model using the (A) 

GCT and (B) ABT parameterization bases. 

 

 

 

 

Fig. 5.28. A comparison of compression performance for layers 1 and 7 of the Brugge permeability model 

using the GCT and ABT parameterization bases. 
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5.5.3.3  Adaptive Multiscale Model Calibration 

The multiscale component of the workflow begins with the parameterization of a 

multiplier field, assigned individually to each of the nine layers, using the five most 

dominant basis functions in terms of prior model compression performance (Figs. 26 and 

27). Then, following minimization of the objective function at this coarse description, 

the parameterization of each layer is augmented by the inclusion of the next five most 

dominant modes. The sequential  application of gradient-based and multiscale iterates is 

performed until the solution converges to a local minimum and the data misfit is no 

longer improved by the addition of spatial detail relative to prior model heterogeneity. 

For reasons stated, the complete history matching workflow is performed using both the 

GCT and ABT parameterizations. 

The calibrated multiplier fields, per layer, using both parameterizations are shown in Fig. 

5.29. The more sensitive layers corresponding to the higher-quality sands (layers 1-2, 6-

8) are in general more impacted and, interestingly, also permit the resolution of finer 

scale detail in the case of the GCT. The objective function reduction, plotted at the 

termination of each multiscale iterate in Fig. 5.30, shows that the GCT modes of higher 

frequency contribute to the solution. Conversely, the corresponding modes of the ABT 

basis (i.e., at the final two multiscale iterates) have no contribution to the solution. This 

is because the lower ABT modes, which from Fig. 5.29 clearly depict the enhancement 

or degradation of exact spatial features of the prior, assume the dominant role in the 

model updates. The heterogeneity corresponding to the higher, irresolvable ABT modes 

are of either too fine a level of spatial detail to which the data are insensitive, or depict 

incorrect features that are incompatible with the solution. Regardless, the calibrated 

multiplier fields demonstrate that the ABT basis enables the more targeted updating of 

local features that are exactly consistent, by construction, with the prior model. Further, 

the updates using both parameterization bases are, qualitatively speaking, geologically 

consistent. The calibrated permeability fields in Figs. 5.25A (GCT) and 5.25B (ABT) as 

intended show the enhancement and degradation of prior model features without the 
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introduction of any artificial artifacts that are a commonality in different approaches to 

parameterization (Section 1). Last, notice also that the lowest quality sand (layer 9) 

shows no relative sensitivity to the observations and therefore retains a multiplier close 

to unity at each grid cell at the final solution, despite its parameterization using twenty-

five GCT and ABT basis vectors. 

The solution data misfits of WPR and BHP are shown in Figs. 5.31 and Fig. 5.32, 

respectively, for each of the twenty producers. Using both parameterizations, there is a 

general improvement in the production history relative to that corresponding to the prior 

model, although at few wells the misfit remains unchanged or deteriorates as the cost of 

global improvement. In the case of deterioration, the addition of higher modes did not 

improve misfit at these wells and indicates that the prior model is incorrect at these 

locations. Calling attention now to the employment of assisted model calibration as a 

diagnostic tool, the wells at which the match improves using the ABT relative to the 

GCT, or vice versa, provides a strong indication of the prior model suitability near these 

locations. The model-independent GCT permits more flexibility in multiscale spatial 

updates, so wells at which the GCT outperforms the ABT indicate incorrect local 

heterogeneity, at the least. In other words, the GCT permits adjustments to the prior that 

the ABT cannot because the heterogeneity (as identified by the adjacency measure) has 

been locked into the basis elements. When this is the case, then a relaxation of the 

adjacency measure followed by a recalibration would be useful for confirmation. 

Conversely, when the ABT outperforms the GCT and prior heterogeneity is enhanced, 

then the utility of prior information in the basis is obvious. Both such scenarios are 

evident in this application. 

Finally, to conclude the performance comparison of the GCT and ABT parameterization, 

in this application the ABT outperformed the GCT, both in terms of overall misfit 

reduction and rate of reduction (Fig. 5.30). It is acknowledged that this result is an 

indication that the prior model is well constructed, as its consideration improved what 

can already be defined as an acceptable history match (Subsection 3.4.3). In field 
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application, the pervasive uncertainty in prior model information will likely require that 

use of the ABT parameterization come alongside use of the GCT for relative 

confirmation of the prior‟s quality. 

 

 

Fig. 5.29. Calibrated multiplier fields (at termination of the multiscale inversion) used to adjust 

permeability heterogeneity for the history match of the Brugge reservoir model using the (A) GCT and (B) 

ABT parametrization bases. 

 

 

 

 

 

Fig. 5.30. A comparison of the objective function reduction, at the termination of each multiscale step of 

the workflow, using the GCT and ABT parameterization bases. 
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Fig. 5.31. Simulated water production rate at each production well corresponding to the reference, initial 

(prior) and calibrated Brugge permeability fields using the GCT and ABT parameterization bases. 

 

 

 



194 

 

 

Fig. 5.32. Simulated water bottom hole pressure at each production well corresponding to the reference, 

initial (prior) and calibrated Brugge permeability fields using the GCT and ABT parameterization bases. 

 

 

 

5.6  Conclusions 

This section presented the development and application of a novel spectral-domain 

parameterization for the characterization of reservoir heterogeneity zonation with a low-

rank representation. The parameterization is developed as a generalization of the grid-

connectivity-based transform or GCT basis (Section 3) for the incorporation of prior 

model information. The GCT parameterization characterizes heterogeneity as the 

weighted linear combination of grid harmonics, and from the perspective of zonation, 

each basis vector depicts zones of heterogeneity as the periodicity of the corresponding 

modal shape. Once prior model information is included in addition to grid connectivity 

information, the basis vectors begin to depict spatial characteristics of the prior 

heterogeneity, locking in geologic structure to the model updates during history 

matching. 



195 

 

The zonation of prior heterogeneity requisite for its calibration is posed as a graph 

partitioning problem in the spectral domain. The graph in this instance is defined as the 

set of grid cells, and a weight or adjacency measure is defined between all cell pairs. The 

adjacency measure characterizes the Euclidean distance between cells, expanding upon 

the measure of grid connectivity utilized in the GCT basis, and also the similarity in the 

calibrated property defined at the cell centers. A Laplacian matrix is then used to define 

the cell adjacency structure over the complete domain, and it is the Laplacian 

eigenvectors that naturally characterize and individuate zones of spatial continuity in the 

parameterized field. This partitioning of the field is not arbitrary, but rather is quantified 

by a graph cut metric and is the optimal segmentation of the cells in the field such that 

the adjacency metrics between cells pairs within a segment are all large and the metrics 

between segments are all small. As the adjacency measure is made more strict, the 

influence of prior model information in the basis is enhanced. Conversely, as the 

adjacency measure is more relaxed, the adjacency-based or ABT parameterization basis 

approaches the model-independent GCT basis which was shown in Section 3 to have 

robust model reduction properties. 

Through several history matching applications, including a semi-synthetic field case, the 

utility of the ABT parameterization for improved heterogeneity characterization was 

demonstrated. The limitations of the parameterization were also identified. Most 

importantly, the ABT parameterization demonstrated that by embedding features of the 

prior model into the basis vectors, these features can be enhanced when consistent with 

the reference heterogeneity, and reduced when incorrect, implicating that the better 

informed the prior, the better the utility of this approach. Further, when the prior is 

known to have spatial variability similar to the actual model, the history match quality 

can show an improvement relative to use of the model-independent or GCT 

parameterization using even the strict incorporation of prior information through the 

adjacency measure. It is possible that smaller scale, incorrect features of the prior are 

embedded in the calibrated field as a result of data insensitivity and solution non-

uniqueness, although in field application such aberrations would go undetected unless 
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observed through later field measurement. When the prior is grossly incorrect, then we 

found in several calibration scenarios that the model-independent basis out-performs the 

ABT basis both in terms of match quality and heterogeneity estimation, re-affirming the 

robustness of the GCT parameterization. 

An important topic related to the pervasive presence of prior model uncertainty, and 

encountered during each of the calibration applications, is the trade off in calibration 

performance versus the inclusion of prior information in the parameterization. As a 

result of the unknown level of uncertainty in heterogeneity description, particularly in 

high-resolution geologic models, it may or may not be advantageous to include prior 

information in the parameterization basis despite the demonstrated capability of the ABT 

for improved model reduction in the static case, and updating (or calibration) in the 

dynamic case. Because of the successful performance of the GCT parameterization 

except for only the most extreme cases of effectively discrete heterogeneity that cannot 

be depicted with any Fourier-like representation, this dilemma of uncertainty can be 

addressed by including a relaxed form of the prior information into the ABT basis. This 

is achieved by using large adjacency (distance and property) tolerance metrics relative to 

the prior model variability observed within the Laplacian stencil, thereby producing an 

apparently connected field relative to the Laplacian characterization. The consequence of 

this apparent continuity in Laplacian components means that the contrast between 

heterogeneity features of the prior will not be sharply depicted in the basis vectors, but 

will have basis vector components of greater spatial continuity that enables more 

flexibility in the updates, specifically the enhancement and degradation of the larger 

scale heterogeneity required to achieve the history match. 
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6.  CONCLUSIONS AND RESEARCH DIRECTIONS 

In this dissertation, three novel developments are presented that expand upon the current 

state of the art in parameterization by linear transformation for history matching. First in 

Section 2, the DCT parameterization is applied in an adaptive multiscale history 

matching workflow. The conceptual approach to parameter estimation by sequential 

model refinement in the frequency or spectral domain is validated using metrics related 

to local parameter identifiability and uncertainty. In Section 3, a new model-independent 

basis constructed from grid-connectivity information is developed as a generalization of 

the DCT basis for application in any reservoir model grid structure. Substantiation of its 

theoretical and also practical utility for industry standard reservoir modeling scenarios 

was presented in Section 4. As the grid-connectivity-based transform, or GCT, 

parameterization basis is constructed independent of prior model information, in Section 

5 the development and application of a model-dependent transformation basis is 

presented as a special case of the GCT. This approach extends the quantification of 

global grid cell connectivity information in the spectral domain to grid cell adjacency 

information, where the definition of adjacency considers the proximity and model values 

defined between grid cells. 

Key results and contributions from Section 2 through 5 are now summarized in 

Subsection 6.1. In Subsection 6.2, potential directions for research are proposed that 

specifically expand upon the most recent developments of the adjacency-based 

transform, or ABT, parameterization basis presented in Section 5. Subsection 6.2 

concludes with a more general description of future research directions within the broad 

context of multi-scale and -resolution parameterization. 

6.1  Dissertation Contributions and Conclusions 

The progression of research in this dissertation began with the application of the DCT 

parameterization in a data-driven, musticale reservoir model calibration. This work 

established that the approach of sequential heterogeneity refinement, when used in 
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concert with a low-rank and frequency-based model description, simultaneously 

improves solution non-uniqueness and the quality of the solution based on heterogeneity 

reproducibility and history match performance. Stated differently, prior model 

compression and adaptive refinement together provide effective implicit regularization 

of the underdetermined inverse problem. We showed that the parameter set size at which 

the refinement is ceased can be identified using a parameter identifiability metric that 

quantifies the ability of the data to locally resolve a parameter at that point in solution 

space. Concurrently, for improvement in local solution stability, an effective step was 

the implicit removal of insensitive parameter (DCT coefficient) combinations from the 

parameter set prior to each iteration of a gradient-based minimization scheme, achieved 

by constructing a compact SVD representation of the parameter sensitivity matrix. This 

step is in practice only permissible for large-scale problems because of the small 

parameter dimension that results from the DCT representation, fundamentally taking 

advantage of the strong generic compression capability of the DCT. As a final 

component to this work, we took advantage of the inability of production data to resolve 

spatial detail, or of fine scale or high frequency parameter insensitivity, which (together 

with parameter correlation) is in fact the primary cause of the ill-posed problem. For 

this, we used a null space projection technique to quantify model response uncertainty 

by exploring parameter uncertainty at spatial scales or frequencies finer than the 

calibrated solution. 

Due to its advantageous properties for reservoir model reduction, the DCT is currently 

applied in different approaches to parameterized model calibration. However, a 

limitation in all applications is the constraint of the parameterization of reservoir 

properties on grid structures of uniform cell dimension (in a given axial orientation). The 

primary contribution of Section 3 is the development of a generalization of the DCT 

parameterization for any grid structure. The derivation is rooted in the equivalence of the 

(type-II) DCT basis vectors with the eigenvectors of a Laplacian matrix that captures 

global grid cell connectivity information over two-point cell stencils when the grid 

structure is regular. When irregularly structured (e.g., because of faults, local refinement, 
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etc.), we demonstrated for a suite of reservoir model geometries and grid structures that 

the GCT basis vectors represent the harmonics of the grid structure over which the prior 

property is defined. Although derived independently of the prior model, an important 

property requisite for a low-rank heterogeneity representation is strong generic 

compression performance of the prior, or its surrogate which can be represented by a 

multiplier field, which we also demonstrated in this work. To further adhere to prior 

information despite the GCT‟s model independence, two approaches to prior model 

flexibility were taken. First, the dominant spatial locales of the prior heterogeneity are 

maintained through the calibration by parameterizing one or more individual regions 

identified by geologic structure and consistency, which is enabled by the geometric 

flexibility of the GCT. Second, the few GCT basis vectors applied for a parameterization 

can be selected not by grid modal frequency, but by the order through which the prior 

model projection, or prior model compression performance, is greatest. 

In development of the GCT basis, considerable effort was taken to ensure the practical 

applicability of the parameterization for large reservoir models on par with current 

industry standards. To this end, the sparse symmetric structure of the Laplacain enables 

the efficient iterative approximation of only a few leading (lowest modal frequency) 

basis vectors for grids of size up to about one-million cells (on a standard desktop PC). 

Further, the GCT basis requires computation only once and is fixed throughout the 

calibration workflow, assuming that the grid remains unchanged. 

The overall practical utility, and also limitations, of the GCT parameterization were 

demonstrated for the history match of a field case of an offshore reservoir model in 

Section 4. The primary, and important, capability of the parameterization is the 

characterization of multiscale heterogeneity in complex geologic structures, consistent 

with and adaptive to prior information when available, from multi-resolution production 

data. Due to the spectral behavior of spatial variability in each of the basis functions 

applied in the parameterization, the typically coarse scale model updates can be used to 

identify both smooth and rather sharp heterogeneity transitions in a manner that local 
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approaches to calibration, which adjust properties at the grid cell scale, may not be able 

to. 

The aforementioned useful capabilities of the GCT parameterization come with a 

constraint that limits the type of calibration scenarios for which the GCT may be 

appropriate. The spectral representation does not permit the local adjustment of finer 

scale heterogeneity with a low-rank representation, particularly edge information, as 

spatial location is lost in the transform domain. When the restriction to coarser-scale 

model updating is a limitation, in Section 5 is proposed an extension of the GCT basis, 

the ABT basis, that incorporates more complex heterogeneity geometries and also prior 

model information into the Laplacian matrix and, therefore, the transform basis. The 

inclusion of these new data types into the parameterization was performed judiciously in 

order to retain desirable matrix properties that enable efficient decomposition for large 

dimensions. 

Using an adjacency measure to define grid cell information over a multipoint stencil, as 

opposed to two-point connectivity for the GCT, the influence of prior information in the 

basis can be varied. To link these developments with all previous work, we explained 

and demonstrated that the minimal incorporation of the prior via the adjacency measure 

results in a basis effectively equivalent to the GCT basis. On the contrary, we found that 

the greater the inclusion of the prior, then the greater the (static) compression 

performance of prior heterogeneity for a suite of model types. This behavior was 

observed to be beneficial for model reduction and updating when the prior is well 

informed, but detrimental to calibration performance when poorly informed and far from 

the reference. These findings are logical as prior model features, even at the individual 

grid cell scale, can be locked into the basis function features when strongly incorporated. 

This application is, however, typically too strict given the ubiquitous uncertainty in prior 

knowledge. Accordingly, the most useful application of the ABT basis was observed 

when the prior was loosely incorporated into the ABT basis using a relaxed adjacency 

measure. This enabled the basis vectors for use in coarse scale updating when the prior is 
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incorrect, but also the retention of global heterogeneity features related to the overall 

direction and scales of spatial variability which are typically understood in practice. For 

practical use, we provided guidelines for ABT basis construction for generic 

heterogeneity. 

6.2  Research Outlook 

This concluding subsection discusses research directions of both immediate and future 

potential. Subsection 6.2.1 proposes specific incremental research developed out of the 

ABT parameterization. Subsection 6.2.2 provides a discussion of a general research 

outlook in multi-scale and -resolution parameterization for history matching and 

concludes this dissertation. 

6.2.1  Incremental Research 

Proposed avenues of incremental research extend from the ABT parameterization and 

are focused on its abstraction. When the intent of parameterized model calibration is to 

honor certain features of the prior, from either qualitative or quantitative perspectives, 

then the inclusion of prior information into the parameterization construct becomes a 

critical issue. Although the ABT parameterization was shown to reconstruct prior 

geologic structures fundamentally defined by their similarity or difference within an 

adjacency measure, the incorporation of this information has a nontrivial subjective 

component, i.e., the strength of the adjacency measure, and the selection of the 

adjacency measure itself, must be specified by the engineer. Presented now are three 

approaches by which the ABT parameterization can be differently interpreted, 

potentially improved, and alternatively applied from new and quantitative perspectives. 

6.2.1.1  A Relation to Kernel Methods 

Recall from Eq. (5.2) the construction of the adjacency-based Laplacian, i.e., LA = D – 

A. The adjacency matrix, A, is actually a reduction of a specific form of the more 
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commonly known Gram matrix, constructed by applying a kernel function to pairwise 

distances between a set of data points (Zhang et al., 2010). In Section 5, the components 

of A are computed by applying the product of two Gaussian kernel functions over a 

relatively small multipoint stencil. However, in the general case of Gram matrices, the 

kernel function is applied for all cell pairs, so the matrix is full. 

Although the eigenvectors of LA are commonly applied in the field of spectral clustering, 

in this dissertation the applicability of the eigenvectors for model reduction and 

estimation is uniquely demonstrated. The eigenvectors of Gram matrices are also 

commonly used for spectral clustering (e.g., von Luxburg, 2006; Ng. et al., 2002), and 

an active field of research is investigating the similarity begin eigenpairs of adjacency or 

Gram matrices and Laplacian matrices; therefore, there is reason to support the 

applicability of the eigenvectors of Gram matrices for model parameterization. For 

example, the eigenvectors of the Laplacian (as constructed throughout this document) 

and the Gram matrix are equal when the components of the Gram matrix are constructed 

using a step function kernel of unit width (Liu et al., 2006), exactly as was performed for 

construction of the GCT basis. 

Based on recent research in both reservoir model parameterization, spectral graph theory 

and spectral clustering, a permissible path forward is defined. In the Kernel Principle 

Components Analysis (KPCA) parameterization developed by Sarma et al. (2008), a 

Gram matrix is constructed to map the estimable model in physical space to a high-

dimensional feature space in which nonlinear geometries may become linearized for 

their more independent estimation. Rather than capturing the distance between cell pairs 

in the field, each component of the Gram matrix is computed as the vector product of 

geostatistical realizations of the model. The vector product was judiciously applied in 

the form of a d-th order polynomial kernel which guaranteed the reproduction of d-th 

order statistics embedded within the ensemble of model realizations. However, an 

impractical limitation of the approach is the back-transformation from feature to physical 

space which poses a nonlinear optimization problem. While the forward transform is 
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completed by the kernel operation, and the model is subsequently updated in feature 

space, the inverse mapping is not explicitly defined and, in fact, is not even guaranteed 

to exist. 

A more practical application of a KPCA approach, also using the polynomial kernel to 

guarantee retention of high-order prior statistics in the updated model, is to construct the 

Gram matrix for a single prior model using the values at each cell pair. As the matrix is 

dense, an efficient eigendecomposition can be performed using the Nystrom method, 

which computes approximate eigenvectors given by a number of sampled elements that 

permit a low-rank approximation of the full matrix (Schuetter and Shi, 2010; Fowlkes et 

al., 2004; Li et al., 2010; Zhang et al., 2010). The Gram matrix is symmetric, so the 

eigenvectors are orthogonal and enable immediate construction of its inverse for 

transformation of the model from spectral to physical space. There has been some 

investigation of the eigenstructure of Gram matrices (Shawe-Taylor et al., 2005), and 

there are also methods to ensure its positive semi-definiteness (Liu et al., 2006), which 

was demonstrated in this document to be useful for a practical parameterization. Finally, 

if the (approximate) eigenvectors of the Gram matrix, using a polynomial kernel, can be 

shown to have strong model-generic compression performance, then utility for model 

parameterization is expected to be positive. 

6.2.1.2  Development of the Graph Cut Perspective 

To revisit the fundamental utility of the ABT parameterization, the ABT basis vectors 

depict prior model heterogeneity as regions of approximate piecewise continuity in 

vector components, therefore implicitly performing a zonation of the prior for 

calibration. This concept was explained and verified in Section 5. The implicit zonation 

(per basis vector) develops from the perspective of the graph cut, specifically the 

RatioCut metric, defined for a k-zone partition as 
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The minimization of RatioCut, the solution to which is in fact given by one or more of 

the ABT basis vectors (depending on the value of k), seeks to find heterogeneity 

partitions or zones that have minimal between-zone similarity and that are of equal size. 

The first objective is quantified by the numerator of RatioCut, which is the standard 

graph cut   
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, , and the second objective is quantified by the denominator 

of RatioCut, which is the size of the zones iA . Recall that the minimum of Eq. (6.1) 

always occurs when all iA  are equal. 

As the heterogeneity zonation, and therefore the quality of the parameterization, are 

clearly determined by the cut metric, here a new cut metric is proposed for the 

construction of the ABT basis that (per the literature) has proven more effective in the 

broad field of image segmentation and spectral clustering. The normalized cut, or Ncut, 

introduced in a seminal paper by Shi and Malik (2000), assumes a more sensible 

characterization of the graph cut problem. The following concepts related to the 

following descriptions are extracted from Shi and Malik (2000) and von Luxburg (2006). 

Using the same notation as for RatioCut and referring to the graph notation of 

Subsection 5.3.2, Ncut can be defined for a k = 2 zone partition as 
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The numerator is the same as in Eq. (6.1) and, to repeat, through its minimization 

enforces a heterogeneity zonation of minimal between-zone similarity. However, the 

denominator of Ncut enforces a zonation of maximum within-cluster similarity such that 

the properties within each group are most similar. The metric   




1Ai

ii dAvol or, 
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conceptually, represents the total adjacency over all cells in zone Ai. A given zone of 

similar valued cell properties will all have very large adjacency measures, regardless of 

whether those values are all small or large. Therefore, the partitioning based  iAvol  

seeks to separate cell zones by their collective similarity. In comparison now to 

RatioCut, note that iA

 

simply considers the number of edges with a zone and relays no 

information about how similar its cell properties are. 

Moving forward, the next key point is that the implementation of Ncut into the ABT 

framework is straightforward. Similar to Eq. (5.8), the matrix representation of Ncut is 

shown in Eq. (6.2). As with the solution to the minimization of RatioCut, if the indicator 

constraint on f is relaxed such that its components can have real values, then the 

minimization of Ncut is achieved by solving the generalized eigenvalue problem 

DffL A ,          (6.3) 

with trivial modification of the solution constraints, where the eigenvectors define the 

ABT basis. Eq. (6.3) can be converted to the standard eigenvalue problem 

xxDLD  2/1
A

2/1
         (6.4) 

where fDx
2/1

 

and 
2/1

A
2/1 

DLD is always symmetric semi-positive definite, just as 

LA. Notice that the denominator of Eq. (6.2) is now a weighted scalar product. The 

component of each solution vector is weighted by the adjacency degree of that cell, 

thereby providing information on the similarity of that cell to its neighbors within the 

stencil. 

To simply conclude, if a more accurate heterogeneity zonation is provided by use of 

Ncut rather than by RatioCut in the ABT parameterization, then it is possible that the 

parameterization performance improves as well because the adjustment of zones during 

calibration would be more consistent with the actual (prior) heterogeneity. 
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6.2.1.3  Transition Probability: A Probabilistic Interpretation of Laplacian     

  Eigenvectors 

A potential avenue of research develops from a probabilistic interpretation of the 

Laplacian matrix, particularly of the adjacency-based formulation LA. Recall that the 

fundamental utility of the ABT basis vectors is to provide an implicit approach of prior 

heterogeneity zonation, where the zones manifest as piecewise continuous components 

within the leading basis vectors. Meila and Shi (2001) provide a formal random walk 

interpretation for an understanding of why Laplacian (LA) eigenvectors are piecewise 

constant, or approximately so as we have found useful for a parameterization, for the 

general case when there are two or more (heterogeneity) zones that require distinction by 

a basis vector. Again, it is useful to reiterate that the concept of zonation is somewhat 

subjective and defined relative the definition of aij (Eq. [5.3]) as the components of the 

adjacency matrix A (Eq. [5.2]). 

To move to a probabilistic formulation, the adjacency matrix is normalized as P = D
-1

A, 

where again D is the diagonal degree matrix with components equal to the row sums of 

A. Pij is, therefore, the probability of stepping from cell i to cell j when starting at i. If D 

is nonsingular, which is guaranteed when the graph is fully connected (as described in 

Sections 3 and 5), and if A symmetric, which is also guaranteed in this formulation (Eq. 

[5.1]), then P has N independent eigenvectors, where N is the number of cells. The 

eigenvectors are then exactly piecewise constant when the probability of moving from 

zone Ak=i to segment Aki is equal for all cells in Ai. The heterogeneity segmentation 

enforced by the ABT basis vectors during parameterization is therefore analogous to the 

grouping of cells by their transition probabilities of moving to another segment within 

the model domain. 

From this point, the connection is made that a probabilistic interpretation of the 

Laplacian may have relevance to heterogeneity uncertainty assessment. For example, the 

adjacency-based Laplacian has the equivalence of a training image in consideration of 
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transition probability-based geostatistics (e.g., Carle and Fogg, 1999; Carle, 1999). In 

this approach, distance-based transition probability replaces the indicator (cross-) 

covariance in the implementation of indicator geostatistics, so (categorical) zonation 

patterns can be generated, in either an interpolation or simulation approach, using prior 

information as defined by the Laplacian. 

6.2.2  Future Research Directions 

This concluding subsection identifies properties regarded as requisite for a useful history 

matching parameterization relative to current and future trends in reservoir simulation. 

The following outline lists these properties, in no particular order, with supporting 

comments related to both established concepts and the opinions of the author. 

i.  Compression power 

Any re-parameterization is founded on the ability to capture the relevant heterogeneity 

with a considerably reduced model description. It is from parameter reduction that the 

detrimental effects of parameter correlation and insensitivity are fundamentally 

mitigated; therefore, compression power is important. However, parameterization 

methods should not be sought out and developed based solely on compression power. 

Rather, it is more appropriate to view this as a secondary property that must be verified 

once a parameterization method is developed in consideration of properties that are 

specifically related to the characterization of reservoir model (static or dynamic) 

features, similar to how one would approach construction of the simulation grid. 

ii.  Geologic realism 

In the most general sense, retention of geologic realism using a parameterized 

heterogeneity description implies that geologic features (e.g., continuity, contacts, pinch 

outs, faults, etc.) are preserved with the reduced description. While most methods have, 

in a rather brute force manner, imposed geologic „reality‟ relative to the mathematical or 
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statistical properties of the parameter transformation (per [Eq. 1.19]), future 

parameterization methods should ideally capture any relevant spatial feature, from 

discrete to smooth, and at any scale or over any group of grid cells, with very few 

(transform) parameters. This objective fundamentally leads to the merging of multi-scale 

and -resolution methods where, as the two end members, fine-scale yet smooth features, 

and large-scale edge information, can be characterized using a single parameterization. 

Topic related to this direction are discussed further in points (iii) and (v) below. 

iii.  Applicability to generic grid structures 

An established, albeit more distant, trend in standard reservoir simulation practice is the 

transition from corner-point to unstructured gridding, with certain organizations already 

leading the way in the industry. A key advantage of unstructured grids is the ability to 

vary cell size based upon reservoir location and the processes simulated at that location 

(e.g., refinement near wells or in other high flux areas, refinement in areas of dense 

reservoir property measurement, coarsening in low flux or data-insensitive regions). 

Developing parameterization methods should therefore be applicable to unstructured 

heterogeneity. 

Until the use of unstructured grids is the industry norm rather than the exception, 

emerging parameterization methods should be applicable to structured grid geometries 

with local refinement, or to coarsened models using up-gridding techniques. As with 

point (ii), this capability leads to the merging of multi-scale and -resolution approaches. 

Work in this area has in fact been performed in the last decade, although approached 

from a different perspective, with ordinary (OME) and adaptive multiscale estimation 

(AME) techniques that use parameterization (see Subsection 1.3.3). 

As an example of this last concept, we can immediately build upon the methods 

developed in this dissertation. Using the GCT or ABT parameterization, a potential path 

forward would be to construct the grid-connectivity matrix for the model grid at the 

different levels of coarsening or refinement during the adaptive gridding iterates of the 
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OME and AME workflows. At each level, the resolution of the heterogeneity description 

would vary with the grid cell size; therefore, if a GCT or ABT basis was constructed for 

the grid, then the multiscale character of the basis vectors would implicitly correspond to 

the specific grid resolution, thereby merging the two approaches from an empirical 

approach. 

iv.  Applicability to generic data types 

This property simply points out that a useful parameterization should have the capability 

to reduce heterogeneity based on dynamic (rather than static) metrics, such as velocity or 

sensitivity information at grid-cell resolution. Although most current parameterization 

methods have this capability, they do not utilize it in research or application.  

v.  Honor hard data 

Parameterization approaches by design enforce a low-rank approximation of spatial 

features that are initially defined at a higher resolution or level of spatial detail. 

Therefore, it may seem contradictory to honor prior information at individual cells (e.g., 

at wells) while simultaneously providing a reduced description of the heterogeneity 

away from those locations. Solutions to this problem have thus far (see the literature 

review in Section 1) typically been (1) to either perform post-processing steps that 

condition the calibrated coarse field to the local (hard) data at finer scales insensitive to 

the dynamic data, or (2) to include the local data as a soft constraint in the dynamic data 

misfit function. Methods that exactly reproduce the local data as part of the 

parameterization, such as pilot points, often result in calibrated heterogeneity features of 

artificial appearance as a result of this constraint. 

A significant contribution to the model parameterization literature would be the 

development of transformation bases (per Eq. [1.19]) that have the ability to exactly 

honor observed static data at individual cells. There are methods to achieve this (e.g., 
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Sorkine, 2006); however, the complexity of basis construction increases, potentially 

prohibitively for models of large dimension. 

vi.  Practical applicability 

This final property relates to all of the above and is particularly important to consider in 

the field of petroleum reservoir engineering. Regardless of the level of theoretical 

complexity of a parameterization method, it should have a straightforward application in 

history matching workflows, from a computational standpoint, if it is to be recognized. 

The commonality of large simulation models, even when unwarranted, requires that the 

construction of the parameterization (basis) itself and computation of the parameter 

transformation is efficient. As research in petroleum engineering is driven from a “value 

added” perspective, as opposed to scientific disciplines, the applied benefit of emerging 

parameterization methods should be immediately apparent and applicable to simulation 

models on par with current industry standards. 
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