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ABSTRACT

Two Essays in Asset-Pricing. (August 2011)

Alexey Petkevich, B.A., Belarusian State University; M.S., Texas A&M University

Co-Chairs of Advisory Committee: Dr. Arvind Mahajan
Dr. Sorin Sorescu

Past research documents a positive link between momentum and firm-level default

risk, yet this anomaly is not connected to default risk at the macro level. Namely,

there is no documented momentum during recessions, when default is higher on av-

erage. In the first essay, “Momentum and Aggregate Default Risk,” we attempt to

resolve this puzzle by analyzing momentum profits over time, conditional on both

business cycles and unexpected changes in aggregate default risk. First, we show that

momentum is driven by shocks to aggregate default, rather than general economic

conditions such as expansions and recessions. Using the Fama and MacBeth proce-

dure, we find that a conditional default shock factor is priced and can explain a large

portion of the total momentum returns. Second, we provide a risk-based explana-

tion for this anomaly by linking the returns of momentum portfolios to shareholder

recovery during financial distress. We find that losers have higher recovery (i.e.,

shareholders have high bargaining power) on average, and, as a result, have rela-

tively lower risk in high default states of the world. Therefore, loser stocks have a

lower risk premium and lower expected returns in worsening aggregate default con-

ditions, leading to the observed momentum. This effect is more pronounced among

stocks of firms with low credit ratings. Our results help to reconcile the seemingly

contradictory evidence documented by previous studies and offer a rational explana-

tion for the momentum anomaly.

In the second essay, “Sources of Momentum in Bonds,” we study the relationship

between momentum in bond returns and aggregate default. We document that
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momentum in corporate bonds occurs mainly during periods of high default shocks

and is driven by losers. Supporting this result, we find that conditional default risk is

priced in the cross-section of corporate bond portfolios. Motivated by these findings,

we develop a theoretical model connecting bond momentum returns to the ability

of bondholders to recover value in financial distress. Specifically, we find that losers

have relatively higher recovery potential and, therefore, become less risky when high

default shocks occur. Thus, losers have lower expected returns in high default shocks,

leading to the observed conditional momentum. Further, US government bonds, with

default risk approaching zero, feature no momentum, however this anomaly prevails

in sovereign bonds with positive default risk, consistent with our main results.
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1. INTRODUCTION

In this dissertation we examine the momentum anomaly in the equity and bond

markets. In the first essay, “Momentum and Aggregate Default Risk,” we link mo-

mentum to aggregate default. Past research documents a positive link between mo-

mentum and firm-level default, yet momentum is not connected to default at the

macro-level. There is no documented momentum during recessions, when the firm-

level default is higher on average. We attempt to resolve this puzzle by examining

momentum profits over time, conditional on both business cycles and unexpected

changes in aggregate default risk. First, we document that momentum is driven by

shocks to aggregate default, rather than general economic states such as expansions

and recessions. According to our results a conditional default shock factor is priced

and can explain a large portion of the total momentum returns. In particular, we

show that momentum produces 1.93% per month during high default shocks and

-0.64% per month during low default shocks. Using the Fama and MacBeth (1973)

procedure, we find that the conditional default factor is priced can explain 89% of

this difference. Moreover, our tests indicate that the conditional default premium

remains significant after controlling for exposure to other asset-pricing factors such

as size, value and industrial production growth. Second, we provide a risk-based ex-

planation for momentum by linking the returns on momentum portfolios to potential

shareholder recovery during financial distress. We find that the shareholders of firms

categorized as losers have higher bargaining power on average, and, as a result, have

relatively lower risk in high default states of the world. Therefore, losers have a lower

risk premium and expected returns in worsening aggregate default conditions, lead-

ing to observed momentum returns. This effect is more pronounced among stocks

This dissertation follows the style of The Journal of Finance.
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of firms with low credit ratings. Moreover, we provide evidence consistent with re-

versal: we show that the conditional default loadings between winners and losers

converge one year after portfolio formation, potentially explaining the observed re-

versal effect. Finally, we document that the shareholder recovery of winners (losers)

increases (decreases) after portfolio formation yielding a relatively lower (higher)

risk and, therefore, lower (higher) expected returns. Our results help to reconcile

the seemingly contradictory evidence documented by previous studies and offer a

rational explanation for the momentum anomaly.

In the second essay, “Sources of Momentum in Bonds,” we ask whether momen-

tum exists in the corporate bond market and attempt to identify major determinants

of this anomaly. We document that momentum in corporate bonds occurs mainly

during periods of high default shocks and is driven by losers. We then document

that conditional default risk is priced in the cross-section of corporate bond portfo-

lios. Motivated by these findings, we develop a theoretical model connecting bond

momentum returns to the ability of bondholders to recover value in financial dis-

tress. Specifically, we find that losers have relatively higher recovery potential and,

therefore, become less risky when high default shocks occur. Thus, losers have lower

expected returns during high default shocks, leading to the observed conditional mo-

mentum. Further, US government bonds, with default risk approaching zero, feature

no momentum; however, this anomaly prevails in sovereign bonds with positive de-

fault risk, consistent with our main results. Finally, we present evidence suggesting

that reversal also exists in bonds and it takes approximately 20 months to offset

cumulative momentum profits.

Overall, we document that momentum in both equity and bond markets is driven

by aggregate default shocks. According to our results, macro-level default is also

priced in both markets and can explain a large portion of momentum profits. Fi-

nally, we document that shareholder (bondholder) recovery can affect equity (bonds)

returns.
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2. MOMENTUM AND AGGREGATE DEFAULT RISK

Avramov, Chordia, Jostova, and Philipov (2011) find that the momentum strat-

egy is profitable only among stocks with high probability of financial distress. This

suggests that momentum profits should be higher during recessions when default

risk is expected to be high. However, Chordia and Shivakumar (2002) document

that momentum profits are mainly concentrated in periods of economic expansions.

In this paper, we attempt to resolve this seeming disagreement between the cross-

sectional and time-series findings on momentum profitability. Specifically, we show

that in the time-series, momentum profits are mainly observed in periods of high

shocks to aggregate default, even after controlling for the general state of the econ-

omy. Further, we show that high momentum profits during periods of high default

shocks are driven by the low expected returns of losers. Losers are stocks with high

shareholder recovery potential in default situations, and therefore, they have lower

risk and lower expected returns than winners.

After confirming Chordia and Shivakumar (2002) result that momentum is more

pronounced during periods of expansion rather than recession, we document that

the returns to momentum are concentrated in periods of high default shocks, both

during expansions and recessions. A trading strategy based on buying recent winners

and selling recent losers produces 1.93% per month during high default shocks and

-0.64% per month during low default shocks. Results from a double sort on business

cycles and shocks to aggregate default show that momentum profits are nonexistent

or negative during periods of low default shocks, and are positive during periods of

high default shocks, irrespective of the economic state. This suggests that momentum

is not driven by the general state of the economy, but instead by the state of aggregate

default.

Motivated by the above finding, we construct a conditional default shock factor

and examine its pricing in the cross-section of momentum portfolios. The conditional
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default shock factor takes the value of the default factor during periods of high default

shocks, and zero otherwise. In particular, it is designed to capture the additional

impact of default on returns during periods of increasing aggregate default. Our asset

pricing tests show that the premium on the conditional default factor is negative and

significant, controlling for the market return, HML, SMB, and industrial production

growth. We further document that losers (winners) have positive (negative) exposure

to the conditional default factor. The conditional default premium multiplied by the

difference in exposure to this factor between winners and losers explains up to 89%

the difference between momentum profits in high and low aggregate default states.

Next we examine why the risk exposure of winners to the conditional default fac-

tor differs from that of losers. Garlappi, Shu, and Yan (2008) and Garlappi and Yan

(2011) argue that shareholders of certain firms can extract rent using their bargaining

power when the firm cannot meet its financial obligations. Further, shareholders with

a better ability to recover a portion of the residual firm value face relatively lower

risk as the probability of default increases. Similarly, shareholders with a lower or no

ability to recover residual firm value face relatively higher risk when bankruptcy risk

increases. As a result, firms with high shareholder recovery potential should have

lower expected returns than low recovery firms. If the conditional default factor is

a common factor capturing firm-level probability of default, then its loadings should

be high among stocks with high recovery potential and low among low recovery

stocks. If losers in general have high shareholder recovery relative to winners, their

shareholders would face a relatively lower risk as default increases and, thus, would

command relatively lower expected returns during periods of high default shocks.

To examine the efficacy of this argument to explain momentum, we follow Gar-

lappi, Shu, and Yan (2008) and Garlappi and Yan (2011) by using the firm’s tangi-

bility (receivables, inventory, capital and cash holdings scaled by total book assets),

the Herfindahl index (the concentration of industry sales), and the ratio of R&D

expenditures as proxies for shareholder recovery. Firms with highly tangible assets
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can be more easily liquidated in case of a bankruptcy, while liquidation may lead

to a greater loss in value for firms with more intangible assets. When firms lack

tangible assets to liquidate, it could be more beneficial for creditors to restructure

the debt and other obligations rather than liquidating the firm. Therefore, firms

with mainly intangible assets are less likely to be liquidated, giving shareholders a

strong bargaining position and allowing them to extract more value in distress nego-

tiations due to the decreased chance of outright liquidation. The firm’s Herfindahl

index provides a measure of the specificity of the firm’s assets, which will impact the

market for the firm’s assets. Because firms with highly specific assets may also face

higher liquidation costs in default, such firms are relatively more valuable as going

concerns, giving shareholders higher bargaining power. Finally, we use the ratio of

R&D expenditures to total book assets as a proxy for bargaining power. Again, high

R&D firms are more difficult to liquidate due to high potential growth options and

product specialization. In each case, shareholders with relatively higher bargaining

power or recovery potential will have greater ability to avoid liquidation and recover

value in financial distress. Therefore, an increase in aggregate default should lead

to lower risk and expected equity returns for firms with high shareholder recovery

potential. Note that commonly accepted measures of firm-level default do not take

into account the potential effect of shareholder bargaining power. Between two firms

with the same credit rating, the one with higher bargaining power is less likely to be

liquidated, ceteris paribus. Given the accepted terminology, we have to emphasize

the difference between default and liquidation. The second term is more general and

should include the bargaining potential of the firm’s shareholders.

Using these three measures, we show that losers have lower tangibility and there-

fore, they are stocks with high shareholder bargaining power. Thus, losers should

have relatively lower expected returns during periods of high aggregate default shocks.

As noted earlier, the low expected return of losers in times of high default drives the

profitability of the momentum strategy during these periods. Moreover, we pro-
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vide evidence suggesting that the shareholder recovery of winners (losers) increases

(decreases) after portfolio formation yielding a relatively lower (higher) risk and,

therefore, lower (higher) expected returns. Similarly, the spread in conditional de-

fault loadings between winners and losers disappears approximately one year after

portfolio formation. These results are in-line with the findings of Jegadeesh and Tit-

man (2001) that winners only temporarily outperform losers. Further, we uncover

the driving forces behind the dynamics of shareholder recovery. According to our re-

sults, shareholder bargaining power is driven mostly by the cash holding of the firm.

One of the possible explanations of this finding is that poor market performance of

losers affects their ability to raise cash. Since the poor performance of loser before

portfolio formation might affect their ability to raise cash, losers are stocks with low

tangibility at portfolio formation.

Finally, we analyze the subsample of firms with S&P debt ratings, following

Avramov, Chordia, Jostova, and Philipov (2011), and confirm that momentum does

not exist among high investment grade firms. It is primarily concentrated in the

speculative grade group, but only during periods of high aggregate default shocks

(4.33% per month). Consistent with our overall results, momentum within this subset

is driven by shocks to aggregate default. The momentum strategy during periods of

low default shocks is not profitable and this result holds for all firms.

Ever since Jegadeesh and Titman (1993) documented the momentum effect,1 the

most widely considered explanation for momentum profits has been behavioral over-

reaction or underreaction to firm-specific information.2 Several papers look for risk-

1Moskowitz and Grinblatt (1999) and Lewellen (2002) show that momentum exists in industry, size
and book-to-market portfolios, respectively. Jegadeesh and Titman (2001) document that momen-
tum persists in the period after 1993. Rouwenhorst (1998) documents momentum internationally.

2Barberis, Shleifer, and Vishny (1998), Daniel, Hirshleifer, and Subrahmanyam (1998), and Hong
and Stein (1999) analyze the overreaction or underreaction explanation for momentum in the con-
text of different psychological biases such as conservatism, self-attributive overconfidence, and slow
information diffusion.



7

based evidence to explain momentum profits but are unable to document convincing

results.3 Some papers document significant relation between risk and momentum.4

These risk-based studies focus primarily on one aspect of the momentum anomaly,

i.e., the difference in unconditional expected returns between winners and losers.

However, a more convincing explanation for the existence of momentum profits has to

incorporate other aspects of this anomaly, which have been previously documented.

We extend this literature by examining one additional aspect of momentum related

to its time-series behavior. Our study suggests that the expected returns of winners

and losers change over time because of changing default conditions.

We contribute to the momentum literature on two dimensions. Avramov, Chor-

dia, Jostova, and Philipov (2011) establish a link between credit risk and momentum

at the firm level. First, we extend this analysis to the macro level by documenting

that momentum returns are related to aggregate economy-wide default risk. Using

historical information for the estimation of unexpected shocks to default, we fur-

ther show that momentum profits are mainly concentrated during periods of positive

shocks to aggregate default. To our knowledge, aggregate default shocks have not

been studied before in the context of the momentum anomaly. Second, at the firm

level, we link momentum to firm fundamentals related to shareholder bargaining

power during financial distress. In doing so, we provide a rational explanation of

3Fama and French (1996) show that their three-factor model cannot explain momentum. Grundy
and Martin (2001) and Avramov and Chordia (2006) find that controlling for time-varying exposures
to common risk factors does not affect momentum profits. Griffin, Ji, and Martin (2003) show that
the Chen, Roll, and Ross (1986) model does not explain momentum either.

4Pástor and Stambaugh (2003) document that liquidity risk accounts for half of momentum profits.
Sadka (2006) finds that shocks to variable component of liquidity are priced in the cross-section of
momentum portfolios. Bansal, Dittmar, and Lundblad (2005) show a relation between consumption
risk and momentum portfolios. Ahn, Conrad, and Dittmar (2003) show that a nonparametric risk
adjustment can account for roughly half of momentum profits. Liu and Zhang (2008) show that
winners have higher loadings than losers on the growth rate of industrial production. Chen and
Zhang (2009) document that winner-minus-loser portfolios have positive exposures to a low-minus-
high investment factor.
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the momentum anomaly based on shareholder recovery and time-varying exposure

to aggregate default risk. Overall, we provide further evidence that the existence

of momentum is consistent with a risk-based explanation. Our results suggest that

a large portion of momentum profits can be explained by exposure to conditional

default.

2.1 Momentum and Aggregate Default Shocks

2.1.1 Data and Portfolio Construction

We obtain stock returns, number of shares outstanding, and prices from the

Center for Research in Security Prices (CRSP) monthly file. The sample is comprised

of all stocks traded on AMEX/NYSE/NASDAQ from January 1960 to December

2009. We exclude stocks that are priced below $1, foreign stocks, and American

Depositary Receipts (ADR).

We follow the methodology introduced by Jegadeesh and Titman (1993) and

sort stocks into deciles based on their cumulative performance over months t − 6

through t− 1. We skip a month after the formation period since it is not uncommon

to observe a short-term return reversal. The momentum portfolios are formed by

equally weighting firms in each of the deciles. The top decile represents winners and

the bottom decile consists of losers. We form momentum portfolios every month and

hold them for the next six months (referred to as the 6-1-6 strategy).

Table 2.1 presents the average monthly returns and other descriptive statistics

for equally-weighted momentum portfolios over the period January 1960 to Decem-

ber 2009. Portfolio 1 and portfolio 10 are comprised of loser and winner stocks,

respectively. Basic descriptive statistics, such as median, standard deviation, and

percentiles are presented in the corresponding columns.

Table 2.1 shows that winners outperform losers by 0.79% per month which is

consistent with previous studies. The distribution of losers tends to be flatter than



9

Table 2.1
Summary Statistics of Equity Momentum.

This table presents descriptive statistics for monthly returns of equally-weighted momentum portfolios over the period
1960 - 2009. The momentum portfolios are based on the 6-1-6 strategy. W and L are comprised of winners and
losers, respectively. The momentum strategy is represented by portfolio W-L.

Portfolios Mean Std. 5% 25% Median 75% 95%

L 0.95% 9.65% -13.10% -4.02% 0.63% 4.83% 16.39%

2 0.91% 7.13% -9.84% -2.87% 0.83% 4.37% 11.38%

3 1.01% 6.03% -8.86% -2.23% 1.04% 3.95% 10.09%

4 1.11% 5.38% -7.74% -1.62% 1.39% 3.77% 9.33%

5 1.16% 4.99% -7.04% -1.36% 1.40% 3.65% 8.52%

6 1.21% 4.77% -6.54% -1.29% 1.51% 3.66% 8.27%

7 1.27% 4.77% -6.46% -1.26% 1.67% 4.01% 8.15%

8 1.35% 4.97% -6.72% -1.27% 1.76% 4.41% 8.37%

9 1.47% 5.51% -7.59% -1.36% 1.79% 4.93% 9.24%

W 1.74% 6.81% -9.66% -2.12% 2.15% 5.84% 11.25%

W - L 0.79% 6.35% -9.02% -0.98% 1.29% 3.36% 8.32%
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that of winners. The standard deviation of winners is 6.81%, while the volatility

of losers is 9.65%. The fact that losers are more volatile than winners makes their

performance differential even more puzzling.

2.1.2 Sorting on Business Cycles and Default Shocks

Previous empirical studies suggest that the momentum anomaly is primarily con-

centrated in periods of economic expansions. Chordia and Shivakumar (2002) find

that momentum is correlated with variables related to the business cycle and it is

mainly observed during expansions. Further, Stivers and Sun (2010) provide evidence

suggesting that the momentum anomaly is a pro-cyclic phenomenon. In particular,

they argue that an increase (decrease) in cross-sectional dispersion in recent stock

returns, which is likely to be associated with bad (good) times, causes the subsequent

momentum profits to decline (increase). Hence, they conclude that the momentum

premium is higher in good times.

We begin the analysis by examining whether previously documented results hold

in our sample. Specifically, we calculate the return of the momentum strategy that

buys winners and shorts losers during expansions and recessions.5 The results of

this sorting procedure are presented in Panel A of Table 2.2. Winners significantly

outperform losers during expansions. The return to the momentum strategy during

these periods is 0.85% per month and statistically different from zero. On the other

hand, momentum profits during periods of contraction are essentially zero (0.18%

with a t-statistics of 0.44).

Avramov, Chordia, Jostova, and Philipov (2011) show that the profitability of

momentum is driven by companies with high credit risk (low credit ratings). Since

5Expansions and recessions and are defined according to National Bureau of Economic Research
(NBER) recession dates.
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Table 2.2
Momentum Portfolio Returns Conditional on Business Cycles and Default Shocks.

This table documents returns on portfolios formed based upon a sorting procedure conditional on business cycles and
aggregate default shocks over the period 1960 - 2009. The returns associated with the momentum strategy (6-1-6)
based on equally-weighted portfolios are presented in the columns with t-statistics in parentheses. W and L represent
portfolios comprised of winners and losers, respectively. Momentum corresponds to the hedge portfolio (W - L). The
sample period is from 1960 to 2009. Panel A presents sorts based on expansions and recessions, Panel B contains
results from sorts based on periods of high and low default shocks, and Panel C incorporates sorts based on both
business cycles and default shocks.

W L W - L

Panel A. State of the business cycle
Expansions 2.05% 1.20% 0.85%

( 7.00) ( 3.34) ( 2.83)

Recessions -0.43% -0.61% 0.18%
( -0.52) (-0.44) (0.44)

Panel B. Default shocks
Low Default 2.75% 3.40% -0.64%

(7.58) (5.65) (-1.55)

High Default 0.62% -1.32% 1.93%
(1.79) (-2.80) (7.35)

Panel C. Default shocks and business cycles
Expansions Low Default 2.81% 3.09% -0.28%

( 7.30) ( 5.10) ( -0.63)

Expansions High Default 1.28% -0.45% 1.74%
( 2.97) (-0.97) (6.34)

Recessions Low Default 2.39% 6.14% -3.75%
( 2.18) ( 2.52) ( -2.14)

Recessions High Default -2.28% -5.04% 2.76%
( -2.10) (-3.64) (3.74)
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credit risk is likely to be important during recessions, the previous finding that

momentum is profitable in expansions presents a puzzle. In this section we attempt

to explain this apparent inconsistency. Instead of focusing on the general state of

the business cycle, we examine aggregate default shocks. Since momentum is driven

by high credit risk firms (likely to have a higher probability of default), it is natural

to examine the time series relation between momentum profits and aggregate default

risk.

We measure the aggregate default premium as the yield spread between Moody’s

CCC corporate bond index and the 10-year U.S. Treasury bond. To capture unex-

pected changes in aggregate default, we derive innovations in the default premium

as the residual from the following model:

DEFt = α0 + α1DEFt−1 + α2DEFt−2 + ξt, (2.1)

where, DEFt is default spread in month t, and unexpected shocks to default are

represented by ξt. The values of residuals above (below) median correspond to posi-

tive (negative) shocks in aggregate default. To avoid a look-ahead bias, we estimate

equation (2.1) using information up to time t − 1.6 First, we estimate model 2.1

using the pre-sample period (from January of 1954 to December of 1959). Then we

add one observation to the sample and estimate the model to obtain the value of the

residual in January of 1960. We continue this procedure until residuals are estimated

for every observation of the time-series. By implementing this approach the residuals

at time t are conditional on information known from January 1954 to t− 1.

We argue that using shocks rather than levels of the default spread is more suit-

able for capturing unexpected changes in aggregate default conditions. Figure 2.1

shows the time-series of default shocks and levels. Shaded areas of the graph corre-

6Using unadjusted shocks yields similar results.
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spond to periods of recessions as defined by NBER. This figure documents that the

default spread and recessions are fairly correlated (the correlation is approximately

30%), however, default shocks do not appear to follow the same pattern (the cor-

relation is only 5%). This suggests that default shocks potentially capture default

conditions that are less related to general economic states such as recessions and

expansions. For example, during the expansion in October of 1996 the U.S. Small

Business Administration (SBA) reported that their loan default rate was greater

than the overall national default rate. The following reform forced SBA to repur-

chase millions of dollars worth of credit, even though, about 50% of defaulted loans

were never recovered. These events affected investors’ perception of default risk and

led to an increase in the default spread by almost 3%. However, they did not affect

the economy in the long-term and, therefore, these events cannot be captured by the

recession dummy.

We use aggregate default shocks to split the sample in two states of nature: high

default shock periods and low default shock periods. According to our results default

shocks are evenly split and recessions take approximately 20% of the total sample.

We then estimate momentum profits for each state of aggregate default. The results

presented in Panel B of Table 2.2 suggest that momentum is highly correlated with

shocks to aggregate default. The return to the momentum strategy is on average

1.93% per month during high default periods, with a t-statistics of 7.35. On the other

hand, momentum returns are close to zero during periods of low default shocks.

Since the correlation between the NBER recession dummy and shocks to aggre-

gate default is not perfect (it is only 5% in our sample), the relation between mo-

mentum profitability and aggregate default that we document does not contradict

previous findings. We use independent sorts to separate the sample into recessions

and expansions and positive and negative shocks to aggregate default. The results of

this procedure are presented in Panel C of Table 2.2. Clearly, default shocks occur

during expansions as well as during contractions. Panel C of Table 2.2 documents
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Fig. 2.1. Default Spread and Default Shocks.

This figure shows the time-series of default shocks as defined by residuals of (2.1) and the yield spread between
Moody’s CCC corporate bond index and the 10-year Treasury bond. Shaded areas of the graph correspond to
periods of recessions as defined by NBER.
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that momentum profitability is concentrated during periods of high default shocks

irrespective of the state of the business cycle. The average return to the momentum

strategy during high default shocks is 1.74% per month in expansions and 2.76% in

recessions. Both of them are statistically significant. In contrast, there is virtually no

momentum when aggregate default decreases in good times and there is negative mo-

mentum when aggregate default decreases in bad times (-3.75% per month). These

results reveal that poor momentum performance during recessions (documented in

Panel A, as well as by previous research) can be explained by the fact that positive

momentum in high default states (2.76%) is offset by negative momentum returns

during low default states (-3.76%).

In summary, the results thus far indicate that momentum profits are pronounced

in periods of high default shocks. Without conditioning on aggregate default shocks,

it is possible to erroneously conclude that momentum is primarily concentrated in

periods of economic expansions. However, conditioning on aggregate default shocks,

we find that momentum profitability is related to states of high default. This result

is new to the best of our knowledge and has important implications for explaining the

momentum anomaly. It is in line with the observation that momentum profitability

is concentrated among stocks that are likely to be more sensitive to aggregate default

conditions (stocks of low credit rating firms). Moreover, the relation between mo-

mentum and positive shocks to aggregate default that we uncover reveals important

time series properties of momentum returns.

In the next section we examine whether aggregate default has the ability to

explain the cross-sectional behavior of momentum portfolios. In other words, we

want to answer the question: do winners and losers have different exposures to high

unexpected default states and furthermore, are high shocks to default priced in the

cross-section of momentum portfolios?
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2.1.3 Conditional Default Shocks

We start with a general asset-pricing model of the form:

E[ri] = γ0 + β′1γi, (2.2)

where, E[ri] represents the expected excess return on asset i, γi is a vector of factor

prices of risk, β′1 is a vector of factor loadings, and γ0 is a constant. For parsimony, we

initially consider two risk factors: the market return and unexpected default shocks.

Since our empirical results imply that the relation between momentum and unex-

pected default depends on the nature of the default shock, we further model aggregate

default as a scaled factor. We scale only the default factor and, therefore, allow the

default betas of different assets to vary across the two different default states, i.e.,

(high (positive) default shocks and low (negative) default shocks). Specifically, we

introduce a conditional default factor:7

Cξt = Itξt, (2.3)

where ξt denotes a non-traded default factor measured by default shock at time t (the

residual from (2.1), and It is an indicator function that equals 1 if the economy is in

a period of high default shock and 0 otherwise.8 Therefore, the conditional default

variable takes a non-zero value only during periods of positive default shocks.

The return-generating process can be written as:

Re
i,t = βi + βMKTRF

i MKTRFt + βDEFi ξt + βCDEFi Cξt + εi,t, (2.4)

7Watanabe and Watanabe (2011) apply a similar approach for the analysis of time-varying liquidity.

8The indicator function is estimated using the cumulative recursive procedure explained in section
2.1.2
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where, MKTRFt is the excess return of the CRSP value-weighted portfolio. Given

the previous evidence that momentum profits only occur during states of high un-

expected default, we are particularly interested in the βCDEFi coefficients of winners

and losers. The βCDEFi coefficient measures the beta spread for each asset between

the two states of aggregate default. Therefore, the default beta of an asset during

low default shock periods is βDEFi , and its default beta during high default shock

periods is (βDEFi + βCDEFi ).

We follow the Fama and MacBeth (1973) two-pass procedure to estimate the

factor risk premia in equation (2.4). We use the full sample from 1960 to 2009 in the

first-pass beta estimation. We do not use a rolling beta approach since the default

beta is already state-dependent. Since the betas are generated regressors, we use a

standard error correction proposed by Shanken (1992) to account for the errors-in-

variables problem in the second stage of Fama-MacBeth. In order to estimate the

factor risk premia in equation (2.4), we use 30 test assets. These assets include 10

momentum portfolios, 10 size portfolios, and 10 book-to-market portfolios.9

Table 2.3 presents the loadings of the momentum portfolios with respect to

the market return (βMKTRF ), unexpected default (βDEF ), and conditional default

(βCDEF ). According to the results presented in the table, the loser portfolio has a

negative loading on default (-3.83) and a positive conditional default loading (2.70).

Therefore, the loser portfolio loading in high default states is -1.13. The winner port-

folio has a loading of -0.09 on default and a loading of -0.47 on conditional default.

Therefore, the winner portfolio loading in high default states is -0.56. The spread

between the winners’ and losers’ loadings on conditional default is significant with a

t-statistic of -2.38.

910 size and 10 book-to-market portfolios are obtained from Kenneth R. French’s web site. Liu and
Zhang (2008) also uses 10 size, 10 book-to-market, and 10 momentum portfolios for momentum
analysis. Adding 10 industry portfolios to the sample will yield similar results.
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Table 2.3
Aggregate Default Loadings.

This table presents loadings of each of the 10 momentum portfolios on the market (MKTRF), default (DEF) and
conditional default factors (CDEF measured by the product of DEF and I, where I is an indicator function which
equals to 1 if the economy is in period of high default shock (above median) and 0 otherwise). The equally-weighted
portfolios momentum portfolios are based on the 6-1-6 momentum strategy. W and L represent the portfolios
comprised of winners and losers, respectively. Momentum corresponds to the hedge portfolio (W - L). The sample
period is from 1960 to 2009. The loadings are estimated from the following model - Re

i,t = βi+βMKTRF
i MKTRFt+

βDEF
i ξt + βCDEF

i Cξt + εi,t. The loadings on the market βMKTRF , default shocks βDEF and conditional default

shocks βCDEF are estimated for the returns of each of the 10 momentum portfolios. The t-statistics from the
regressions are based on Huber-White robust standard errors.

Portfolio βMKTRF t-stat βDEF t-stat βCDEF t-stat

L 1.36 19.03 -3.83 -3.14 2.70 1.96
2 1.17 23.94 -2.04 -2.90 1.13 1.41
3 1.06 25.95 -1.30 -2.96 0.59 1.17
4 0.99 27.08 -0.85 -3.07 0.29 0.87
5 0.94 27.81 -0.61 -3.13 0.15 0.60
6 0.91 27.32 -0.46 -3.11 0.08 0.41
7 0.92 27.67 -0.33 -2.59 -0.04 -0.22
8 0.96 28.02 -0.18 -1.38 -0.20 -1.10
9 1.05 29.36 -0.07 -0.46 -0.38 -1.87

W 1.23 28.41 -0.09 -0.38 -0.47 -1.88

W - L -0.13 -1.73 3.75 3.19 -3.18 -2.38
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Untabulated results show that the unconditional default betas of losers and win-

ners are both negative (-2.40 and -0.33, respectively), and the difference is statisti-

cally significant. Therefore, losers (winners) do better (worse) in states of high default

than their unconditional default betas would suggest. This implies that losers might

have a hedging ability during states of high unexpected default, controlling for their

market betas. Table 2.3 reveals the familiar U-shape pattern in the market betas

of momentum portfolios. This pattern suggests that exposure to the market return

alone is not able to capture the momentum anomaly.

The results so far indicate that losers perform better than the CAPM model

(augmented with unconditional default shocks) predicts in periods of high unexpected

default. In contrast, winners perform worse than the CAPM model (augmented with

unconditional default shocks) predicts in high default states. This suggests that losers

might offer lower expected returns than winners in high default states since they offer

insurance against such states. To examine this possibility in more detail, we need to

estimate the price of risk for conditional default.

We estimate factor prices of risk in the second stage of the Fama-MacBeth pro-

cedure using 30 portfolios sorted on momentum, size, and book-to-market. The size

and book-to-market portfolios are necessary to create a larger cross-section of test

assets. Table 2.4 reports the estimates of the prices of risk and their corresponding

t-statistics, adjusted for errors-in-variables. Model 1 corresponds to the CAPM. The

market risk premium is not significant which is consistent with previous empirical

findings. Model 2 augments the CAPM with the unexpected default factor, and the

results reveal that the default factor is not priced. Model 3 is our main specifica-

tion that introduces the conditional default factor CDEF ; it has a negative and

significant premium.

To examine the economic significance of the conditional default premium we

compare the actual difference in momentum profits during high and low default

states to the expected difference. As shown in Table 2.2, the momentum profit in
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Table 2.4
Cross-sectional Analysis of Time-varying Aggregate Default Shocks.

This table presents estimated monthly premiums based on the Fama-MacBeth regressions and using 30 portfolios
sorted on momentum, size and book-to-market. MKTRF is the excess return on the market, DEF is aggregate
default shocks, CDEF is the conditional aggregate default shocks measured by the product of DEF and I, where
I is an indicator function which equals to 1 if the economy is in period of high default shock (above median) and 0
otherwise. T-statistics based on the Shanken (1992) method are reported in parentheses below. The sample period
is from 1960 to 2009.

MODEL (1) MODEL (2) MODEL (3)

MKTRF 0.0010 0.0014 0.0027
(0.24) (0.40) (0.54)

DEF 0.0001 -0.0043
(0.05) (-1.83)

CDEF -0.0072
(-2.70)

CONST 0.0011 0.0051 0.0028
(1.42) (1.80) (0.59)

Adj.R2 0.24 0.39 0.58
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high default states is 1.93% and -0.64% in low default states. The difference between

the two is 2.57%. The expected difference in momentum profits between high and

low default states equals the conditional default premium (-0.0072, Model 3 of Table

2.4) multiplied by the spread in conditional default betas between winners and losers

(-3.18, Table 2.3), i.e., 2.29%. Therefore, conditional default exposure of winners

and losers explains 89% of the difference between momentum profitability in high

and low default states.

Interestingly, the premium on unexpected default in low default states is also

negative and marginally significant. As shown previously, losers have high expected

returns in states of low default shocks. This observation is in line with their loadings

on this factor. In the next section we explore one possible explanation for the hedging

ability of losers in periods of high unexpected default.

2.2 Financial Distress, Shareholder Bargaining Power, and Momentum

We start with the observation that losers perform better than predicted by the

CAPM during high unexpected default shocks. In addition, losers, by definition,

experience a series of price declines before portfolio formation and, therefore, they

are likely to be financially distressed and closer to default. The question is: why do

stocks with a high probability of default do better than expected when the aggregate

risk of defaulting increases? We rely on a model by Garlappi and Yan (2011) to

explore this.

Garlappi and Yan (2011) argue that shareholders have an ability to recover a part

of the residual firm value when the firm is on the verge of bankruptcy. However, the

possibility of shareholder recovery varies significantly based on shareholder bargain-

ing power that depends on characteristics of the firms. The authors demonstrate that

the expected equity returns of high bargaining power firms decrease as bankruptcy

risk increases, because the shareholders have a strong bargaining position and, there-

fore, lower risk when the firm is in financial distress. Therefore, if the probability of
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financial distress should increase, the shareholders with high bargaining power will

relatively benefit in this economic environment, because of high recovery possibility.

On the other hand, the shareholders of firms with low recovery potential will have

a weak bargaining position in distress negotiations. Therefore, if the probability of

financial distress increases, the equity of these types of firms will become riskier and

generate higher expected returns.

We hypothesize that losers are high bankruptcy risk and high shareholder recovery

stocks. Then, they possibly have low expected returns in high default states because

their shareholders do not require additional premium for holding equity in high

default states of the world. In the next section we examine whether losers indeed

posses these characteristics.

2.2.1 Firm-level Default Risk

We use two measures to capture financial distress risk at the firm level. The first

proxy is based on an option-pricing measure proposed by Bharath and Shumway

(2008). It is essentially an extension of the Merton (1974) model that incorporates

reasonable assumptions to simplify the estimation process. Bharath and Shumway

(2008) demonstrate that this modified measure of financial distress performs reason-

ably well. One of the advantages of using this approach is that it allows a simplified

methodology that captures the firm-specific probability of bankruptcy. The major

assumptions underlying this measure are that 1) the market value of debt is equal

to its face value, 2) the volatility of debt is a function of stock volatility, and 3) the

expected return is equal to the stock return from the previous period.

Then, if E and F represent the market value of equity and the face value of debt,

respectively, the “naive” distance to default measure can be defined as:

DDnaive =
ln[(E + F )/F ] + (rit−1 − 0.5σ2

V )T

σV
√
T

, (2.5)
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where, σV is the standard deviation of the firm’s value and T is the estimation period.

The naive probability of default is

πnaive = N(−DDnaive). (2.6)

The distance to default is based on the assumption that equity is a call option on the

firm value with a strike price equal to the value of the firm’s debt. This procedure

estimates the probability of debt value being higher than the fundamental value of

the firm at time T , or the probability that the “option” is out-of-money (this is why

DDnaive is negative in (3.17)). In other words, this estimates the probability that

the equity “option” on the firm is out-of-the-money, and the equity holders choose

to let the option expire, that is, let the firm default on its obligations.

However, the naive probability of default incorporates the market value of the

firm, which is related to the recent performance of the firm’s equity and, therefore,

momentum returns. To avoid this potential problem, we also introduce another

measure of individual distress based on the modified Altman Z-score. This measure

incorporates financial statements data and is not affected by market value of eq-

uity. We follow Graham, Lemmon, and Schallheim (1998) and estimate the modified

Altman Z-score as:

Z-score =
1.2×WC + 1.4×RE + 3.3× EBIT + SALES

TA
, (2.7)

where, WC, RE, EBIT , and SALES correspond to working capital, retained earn-

ings, earnings before interest and taxes, and sales, respectively. TA represents book

value of total assets. An increase in the modified Z-score implies a decline in the

firm’s probability of bankruptcy.

We compute each of these two measures of financial distress for losers and winners

portfolios as equally-weighted averages of the individual measures for the stocks in

each portfolio. Panel A of Table 2.5 presents the results. Specifically, we find that
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the probability of default for losers is 18.03% higher than for winners. Moreover, the

modified Z-score of losers (0.61) is lower than that of winners (1.63). The difference

between winners and losers is statistically significant for both measures of financial

distress.

Table 2.5
Shareholder Bargaining Power and the Probability of Financial Dis-
tress of Momentum.

This table reports shareholder bargaining power and financial distress of the portfolios of losers (L) and winners
(W). Momentum corresponds to the hedge portfolio (W - L). Panel A shows the average shareholder bargaining
power of winners and losers using the tangibility measure (reflects the expected liquidation value of the firm) and the
Herfindahl index based on sales (represents the specificity of the assets) based a 2-digit SIC code industry, and the
ratio of R&D expenses to total assets. Panel B estimates the average probability of financial distress of winners and
losers using a modified Z-score and the probability of default based on the Merton (1974) model. The sample period
is from 1960 to 2009. The numbers in parentheses represent simple time-series t-statistics for the average monthly
measures of financial distress and shareholder bargaining power.

W L W - L

Panel A. Financial distress
Z-score 1.63 0.61 1.02

(12.74)

Probability of Default 0.88% 18.91% -18.03%
(-33.12)

Panel B. Shareholder bargaining power
Tangibility 0.58 0.56 0.02

(9.01)

Herfindahl index 9.17% 10.21% -1.04%
(-5.55)

R&D ratio 6.51% 7.87% -1.36%
(-5.67)

In summary, the above evidence is consistent with our hypothesis that losers

are more financially distressed than winners. This is not surprising given that they

have recently experienced a series of price declines. More importantly, observing

that losers have a higher probability of default explains their higher sensitivity to

worsening aggregate default conditions.
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2.2.2 Shareholder Recovery and Bargaining Power

To proxy for shareholder recovery and bargaining power Garlappi, Shu, and Yan

(2008) and Garlappi and Yan (2011) use measures capturing the costs entailed in

liquidating the firm. The shareholders of firms that are relatively difficult/costly

(easy/less costly) to liquidate will have a stronger (weaker) position in distress nego-

tiations. It is potentially more beneficial for creditors to negotiate with shareholders

to restructure the obligations of the firm that is difficult/costly to liquidate rather

than continue with the actual liquidation. We follow Garlappi, Shu, and Yan (2008)

and use three measures of shareholder recovery based on expected liquidation value

(tangibility), liquidation costs (Herfindahl index), and R&D expenses to estimate

the shareholder bargaining power in financial distress negotiations.

The first measure of shareholder recovery is based on the tangibility of the firm’s

assets. Firms with high concentration of tangible assets are potentially easier/less

costly to liquidate in case of bankruptcy. Claimants of such a firm in financial

distress have less incentive to negotiate with shareholders and restructure the firm’s

obligations. Therefore, the expected residual recovery and the bargaining power this

firm’s shareholders in distress negotiations will be relatively low.

On the other hand, firms with a high concentration of intangible assets can be

costly to liquidate. Since the expected liquidation value and, therefore, recovery by

creditors of this type of firm will be relatively low, it will make reorganization prefer-

able, giving shareholders higher bargaining power and the possibility to recover some

of the residual value of the firm. Thus, low tangibility is favorable for shareholders

when such a firm gets closer to financial distress.

Berger, Ofek, and Swary (1996) estimate that one dollar of total book value,

depending upon the type of asset, generates: 71.5 cents for receivables, 54.7 cents

for inventory, and 53.5 cents for property plant and equipment, in case of liquida-
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tion. Following Garlappi, Shu, and Yan (2008), we add cash holdings, and use their

approach to estimate the expected asset liquidation value or tangibility as

Tng =
(0.715×Receivables+ 0.547× Inventory + 0.535× PPE + Cash)

TotalAssets
. (2.8)

Low tangibility implies low expected liquidation value and higher shareholder recov-

ery and bargaining power.

The second proxy of shareholder recovery is based on asset specificity. Firms with

highly specific assets face higher liquidation costs and their creditors are more likely

to choose restructuring the obligations of the firm over liquidation. Hence, high

assets specificity provides the shareholders of the firm with a superior bargaining

position during financial distress negations.

The Herfindahl index serves as a measure of the specificity of the firm’s assets.

If the index is relatively high (low), it indicates that asset specificity is high (low)

and, therefore, it is more (less) costly to liquidate the firm. Hence, the bargaining

power and shareholder recovery increase when the value of the Herfindahl index rises.

To capture asset specificity, we follow Garlappi, Shu, and Yan (2008) and use the

Herfindahl index (HI) based on sales and two-digit SIC codes:

HIj,t =

Nj,t∑
i=1

s2
i,t, (2.9)

where, si,t represents sales of firm i at time t as a proportion of total sales of its’

industry j. Firms belonging to an industry with a higher Herfindahl index should

have higher asset specificity and, hence, higher shareholder recovery and bargaining

power.

Finally, the last measure of shareholder bargaining power is based on the ratio

of R&D expenses to book total assets. Titman and Wessels (1988) argue that R&D

is a good proxy of product specialization. Besides, Opler and Titman (1994) predict

that high R&D firms are more sensitive to financial distress and, therefore, the
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shareholders of these firms should have high bargaining power during periods of high

default shocks.

Panel B of Table 2.5 reports the shareholder recovery measures of winners and

losers. The results show that winners tend to have higher tangibility on average.

More importantly, the difference in tangibility between the two groups is statistically

significant (0.02 with a t-statistics of 9.01). Moreover, the specificity of assets as

measured by the Herfindahl index is higher for losers. Finally, we find that losers

have a higher R&D ratio (6.51% vs. 7.87% for winners and losers, respectively)

suggesting that it is more costly to liquidate of these firms. Therefore, shareholders

of losers have higher bargaining power, leading to lower risk and lower expected

returns. Overall, these results suggest that losers are likely to be firms with low

tangibility, high asset specificity, who spend relatively more on R&D, and, therefore,

they are likely to have high shareholder bargaining power.

In summary, the results in this section suggest that losers tend to have high

shareholder bargaining power and also face a higher probability of financial distress

than winners. Therefore, losers do not require additional premium in states of high

unexpected default, because their shareholders have an ability to recover some of the

residual value of the firm. These results provide a plausible explanation for the low

expected returns of losers observed in periods of high aggregate default shocks.

2.3 Analysis by Credit Risk Groups

This section presents further evidence on the relation between momentum and

aggregate default. In Section 2.3.1 we examine the relation between aggregate de-

fault shocks and momentum returns conditional on different credit risk groups. The

purpose of this analysis is to test whether high credit risk stocks, which drive the

momentum anomaly, are also sensitive to aggregate default shocks. Besides, this

test will ascertain the previous findings are not unique to our specific sample and

test-period.
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Section 2.3.2 explores how the conditional default betas of the momentum portfo-

lios change depending on credit risk. We conjecture that financially distressed firms

are sensitive to worsening default conditions and, therefore, the largest difference

between the CDEF loadings of losers and winners should be observed for high credit

risk group. Moreover, if our conjecture is correct, the conditional default factor

should not be priced for low credit risk stocks.

Section 2.3.3 reports the difference in shareholder recovery and probability of

financial distress between winners and losers for each of the credit risk groups. A

central prediction of Garlappi and Yan (2011) is an inverse U-shaped relation between

expected returns and the probability of financial distress for high recovery stocks.

That is, the expected returns of high recovery stocks should decrease in bankruptcy

risk for speculative grade firms (those with low credit rated bonds, or speculative

grade firms). This relation does not necessarily hold for stocks in the low credit risk

group (firms with high credit rated bonds, or investment grade firms). Even though

the investment grade firms have high shareholder recovery, they also have lower

probability of financial distress and, therefore, they are less likely to be affected by

shareholder recovery.

2.3.1 Momentum Profits by Credit Risk Group

Avramov, Chordia, Jostova, and Philipov (2011) show that momentum profits

exist only in stocks of low credit rated firms. We extend this study’s cross-sectional

analysis by analyzing how shocks to aggregate default affect returns of different credit

rating groups. According to our proposition, low credit rating stocks are less sensitive

to aggregate default shocks than stocks with high credit ratings. We argue that the

shareholders of speculative grade losers face relatively lower risk as aggregate default

increases (because of a higher recovery potential) and, therefore, they should have

lower expected returns. Investment grade losers are less likely to display the same

behavior, since their initial credit risk is too low to create any recovery concerns. If



29

our proposition is correct, momentum profits will be observed mainly in low credit

risk stocks during high default states and driven mostly by losers.

To analyze the momentum anomaly within different credit risk groups separately,

we obtain the S&P domestic long-term issuer credit ratings from the Compustat

Rating database. This database contains detailed information about total credit

risk of the firm, rather than of its individual bonds. Following Avramov, Chordia,

Jostova, and Philipov (2011) we assign numeric equivalents to the ratings. Higher

numbers correspond to lower ratings (for example, 1 represents AAA rating and 22

corresponds to D). We split the sample into three credit risk categories: investment

grade, middle grade, and speculative grade firms, based on the numeric values. The

time period of the sample is from 1986 to 2009.

We estimate the performance of the momentum strategy for each of the three

credit risk groups, conditional on aggregate default shocks. Table 2.6 presents the

results of this analysis. Panel A documents the profitability of the momentum strat-

egy among speculative grade firms. As predicted, momentum profits are generated

during high default periods (4.33% per month with a t-statistics of 6.83). On the

other hand, there is no significant difference between the performance of speculative

grade winners and losers during periods of low default shocks (-1.52% per month

with a t-statistics of -1.25). We emphasize that high credit risk stocks do not always

generate positive momentum profits. One explanation of this result is that these

stocks are less sensitive to default shocks in periods of low default.

Panels B and C of Table 2.6 contain the results for middle and investment grade

firms. Consistent with our predictions, momentum profits become less pronounced

for firms with higher investment grades. Specifically, Panel B documents that the

returns from the momentum strategy using middle grade firms are 1.41% and -0.90%

per month during periods of high and low default shocks, respectively. Finally, in

Panel C we observe that for investment grade stocks there is no statistically sig-

nificant difference between the returns of losers and winners in high or low default
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Table 2.6
Momentum Portfolio Returns by Credit Risk Groups.

This table presents returns of momentum portfolios formed based upon a sorting procedure using aggregate default
shocks over the period from 1985 to 2009. The returns generated using the momentum strategy (6-1-6) based on
equally-weighted portfolios are presented in three columns. W and L represent the portfolios comprised of winners
and losers, respectively. Momentum corresponds to the hedge portfolio (W - L). Panel A, Panel B and Panel C
contain results obtained from sorting based on speculative grade, middle grade and investment grade firms. The
numbers in parentheses represent simple time-series t-statistics for the average monthly returns.

W L W - L

Panel A. Speculative grade stocks
Low Default 3.27% 4.80% -1.52%

(5.54) (3.42) (-1.25)

High Default 0.60% -3.73% 4.33%
(0.89) (-4.64) (6.83)

Panel B. Middle grade stocks
Low Default 2.27% 3.17% -0.90%

(6.00) (4.21) (-1.39)

High Default 0.70% -0.71% 1.41%
(1.36) (-1.17) (3.82)

Panel C. Investment grade stocks
Low Default 1.82% 2.06% -0.24%

(4.93) (3.15) (-0.42)

High Default 0.91% 0.29% 0.62%
(2.12) (0.60) (1.44)
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shock states. It is interesting that in times of high default, winners generate similar

performance across all three credit risk groups (0.60%, 0.70% and 0.91% for specula-

tive, middle and investment grade stocks, respectively). This result provides further

evidence that losers drive the momentum anomaly.

Controlling for different credit risk groups, the results confirm our previous con-

clusion that momentum is profitable only in states of high default shocks. While

Avramov, Chordia, Jostova, and Philipov (2011) show that momentum is driven

by high credit risk stocks, our time-series analysis reveals that this is true only in

periods of high aggregate default shocks. The immediate implication of this result

is that momentum profits can be increased by focusing on speculative grade firms

but only in high default states. This implies that momentum is observed under very

specific circumstances, namely, at the intersection of cross-sectional and time-series

default.

2.3.2 Conditional Default Premium by Credit Risk Groups

This section analyzes the conditional default loadings of portfolios comprised of

stocks from each of the three credit risk groups. We hypothesize that speculative

grade stocks, which have a higher probability of financial distress, are more sensitive

to the conditional default factor than stocks of investment grade firms.

We estimate conditional default loadings of the 10 momentum portfolios in each

credit rating group using (2.4). Table 2.7 reports the results of this analysis. Columns

βCDEFSG , βCDEFMG , and βCDEFIG correspond to the conditional default loadings of specula-

tive, middle, and investment grade stocks, respectively. The results suggest that the

sensitivity of momentum portfolio returns to the conditional default factor (βCDEF )

is higher for speculative grade firms. In particular, as we move from the speculative

to the investment grade group of firms, the conditional default loadings of losers

decrease from 4.48 to 1.25, and that of winners increase from -0.87 to -0.74.
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Table 2.7
Conditional Default Loadings by Credit Risk Groups.

This table reports loadings for the returns of each of the 10 momentum portfolios on the conditional default factor
(CDEF measured by the product of DEF and I, where I is an indicator function which equals to 1 if the economy
is in period of high default shock (above median) and 0 otherwise) by credit risk groups. The equally-weighted
portfolios momentum portfolios are based on the 6-1-6 momentum strategy. W and L represent the portfolios
comprised of winners and losers, respectively. Momentum corresponds to the hedge portfolio (W - L). The sample
period is from 1985 to 2009. The conditional default loading are estimated from the following model - Re

i,t =

βi + βMKTRF
i MKTRFt + βDEF

i ξt + βCDEF
i Cξt + εi,t. β

CDEF
SG represent the loadings of the momentum portfolios

based on speculative grade firms, βCDEF
MG the loadings based on middle grade and βCDEF

IG based on investment grade
firms. The t-statistics from the regressions are based on Huber-White robust standard errors.

Portfolio βCDEF
SG t-stat βCDEF

MG t-stat βCDEF
IG t-stat

L 4.48 4.71 1.50 3.10 1.25 3.18
2 2.64 4.37 0.66 1.98 0.62 2.27
3 2.22 4.46 0.31 1.08 0.37 1.62
4 1.34 2.89 0.33 1.23 0.29 1.40
5 1.12 2.72 0.20 0.83 0.10 0.53
6 0.58 1.64 0.02 0.09 0.05 0.29
7 0.34 1.00 -0.14 -0.63 -0.12 -0.63
8 0.05 0.17 -0.30 -1.37 -0.19 -1.08
9 -0.23 -0.66 -0.48 -2.07 -0.42 -2.32

W -0.87 -2.01 -0.78 -2.80 -0.74 -3.38

W - L -5.36 -4.39 -2.28 -2.13 -1.99 -1.79
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We also estimate the CAPM model augmented with unexpected default and

conditional default variables for each credit risk category. As before, we add 10 size

and 10 book-to-market portfolios to the set of test assets in order to create a larger

cross-section for the Fama-MacBeth estimation. Table 2.8 presents the estimated

prices of risk and their corresponding t-statistics for the market, unexpected default,

and conditional default variable. The test assets used to obtain results reported in

Column 1 are 10 momentum portfolios from the speculative grade group, 10 size,

and 10 book-to-market portfolios. Similarly, the test assets used for Column 2 (3)

are 10 momentum portfolios from the middle (investment) grade group, 10 size, and

10 book-to-market portfolios.

Table 2.8
Conditional Default Premium by Credit Risk Groups.

This table presents estimated monthly premiums based on the Fama-MacBeth regressions for speculative grade,
middle grade and investment grade stocks (SG, MG, IG, respectively). MKTRF is the excess return on the market,
DEF is aggregate default shocks, CDEF is the conditional default factor measured by the product of DEF and I,
where I is an indicator function which equals to 1 if the economy is in period of high default shock (above median) and
0 otherwise. The coefficients are presented in columns for each of the three credit risk groups. The Fama-MacBeth
t-statistics, calculated based on the Shanken (1992) method, are reported in parentheses. The sample period is from
1986 to 2009.

SG MG IG

MKTRF 0.0088 0.0011 -0.0021
(1.27) (0.20) (-0.38)

DEF -0.0014 -0.0019 0.0004
(-0.57) (-0.74) (0.14)

CDEF -0.0057 -0.0029 -0.0000
(-1.83) (-1.15) (-0.01)

CONST -0.0006 0.0053 0.0087
(-0.15) (1.05) (1.80)

Adj.R2 0.65 0.37 0.35

We find the conditional default premium is negative, however, it is only significant

in the cross-section of speculative grade stocks. The magnitude and significance of

the premium are slightly lower than the ones reported previously for the whole cross-
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section of momentum portfolios. One of the possible reasons for this result is the

shorter length of the time series adopted for this test. Since credit ratings are only

available after 1986, the sample size in this case is smaller.

Overall, the results show that speculative grade losers are more sensitive to condi-

tional default than middle grade or investment grade losers. Speculative grade losers

do better in times of high default shocks than predicted by the CAPM (augmented

with unexpected default risk). Further, the conditional default factor affects specu-

lative grade winners more than middle and investment grade winners. However, the

difference in sensitivity this factor is less pronounced than the one for losers. This

finding suggests that momentum profits are driven by the short side of the strategy,

namely, the losers.

2.3.3 Shareholder Recovery and Financial Distress by Credit Risk Group

In Section 2.2 we showed that losers have higher shareholder bargaining power

and higher probability of financial distress on average. However, one could argue that

this result does not need to hold for high credit risk group that essentially drives the

profitability of momentum. Possibly, losers of investment grade and middle grade

groups may have much higher shareholder recovery and, therefore, drive the observed

results. To address this we extend our previous analysis and estimate the bargaining

power and probability of financial distress of winners and losers in each of the three

credit risk groups separately.

Table 2.9 presents the results of this analysis. Panel A shows that speculative

grade losers have a lower Z-score and a higher probability of default than winners.

In particular, Z-scores of losers is lower by 1.17 and their probability of default is

higher by 28.32% (both of them statistically different from zero). Similar results

hold for middle and investment grade stocks (Panels B and C). While the difference

between winners and losers in terms of Z-scores and probability of default decreases

as we move from speculative to investment grade portfolios, it remains statistically
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significant across all three groups. According to our previous results momentum is

driven by the difference in exposure to the conditional default factor between losers

and winners. Thus, investment grade stocks do not produce positive momentum

profits, because of the smaller difference in probability of financial distress between

winners and losers for this credit risk group.

Table 2.9
The Probability of Financial Distress by Credit Risk Group.

This table documents the financial distress of portfolios comprised of winners (W) and losers (L) for each of the three
credit risk categories. Momentum corresponds to the hedge portfolio (W - L). The average probability of financial
distress of winners and losers is measured by a modified Z-score and the probability of default is based on the Merton
(1974) model. The sample period is from 1985 to 2009. Panel A, Panel B and Panel C, present the measures of
financial distress of winers and losers for speculative grade, middle grade and investment grade stocks, respectively.
The numbers in parentheses represent simple time-series t-statistics for the average monthly measures of distress.

W L W - L

Panel A. Speculative grade stocks
Z-score 1.35 0.18 1.17

(16.05)

Probability of Default 3.74% 32.06% -28.32%
(-42.79)

Panel B. Middle grade stocks
Z-score 1.98 1.43 0.55

(14.74)

Probability of Default 0.74% 15.38% -14.64%
(-17.12)

Panel C. Investment grade stocks
Z-score 2.22 1.82 0.40

(10.02)

Probability of Default 0.49% 9.51% -9.02%
(-13.37)

Table 2.10 reports the estimates of tangibility, the Herfindahl index, and the R&D

ratio for speculative, middle grade and investment grade stocks. As before, these are

three separate measures of shareholder recovery. The table shows that losers have

higher recovery than winners across all credit risk categories. For example, the

tangibility of winners is higher than the tangibility of losers by 0.029 for speculative
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grade stocks. Also, within the same credit risk category, the Herfindahl index the

R&D ratio of losers is significantly higher than that for winners. We observe similar

results for the other two credit risk groups as well. Note, that the difference in the

R&D ratio between winners and losers becomes insignificant for investment grade

stocks.

Table 2.10
Shareholder Bargaining Power by Credit Risk Group.

This table reports the shareholder bargaining power of the portfolios of losers (L) and winners (W) for each of
the three credit risk categories. Momentum corresponds to the hedge portfolio (W - L). The average shareholder
bargaining power of winners and losers is estimated using the tangibility measure (reflects the expected liquidation
value of the firm) and the Herfindahl index based on sales (represents the specificity of the assets) within a 2-digit
SIC code industry, and the ratio of R&D expenses to total assets. The sample period is from 1985 to 2009. Panel A,
Panel B and Panel C, present the shareholder bargaining power of winners and losers for speculative grade, middle
grade and investment grade firms, respectively. The numbers in parentheses represent simple time-series t-statistics
for the average monthly measures of shareholder bargaining power.

W L W - L

Panel A. Speculative grade stocks
Tangibility 0.494 0.465 0.029

(5.71)

Herfindahl index 6.80% 7.29% -0.51%
(-3.57)

R&D ratio 4.44% 4.97% -0.57%
(-3.82)

Panel B. Mid grade stocks
Tangibility 0.470 0.450 0.020

(5.07)

Herfindahl index 6.47% 6.75% -0.28%
(-2.66)

R&D ratio 3.58% 3.87% 0.29%
(3.67)

Panel C. Investment grade stocks
Tangibility 0.475 0.453 0.022

(5.31)

Herfindahl index 5.39% 5.64% -0.25%
(-2.76)

R&D ratio 3.66% 3.76% -0.10%
(-1.54)
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In summary, our results show that losers tend to have higher shareholder recovery

and probability of financial distress across all credit risk groups. Thus, it is possible

the shareholders of losers face lower risk in high default states of nature because of

higher bargaining power. Note that the shareholders of investment grade losers do

not necessarily face lower risk due to the fact that the conditional default factor is

not priced for this credit risk category and, therefore, recovery is not likely to affect

these stocks.

In this section we obtain results based on the sample of firms which are credit

rated by S&P.10 Since these firms are a subset of our total sample, consistency of

this results with our hypotheses enhance confidence in our larger sample results.

Furthermore, these results allow us to extend the findings of Avramov, Chordia,

Jostova, and Philipov (2011) - momentum exists in high credit risk firms but only in

high default states of nature.

2.4 Time-series Evolution of Conditional Default Loadings, Shareholder Recovery,

and Financial Distress

2.4.1 Time-series Dynamics of Conditional Default Loadings

Jegadeesh and Titman (2001) and Griffin, Ji, and Martin (2003) document that

the returns to momentum strategies gradually decline and become negative roughly

one year after the portfolio formation period. This evidence implies that winners only

temporary outperform losers. Therefore, if momentum returns are consistent with a

risk-based explanation, the difference in expected returns between losers and winners

should steadily decline after the portfolio formation period. Thus, we conjecture

10Avramov, Chordia, Jostova, and Philipov (2011) results are based on this sample as well
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that the difference in investors’ risk perception between losers and winners is only

temporary.

To estimate the evolution of conditional default loadings for every month t from

January 1960 to December 2009, we calculate average returns of losers and winners

for month t + k, where k = +1, . . . ,+12. We then estimate (2.4) for portfolios of

losers and winners across calendar months and present CDEF loadings for event

month t+ k.

Figure 2.2 shows the dynamics of the CDEF loadings for winners and losers after

the formation period. During the first holding month, we observe a high and positive

CDEF loading for the loser portfolio, however loadings consistently decline over time.

Given our earlier finding that the conditional default premium is -72 basis points,

this result suggests that ceteris paribus, the expected returns of losers consistently

increase. On the other hand, the CDEF loadings of winners are negative at the

beginning of the holding period, implying that they should perform better than what

the CAPM model predicts. Then the CDEF loadings increase with time, become

positive after the sixth month, and eventually the loadings of winners and losers

converge. It appears that the CDEF loadings spread between losers and winners is

temporary which is consistent with the findings of Jegadeesh and Titman (2001) and

Griffin, Ji, and Martin (2003). Furthermore, this result provides additional support

to our risk-based explanation of the momentum anomaly.

2.4.2 Time-series Dynamics of Shareholder Recovery and Financial Distress

This section examines how shareholder recovery and financial distress evolve be-

fore and after the portfolio formation period. We document thus far that the differ-

ence in the exposure to the conditional default factor for losers and winners is driven

by shareholder recovery and financial distress. Therefore, we hypothesize that the

shareholder recovery of winners (losers) decreases (increases) before the formation

period making them relatively riskier (safer) and increases (decreases) after the for-
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Fig. 2.2. CDEF Loading of Losers and Winners Over Time.

This figure presents the dynamics of the βCDEF loadings from equation (2.4) for winners and losers after the portfolio
formation period. The equally weighted portfolios of winners and losers are based on the 6-1-6 strategy. The period
of the analysis is 1960 - 2009.
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mation period making them relatively safer (riskier). That is, momentum profits

decreases as the difference in recovery decreases over time. As a result, the expected

returns of winners (losers) should become lower (higher) over time leading to reversal.

To test this hypothesis, we adapt tangibility as a proxy for shareholder recov-

ery. A firm with a low concentration of tangible assets should have higher recovery,

because the shareholders of this firm are less sensitive by bankruptcy risk, since ex-

pected liquidation value is low (high liquidation costs). As a result, creditors can

create more value by restructuring obligations of the firm. Similarly, higher tangi-

bility represents lower shareholder recovery.

Figure 2.3 presents shareholder recovery (measured by tangibility) of the losers

and winners portfolios over a 36-month post-formation period. For every month t

from January 1960 to December 2009, we calculate average tangibility of losers and

winners for month t + k, where k = −12, . . . ,+36. We then average tangibility for

t+ k across portfolio formation months.

We confirm the findings of Jegadeesh and Titman (2001) by documenting that the

returns of losers consistently increase and the returns of winners consistently decline

after the formation period. More importantly, we document that the shareholder

recovery of winners increases (tangibility decreases) after the portfolio formation

period, leading to lower risk of financial distress and to the observed decline in

winners’ performance. At the same time, the strength of the shareholders’ bargaining

power of the loser portfolio stocks decreases after the formation period leading to

lower risk and return. Finally, we sort stocks into deciles based on the most recent

tangibility and document that buying high and selling low tangibility stocks produces

nearly 60 basis points per month, which is 76% of the total momentum performance.

Moreover, Figure 2.3 documents that the duration of the tangibility spread is about

12 months which is close to the duration of momentum.

Further, we find that the probability of default (based on Merton (1974)) follows

a similar pattern. Figure 2.4 presents the dynamics of the probability of default for
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Fig. 2.3. Tangibility of Losers and Winners Over Time.

This figure presents shareholder recovery (measured by tangibility) of the losers and winners portfolios over a 36-
month post-formation period. For every month t from January 1960 to December 2009, we calculate average tangi-
bility of losers and winners for month t + k, where k = −12, . . . ,+36. We then average tangibility for t + k across
portfolio formation months.
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Fig. 2.4. Probability of Default of Losers and Winners Over Time.

This figure presents the dynamics of the probability of default for winners and losers before and after the formation
period. For every month t from January 1960 to December 2009, we calculate average probability of default (based
on the Merton (1974) model) of losers and winners for t+ k, where k = −12, . . . ,+36. We then average probability
of default for t+ k across portfolio formation months.

winners and losers before and after the formation period. Specifically, we document

that probability of default spread between losers and winners is temporary. Winners

(losers) experience a drop (increase) in the probability of default before the formation

period and an increase (decline) afterwards.

2.4.3 Tangibility Discussion

In Section 2.2.2 we document that winners have higher tangibility of than losers.

In this section we attempt to answer the question why we observe this behavior.

Also, according to Figure 2.3, tangibility of winners (losers) increases (decreases)

before and decreases (increases) after the formation period. This result is particular
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Fig. 2.5. Cash Holdings of Losers and Winners Over Time.

This figure presents the dynamics of the cash holding component (defined as the ratio of cash holdings to total
book assets) for winners and losers before and after the formation period. For every month t from January 1960 to
December 2009, we calculate average cash holdings of losers and winners for month t+ k, where k = −12, . . . ,+36.
We then average cash holdings for t+ k across portfolio formation months.

interesting, because the structure of the real assets of the firm tends to be stable

overtime. One of the possible explanations of this result is that the cash component

is the major determinant of the “tangibility effect.” Indeed, it is much easier to

change the cash holdings of the firm rather than its plant property and equipment.

First, we hypothesize that losers have lower tangibility, because they have rel-

atively lower cash holdings. Second, we propose that losers are likely to be more

cash-constrained, than winners because of poor previous equity performance. By

definition, losers have experienced a decline in price and, therefore, market value

over the previous 6 months. Thus, it is potentially more difficult for them to raise

cash, because in periods of high default shocks their bankruptcy probability increases
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and credibility decreases. On the other hand, winners should have easier time raising

cash due to their superior market performance. Therefore, short-term default shocks

are not likely to affect their credibility. In other words, current equity performance

could affect the future cash holdings of the firm.

We examine the importance of the cash component in tangibility dynamics using

the previously described procedure. Figure 2.5 presents the dynamics of the cash

component (defined as the ratio of cash holdings to total book assets) for winners

and losers before and after portfolio formation. For every month t from January

1960 to December 2009, we calculate average cash holdings of losers and winners for

month t+k, where k = −12, . . . ,+36. We then average cash holdings for t+k across

portfolio formation months.

According to our results the cash component is a major determinant of the “tan-

gibility effect.” Figure 2.5 supports our hypothesis that losers are likely to be cash-

constrained firms. Moreover, the time-series dynamics of cash holding closely follows

the dynamics of tangibility. We document a sharp decline in the cash holdings of

losers during the portfolio formation period and an increase afterwards.11

11The dynamics of other components is similar, however less pronounced.
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We then further investigate the relation between previous equity performance

and future cash holdings. Table 2.11 presents firm fixed-effect regressions of the cash

holdings of the firm on previous stock returns. Models 1 through 7 document that

lagged returns have consistently positive coefficients. In other words, historical stock

returns can affect current cash holdings. Therefore, it is likely that poorly (well)

performing firms will have lower (higher) cash holdings in the future. This result

provides additional support to the conjecture that losers are cash-constrained firms

that are likely to have a hard time raising cash in periods of high default.

2.5 Robustness Tests

2.5.1 Controlling for Other Risk Factors

Recent studies suggest that innovations in default spread are correlated with

the Fama-French factors. Petkova (2006), for example, documents that SMB is

significantly correlated with shocks to the aggregate default spread. Furthermore,

Hwang, Min, McDonald, Kim, and Kim (2010) use the credit spread as a proxy for

shareholder limited liability and show that it is related to HML and SMB. Given

these results, a potential concern is that default shocks and the Fama-French factors

may capture the same risk exposure. To address this concern, we augment our model

in (2.4) with SMB and HML. Therefore, we examine the model of the following form

Re
i,t = βi+β

MKTRF
i MKTRFt+β

DEF
i ξt+β

CDEF
i Cξt+β

SMB
i SMBt+β

HML
i HMLt+εi,t,

(2.10)
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where, SMB and HML stand for the size and value factors, respectively.12 To estimate

factor risk premia, we follow the procedure described in Section 2.1.3 and use 30 test

assets: 10 momentum, 10 size, and 10 book-to-market portfolios.

Panel A of Table 2.12 presents the betas from the first stage of the Fama and

MacBeth (1973) estimation. We observe that in the presence of SMB and HML,

the βCDEF spread between losers and winners is still negative and significant (-

3.35 with a t-statistics of -2.49). Model 1 of Table 2.13 presents the second stage

of the Fama and MacBeth (1973) estimation. The magnitude of the conditional

default premium declines from -72 to -45 basis points, however, the factor remains

statistically significant.

Further, Liu and Zhang (2008) link the growth rate of industrial production MP13

to momentum. Specifically, they document that this factor is priced in the cross-

section of momentum portfolio returns and winners have higher MP loadings than

losers. Moreover, the spread between the MP loadings of winners and losers combined

with the size of the MP premium explain a large portion of the realized momentum

profits. We, on the other hand, use the conditional default factor (CDEF) as the

main determinant of the cross-sectional variation of momentum portfolio returns.

Since the default premium is also used as an important macroeconomic indicator,

it can be correlated with the growth rate of industrial production. Therefore, a

potential concern is that our conditional default factor may proxy for the growth

rate of industrial production. To address this concern, we extend our analysis by

augmenting the MP factor to the model (2.4)

Re
i,t = βi + βMKTRF

i MKTRFt + βDEFi ξt + βCDEFi Cξt + βMP
i MPt + εi,t, (2.11)

12The SMB and HML factors are obtained from Kenneth R. French’s web site.

13It is defined as MPt = log IPt−log IPt−1. IP is the index of industrial production and is obtained
from the Federal Reserve Bank of St. Louis.
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Table 2.12
Beta Loadings Controlling for Other Risk Factors.

Panel A of this table presents the loadings for the returns of each of the 10 momentum portfolios on the market
βMKTRF , default shocks βDEF , conditional default shocks βCDEF , SMB (βSMB) and HML (βHML) factors.
Panel B presents the same analysis, but controlling for the growth rate of industrial production (βMP ). The equally-
weighted portfolios are based on the 6-1-6 momentum strategy. W and L represent the portfolios comprised of
winners and losers, respectively. Momentum corresponds to the hedge portfolio (W - L). The sample period is from
1960 to 2009. The t-statistics from the regressions are based on Huber-White robust standard errors.

Portfolio βMKTRF t-stat βDEF t-stat βCDEF t-stat βSMB t-stat βHML t-stat

Panel A. Factor loadings controlling for SMB and HML.
L 1.15 16.01 -3.54 -3.23 2.88 2.29 1.30 9.79 0.23 1.68
2 1.04 23.74 -1.82 -2.94 1.31 1.84 0.99 12.63 0.30 3.71
3 0.98 29.74 -1.13 -2.92 0.79 1.80 0.81 12.92 0.35 5.82
4 0.93 35.83 -0.70 -3.00 0.50 1.88 0.71 13.42 0.38 7.60
5 0.89 40.23 -0.49 -2.97 0.35 1.92 0.64 13.53 0.37 8.40
6 0.87 40.88 -0.34 -2.76 0.28 2.03 0.61 14.98 0.36 9.04
7 0.86 40.74 -0.20 -2.01 0.13 1.19 0.62 17.95 0.31 8.28
8 0.88 40.91 -0.03 -0.32 -0.06 -0.49 0.67 21.08 0.25 7.32
9 0.93 45.73 0.12 1.43 -0.28 -2.36 0.79 23.94 0.16 4.83

W 0.99 33.46 0.20 1.63 -0.47 -2.54 1.01 19.10 -0.03 -0.67

W - L -0.15 -1.84 3.73 3.20 -3.35 -2.49 -0.29 -1.93 -0.26 -1.66

Portfolio βMKTRF t-stat βDEF t-stat βCDEF t-stat βMP t-stat

Panel B. Factor loadings controlling for MP.
L 1.36 18.94 -3.86 -3.16 2.76 1.99 0.18 0.21
2 1.17 23.91 -2.05 -2.91 1.15 1.43 0.15 0.25
3 1.06 25.90 -1.31 -2.97 0.62 1.22 0.20 0.41
4 0.99 27.10 -0.85 -3.05 0.29 0.85 -0.02 -0.05
5 0.94 27.83 -0.61 -3.10 0.14 0.57 -0.04 -0.10
6 0.91 27.38 -0.46 -3.04 0.07 0.32 -0.11 -0.33
7 0.92 27.74 -0.32 -2.52 -0.06 -0.32 -0.13 -0.40
8 0.96 28.07 -0.17 -1.31 -0.22 -1.18 -0.13 -0.41
9 1.05 29.38 -0.06 -0.41 -0.40 -1.93 -0.11 -0.34

W 1.20 27.93 -0.07 -0.31 -0.48 -1.87 0.03 0.08

W - L -0.15 -2.08 3.79 3.19 -3.23 -2.37 -0.15 -0.10
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where, MPt represents the growth rate of industrial production computed as in Liu

and Zhang (2008).

Panel B of Table 2.12 presents the beta loadings of the 10 momentum portfolios in

the first stage of the Fama and MacBeth (1973) procedure. Consistent with previous

results, losers (winners) have positive (negative) CDEF loadings. More importantly,

the CDEF spread between the two is statistically significant (-3.23 with t-statistics

of -2.37). Note that βMP ≈ 0.

Model 2 of Table 2.13 documents that the conditional default premium stays

negative and significant (-0.0075 with a t-statistics of -2.56) after including the MP

factor in the model. The growth rate of industrial production is no longer priced

in the cross-section of momentum portfolios. These results are robust to excluding

the market returns from the model to avoid a potential concern that MP and the

market return are correlated. Finally, in Model 3 of Table 2.13, we include both

the Fama-French and MP factors in the specification. The economic significance of

the conditional default premium is -48 basis points, and it remains significant. The

expected difference in momentum profits between high and low default states equals

the conditional default premium (-0.0048) multiplied by the spread in conditional

default betas between winners and losers (-3.36), i.e., 1.61%. As shown in Table 2.2,

the realized difference in momentum profits between high and low default states is

2.57%. Therefore, conditional default exposure for winners and losers still explains

63% of the realized momentum profits.

In summary, the results in this section suggest that shocks to default spread

contain information about the cross-section of returns which is independent of its

correlation with HML, SMB, and MP. Furthermore, it appears that the CDEF factor

has a large economic significance and captures between 62% and 89% of the difference

in momentum returns in high and low default shocks.
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Table 2.13
Conditional Default Premium Controlling for Other Risk Factors.

This table presents estimated monthly premiums based on the Fama-MacBeth regressions and using 30 portfolios
sorted on momentum, size and book-to-market. MKTRF is the excess return on the market, DEF is aggregate
default shocks, CDEF is the conditional aggregate default shocks measured by the product of DEF and I, where
I is an indicator function which equals to 1 if the economy is in period of high default shock (above median)
and 0 otherwise. SMB, HML and MP represent the size, value, and growth rate of industrial production factors,
respectively. T-statistics based on the Shanken (1992) method are reported in parentheses below. The sample period
is from 1960 to 2009.

MODEL (1) MODEL (2) MODEL (3)

MKTRF 0.0009 0.0014 0.0008
( 0.26) ( 0.29) ( 0.21)

DEF -0.0019 -0.0047 -0.0024
( -1.15) ( -1.79) ( -1.34)

CDEF -0.0045 -0.0075 -0.0048
(-2.56) (-2.56) (-2.67)

SMB 0.0026 0.0026
(2.00) (1.99)

HML 0.0027 0.0028
(2.20) (2.22)

MP -0.0006 -0.0002
(-0.48) (-0.15)

CONST 0.0042 0.0039 0.0043
(1.34) (0.83) (1.32)

Adj.R2 0.66 0.54 0.68
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2.5.2 Alternative Momentum Strategies

We have showed thus far that losers have higher loadings on the conditional de-

fault factor than winners using the 6-1-6 momentum strategy. This section presents

further evidence that this result is robust to alternative momentum strategies. Namely,

we show that our finding also hold for the strategy based on holding stocks for 12

months after the formation period (rather than 6, referred to as 6-1-12) and the

strategy based on the returns over the previous 12 months (rather than 6, referred to

as 12-1-6). Following our previous methodology, we skip a month after the formation

period for both of these strategies.

Panel A of Table 2.14 reports the CDEF loadings of momentum portfolios con-

trolling for the market and unconditional default shocks variables in equation (2.4).

The results presented in this panel reveal a familiar pattern. The loadings of losers

are positive (2.19 and 2.61 for the 6-1-12 and 12-1-6 strategies, respectively). How-

ever, they gradually decline and become negative as we move to winners (-0.02 and

-0.38 for the 6-1-12 and 12-1-6 strategies, respectively). Similarly to the previously

documented results, the difference in the loadings of winners and losers is significant

for both alternative strategies. Note that on average the 12-1-6 strategy produces

higher returns than 6-1-12. Then it is not surprising that the 12-1-6 momentum

strategy has a higher CDEF spread between winners and losers (-2.21 and -2.99 for

the 6-1-12 and 12-1-6 strategies, respectively). Our results suggest that the economic

and statistical significance of portfolios loadings on conditional default increases as

the profitability of the momentum strategy increases.

Panel B of Table 2.14 presents the estimates of the risk premium of the condi-

tional default factor from the Fama-MacBeth procedure. Again, to obtain consistent

estimates we use 30 test assets: 10 momentum (using 2 alternative momentum strate-

gies), 10 size, and 10 book-to-market portfolios. We find that the CDEF premium

does not change substantially (-64 and -67 basis points for the 6-1-12 and 12-1-6

strategies, respectively) depending on the set of momentum portfolios used for the
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estimation. Therefore, the conditional default factor is consistently priced for differ-

ent momentum specifications.

Table 2.14
Alternative Momentum Strategies.

Panel A of this table presents the loadings for the returns of each of the 10 momentum portfolios on the conditional
default factors for the 6-1-12 and 12-1-6 momentum strategies (βCDEF

6−1−12 and βCDEF
12−1−6, respectively) from the following

model - Re
i,t = βi + βMKTRF

i MKTRFt + βDEF
i ξt + βCDEF

i Cξt + εi,t. W and L represent the portfolios comprised

of winners and losers, respectively. Momentum corresponds to the hedge portfolio (W - L). The sample period is
from 1960 to 2009. The t-statistics from the regressions are based on Huber-White robust standard errors. Panel
B presents estimated monthly premiums of the conditional default factor (CDEF ) based on the Fama-MacBeth
procedure and using 30 portfolios sorted on momentum, size and book-to-market. The Fama-MacBeth t-statistics
calculated from the Shanken (1992) method.

Portfolio βCDEF
6−1−12 t-stat βCDEF

12−1−6 t-stat

Panel A. Conditional default loadings
L 2.19 2.09 2.61 2.21
2 0.87 1.46 0.99 1.55
3 0.41 1.03 0.47 1.11
4 0.20 0.67 0.24 0.77
5 0.11 0.47 0.11 0.44
6 0.08 0.39 0.02 0.10
7 0.02 0.08 0.02 0.12
8 -0.03 -0.10 -0.09 -0.36
9 -0.02 -0.07 -0.23 -0.78

W -0.02 -0.05 -0.38 -0.98

W - L -2.21 -2.86 -2.99 2.93

Panel B. Conditional default premium
CDEF -0.0064 -2.61 -0.0067 -2.67

2.6 Concluding Remarks

There are two main findings in this paper. First, we show that momentum prof-

itability is concentrated in periods of high default shocks. Specifically, losers have low

expected returns in states of high aggregate default. Since high default shocks occur

both in expansions and recessions, it is not the general state of economic conditions

that drives momentum profitability. This result is in contrast with previous studies

that document that momentum profits are more pronounced during expansions. In

addition, this finding is in line with previously documented results that momentum
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exists only among high credit risk stocks. Since high credit risk stocks are more

sensitive to high default states of nature, the time-series and cross-sectional results

on the relation between momentum and default are in line with each other.

Then we use a cross-section of momentum portfolios to test an empirical asset

pricing model that contains the market return and a conditional default shock factor.

The conditional default factor is negatively priced and has high economic significance.

Furthermore, losers have a positive conditional default loading, while winners have a

negative conditional default loading. These results suggest that losers (winners) per-

form better (worse) than the CAPM predicts during periods of high default shocks.

The combined effect of a negative conditional default premium and exposure to this

risk explains a large portion of momentum profits.

Second, we examine why the risk exposures of winners on the conditional default

factor differ from those of losers. We do this by relying on a model by Garlappi

and Yan (2011) that links the default characteristics of a firm to its shareholders’

bargaining power in bankruptcy negotiations. Garlappi and Yan (2011) argue that

shareholders with a better (worse) ability to recover a part of the residual firm value

face relatively lower (higher) risk as the probability of default increases. As a result,

firms with high shareholder recovery potential should have lower expected returns

than firms with low recovery, however, this relation should be most pronounced in

high default states. We show that losers are indeed stocks with high shareholder

recovery potential. Therefore, they require relatively lower returns during periods of

high default shocks. As noted earlier, the low expected return of losers in times of

high default drives the profitability of the momentum strategy in those times.

The results have immediate implications for the previously suggested relation

between default risk and expected returns (Vassalou and Xing (2004), Chava and

Purnanandam (2010) and Campbell, Hilscher, and Szilagyi (2008)). We argue that

shareholder recovery affects expected returns through aggregate default shocks. More

importantly, these shocks are better suited for capturing default risks because they
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are more difficult to predict by investors (by construction these shocks are unex-

pected). Therefore, investors are more likely to adjust their expectations to reflect

current economic conditions.

Overall we interpret our results as suggesting that momentum profits have an

important component related to default risk. These results are important in light of

previous studies that have been unable to document a relation between risk measures

and momentum returns. Such studies include Jegadeesh and Titman (1993), Fama

and French (1996), Grundy and Martin (2001), Griffin, Ji, and Martin (2003), and

Moskowitz (2003), among others. Our results suggest that behavioral arguments

are not necessary to explain momentum. Momentum profits are consistent with a

risk-based explanation.
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3. SOURCES OF MOMENTUM IN BONDS

In this section, we study the relation between momentum in bond returns and

aggregate default risk. We find that positive momentum profits in the corporate

bond market is primarily documented during worsening aggregate default conditions

(high default shocks), and the observed momentum profits are primarily driven by

losers. Because bankruptcy concerns increase at the firm-level during periods of high

default shocks, this is reminiscent of a conditional factor model that depends on

aggregate default risks. Indeed, we find that a conditional default factor is priced,

accounting for a large amount of the cross-sectional variation in corporate bond

portfolios. To explain this, we develop a simple theoretical model of “default-risky”

bonds with a no-arbitrage condition and show that the seemingly puzzling behav-

ior of bond momentum can be explained in a rational expectation framework. We

predict that expected bond returns will depend on default risk and the ability of

bondholders to recover firm value in default, and provide empirical support for this

proposition. Winners (losers) have relatively lower (higher) recovery potential and

therefore, become riskier (less risky) in high default states of the world. This leads

to the documented conditional momentum profits. Because our prediction is based

on “default-risky” bonds, we would only expect to find these results for bonds with

nonzero default risk. Consistent with our expectations, we find that U.S. government

bonds feature no momentum, while sovereign bonds exhibit positive momentum.

Following a standard momentum methodology (Jegadeesh and Titman (1993)),

we create momentum portfolios based on corporate bond returns. Consistent with

much of the previous literature (Khang and King (2004), Gebhardt, Hvidkjaer, and

Swaminathan (2005b)), we do not find statistically significant momentum in the

corporate bond market in general. However, in their recent work Jostova, Nikolova,

Philipov, and Stahel (2011) report that the momentum effect exists in corporate

bond returns. They find that, similar to equity momentum (Avramov, Chordia,
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Jostova, and Philipov (2011)), bond momentum is primarily driven by firms with low

credit ratings (speculative grade bonds). Further, Mahajan, Petkevich, and Petkova

(2011) show that equity momentum is strongly related to aggregate default. After

controlling for unexpected default shocks, we discover that momentum does in fact

exist for bond returns, but only when high default shocks occur. We also confirm

the finding of Jostova, Nikolova, Philipov, and Stahel (2011) that the momentum

anomaly is primarily found in corporate bonds with high credit risk. This suggests

that the impact of aggregate default on bond momentum is conditional on the state

of the economy.

Indeed, our tests indicate that the response of corporate bond prices to default

shocks varies over time in a systematic way. Specifically, to explain the performance

of the momentum portfolios of corporate bonds, we augment the model that typically

incorporates the market and term-structure premia with default and conditional

default factors (conditional on being a high default shock state). According to our

results, the conditional default loadings of bond winners (losers) is positive (negative)

implying that they should have relatively higher (lower) risk and expected returns.

Moreover, the conditional default factor is priced in the cross-section of momentum

bond portfolios and can explain a large portion of the “anomalous” performance.

Motivated by these findings and the results from a companion paper of this work

examining stock return momentum (Mahajan, Petkevich, and Petkova (2011)), we

theoretically explain bond momentum based on bondholder recovery using a simple

model of risky debt valuation with a no-arbitrage restriction. The model predicts

that bondholders’ ability to recover value in default should become more important

than the default premium during periods of high default shocks. In addition, the

model predicts that if winners (losers) are on average less (more) risky, but have lower

(higher) recovery value for bondholders. Therefore, momentum profits will prevail in

periods of high aggregate default risk, and become ambiguous in low default periods.
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Thus, this simple model provides an explanation for bond return momentum in a

rational expectation framework.

A key assumption for our theoretical explanation of bond momentum is a negative

relationship between expected bond returns and bondholder recovery. To verify this

link empirically, we follow Garlappi and Yan (2011) and proxy for recovery using es-

timates of the tangibility, the specificity of the assets held by the bond issuing firms,

and R&D expenditures. Garlappi and Yan (2011) find that shareholders have differ-

ing ability to recover residual value from the firm should the firm default on its debt

obligations depending on firm characteristics, such as the tangibility and specificity

of the particular firm’s assets. We argue that, because recovery of value through

liquidation in default constitutes a zero-sum game between bond and stock owners,

bondholders’ ability to recover value in default will vary by firm as well. Based on

Garlappi and Yan (2011), we introduce three measures of bondholder recovery: the

firm’s tangibility of assets, industry Herfindahl index, and ratio of R&D expendi-

tures to total assets. Tangibility is calculated as the ratio of inventory, equipment,

receivables and cash to the total book value of assets and represents the expected

liquidation value of the firm. Bondholders of low tangibility firms should expect

lower liquidation value in default, and thus lower ability to recover value through

liquidation. Therefore, the bondholders of low tangibility firms should face higher

risk during periods of high default shocks and require higher expected returns. On

the other hand, bondholders of high tangibility firms should have higher recovery

and, therefore, lower risk and returns. The second measure of bondholder recovery is

based on the industry’s Herfindahl index (the concentration of industry sales), rep-

resenting the specificity of the firm’s assets and, essentially, liquidation costs. High

(low) Herfindahl index firms should have relatively higher (lower) asset specificity

and, as a result, are more difficult (easier) to liquidate, yielding higher (lower) risk

and required returns. In either case, bondholders of low recovery firms should face

higher risk, especially in periods of high default shocks, and should require higher
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returns. Finally, as we discuss in detail later, the ratio of R&D expenditures to

(book) total assets represents product specialization and growth options. Again,

bondholders of high R&D firms will have lower potential recovery and, therefore,

should require a premium in periods of high aggregate default.

Using these measures of bondholder recovery, we show that bonds in the “loser”

portfolio have relatively higher recovery potential in general. As a result, these bonds

should have relatively lower risk in periods of high default shocks and, therefore, pro-

duce lower returns. We further document that winners tend to have lower recovery

on average and, thus, bondholders of these securities should face higher risk dur-

ing high default states of the world, leading to higher returns. This result supports

the prediction from our theoretical model that, in high default states of the world,

recoverability plays a key role in driving the observed momentum anomaly in the

corporate bond market. Moreover, we present evidence suggesting that in the corpo-

rate bond market the recovery premium primarily exists in high default states, and

the default premium is more pronounced during low default shocks. Taken together

these results provide a strong support to the prediction of the theoretical model.

Our interpretation of the results is based on the proposition that corporate bonds

face nonzero default risk, making bondholder recovery in default an important un-

derlying driver of momentum in bond returns. If this is in fact the driving force

behind observed momentum returns, we would expect no momentum in a market

where bonds have (nearly) zero default risk. Thus, we extend this study to examine

the momentum effect in the U.S. government and sovereign bond markets. According

to our proposition, the momentum effect is driven by the difference in sensitivities

between winners and losers to the conditional default factor. Using this argument,

we should not observe any momentum in securities that have little sensitivity to

default shocks. Indeed, we document that US government bonds are not sensitive to

default shocks and, as a result, there is virtually no momentum in these bonds. On

the other hand, many sovereign bonds have potential default concerns (for example,
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the Russian government defaulted on obligations in 1998) and, therefore, we expect

to observe momentum in the sovereign market. Consistent with this prediction, we

find that sovereign bonds exhibit positive momentum in times of high default and

negative momentum in times of low default. Taken together, these results help to

support our proposition that momentum is liked to aggregate default risk.

Our work contributes to a large literature on momentum returns and a growing

literature focusing on momentum in bond markets. Jegadeesh and Titman (1993)

first discover that momentum strategies produce positive returns that commonly ac-

cepted asset-pricing models cannot explain. The majority of subsequent studies of

momentum returns focus on equity momentum, but a number of recent works exam-

ine momentum in other markets. Khang and King (2004) analyze bond momentum,

but do not find statistically significant momentum in the corporate bond market in

general. Gebhardt, Hvidkjaer, and Swaminathan (2005b) reconfirm that momentum

in corporate bonds is insignificant; however, the authors find that equity momentum

spills over to the bond market. In other words, bonds of equity winners continue to

do well, and bonds of equity losers tend to underperform. However, the evidence of

momentum in bond returns is mixed. Jostova, Nikolova, Philipov, and Stahel (2011)

observe momentum in bonds, and find that this anomaly is more pronounced after

1994. And, despite a litany of empirical evidence, commonly accepted asset-pricing

models generally fail to explain the momentum puzzle.14

We provide a number of contributions to the momentum literature. First, this

paper adds to the newly developing literature on bond momentum, which has shown

rather mixed results regarding the existence of momentum in bond returns. We re-

port evidence suggesting that, in the time-series, momentum in corporate bonds ex-

14Fama and French (1996) show that the market, SMB and HML factors cannot capture momentum
profitability. Griffin, Ji, and Martin (2003), testing the theoretical model of Chen, Roll, and Ross
(1986), incorporates innovations in macro-economic variables and shows this also cannot explain
momentum.
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ists and depends on the state of economy-wide default shocks. This result allows us to

reconcile the mixed findings from the existing empirical literature (Gebhardt, Hvid-

kjaer, and Swaminathan (2005b), Jostova, Nikolova, Philipov, and Stahel (2011)).

Second, we show that bond momentum can be explained by a conditional default

factor. Third, in the cross-section, we find that corporate bond losers have relatively

lower bondholder recovery than winners and, thus, have lower risk and returns dur-

ing high default shocks. Finally, we extend the analysis to the US government and

sovereign bond markets. Consistent with our risk-based explanation, we find that

momentum is observed in sovereign bonds, which are more likely to have default

concerns, but not in US government bonds. Together, this evidence provides sup-

port for a risk-based explanation for momentum returns, driven by the risk faced by

bondholders in default. To best of our knowledge no other work has provided a risk-

based explanation to this puzzle consistent with rational expectations, empirically

or theoretically.

3.1 Corporate Bonds Momentum and Aggregate Default Shocks

3.1.1 Data and Portfolio Construction

We begin by obtaining bond returns, the number of bonds in the issue, and

prices from DataStream. We include all US corporate bonds that are traded in the

US market and have all necessary information available in DataStream. Because of

thin coverage of the bond market in the early 1990s, we restrict the sample period

to begin in January of 1995 and include all data through December of 2010. To

estimate measures of bondholder recovery, we also include firm financial data from

Compustat.

We exclude from the sample all convertible bonds and asset-backed securities.

The sample contains information from 5123 individual corporate bonds. To correct

for potential data errors and to make sure that the results are not driven by outliers,



61

we follow Jostova, Nikolova, Philipov, and Stahel (2011) and exclude all observa-

tions with returns above 50% per month. In addition, to ensure that the results

are not driven by small and non-liquid bonds, we exclude securities with market

capitalizations that would place them below 5th percentile of the total bond market

capitalization. We then follow Gebhardt, Hvidkjaer, and Swaminathan (2005a) and

estimate corporate bond returns using the following approach.

ri,t =
(Pi,t + ACi,t + Ci,t)− (Pi,t−1 + ACi,t−1)

Pi,t−1 + ACi,t−1

, (3.1)

where, ri,t is return on bond i at time t; Pi,t is the price of the bond; AC is the

accrued interest at the end of the month t; and C represents any coupon payments

that have been made between t and t− 1.

To create bond momentum portfolios, we follow Jegadeesh and Titman (1993)

and sort bonds into deciles based on the cumulative performance over the formation

period (t− 7 to t− 1). The bonds are equally-weighted within each decile. The top

decile is comprised of recent winners and the bottom decile contains recent losers.

We skip a month after the formation periods to avoid short-term reversals. The

momentum strategy assumes buying recent winners and selling recent losers. The

portfolios are rebalanced every month and then held for 6 months (we refer to this

strategy as 6-1-6).

Table 3.1 presents simple summary statistics for the portfolios from January 1995

to December 2010. The first impression from the data is that the bond momentum

strategy does not appear to be profitable in our sample on average (the return to

the bond momentum strategy is 17 basis points per month and not statistically

significant). We also find that the distributions of the bond momentum portfolios do

not differ substantially. The standard deviation of losers appears to be only slightly

higher than winners (2.80% vs. 1.71%, respectively). This provides little evidence of

momentum in the bond market on average.
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Table 3.1
Summary Statistics of Bond Momentum.

This table presents descriptive statistics for equally-weighted momentum portfolios over the period from 1995 to
2010. The bond momentum portfolios are based on the 6-1-6 strategy. Portfolios L and W are comprised of loser and
winner bonds, respectively. Basic descriptive statistics, such as mean, median, standard deviation and percentiles
are presented in the subsequent columns.

Portfolios Mean Std. 5% 25% Median 75% 95%

L 0.79% 2.80% -2.72% -0.27% 0.77% 1.76% 4.89%

Portfolio 2 0.71% 2.00% -2.18% -0.31% 0.76% 1.68% 3.74%

Portfolio 3 0.69% 1.96% -2.38% -0.42% 0.72% 1.80% 3.54%

Portfolio 4 0.67% 1.94% -2.48% -0.36% 0.81% 1.74% 3.51%

Portfolio 5 0.69% 1.84% -2.19% -0.39% 0.84% 1.74% 3.51%

Portfolio 6 0.68% 1.84% -2.17% -0.46% 0.80% 1.80% 3.34%

Portfolio 7 0.64% 1.82% -2.34% -0.52% 0.76% 1.79% 3.08%

Portfolio 8 0.67% 1.86% -2.34% -0.43% 0.84% 1.76% 3.37%

Portfolio 9 0.72% 1.74% -2.41% -0.27% 0.89% 1.82% 3.15%

W 0.96% 1.71% -2.06% -0.03% 0.99% 2.01% 3.61%

W - L 0.17% 2.12% -2.42% -0.46% 0.26% 1.06% 3.05%
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3.1.2 Bond Momentum Conditional on Shocks to Default

The existing empirical evidence of bond momentum is mixed. Khang and King

(2004) do not find statistically significant momentum in corporate bonds returns.

Gebhardt, Hvidkjaer, and Swaminathan (2005b) report that past winners tend to

underperform past losers in the corporate bond market, but also find that equity

momentum spills over to bonds, suggesting that corporate bond momentum may be

security specific. On the other hand, Jostova, Nikolova, Philipov, and Stahel (2011)

show that the momentum anomaly exists among corporate bonds. They argue that

there is a link between bond momentum and credit risk by documenting that this

anomaly is more pronounced among speculative grade bonds (low credit ratings).

We attempt to reconcile these seemingly contradictory results by exploring the

profitability of the momentum strategy in bonds conditional on shocks to aggregate

economy-wide default. Mahajan, Petkevich, and Petkova (2011) present evidence

suggesting that equity momentum is sensitive to default shocks. Motivated by their

results, as well as the previous literature, we conjecture that the bond momentum

premium exists in a state dependent fashion.

To better understand the behavior of the corporate bond momentum premium

in the time-series, we compose a measure that captures unexpected changes in ag-

gregate default. We use unexpected default because it is potentially better suited

for describing default risk exposure, as it is less likely to be predicted by the market.

Following Mahajan, Petkevich, and Petkova (2011), we first define the aggregate de-

fault premium as the yield spread between Moody’s CCC corporate bond index and

the 10-year Treasury bond. Default shocks are then estimated as the residual of the

following AR(2) model:

DEFt = α0 + α1DEFt−1 + α2DEFt−2 + ξt, (3.2)
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where, DEFt is the default premium at month t. Aggregate default shocks are

captured by ξt. An increase (decrease) in the residuals corresponds to higher (lower)

shocks to aggregate default.15 However, this approach employs the data that is not

available during the period being analyzed. To avoid the potential look-ahead bias

we estimate model (3.2) using a recursive cumulative procedure.16 Specifically, we

estimate the model using the pre-sample period (from January of 1954 to December of

1959). We then add one observation to the sample and re-estimate the model using

the updated time-series. We repeat this procedure (keep adding one observation)

until we obtain the estimates for every observation in the sample. Therefore, the

residual at any time t is conditional on the data from January 1954 to t− 1.

An alternative interpretation of ξt is that the minus default shock (−ξt) can

be viewed as an approximated holding period return of a long CCC and a short

Treasury bond portfolio, provided that DEFt is persistent.17 This facilitates a risk-

based explanation of our empirical results.

We now document momentum in corporate bond returns conditional on default

shocks. Based on the current momentum literature, we hypothesize that corporate

bond momentum is likely to be observed during periods of high default shocks. Table

3.2 presents the performance of bond momentum conditional on high and low default

states of the world. Panel A documents the returns of winners and losers for the

entire sample period (1995-2010). Panels B and C, presents the results of the earlier

(1995-2002) and later (2003-2010) periods.

15In this paper we use the median of the distribution to split the sample.

16The results based on the unadjusted shocks are similar and available upon request.

17Specifically, the following approximation holds if n is sufficiently larger than 1: DEFt−DEFt−1 ≈
− 1

n (RCCC
t − RTr

t ), where Rt = − lnPt/n, and Pt is the price of this asset and n is the remaining
maturity. In addition, the sum of estimated α1 and α2 is indeed close to 1, confirming the persistence
of DEFt. Then −ξt ≈ 1

n (RCCC
t −RTr

t ).
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Table 3.2
Bond Momentum Portfolio Returns Conditional on Default Shocks.

This table documents returns on the bond portfolios formed based upon a sorting procedure conditional on aggregate
default shocks (residuals from (3.2)) over the period from 1995 to 2010.The returns to the momentum strategy (6-
1-6) based on equally-weighted portfolios are presented in the columns with t-statistics in parentheses. W and L
represent portfolios of winners and losers, respectively. Momentum corresponds to the hedge portfolio (W - L). Panel
A presents results from the whole sample. Panel B and Panel C present analysis of earlier (1995-2002) and later
(2003-2010) periods.

W L W - L

Panel A. Total sample
High Default 0.80% 0.19% 0.61%

( 4.56) (0.71) (3.35)

Low Default 1.19% 1.45% -0.26%
( 6.99) (4.99) (-1.05)

Total 0.98% 0.79% 0.19%
( 8.01) ( 3.90) ( 1.28)

Panel B. Period from 1995 to 2002
High Default 0.96% 0.54% 0.42%

( 4.25) (2.24) (2.79)

Low Default 0.75% 1.13% -0.38%
( 2.73) (3.37) (-1.79)

Total 0.87% 0.84% 0.02%
( 4.98) ( 3.97) ( 0.18)

Panel C. Period from 2003 to 2010
High Default 0.62% -0.21% 0.84%

( 2.25) (-0.34) (2.51)

Low Default 1.57% 1.61% -0.04%
( 7.85) (3.65) (-0.28)

Total 1.11% 0.74% 0.37%
( 6.34) ( 2.13) ( 1.33)
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Consistent with the results of Khang and King (2004), we do not find a significant

difference between the performance of losers and winners in corporate bonds in the

sample. In particular, Panel A shows that the momentum strategy (W - L) produces

19 basis points (not statistically different from zero). However, after conditioning

on high and low default states of the world, we observe positive momentum returns

during high default shocks (61 basis point with a t-statistic of 3.35), and almost

identical performance of losers and winners in low default states. The difference

is -26 basis points with a t-statistic of -1.25. Thus, it appears that momentum

does occur in bond returns, but is state-dependent. This finding extends the result

of Jostova, Nikolova, Philipov, and Stahel (2011) by showing that corporate bond

momentum is related to both firm-level and aggregate-level default.

However, one might argue that this result is primarily observed in early periods

of the sample when temporary mispricing is more likely to occur. Moreover, if bond

momentum is driven by mispricing or market inefficiency, it should decline over time.

Therefore, we also test whether positive momentum profits in high default states de-

cline over time. For this test, we split the sample into two subperiods: 1995-2002

and 2003-2010. As shown in Panels B and C of Table 3.2, the performance of mo-

mentum increases during the latter period (42 and 84 basis points for the 1995-2002

and 2003-2010 periods, respectively). While the magnitude of the momentum effect

in the later part of our sample appears larger, we find that the difference between the

two subsamples is not statistically significant. Hence, this result suggests that mo-

mentum is directly affected by aggregate default conditions rather than temporary

mispricing.
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Chordia and Shivakumar (2002) and Stivers and Sun (2010) argue that equity

momentum is likely to be observed during “good times”18 We further investigate the

relation between the profitability of bond momentum and general economic condi-

tions by presenting a double sorting procedure on both business cycles and aggregate

default shocks. Figure 3.1 presents the results of this analysis. We document that

the majority of the momentum performance is documented under very specific cir-

cumstances, namely, at the intersection of recessions and high default shocks. The

total performance of momentum during these periods is 1.77% per month. Note

that momentum is also positive in periods of high default shocks (49% per month).

Finally, during periods of expansions and low default states, there is virtually no dif-

ference between the returns of winners and losers. This suggests that the momentum

premium is strongly correlated with aggregate default shocks in the time-series.

To summarize, we document that the overall profitability of momentum in cor-

porate bonds is essentially zero (based on the Data Stream sample). However, after

conditioning on high states of default, we observe that momentum is positive and

significant during these periods and zero otherwise. This finding suggests that the

state-dependent nature of the corporate bond risk premium may generate the seem-

ingly contradictory evidence about the existence of momentum in corporate bonds.

This also suggests that the conditional aggregate default risk should be priced, and

that the returns of winners and losers will have different sensitivities to this condi-

tional risk factor. We verify these in the following sections.

18Chordia and Shivakumar (2002) define the periods of expansions (as defined by the National
Bureau of Economic Research) as “good times”. Stivers and Sun (2010) suggest that low cross-
sectional dispersion in recent stock returns correspond to “good times.”
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Fig. 3.1. Bond Momentum Portfolio Returns Conditional on Default
Shocks and on Business Cycles.

This figure documents returns on portfolios formed based upon a sorting procedure conditional on both business
cycles and aggregate default shocks (residuals from (3.2)) over the period 1995 - 2010.
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3.1.3 Pricing the Conditional Default Risk Factor

This section presents evidence suggesting that momentum portfolios have differ-

ent exposure to unexpected default shocks in the corporate bond market. To capture

this result, we present an empirical asset pricing model that incorporates the com-

monly accepted factors of bond returns and a factor depicting unexpected default

shocks. Fama and French (1993) argue that besides the standard market, SMB, and

HML factors, the default (DEF) and term (TERM) premia should be included in the

model to capture the cross-sectional variation of bond returns. Further, Gebhardt,

Hvidkjaer, and Swaminathan (2005a) suggest that DEF and TERM are major de-

terminants of bond returns and should be examined separately. We begin with a

general model that includes the main drivers that appear in both models:

Re
i,t = βi + βMKT

i MKTt + βTERMi TERMt + βDEFi DEFt + εt, (3.3)

where, Re
i,t corresponds to the excess return on portfolio i; MKT, TERM19 and DEF

stand for the market, term structure and default premiums, respectively. However,

our hypothesis is based on the assumption that the bond momentum portfolios are

sensitive to unexpected shocks to aggregate default rather than the simple default

premium. To test this proposition, we substitute shocks to default ξt (as defined in

(3.2)) into the model in place of DEF.

The majority of the current bond empirical literature focuses on unconditional

models. We argue that the momentum premium in corporate bonds is conditional

on high unexpected default risks. Therefore, we follow Mahajan, Petkevich, and

19Following Gebhardt, Hvidkjaer, and Swaminathan (2005a), we estimate TERM as the difference in
the thirty-year government bond returns (from the DataStream database) and one month treasury
bill returns (from CRSP).
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Petkova (2011) and introduce a conditional default factor that allows the default

betas to be time-dependent.

Cξt = Itξt, (3.4)

where, ξt represents the shock to aggregate default in month t as defined in (3.2).20 It

is an indicator that takes a value of 1 during high default shocks and 0 otherwise. As

a result, the conditional default factor (Cξt) captures the additional default exposure

when the economy is in a high default state. Hence, the model can be written as:

Re
i,t = βi + βMKT

i MKTt + βTERMi TERMt + βDEFi ξt + βCDEFi Cξt + εt. (3.5)

Specifically, we are interested in the default βDEFi and conditional default βCDEFi

factors. While βDEFi measures the sensitivity of momentum portfolios to default

shocks, βCDEFi estimates the additional effect of default shocks during high default

states. As a result, the total effect of high default shocks is captured by the sum of

two coefficients (βDEFi + βCDEFi ). In addition, as discussed in the previous section,

−ξt can be regarded as the risk premium related to aggregate default. Thus, −βDEFi

and −βCDEFi will be comparable to conventional betas in linear factor models of

asset prices.

Since the loadings in the model (3.5) are not directly observable, we estimate these

for every asset separately in the time-series using the entire sample. Rolling window

estimators are not appropriate in this case, because the time-variability of default

betas should be efficiently captured by the conditional default factor. We follow a

standard Fama and MacBeth (1973) procedure to estimate the risk premiums for

each of the factors. To control for the errors-in-variables problem, we apply the

correction for standard errors proposed by Shanken (1992).

20Note that shocks are estimated using a cumulative recursive procedure described in section 3.1.2.



71

The beta loadings of (3.5) are presented in Table 3.3. We find that the differ-

ence in the market loadings (βMKT ) of winner and loser portfolios is negative and

statistically significant. This implies that corporate bond losers are more sensitive

and riskier, which makes the reversal anomaly, rather than the momentum anomaly,

a more likely result. Consistent with Acharya, Amihud, and Bharath (2011), we ob-

serve a positive βTERMi ; however, the spread in term loadings of losers and winners is

not significant. Thus, we can infer that both the stock and Treasury market factors

matter in explaining corporate bond returns, yet cross-sectional variations from the

momentum strategies are not well accounted for by these conventional factors. We

now turn to the default factors. As discussed earlier, to interpret the default betas

in a consistent manner with the market betas, we report −βDEFi and −βCDEFi . We

show that losers are riskier (−βDEFL is 1.07) than winners (−βDEFW is 0.34) on average,

but losers are safer (−βCDEFL is -0.33) than winners (−βDEFW is 0.28) in high default

states of the world. The total effect of default risks on losers is 0.74 (1.07 − 0.33),

while the total effect for winner is 0.62 (0.34 + 0.28). More importantly, the spread

of conditional default loadings between losers and winners is 61 basis points with a

t-statistic of 2.13.

Taken together, these results suggest that corporate bond losers are on average

riskier, as suggested by the market and unconditional default betas, yet become

relatively safer than winners in high default states of world and, as a result, have

lower expected returns. Further, whether bond momentum prevails is a quantitative

concern, depending on which effect dominates. Our findings allow us to reconcile the

mixed results on corporate bond momentum. Because default shocks generate the

opposite directions of risk exposures between losers and winners, the overall effect

can be ambiguous.

To estimate factor premiums in the cross-section, we follow the Fama and Mac-

Beth (1973) procedure and use 30 momentum-based portfolios in equation (3.5).

Table 3.4 reports the time-series means of these premiums. Even though the MKT
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Table 3.3
Factor Loadings Estimates.

This table presents the time-series estimates the loadings for the returns of each of the 10 bond momentum portfolios
on the market βMKTRF , term structure βTERM , default risks −βDEF and conditional default risks −βCDEF . W
and L represent the portfolios of winners and losers, respectively. Momentum corresponds to the hedge portfolio (W
- L). The equally-weighted portfolios are based on the 6-1-6 strategy. The sample period is from 1995 to 2010. The
t-statistics from the regressions are based on Huber-White standard errors.

Portfolio βMKTRF t-stat βTERM t-stat −βDEF t-stat −βCDEF t-stat

L 0.23 3.69 0.29 5.30 1.07 2.73 -0.33 -1.88
2 0.12 2.31 0.40 8.02 0.64 2.47 -0.29 -1.74
3 0.09 2.34 0.46 10.01 0.48 1.46 -0.16 -0.92
4 0.08 1.92 0.47 9.58 0.44 1.63 -0.06 -0.27
5 0.06 1.83 0.47 10.11 0.37 1.17 0.00 0.01
6 0.05 1.62 0.46 8.57 0.30 1.43 0.11 0.68
7 0.05 1.49 0.45 8.42 0.28 1.13 0.18 1.25
8 0.04 1.23 0.45 8.11 0.28 1.22 0.21 1.68
9 0.03 1.04 0.41 7.96 0.27 1.23 0.26 1.69

W 0.06 2.04 0.33 7.13 0.34 1.36 0.28 1.89

W - L -0.17 -3.81 0.04 0.91 -0.73 -1.64 0.61 2.13
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premium is positive and significant in Model (1), the adjusted R2 is low (0.29), sug-

gesting that missing factors are needed in the model. Augmenting the model with

the term and default factors improves the R2; however, only the term premium is

significant in this specification. Moreover, our previous results in Table 3.3 suggest

that the term loadings of winners and losers do not differ significantly and, therefore,

cannot explain momentum profits. Finally, in Model (4) we augment the model with

the conditional default factor. Consistent with Mahajan, Petkevich, and Petkova

(2011), the conditional default premium (-CDEF) is positive and significant (0.0060

with a t-statistic of 2.21).

Table 3.4
Pricing Time-varying Aggregate Default Risks in the Cross-section.

This table presents estimated monthly risk premiums based on the Fama-MacBeth proceedure and using 30 bond
momentum portfolios. MKT is the excess return on the market, TERM represents the term structure premiums
and defined as the difference in the thirty-year government bond returns and one month treasury bill returns. DEF
is aggregate default shocks estimated proxies by the residual of (3.2), CDEF is the conditional default aggregate
shocks measured by the product of DEF and I, where I is an indicator function, which equals to 1 if the economy
is in period of high default shock (above median) and 0 otherwise. T-statistics based on the Shanken (1992) method
are reported in parentheses below. The sample period is from 1995 to 2010. To be consistent with Table 3 and the
conventional return-only factor pricing model, −DEF and −CDEF are reported.

MODEL (1) MODEL (2) MODEL (3) MODEL (4)

MKT 0.0177 0.0048 0.0050 0.0252
(1.95) (0.49) (0.50) (1.59)

TERM -0.0142 -0.0147 -0.0100
(-2.25) (-2.41) (-1.75)

-DEF 0.0018 0.0035
(0.51) (0.79)

-CDEF 0.0060
(2.21)

CONST 0.0034 0.0094 0.0098 0.0062
(2.26) (4.07) (3.31) (1.91)

Adj.R2 0.29 0.54 0.57 0.63

One interpretation of these results is that winners do not necessarily outperform

losers. The results suggest that winners become riskier during high default states
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of the world, and, thus, are rewarded with higher returns. This result also sug-

gests that the conditional default factor can explain a large portion of momentum

profits in periods of high default shocks. In particular, the -CDEF beta spread be-

tween losers and winners (−(βCDEFW − βCDEFL ) = 0.61) multiplied by the premium

(−CDEF = 0.0060) explains approximately 36.6 basis points of momentum profits.

The difference between momentum performance in high and low default states is

87 basis points, implying that the conditional default factor explains approximately

42% of momentum profits in corporate bonds. To summarize, these results provide

additional evidence in support of a risk-based explanation of momentum. We find

that momentum profits in corporate bonds are only positive in high default states of

the world and the conditional default factor can explain a large part of these profits.

3.2 Sources of Momentum in Bonds

The empirical results thus far point to the claim that bond losers may be rel-

atively safer than bond winners in high default states of the world. One possible

explanation for this result is based on differences in potential bondholder recovery

in financial distress. This section provides a theoretical framework that incorporates

bondholder recovery into a bond pricing model to show that explanation is theoret-

ically reasonable. Following our theoretical framework, we present empirical results

using proxies for bondholder recovery that support our theoretical predictions.

3.2.1 Theoretical Framework

In this section, we offer a theoretical explanation for our empirical findings based

on a no-arbitrage bond pricing model. In particular, we use a reduced-form valuation

model to derive corporate bond returns. Denote the price of a zero-coupon corporate
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debt with maturity n at time t by D
(n)
t . Then, with a no-arbitrage condition, we can

write the pricing formula of D
(n)
t as

D
(n)
t = φt,t+1Et

[
Mt+1D

(n−1)
t+1

]
+ (1− φt,t+1)Et [Mt+1Xt+1] , (3.6)

where Mt+1 is the stochastic discount factor, (1−φt,t+1) is the risk-neutral conditional

probability of default at t+ 1 conditional on the fact that this bond has not filed for

bankruptcy before t, and Xt+1 is the recovery value if default (or an event of financial

distress) occurs. φt,t+1 is assumed to be adapted at t. We suppress the notation for

issuer for the time being. If we further assume that X is a fraction η of total firm

value (denoted as V ), say Xt = ηtVt. Then,

D
(n)
t = Et

[
Mt+1

(
φt,t+1D

(n−1)
t+1 + (1− φt,t+1)ηt+1Vt+1

)]
, (3.7)

or alternatively

1 = Et

[
Mt+1

{
φt,t+1 + (1− φt,t+1)

ηt+1Vt+1

D
(n−1)
t+1

}
D

(n−1)
t+1

D
(n)
t

]
. (3.8)

Then, taking logs of both sides, we obtain

0 = logEt

[
Mt+1Πt+1

D
(n−1)
t+1

D
(n)
t

]
, (3.9)

where,

Πt+1 ≡ φt,t+1 + (1− φt,t+1)
ηt+1Vt+1

D
(n−1)
t+1

. (3.10)

Thus, corporate bond returns will depend on the default-related discount factor

(3.10) as well as the conventional discount factor Mt+1. To gain more insight from

this pricing equation, define logD
(n−1)
t+1 /D

(n)
t as the holding period return (rt+1) on

this corporate bond, and approximate it as follows:
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Et(rt+1 − rft ) ≈− Covt (mt+1, rt+1)− Covt(πt+1, rt+1)

− Et (πt+1)− 1

2
V art (πt+1)− Covt (mt+1, πt+1) ,

(3.11)

where, m and π are the logarithms of M and Π respectively. Focusing on the first two

terms related to the risk premium, we can rewrite the above return-beta relationship

(3.11) as

Et(r
i
t+1 − r

f
t ) ≈ −Covt(mt+1, r

i
t+1) (3.12)

−
(
1− φit,t+1

) [
Covt

(
log ηit+1, r

i
t+1

)
+ Covt

(
log

V i
t+1

Di
t+1

, rit+1

)]
,

where, the superscript i refers to an issuer. The equation states that the risk pre-

mium for holding a corporate bond comes from the covariations of returns with the

aggregate wealth (mt+1), and those with the default risk. The former is important in

describing the risk premium of all risky assets. However, according to our empirical

results, this term does not appear to account for the momentum profits. Thus, our

main interest centers on the latter term. The default premium for a corporate bond

consists of two terms. The first covariance is related to the recoverability of the

bond in case of the bankruptcy. A higher value of η means that this bond is safer

when the issuer declares default, hence the sign of this covariance is negative so that

the risk premium is positive. The second term for the default risk premium refers

to the covariations between bond returns and the logarithm of the ratio of the firm

value to debt. Intuitively, the firm value will become lower and closer to the value

of debt if default is more likely.21 Thus, it is natural to view that this covariance

is also negative such that the default risk premium is positive. This risk premium

21This argument implicitly assumes that D(n) is a constant fraction of the total amount of debt.
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decomposition turns out to be useful in understanding the conditional momentum

in corporate bonds.

Suppose that there are two bond issuers w (winner) and l (loser). We assume

that w has more intangible capital such as human capital and organizational skills,

while l has more tangible and recoverable capital which is easier to liquidate in case

of bankruptcy. Now, the momentum strategy yields

Et(r
w
t+1 − rlt+1) ≈ Covt

(
−mt+1, r

w
t+1 − rlt+1

)
−
(
1− φwt,t+1

)
Covt(log ηwt+1, r

w
t+1)

+ (1− φlt,t+1)Covt(log ηlt+1, r
l
t+1)−

(
1− φwt,t+1

)
Covt(log

V w
t+1

Dw
t+1

, rwt+1)

+ (1− φlt,t+1)Covt(log
V l
t+1

Dl
t+1

, rlt+1).

(3.13)

Logically, if default is indeed a serious concern for both issuers, the second and the

third terms in the right hand side of (3.13) become important, because the cash

flow in the event of bankruptcy becomes a highly probable outcome.22 Given the

assumption that winners (losers) have lower (higher) recoverability in case of default,

|Covt(log ηt+1, rt+1)| is higher for the winner, because the issuer w is more sensitive

to random changes in bond recoverability especially when default is more likely. This

produces positive a risk premium from the momentum strategy as default is near.

For the covariance between log(V/D) and bond returns, since the distance to

default is short in this case, we can infer that the firm value V is approaching D

such that log V/D converges to zero. Thus, these covariances can approach a zero

22It is possible to build a model that establishes this link, but to focus on the asset pricing impli-
cations, we do not pursue this further. In a somewhat different setting, Garlappi and Yan (2011)
provide a similar theory. To make our exposition easy, assume that 1 − φ is the same between w
and l.
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value. In addition, if default shocks are highly systematic in that both winners

and losers show similar covariations, these terms can be cancelled out.23 Therefore,

in the states of high aggregate default risks, winners become riskier mainly due to

the lower recoverability for bondholders. Put differently, when default becomes a

probable event, larger weights are given to post-default cash flows in determining

the corporate bond risk premium.

In the case of low aggregate default states, the conditional default likelihood

(1 − φt,t+1), the absolute values of Covt(log ηt+1, rt+1) and Covt(log Vt+1/Dt+1, rt+1)

tend to be small, hence the bond risk premium are similar to those of default-free

bonds. Having said that, our empirical result documents that losers are riskier

on average than winners. Given that
∣∣Covt(log ηwt+1, r

w
t+1)
∣∣ > ∣∣Covt(log ηlt+1, r

l
t+1)
∣∣,∣∣Covt(log V l

t+1/D
l
t+1, r

l
t+1)
∣∣ is greater than

∣∣Covt(log V w
t+1/D

w
t+1, r

w
t+1)
∣∣ because, other-

wise, the issuer w should be unconditionally riskier contrary to the empirical finding.

This makes the sign of (3.13) in the low default states ambiguous, and the momen-

tum strategy does not generate significantly positive profits during the regime of low

aggregate default shocks due to the offsetting effects. Thus, our empirical results

are consistent with a risk-based model of asset prices, provided that winners (losers)

have low (higher) recoverability in the event of bankruptcy.

To summarize, we make several predictions from the model. First, expected

bond returns contain a recovery component. Second, there is a risk premium for

securities with low bondholder recovery in high default states, and, therefore, buying

high recovery and selling low recovery bonds should generate a positive premium.

Finally, according to our model the recovery premium should be mainly observed in

high default states, which amplifies the risk premium due to the bond recoverability.

23A related implication is that the bonds which are subject to higher default risks will show more
pronounced effects. For instance, this conditional nature of momentum should prevail more con-
spicuously among junk bonds, if the theory is true. This is indeed verified in the next section.
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This premium does not necessary exist in low default states because of the additional

covariance terms between the distance to default and bond returns. In the next

sections we empirically examine these predictions.

3.3 Bondholder Recovery, Default Risk, and Conditional Premia

Our empirical results so far indicate that winners are relatively riskier during

periods of high default shocks, while losers are riskier on average, and we derived

a theoretical framework that explains this phenomenon using the recoverability of

corporate bonds. In this section, we uncover fundamental characteristics of bond

issuing companies that can justify the difference in the expected returns of losers

and winners in periods of high default shocks.

3.3.1 Bondholder Recovery

Motivated by the predictions of our theoretical model, we attempt to confirm

empirically that the different exposure to the conditional default factor for winners

and losers is driven by bondholder recovery. We hypothesize that the ability to re-

cover value in default plays an important role in determining the risk of bonds in

high and low default states of the world. Our predictions are reminiscent of the

results of Garlappi, Shu, and Yan (2008) and Garlappi and Yan (2011), who exam-

ine the relation between bankruptcy risk and expected equity returns conditional

on shareholder recovery. Specifically, the authors show that for high shareholder

recovery firms, expected returns to equity should be low when bankruptcy risk is

high. This occurs because the shareholders of these firms will have high bargaining

power in the process of distress negotiations, reducing the risk of the firm’s equity

when default risk is high. We use this logic to argue that the same should hold in

the corporate bond market. First, it is important to note that recovery in default

should be a zero-sum game between bond and equity holders, holding constant the
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value of the firm’s assets in default. High bargaining power for shareholders stems

from a lower amount of value that bondholders would claim through liquidation, i.e.

high shareholder recovery corresponds to low bondholder recovery. To capture this

aspect we introduce three different measures of bondholder recovery based on the

firm’s tangibility, asset specificity, and potential growth options.

The tangibility measure of bondholder recovery is based on the expected liqui-

dation value of the firm. Bondholders of firms with high asset tangibility should

recover a relatively larger portion of value in cases of financial distress. Therefore,

the bondholders of high tangibility firms should face relatively lower risk in high

default states of the world, and, as a result, should require lower expected returns.

Using the same logic, the bondholders of a firm with low tangibility should recover

less and, thus, become relatively riskier during high default periods. We measure

tangibility using the proxies of recovery per dollar from the previous empirical litera-

ture. Berger, Ofek, and Swary (1996) argue that more general assets produce higher

liquidation value. In particular, they find that claim holders will recover 71.5 cents

on the dollar for receivables, 54.7 cents per dollar of inventory, and 53.5 cents per

dollar of property plant and equipment. Additionally, claim holders should recover

100% of cash holdings. We calculate tangibility as

Tng =
(0.715×Receivables+ 0.547× Inventory + 0.535× PPE + Cash)

TotalAssets
.

(3.14)

All else equal, the bondholders’ ability to recover value in default will be high if the

tangibility of the firm’s assets is high.

The second proxy of bondholder recovery is based on the specificity of the firm’s

assets. Shleifer and Vishny (1992) argue that redeployable assets24 should have

24In the context of this paper, redeployable assets can have other alternative usage that is not
specific to a particular industry.
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higher liquidation value, because they can be successfully used for production in

other industries. This is especially important during periods of high default states of

the world, when firms are likely to experience more problems leading to asset sales

below their potential value. All else equal, assets should be more readily redeployed

when there are numerous firms in the same industry that could make use of the

assets. In other words, firms in highly concentrated industries should have a smaller

market in which to sell their assets in liquidation (more specific assets) and, hence,

should have higher liquidation costs and lower liquidation value in bankruptcy. We

measure the specificity of assets using the firm’s two-digit SIC industry Herfindahl

index based on sales. This is calculated as:

HIj,t =

Nj,t∑
i=1

s2
i,t, (3.15)

where, si,t represents sales of firm i at time t as a proportion of total sales of its’

industry j. Firms with a high (low) Herfindahl index should have relatively higher

(lower) asset specificity and, therefore, should have higher (lower) liquidation costs

and lower (higher) bondholder recovery.

Finally, the last measure of bondholder recovery is measured by the ratio of

R&D expenditures to book total assets. Opler and Titman (1994) suggest that high

R&D firms should have higher product specialization. Additionally, such firms are

also more likely to have potential growth options. Thus, it will be more difficult

to liquidate these firms, leading to lower bondholder recovery and higher risk and

returns in periods of high default shocks.

Using each measure of bondholder recovery, we find that winners have relatively

lower bondholder recovery in general. Panel A of Table 3.5 shows that the average

tangibility of winners is lower than the tangibility of losers (0.44 vs. 0.46 for winners

and losers respectively), and the difference is statistically significant (t-statistics of

-4.48). We also observe that losers are more likely to be found in less concentrated
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industries, suggesting that these firms have more redeployable assets and, as a result,

lower liquidation costs in default. On the other hand, winners are more likely to

belong to high concentration industries, implying more specific assets and lower

liquidation value. We find the difference in Herfindahl’s index between winners and

losers is significant (1.17% with a t-statistic of 6.56). Finally, we show that the R&D

ratio of winners is higher (3.95% vs. 3.39%, respectively). In sum, all measures

of bondholder recovery suggest that winners have lower recovery on average and,

therefore, should have higher risk and higher expected returns during periods of high

aggregate default shocks.

Table 3.5
Bondholder Recovery and the Probability of Financial Distress of
Winners and Losers.

This table documents the bondholder recovery and financial distress of losers (L) and winners (W) . Panel A presents
the average bondholder recovery of winners and losers using the tangibility measure reflecting the expected liquidation
value of the firm, the Herfindahl index based on sales (represents the specificity of the assets) based a 2-digit SIC
code industry, and the ratio of R&D expenses to total assets. Panel B estimates the average probability of financial
distress of winners and losers using a modified Z-score and the probability of default based on the Merton (1974)
model. The sample period is from 1995 to 2010. The numbers in parentheses represent simple time-series t-statistics
for the average monthly measures financial distress and shareholder recovery.

W L W - L

Panel A. Bondholder recovery
Tangibility 0.44 0.46 -0.02

(-4.48)

Herfindahl index 8.18% 7.01% 1.17%
(6.56)

R&D ratio 3.95% 3.39% 0.56%
(3.27)

Panel B. Financial distress
Z-score 1.65 1.38 0.27

(6.35)

Probability of Default 2.65% 9.70% -7.05%
(-7.40)

Overall, our analysis suggests that winners can be characterized by lower expected

liquidation value and higher asset specificity. In either case, bondholders of winners
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should be more affected by higher liquidation costs and require higher returns. These

concerns should be especially relevant in high default states of the world when default

risk is higher and firms are “cheap.”

3.3.2 Default Risk

Our results indicate that losers are more sensitive to unexpected changes in ag-

gregate default. Thus, we can hypothesize that losers have higher risk of financial

distress on average and, thus, are more affected by unexpected increases in aggregate

default, but become less risky when the economy is in a high default risk state. The

purpose of this section is to test this proposition.

We use two measures to document the relation between momentum portfolios

and firm level default risk. The first measure is based on Bharath and Shumway

(2008).25 The authors start with the assumption that equity is valued as a European

call option on the total value of the firm. However, to calculate this measure of

firm distance to default, one needs to estimate unobservable parameters. Bharath

and Shumway (2008) argue that 1) the market value of debt can be approximated

by its face value, 2) the volatility of debt is a function of stock volatility, and 3)

the expected return is equal to the stock return from the previous period.26 Then,

“naive” distance to default can be defined as:

DDnaive =
ln[(E + F )/F ] + (ri,t−1 − 0.5σ2

V )T

σV
√
T

, (3.16)

25A similar approach was introduced by Vassalou and Xing (2004) and Campbell, Hilscher, and
Szilagyi (2008).

26This is essentially an extension of the Merton (1974) model.
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where E and F stand for the market value of equity and the face value of debt,

respectively, σV is the standard deviation of the firm’s value, and T is the estimation

period. Therefore, the naive probability of default is

πnaive = N(−DDnaive). (3.17)

However, one potential concern is that this measure of default risk incorporates

historical returns, and consequently, could be related to momentum. To address

this issue, we incorporate the modified Altman Z-score as an alternative measure.

This measure of individual distress risk is based solely on financial statement data

and should not be directly related to momentum. We follow Graham, Lemmon, and

Schallheim (1998) and calculate this measure as:

Z-score =
1.2×WC + 1.4×RE + 3.3× EBIT + SALES

TA
, (3.18)

where WC, RE, EBIT , and SALES represent working capital, retained earnings,

earnings before interest and taxes, and sales, respectively. TA stands for the book

value of total assets.

Our previous findings indicate that losers have higher sensitivities to unexpected

shocks to aggregate default. We hypothesize that this is observed due to the fact

that losers have higher bankruptcy risk on average. Panel B of Table 3.5 presents

the results of this analysis. Indeed, it appears that losers have lower Z-scores than

winners (the difference is 0.27 and statistically significant with a t-statistics of 6.35).

Similarly, we find that the probability of default for losers is 7.05% higher than for

winners. This difference is statistically significant from zero (t-tatistics is 7.40).

In summary, our results suggest that losers are more sensitive to default and are

also likely to have higher bondholder recovery. Therefore, the difference in condi-

tional default betas between losers and winners is potentially driven by the difference

in bondholder recovery. More importantly, the recovery argument comes into play
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under certain conditions. Namely, it should mainly happen during periods of high

default shocks, which makes default risk conditional on high shocks.

3.3.3 Conditional Default and Recovery Premia

In this part of the paper we examine two important implications of the theoretical

framework presented in this paper. The first prediction suggests that the default

premium should be less important during high default states of the world. We argue

that in these extreme economic conditions the performance of winners and losers is

similar; therefore, the potential default premium of losers becomes less important.

Second, our model predict that recovery premium of winners should become more

important during high default shocks, leading to higher winner performance and,

therefore, momentum.

To test these predictions we sort bonds in high and low bondholder recovery

portfolios using the median values of tangibility. Similarity, we split the sample in

high and low default portfolios using credit ratings. Then we estimate the recovery

(default) premium as a difference between low and high tangibility (credit rating)

portfolios for every month of sample.

The results of this analysis are presented in Table 3.6. According to Panel A of the

table, there is almost no difference between performance of low and high tangibility

(recovery) bonds during periods of low default shocks (-0.04% not statistically differ-

ent from zero). However, when economy experience unexpected increase in aggregate

default, low tangibility tend to outperform high tangibility bonds. The difference is

21 basis points with a t-statistics of 3.76. One of the possible explanations of this

result is that bondholders of low tangibility bonds face higher risk during periods of

high default, because of lower potential recovery in case of forced liquidation. On

the other hand, in periods of low aggregate default the “recovery effect” is less im-

portant, because of unexpectedly low likelihood of outright liquidation. Thus, there

is no difference in returns of low and high tangibility portfolios.
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Table 3.6
Conditional Recovery and Default Premia.

This table documents the bondholder recovery and financial distress premia conditional on aggregate default shocks
(residuals from (3.2)) over the period from 1995 to 2010. Panel A show conditional performance of low, high, and
low minus high (bondholder recovery premium) tangibility portfolios. Panel B documents conditional performance
of low, high, and low minus high (default premium) credit rating portfolios. The numbers in parentheses represent
simple time-series t-statistics.

High Default Shocks Low Default Shocks High - Low Shocks

Panel A. Conditional recovery premium
Low Tng 0.82% 0.71% 0.11%

(4.20) (4.81) (0.44)

High Tng 0.62% 0.75% -0.21%
(3.11) (4.09) (-0.75)

Low - High Tng 0.21% -0.04% 0.24%
(3.76) (-0.67) (3.05)

Panel B. Conditional default premium
Low Rating 0.74% 0.94% -0.20%

(3.51) (4.85) (-1.68)

High Rating 0.75% 0.57% 0.18%
(3.80) (3.02) (0.66)

Low - High Rating -0.01% 0.37% -0.38%
(-0.10) (3.14) (-2.14)
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Panel B of Table 3.6 documents the conditional default premium. We find that in

this case the performance of low and high rated bonds is essentially the same during

periods of high default shocks. The difference is -0.01% and it is not statistically

different from zero. However, in high default states of the world low rated bonds

outperform high rated bonds by 37 basis points with a t-statistics of 3.14. This

evidence provides additional support to our hypothesis that default premium is likely

to be more pronounced in low aggregate default states.

Overall, we confirm the predictions of our theoretical model. Specifically, we

show that the recovery “effect” is mainly observed in periods of high default shocks

and the default premium is more pronounced during low default shocks. Therefore,

bonds winners outperform losers during high default shocks, because they have low

recovery and higher risk during these economic conditions, which leads to observed

conditional momentum in high default states.

3.4 Robustness Checks

In this section we present robustness checks. First, we confirm the previous

evidence of Jostova, Nikolova, Philipov, and Stahel (2011) and link bond momentum

to firm-level default. We expect that bond momentum will be primarily observed

at the intersection of high firm and aggregate level defaults. Second, taking into

account that low credit risk bonds drive momentum returns, we examine whether

the difference in the conditional default loadings between winners and losers remains

for different credit risk groups. Third, we extend our analysis to the sovereign bond

and US government bond markets. Since sovereign bonds are likely to contain a

default component and US government default risk should approach to zero (at least

in theory), we expect to find some weak evidence of momentum among sovereign

bonds and no momentum in US government bonds. Finally, we explore the wealth

transfer effect between equity and bondholders of the same firm.
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3.4.1 Bond Momentum and Conditional Default Shocks by Credit Risk Group

Jostova, Nikolova, Philipov, and Stahel (2011) document that momentum in

the bond market is primarily driven by high credit risk bonds. Specifically, they

show that non-investment grade bonds are more likely to be concentrated in winner

and loser portfolios, and, therefore, they argue that excluding non-investment grade

bonds from the sample leads to zero momentum profits.

Given our results thus far, we propose that high credit risk bonds (low rated)

are more sensitive to aggregate default than low credit risk (high rated). Thus,

momentum in the corporate bond market is driven by high credit risk bonds during

periods of high default. This would also help to explain why bond momentum is

difficult to observe. The majority of studies have concentrated on investment grade

bonds (Gebhardt, Hvidkjaer, and Swaminathan (2005b)) without conditioning on

states of the world. Under our framework, we would expect that it will be difficult

to observe momentum among investment grade bonds, because they are less likely

to be affected by recovery.

To test this proposition, we estimate the performance of the momentum strategy

conditional on default shocks for subsamples with different credit risk. We follow

Avramov, Chordia, Jostova, and Philipov (2011) and assign numeric values to each

credit rating27 (1 represents AAA rating and 22 corresponds to D). We then drop high

credit risk bonds (D and lower) from the total sample and repeat our previous analysis

for this subsample. Additionally, we exclude bonds with ratings below CCC+ from

the sample and, finally, we exclude bonds rated below BBB.

The result of this approach is presented in Table 3.7. The equally-weighted

returns of the momentum strategy (based on a 6-1-6 strategy) are estimated condi-

tionally on default shocks (as defined by residuals of (3.2)). Panel A of Table 3.7

27The credit ratings of bonds are obtained from DataStream.
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presents the results for the subsample of bonds with credit ratings from AAA to C.

Consistent with our previous results, momentum in the corporate bonds market is

only significant in periods of high default shocks (41 basis points with a t-statistic

of 2.49). Furthermore, after excluding bonds with ratings below CCC+, momentum

performance declines, but remain positive and significant (27 basis points with a t-

statistics of 1.71). Finally, in Panel C, we exclude all bonds with ratings below BBB,

and the returns to the bond momentum strategy become negative for both high and

low default shock periods. First, these results support the conclusion of Jostova,

Nikolova, Philipov, and Stahel (2011) that momentum is primarily driven by high

credit risk bonds. Moreover, we extend this result by documenting a link between

momentum profits and aggregate default shocks. Note that high default shocks are

necessary for positive momentum; Panel A of Table 3.7 shows that even including

high credit risk bonds in the sample does not generate positive momentum during

periods of low default shocks.

3.4.2 CDEF Loadings by Credit Risk Group

This section continues the analysis of different credit risk groups. Jostova, Nikolova,

Philipov, and Stahel (2011) find that momentum in bonds is primarily driven by

high credit risk bonds. Therefore, we hypothesize that the spread of CDEF loadings

should disappear for the subsample of low credit risk bonds. We argue that bonds

with lower credit ratings are more sensitive to unexpected changes in aggregate de-

fault. As we discussed in Section 3.3.1, one possible explanation of the momentum

anomaly is based on bondholder recovery. However, the bondholder recovery argu-

ment is likely to be more important for high credit risk firms and in high default

states of the world. In other words, we suggest that bondholder recovery affects

performance through the aggregate and firm-level default risks.

To test this proposition, we follow the previously described methodology (Section

3.1.3). We estimate equally-weighted returns of the momentum portfolios based the
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Table 3.7
Momentum in Corporate Bonds by Credit Risk Group.

This table presents returns of momentum portfolios formed based upon a sorting procedure using aggregate default
shocks (residuals from (3.2)) over the period from 1995 to 2010. The returns generated using the momentum strategy
(6-1-6) based on equally-weighted portfolios are presented in three columns. W and L represent the portfolios
comprised of winners and losers, respectively. Momentum corresponds to the hedge portfolio (W - L). Panel A,
Panel B and Panel C contain results obtained from sorting based on the sample based on bonds with ratings from
AAA to C, AAA to CCC+, and AAA to BBB, respectively. The numbers in parentheses represent simple time-series
t-statistics for the average monthly returns.

W L W - L

Panel A. AAA to C
High Default 0.76% 0.35% 0.41%

( 4.14) (1.60) (2.49)

Low Default 0.99% 1.29% -0.30%
( 6.00) (4.64) (-1.39)

Panel B. AAA to CCC+
High Default 0.71% 0.45% 0.27%

( 3.96) (1.78) (1.70)

Low Default 0.92% 1.31% -0.39%
( 5.46) (5.34) (-1.98)

Panel C. AAA to BBB
High Default 0.78% 0.68% 0.10%

( 4.32) (3.42) (0.72)

Low Default 0.66% 1.05% -0.38%
( 3.63) (4.98) (-2.31)



91

6-1-6 momentum strategy. We then estimate the CDEF loadings (βCDEF ) for every

portfolio using (3.5) using different credit risk groups. The results of this approach

are presented in Panel A of Table 3.8. First, we estimate (3.5) for the subsample

of bonds with ratings C and higher. The CDEF loadings (βCDEFAAA−C) of losers and

winners are 0.29 and -0.41, respectively. More importantly, the difference in the

CDEF loadings between losers and winners is significant (t-statistics 2.02). This

result is consistent with our previous finding that losers are relatively safer than

winners in high default states of the world. We then repeat this analysis for the

subsample of bonds with credit ratings CCC+ and higher. In this case, the CDEF

spread between winners and losers decreases and becomes insignificant (0.48 with a

t-statistics of 1.55). Finally, we exclude from the sample bonds rated below BBB,

and the spread becomes even smaller (0.39 with a t-statistics of 1.12). Further, we

continue with the estimation of the price of conditional default risk using the Fama

and MacBeth (1973) procedure and the Shanken (1992) adjustments of standard

errors. The results are consistent with our prediction that after excluding low rated

bonds from the sample, the price of conditional default risk is no longer significant.

Taken together, our results indicate that momentum in the corporate bond market

is primarily driven by high credit risk bonds during unexpected increases in aggregate

default. Specifically, after excluding bonds with high credit ratings, the momentum

returns disappear in both high and low default periods. Moreover, the difference

between the CDEF loadings between losers and winners becomes insignificant.

3.4.3 Momentum in Government and Sovereign Bonds

Our results thus far indicate that momentum exists in corporate bonds and it is

driven by bondholder recovery in high default states of the world. We assume that

default risk of the US government bonds should approach zero. Therefore, there is

should be no difference between the CDEF factor loadings of winners and losers,

and, hence, no difference in expected returns, and no momentum.
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Table 3.8
Fama-MacBeth by Credit Group.

Panel A of this table reports loadings for the returns of each of the 10 bond momentum portfolios on the conditional
default factor (CDEF measured by the product of DEF and I, where I is an indicator function which equals to
1 if the economy is in period of high default shock (above median) and 0 otherwise) by credit risk groups. The
equally-weighted portfolios momentum portfolios are based on the 6-1-6 momentum strategy. W and L represent
the portfolios comprised of winners and losers, respectively. Momentum corresponds to the hedge portfolio (W - L).
The sample period is from 1995 to 2010. The conditional default loading are estimated from the following model -
Re

i,t = βi +βMKT
i MKTt +βTERM

i TERMt +βDEF
i ξt +βCDEF

i Cξt + εt. βCDEF
AAA−C , βCDEF

AAA−CCC+, and βCDEF
AAA−BBB

represent the CDEF loadings of the momentum portfolios based on samples with different credit risk. The t-statistics
from the regressions are based on Huber-White standard errors. Panel B presents estimated monthly premiums of
the conditional default factor based on the Fama-MacBeth procedure and using 30 portfolios sorted on momentum.
The Fama-MacBeth t-statistics calculated from the Shanken (1992) method. To be consistent with Table 3, Table 4
and the convention of return-only factor pricing models, −β’s and −CDEF are displayed.

Portfolio −βCDEF
AAA−C t-stat −βCDEF

AAA−CCC+ t-stat −βCDEF
AAA−BBB t-stat

Panel A. CDEF loadings
L -0.41 -1.71 -0.32 -1.24 -0.33 -1.25
2 -0.31 -1.14 -0.31 -1.17 -0.31 -1.60
3 -0.21 -0.96 -0.23 -1.06 -0.19 -1.04
4 -0.06 -0.29 -0.06 -0.27 -0.13 -0.68
5 -0.01 -0.07 -0.02 -0.11 -0.10 -0.53
6 0.07 0.35 0.08 0.37 0.05 0.22
7 0.12 0.48 0.11 0.45 0.03 0.14
8 0.20 0.82 0.15 0.65 0.04 0.20
9 0.22 1.16 0.17 0.66 0.10 0.44

W 0.29 1.63 0.17 0.72 0.06 0.27

W-L 0.69 2.02 0.48 1.55 0.39 1.12

Panel B. Price of conditional default risk
-CDEF 0.0037 1.98 0.0027 1.71 -.0008 -0.28
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On the other hand, sovereign bonds may have some default component, and, as

a result, different recovery rates. One of the most famous examples is the Russian

default of 1998. Similar events also unfolded in Argentina in late 2001. There is also

empirical evidence implying that sovereign bonds can be affected by default. For

example, Pan and Singleton (2008) use the data from Mexico, Turkey, and Korea

to document that the sovereign CDS spreads reflect default risk and it is related

to unpredictable future variation in credit-event arrival intensity. Hence, we argue

that momentum can exist in sovereign bond markets, because such bonds have some

default component by definition. However, we do not expect the momentum anomaly

to be large in magnitude, because the default component in sovereign bonds is rather

small. Finally, we do not expect to observe any momentum in US government bonds

due to insignificant default risk.

To test this proposition, we estimate the performance of the 6-1-6 momentum

strategy for US government and sovereign bonds. The data is obtained from the

DataStream database. We include all government bonds traded in the US market.

Following Jostova, Nikolova, Philipov, and Stahel (2011), we drop observations with

returns above 50% per month. The period of the sample is from 1995 to 2010.

Panel A of Table 3.9 documents the performance of the momentum strategy based

on US government bonds conditional on high and low default shocks. We observe

that aggregate default shocks do not affect the momentum based on US government

bonds based on the entire sample. While losers tend to outperform winners on

average, the difference is not significant (-12 basis points with a t-statistics of -

1.34). Further, it appears that in high default states the performance of winners and

losers increases; however, it increases at the same rate, and, as a result, there is no

significant momentum.

In Panel B of Table 3.9, we document the returns of losers and winners in sovereign

bonds traded in the US market, conditional on default shocks. First, we note that

the momentum anomaly does not exist for the full sample (-3 basis points with a
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t-statistics of -0.23). However, after conditioning on aggregate default, we docu-

ment positive (negative) momentum in periods of high (low) default states of the

world. Note that the difference in performance of losers and winners is only weakly

significant.

Table 3.9
US Government and Sovereign Bond Momentum Portfolio Returns
Conditional on Default Shocks.

This table documents returns on the bond portfolios formed based upon a sorting procedure conditional on aggregate
default shocks (residuals from (3.2)) over the period from 1995 to 2010.The returns to the momentum strategy (6-
1-6) based on equally-weighted portfolios are presented in the columns with t-statistics in parentheses. W and L
represent portfolios of winners and losers, respectively. Momentum corresponds to the hedge portfolio (W - L). Panel
A presents results using US government bonds. Panel B document documents this relation for sovereign bonds that
traded on the US market.

W L W - L

Panel A. US government bonds
High Default 0.68% 0.73% -0.05%

(2.72) (-0.44) (-0.41)

Low Default -0.36% -0.17% -0.20%
( -1.29) (2.21) (-1.48)

Total 0.18% 0.30% -0.12%
( 1.06) ( 1.58) ( -1.34)

Panel B. Sovereign bonds
High Default 0.31% 0.04% 0.27%

( 1.76) (0.11) (1.69)

Low Default -0.01% 0.37% -0.38%
(-0.06) (1.72) (-1.73)

Total 0.19% 0.22% -0.03%
( 1.08) ( 0.99) ( -0.23)

Overall, these results suggest that momentum is indeed related to the credit risk

characteristics of bonds. We show that there is no momentum in US government

bonds, consistent with the limited exposure of this type of asset to credit risk. On

the other hand, sovereign bonds likely incorporate some nonzero default risk, and as

a result we find weak evidence of momentum in this type of security.
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3.4.4 Wealth Transfers between Bonds and Equity Holders

This section presents evidence suggesting that recovery affects the performance

of bonds and equity of the same firm differently. Mahajan, Petkevich, and Petkova

(2011) argue that shareholders of equity losers have high bargaining power (low

tangibility) and, therefore, become relatively safer during high default states. Using

the same intuition, we propose that bond losers should have high bondholder recovery

(high tangibility), which should lead to lower expected returns during periods of high

default shocks.

First, we test the prediction of the theoretical model suggesting that recovery

effects are more pronounced during high default states of the world. The probability

of bankruptcy in these states is higher on average and, therefore, potential recovery

concerns become important. Second, we examine the wealth transfer hypothesis.

We propose that an increase in tangibility leads to higher risk and expected stock

returns because of decreasing shareholder bargaining power in periods of high default

shocks. On the other hand, we expect that bond returns decline in tangibility,

because lower tangibility is equivalent to lower bondholder recovery (given that these

are debt and equity holders of the same firms, low bondholder recovery also means

high shareholder bargaining power), leading to higher risk and expected bond returns.

In other words, during periods of high default shocks, we should observe a wealth

transfer from equity (bond) to bond (equity) holders if tangibility is low (high).

To test these propositions, we match the returns of bonds and equity for firms in

the sample. We then sort firms into quintiles based on their tangibility (as defined in

(3.14)) and estimate equally-weighted returns of bonds and equity for these portfolios.

Using (3.2), we split the sample into periods of low and high default shocks using

previously described cumulative recursive procedure and calculate the returns of the

portfolios conditional on default shocks.

Table 3.10 presents the results of this analysis. We find the evidence support-

ing the theoretical prediction that both equity and debt returns of low and high
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tangibility portfolios do not differ significantly during periods of low default shocks.

Specifically, we show that the difference in stock returns between high and low tan-

gibility companies is -34 basis points with a t-statistic of -0.69. Similarly, we find

that tangibility does not affect the bond returns of the firms in low default states

(the difference is -3 basis points with a t-statistics of -0.31). In other words, recovery

does not affect firms’ performance if the economy experiences unexpected declines

in aggregate default.

On the other hand, during the high default states of the world, we observe that

bond returns decrease and stock returns increase as tangibility increases. In partic-

ular, Panel B of Table 3.10 shows that the bonds of low tangibility firms outperform

the bonds of high tangibility firms by 23 basis points on average. Furthermore, equity

performance of high tangibility firms is 93 basis points higher than of low tangibility

firms. The difference between performance of high and low tangibility firms is statis-

tically significant in both cases. This result supports our proposition that tangibility

drives the returns of both bonds and equity, and in the opposite direction, in periods

of high default shocks. As we already discussed in Section 3.3.1, bond losers have

higher bondholder recovery (higher tangibility) than winners. Therefore, bond losers

become safer during the periods of high default states of the world partially due to

risk shifting from bond to equity holders. Similarly, bond winners become relatively

riskier due to risk transfer from equity and bond holders.

More importantly, these results provide evidence of wealth transfers between bond

and equity holders that are concentrated in periods of high default shocks. Figure

3.2 documents that bondholders have positive returns and shareholders have nega-

tive returns for low tangibility firms (high shareholder recovery and low bondholder

recovery). Given that these are matched by company, shareholders appear to earn

lower returns while the return to bondholders increases. This implies that low ex-

pected liquidation value in periods of high default shifts risk from equity to bond

holders. It is likely that bondholders of firms with a low concentration of tangible
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Table 3.10
Tangibility and Performance of Bond and Equity Conditional on Default Shocks.

This table documents the performance of equity and bonds conditional on default shocks. To comprise the sample
we matched bonds and equity of the same firms and sorted them based on tangibility (as defined in (3.14)). Low
(high) tangibility portfolio is based on the firms with bottom (top) 20% of tangibility. High and low aggregate default
shocks are defined based on residuals from (3.2)). Panel A presents the equally-weighted equity and bond returns
of high and low tangibility firms during periods of low default shocks. Panel B present a similar analysis for high
default shocks. The sample period is from 1995 to 2010. The numbers in parentheses represent simple time-series
t-statistics.

Low Tng High Tng Low - High Tng

Panel A. Low default shocks
Bond returns 0.81% 0.84% -0.03%

(-0.31)

Equity returns 2.13% 2.47% -0.34%
(-0.69)

Panel B. High default shocks
Bond returns 0.70% 0.48% 0.23%

(2.68)

Equity returns -0.28% 0.65% -0.93%
(-1.99)
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Fig. 3.2. Performance of Bonds and Equity Conditional on Tangi-
bility and Default Shocks.

This figure documents returns on tangibility portfolios (1 corresponds to lowest quintile and 5 represent the highest
quintile of tangibility) conditional on aggregate default shocks over the period 1995 - 2010.

assets have higher risk due to lower bondholder recovery and, therefore, claim higher

returns in periods of high default shocks. To summarize, we show that the recovery

effect is asymmetric in that it is more important in high default states of the worlds.

More importantly, we document that one of the possible reasons of momentum in

the corporate bond market is risk shifting from equity to bondholders.

3.4.5 Reversal

The previous empirical literature shows that equity losers keep outperform equity

winners for nearly one year after the formation period. For example, Jegadeesh and
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Titman (2001) document a momentum reversal after the first year.28 This evidence

implies that equity winners only temporary outperform losers. If momentum exists

in equity, it is possible that the same effect persist in the corporate bond market. To

best of our knowledge no other work analyzed long-term reversal in corporate bond

returns.

Figure 3.3 presents cumulative momentum performance over a 20-month post

formation period. First, we estimate performance every month t from January 1960

to December 2010, we calculate the difference between average returns of losers and

winners for month t + k, where k = +1, . . . ,+20. We then estimate cumulative

momentum profits starting from month 1.

According to Figure 3.3, cumulative momentum performance keeps increasing

for the first 10 months after the formation period. However, from month 11 through

19, it consistently decline and at month 20 it becomes negative. Even though, the

magnitude of the observed reversal is not high (almost 2% at the 10th month), the

pattern is similar to the equity reversal effect documented by Jegadeesh and Titman

(2001) and Griffin, Ji, and Martin (2003).

To summarize, we find long-term reversal in the corporate bond market. However,

we have to admit that our analysis is based on the limited sample of bonds available

from the DataStream database. It is possible that extending the time-series and

including more observations in the sample can change this result.

3.5 Concluding Remarks

Does momentum exist in bond markets? A recent paper by Jostova, Nikolova,

Philipov, and Stahel (2011) shows momentum in corporate bonds exists and is pri-

marily driven by high credit risk bonds. However, Khang and King (2004) and

28Griffin, Ji, and Martin (2003) document similar findings.
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Fig. 3.3. Long-term Reversal in Corporate Bond Returns.

This figure documents cumulative returns of the momentum portfolio 20 months after the formation period.



101

Gebhardt, Hvidkjaer, and Swaminathan (2005b) do not find significant momentum

in the bond market. We reconcile this conflicting evidence by showing that momen-

tum does exist in bond markets, but is only found in financially distressed bonds

during high default states of the world. Our results indicate that momentum in

the corporate bond market is related to aggregate default risks, and we show that

momentum returns are primarily observed in periods of high default shocks and are

essentially non-existent otherwise.

A central prediction of the paper is that bonds losers and winners have different

exposures to unexpected changes in aggregate economy-wide default shocks. Indeed,

we show that the CDEF spread between winners and losers is positive and significant.

Furthermore, it appears that the conditional default factor is priced in the cross-

section of bond momentum portfolios and has a positive premium. Taken together,

these results suggest that winners are relatively riskier than losers in periods of high

default shocks, and, therefore, the bondholders of winners face higher risk and require

higher returns during these periods.

Mahajan, Petkevich, and Petkova (2011) provide a risk-based explanation of the

momentum anomaly in the equity market by documenting that this phenomenon is

driven by shareholder recovery and financial distress. We extend this empirical anal-

ysis to the corporate bond market, and our results suggest that momentum in bonds

is driven by bondholder recovery. In addition, we offer a theoretical explanation to

our findings. Specifically, we find that winners have lower bondholder recovery than

losers, and, therefore, become relatively riskier in high default states of the world,

leading to higher expected returns, while the opposite is true for losers. Using the

same argument, we propose that bondholders of winners require a higher recovery

premium during periods of high default shocks when the risk of actual liquidation

increases across the board. On the other hand, during low default shocks recovery

become less important, because of lower threat of liquidation. Motivated by these re-

sults, we analyze the potential wealth transfer between bond and equity holders due
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to recovery. Our results support the hypothesis that bonds winners become riskier in

periods of high default, due in part to the risk transfer from equity to bondholders.

One possible direction of future research is to explore whether recovery is corre-

lated among different types of assets. Further, it would be interesting to examine

whether the conditional default factor affects the expected returns of securities in

the commodities and currencies markets.
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4. CONCLUSIONS

In this dissertation, we address two research questions. First, we study the rela-

tion between aggregate-level default and momentum. Second, we investigate whether

momentum exits in the corporate bond market.

There are two main findings in the first essay. First, we document that mo-

mentum profitability is concentrated in periods of high default shocks. Specifically,

losers have low expected returns in states of high aggregate default. Since high de-

fault shocks occur both in expansions and recessions, it is not the general state of

economic conditions that drives momentum profitability. This result is in contrast

with previous studies that document that momentum profits are more pronounced

during expansions. Second, we provide a possible risk-based explanation to this be-

havior based on shareholder bargaining power. We do this by relying on a model by

Garlappi and Yan (2011) that links the default characteristics of a firm to its share-

holders’ bargaining power in bankruptcy negotiations. According to our results,

losers are stocks with high shareholder recovery potential. Therefore, they require

relatively lower returns during periods of high default shocks. As noted earlier, the

low expected return of losers in times of high default drives the profitability of the

momentum strategy during those periods.

In the second essay we present evidence suggesting that momentum exists in

the corporate bond market. We document that momentum returns are primarily

observed in periods of high default shocks and are essentially non-existent otherwise.

Further, we show that the CDEF spread between winners and losers is positive and

significant. Furthermore, it appears that the conditional default factor is priced in

the cross-section of bond momentum portfolios and has a positive premium. Taken

together, these results suggest that winners are relatively riskier than losers in periods

of high default shocks, and, therefore, the bondholders of winners face higher risk and

require higher returns during these periods. We also provide a risk-based explanation
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to this finding using bondholder recovery. According to our findings, winners have

lower bondholder recovery than losers. Therefore, bondholders of winners require

a higher recovery premium during periods of high default shocks when the risk of

actual liquidation increases across the board. On the other hand, during low default

shocks recovery becomes less important, due to lower threat of liquidation. Finally,

we present evidence suggesting that reversals also exist in bonds.
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