
EVALUATION OF PROBABILISTIC EARLY RESPONSE TCP (PERT) FOR

VIDEO DELIVERY AND EXTENSION WITH ACK COALESCING

A Thesis

by

BIN QIAN

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

August 2011

Major Subject: Computer Engineering

EVALUATION OF PROBABILISTIC EARLY RESPONSE TCP (PERT) FOR

VIDEO DELIVERY AND EXTENSION WITH ACK COALESCING

A Thesis

by

BIN QIAN

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Approved by:

Chair of Committee, A.L. Narasimha Reddy
Committee Members, Srinivas Shakkottai

Riccardo Bettati
Head of Department, Costas N. Georghiades

August 2011

Major Subject: Computer Engineering

iii

ABSTRACT

Evaluation of Probabilistic Early Response TCP (PERT) for Video Delivery and

Extension with ACK Coalescing. (August 2011)

Bin Qian, B.E., Zhejiang University, Hangzhou, China

Chair of Advisory Committee: Dr. A. L. Narasimha Reddy

This thesis demonstrates the performance of Probabilistic Early Response TCP (PERT),

a new TCP congestion control, for video streaming. As a delay based protocol, it

measures the delay at the end host and adjusts the congestion window accordingly.

Our experiments show that PERT improves video delivery performance by decreasing

the fraction of packets delivered late. Furthermore, our Linux live streaming test in-

dicates that PERT is able to reduce the playback glitches, when high resolution video

is delivered over a link with non-zero packet loss. In order to operate PERT at higher

thoughputs, we design PERT to work with Acknowledgement (ACK) coalescing at the

receiver. ACK coalescing makes data transfers burstier and makes it hard to estimate

delays accurately. We apply TCP pacing to fix this issue, and validate its effectiveness

in the aspects of throughput, packet loss and fairness. Our experiment results also

show that PERT with Delayed ACK and Pacing is more friendly, and therefore more

suitable when multiple traffic flows are competing for limited bottleneck bandwidth

or sharing the same router buffer.

iv

To my parents

v

ACKNOWLEDGMENTS

I thank my research advisor, Dr. A. L. Narasimha Reddy, for giving me continuous

guidance, feedback and support. As my advisor and mentor, he not only helped me

with picking my research topic and ideas, but also made sure that I kept making

progress towards the goal. I especially thank him for all these; thank you very much,

Dr. Reddy. I thank Prajjawl, an earlier student of Dr. Reddy, for his initial assistance

in getting through the learning curve of NS2 simulation and providing many resources

that I can resort to when I had difficulties with experiments. I thank Zhiyuan Yin

for his timely help with building an experiment test bed and discussing experiments

results and potential reasons. The other students, Kiran Kotla, Kapil Garg, as well

as Ankit Singh, in my research group have been very helpful to me at times, and I

would like to express my gratitude to them. Finally, I thank my parents who have

unconditionally supported me during tough time and encouraged my enthusiasm for

learning and encouraged me to pursue a master of science degree. Last but not the

least, I thank Almighty God for giving me wisdom and strength to overcome my

limitations.

vi

TABLE OF CONTENTS

CHAPTER Page

I INTRODUCTION . 1

A. Motivation . 1

B. Related Work . 2

II A BRIEF DESCRIPTION OF PERT 6

III MEASUREMENT FOR VIDEO STREAMING 10

A. NS-2 Simulation . 10

1. Experiment Setup . 10

2. Simulation Results . 12

a. Parameters Exploration 12

b. Performance Comparison 17

B. Linux Video Streaming Test 20

1. Test Results . 21

IV ENHANCEMENT WITH DELAY ACKS AND PACING 24

A. Delayed ACK . 24

1. Implementation . 24

2. Validation . 29

B. RTT Measurement Issue 32

C. TCP Pacing . 34

V ESTIMATING THE RTT ERROR DUE TO SELF-INDUCED

CONGESTION . 44

A. Approach . 44

B. Results . 47

VI CONCLUSION AND FUTURE WORK 50

REFERENCES . 52

VITA . 56

vii

LIST OF TABLES

TABLE Page

I NS-2 simulation experiment setup . 11

II Video streaming performance comparison 22

viii

LIST OF FIGURES

FIGURE Page

1 Response probability vs. smoothed RTT 6

2 Frequency vs. queue position . 8

3 Dumbbell topology . 10

4 T/µ distribution vs. CBR number 13

5 CBR, FTP and HTTP bandwidth vs. CBR number 14

6 Fraction of late packets vs. T/µ with PERT 14

7 Fraction of successful CBR streams over different T/µ 16

8 Fraction of successful CBR streams over different packet loss rate . . 16

9 Fraction of successful CBR streams vs. T/µ 18

10 Fraction of successful CBR streams over T/µ 1.0-1.4 18

11 Fraction of successful CBR streams over T/µ 1.4-1.8 19

12 Fraction of successful CBR streams over loss rate 0.02-0.06 20

13 Experiment computer platform . 21

14 Congestion window in Linux Test . 22

15 The mechanism of adaptive delayed ACK 25

16 Packet sequence number vs. time after applying delayed ACK 30

17 Delayed ACK’s effectiveness . 31

18 Problem of RTT measurement . 33

19 Analysis on bursty data and RTT error 34

ix

FIGURE Page

20 Packet sequence number of TCP Pacing 35

21 TCP Pacing correctly estimates RTT with ACK Coalescing 36

22 RTT estimation with pacing when cross traffic number varies 36

23 RTT estimation with pacing when cross traffic packet size varies . . . 37

24 RTT estimation with pacing when end-to-end delay varies 38

25 Benefit of delayed ACK and pacing 38

26 Fairness of delayed ACK and pacing when number of both pacing

and non-pacing (50%-50%) flows increases 39

27 Fairness of delayed ACK and pacing when Bandwidth Delay Prod-

uct (BDP) factor increases . 41

28 Fairness of delayed ACK and pacing when the Round Trip Time

(RTT) increases . 42

29 Video streaming performance of delayed ACK and pacing 43

30 RTT measurement model . 45

31 Fixed RTT measurement . 46

32 Fixed RTT measurement when cross traffic streams number varies . . 47

33 Fixed RTT measurement when end-to-end delay varies 48

34 Fixed RTT measurement when cross traffic packet size varies 49

1

CHAPTER I

INTRODUCTION

A. Motivation

Data transfers over Internet are increasingly dominated by video data transfers. Cisco

forecasts that video transfers will account for 60-90% of network traffic by 2014 [1].

Recent studies indicate that a large portion of Internet streaming media in current In-

ternet is delivered over HTTP/TCP. To achieve satisfactory quality of service (QOS),

video and audio data are supposed to be delivered before playback or buffered if they

arrive earlier. However, current TCP is not suitable for video streaming applications

due to its insistence on reliable transmission and inability of real-time data delivery.

Moreover, in today’s Internet, many other services like web surfing, FTP download,

as well as P2P file sharing are also competing for the limited bandwidth. This makes

it more difficult for TCP to meet the demands of smooth video streaming.

Nowadays, the demand for ubiquitous connectivity and cloud computing has led to

an interest in improving TCP for wireless or high-speed networks, both in terms of

commercial exploitation and with regard to research inquiry. Storing massive content

in the cloud and streaming to the clients becomes more and more popular today.

In the cloud system, the cluster of servers are connected to the high-speed Internet.

On the client end, users usually are using mobile devices like laptop or smart phone

The journal model is IEEE Transactions on Mobile Computing.

2

via Wi-Fi or 3G networks. For example, recently Amazon.com Inc. has released

its cloud player and instant video to provide on-demand audio and video streaming

from their distributed cloud system to their users’ personal computers, netbooks and

smart phones via TCP connections. Such applications ask for high performance of

TCP over complex mixture of high-speed Internet and wireless 3G or Wi-Fi networks.

This increasing trend of mobile audio and video streaming services requires further

extension and enhancement of TCP to satisfy quality of service.

B. Related Work

Motivated by such demand on multimedia applications over the Internet, protocols for

video streaming have been explored by many researchers. TFRC (TCP Friendly Rate

Control) [2] and its variant [3] have been proposed to maintain long-term TCP fairness

while maintaining smooth transmission rates. In [4], Wang et al. analytically studied

the TCP performance for multimedia streaming. They built discrete-time Markov

models for both constrained and unconstrained streaming. Smaller than MSS-sized

packets have been used in CBR workloads to exploit the TCP ACK counting mech-

anism, and thereby reducing the TCP transport delay and its impact on congestion

window variations in [5]. In [6], the authors compared Linux implementations of

NEWRENO, H-TCP and CUBIC and found dynamic latency fluctuations induced

by each TCP variant. They noticed that CUBIC induces larger latency than the

other two when concurrent TCP flows take place. All of these studies explore the

possibility of employing TCP like congestion control even for real-time video delivery.

To improve the on-time data delivery and quality of service, especially in wireless

3

networks, many studies focus on reducing the TCP transmission overhead by min-

imizing the number of produced ACKs for TCP without compromising reliability.

Unlike the TCP DATA packets, ACKs are considered as control traffic since they are

used only to confirm the reliable delivery. Therefore, it is desirable to minimize the

amount of ACKs traffic so as to make more bandwidth available for the actual data

delivery. The delayed ACKs mechanism is first proposed by the paper [7] and has

been enabled as a feature of TCP standard. The basic idea relies on the cumulative

nature of TCP ACKs. The TCP receiver set-up a timer for ACK (100-500 ms by

default [8]) upon receiving the data packet, and inject a single ACK into the pipe

when the timer times out. To avoid causing problems to TCP round trip-time (RTT)

estimation and ACK-clocking, the maximum timeout for a ACK is limited to no more

than a single data packet (usually 500ms), according to RFC [9]. The authors of [10]

proposed to enable delay ACKs by default based on its substantial benefit for TCP

throughput. It also reports the possibility of raising the TCP delay response so as

to reduce the competition of ACK for bottleneck bandwidth with DATA packets.

Later on, they implemented the delay ACK in TCP as a default feature, which en-

ables the receiver to wait for a short period of time instead of immediately replying

to each data packet [11]. In this case, if the subsequent packet arrives, then the

receiver sends ACK to verify both of them. Further, the authors of [12] introduced

the possibility of producing delayed ACK for more than two received data packets,

and confirmed with extensive experiments that an ACK for four data packets can

guarantee good performance when applying delayed ACK in general environments.

In wireless networks, the throughput enhancement effect [13] has been fully demon-

strated in static and dynamic topologies, with reactive [14] and proactive [15] TCP

hosts. But there are still some problems to be solved, before delayed ACK mecha-

nism can be widely deployed on the Internet. The main shortcoming is its impact on

4

ACK clocking mechanism, which results in the burstiness in the transmission pattern

[16]. We refer this delayed ACK mechanism and its data burstiness defects as ACK

coalescing. To solve this burstiness problem, the paper [17] initially suggested using

pacing to reduce burstiness of TCP traffic caused by ACK compression. The basic

idea is to pace out the packets at the intervals of RTT
cwnd

, so that less data packets

will be queued up in the router buffer and the self-induced delay will be reduced.

This is later on referred as TCP pacing in literature. Also, many researchers have

found that TCP’s congestion control mechanism can result in bursty traffic, with a

negative influence on network efficiency. According to [18], however authors found

TCP pacing is susceptible to synchronized packet losses and delays congestion signals.

They further proposed ways to eliminate this impact and validate its effectiveness.

Moreover, researchers [19] found that pacing helps to reduce the worst-flow latency

and improve the aggregate throughput, which are important for increasingly popular

type of distributed application platforms nowadays.

In this thesis, we explore the performance of a new TCP congestion control - PERT

and compare it with other TCP variants like RENO and CUBIC for real-time video

transmission. Here RENO is short for RENO-SACK. We study if the delay-based

PERT mechanism can provide better support for video delivery than RENO and

CUBIC. We study this problem through NS-2 based simulations and real live video

transmission tests on a testbed. Both our NS-2 simulation and Linux test results

show that PERT provides significant improvement on video viewing quality when

compared to RENO and CUBIC. Moreover, we made an extension of PERT, making

it work with delayed ACK and pacing, in order to achieve better performance. We

carefully implemented an adaptive delayed ACK mechanism and verified its benefits of

significantly reducing ACK traffic while improving the throughput. We identified that

5

delayed ACK mechanisms can disrupt the delay estimation mechanism of PERT. To

be specific, the burst of data sent after the reception of an ACK results in self-induced

delay and as a result causes RTT to be incorrectly over-estimated. To overcome this

issue, we applied TCP pacing and verified its effectiveness. We further demonstrated

that pacing bring more fairness benefits and therefore makes delayed ACK more

practical. Finally, we perform video streaming tests for PERT with delayed ACK

and pacing. Our results indicated that the more friendly PERT tends to have higher

aggregate throughput and lower late packet rate when multiple flows are competing,

especially when the Bandwidth-Delay-Product (BDP) is small. This is to say, the

new extension makes PERT more useful in wider network settings.

6

CHAPTER II

A BRIEF DESCRIPTION OF PERT

PERT emulates the behavior of AQM/ECN at the end host [20]. As a delay based

protocol, PERT learns about network congestion by measuring delays at end host,

and probabilistically reduces the congestion window as delay increases. Fig. 1 shows

PERT’s response probability curve, where Tmin and Tmax are two thresholds, and

Pmax is the probability of response at Tmax.

Figure 1: Response probability vs. smoothed RTT

However, delay based protocols lose to loss-based protocols in heterogeneous envi-

ronments where multiple congestion control algorithms may be employed. In current

Internet, any new congestion control algorithm has to be able to coexist with pre-

vailing TCP congestion control algorithms. To address this problem, PERT was

redesigned to be adaptive to heterogeneous environments [21]. PERT increases con-

gestion window faster than TCP at low delays to compensate for early response at

7

higher delays, in order to equalize the bandwidth.

PERT basically operates in 3 modes. When the observed delay is very low (or below

the minimum threshold), it assumes that it is operating in a ”high-speed” mode and

increases the window fast to fill the link. In this mode, the window increase factor

α in W = W + α, is increased linearly until a maximum value of αmax (currently

set to 32). When the observed delay is above a TCP-compete threshold (currently

set to 0.65*maximum observed queuing delay), PERT assumes it is operating in

a heterogeneous environment and increases the window every RTT additively with

α = 1 + p′/p, where p′ is the early response probability and p is the observed packet

loss rate. When the observed delay is above the minimum threshold, but below

the TCP-compete threshold, PERT assumes it is operating in a ”safe” mode and

increments window additively with α = 1. In addition, PERT reduces the window

conservatively in the early response phase, W = W × (1− β), where β = q′/(q′ + q),

where q′ is the estimated queuing delay at early response phase and q is the observed

maximum queueing delay. It is observed that this leads to W = W/2 upon a packet

loss.

Simultions and real-network evalutions have shown that, (a) a single PERT flow can

scale to high-speed links of up to 10Gbps, (b) PERT can compete with TCP in

heterogeneous environments and (c) still benefit from near-zero packet loss rates and

very low queuing delays when operating in homogeneous environments. Details of

PERT design can be found in [21, 22].

PERT sends more packets at lower delays and sends fewer packets at higher delays

while being fair to TCP. This behavior is shown in Fig. 2. Fig. 2 shows the queuing

8

0 200 400 600 800 1000 1200
Queue Position

1

10

100

1000

10000

100000

Fr
eq

ue
nc

y

Frequency vs. Queue Position
PERT
RENO

Figure 2: Frequency vs. queue position

frequency at certain queue length when 50 PERT and 50 RENO FTP flows are

competing on a 150 Mbps link with 60ms delay. It is observed that PERT enqueues

more packets earlier in the queue, and less packets later, and as a result experiences

lower losses. We expect this behavior of PERT to be beneficial for video transfers and

this thesis investigates this issue through simulations and experiments over a testbed.

Recent work [23] has showed that TCP can be used for transmitting live video as long

as the required video stream rate is a fraction of the average bandwidth achievable

by a single TCP flow. Both constrained (data is available from a live stream) and

unconstrained (data is available from a prerecorded or stored source) streaming were

considered. Extensive simulations have shown that TCP can be adequate if the

average TCP flow rate is about twice that of the required video stream rate for

constrained streaming. A similar study by [24] has shown that TCP can function

9

adequately with a 1.5 higher bandwidth than required stream rate in unconstrained

streaming and that Vegas could support unconstrained streaming better than TCP

NEWRENO. The question we try to answer in this thesis is if a delay-based protocol

such as PERT can support constrained video streaming at a lower available bandwidth

than two times of the required video stream rate as required by RENO.

We carry out extensive NS-2 based simulations and live video transmissions on a

real network testbed within the lab. We present data from both simulations and

the emulations to show that PERT indeed provides better support for live video

transmission than RENO and CUBIC.

10

CHAPTER III

MEASUREMENT FOR VIDEO STREAMING

A. NS-2 Simulation

1. Experiment Setup

To evaluate the performance of PERT and other TCP congestion control variants, we

setup a dumbbell topology, as Fig. 3 shows. In such a network environment, multiple

TCP streams have sufficient bandwidth over access links separately but compete for

the limited bandwidth over the bottleneck link between the two routers.

Figure 3: Dumbbell topology

Table. I shows our experiment parameters in NS-2 simulation, we set the access links

bandwidth to 10 Mbps and bottleneck link bandwidth to 25 Mbps, and CBR bit rate

11

Table I.: NS-2 simulation experiment setup

Parameter Value

CBR Flows # 20 - 35

CBR Senders PERT/RENO/CUBIC

CBR Recvers RENO

CBR Rate 300 Kbps

FTP Flows # 20 - 35

FTP Senders RENO

FTP Recvers RENO

HTTP Flows # 300

HTTP Senders RENO

HTTP Recvers RENO

Video Length 7,000 secs

Packet Size 200/1,000 Bytes

Buffer Size 150 Packets

Access Link Bandwidth 10 Mbps

Access Link Delay 5 - 15 ms

Bottleneck Link Band-

width

25 Mbps

Bottleneck Link Delay 15 - 45 ms

Round Trip Time 50 - 150 ms

Random Seed 0 - 19

12

to 300 Kbps. Moreover, TCP packet size is set to 200 or 1,000 bytes, router buffer

size to 150 packets, and video length to 7,000 seconds. We keep the above parameters

constant to get rid of their impacts on TCP video streaming performance. We take

HTTP and FTP flows as the background traffic, RENO and CUBIC as the control

group. As a loss based protocol, RENO additively increases the congestion window

by one MSS (Maximum Segment Size) every RTT (Round Trip Time), cuts down the

congestion window by half on a packet loss and decreases it to one MSS on a timeout

event. As for CUBIC, the congestion window growth follows a cubic function in

terms of the elapsed time since the last loss event. To emulate a realistic network,

we vary link delay (RTT) by altering the access link delay and bottleneck link delay.

We also vary the number of CBR streams and the number of FTP streams from

20-35 and keep the number of HTTP streams constant at 300 to achieve different

TCP throughputs. Finally, we run the simulation 20 times with seed values of 0-19

to randomize the start time of the TCP streams, in order to statistically reduce its

effect on the experiment results.

2. Simulation Results

a. Parameters Exploration

In this section, we explored the experiment parameters to study the performance

of PERT under different conditions. As [23] concludes, the performance of TCP

generally provides good streaming performance when the T/µ is roughly 2.0, where

T is the achievable TCP throughput and µ is the video bit-rate. To demonstrate

PERT’s performance under different T/µs, we pick sample data with certain CBR

13

stream numbers such that T/µ falls in continual ranges of [1.0 - 1.2], [1.2 - 1.4], [1.4

- 1.6], [1.6 - 1.8], [1.8 - 2.0], as Fig. 4 shows. Under such T/µ distribution, we also

plot the bandwidth allocation among CBR, FTP and HTTP streams. As Fig. 5

shows, as the number of CBR streams increases, the total bandwidth of CBR streams

increases proportionally, and the rest of bandwidth is taken by FTP streams and

HTTP streams.

21 23 26 30 34
CBR Streams Number

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

T/
u

T/u vs. CBR Streams Number

Figure 4: T/µ distribution vs. CBR number

As Fig. 6 shows, the fraction of late packets for PERT CBR streams becomes smaller

as T/µ increases from 1.0 to 2.0. It is clear that the late packets can be reduced by

giving CBR traffic more bandwidth. Fig. 6 also indicates that the fraction of late

packets with PERT drops sharply when T/µ is increased from 1.0 to 1.4, and stays

almost the same as T/µ ranges from 1.4 to 2.0. Moreover, as the RTT increases from

50ms to 150ms, the fraction of late packets goes up. This agrees with our intuition

that it is more difficult to achieve satisfactory performance for video streaming in

14

21 23 26 30 34
CBR Streams Number

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

25.0

27.5

30.0

32.5

Ba
nd

w
id

th
 (M

bi
ts

)

Bandwidth vs. CBR Streams Number
CBR
FTP
HTTP

Figure 5: CBR, FTP and HTTP bandwidth vs. CBR number

1.0-1.2 1.2-1.4 1.4-1.6 1.6-1.8 1.8-2.0
T/u

�10

0

10

20

30

40

50

60

70

Fr
ac

tio
n

of
 la

te
 p

ac
ke

ts
 (%

)

CBR packets late rate vs. T/u
RTT = 50 ms
RTT = 100 ms
RTT = 150 ms

Figure 6: Fraction of late packets vs. T/µ with PERT

15

higher delay networks (retransmissions may not arrive in time, for example).

Studies show that the video viewing quality is closely related to the fraction of late

packets. We define that a CBR stream is successful as long as the fraction of late

packets is below 10−4, with only a few seconds of startup delay as the paper [23] did.

Under such an evaluation metric, we validate PERT’s performance and compare with

others in the aspect of delivered video quality.

According to Fig. 7, as the start-up delay increases from 1 to 30 seconds, the fraction

of successful streams goes up. This is quite intuitive that more packets can meet

their playback deadline if we allow larger start-up delay for initial buffering. It is also

noticeable that when T/µ is in the range of [1.6 -2.0] and start-up delay is greater

than 11 seconds, the fraction of successful CBR streams gets to nearly 100%. In other

words, video streaming by PERT works well when T/µ is above 1.6, i.e. 20% lower

than what is required, 2.0 for RENO. In the next part, we will show that RENO does

not perform well under the same conditions.

As Fig. 8 shows, as packet loss rate gets higher, the fraction of successful streams

gets lower. At low loss rates (0.00 - 0.02), by using PERT, the fraction of successful

CBR streams can be above 90%, across all T/µ ranges considered, if more than

11 seconds of start-up delay is allowed. Even when the transmission suffers from

severe packets loss (0.04 - 0.06), 60% of PERT streams can successfully deliver video.

This is because when the loss event occurs, PERT does not drastically cut down the

congestion window and lower the flow rate as RENO does. In the next part, we will

show that almost of all RENO streams fail in similar situations.

16

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29
Start-up Delay (secs)

0

20

40

60

80

100

Fr
ac

tio
n

of
 S

uc
ce

ss
fu

l C
BR

 S
tr

ea
m

s
(%

)

Fraction of Successful CBR Streams vs. Start-up Delay

PERT T/u 1.2-1.6
PERT T/u 1.6-2.0
PERT T/u 2.0-2.4

Figure 7: Fraction of successful CBR streams over different T/µ

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29
Start-up Delay (secs)

0

20

40

60

80

100

Fr
ac

tio
n

of
 S

uc
ce

ss
fu

l C
BR

 S
tr

ea
m

s
(%

)

Fraction of Successful CBR Streams vs. Start-up Delay

PERT Loss Rate 0.00-0.02
PERT Loss Rate 0.02-0.04
PERT Loss Rate 0.04-0.06

Figure 8: Fraction of successful CBR streams over different packet loss rate

17

b. Performance Comparison

In this part, we compare the performance of PERT, RENO and CUBIC for video

streaming in the same parameter space that we described in the last section. As our

simulation results indicate, PERT outperforms RENO over all T/µ, loss rates and

start-up delays, and CUBIC over low T/µ, high loss rates and strict start-up delay

constraints.

First, we demonstrate the performance in terms of fraction of successful CBR streams

that we defined before. Fig. 9 indicates that as T/µ increases, the fraction of suc-

cessful CBR streams goes up. In the high T/µ range [1.4 - 2.0], the percentage of

successful CBR streams is high and changes slightly as T/µ increases. While in the

low T/µ range [1.0 - 1.4], the performance drops drastically as T/µ decreases. In

comparison, PERT and CUBIC perform better than RENO. When packet size is

moderate - 1000 bytes, PERT performs better than CUBIC in the low T/µ range but

has similar performance as CUBIC in the high T/µ range. Fig. 9 also shows the im-

pact of packet size, we consider two packet sizes of 200 and 1000 bytes. It is observed

that the fraction of successful streams is higher with smaller packet sizes, in all T/µ

ranges. Moreover, smaller packet sizes of 200 bytes helps to boost the performance,

and PERT has better or at least the same performance when comparing to CUBIC.

Fig. 10 show that the percentage of successful CBR streams vs. start-up delays in

different T/µ ranges when three different TCP congestion controls are employed in

video transmission. As T/µ increases, the CBR streams can achieve higher through-

put and lower packet loss rate. And as the start-up delay goes up and the constraint

becomes loose, more CBR streams successfully are able to meet the streaming quality

18

1.0-1.2 1.2-1.4 1.4-1.6 1.6-1.8 1.8-2.0
T/u (Start-up Delay 10 secs)

0

10

20

30

40

50

60

70

80

90

100

110

Fr
ac

tio
n

of
 S

uc
ce

ss
fu

l C
BR

 S
tr

ea
m

s
(%

)

1000

1000
1000 1000 1000

200

200 200 200 200

Fraction of Successful CBR Streams vs. T/u
PERT
RENO
CUBIC

Figure 9: Fraction of successful CBR streams vs. T/µ

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29
Start-up Delay (secs) (T/u 1.0-1.2, Loss Rate 0.056)

�5

0

5

10

15

20

25

Fr
ac

tio
n

of
 S

uc
ce

ss
fu

l C
BR

 s
tr

ea
m

s
(%

)

Fraction of Successful CBR streams vs. Start-up Delay
RENO
PERT
CUBIC

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29
Start-up Delay (secs) (T/u 1.2-1.4, Loss Rate 0.045)

0

20

40

60

80

100

120

Fr
ac

tio
n

of
 S

uc
ce

ss
fu

l C
BR

 s
tr

ea
m

s
(%

)

Fraction of Successful CBR streams vs. Start-up Delay
RENO
PERT
CUBIC

Figure 10: Fraction of successful CBR streams over T/µ 1.0-1.4

19

requirement. These observations are consistent with the earlier study [23].

In comparison, when the T/µ is in the low range [1.0 - 1.4], the loss rate is relatively

high, PERT achieves the best performance, CUBIC is in the middle, and RENO is

the worst.

As Fig. 11 shows, in the high T/µ range [1.4 - 1.8], PERT and CUBIC are both

superior to RENO, and especially when the start-up delay constraint is tight (from 1

to 11 seconds). In addition, when the start-up delay is greater than 11 seconds, PERT

and CUBIC achieve almost 100% success rate. In other words, the T/µ constraint for

satisfactory streaming is improved from roughly 2.0 to approximately 1.4, by using

PERT or CUBIC.

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29
Start-up Delay (secs) (T/u 1.4-1.6, Loss Rate 0.034)

50

60

70

80

90

100

110

Fr
ac

tio
n

of
 S

uc
ce

ss
fu

l C
BR

 s
tr

ea
m

s
(%

)

Fraction of Successful CBR streams vs. Start-up Delay

RENO
PERT
CUBIC

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29
Start-up Delay (secs) (T/u 1.6-1.8, Loss Rate 0.030)

70

75

80

85

90

95

100

105

Fr
ac

tio
n

of
 S

uc
ce

ss
fu

l C
BR

 s
tr

ea
m

s
(%

)

Fraction of Successful CBR streams vs. Start-up Delay

RENO
PERT
CUBIC

Figure 11: Fraction of successful CBR streams over T/µ 1.4-1.8

Fig. 12 shows that PERT generally performs better than RENO and CUBIC, in the

loss rate range of [0.04 - 0.06]. This is because PERT reduces the congestion window

by small amounts ahead of packet loss and experiences fewer packet losses [21], which

20

brings more stable throughput and therefore smoother video streaming.

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29
Start-up Delay (secs) (Loss Rate 0.02-0.04, T/u 1.68)

60

65

70

75

80

85

90

95

100

Fr
ac

tio
n

of
 S

uc
ce

ss
fu

l C
BR

 s
tr

ea
m

s
(%

)

Fraction of Successful CBR streams vs. Start-up Delay

RENO
PERT
CUBIC

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29
Start-up Delay (secs) (Loss Rate 0.04-0.06, T/u 1.26)

20

30

40

50

60

70

80

90

Fr
ac

tio
n

of
 S

uc
ce

ss
fu

l C
BR

 s
tr

ea
m

s
(%

)

Fraction of Successful CBR streams vs. Start-up Delay

RENO
PERT
CUBIC

Figure 12: Fraction of successful CBR streams over loss rate 0.02-0.06

B. Linux Video Streaming Test

In order to test our Linux implementation of PERT, we configured a testbed environ-

ment with the help of a network emulator. Fig. 13 displays our testbed setup. Two

PCs with the same hardware and operating system, are connected to a PC configured

as a network switch, through a 10/100 Mbs Ethernet link. The VLC [25] application

is installed to stream a video from the sender to the receiver. DummyNet [26] is em-

ployed as the network emulator to create a more realistic testing condition. It works

on the switch to emulate buffering, queuing delays and bottleneck link bandwidth.

Based on the testbed described above, we performed the video streaming test with

PERT, RENO and CUBIC. We set the link bandwidth to 15 Mbps, the link delay to

45 ms, and the queue length to 500 kbytes on the bridge. Moreover, a 1080p version of

21

Figure 13: Experiment computer platform

the Avatar movie trailer is chosen as the sample video, with file size of 286.5 Mb and

playback duration of 3 minutes and 30 seconds. VLC 1.1.4 works on both the server

and the client end as the video streaming tool. The codec of the video and audio are

H-264 and MPEG 4 Audio (AAC) respectively. As a high resolution movie, the video

is played at a frame rate of 24 fps and the audio at a sampling rate of 48, 000 Hz.

This asks for video peak bit rate of 25 mbps and audio bit rate of 192 kbps. Besides,

HTTP is chosen as the application layer protocol, which takes advantage of TCP on

the transport layer. We employ different versions of TCP during our experiments to

measure their effectiveness at streaming.

1. Test Results

To compare the effects of PERT, RENO and CUBIC on the perspective of video

viewing quality, we analysed VLC’s playback logs, which record when and how if any

glitch happens during the video transmission. We play the same video with the same

setting 20 times and count how many times the events of late picture skipping and

audio output starving occur. When the video or audio frames are played but not

22

found in the client’s buffer, one of these events will occur. They lead to playback

glitches, VLC client buffering, user waiting and therefore impair the viewing quality.

As Table. II shows, the playback experienced smaller number of late picture skipping

and audio output starving events when using PERT instead of RENO or CUBIC as

the TCP congestion control.

Table II.: Video streaming performance comparison

TCP Congestion Control PERT RENO CUBIC

Late Picture Skipping # (per playback) 5.5 33.5 30.5

Audio Output Starving # (per playback) 3.0 11.0 7.5

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Time (0.01s)

0

20

40

60

80

100

120

140

160

180

CW
ND

 S
iz

e
(M

by
te

s)

CWND Size vs. Time
PERT
RENO
CUBIC

Figure 14: Congestion window in Linux Test

To confirm our observation, we plot the TCP congestion window size with web100 [27]

at the sending end during playback in Fig. 14. We choose a period of 90 seconds of

23

playback time at the end of the movie, since the streaming is relatively stable during

that time. And we track the congestion window size every 0.01 second. As Fig. 14

shows, the congestion window size of PERT has fewer fluctuations than that of RENO

or CUBIC do. CUBIC increases the congestion window fast and achieves sightly

better performance than RENO does, but still incurs large fluctuations. Therefore,

the throughput of PERT’s video streams are more steady and their data frames are

more likely to arrive before playback deadline. This can explain the smaller number

of late picture skipping and audio output starving events we observed, when PERT

is employed as the TCP congestion control.

24

CHAPTER IV

ENHANCEMENT WITH DELAY ACKS AND PACING

A. Delayed ACK

In this section, we discuss our extension of PERT with delayed ACK and pacing. We

first describe our implementation of adaptive delayed ACK mechanism and observa-

tion that delayed ACK mechanisms can disrupt the delay estimation mechanism of

PERT. To overcome the RTT over-estimation issue, we introduce TCP pacing and its

effectiveness of reducing data bustiness. We further demonstrate that pacing bring

more fairness benefits and therefore makes delayed ACK more practical. Finally, we

show our video streaming tests results for PERT with delayed ACK and pacing.

1. Implementation

Combining the ideas of paper [11] and [12], we proposed an adaptive delayed ACK

algorithm. In our algorithm, not only the number of accumulated ACKs (1 - 4 in our

implementation), but also The ACKs sending time (0 - 2× data packet arrival interval

in out implementation), are adaptive, according to current transmission status. The

specific mechanism will be fully described and its effectiveness will be validated in

this section.

As the Fig. 15 shows. Our proposed algorithm takes advantage of the cumulative

25

curAckPerPkt = 4 curAckPerPkt = 1 curAckPerPkt = 2

Get Intervals Time Out
Minimize

AckPerPkt

Increment

AckPerPkt

Figure 15: The mechanism of adaptive delayed ACK

property of ACKs and simply added two kinds of adaptiveness: 1. The number

of accumulated ACKs can be varied, when the data packet arrives in order and in

time, we increment the maximum value of the ACKs number we can accumulate,

which means we can save more ACK traffic. In our implementation, the number of

accumulated ACKs is initialed to the minimum value 1, and can be incremented to

the maximum value 4, if packets are delivered in order without failures. 2. The time

when ACKs are sent out is varied. For each in-order delivered packet, we record its

time and calculate the interval between the last one, and calculate the expected data

packet arrival time with exponential averaging (new estimate = α× old estimate+

(1− α)× new sample). We set β (β > 1) times expected data packet arrival time as

the estimated time out threshold for each data packet. If timer for the expect packet

is time out, we simply send out ACK with the last data packet sequence number.

Moreover, when out of order packet comes or packet loss happens, we just return back

to the normal one packet one ACK routine, to guarantee the reliability of the trans-

mission. First, if the channel experiences some bad condition or severe congestion,

the expected data packet comes after a large delay, then the ACK should be sent to

26

keep the sender updated about the transmission status. And this time-out mecha-

nism is also designed to avoid ’deadlock’, which can happen when the receiver will

still accumulate (does not send) ACKs but actually the sender has no more packets

to send. In such a case, the sender expects the receiver to send the acknowledgement

for the last data packet, but, the receiver cannot send out the ACK since it try to

accumulate more ACKs.

Our implementation pseudo code is displayed as Alg. 1, it achieves the first adap-

tiveness by using two thresholds: minPktPerAck and maxPktPerAck, which denote

the minimum and maximum values of how many ACKs can be accumulated. And

curPktPerAck is maintained to keep a record of how many ACKs currently we can

accumulate, while counter records the number of ACKs we have already accumulated.

This implementation makes sure that we reduce the ACK traffic when the channel

condition is good, which is indicated by whether the data packets arrive in order or

not. We can also quickly response to the link error or congestion, by immediately

switching to normal TCP ACK behavior by reducing curPktPerAck to minPktPer-

Ack. In our implementation, we set minPktPerAck to one. This is because TCP

sender starts from the congestion window size of one packet and cuts down the con-

gestion window size to one when sender waits for ACK and times out. The reason

why the curPktPerAck cannot exceed the congestion windows size is obvious. If it is

so, the ’deadlock’ described above will happen.

In addition, it basically calls two sub-routines to realize the second adaptiveness as

follows:

1. getPktArrInterval() (as Alg. 2 shows)- which basically calculates the expected

27

Algorithm 1: Adaptive Delay ACK

Input: minPktPerAck = 1, maxPktPerAck = 4, α = 0.9, β = 2.0.

begin

interval←− 0;

counter ←− 0;

curPktPerAck ←− minPktPerAck;

if dataPktSeqNo == ackPktSeqNo then

getPktArrInterval(); (Algorithm 2) ;

counter ←− counter + 1;

if curPktPerAck == curPktPerAck then

send ACK with ackPktSeqNo;

counter ←− 0;

else

setupPktTimer(); (Algorithm 3) ;

end

if curPktPerAck < maxPktPerAck then

curPktPerAck ←− curPktPerAck + 1;

end

else

send ACK with ackPktSeqNo;

curPktPerAck ←− 0;

curPktPerAck ←− minPktPerAck;

end

end

28

packet inter-arrival time. As it shows, it only updates the value when the packet is

delivered in order, and smooths the measured value to get the expected one. Let t̂i be

the last expected value, ˆti+1 is the next expected value, then ˆti+1 = α× t̂i+(1−α)×ti,

where α is the smoothed factor (in our implementation α is set to 0.9) and ti is our

actual sample packet arrival interval.

Algorithm 2: getPktArrInterval

Input: curPktPerAck, interval, lastT ime .

begin

if curPktPerAck > 0 then

interval←− α ∗ (interval) + (1− α) ∗ (curT ime− lastT ime);

lastT ime←− curT ime;

end

end

2. setupPktTimer() (as Alg. 3 shows) simply set-up a timer for each accumulated

packet based on the expected packet arriving interval estimated by Alg. 2. To be

specific, Ti = β ∗ t̂i, where β is the timeout tolerance factor (in our implementation

β is set to 2.0) and Ti is the timeout threshold. It is also worth mentioning that if

any data packet arrives after Ti since the last one, the ACK will be immediately sent

and ACK accumulating mechanism will be aborted and restarted. This is to say, our

algorithm cannot differentiate packet loss or ACK timeout. We conservatively re-start

the whole mechanism to avoid potential deadlocks. Our experiment results confirm

our expectation that this conservative mechanism achieves better performance in

terms of throughput and latency, especially when the transmission experiences some

timeouts.

29

Algorithm 3: setupPktTimer()

Input: curPktPerAck, interval, lastT ime.

begin

// set-up a timer for each accumulated packet,

// in case of packet loss or no more packets.

timeout←− β ∗ interval;

// if timeout occurs, send ACK with ackPktSeqNo,

// curPktPerAck ←− minPktPerAck,

// counter ←− 0.

end

About the implementation overhead, our algorithm only requires the modification

of the receiving end and does not require the cooperation of sender. There is some

processing overhead associated with this method, such as the tracking of data packet

arriving interval, setting up the timer, as well as condition judgement. But the trade-

off is beneficial in comparison with the general increase in useful throughput and

better utilization of channel, that we will show later.

2. Validation

To verify the correctness of our delay ACK implementation, we first performed a

simple NS2 simulation with one sender streaming a FTP flow to one receiver. We

plotted the packet sequence number vs. time as Fig. 16 shows. We observed that

upon receiving every four data packets one ACK packet was sent, which is exactly as

we expected.

30

0.00 0.02 0.04 0.06 0.08 0.10
Time (seconds) +2.201e2

5

10

15

20

25

30

35

40

45

50

Pa
ck

et
 S

eq
ue

nc
e

No
.

+9.06e4 Packet Sequence No. vs. Time
DATA
ACK

Figure 16: Packet sequence number vs. time after applying delayed ACK

Furthermore, we validate the effectiveness of our implementation of Delayed ACK.

We performed experiment with three kinds of TCP sinks: No Delay, Delay by two,

Adaptive Delay. The No Delay means TCP sends ACKs back without any delay. The

Delay By Two is the default implementation of accumulating ACK by two in NS2

code. Adaptive Delay is our implementation of adaptive ACK coalescing of up to 4

data packets. As Fig. 17a shows, Adaptive Delay has the highest data throughput,

No Delay has the lowest, and Delay By two is in the middle. Meanwhile, Fig. 17b

shows the amount of ACK traffic of the three mechanisms separately. And Adaptive

Delay has significantly reduces the ACK traffic, in comparison with Delay By Two

and No Delay. These two figures confirm our expectation of reducing ACK traffic

while improving Data traffic effectiveness of ACK coalescing. Finally, we plotted

out the Data/ACK ratio vs. time in Fig. 17c, and found the Data/ACK ratio for

Adaptive Delay is nearly 4.0, for Delay By Two is 2.0, and for No Delay is 1.0. This

31

0 20 40 60 80 100 120
Time (seconds)

0

500

1000

1500

2000
D

at
a

Th
ro

ug
hp

ut
 (K

bp
s)

Data Throughput vs. Time

No Delay
Delay By Two
Adaptive Delay

(a) data throughput

0 20 40 60 80 100 120
Time (seconds)

0

10

20

30

40

50

60

70

Ac
k

Th
ro

ug
hp

ut
 (K

bp
s)

Ack Throughput vs. Time

No Delay
Delay By Two
Adaptive Delay

(b) ack throughput

0 20 40 60 80 100 120
Time (seconds)

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

D
at

a/
Ac

k
Ra

tio

Data/Ack Ratio vs. Time
No Delay
Delay By Two
Adaptive Delay

(c) data per ack ratio

Figure 17: Delayed ACK’s effectiveness

32

exactly matches our design objective.

B. RTT Measurement Issue

While ACK coalescing at the receiver is beneficial for increasing throughput and

reducing the interrupts at the sender, ACK coalescing can cause problems for RTT

estimation at the sender. ACK coalescing causes bursts of packets to be sent out by

the sender. This increased burstiness results in self-induced congestion which causes

sender’s RTT estimation to become incorrect. That is the estimated RTT of Adaptive

Delay is always higher than the actual value. As Fig. 18a shows, the SRTT value of

Adaptive Delay mechanism (DELAY BY 4) always have about 5ms more than that

of No Delay. This mistaken estimation of RTT is potential harmful to PERT, since

PERT measures smoothed RTT to detect network congestion. The higher SRTT

can be misleading so that PERT may generate the false alarm signal of ’network

congestion’ and reduce the congestion window. It is obvious this may lead to inferior

transmission performance.

To get rid of this misguiding effects of RTT measurement error, we need to know the

source of the error. Looking the Fig. 16 again, we observed burst of data packets in

four, with an ACK for every fourth packet. The problem is the fourth packet may

’see’ the queuing delay of the first three packets. In other words, the sampled RTT

values for each packet in the packet train is different. The later sent packet may

observe more queuing delay because of the previous sent packets (this is self-induced

delay). To confirm this reasoning, we plot the RTT of packets with different groups of

sequence numbers in Fig. 18b. We simply divide RTT values of packets with different

33

50 55 60 65 70 75 80 85 90
Time (s)

40

45

50

55

60

65

70

75

80

Sm
oo

th
ed

 R
TT

Smoothed RTT vs. Time
NO DELAY
DELAY BY 4

(a) RTT estimation error

50 60 70 80 90 100
Time (s)

43

44

45

46

47

48

49

RT
T

(m
s)

RTT vs. Time

MOD1 43.488ms
MOD2 45.168ms
MOD3 46.848ms
MOD0 48.528ms

(b) RTT difference

Figure 18: Problem of RTT measurement

sequence number into four groups. We mod their packet sequence number with four

and therefore have four groups: 0, 1, 2, 3. And as we can see in the Fig. 18b, different

groups of packets have different measured RTT values. And the difference between

values of different groups is the same. It is clear that if we only sample the RTT with

the packets of group # 0, we get higher RTT estimation.

Based on the observation and analysis of this RTT measurement issue. As showed

in Fig. 19, we understand that measured rtt = actual rtt + self induced delay +

cross induced delay. Considering the fundamental of PERT’s congestion detecting

mechanism, we simply expect to get rid of this self-induced delay and leave the cross

traffic delay alone. In this case, PERT can still detect and responses early to the

congestion that results from cross traffic, but won’t be affected by the self induced

delay, which is being caused by burstiness resulting from ACK coalescing. There are

two possible solutions to correct this problem. The first approach is to estimate the

34

1234123

4

Router Queue

Self-Induced Delay Cross-Induced Delay

Observed Traffic

Cross Traffic

Figure 19: Analysis on bursty data and RTT error

delay from self-induced congestion and appropriately correct the RTT measurements.

The second approach is to possibly eliminate the self-induced congestion which causes

the mis-estimation of RTT . We have explored both two ways and will describe them

in the following two sections.

C. TCP Pacing

Our implementation of TCP pacing in NS2 is based on the ideas in [18]. Our im-

plementation keeps track of congestion window in terms of number of packets. We

calculate the packet sending interval, which equals to RTT divided by the congestion

window size. We set-up a timer for each data packet with the timeout value that

equals to the packet sending interval calcaulated before.

We ran simulation to verify the correctness of our implementation of TCP pacing.

Fig. 20 shows the packet sequence number increasing curve of three kinds of TCP

Sink: No Delay, Delay ACK, Delay Pacing. As we can observe, the data packets

35

0.00 0.02 0.04 0.06 0.08 0.10
Time (seconds) +1.01e2

17500

18000

18500

19000

19500

20000

20500

21000

21500

Pa
ck

et
 S

eq
ue

nc
e

No
.

Packet Sequence No. vs. Time
DATA DELAY PACING
ACK DELAY PACING
DATA ADAPTIVE DELAY
ACK ADAPTIVE DELAY
DATA NO DELAY
ACK NO DELAY

Figure 20: Packet sequence number of TCP Pacing

along with ACKs distributed almost uniformly as the transmission time passes when

pacing is applied. In comparison, Delay ACK experiences severe data burstiness as

expected. It is also worth noticing that No Delay’s sending pattern is also slightly

bursty. This is consistent with the observation that TCP congestion control will also

incur some burstiness, described in paper [18]. Hence, according to our experiment

result, TCP pacing successfully help in reducing the burstiness of data.

Fig. 21 shows the results of RTT estimation in various scenarios. We considered

several experiments with different TCP sinks, with and without pacing on the sender

side. It is observed that in all cases, the RTT estimation is accurate when TCP pacing

is employed by the sender. In particular, it is observed that RTT overestimation is

no longer a problem since TCP pacing avoids the self-induced congestion with ACK

coalescing.

36

40 60 80 100 120 140 160
Time (s)

40

45

50

55

60

65

70

75

80

85

Sm
oo

th
ed

 R
TT

Smoothed RTT vs. Time
NO DELAY
DELAY BY 4
DELAY PACING
MEAN NO DELAY
MEAN DELAY BY 4
MEAN DELAY PACING

Figure 21: TCP Pacing correctly estimates RTT with ACK Coalescing

40 60 80 100 120 140 160
Time (s)

40

50

60

70

80

90

Sm
oo

th
ed

 R
TT

Smoothed RTT vs. Time
NO DELAY
DELAY BY 4
DELAY PACING
MEAN NO DELAY
MEAN DELAY BY 4
MEAN DELAY PACING

(a) 5 cross streams

40 60 80 100 120 140 160
Time (s)

30

35

40

45

50

55

60

65

70

75

Sm
oo

th
ed

 R
TT

Smoothed RTT vs. Time

NO DELAY
DELAY BY 4
DELAY PACING
MEAN NO DELAY
MEAN DELAY BY 4
MEAN DELAY PACING

(b) 10 cross streams

Figure 22: RTT estimation with pacing when cross traffic number varies

37

40 60 80 100 120 140 160
Time (s)

35

40

45

50

55

60

65

70

75

Sm
oo

th
ed

 R
TT

Smoothed RTT vs. Time

NO DELAY
DELAY BY 4
DELAY PACING
MEAN NO DELAY
MEAN DELAY BY 4
MEAN DELAY PACING

(a) packet size 500 bytes

40 60 80 100 120 140 160
Time (s)

40

50

60

70

80

90

100

Sm
oo

th
ed

 R
TT

Smoothed RTT vs. Time
NO DELAY
DELAY BY 4
DELAY PACING
MEAN NO DELAY
MEAN DELAY BY 4
MEAN DELAY PACING

(b) packet size 1500 bytes

Figure 23: RTT estimation with pacing when cross traffic packet size varies

To confirm that TCP Pacing works in various network settings, we also perform

experiments with varied cross traffic streams numbers (from 1 to 10), cross traffic

packet sizes (from 500 - 1500 bytes), as well as end-to-end delay (from 5 - 50ms).

As Figs. 22, 23, 24 show, the RTT estimation error disappears after applying TCP

Pacing for most of scenarios.

These results show that RTT can be correctly estimated when pacing is employed at

the sender when ack coalescing is employed at the receiver. We combined pacing and

ack coalescing in PERT to study its performance. In these experiments we study the

performance of three different flavors of PERT. The first version employed both pacing

and ack coalescing, the second one employed ack coalescing without pacing and third

flavor employed neither mechanism. The results are displayed as Figs. 25. Fig. 25a

shows that the three different flavors of PERT nearly achieve the same bandwidth.

This shows that ack coalescing and pacing keep PERT fair to other flavors of PERT.

38

40 60 80 100 120 140 160
Time (s)

14

16

18

20

22

24

26

28

30

Sm
oo

th
ed

 R
TT

Smoothed RTT vs. Time
NO DELAY
DELAY BY 4
DELAY PACING
MEAN NO DELAY
MEAN DELAY BY 4
MEAN DELAY PACING

(a) RTT 10 ms

40 60 80 100 120 140 160
Time (s)

100

110

120

130

140

150

160

Sm
oo

th
ed

 R
TT

Smoothed RTT vs. Time
NO DELAY
DELAY BY 4
DELAY PACING
MEAN NO DELAY
MEAN DELAY BY 4
MEAN DELAY PACING

(b) RTT 100 ms

Figure 24: RTT estimation with pacing when end-to-end delay varies

50 100 150 200 250 300
Time (sec)

850

900

950

1000

1050

1100

Th
ro

ug
hp

ut
 (K

bp
s)

Throughput vs. Time
DELAY PACING
ADAPTIVE DELAY
NO DELAY

(a) bandwidth share

50 100 150 200 250 300
Time (sec)

0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.20

Lo
ss

 R
at

e(
%

)

Loss Rate vs. Time
NO DELAY
DELAY PACING
ADAPTIVE DELAY

(b) packet loss

Figure 25: Benefit of delayed ACK and pacing

39

Fig. 25b shows that PERT with pacing and ACK coalescing has lower packet loss

rate than the other two flavors of PERT. Pacing helps the data sending pattern to

become less bursty and this allows packets to experience a smaller loss rate at the

buffers. These results show that PERT with pacing and ACK coalescing can attain

fair bandwidth at a lower loss rate. We explore the performance of PERT with these

two mechanisms further in different network settings.

10 20 30 40 50 60 70 80 90 100
Number of Flows

55

60

65

70

75

Ba
nd

w
id

th
 S

ha
re

 (%
)

Bandwidth Share vs. Number of Flows
DELAY PACING
ADAPTIVE DELAY

(a) bandwidth share

10 20 30 40 50 60 70 80 90 100
Number of Flows

0.465

0.470

0.475

0.480

0.485

0.490

0.495

0.500

0.505

0.510

Pa
ck

et
 D

ro
p

Ra
tio

Packet Drop Ratio vs. Number of Flows
DELAY PACING
ADAPTIVE DELAY

(b) packet drop ratio

10 20 30 40 50 60 70 80 90 100
Number of Flows

75

80

85

90

95

100

Ja
in

 F
ai

rn
es

s
In

de
x

(%
)

Jain Fairness Index vs. Number of Flows
DELAY PACING
ADAPTIVE DELAY

(c) Jain fairness index

10 20 30 40 50 60 70 80 90 100
Number of Flows

0.4

0.5

0.6

0.7

0.8

0.9

1.0

No
rm

al
iz

ed
 Q

ue
ue

 L
en

gt
h

Normalized Queue Length vs. Number of Flows
DELAY PACING
ADAPTIVE DELAY

(d) normalized queue length

Figure 26: Fairness of delayed ACK and pacing when number of both pacing and

non-pacing (50%-50%) flows increases

40

Next, we further explore the fairness and potential benefits brought by Delay ACK.

First we change the number of total flows from 10 to 100 with Delay Pacing and

Delay ACK in proportion of 50% and 50%, and plot four kinds of important fairness

metrics in Fig. 26. Our results show that as the flow number increases, the fairness

of both Delay Pacing and Delay ACK decreases in the aspects of bandwidth share,

packets drop ratio, Jain fairness index as well as normalized queue length. Delay

Pacing always show better fairness than Delay ACK (without TCP pacing). TCP

pacing helps to improve the fairness by avoiding congestion on the router.

To confirm our observation on the improved fairness of Delay Pacing, we change

the percentage of Delay ACK flows (from 10% to 100%), BDP (Bandwidth Delay

Product) Factor (from 0.4 to 4.0), Round Trip Time (from 10 to 100ms), as well as

number of cross traffic (HTTP) flows (from 100 to 1000), as Figs. 27, 28 show. Then

we are safe to claim in almost cases, Delay Pacing has better fairness than Delay ACK

(without pacing). This is to say, in most cases Delay Pacing has better performance

when multiple network flows are competing for limited bottleneck bandwidth.

41

0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0
BDP Factor

52

54

56

58

60

62

64

66

68

70

Ba
nd

w
id

th
 S

ha
re

 (%
)

Bandwidth Share vs. BDP Factor
DELAY PACING
ADAPTIVE DELAY

(a) bandwidth share

0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0
BDP Factor

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

Pa
ck

et
 D

ro
p

Ra
tio

Packet Drop Ratio vs. BDP Factor
DELAY PACING
ADAPTIVE DELAY

(b) packet drop ratio

0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0
BDP Factor

75

80

85

90

95

100

Ja
in

 F
ai

rn
es

s
In

de
x

(%
)

Jain Fairness Index vs. BDP Factor
DELAY PACING
ADAPTIVE DELAY

(c) Jain fairness index

0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0
BDP Factor

0.70

0.75

0.80

0.85

0.90

0.95

1.00

No
rm

al
iz

ed
 Q

ue
ue

 L
en

gt
h

Normalized Queue Length vs. BDP Factor
DELAY PACING
ADAPTIVE DELAY

(d) normalized queue length

Figure 27: Fairness of delayed ACK and pacing when Bandwidth Delay Product

(BDP) factor increases

42

10 20 30 40 50 60 70 80 90 100
RTT (ms)

45

50

55

60

65

70

75

80

85

Ba
nd

w
id

th
 S

ha
re

 (%
)

Bandwidth Share vs. RTT
DELAY PACING
ADAPTIVE DELAY

(a) bandwidth share

10 20 30 40 50 60 70 80 90 100
RTT (ms)

0.2

0.3

0.4

0.5

0.6

Pa
ck

et
 D

ro
p

Ra
tio

Packet Drop Ratio vs. RTT
DELAY PACING
ADAPTIVE DELAY

(b) packet drop ratio

10 20 30 40 50 60 70 80 90 100
RTT (ms)

75

80

85

90

95

100

Ja
in

 F
ai

rn
es

s
In

de
x

(%
)

Jain Fairness Index vs. RTT
DELAY PACING
ADAPTIVE DELAY

(c) Jain fairness index

10 20 30 40 50 60 70 80 90 100
RTT (ms)

0.76

0.78

0.80

0.82

0.84

0.86

0.88

0.90

No
rm

al
iz

ed
 Q

ue
ue

 L
en

gt
h

Normalized Queue Length vs. RTT
DELAY PACING
ADAPTIVE DELAY

(d) normalized queue length

Figure 28: Fairness of delayed ACK and pacing when the Round Trip Time (RTT)

increases

43

Finally, we look into the performance of PERT with Delay Pacing for video streaming,

in multiple flows environment. We take two performance metrics similar as described

in paper [19]: aggregate throughput - the total throughput achieved by all flows when

they work together, and late packet arrival rate of the worst flow. From Fig. 29a, we

oberve that Delay Pacing achieve higher aggregate throughput when BDP is smaller

than 1.0 in comparison with No Delay. And from Fig. 29b, we notice that Delay

Pacing has worst-case late packet arrival rate than No Delay. In other words, Delay

Pacing helps to better the overall performance for video streaming when multiple

flows are competing for bandwidth at a network link. And along with better QOS,

PERT flows achieved better fairness when pacing and ACK coalescing are employed.

0.0 0.5 1.0 1.5 2.0
BDP Factor

3.4

3.6

3.8

4.0

4.2

4.4

4.6

4.8

5.0

Ag
gr

eg
at

e
Th

ro
ug

hp
ut

 (M
bp

s)

Aggregate Throughput vs. BDP Factor

DELAY PACING
NO DELAY

(a) aggregate throughput

0.0 0.5 1.0 1.5 2.0
BDP Factor

16

18

20

22

24

26

28

30

W
or

st
 L

at
e

Pa
ck

et
s

Fr
ac

tio
n

(%
)

Worst Late Packets Fraction vs. BDP Factor
DELAY PACING
NO DELAY

(b) packet late rate of worst flow

Figure 29: Video streaming performance of delayed ACK and pacing

44

CHAPTER V

ESTIMATING THE RTT ERROR DUE TO SELF-INDUCED CONGESTION

A. Approach

We consider a second solution for RTT estimation error brought by burstiness of

data. 1. The basic idea is to estimate the self-induced delay and subtract it from the

observed RTT value, in order to obtain a correct RTT estimate.

Before we can describe describe our approach, we introduce some notation. First we

model the burst of data as a packet train, and define the average time to finish a

packet transmission in a packet train as average packet dispersion. Let D denote the

average packet dispersion and k denote the number of packets in a packet train. We

draw the timeline of the transmission of a packet train with packet sequence number

from n to n + k − 1, as Fig. 30 shows. We define Ts as the sending time of data

packets, and Tr as the receiving time of ACK packets. Then we can see that Tsn is

the sending time of (more precisely the first packet in) our packet train, and Trn+k−1

is the receiving time of the ACK of our packet train. Hence we have the total delivery

time of our packet train:

R = Trn+k−1
− Tsn (5.1)

Let ∆2 denote the difference between the receiving time of ACK for current and last

1joint work with Ankit Singh

45

Figure 30: RTT measurement model

packet train. And let ∆1 denote the self-induced delay that we try to estimate. We

have the following equations:
E[∆2] = E[Trn+k−1

− Trn−1]

= Tsn − Tsn−1 + ∆1 +D

E[∆1] = (k − 1)D

(5.2)

Here the estimated value of ∆2 equals to the difference between sending time of first

packet of current packet train Tsn and that of last packet of last packet train Tsn−1

plus self-induced delay ∆1 and average packet dispersion D. Moreover, the estimated

value of ∆1 equals to k − 1 multiplied by average dispersion D. Here Tsn , Tsn−1 , k

and ∆2 can be measured, while D is unknown. So we combine the equations and get

the estimated self-induced delay ∆1 as follows:

E[∆1] =
k − 1

k
[∆2 − (Tsn − Tsn−1)] (5.3)

46

50 55 60 65 70 75 80 85 90
Time (s)

50

52

54

56

58

60

62

Sm
oo

th
ed

 R
TT

Smoothed RTT vs. Time

NO DELAY
DELAY BY 4

Figure 31: Fixed RTT measurement

After we get the estimated value of the self-induced delay ∆1, we subtracted it from

the total delivery time R calculated in Eq. (5.1), to get the estimated value of round-

trip time RTT , as the following equation shows:

E[RTT] = R− E[∆1] (5.4)

Our approach relies on this analysis and tries to correct the error in RTT estimation

as shown in equation (5.4).

47

50 55 60 65 70 75 80 85 90
Time (s)

50

55

60

65

70

75

80

85

90

Sm
oo

th
ed

 R
TT

Smoothed RTT vs. Time
NO DELAY
DELAY BY 4

(a) 5 cross streams

50 55 60 65 70 75 80 85 90
Time (s)

60

65

70

75

80

85

Sm
oo

th
ed

 R
TT

Smoothed RTT vs. Time
NO DELAY
DELAY BY 4

(b) 10 cross streams

Figure 32: Fixed RTT measurement when cross traffic streams number varies

B. Results

We modified the sender side PERT based on the analysis above to correctly estimate

the RTT, we implement it to fix the RTT measurement for Delay ACK mechanism

on the sending end. We first simply validate the correctness of the implementation

with two flows of PERT. with Delay ACK and the other flow with No Delay. The

end-to-end delay is set to 20ms, the bottleneck link bandwidth is set to 3 Mbps, and

the packet size is 1000 bytes. Fig. 31 shows the smoothed RTT values for both

Delay ACK and No Delay. We can see both of them have same mean value, and they

have very small difference. This is to say, our model and method of estimating and

deducing self-induced delay is correct.

To confirm that this method works in other scenarios, we change bottleneck band-

width (from 1 to 10 Mbps), end-to-end delay (from 5ms - 50ms), number of cross

48

50 55 60 65 70 75 80 85 90
Time (s)

15

16

17

18

19

20

21

22

Sm
oo

th
ed

 R
TT

Smoothed RTT vs. Time

NO DELAY
DELAY BY 4

(a) RTT 10 ms

50 55 60 65 70 75 80 85 90
Time (s)

108

110

112

114

116

118

120

Sm
oo

th
ed

 R
TT

Smoothed RTT vs. Time

NO DELAY
DELAY BY 4

(b) RTT 100 ms

Figure 33: Fixed RTT measurement when end-to-end delay varies

traffic flows (from 5 to 10) and cross traffic packet size (from 500 to 1500). In Figs.

32, 33, 34, we observe that the mean value of Delay ACK and that of No Delay

are nearly the same in all these experiments. These results show that the proposed

method for correcting the error from self-induced delay works in various network

settings.

49

50 55 60 65 70 75 80 85 90
Time (s)

40

45

50

55

60

65

70

75

80

Sm
oo

th
ed

 R
TT

Smoothed RTT vs. Time
NO DELAY
DELAY BY 4

(a) packet size 500 bytes

50 55 60 65 70 75 80 85 90
Time (s)

50

60

70

80

90

100

Sm
oo

th
ed

 R
TT

Smoothed RTT vs. Time
NO DELAY
DELAY BY 4

(b) packet size 1500 bytes

Figure 34: Fixed RTT measurement when cross traffic packet size varies

50

CHAPTER VI

CONCLUSION AND FUTURE WORK

In this thesis, we have demonstrated the performance of PERT for on-demand video

streaming. Our NS-2 simulation experiments are performed in a heterogeneous en-

vironment, where the background traffic is delivered by RENO. PERT outperforms

RENO and CUBIC in successfully delivering video in constrained streaming scenar-

ios we considered here. Moreover, the real-life video streaming test confirms PERT’s

ability to improve video playback quality when comparing to RENO and CUBIC.

Also, we extended PERT with to work with ACK coalescing to improve PERT’s per-

formance in high-speed and wireless networks. We identified that ACK coalescing

causes data to be sent in bursts or packet trains and these bursts result in overesti-

mating RTT due to self-induced congestion. We proposed two solutions to correctly

estimate RTT in the presence of ACK coalescing. The first method employed pac-

ing at the sender side and the second method estimated the error caused by the

self-induced congestion and appropriately corrected RTT estimations. We showed

through experiments that both these techniques correctly estimate RTT and allowed

PERT to function well with ACK coalescing. In addition, pacing is shown to improve

the observed loss rate and hence delivered video performance. These enhancements

allow PERT’s suitability to a wider set of network scenarios.

In the future, we will implement PERT with Delay ACK and Pacing in Linux

kernel and measure its processing overhead. The processing overhead is especially

51

important in high speed networks. ACK coalescing is expected to relieve the sender

by reducing the number of interrupts processed per Mbyte. However pacing requires

timers which results in higher overheads. We will study if the resulting overall over-

head is lower than normal PERT that doesn’t employ both these mechanisms. Fur-

ther, our efforts will be devoted to carry out more evaluations on PERT with Delay

ACK and Pacing, in comparison against other protocols, especially for video stream-

ing.

52

REFERENCES

[1] Cisco Visual Networking Index: Forecast and Methodology, 2009-2014, www.cis-

co.com, June 2010.

[2] S. Floyd, M. Handley, J. Pahdye, and J. Widmer, ”RFC 5348: TCP Friendly

Rate Control (TFRC): Protocol Specification,” RFC 5348, Proposed Standard,

September 2008.

[3] J. Feng, L. Xu, ”Throughput-Smoothness Tradeoff in Preventing Competing TCP

from Starvation,” Proc. of the 17th International Workshop on Quality of Service,

July 2009.

[4] B. Wang, J. Kurose, P. Shenoy and D. Towsley, ”Multimedia Streaming via TCP:

An Analytic Performance Study,” Proc. of ACM Multimedia (Multimedia 2004),

October 2004.

[5] S. A. Baset, E. Brosh, V. Misra, D. Rubenstein, and H. Schulzrinne, ”Understand-

ing The Behavior of TCP for Real-Time CBR Workloads,” Proc. of International

Conference On Emerging Networking Experiments And Technologies archive, De-

cember 2006.

[6] L. Stewart, G. Armitage and A. Huebner, ”Collateral Damage: The Impact of

Optimised TCP Variants on Real-Time Traffic Latency in Consumer Broadband

Environments,” IFIP International Federation for information Processing, 2009.

[7] D. D. Clark, ”Window and Acknowledgment strategy in TCP. Internet Draft,”

RFC 813, Proposed Standard, July 1982.

53

[8] RFC 793: Transmission Control Protocol. Internet Draft, http://www.ietf.org

/rfc/rfc793.txt, September 1981.

[9] Requirements for Internet Hosts Communication Layers. Internet Draft, http:

//www.ietf.org/rfc/rfc1122.txt, October 1989.

[10] M. Allman, ”On The Generation and Use of TCP Acknowledgments,” Proc. of

SIGCOMM Computer Communication Review, 28(5):4-21, 1998.

[11] RFC 2581: TCP Congestion Control. Internet Draft, http://www.ietf.org/rfc

/rfc2581.txt, April 1999.

[12] E. Altman and T. Jimenez, ”Novel Delayed ACK Techniques for Improving

TCP Performance in Multihop Wireless Networks,” Personal Wireless Commu-

nications, Vol. 2775, SpringerVerlag, Heidelberg, 2003, pp. 237-250.

[13] A. A. Kherani and R. Shorey, ”Performance Improvement of TCP with Delayed

ACKs in IEEE 802.11 Wireless LANs,” Prof. of Wireless Communications and

Networking Conference (WCNC), Vol. 3, pp. 1703-1708, 2004.

[14] S. Xu and T. Saadawi, ”Performance Evaluation of TCP Algorithms in Multi-

Hop Wireless Packet Networks”. Proc. of Wireless Communications and Mobile

Computing, 2(1):85-100, 2002.

[15] Papanastasiou and M. Ould-Khaoua, ”Exploring The Performance of TCP Vegas

in Mobile Ad Hoc Networks,” International Journal of Communication Systems,

17(2):163-177, 2004.

[16] V. Paxson, M. Allman, S. Dawson, W. Fenner, J. Griner, I. Heavens, K. Lahey,J.

Semke, and B. Volz, ”Known TCP Implementation Problems,” Internet Draft,

http//www.ietf.org/rfc/rfc2525.txt, March 1999.

54

[17] L. Zhang, S. Shenker, D. D. Clark, ”Observations on The Dynamics of a Con-

gestion Control Algorithm: The Effects of Two-Way Traffic,” Proc. of the ACM

Conf. on Communications Architectures and Protocols, pp. 133-147, 1991.

[18] A. Aggarwal, S. Savage, and T. Anderson, ”Understanding The Performance of

TCP Pacing,” Proc. of the IEEE International Conf. on Computer Communica-

tions, pp. 1157-1165, March 2000.

[19] D. X. Wei, P. Cao, S. H. Low, ”TCP Pacing Revisited,” Proc. of IEEE Inter-

national Conference on Computer Communications, pp. 56-63 , April 2006.

[20] S. Bhandarkar, A. L. Narasimha Reddy, Y. Zhang, and D. Loguinov, ”Emulating

AQM from End Hosts,” Proc. of SIGCOMM Computer Communication Review,

vol. 37, no. 4, pp. 349-360, October 2007.

[21] K. Kotla and A. L. Narasimha Reddy, ”Making a Delay-based Protocol Adaptive

to Heterogeneous Environments,” Proc. of the 16th International Workshop on

Quality of Service (IWQoS 2008), June 2008.

[22] K. Kotla, ”Adapting a Delay-Based Protocol to Heterogeneous Environments,”

Master’s thesis, Texas A&M University, August 2008.

[23] B. Wang, J. Kurose, P. Shenoy and D. Towsley, ”Multimedia Streaming via TCP:

An Analytic Performance Study,” ACM Transactions on Multimedia Computing

Communications and Applications (TOMCCAP), vol. 4, no. 2, pp. 25:1-23, April

2008.

[24] S. Boyden, A. Mahanti and C. Williamson, ”TCP Vegas Performance with

Streaming Media,” Proc. of International Performance Computing and Commu-

nications Conference, pp. 35-44, April 2007.

55

[25] The Videolan Project, http://www.videolan.org, June 2011.

[26] L. Rizzo, ”Dummynet: a Simple Approach to The Evaluation of Network Pro-

tocols,” Proc. of ACM Computer Communication Review, pp. 27:31-41, January

1997.

[27] A. Tirumala, L. Cottrell, and T. Dunigan, ”Measuring End-to-End Bandwidth

with Iperf Using Web100,” Proc. of Passive and Active Measurement Workshop,

2003.

56

VITA

Bin Qian received his B.E degree in automation from the Zhejiang University (ZJU),

Hangzhou, China in 2007 and his M.S. in computer enginnering from Texas A&M

University, College Station, Texas, in 2011. His research interests are in the areas of

networking congestion protocols and multimeida networking. He has been a recipient

of the Scholarship for Merits Students from the ZJU, Hangzhou, China during 2003-

2006 and Industry Huawei Scholarship sponsored by Huawei Inc., China in 2008. Prior

to arriving at Texas A&M University, he studied in the postgradaute program in the

University of Science and Technology of China during 2007-2009. He can be contacted

at the following address : Department of Electrical and Computer Engineering, Texas

A&M University, 331B WERC, College Station, TX 77843-3118.

The typist for this thesis was Bin Qian.

