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ABSTRACT 

 

Modeling Density Effects in CO2 Injection in Oil Reservoirs and a Case Study of CO2 

Sequestration in a Qatari Saline Aquifer. (August 2011) 

Tausif Khizar Ahmed, B.S., Texas A&M University at Qatar 

Co-Chair of Advisory Committee: Dr. Steve Holditch 
         Dr. Hadi Nasrabadi 

 

CO2 injection has been used to improve oil recovery for several decades. In recent years, 

CO2 injection has become even more attractive because of a dual effect; injection in the 

subsurface 1) allows reduction of CO2 concentration in the atmosphere to reduce global 

warming, and 2) improves the oil recovery.  

 

In this study, the density effect from CO2 dissolution in modeling of CO2 injection is 

examined. A method to model the increase in oil density with CO2 dissolution using the 

Peng-Robinson equation of state and the Pedersen viscosity correlation is presented. 

This method is applied to model the observed increase in oil density with CO2 

dissolution in a West Texas crude oil. Compositional simulation of CO2 injection was 

performed in a 2D vertical cross section and a 3D reservoir with the density effect. The 

results show that the density increase from CO2 dissolution may have a drastic effect on 

CO2 flow path and recovery performance. One main conclusion from this work is that 

there is a need to have accurate density data for CO2/oil mixtures at different CO2 

concentrations to ensure successful CO2 injection projects.  



 iv

 

While CO2 enhanced oil recovery (EOR) is part of the solution, saline aquifers have the 

largest potential for CO2 sequestration. A literature review of the CO2 sequestration in 

saline aquifers is performed. The dominant trapping mechanisms and transport processes 

and the methods used to model them are discussed in detail. The Aruma aquifer, a 

shallow saline aquifer in southwest Qatar is used as a case study for CO2 sequestration. 

A compositional simulation model is prepared for the Aruma aquifer using the available 

log data and flow test data. It was found that the grid size is a key parameter in modeling 

CO2 sequestration accurately. It affects the propagation of the CO2 plume and amount of 

CO2 dissolved in brine.  
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1. INTRODUCTION: THE PROBLEMS ADDRESSED 

1.1 Introduction 

The combustion and flaring of fossil fuels produces large quantities of CO2. The 

Intergovernmental Panel on Climate Change (IPCC 2007) stress the need to control 

anthropogenic greenhouse gases in order to mitigate the climate change that is adversely 

affecting the planet. They report that over the last three decades CO2 emissions have 

been growing at a rate of 1.9% per year . Atmospheric CO2 concentrations have 

increased by 100 ppm in comparison to its preindustrial level, reaching 379 ppm in 

2005. Geologic storage of CO2 would be to sequester CO2 captured from anthropogenic 

sources, such as power plants, oil refineries and chemical plants. Value added geologic 

sequestration would include injecting CO2 for enhanced oil recovery. However it is 

important to understand the dynamics of CO2/ crude oil at reservoir conditions and 

predict fluid properties accurately. The impact of modeling this behavior will be 

discussed in this study.  

 

The largest, but least defined sources of geologic storage possibilities lies in saline 

aquifers (Beecy and Kuuskraa 2001). Firoozabadi and Cheng (2010) estimate that  about 

2 × 104 gigatons can be stored in saline aquifers in the United States and Canada 

alone.These formations have the advantage of being close to many CO2 emission 

sources.   

_____________________ 
This thesis follows the style and format of SPE Reservoir Evaluation and  Engineering. 
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This study briefly reviews density effects  and investigates the sequestration potential of 

CO2 in a shallow saline aquifer in Qatar.  

 

1.2 CO2 in Enhanced Oil Recovery 

The CO2 enhanced oil recovery (EOR) has been applied in petroleum production for 

many years. The first large-scale, commercial CO2 EOR project began operations in 

1972 at the SACROC field in West Texas, and continues to this date (Sweatman et al. 

2009). A large number of CO2 EOR projects have started since then. Based on the 2010 

EOR survey by the Oil and Gas Journal there are a total of 129 projects globally (120 of 

them in the US and Canada). In the US alone, CO2 injection has accounted for the 

recovery of about 1.5 billion barrels of oil. CO2 injection in oil reservoirs (for 

sequestration purposes) has also become more attractive from a global warming 

standpoint. The increase in CO2 concentration in atmosphere due to burning fossil fuels 

and deforestation may be one of the main causes for the acceleration of global warming. 

Since fossil fuels will be a critical component of world energy supply for the coming 

decades, methods for disposal of CO2 that do not involve long residence of CO2 in the 

atmosphere (such as injection in oil and gas reservoirs) are considered as part of a 

possible solution. 

 

CO2 injection may improve oil recovery through three main mechanisms: 1) swelling, 2) 

reducing viscosity, and 3) decreasing residual oil saturation. Diffusion of CO2 in the oil 
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phase may also contribute to recovery in highly heterogeneous and fractured reservoirs 

(Hoteit and Firoozabadi 2009). 

 

In CO2 injection schemes, the minimum miscibility pressure (MMP) from 1D horizontal 

slim-tube measurements is often thought to be a key parameter. The MMP is defined as 

minimum pressure that is required to achieve multiple contact miscibility between the 

injected fluid and oil at the reservoir temperature. However, the flow path may be very 

different in a slim tube and in a reservoir. 

  

In a slim-tube experiment, a long (say 10 m or longer) small diameter (say 0.5 cm) tube 

packed with sand or glass beads is saturated with oil that is then displaced by injection 

gas at a fixed pressure and temperature. The oil recovery after injection of some fixed 

amount of gas (usually 1.1 or 1.2 pore volume) is measured at different pressures. 

Typically, recovery increases with an increase in pressure and then levels off. In a 

recovery vs. pressure plot, the MMP is usually taken to be the point where the recovery 

starts to level off. The measured MMP from slim tube is used for the purpose of field 

evaluation or tuning equations of state.  

 

The question is how relevant slim tube MMP is to performance of CO2 injection in 2D 

and 3D reservoirs. The slim tube, because of its small diameter, represents a 1D 

horizontal flow. The flow in reservoir conditions even in homogenous domains is 2D or 

3D. As CO2 dissolves in the oil, the density often increases. On the other hand, when a 
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gas phase evolves from mixing of CO2 and the oil, the gas phase is often lighter than 

CO2 and the oil. The evolved gas phase moves upward due to buoyancy. These density 

effects under the influence of gravity in reservoir conditions will change the flow path 

from 1D to 2D or 3D. In a 1D slim tube, there is no gravity effect. 

 

There has been extensive research on the effect of CO2 dissolution on oil viscosity and 

many correlations have been developed. Density effects from mixing have not been 

taken into account in the past; they often are ignored in modeling of CO2 injection 

(Bangia et al. 1993; Cardenas et al. 1984; Johnston 1988; Palmer et al. 1984; Perry 

1982) . A clear example of neglect of density effect is the pilot performance in the 

Weeks Island from CO2 injection, which showed  an early breakthrough of injected CO2  

(Johnston 1988). A number of other papers which are based on the assumption that when 

the injected CO2 is lighter than the oil, the CO2 injection is a stable gravity drainage 

process (Bangia et al. 1993; Cardenas et al. 1984). As will be shown in this study, this 

may not be true when the permeability is high.  CO2 dissolution in water also results in a 

density increase (Garcia 2001; Han and McPherson 2009; Tabasinejad et al. 2010). The 

density increase in water may have a significant effect on the mixing and the flow path 

and affects the sequestration potential (Farajzadeh 2008; Firoozabadi and Cheng 2010). 

 

In this study, literature on change in density from CO2 dissolution in a petroleum fluid is 

first briefly reviewed. The procedure to model the density increase from CO2 dissolution 

(while preserving the viscosity reduction effect) using the Peng-Robinson equation of 
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state (Peng and Robinson 1976) is then discussed. The density effect is then examined 

for CO2 injection in a 2D vertical cross section and in a 3D reservoir and the results are 

compared for cases with and without the density increase. This effect is investigated in: 

homogenous 2D domains with two different permeabilities and a heterogeneous 3D 

domain with random permeability distribution. 

 

1.3 CO2 Sequestration in Saline Aquifers  

Studies on CO2 sequestration in saline aquifers have been performed since the early 

90’s. The first study of the reservoir simulation of CO2 sequestration in a saline aquifer 

reported by van der Meer (1992). In the geological considerations for the storage site, he 

stated that an aquifer must be at a depth of at least 800 m for the injected CO2 to remain 

in the supercritical state. This constraint has been followed in all the published work 

since. Gravity segregation and viscous fingering were found to be dominant CO2 water 

displacement mechanisms. 

 

Holt et al. (1995) used a black oil simulator to model CO2 sequestration. Their aquifer 

model consisted of 4800 grid blocks and permeabilities ranged from 100-2000 mD with 

an average of 340 mD. The ratios between vertical and horizontal permeabilities varied 

from 0.02 to 0.045. The reservoir pressure and temperature was set to 2900 psi and 144 

°F.  The base case model has a CO2 injection rate of 1.6 PV/year and the injection well 

was perforated through all layers.  Based on the simulation results, they concluded that 

CO2 storage in a heterogeneous aquifer depends strongly on injection rate and 
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permeabilities. An injection rate below 0.4% PV/year gave gravity stabilized 

displacement and high storage capacity (>30%). At rates of 1.6% PV/year and higher, 

the storage capacity became 16% PV and was rate independent.  

 

Pruess et al. (2003) studied the amount of CO2 that can be trapped into the various 

phases (gas, aqueous, and solid) for a range of conditions encountered in typical disposal 

aquifers.  They estimated the combined storage capacity of CO2 at 30 kg per unit of 

reservoir volume.  

 

Kumar et al. (2005) performed simulation studies using the GEM compositional 

simulator to study CO2 storage in saline aquifers. Simulations of a few decades of CO2 

injection followed by several thousand years of natural gradient flow were done. They 

concluded that the effect of residual gas on CO2 storage was significant compared to 

storage in brine or minerals. Injecting CO2 from the bottom half of the aquifer enhanced 

residual trapping and reduced the amount of mobile gas before it migrated to the aquifer 

seal. They also found that injecting water after the CO2 injection period increases the 

storage capacities of solubility and mineral trapping. 

 

Ennis-King and Paterson (2005) studied the role of convective mixing in the long-term 

storage of CO2 in deep saline aquifers.  The density of formation water increases upon 

dissolution with CO2 which creates density instability.  They used linear stability 

analysis to estimate when this instability would occur in anisotropic systems. This was 
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compared with numerical simulations performed using the TOUGH2 simulator. The 

simulator used a detailed equation of state (EOS) for CO2-brine systems on a 2D grid 

500 m wide (50 grid blocks) and 400 m thick (100 blocks refined to 0.5 m at the top). 

The pressure at the top was 2610 psi and the temperature was 172 °F. They found that 

the time required for the convective instability to begin ranges from less than a year to 

hundreds of years depending on the permeability. This time is less than the total time 

required to dissolve CO2 in a typical storage project, which can be up to tens of 

thousands of years. 

 

Bryant et al. (2008) investigated whether the intrinsic instability of buoyancy driven 

flow leads to fingering of CO2. The mechanisms governing this type of displacement 

were studied in a series of fine grid simulations with a finite volume of CO2 placed at the 

bottom of a 2D aquifer and only buoyancy driving the displacement. The GEM-GHG 

simulator was used in this study and simulation used 40,000 grid blocks. There were 

several fine-scale geostatistical realizations of permeability and the effect of capillary 

pressure and dip angle were also investigated. They found that CO2 rises along 

preferential flow paths that are a consequence of rock properties (permeability, drainage 

capillary pressure curve and anisotropy). Capillary pressure broadens the lateral extent 

of the flow paths.  

 

Burton et al.(2008) developed an analytical model using Darcy’s Law and a modified 

form of the Buckley-Leverett theory. The long term injection of CO2 dries out the near-
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wellbore region. Drying removes the water from the near wellbore region but also 

precipitates salts altering the permeability.  From their model, they concluded that 

quantifying the relative permeability curve is very important in determining achievable 

injection rate and therefore determining the well count for CO2 sequestration projects. 

The well count in return strongly affects the economics of sequestration projects.  

 

More recently, storage in shallow saline aquifers has also been investigated. Tiamiyu et 

al. (2010) used CMG-GEM in a study to find the optimal combination of operational 

parameters: injection rates, well completion types, and brine withdrawal strategy to 

harness CO2 storage potential and leakage risk mitigation in shallow saline aquifers. The 

motivation behind this study was that deep saline aquifers may not always be present 

near the CO2 source. The aquifer top was set at 550 m (1804 ft.) and the initial reservoir 

pressure of 810 psi was used. This is well below the critical pressure of CO2. They found 

that the potential of CO2 storage in shallow saline aquifers can be greatly enhanced using 

brine withdrawal. Using horizontal wells that completed in the bottom of a moderately 

heterogeneous aquifer helps mitigate CO2 leakage through the cap rock. Well perforation 

and orientation while having a negligible effect on CO2 injectivity, extended the 

injection period until the aquifer reached the maximum allowable injection pressure. 

 

Many of the studies discussed above assume a constant pressure outer boundary.  

Economides and Ehlig-Economides (2009) through a simple analytical model showed 

that assuming a constant pressure boundary neglects the critical point that reservoir 
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pressure will build up under a constant injection rate. They concluded that CO2 can 

occupy no more than 1% of the pore volume. Barrufet et al. (2010) performed a 

comparison study of the CO2 storage capacity between a depleted gas condensate 

reservoir and equivalent saline aquifer. They found that due to the low overall 

compressibility of aquifers, the mass of CO2 sequestered per pore volume is 

approximately 13 times lower than that of a depleted gas condensate model. However, 

due to their large extent, aquifers still can provide storage for significant volumes of 

CO2.  

 

First-order finite difference methods present numerical dispersion errors unless very fine 

gridding is used. This can be computationally expensive. Moortgat and Firoozabadi 

(2010) modeled two phase compositional flow in anisotropic media using a combination 

of high-order finite element methods. They used the mixed hybrid finite element method 

to solve for pressure and fluxes, and the discontinuous Galerkin method to update the 

mass transport. This method reduced numerical dispersion, captured shock fronts more 

accurately and lowered the dependence on mesh quality and orientation. By using this 

higher-order method, coarser meshes can be used at a lower CPU cost, compared to 

traditional finite difference methods. In a later work (Moortgat et al. 2011), they also 

suggested the use of cubic-plus-association (CPA) equation of state, instead of Henry’s 

law to more accurately model the effect of cross association of water and CO2 molecules 

on phase behavior.  
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1.3.1 Field Injection Studies 

The Sleipner project in offshore Norway is the world’s first commercial-scale CO2 

storage project injecting CO2 in the sands of the Utsira formation at 1million tons per 

year (Gale et al. 2001).  The Utsira formation is a moderately sorted, uncemented sand 

that has a high porosity The Saline Aquifer Carbon Dioxide Storage (SACS) project 

consisted of the Statoil and partners along with several independent research 

organizations to plan and monitor the storage of CO2. They performed a simulation 

study using a modified black oil simulator. The reservoir pressure ranged from 8 to 10 

MPa (1160 - 1450 psi) and temperature of 37 °C (98.6 °F). The formation porosity 

ranged from 27 to 30 % and permeability from 1 to 8 Darcy. Results of the injection 

planning studies revealed that CO2 should be injected near the bottom of the formation 

to minimize areal distribution and maximize the dissolution in formation water. Up to 

18% of the CO2 injected was dissolved in the formation water. They predicted that the 

maximum extension of CO2 after 20 years would be 3 km and supercritical conditions 

resulted in wider distribution of free CO2.  

 

1.3.2 Sources of CO2 in Qatar 

In 2009, Qatar produced 3,154 billion cubic feet (Bcf) of natural gas which is 

approximately 8.6 bcf/day. The natural gas produced from the North field, Qatar’s 

largest gas field, consists of 3.5 wt% CO2 (Whitson and Kuntadi 2005). If the average 

gas density is 0.05 lb/ft3, then this translates to 2.54 million metric tons (tonnes) of CO2 

produced every year. The average daily design injection rate for CO2 sequestration in 
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this case would need to be 132 million SCF/day. This rate was calculated by noting that 

1 million tons is 50,045,455 lbmoles of CO2, and 1 lbmole of CO2 occupies 379.4 SCF 

at standard conditions (House et al. 2003). 

 

Real estate development in Qatar during recent years has also led to an increase in 

cement production. Producing 1 tonne of cement generates 0.83 tonnes of CO2. But 

fossil fuel combustion still remains the largest source of CO2 emissions. According to 

the Carbon Dioxide Information Analysis Center (CDIAC), Qatar produced 17.1 million 

tonnes of CO2 in 2007 (Fig. 1.1), out of which 10 million tonnes were produced from 

combustion of gas fuels. Cement production emitted 340,000 tonnes of CO2. Qatar has 

the highest per capita emissions of CO2 in the world (14.02 tonnes). Comparatively, the 

US ranks as the 11th highest CO2 emitter per capita (5.2 tonnes). There is a need for CO2 

mitigation in Qatar. 
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Fig. 1.1 —Fossil-Fuel CO2 Emissions for Qatar from 1949 to 2007. (CDIAC 2007) 
 
 

1.4 Review of Sections  

Section 2 describes the process of modeling the abnormal density behavior seen in 

CO2/crude oil mixtures.  A brief literature review about effect of CO2 solubility on oil 

density is presented. A fluid model for the GEM compositional simulation is then 

developed.  
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Section 3 describes the 2D and 3D models developed for the GEM simulator. The fluid 

model capturing the density increase is compared with the default model. The effect of 

injection depth is also investigated in homogenous and heterogeneous models. 

 

Section 4 discusses the transport processes and trapping mechanisms involved in CO2 

sequestration.  

 

Section 5 discusses the development of a CO2 sequestration reservoir model for a saline 

aquifer in Qatar. The geology of the Aruma aquifer along with the data used to build the 

base case model is described briefly. The effects of diffusion are also investigated. 

 

Section 6 outlines conclusions and recommendations for further work.  
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2. MODELING THE ABNORMAL DENSITY BEHAVIOR IN CO2/CRUDE 

OIL MIXTURES 

 

2.1 Effect of CO2 Solubility on Oil Density  

There are several published data that report an increase in liquid hydrocarbon density 

upon CO2 dissolution. Lansangan and Smith (1993a) have found that mixtures of CO2 

and a West Texas crude oil show monotonic viscosity decrease and the density increase 

with increased CO2 concentration. They suggest that the increase in density might be 

caused by strong intermolecular Coulombic interactions between CO2 and hydrocarbon 

molecules.  

 

DeRuiter et al. (1994) studied the solubility and displacement of viscous crudes with 

CO2 and have found that the oils exhibit an increase in density due to CO2 solubility. 

The two samples in their study with API gravities of 18.5 and 14 exhibited an increase in 

density upon CO2 dissolution. In a study of a West Texas crude oil, Grigg (1995) 

observed a 2% increase in oil density (after the addition of CO2 and before the phase 

split) while the viscosity decreased. After the phase split, the traditional viscosity-density 

relationship was observed; viscosity increased (decreased) when density increased 

(decreased).  

 

Ashcroft and Ben-Isa (1997) report on the effect of dissolved air, nitrogen, oxygen, 

methane, and carbon dioxide on the densities of liquid hydrocarbons. The hydrocarbons 
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include heptanes, octane, nonane, decane, dodecane, tetradecane, hexadecane, 

cyclohexane, methylcyclohexane, and methylbenzene (toluene). Their data shows that 

saturation of hydrocarbon liquids with gases other than CO2 results in a decrease in 

density while saturation with CO2 causes an increase in density.  

 

2.2 Fluid Selection 

As discussed in the previous section, there may be an increase in oil density and a 

decrease in viscosity with CO2 dissolution. Lansangan and Smith (1993b) report density 

and viscosity measurement trends for oil samples from West Texas. The fluid sample 

(RO-B) from their paper was used in this study as it shows relatively high increase in 

density (about 5%) with CO2 dissolution. They report a density of 0.74 g/cc and 

viscosity of 0.77 cp at 1700 psia and 116 °F for this fluid.  

 

2.3 Fluid Characterization 

The CMG WINPROP software is used to match the density and viscosity of the oil 

sample by performing regression on critical properties, binary interaction coefficients, 

and shift parameters for the heavy fractions and viscosity correlation parameters. In this 

work, the Peng-Robinson EOS is used to calculate phase behavior, and density (with 

volume shift parameters) and the Pedersen et al. (1987) correlation to calculate viscosity. 

To improve the accuracy of predictions, the original C7+ heavy fraction (reported by 

Lansangan and Smith (1993b)) was split into three pseudo-components.  
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Table 2.1 lists the fluid composition with the heavy fraction split and Table 2.2 shows 

the measured density and viscosity with CO2 dissolution in single phase. The calculated 

density and viscosity of the CO2/oil mixtures for increasing CO2 solubility using the 

tuned EOS parameters are reported in Table 2.3. To predict the increasing density trend, 

the volume shift parameter of CO2 was modified. By changing the CO2 volume shift 

parameter, the density increase in the fluid from CO2 dissolution can be modeled without 

affecting the calculated viscosity. This is due to the fact that in the Pedersen correlation 

the viscosity of the mixture depends on the viscosity (and density) of a reference 

component (usually methane) and other factors that are independent of mixture density. 

Therefore, modifying the shift parameter of CO2 does not affect the viscosity of the 

mixture. 

 

 
Table 2.1 – Fluid composition  

(Fluid ‘RO-B’ from Lansangan and Smith 
(1993b)) 

 

Components 
Initial composition 

(mole fraction) 
CO2 0.0220 
C1 0.2228 
C2 0.1285 
C3 0.1235 
C4 0.0819 
C5 0.0386 
C6 0.0379 

C7-12 0.1301 
C13-21 0.1085 
C22+ 0.1062 
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Table 2.3 – Fluid critical properties and other relevant data 

 

Components Tc (K) 
Pc 

(atm) 
MW 

(g/mole)
ω 

BIC 
CO2 -compi 

BIC 
C1 -compi 

CO2 304.2 73.76 44.01 0.2250 0.000 0.100 

C1 190.6 46.00 16.04 0.0080 0.100 0.000 
C2 305.4 48.84 30.07 0.0980 0.100 0.003 
C3 369.8 42.46 44.10 0.1520 0.100 0.009 
C4 425.2 38.00 58.12 0.1930 0.100 0.015 
C5 469.6 33.74 72.15 0.2510 0.100 0.021 
C6 507.5 32.89 86.00 0.2750 0.100 0.025 

C7-12 569.6 21.11 126.19 0.3462 0.100 0.038 
C13-21 790.3 15.00 218.64 0.4636 0.080 0.070 
C22+ 1075.4 9.65 442.38 0.8050 0.100 0.129 

 

 

2.3.1 Basis for Modification of CO2 Volume Shift Parameter 

The CO2 density is calculated using the Peng-Robinson EOS with the default volume 

shift parameter that WINPROP uses. This data is compared to the isothermal CO2 

density data at 116 °F from the National Institute of Standards and Technology (NIST). 

 
Table 2.2 – Measured density and viscosity vs. CO2 composition in 
CO2/oil mixture (Fluid ‘RO-B’ from Lansangan and Smith (1993b)) 

 

CO2 composition measured viscosity 
(cp) 

measured density 
(g/cc) 

0.022 0.770 0.744 

0.034 0.683 0.745 

0.1506 0.530 0.749 

0.3498 0.419 0.761 

0.5482 0.380 0.782 
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NIST uses an equation of state developed for CO2 by Span and Wagner (1996) with 

estimated density uncertainty ranging from 0.03% to 0.05%.  The correlation of Jhaveri 

and Youngren (1988), used in many commercial simulators (including WINPROP) to 

calculate the volume shift parameters, may not be accurate for CO2. The default volume 

shift parameter by the Jhaveri and Youngren correlation underestimates the density as 

the pressure increases (Fig. 2.1). At 1700 psi and 116 ˚F, the correct CO2 volume shift 

parameter is found to be 0.2569 which is significantly different from the value given by 

the Jhaveri and Youngren correlation (-0.09434). To model the increasing oil density 

with CO2 dissolution, the initial oil density (without CO2) is first matched by adjusting 

the volume shift parameters of the heavy fractions. Then the CO2 volume shift parameter 

is adjusted based on the pure CO2 density. 
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Fig. 2.1 —Density of pure CO2 at 116 ˚F from 1000-2000 psi (from the NIST Chemistry 
WebBook). The CO2 density calculated with the Peng-Robinson EoS using the default 
volume shift parameter and an optimum value are compared against the NIST data. 
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Table 2.4 lists the volume shift parameters of different components for the default case 

(decreasing density with CO2 dissolution) and for the proper prediction of density 

(increasing density with CO2 dissolution). Using the default CO2 volume shift parameter 

gives an 11.7% difference in the value of pure CO2 density at 1700 psia and 116 ˚F as 

can be seen in Fig. 2.1. Table 2.5 lists the Pedersen et al. correlation for viscosity model 

parameters. The results of density and viscosity predictions using parameters listed in 

Tables 2.3-2.5 are compared with measured values in Fig. 2.2. The densities and 

viscosities shown in Fig. 2.2 are the single phase liquid and two-phase liquid densities 

and viscosities. The phase-split occurs when the overall CO2 mole composition is 

approximately 0.55. The calculated data match the increasing density trend in the single 

phase quite well but deviate when in the two-phase liquid region (max error of 7.8%). 

This can also be partially due to error in the two-phase composition measurements and 

limited available data to characterize EOS parameters.  
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Table 2.4 – Volume shift parameters  

 

Components 
Default 

(decrease in density 
with CO2 dissolution) 

Adjusted 
(increase in density 

with CO2 dissolution) 
CO2 -0.09434 0.2569 
C1 -0.15386 -0.15386 
C2 -0.1021 -0.1021 
C3 -0.0733 -0.0733 
C4 -0.05706 -0.05706 
C5 -0.03446 -0.03446 
C6 -0.00499 -0.00499 

C7-12 0.065225 0.1000 
C13-21 0.14672 0.1900 
C22+ 0.06936 0.4700 

 

 

 
Table 2.5 – Parameter values for Pedersen et al. (1987) viscosity 

correlation 
 

MW mixing 
rule 

coefficient 

MW mixing 
rule 

exponent 

Coupling factor 
correlation 
coefficient 

Coupling factor 
correlation 

density 
exponent 

Coupling 
factor 

correlation 
MW exponent

0.0001304 2.303 0.007378 1.847 0.5173 
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Fig. 2.2 —Variation of density and viscosity with overall CO2 composition (mole fraction) 
in CO2/oil mixtures for: Oil ‘RO-B’ (Table 2.1), P = 1700 psi, T = 116 °F. Measured values 
are from Lansangan and Smith (1993b). Computed density values are based on adjusted 
volume shift parameters. 
 

 

2.4 Validation of the Fluid Model through MMP Simulation 

The characterized fluid is used to saturate a slim tube simulation model to validate the 

MMP. Data from Yellig and Metcalfe (1980) are used to simulate the slim-tube 

experiment. These authors employ a stainless steel tube with length of 40 ft (12.2 m) and 

diameter of ¼-in. (6.3 mm) packed with 160-200 mesh sand. They report a permeability 

of approximately 2.5 Darcy and pore volume of 85 cm3. A constant injection rate of 

0.00305 ft3/day is used (Yellig and Metcalfe 1980) to carry out the simulation runs for 

pressures ranging from 1100-2500 psi. Uniform initial composition and initial pressure 

are assumed. The oil recoveries at 1.2 PVI are plotted for each pressure (Fig. 2.3). A 

MMP of around 1650 psi is obtained. This is very close to the reported value of 1700 psi 

for this oil sample. Lansangan and Smith (1993b) do not report other measurements 
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related to fluid properties such as saturation pressure but based on the density, viscosity, 

and MMP comparisons between experimental and simulated data, the characterized fluid 

is representative of the original reported fluid. 

 

 
 
Fig. 2.3 —MMP validation of the characterized reservoir fluid RO-B in a slim tube 
simulation model. Simulated oil recoveries for different pressures are plotted at 1.2 PVI. 
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3. 2D AND 3D SIMULATION RUNS  

 

3.1 Model Descriptions 

To study the effect of density increase from mixing in flow path and recovery, CO2 is 

injected in a 2D vertical cross-section and in a 3D domain. A commercial compositional 

simulator (CMG GEM) with a fully-implicit scheme is used for simulations.   

 

3.1.1 2D Model Description 

A domain with a length of 1200 ft (365 m) and depth of 200 ft (61 m) and width of 16.4 

ft (5 m) is used in the 2D model. There are 240 grids in the x-direction (length) and 40 

grids in z-direction (depth). Grid sensitivity tests show that the gridding is adequate for 

the 2D examples. The use of finer gridding also corrected the numerical diffusion seen in 

the CO2 flow path. A constant porosity of 22.35% is used in this model. 

 

3.1.2 3D Model Description 

In the 3D domain, a ¼ five-spot pattern with an injector-producer spacing of 1200 ft 

(365 m) and a depth of 200 ft (61 m) is modeled. The total pattern area is 60 acres and 

the length and width of the ¼ five-spot pattern is 848 ft (258 m). This model has the 

same porosity as the 2D domain except for the random heterogeneity example. In 3D 

examples, there are 21 grids in x-direction, 21 grids in y-direction (width), and 20 grids 

in z-direction. Grid sensitivity tests showed that this level of gridding was accurate.  
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3.1.3 Well Constraints  

In both 2D and 3D examples, the injector is located at the top (bottom) on one side of the 

formation and the producer is located at the bottom (top) on the opposite side. In these 

examples, the injection rate is constant (approximately 0.05 PV/year) and the pressure at 

the producing well is set equal to 1700 psi, the reported reservoir pressure of the fluid.  

 

3.1.4 Rock-Fluid Data 

The gas and oil relative permeability data used in all the examples are listed in Table 2.6. 

The capillary pressure is assumed to be zero.  

 

 
Table 2.6 – Gas and oil relative 

permeabilities 
 

Oil Saturation kro krg 
0.3 0 1 

0.344 0.003 0.879 
0.388 0.011 0.766 
0.431 0.025 0.660 
0.475 0.044 0.563 
0.519 0.068 0.473 
0.563 0.098 0.391 
0.606 0.134 0.316 
0.650 0.175 0.250 
0.694 0.221 0.191 
0.738 0.273 0.141 
0.781 0.331 0.098 
0.825 0.394 0.063 
0.869 0.462 0.035 
0.913 0.536 0.016 
0.956 0.615 0.004 

1 0.7 0 
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3.1.5 Numerical Model Parameters 

Initial runs with fine grids gave a high material balance error. Therefore the following 

steps were taken to reduce the material balance error in GEM: 

 The maximum change in pressure, saturation and global composition were 

changed to account for the high flow rates at the wellbore. The keywords 

associated with this are NORM (*PRESS, *SATUR, and *GMOLAR). 

 The convergence tolerance for the linear solver was reduced. (PRECC). 

 The minimum time-step size (DTMIN) was reduced. The default maximum time-

step (DTMAX = 365 days) was used. 

 The calculation settings for GMRES were changed. GMRES is an acceleration 

procedure to solve the linear systems in compositional simulations. The 

keywords associated this are NORTH and ITERMAX. 

The detailed values of the parameters stated above can be found in the example data file 

in Appendix A. This numerical scheme gave material balance errors of less than 1% for 

all of the simulation runs.  

 

3.2 Simulation Results  

To show the effect of density on CO2 flow path and oil recovery, a number of 2D and 3D 

simulations were performed. In each case, there were two different density change case 

as CO2 dissolved in oil. The reference case has the default volume shift parameters (used 

in the commercial simulator) where there is a decrease in oil density with CO2 

dissolution. In the other case, the modified CO2 shift parameter (as in Table 2.4) is used, 
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where the oil density increases with CO2 dissolution. In both 2D and 3D examples it is 

observed that the effect of increasing density with CO2 dissolution can have a significant 

effect on the flow path, time of breakthrough and recovery. The results are presented in 

the sections below.  

 

3.2.1 Homogenous Domains 

In the first example a constant permeability of 100 mD was used in the domain. Fig. 3.1 

compares  CO2 composition profiles  in the domain at 0.05, 0.1, 0.3, and 0.7 PV 

injection for both the default case (where oil density decreases with CO2 dissolution) and 

for the case with increasing oil density with CO2 dissolution. The injector is located at 

the top-left corner and the producer is located at the right-bottom corner of the domain. 

The results show the effect of increasing density on CO2 composition in flow path and 

front shape. There is a slight difference in the flow path between the increasing density 

and decreasing density cases when CO2 is injected from the top. 
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There is, however, a drastic change in the flow path when CO2 is injected from the 

bottom and produced at the top. Fig. 3.2 depicts simulation results for this case with k = 

100 mD. In some CO2 injection schemes the density of CO2 is close to the oil density 

and CO2 may be injected in the bottom. At the injection point, the CO2 density ranges 

from 0.59 to 0.63 g/cc; the oil density is approximately 0.74 g/cc before mixing with 

CO2.  Unlike the decreasing density case in Fig. 3.1 where CO2 tends to move upward 

and then right towards the producer at the top, with increasing density, there is a 

tendency for CO2 to move along the bottom/middle of the domain. Results at 0.7 PVI 

show a high CO2 sweep efficiency with increasing density. The high sweep efficiency 

results in a significantly longer breakthrough time and ultimate recovery (Fig. 3.3). For 

bottom injection, with increasing density, the predicted recovery is 59% whereas for the 

decreasing density, the predicted recovery is 51%. In the top injection, with increasing 

density, the predicted recovery is 52% whereas for the decreasing density, the predicted 

recovery is 53%. In this example, bottom injection (including the density effects) 

resulted in more recovery than top injection which is a common industry practice. The 

GEM simulation data file used for the 100 mD case is provided in Appendix A.  



 28

 

x (ft)

z
(f

t)

300 600 900 1200
0

100

200 0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

Injector Producer

 
          a) PVI = 5% 

x (ft)

z
(f

t)

300 600 900 1200
0

100

200 0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

Injector Producer

 
          a') PVI = 5% 

 

x (ft)

z
(f

t)

300 600 900 1200
0

100

200 0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

Injector Producer

 
          b) PVI = 10% 
 

 

x (ft)

z
(f

t)

300 600 900 1200
0

100

200 0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

Injector Producer

 
          b') PVI = 10% 
 

 

x (ft)

z
(f

t)

300 600 900 1200
0

100

200 0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

Injector Producer

 
          c) PVI = 30% 
 

 

x (ft)

z
(f

t)

300 600 900 1200
0

100

200 0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

Injector Producer

 
          c') PVI = 30% 
 

 

x (ft)

z
(f

t)

300 600 900 1200
0

100

200 0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

Injector Producer

 
          d) PVI = 70% 
 

 

x (ft)

z
(f

t)

300 600 900 1200
0

100

200 0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

Injector Producer

 
          d') PVI = 70% 
 

 
Fig. 3.1 —Overall CO2 composition (mole fraction) at different PVI for (a, b, c, d) 
increasing density with CO2 dissolution and (a', b', c', d') decreasing density with CO2 
dissolution: top injection, homogenous 2D media, k = 100 mD. 
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Fig. 3.2 —Overall CO2 composition (mole fraction) at different PVI for (a, b, c) increasing 
density with CO2 dissolution and (a', b', c') decreasing density with CO2 dissolution: 
bottom injection, homogenous 2D media, k = 100 mD. 
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                                Top injection 
 

 
                            Bottom injection 
 

Fig. 3.3 —Oil recovery vs. time for (a) decreasing density with CO2 dissolution and (b) 
increasing  density with CO2 dissolution: homogenous 2D media, k = 100 mD. 
 
 
For a permeability of 1000 mD, there is a pronounced occurrence of gravity fingers 

especially for the top injection case with increasing density (Fig. 3.4). If the producer 

well is located below the injector well, there will be a breakthrough as was the case for 

CO2 injection in the Weeks Island study (Johnston 1988). There is also an increase in 

density for the case of decreasing density with CO2 dissolution due to vaporization of 

methane from the liquid phase in the gas phase giving rise to gravity fingers as can be 

seen in Fig. 3.4 c'. Due to the position of the producer, the breakthrough time and 

recovery for the two cases is nearly the same. The 3D results in the homogeneous 

domain with k = 100 mD and k = 1000 mD are qualitatively similar in 2D and 3D and 

are not discussed for the sake of brevity. 
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Fig. 3.4 – Overall CO2 composition (mole fraction) at different PVI for (a, b, c) increasing 
density with CO2 dissolution and (a', b', c') decreasing density with CO2 dissolution: top 
injection, homogenous 2D media, k = 1000 mD. 
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3.2.2 Heterogeneous Domains 

To study the density effect in heterogeneous domains, two examples are considered. 

Both examples have random permeability distribution and differ only in the degree of 

heterogeneity. In the first example, Gaussian geostatistical simulation is used to assign 

permeabilities to the grid blocks ranging from 10 mD to 500 mD (Fig. 3.5a). The 

porosity (Fig. 3.5b) in each grid block is related to permeability by:  

 

)log(02277.011889.0 ii k  (ki in mD). 

 

 This method produces a highly heterogeneous domain. Fig. 3.6 shows the density effect 

on CO2 flow path for the top and bottom injection scenarios; both exhibit better vertical 

sweep efficiency when the increasing density is modeled. Fig. 3.7 shows the recovery 

profiles for the top and bottom injection scenarios. For both cases, the recovery with 

density increase is higher than that with density decrease. The recovery from bottom 

injection is about 48% with density increase while it is 31% with density decrease. The 

breakthrough time for bottom injection is extended by 2 years when the density effect is 

included. There is less gas production in the top injection cases than the bottom injection 

cases.  

 

In the next example, ordinary kriging is used to assign permeabilities to the grid blocks 

ranging from 10 mD to 500 mD (Fig. 3.8a). The porosity is related to the permeability 

using the same expression as the previous example (Fig. 3.8b).  Even though the 
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permeability distributions in the two examples are quite different, the density effects on 

flow path are very similar (Fig. 3.9). Fig. 3.10 shows the recovery profiles for the top 

and bottom injection scenarios. For both cases, the recovery with density increase is 

higher than that with density decrease.  The recovery from bottom injection is about 47% 

with density increase while it is 30% with density decrease. Breakthrough occurs after 2 

years with density decrease, while it occurs after 4 years with density increase.  
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Fig. 3.5 —Distribution of (a) permeability (mD) and (b) porosity( fraction) in the 
heterogeneous 3D media using Gaussian geostatistical simulation. 
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Fig. 3.6 —Overall CO2 composition (mole fraction) at 70% PVI for (a, b) increasing density 
with CO2 dissolution and (a´, b´) decreasing density with CO2 dissolution: heterogeneous 
3D media using Gaussian geostatistical simulation. 
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Fig. 3.7 —Oil recovery vs. time for (a) decreasing density with CO2 dissolution and (b) 
increasing  density with CO2 dissolution: heterogeneous 3D media using Gaussian 
geostatistical simulation. 
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Fig. 3.8 —Distribution of (a) permeability (mD) and (b) porosity(fraction) in the 
heterogeneous 3D media using ordinary kriging. 
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Fig. 3.9 —Overall CO2 composition (mole fraction) at 70% PVI for (a, b) increasing density 
with CO2 dissolution and (a´, b´) decreasing density with CO2 dissolution: heterogeneous 
3D media using ordinary kriging.  
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Fig. 3.10 —Oil recovery vs. time for (a) decreasing density with CO2 dissolution and (b) 
increasing density with CO2 dissolution: heterogeneous 3D media using ordinary kriging.  
 
 

3.3 Section Summary 

A simple approach to model the increase in oil density with CO2 dissolution using the 

Peng-Robinson EOS and the Pedersen viscosity correlation is presented. By changing 

the volume shift parameter of CO2, one can model the increase in oil density with CO2 

dissolution while preserving the viscosity match. The Peng-Robinson EOS can predict 

the density of pure CO2 by adjusting the CO2 volume-shift parameter. The use of the 

existing correlations for predicting the volume-shift parameters do not perform well for 

CO2 injection at high pressures. While the slim tube MMP is independent of density 

effects, the oil density change from CO2 dissolution can have a drastic effect on recovery 

performance as seen in the simulation results. Due to the 1D nature of flow in slim tube 

experiments, the density effect is not taken into account. In 2D and 3D, when injected 
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CO2 is lighter than the oil phase, there may be no gravity stable displacement due to 

increase in oil density from solubility. When the density of the injected gas is less than 

the oil density, CO2 injection may result in unstable gravity drainage. Past literature has 

neglected density effects in the study and evaluation of CO2 injection. Density 

measurements for CO2/oil mixtures at different CO2 compositions and prediction of 

these results in the fluid model can increase the reliability of the simulation results and 

decrease the degree of uncertainty. Heterogeneity may also have a significant effect as 

would be expected. The depth of injection and production wells with respect to the top 

of the reservoir may also have a major impact on recovery.  
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CO2 SEQUESTRATION IN SALINE AQUIFERS 
 

In this section, the processes involved in CO2 sequestration are discussed. Section 4.1 

discusses the transport processes involved in CO2 sequestration, followed by Section 4.2 

discussing the various trapping mechanisms. 

  

4.1 Transport Processes  

The following transport processes are relevant to CO2 storage in saline aquifers 

(Ukaegbu et al. 2009):  

1. Advection is the movement of CO2 caused by pressure gradients. When CO2 is 

injected into saline aquifers, it flows away from the high-pressure injection points in 

a radial direction towards areas of low pressure according to Darcy’s Law. 

2. Buoyancy is caused by the density differences between the gas and the liquid phases. 

CO2 being less dense will rise upwards as the brine sinks. 

3. Diffusion is caused by the concentration gradients. Molecules of CO2 will migrate 

from regions of higher concentration to regions of lower concentration to achieve 

equilibrium in chemical potential. 

Advection is dominant during the injection period. Buoyancy is also an important 

transport mechanism since CO2 is typically 40-60% less dense than the formation brine. 

Including diffusion in the modeling of CO2 sequestration can have a significant effect on 

the storage of CO2. This is addressed in this study. 
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4.2 Trapping Mechanisms  

When injected in saline aquifers, CO2 can be trapped through a combination of one or 

more chemical and physical processes. Orr et al. (2005) tried to postulate the time and 

length scales that characterize the sequestration of CO2 and introduced two time periods: 

injection period and post-injection period. During the injection period, advection and 

gravity segregation are the dominant transport mechanisms. Heterogeneity determines 

the movement of low viscous CO2 and appropriate representation of heterogeneity is 

important. Structural trapping of CO2 and CO2 trapping as a residual gas (hysteresis) are 

the main sequestration mechanisms during this phase. In the post-injection period (100 

to 10000 years), buoyancy and capillary forces dominate over the viscous forces. 

Dissolution of CO2 in brine and mineralization of CO2 become more important as time 

progresses. These trapping mechanisms are discussed in detail below. 

 

4.2.1 Structural Trapping 

Structural trapping consists of trapping CO2  in a flow system with low flow velocity 

over geologic periods of time (Nghiem et al. 2004). Being less dense than brine, CO2 

will rise upwards as a plume until it encounters the low permeability cap rock. CO2 will 

then migrate laterally up dip along the seal if it is not horizontal. This is the first and 

most basic screening criteria for CO2 sequestration in saline aquifers. 
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4.2.2 Residual Trapping  

Residual trapping is another effective trapping mechanism and is also most effective 

when the immobile gas is away from the cap rock. CO2 trapped in pore spaces, from 

which water was displaced, will remain locked in place because of the capillary effect 

and cannot be displaced by imbibitions of any fluid (Tiamiyu et al. 2010). Kumar et al. 

(2005), through an inject low and let rise approach, have shown that residual trapping 

plays a dominant role in CO2 storage. Bryant et al. (2008) further investigated whether 

the intrinsic instability of buoyancy driven flow leads to fingering of CO2. The 

mechanisms governing this type of displacement were studied in a series of fine grid 

simulations with a finite amount of CO2 at the bottom of a 2D aquifer and only 

buoyancy driving the displacement. There were several fine-scale geostatistical 

realizations of permeability and the effect of capillary pressure and dip angle were also 

investigated. They found that CO2 follows preferential flow paths that are a consequence 

of rock properties (permeability, drainage capillary pressure curve and anisotropy). 

Capillary pressure broadens the lateral extent of the flow paths.  

 

4.2.3 Solubility Trapping  

Solubility trapping involves the dissolution of CO2 in the formation brine. The mixture 

of CO2 and brine is denser than the fresh brine and this sets up a convective process in 

which the denser brine sinks to the bottom. The percentage of CO2 dissolved in brines 

during the upward migration of CO2 is typically less than 10%. Over a long period of 

time, the injected CO2 will form a thin layer of CO2 free phase which will slowly 
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dissolve in the underlying brine. There are several correlations available to calculate the 

density of CO2 dissolved brine. Duan and Sun (2003) have the most comprehensive 

model for calculating CO2 solubility in pure water and NaCl solutions from 273 to 533 K 

and 0 to 2000 bar. Their model is based on the equation of state of Duan et al. (1992) 

and the work on thermodynamics of electrolytes by Pitzer (1973). Comparison of their 

equation of state predictions with experimental data show that their results are close to 

experimental uncertainty which is about 7% in CO2 solubility. The model is also 

extended to model CO2 solubility in complex brines such as seawater with good 

accuracy.  

 

Using the equation of state developed by Duan and Sun (2003), Burton and Bryant 

(2009) calculated the solubility of CO2 in brine as a function of depth with the 

temperature and pressure gradients assumed to be 0.01 °F/ft and 0.44 psi/ft respectively. 

They found that beyond 2000 ft the solubility in brine remains constant (Fig. 4.1). Thus 

the formation depth presents neither advantage nor disadvantage for this process. They 

found the solubility of CO2 at aquifer conditions to be around 2.1 mol%. This can be 

achieved with several combinations of pressure and temperature. 
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Fig. 4.1 —The solubility of CO2 in brine as a function of temperature pressure and salinity 
determined by the Duan and Sun EOS (Burton and Bryant 2008). Solubility increases with 
depth to ~2000 ft, and then remains constant. A geothermal gradient of 0.01 °F/ft and a 
hydrostatic gradient of 0.44 psi/ft are used. Brine salinity effects the plateau solubility. 
 

Fig. 4.1 cannot be reproduced directly by the Peng Robinson EOS. The solubility is 

tuned by the binary interaction coefficients (BICs), which are functions of temperature 

and salinity (Kumar 2004). If one set of BICs are used, the solubility will continue to 

increase even after 2000 ft, failing to capture the plateau. Recalculating the BICs at each 

depth captures the plateau, but this is a very inefficient process. Therefore the Peng 

Robinson EOS cannot model solubility in thick aquifers and aquifers with large 

temperature or salinity variations. 
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4.2.4 Aqueous Phase Diffusion 

Molecular diffusion describes the passive movement of molecules, due to random 

motion (Brownian motion), or due to a compositional gradient in the mixture, and is 

quantified by molecular diffusion coefficients (Leahy-Dios and Firoozabadi 2007). To 

include the effect of molecular diffusion, the diffusion coefficients of CO2 in water are 

required. There is a lot of experimental data available for measuring molecular diffusion. 

Tamimi et al.(1994) reported the diffusion coefficients of CO2 in water from 298 to 

368K. For this study, (~313K) the diffusivity reported was 2.93 × 10-5 cm2/s. Frank et al. 

(1996) measured the diffusion coefficients and viscosities for CO2/H2O systems. At 

318K, they reported a diffusion coefficient of 3.07 × 10-5 cm2/s. Renner (1988) 

developed a novel in-situ method to calculate the diffusion coefficients of CO2 and other 

solvent gases in consolidated media at high pressures. The diffusion coefficient of CO2 

in 0.25 M NaCl brine at 100 F and pressures ranging from 647 to 846 psi was reported to 

be ranging from 3.64 – 7.35 × 10-5 cm2/s. Renner concluded that the diffusion coefficient 

of CO2 in water or brine was an empirical function of liquid and CO2 viscosities. 

 

There have been diverging opinions in the literature on the effect of diffusion on the CO2 

sequestration process. Ukaegbu et al. (2009) found through a simulation study that the 

diffusion of CO2 in the aqueous phase increases the amount of dissolved CO2. This 

increase was as much as 18% after 20 years into the simulation. They explained that the 

increase in CO2 concentration in the gridblock cause CO2 to migrate to areas of lower 

concentration to reduce the concentration difference, which allows greater dissolution. 
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On the other hand, Ennis-King and Paterson (2005) have shown through linear stability 

analysis that the dominant mechanism for dissolution of CO2 in water is convective 

mixing rather than diffusion. Moortgat and Firoozabadi (2010) state that current 

correlations used assume an effective diffusivity in which the diffusive flux of the 

component i only depends on its own compositional gradient. This could lead to an 

oversimplification, especially for 3 component systems. They suggest the use of Fickian 

diffusion. 

 

4.3  Section Summary  

There has been a lot of work on CO2 sequestration in recent years. Researchers have 

investigated the dominant physical and chemical processes involved. Solubility and 

mineral trapping are the most desirable trapping mechanisms because the CO2 is 

sequestered in a form that is safe for the environment. The Peng Robinson EOS is not a 

suitable method to model CO2 solubility in brine. The literature discussed in this section 

along with published experimental data will be used in the development of a simulation 

model in the next section.  
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CO2 SEQUESTRATION CASE STUDY: ARUMA AQUIFER 
 

5.1 Aquifer Description and Hydrogeology 

The Aruma aquifer is located in southwest Qatar. It occupies an area of about 1985 km2 

on land which is approximately 16% of Qatar’s area. The Qatar Department of 

Agricultural and Water Research have drilled four deep wells in this aquifer to 

characterize it better.  Regional monitoring of the groundwater levels and comprehensive 

logging were performed to better understand the aquifer. Water quality analysis was also 

performed at the four deep wells. Details of the drilling report completed by Al-Baida 

Technical Services (ATS) are presented in the next section (ATS 2004). 

 

The Aruma aquifer comprises approximately 130 m (426 ft) of granular limestone 

belonging to the Aruma Formation. The top of the aquifer ranges from 380 to 550 m 

within southwest Qatar. The aquifer is overlain by thick relatively impermeable deposits 

of the lower Umm Er Radhuma (UER) aquifer and is underlain by a sequence of shales 

of up to 100 m thickness belonging to the lower Aruma Formation. These strata bound 

the aquifer and serve to isolate it from groundwater movement in other formations. The 

aquifer is highly confined within its bounding strata and this is confirmed by a very low 

“storativity” value. The storativity of an aquifer is a dimensionless number that equals to 

the volume of water released from a unit volume of aquifer per unit decline in pressure. 

There was also no evidence of leakage or drainage while testing.  The overall thickness 

of the Aruma formation declines moving northwards from approximately 265 m in the 
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south to less than 240 m in the north. Within the formation, the upper limestone becomes 

thicker moving northwards while the shales at base become thinner.  

 

5.2 Data Processing 

The approximate limits of the project area are shown in Fig. 5.1. There are 11 pre-

existing deep wells in the project area numbered DW-1 through to DW-11. The new 

deep wells drilled were numbered DW-12, DW-13, DW-14 and DW-15. DW-12 and 

DW-13 were located adjacent to existing wells DW-03 and DW-11 in order to perform 

aquifer tests while observing water levels in the nearby deep wells. The new wells are 

located around the flanks of the Dukhan anticline which has a dip that exceeds 0.5°. 

DW-14 and DW-15 are located in the neighboring syncline while DW-12 and DW-13 

are located on the anticlinal crest. Detailed logging was performed at each new deep well 

location. This data along with the limited log data of the existing deep wells was used to 

map the Aruma aquifer top and bottom. The log data of the wells available and those that 

are used in this study are provided in the Table 5.1. Table 5.2 provides a summary of the 

aquifer properties measured from log data and flow tests.  

 

Using the log data and the results of the flow tests, maps were created for porosity, 

permeability, formation depth and thickness. Geographix software was used for the log 

analysis and creating the maps. These maps were then exported to CMG to create the 

static reservoir model. SI units were used in the static reservoir model as most of the data 

was reported in SI units. The results are reported in field units for ease of understanding. 
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Fig. 5.1 —The project area and location of the deep wells (ATS 2004) 
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Table 5.1 – Log data available for the Aruma aquifer 

 

Well 
Gamma 

Ray  
Sonic 
Log 

Neutron 
Log 

Density 
Log  

Temperature Resistivity

       

DW-6 X     X 
DW-7 X     X 
DW-8 X     X 

DW-10 X     X 
  DW-12 * X X X X X X 
  DW-13 * X X X X X X 
  DW-14 * X X X X X X 
  DW-15 * X X X X X X 

       
*  = newly drilled wells     

      
 

 
Table 5.2 – Aruma Aquifer properties 

 

Well 
Top 
(ft)  

Bottom 
(ft) 

Thickness 
(ft) 

Porosity 
(fraction) 

Permeability 
(mD) 

Temperature 
(°F) 

DW-12 1585 2028 443 0.162 4187 112.8 

DW-13 1503 1936 433 0.149 3395 115.5 
DW-14 1880 2388 509 0.111 2263 116.9 
DW-15 1854 2336 482 0.123 3508 118.2 

       
Total Dissolved Solids, ppm 5000    
   kv/kh   0.1    

       
 

It is important to note that the Aruma aquifer is highly permeable (Table 5.2). 

Firoozabadi and Cheng (2010) emphasize the selection of high permeability aquifers to 

store CO2 because they aid in the rapid dissolution of CO2 in brine. 
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5.3 Base Case Model Description 

A three dimensional corner point fine grid was used to model the project area. The 

model consists of 106 grids in the x-direction, 145 grids in the y-direction (width), and 7 

grids in the z-direction. The Aruma aquifer is modeled with five layers in the z-direction. 

The two layers above it represent the seal and the overlying UER formation. Each 

gridblock is 500 meters in the x- and y-directions. Isopachs generated from the log 

analysis were used to assign thickness for each layer in the z-direction. The permeability 

of the seal is assumed to be 0.01 mD due to a lack of permeability measurements of the 

seal rock.  A kv/kh value of 0.1 was used.  Null blocks were assigned to cells outside the 

project area. The eight existing deep wells shown in Table 5.1 were converted to CO2 

injectors. They were all set to inject equal amounts of CO2 in the bottom layer for 30 

years. The simulation stops after 200 years to observe the gradient flow. Fig. 5.2 shows 

the reservoir model with the well locations. The selection of the injection rates and well 

constraints are discussed in the next section.   
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Fig. 5.2 —The reservoir model showing well locations and the description of the layers. 
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5.3.1 Injection Design and Well Constraints 

A realistic injection scenario is developed taking into account existing sequestration 

projects. The Sleipner project was chosen as a facilities design analog. In terms of pore 

volume, the Utsira formation is 10 times larger than the Aruma formation modeled. CO2 

is being injected into the Utsira Formation at a rate of 1 million tonnes/year. This 

translates to average daily injection rate of 52 million SCF/day. Since the Aruma 

formation is 10 times smaller, a daily injection rate of 5.2 million SCF/day is used. This 

rate is divided equally among the eight wells giving each an injection rate of 650000 

SCF/day (18406 sm3/day). CO2 is injected through perforations made in the bottom layer 

of the Aruma aquifer. 

 

The change in pressure at the well will have an impact on the pressure at the caprock, 

which affects the seal integrity. The bottomhole pressure constraint was set such that 

injection pressure would not exceed the fracture gradient. Using the formula proposed by 

Eaton (1969) to predict fracture gradient, a fracture gradient of 0.68 psi/ft (15.7 kPa/m) 

was obtained. This means that at a depth of 500 m (1640 ft), the fracture pressure of the 

rock is 1115 psia. All the wells are present at depths exceeding 500 m. The ideal 

injection wells are located in the syncline (DW-14 and DW-15). Injection from these 

points allows the gas to migrate up dip and get trapped under the anticline.  
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5.3.2 Fluid Phase Behavior 

The Peng-Robinson EOS was used to model phase behavior. The model consists of CO2, 

H2O and C1 as pure components. Table 5.3 shows the different property values used by 

the Peng-Robinson EOS. It should be noted that the Peng-Robinson EOS is only used to 

calculate the gas phase behavior. C1 is used as a trace component to add compressibility 

to the near incompressible system. This helps in the convergence of the equations in the 

reservoir simulator. The aqueous phase density is calculated from the Rowe and Chou 

correlation, while aqueous viscosity is calculated using the Kestin correlation. These 

correlations are built into GEM and are functions of pressure, temperature and salinity. 

The Peng-Robinson EOS predicts the CO2 gas density accurately within the pressure 

range of this study when a volume shift parameter of zero is used. The Pedersen 

correlation is used to calculate the viscosity of the components. The values of the five 

coefficients used in this study were those obtained by Kumar (2004) after matching 

experimental data (Table 5.4). 

 

Table 5.3 – Component properties used in the aquifer model 

Components Tc (K) Pc (atm) 
MW 

(g/mole) 
ω 

BIC 
CO2 -compi 

Volume 
Shift  

CO2 304.2 73.76 44.01 0.2250 0.000 0.000 

C1 190.6 46.00 16.04 0.0080 0.103 0.000 
H2O 647.3 217.60 18.01 0.3440 0.200 0.000 
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Table 5.4 – Parameter values for Pedersen et al. (1984) viscosity correlation for 
a CO2 – brine system obtained by Kumar (2004) 

 

MW mixing 
rule 

coefficient 

MW mixing 
rule exponent 

Coupling factor 
correlation 
coefficient 

Coupling factor 
correlation 

density exponent 

Coupling 
factor 

correlation 
MW exponent 

  0.291 1.4 0.0005747 4.265 1.0579 
     

 

  

5.3.3 CO2 Solubility in Brine 

In this study, Henry’s Law is used to model CO2 solubility in brine. The solubility of 

CO2 in brine is a reversible reaction given by: 

CO2 (g) ⇋ CO2 (aq)   

Thermodynamic equilibrium between the gas and aqueous phase requires that the 

fugacities of CO2 in the gas and aqueous phase be equal: 

2 2( ) ( )CO g CO wf f  

The gas fugacity, fCO2 (g) is calculated using the Peng-Robinson EOS. But the equation of 

state fails to model the behavior of the aqueous phase properly. Therefore the fugacity of 

CO2 in the aqueous phase is calculated using Henry’s Law, i.e. 

2 ( ) 22
( ) ( )CO wCO w CO wf y H  
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The Henry’s constant, 
2 ( )CO wH , is calculated at the reservoir temperature is also 

dependent on salinity (Nghiem et al. 2004). It is calculated at the reservoir pressure, P, 

as follows: 

   
( )

ln ln refv P P
H h

RT

 
   

 where Pref is the reference pressure 

  v∞ is the partial volume at infinite dilution  

  h is the Henry’s constant at Pref 

Accurate correlations for the Henry’s constants of CO2, N2, H2S and CH4 have already 

been implemented in GEM. These correlations take into account the pressure, 

temperature and salinity. The Harvey model (1996) for calculating the Henry’s constant 

of CO2 is activated with the keyword HENRY-CORR-CO2.   

 

5.3.4 Rock-Fluid Data  

Relative permeability data was obtained by using the following equations and 

parameters (Table 5.5)(Anchliya 2009; Kumar 2004): 

For Sg  Sgcr :   krg = 0 

For  Sg > 1 - Swrg :  krwg = 0 

For  Sg  Sgcr : 

1

gN

g gcr
rg rg

wrg wirg

S S
k k

S S

 
     


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For Sg  1 – Swrg :  

1

wN

g gcon
rwg rw

wrg gcon

S S
k k

S S

 
     


 

where rgk  is gas end point relative permeability 

rwk   is water end point relative permeability  

  Sg  is gas saturation 

Sgcr is critical gas saturation 

Swirg is irreducible water saturation  

Swrg  is residual water saturation during gas flood 

 Sgcon is connate gas saturation 

Ng is gas relative permeability exponent 

Nw is water relative permeability exponent 

 

 
Table 5.5 – Relative permeability parameters for 

the base case (Kumar 2004) 
 

Gas end point relative permeability 1.0 
Water end point relative permeability 0.334 
Connate gas saturation 0.25 
Critical gas saturation 0.25 
Residual water saturation 0.25 
Irreducible water saturation 0.25 
Water relative permeability exponent 2 
Gas relative permeability exponent 2.5 
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Relative permeability data published by Bennion and Bachu (2008) was not used as it 

was obtained using highly saline brine and supercritical CO2. The capillary pressure for 

the base case was assumed to be zero from the lack of experimental data. Other works 

have used the Brooks-Corey approach (Brooks and Corey 1966) to predict capillary 

pressure. The Brooks-Corey relation is given by: 

1*

c d wP P S   

where Pd  is threshold or displacement pressure 

λ  is pore geometric factor  

*
wS  is effective water saturation  

The effective water saturation, 
*
wS  is calculated by  

*

1
w wr

w
wr

S S
S

S





 

 where Swr is irreducible water saturation 

The pore geometric factor and displacement pressure are determined experimentally. 

Values of λ = 2 and Pd = 10 Pa are used in the literature for CO2 sequestration (Bielinski 

et al. 2008; Ukaegbu et al. 2009).  
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5.3.5 Initial Conditions 

The initial overall mole fraction of CO2 in the aquifer is zero, where the global mole 

fraction of water is one. The initial reservoir pressure at 500 m (1640 ft) is 721 psi, 

which is calculated using a hydrostatic gradient of 0.44 psi/ft. Pure CO2 is not in a 

supercritical state when it is injected into this aquifer.  

 

 
5.4 Simulation Results for the Base Case 

Fig. 5.3 shows the cumulative gas injected with time. At shut-in (30 years),pproximately 

57 BSCF of gas has been injected, translating to 3 million tonnes.  After injecting a 

constant rate for a period of 30 years the average aquifer pressure has increased only by 

7 psia. The well bottom-hole pressure profiles in Fig. 5.4 show that average increase in 

bottom-hole pressure during the injection period was only about 17 psia. The overall 

difference in pressure between the wells is due to the fact they are all injecting from 

different depths into the lowest layer of the Aruma aquifer. DW-14 and DW-15, located 

in a syncline as mentioned previously, have the highest bottom-hole pressure. Due to the 

size of the aquifer, the increase in pressure is negligible with respect to the fracture 

pressure of the rock. The GEM data file for the base case is provided in Appendix B. 
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Fig. 5.3 —Cumulative gas injected with time for the base case. Approximated 3 million 
tonnes are injected at the end of a 30 year injection period.  
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Fig. 5.4 —Well Bottom-hole Pressure profiles for the base case.  
 

Fig.5.5 shows the global mole composition of CO2 in the overlying UER formation. It is 

interesting to note that CO2 does not breakthrough into the UER and the seal manages to 

contain the CO2.  The selection of the injection rate also plays an important role on the 

effect of seal integrity. If a very high CO2 injection rate is used, the pressure under the 

seal will rapidly increase surpassing the fracture pressure and causing leakage of CO2. It 

should be noted that CO2 cannot be prevented from reaching the seal in this case. The 

average permeability of the Aruma aquifer is 3340 mD. Assuming a kv/kh value of 0.1, 

there is still a vertical permeability of 334 mD. It has also been speculated that the seal 
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rock may have a higher capillary pressure than the reservoir rock. Bryant et al. (2008) 

have shown that if the rising CO2 encounters a layer whose capillary pressure exceeds 

the capillary pressure of CO2 phase, then the CO2 is completely diverted to flow updip in 

the layer beneath the barrier. This process is not modeled in this study due to lack of 

capillary pressure data.  

 

 

Fig. 5.5 —The CO2 global mole fraction in the overlying formation at the end of the 
simulation. There is no leakage for CO2 into the UER after 200 years with the proposed 
injection scheme.  
 

The CO2 global mole fraction in the lowest layer of the aquifer (layer 7) is shown in Fig. 

5.6. We observe that due to high permeability, there is a greater radial spread of CO2 at 
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bottom of the aquifer. A vertical cross section around the well DW-12 shows the shape 

and propagation of the CO2 plume.  

 

 

Fig. 5.6 —The CO2 global mole fraction in the lowest layer of Aruma aquifer. CO2 is being 
injected in this layer. 
 

It is observed from Figs. 5.6 and 5.7 that a large portion of the Aruma aquifer has still 

not been affected by 30 years of CO2 injection. A closed boundary system was modeled 

in order to represent a confined aquifer.  
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Fig. 5.7 —Propagation of the CO2 plume from DW-12.  
 

5.5 Including Diffusion in the Base Case 

The keyword in GEM to model diffusion in the aqueous phase is DIFFC-AQU. The 

diffusion coefficient of the components in cm2/s must be provided to use this option. 

GEM has the Sigmund (1976) correlation and the Wilke-Chang (1955) correlation built 

in to calculate the diffusion coefficient in oil and gas phases. Previous works to model 

diffusion have used a CO2 diffusion coefficient of 2×10-5 cm2/s (Anchliya 2009; 

Ukaegbu et al. 2009). The diffusion coefficient is primarily a function of temperature. 

The average temperature of the Aruma aquifer is 115 °F (319 K).  Based on 
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experimental data (Frank et al. 1996; Tamimi et al. 1994) a CO2 diffusion coefficient of 

3×10-5 cm2/s is used in this study.  

 

5.5.1 Simulation Results 

The same injection scheme as the base case was used in the simulation run. There was 

almost no difference in the bottom-hole pressure profiles. Fig. 5.8 compares the number 

of moles of CO2 in the aqueous phase with and without diffusion.  It was found that 

diffusion enhances the solubility of CO2 in brine.  

 

 

Fig. 5.8 —The effect of diffusion on the solubility of CO2 in brine.  
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5.6 Grid Sensitivity Analysis 

The current dimensions of each grid block in the base case are 500 m in the x- and y- 

directions. To study the effect of the gridding size on the propagation of the CO2 plume, 

a sub-model containing a single well (DW-12) was used. The sub-model dimensions are 

4500 m in the x- and y-directions with the well placed in the center. The dimensions of 

the grid blocks are the same as the base case (Fig. 5.9).  The sub-model contains 567 

cells.  

 

 

Fig. 5.9 —Extraction of a sub-model containing the well DW-12 for grid sensitivity tests. 
The current gridding dimensions are used in the base case. The sub-model contains 567 
grids. 
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In the fine grid sub-model, the dimensions of the grid blocks representing the Aruma 

aquifer are reduced by one-third in each direction. The grid blocks of the seal and the 

overlying UER formation are reduced by one-third in the x- and y-directions. This model 

now contains 12960 cells (Fig. 5.10). The effect of grid size on diffusion is also 

investigated.  

 

Fig. 5.10 —The fine grid sub-model containing the well DW-12 for grid sensitivity tests. 
The sub-model contains 12960 grid blocks. 
 

5.6.1 Grid Sensitivity Results  

The use of finer grids shows a significant difference in the propagation of CO2 plume.  

Fig. 5.11 compares the global mole fraction of CO2 between the two cases after 200 

years.  
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(a) 

 

 

(b) 

 
Fig. 5.11 —Comparison of CO2 plume propagation after 200 years:  (a) coarse gridding 
and (b) fine gridding. 
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With coarse gridding, upward movement of CO2 is limited. CO2 spreads radially from 

the injection point.  The use of fine grids shows the CO2 plume reaching the seal and 

beginning to move up dip below the seal. As the CO2 dissolves in the brine below the 

seal, the increase in the brine density triggers convective mixing of CO2. The use of 

coarse grids also overestimates the amount of CO2 dissolved in brine as can be seen in 

Fig. 5.12.  

 

 

Fig. 5.12 —Effect of grid size on CO2 solubility in brine – base case. 
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When diffusion is included in the models, the use of fine grids enhances the effect of 

diffusion. Fig. 5.13 shows an increase in the rate of dissolved CO2 when fine grids are 

used.  

 

 

Fig. 5.13 —Effect of grid size on CO2 solubility in brine – with diffusion.  
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In the case where finer grids were used, the CO2 dissolved in brine increased by 3.6%. 

Selection of the right grid size is very important for accurate modeling of CO2 

sequestration. However, the use of fine grids is computationally expensive.  The 

simulation run time increased by factor of 92 when finer grids are used in the sub-model. 

Local grid refinement is a useful technique for increasing the numerical accuracy of the 

simulations without refining the entire grid, which would take more simulation time. 

This feature is available in GEM, and is described in the next section.   

 

5.7 Including Local Grid Refinement in the Aquifer Modeling 

Based on the results of Section 5.6, local grid refinement (LGR) was used in the Aruma 

model (Fig. 5.14). Grid refinement was done around the wellbore, in the region where 

CO2 was expected to migrate, based upon the results presented in Section 5.4. 

Approximately 5000 acres around the wellbore were refined. The grid size along all 

three dimensions was reduced by a factor of three for the bottom five layers representing 

the Aruma aquifer. The grid size in the top two layers was reduced by a factor of three 

only along the x- and y-directions.  
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Fig. 5.14 —Including local grid refinement to the Aruma aquifer model. 
 

Fig. 5.15 shows the global mole composition of CO2 in the overlying UER formation 

(layer 1). The use of LGR shows that CO2 breakthrough occurs in the UER at the end of 

the simulation run. This was not observed when coarser grids were used.  
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Fig. 5.15 —The CO2 global mole fraction in the overlying formation at the end of the 
simulation. There is CO2leakage into the UER after 200 years when local grid refinement is 
used. 
 

Fig. 5.16 shows the movement of CO2 around the well DW-12 after 200 years. Greater 

vertical movement of CO2 is observed in this case. The profile of the plume is very 

different of that which is seen when course grids are used throughout the aquifer.  
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Fig. 5.16 —Cross-section of DW-12 showing the CO2 global mole fraction after 200 years. 
Vertical movement of CO2 is observed. 
 

As seen in the previous section, when diffusion is not included, the model without LGR 

overestimates the amount of CO2 dissolved (Fig. 5.17). When diffusion is included, the 

model without LGR underestimates the amount of CO2 dissolved (Fig. 5.18).    
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Fig. 5.17—Comparison of the CO2 dissolved with local grid refinement – without diffusion. 
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Fig. 5.18 —Comparison of the CO2 dissolved with local grid refinement – with diffusion. 
 

 

5.8 Section Summary 

A simulation model is prepared for the Aruma aquifer using the available log data and 

flow test data. The existing deep wells were converted to CO2 injectors. CO2 was 

injected at a constant rate for a period of 30 years. The inclusion of diffusion enhances 

the rate of CO2 dissolution in brine. The grid size affects the movement of the CO2 

plume and the propagation of vertical fingers (caused by the density instability). 
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4. CONCLUSIONS AND RECOMMENDATIONS 

 

6.1 Conclusions 

To address the issue of including abnormal density effects arising from CO2 solubility in 

crude oils, a simple approach to model the increase in oil density with CO2 dissolution 

using the Peng-Robinson EOS and the Pedersen viscosity correlation is presented. By 

changing the volume shift parameter of CO2, the increase in oil density with CO2 

dissolution can be modeled while preserving the viscosity match. The Peng-Robinson 

EOS can predict the density of pure CO2 by adjusting the CO2 volume shift parameter. 

The use of the existing correlations for predicting the volume shift parameters do not 

perform well for CO2 injection at high pressures. Due to 1D nature of flow in slim tube 

experiments, the density effect is not taken into account. In 2D and 3D, when injected 

CO2 is lighter than the oil phase, there may be no gravity stable displacement due to 

increase in oil density from solubility. CO2 injection when the density of the injected gas 

is less than the oil density may result in unstable gravity drainage.  

 

Past literature has neglected density effects the study and evaluation of CO2 injection in 

the crest. Density measurements for CO2/oil mixtures at different CO2 compositions and 

prediction of these results in the fluid model can significantly increase the reliability of 

the simulation results and decrease the degree of uncertainty. Heterogeneity may also 

have a significant effect as expected. The depth of injection and production wells with 

respect to the top of the reservoir may also have a large impact on recovery.  
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Saline aquifers hold a lot of potential for sequestering CO2. The important transport 

processes and trapping mechanisms are identified and discussed. A simulation model is 

prepared for the Aruma aquifer using the available log data and flow test data. The 

existing deep wells were converted to CO2 injectors. CO2 was injected at a constant rate 

for a period of 30 years. There was no leakage of CO2 through the seal using the 

proposed injection scheme. The inclusion of diffusion increased the amount of CO2 

dissolved in brine. 

 

6.2 Recommendations 

The acquisition of more experimental data that captures the density effect would greatly 

help in modeling this phenomenon. The creation of a database with experimental data 

would be the next step. Though Lansangan and Smith (1993) proposed a theory that 

increase in density might be caused by strong intermolecular Coulombic interactions 

between CO2 and hydrocarbon molecules, this would need to be verified at a molecular 

level. There is a lot we still need to understand about these complex fluid systems. 

 

The Aruma aquifer in Qatar, though being a shallow saline aquifer, has been shown to 

have potential in CO2 sequestration.  A seismic study should be conducted to obtain a 

more detailed structure of the aquifer. This would also help in the prediction of the CO2 

migration flow paths. There is also a possibility that discovery of extensive faults could 

greatly increase the leakage risk of this project. More data needs to be collected to make 

a thorough and informed decision. The diffusion coefficients and rock capillary pressure 
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data should be determined experimentally. Including geochemistry in the aquifer model 

and its effect on CO2 injectivity would be the next step.  
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APPENDIX A  

 

EXAMPLE CO2/OIL DATA FILE 

 

Following in the GEM input file used for simulating the CO2 injection from the bottom 

of a 2D domain that has a homogenous permeability of 100 mD.  

 

RESULTS SIMULATOR GEM 200800 
 
DIM MDV 57600 
DIM MDLU 2684304 
DIM MDALP 5448984 
DIM MDDD 691200 
 
 
 
INUNIT FIELD 
WSRF WELL 1 
WSRF GRID TIME 
OUTSRF GRID DENG DENO K 'C1' K 'CO2' KRG KRO PRES SG SO SW 
TSO  
            X 'C1' X 'CO2' Y 'C1' Y 'CO2' Z 'C1' Z 'CO2'  
OUTSRF RES NONE 
OUTSRF WELL ZWEL 'CO2' 'Well-2' 
WPRN GRID 0 
OUTPRN GRID NONE 
OUTPRN RES NONE 
**$  Distance units: ft  
RESULTS XOFFSET           0.0000 
RESULTS YOFFSET           0.0000 
RESULTS ROTATION           0.0000  **$  (DEGREES) 
RESULTS AXES-DIRECTIONS 1.0 -1.0 1.0 
 
 
**-------------------- RESERVOIR DATA --------------------- 
 
GRID VARI 240 1 40 
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KDIR DOWN 
DI IVAR  240*5 
DJ JVAR  16.4042 
DK ALL  9600*5 
DTOP  240*1000 
**$ Property: NULL Blocks  Max: 1  Min: 1 
**$  0 = null block, 1 = active block 
NULL CON            1 
**$ Property: Porosity  Max: 0.2235  Min: 0.2235 
POR CON       0.2235 
**$ Property: Permeability I (md)   Max: 100  Min: 100 
PERMI CON         100 
PERMJ EQUALSI 
PERMK EQUALSI 
**$ Property: Pinchout Array  Max: 1  Min: 1 
**$  0 = pinched block, 1 = active block 
PINCHOUTARRAY CON            1 
CPOR 3e-5 
 
 
**---------------- FLUID COMPONENT DATA ------------------ 
 
MODEL PR 
NC 10 10 
COMPNAME 'CO2' 'C1' 'C2' 'C3' 'NC4' 'NC5' 'FC6' 'C7+' 
'C13+' 'C22+'  
HCFLAG 
0 0 0 0 0 0 0 0 0 0  
VISCOR MODPEDERSEN 
VISCOEFF 1.3040000E-04 2.3030000E+00 7.3780000E-03 
1.8470000E+00 5.1730000E-01  
MW 
4.4010000E+01 1.6043000E+01 3.0070000E+01 4.4097000E+01 
5.8124000E+01 7.2151000E+01 8.6000000E+01 1.2619000E+02 
2.1864000E+02 4.4238000E+02  
AC 
0.225 0.008 0.098 0.152 0.193 0.251 0.27504 0.34615 0.46364 
0.80496  
PCRIT 
7.2800002E+01 4.5400051E+01 4.8200051E+01 4.1900026E+01 
3.7500026E+01 3.3299977E+01 3.2460006E+01 2.0830990E+01 
1.4803850E+01 9.5238099E+00  
VCRIT 
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9.4000000E-02 9.9000000E-02 1.4800000E-01 2.0300000E-01 
2.5500000E-01 3.0400000E-01 3.4400000E-01 4.6250000E-01 
8.1500000E-01 1.8580000E+00  
TCRIT 
3.0420000E+02 1.9060000E+02 3.0540000E+02 3.6980000E+02 
4.2520000E+02 4.6960000E+02 5.0750000E+02 5.6964311E+02 
7.9025476E+02 1.0754300E+03  
PCHOR 
78 77 108 150.3 189.9 231.5 250.1 361.2 589.6 986.9  
SG 
0.818 0.3 0.356 0.507 0.584 0.631 0.69 0.71224 0.78276 
0.84911  
TB 
-109.21 -258.61 -127.57 -43.69 31.19 96.89 146.93 239.189 
480.328 921.603  
OMEGA 
0.457236 0.457236 0.457236 0.457236 0.457236 0.457236 
0.457236 0.457236 0.457236 0.457236  
OMEGB 
0.0777961 0.0777961 0.0777961 0.0777961 0.0777961 0.0777961 
0.0777961 0.0777961 0.0777961 0.0777961  
VSHIFT 
-0.0943467 -0.153861 -0.102103 -0.0733009 -0.0570559 -
0.0344627 -0.004992 0.1 0.19 0.47  
BIN 
1.0000000E-01  
1.0000000E-01 2.6890022E-03  
1.0000000E-01 8.5370405E-03 1.6620489E-03  
1.0000000E-01 1.4748531E-02 4.9143360E-03 8.6625350E-04  
1.0000000E-01 2.0640839E-02 8.5779330E-03 2.7121325E-03 
5.1467786E-04  
1.0000000E-01 2.5345101E-02 1.1747825E-02 4.6198099E-03 
1.4920539E-03 2.5462307E-04  
1.0000000E-01 3.8419394E-02 2.1279999E-02 1.1202389E-02 
5.8809841E-03 2.9279823E-03 1.4586581E-03  
1.0000000E-01 7.0018325E-02 4.6738564E-02 3.1412902E-02 
2.2113722E-02 1.6006595E-02 1.2281260E-02 5.3273178E-03  
8.0000000E-02 1.2883664E-01 9.8473647E-02 7.6801306E-02 
6.2529225E-02 5.2384492E-02 4.5721369E-02 3.1440562E-02 
1.1219313E-02  
 
TRES 116  
 
**-------------------- ROCK FLUID ------------------------- 
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ROCKFLUID 
RPT 1 
SWT 
**$        Sw         krw        krow 
            0           0         0.7 
      0.04375  0.00390625    0.615234 
       0.0875    0.015625    0.535937 
      0.13125   0.0351562    0.462109 
        0.175      0.0625     0.39375 
      0.21875   0.0976563    0.330859 
       0.2625    0.140625    0.273438 
      0.30625    0.191406    0.221484 
         0.35        0.25       0.175 
      0.39375    0.316406    0.133984 
       0.4375    0.390625   0.0984375 
      0.48125    0.472656   0.0683594 
        0.525      0.5625     0.04375 
      0.56875    0.660156   0.0246094 
       0.6125    0.765625   0.0109375 
      0.65625    0.878906  0.00273437 
          0.7           1           0 
SLT 
**$        Sl         krg        krog 
          0.3           1           0 
      0.34375    0.878906  0.00273437 
       0.3875    0.765625   0.0109375 
      0.43125    0.660156   0.0246094 
        0.475      0.5625     0.04375 
      0.51875    0.472656   0.0683594 
       0.5625    0.390625   0.0984375 
      0.60625    0.316406    0.133984 
         0.65        0.25       0.175 
      0.69375    0.191406    0.221484 
       0.7375    0.140625    0.273438 
      0.78125   0.0976563    0.330859 
        0.825      0.0625     0.39375 
      0.86875   0.0351562    0.462109 
       0.9125    0.015625    0.535937 
      0.95625  0.00390625    0.615234 
            1           0         0.7 
 
**----------------- INITIAL CONDITION --------------------- 
 
INITIAL 
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USER_INPUT 
**$ Property: Pressure (psi)   Max: 1700  Min: 1700 
PRES CON         1700 
**$ Property: Water Saturation  Max: 0  Min: 0 
SW CON            0 
**$ Property: Global Composition(NC5)  Max: 0.0386  Min: 
0.0386 
ZGLOBALC 'NC5' CON       0.0386 
**$ Property: Global Composition(C1)  Max: 0.2228  Min: 
0.2228 
ZGLOBALC 'C1' CON       0.2228 
**$ Property: Global Composition(CO2)  Max: 0.022  Min: 
0.022 
ZGLOBALC 'CO2' CON        0.022 
**$ Property: Global Composition(C2)  Max: 0.1285  Min: 
0.1285 
ZGLOBALC 'C2' CON       0.1285 
**$ Property: Global Composition(C3)  Max: 0.1235  Min: 
0.1235 
ZGLOBALC 'C3' CON       0.1235 
**$ Property: Global Composition(NC4)  Max: 0.0819  Min: 
0.0819 
ZGLOBALC 'NC4' CON       0.0819 
**$ Property: Global Composition(FC6)  Max: 0.0379  Min: 
0.0379 
ZGLOBALC 'FC6' CON       0.0379 
**$ Property: Global Composition(C13+)  Max: 0.10851  Min: 
0.10851 
ZGLOBALC 'C13+' CON      0.10851 
**$ Property: Global Composition(C7+)  Max: 0.13008  Min: 
0.13008 
ZGLOBALC 'C7+' CON      0.13008 
**$ Property: Global Composition(C22+)  Max: 0.10621  Min: 
0.10621 
ZGLOBALC 'C22+' CON      0.10621 
 
**-----------------------  NUMERICAL --------------------- 
 
NUMERICAL 
*NORM *PRESS  500.0 
*NORM *SATUR    0.1    ** expected changes in one time-step  
*NORM *GMOLAR   0.1             
 
*DTMIN 1.0E-3     ** timestep size 
*PRECC 1.0D-04         ** set convergence tolerance 
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*ITERMAX 50 
*NORTH 20 
 
**----------------------  WELL DATA  --------------------- 
 
RUN 
DATE 2009 1 20 
**$ 
WELL  'Well-1' 
INJECTOR 'Well-1' 
INCOMP  SOLVENT  1.  0.  0.  0.  0.  0.  0.  0.  0.  0. 
OPERATE  MAX  BHG  126.66  CONT 
**$          rad  geofac  wfrac  skin 
GEOMETRY  K  0.25  0.37  1.  0. 
PERF  GEOA  'Well-1' 
**$ UBA     ff  Status  Connection   
    1 1 40  1.  OPEN    FLOW-FROM  'SURFACE' 
**$ 
WELL  'Well-2' 
PRODUCER 'Well-2' 
OPERATE  MIN  BHP  1700.  CONT 
**$          rad  geofac  wfrac  skin 
GEOMETRY  K  0.25  0.37  1.  0. 
PERF  GEOA  'Well-2' 
**$ UBA      ff  Status  Connection   
    240 1 1  1.  OPEN    FLOW-TO  'SURFACE' 
**$ Property: Implicit flag  Max: 3  Min: 3 
AIMSET CON            3 
DATE 2009 4 20.00000 
DATE 2009 7 20.00000 
DATE 2009 10 20.00000 
DATE 2010 1 20.00000 
DATE 2010 4 20.00000 
DATE 2010 7 20.00000 
DATE 2010 10 20.00000 
DATE 2011 1 20.00000 
DATE 2011 4 20.00000 
DATE 2011 7 20.00000 
DATE 2011 10 20.00000 
DATE 2012 1 20.00000 
DATE 2012 4 20.00000 
DATE 2012 7 20.00000 
DATE 2012 10 20.00000 
DATE 2013 1 20.00000 
DATE 2013 4 20.00000 
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DATE 2013 7 20.00000 
DATE 2013 10 20.00000 
DATE 2014 1 20.00000 
DATE 2014 4 20.00000 
DATE 2014 7 20.00000 
DATE 2014 10 20.00000 
DATE 2015 1 20.00000 
DATE 2015 4 20.00000 
DATE 2015 7 20.00000 
DATE 2015 10 20.00000 
DATE 2016 1 20.00000 
DATE 2016 4 20.00000 
DATE 2016 7 20.00000 
DATE 2016 10 20.00000 
DATE 2017 1 20.00000 
DATE 2017 4 20.00000 
DATE 2017 7 20.00000 
DATE 2017 10 20.00000 
DATE 2018 1 20.00000 
DATE 2018 4 20.00000 
DATE 2018 7 20.00000 
DATE 2018 10 20.00000 
DATE 2019 1 20.00000 
DATE 2019 4 20.00000 
DATE 2019 7 20.00000 
DATE 2019 10 20.00000 
DATE 2020 1 20.00000 
DATE 2020 4 20.00000 
DATE 2020 7 20.00000 
DATE 2020 10 20.00000 
DATE 2021 1 20.00000 
DATE 2021 4 20.00000 
DATE 2021 7 20.00000 
DATE 2021 10 20.00000 
DATE 2022 1 20.00000 
DATE 2022 4 20.00000 
DATE 2022 7 20.00000 
DATE 2022 10 20.00000 
DATE 2023 1 20.00000 
DATE 2023 4 20.00000 
DATE 2023 7 20.00000 
DATE 2023 10 20.00000 
DATE 2024 1 20.00000 
DATE 2024 4 20.00000 
DATE 2024 7 20.00000 



 95

DATE 2024 10 20.00000 
DATE 2025 1 20.00000 
DATE 2025 4 20.00000 
DATE 2025 7 20.00000 
DATE 2025 10 20.00000 
DATE 2026 1 20.00000 
DATE 2026 4 20.00000 
DATE 2026 7 20.00000 
DATE 2026 10 20.00000 
DATE 2027 1 20.00000 
DATE 2027 4 20.00000 
DATE 2027 7 20.00000 
DATE 2027 10 20.00000 
DATE 2028 1 20.00000 
DATE 2028 4 20.00000 
DATE 2028 7 20.00000 
DATE 2028 10 20.00000 
DATE 2029 1 20.00000 
DATE 2029 4 20.00000 
DATE 2029 7 20.00000 
DATE 2029 10 20.00000 
DATE 2030 1 20.00000 
DATE 2030 4 20.00000 
DATE 2030 7 20.00000 
DATE 2030 10 20.00000 
DATE 2031 1 20.00000 
DATE 2031 4 20.00000 
DATE 2031 7 20.00000 
DATE 2031 10 20.00000 
DATE 2032 1 20.00000 
DATE 2032 4 20.00000 
DATE 2032 7 20.00000 
DATE 2032 10 20.00000 
DATE 2033 1 20.00000 
DATE 2033 4 20.00000 
DATE 2033 7 20.00000 
DATE 2033 10 20.00000 
DATE 2034 1 20.00000 
DATE 2034 4 20.00000 
DATE 2034 7 20.00000 
DATE 2034 10 20.00000 
DATE 2035 1 20.00000 
DATE 2035 4 20.00000 
DATE 2035 7 20.00000 
DATE 2035 10 20.00000 
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DATE 2036 1 20.00000 
DATE 2036 4 20.00000 
DATE 2036 7 20.00000 
DATE 2036 10 20.00000 
DATE 2037 1 20.00000 
DATE 2037 4 20.00000 
DATE 2037 7 20.00000 
DATE 2037 10 20.00000 
DATE 2038 1 20.00000 
DATE 2038 4 20.00000 
DATE 2038 7 20.00000 
DATE 2038 10 20.00000 
DATE 2039 1 20.00000 
DATE 2039 4 20.00000 
DATE 2039 7 20.00000 
DATE 2039 10 20.00000 
DATE 2040 1 20.00000 
DATE 2040 4 20.00000 
DATE 2040 7 20.00000 
DATE 2040 10 20.00000 
DATE 2041 1 20.00000 
DATE 2041 4 20.00000 
DATE 2041 7 20.00000 
DATE 2041 10 20.00000 
DATE 2042 1 20.00000 
DATE 2042 4 20.00000 
DATE 2042 7 20.00000 
DATE 2042 10 20.00000 
DATE 2043 1 20.00000 
DATE 2043 4 20.00000 
DATE 2043 7 20.00000 
DATE 2043 10 20.00000 
DATE 2044 1 20.00000 
DATE 2044 4 20.00000 
DATE 2044 7 20.00000 
DATE 2044 10 20.00000 
DATE 2045 1 20.00000 
DATE 2045 4 20.00000 
DATE 2045 7 20.00000 
DATE 2045 10 20.00000 
DATE 2046 1 20.00000 
DATE 2046 4 20.00000 
DATE 2046 7 20.00000 
DATE 2046 10 20.00000 
DATE 2047 1 20.00000 
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DATE 2047 4 20.00000 
DATE 2047 7 20.00000 
DATE 2047 10 20.00000 
DATE 2048 1 20.00000 
DATE 2048 4 20.00000 
DATE 2048 7 20.00000 
DATE 2048 10 20.00000 
DATE 2049 1 20.00000 
DATE 2049 4 20.00000 
DATE 2049 7 20.00000 
DATE 2049 10 20.00000 
DATE 2050 1 20.00000 
STOP 
 
**--------------------  SIMULATION STOP  ------------------ 
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APPENDIX B 

 

BASE CASE CO2 SEQUESTRATION DATA FILE 

 

Following in the GEM input file used for simulating the CO2 injection in the Aruma 

aquifer. This is a base case data file; diffusion and local grid refinement are not modeled 

here. The SI units are used in all the sequestration data files in this study. The depth, 

permeability, and porosity data are not a part of the main data file, and are included 

separately. The author may be contacted if those files are required. 

  

 

 

RESULTS SIMULATOR GEM 200800 
 
 
 
 
** This is a base case. Henry's Law is used to model 
solubility 
** Diffusion and Hysteresis are not modeled here. 
 
 
 
 
 
 
 
 
INUNIT SI 
WSRF WELL 1 
WSRF GRID TIME 
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OUTSRF GRID SG SW PRES DENW DENG Z 'CO2' W 'CO2' Y 'H2O' W 
'H2O' 
OUTSRF WELL  PAVG GHGTHY GHGSCRIT GHGSOL GHGLIQ GHGGAS 
OUTSRF RES NONE 
WPRN GRID 0 
OUTPRN GRID NONE 
OUTPRN RES NONE 
WRST 10000 
INVENTORY-CO2 
**$  Distance units: m  
RESULTS XOFFSET      156547.0000 
RESULTS YOFFSET      378337.0000 
RESULTS ROTATION           0.0000  **$  (DEGREES) 
RESULTS AXES-DIRECTIONS 1.0 -1.0 1.0 
 
 
**-------------------- RESERVOIR DATA --------------------- 
 
 
GRID CORNER 106 145 7 
DI IVAR      500             500             500             
500 
             500             500             500             
500             500 
             500             500             500             
500             500 
             500             500             500             
500             500 
             500             500             500             
500             500 
             500             500             500             
500             500 
             500             500             500             
500             500 
             500             500             500             
500             500 
             500             500             500             
500             500 
             500             500             500             
500             500 
             500             500             500             
500             500 
             500             500             500             
500             500 
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             500             500             500             
500             500 
             500             500             500             
500             500 
             500             500             500             
500             500 
             500             500             500             
500             500 
             500             500             500             
500             500 
             500             500             500             
500             500 
             500             500             500             
500             500 
             500             500             500             
500             500 
             500             500             500             
500             500 
             500             500 
DJ JVAR      500             500             500             
500 
             500             500             500             
500             500 
             500             500             500             
500             500 
             500             500             500             
500             500 
             500             500             500             
500             500 
             500             500             500             
500             500 
             500             500             500             
500             500 
             500             500             500             
500             500 
             500             500             500             
500             500 
             500             500             500             
500             500 
             500             500             500             
500             500 
             500             500             500             
500             500 
             500             500             500             
500             500 
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             500             500             500             
500             500 
             500             500             500             
500             500 
             500             500             500             
500             500 
             500             500             500             
500             500 
             500             500             500             
500             500 
             500             500             500             
500             500 
             500             500             500             
500             500 
             500             500             500             
500             500 
             500             500             500             
500             500 
             500             500             500             
500             500 
             500             500             500             
500             500 
             500             500             500             
500             500 
             500             500             500             
500             500 
             500             500             500             
500             500 
             500             500             500             
500             500 
             500             500             500             
500             500 
             500 
ZCORN  
 INCLUDE "ZCORN.IN" 
**$ Property: NULL Blocks  Max: 1  Min: 1 
**$  0 = null block, 1 = active block 
NULL CON            1 
  
*MOD 
  
    1:1        41:41        1:7     = 0 
   78:78        1:1         1:7     = 0 
    1:32        1:24        1:7     = 0 
   27:53        1:13        1:7     = 0 
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   22:43       10:18        1:7     = 0 
   31:48        9:16        1:7     = 0 
    1:15       26:33        1:7     = 0 
    1:25       25:28        1:7     = 0 
    1:6        33:38        1:7     = 0 
    1:10       30:36        1:7     = 0 
    1:2        38:39        1:7     = 0 
    3:4        39:39        1:7     = 0 
   11:23       29:29        1:7     = 0 
   10:18       27:31        1:7     = 0 
   18:20       29:30        1:7     = 0 
   56:66        1:7         1:7     = 0 
   54:76        1:3         1:7     = 0 
   50:59        2:9         1:7     = 0 
   26:28       25:26        1:7     = 0 
   33:37       19:21        1:7     = 0 
   38:39       20:20        1:7     = 0 
   38:41       19:19        1:7     = 0 
   11:11       34:34        1:7     = 0 
   12:12       34:34        1:7     = 0 
    1:1        40:40        1:7     = 0 
   33:34       22:22        1:7     = 0 
   54:56       10:10        1:7     = 0 
   49:50       14:14        1:7     = 0 
   44:44       17:17        1:7     = 0 
  105:105      64:64        1:7     = 0 
   87:106       1:20        1:7     = 0 
   96:106      19:41        1:7     = 0 
   91:97       18:29        1:7     = 0 
   88:91       18:24        1:7     = 0 
   82:88        1:9         1:7     = 0 
   80:81        2:4         1:7     = 0 
   93:97       29:34        1:7     = 0 
   90:90       25:27        1:7     = 0 
  101:106      42:52        1:7     = 0 
   98:106      34:46        1:7     = 0 
  104:106      52:58        1:7     = 0 
  102:106      51:55        1:7     = 0 
  105:106      57:62        1:7     = 0 
   85:85       10:12        1:7     = 0 
   86:86        9:14        1:7     = 0 
   82:82        8:9         1:7     = 1 
   75:76        2:3         1:7     = 1 
   79:82        1:1         1:7     = 0 
  106:106      64:89        1:7     = 0 
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  106:106      63:63        1:7     = 0 
  105:105      63:63        1:7     = 0 
   87:104     119:145       1:7     = 0 
  100:106     121:142       1:7     = 0 
   98:105     106:117       1:7     = 0 
  100:106     113:122       1:7     = 0 
   98:105     135:143       1:7     = 0 
  101:103     140:145       1:7     = 0 
  104:105     142:145       1:7     = 0 
   77:88      135:144       1:7     = 0 
   68:79      139:145       1:7     = 0 
   64:73      142:145       1:7     = 0 
   91:105     114:123       1:7     = 0 
   79:90      130:138       1:7     = 0 
    2:23      124:145       1:7     = 0 
    1:4       126:144       1:7     = 0 
    2:5        60:98        1:7     = 0 
    1:2        50:63        1:7     = 0 
    6:9        71:89        1:7     = 0 
    2:4       106:129       1:7     = 0 
    1:2        63:124       1:7     = 0 
    3:7       111:126       1:7     = 0 
   23:35      134:145       1:7     = 0 
   77:77      123:123       1:7     = 0 
   82:102     118:122       1:7     = 0 
  106:106     108:119       1:7     = 0 
  103:106      99:114       1:7     = 0 
  100:100     102:102       1:7     = 0 
  100:104     103:106       1:7     = 0 
  106:106     143:145       1:7     = 0 
   80:93      143:145       1:7     = 0 
   82:87      123:130       1:7     = 0 
   76:84      129:136       1:7     = 0 
   70:81      134:144       1:7     = 0 
   63:69      140:145       1:7     = 0 
   48:48      143:143       1:7     = 0 
   55:65      140:145       1:7     = 0 
   62:75      134:140       1:7     = 0 
   68:81      129:134       1:7     = 0 
   77:84      124:131       1:7     = 0 
   79:84      121:126       1:7     = 0 
   59:61      137:139       1:7     = 0 
   65:67      131:133       1:7     = 0 
   72:76      126:128       1:7     = 0 
   35:57      144:145       1:7     = 0 
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   75:76      124:126       1:7     = 0 
   87:90      115:117       1:7     = 0 
   92:97      109:113       1:7     = 0 
   92:94      109:111       1:7     = 1 
    5:15      114:125       1:7     = 1 
    1:15      114:127       1:7     = 0 
   18:28      129:133       1:7     = 0 
   12:18      120:124       1:7     = 0 
   34:40      139:145       1:7     = 0 
   38:44      141:143       1:7     = 0 
   28:30      131:133       1:7     = 0 
   13:15      114:115       1:7     = 1 
**$ Property: Porosity  Max: 0.268061  Min: 0.0574038 
POR ALL  
 INCLUDE "POR.IN" 
**$ Property: Permeability I (md)   Max: 4177.73  Min: 0.01 
PERMI ALL  
 INCLUDE "PERMI.IN" 
PERMJ EQUALSI 
PERMK EQUALSI * 0.1 
**$ Property: Pinchout Array  Max: 1  Min: 1 
**$  0 = pinched block, 1 = active block 
PINCHOUTARRAY CON            1 
PRPOR 4130 
CPOR 4.38e-07 
 
 
**---------------- FLUID COMPONENT DATA ------------------ 
 
 
MODEL PR 
NC 3 3 
COMPNAME 'CO2' 'C1' 'H2O'  
HCFLAG 0 0 0  
VISCOR PEDERSEN 
MIXVC 1 
VISCOEFF 0.291 1.4 0.0005747 4.265 1.0579  
MW 4.4010000E+01 1.6043000E+01 1.8015000E+01  
AC 0.225 0.008 0.344  
PCRIT 7.2800000E+01 4.5400000E+01 2.1760000E+02  
VCRIT 9.4000000E-02 9.9000000E-02 5.6000000E-02  
TCRIT 3.0420000E+02 1.9060000E+02 6.4730000E+02  
PCHOR 78 77 52  
SG 0.818 0.3 1  
TB -78.45 -161.45 100  
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OMEGA 0.457236 0.457236 0.457236  
OMEGB 0.0777961 0.0777961 0.0777961  
VSHIFT 0 0 0  
HEATING_VALUES 0 890773 0  
VISVC 9.4000000E-02 9.9000000E-02 5.6000000E-02  
 
BIN 
1.0300000E-01  
2.0000000E-01 4.9070000E-01  
 
TRES 46.1111  
PHASEID GAS 
PSAT -1 
DENW 1036.3 
CW 4.45E-07 
REFPW 5882 
VISW 0.61 
SOLUBILITY HENRY 
DERIVATIVEMETHOD NUMERALL 
H2O_INCLUDED 
HENRY-CORR-CO2 
TRACE-COMP 2 
SATWCUTOFF 0.0 
SWR-H2OVAP 0.0 
OGW_FLASH ON 
METHOD-OGW 1 
NC-AQUEOUS 1 
COMPNAME-AQUEOUS 'NaCl' 
AQFILL OFF 
SALINITY PPMVOL 5000 
SALINITY-CALC OFF 
AQUEOUS-DENSITY ROWE-CHOU 
AQUEOUS-VISCOSITY KESTIN 
 
 
 
 
 
 
**-------------------- ROCK FLUID ------------------------- 
 
ROCKFLUID 
RPT 1 
SWT 
**$        Sw         krw        krow 
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         0.25           0    0.741513 
        0.259  0.00100683    0.721249 
        0.268  0.00180539    0.704854 
        0.295   0.0038533    0.641721 
        0.322   0.0079916    0.581367 
        0.349   0.0128232    0.501012 
        0.376   0.0193238    0.421985 
      0.40092   0.0294565    0.363937 
        0.421   0.0387603    0.319328 
        0.448    0.051718    0.259998 
        0.475    0.070279    0.207043 
        0.502    0.093775    0.164473 
        0.529     0.11933    0.123684 
        0.556    0.149558   0.0883395 
        0.583    0.186321   0.0615307 
         0.61    0.227836    0.039882 
      0.63416    0.266466   0.0212892 
        0.655    0.306498  0.00995504 
      0.67532     0.35208  0.00545978 
          0.7    0.408888           0 
      0.71648    0.448173           0 
      0.74392    0.519642           0 
      0.77136    0.607685           0 
       0.7988    0.695778           0 
      0.82624    0.777445           0 
      0.85368    0.852026           0 
      0.88112     0.92274           0 
      0.90856     0.98431           0 
        0.936           1           0 
SLT 
**$        Sl          krg         krog 
         0.25            1            0 
       0.2602     0.951272  0.000408816 
       0.2704     0.902544  0.000817632 
       0.2908     0.810565   0.00265018 
       0.3112     0.723454   0.00542236 
       0.3316     0.642796   0.00933594 
        0.352     0.567034    0.0142417 
       0.3724     0.497842    0.0204728 
       0.3928     0.432889     0.027559 
       0.4132     0.374559    0.0360611 
       0.4336     0.319843    0.0454498 
        0.454     0.271738    0.0560851 
       0.4744     0.226656    0.0675863 
       0.4948     0.188098    0.0805607 
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       0.5152     0.152006    0.0941881 
       0.5356     0.122259     0.109483 
        0.556    0.0944639     0.125456 
       0.5764    0.0727291     0.142851 
       0.5968    0.0524727     0.161062 
       0.6172    0.0378599     0.180665 
       0.6376    0.0242972      0.20085 
        0.658     0.015786     0.222925 
       0.6784   0.00794832     0.245442 
       0.6988   0.00430131     0.269631 
       0.7192   0.00101088     0.294517 
       0.7396  0.000449725     0.320785 
         0.76            0     0.347774 
       0.7864            0      0.38488 
       0.8162            0     0.428813 
        0.846            0     0.474841 
       0.8758            0     0.523413 
       0.9056            0      0.57472 
       0.9354            0     0.628123 
       0.9652            0     0.683586 
        0.995            0     0.741513 
 
 
 
**----------------- INITIAL CONDITION --------------------- 
 
INITIAL 
 
VERTICAL DEPTH_AVE WATER_GAS 
 
ZGAS 
.001 .999 0.0 
 
REFPRES  
  4975 
 
REFDEPTH  
  500 
 
DWGC  
  250 
 
SWOC  
  0.995 
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GASZONE NOOIL 
 
**--------------------- NUMERICAL ------------------------- 
 
NUMERICAL 
DTMAX 1 
DTMIN 0.001 
NORM PRESS 3450 
MAXCHANGE GMOLAR 0.5 
MAXCHANGE SATUR 0.5 
CONVERGE PRESS 3.55 
 
**---------------------- WELL DATA ------------------------ 
 
RUN 
DATE 2011 1 1 
**$ 
WELL  'DW06' 
INJECTOR 'DW06' 
INCOMP  SOLVENT  1.  0. 
OPERATE  MAX  STG  18406.  CONT 
**$          rad  geofac  wfrac  skin 
GEOMETRY  K  0.0762  0.37  1.  0. 
PERF  GEOA  'DW06' 
**$ UBA      ff  Status  Connection   
    53 84 7  1.  OPEN    FLOW-FROM  'SURFACE' 
**$ 
WELL  'DW07' 
INJECTOR 'DW07' 
INCOMP  SOLVENT  1.  0. 
OPERATE  MAX  STG  18406.  CONT 
**$          rad  geofac  wfrac  skin 
GEOMETRY  K  0.0762  0.37  1.  0. 
PERF  GEOA  'DW07' 
**$ UBA      ff  Status  Connection   
    51 36 7  1.  OPEN    FLOW-FROM  'SURFACE' 
**$ 
WELL  'DW08' 
INJECTOR 'DW08' 
INCOMP  SOLVENT  1.  0. 
OPERATE  MAX  STG  18406.  CONT 
**$          rad  geofac  wfrac  skin 
GEOMETRY  K  0.0762  0.37  1.  0. 
PERF  GEOA  'DW08' 
**$ UBA       ff  Status  Connection   
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    50 129 7  1.  OPEN    FLOW-FROM  'SURFACE' 
**$ 
WELL  'DW10' 
INJECTOR 'DW10' 
INCOMP  SOLVENT  1.  0. 
OPERATE  MAX  STG  18406.  CONT 
**$          rad  geofac  wfrac  skin 
GEOMETRY  K  0.0762  0.37  1.  0. 
PERF  GEOA  'DW10' 
**$ UBA       ff  Status  Connection   
    55 104 7  1.  OPEN    FLOW-FROM  'SURFACE' 
**$ 
WELL  'DW12' 
INJECTOR 'DW12' 
INCOMP  SOLVENT  1.  0. 
OPERATE  MAX  STG  18406.  CONT 
**$          rad  geofac  wfrac  skin 
GEOMETRY  K  0.0762  0.37  1.  0. 
PERF  GEOA  'DW12' 
**$ UBA      ff  Status  Connection   
    68 66 7  1.  OPEN    FLOW-FROM  'SURFACE' 
**$ 
WELL  'DW13' 
INJECTOR 'DW13' 
INCOMP  SOLVENT  1.  0. 
OPERATE  MAX  STG  18406.  CONT 
**$          rad  geofac  wfrac  skin 
GEOMETRY  K  0.0762  0.37  1.  0. 
PERF  GEOA  'DW13' 
**$ UBA       ff  Status  Connection   
    56 116 7  1.  OPEN    FLOW-FROM  'SURFACE' 
**$ 
WELL  'DW14' 
INJECTOR 'DW14' 
INCOMP  SOLVENT  1.  0. 
OPERATE  MAX  STG  18406.  CONT 
**$          rad  geofac  wfrac  skin 
GEOMETRY  K  0.0762  0.37  1.  0. 
PERF  GEOA  'DW14' 
**$ UBA      ff  Status  Connection   
    20 68 7  1.  OPEN    FLOW-FROM  'SURFACE' 
**$ 
WELL  'DW15' 
INJECTOR 'DW15' 
INCOMP  SOLVENT  1.  0. 
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OPERATE  MAX  STG  18406.  CONT 
**$          rad  geofac  wfrac  skin 
GEOMETRY  K  0.0762  0.37  1.  0. 
PERF  GEOA  'DW15' 
**$ UBA      ff  Status  Connection   
    23 82 7  1.  OPEN    FLOW-FROM  'SURFACE' 
DATE 2011 5  1.00000 
DATE 2011 9  1.00000 
DTMAX 10 
DATE 2012 1  1.00000 
DATE 2012 5  1.00000 
DATE 2012 9  1.00000 
DATE 2013 1  1.00000 
DATE 2013 5  1.00000 
DATE 2013 9  1.00000 
DATE 2014 1  1.00000 
DATE 2014 5  1.00000 
DTMAX 20 
DATE 2014 9  1.00000 
DATE 2015 1  1.00000 
DATE 2015 5  1.00000 
DATE 2015 9  1.00000 
DATE 2016 1  1.00000 
DTMAX 30 
DATE 2016 5  1.00000 
DATE 2016 9  1.00000 
DATE 2017 1  1.00000 
DATE 2017 5  1.00000 
DATE 2017 9  1.00000 
DATE 2018 1  1.00000 
DATE 2018 5  1.00000 
DATE 2018 9  1.00000 
DATE 2019 1  1.00000 
DATE 2019 5  1.00000 
DATE 2019 9  1.00000 
DATE 2020 1  1.00000 
DATE 2020 5  1.00000 
DATE 2020 9  1.00000 
DTMAX 40 
DATE 2021 1  1.00000 
DATE 2021 5  1.00000 
DATE 2021 9  1.00000 
DATE 2022 1  1.00000 
DATE 2022 5  1.00000 
DATE 2022 9  1.00000 
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DATE 2023 1  1.00000 
DATE 2023 5  1.00000 
DATE 2023 9  1.00000 
DATE 2024 1  1.00000 
DATE 2024 5  1.00000 
DTMAX 100 
DATE 2024 9  1.00000 
DATE 2025 1  1.00000 
DATE 2025 5  1.00000 
DATE 2025 9  1.00000 
DATE 2026 1  1.00000 
DATE 2026 5  1.00000 
DATE 2026 9  1.00000 
DATE 2027 1  1.00000 
DATE 2027 5  1.00000 
DATE 2027 9  1.00000 
DATE 2028 1  1.00000 
DATE 2028 5  1.00000 
DATE 2028 9  1.00000 
DATE 2029 1  1.00000 
DATE 2029 5  1.00000 
DATE 2029 9  1.00000 
DATE 2030 1  1.00000 
DATE 2030 5  1.00000 
DATE 2030 9  1.00000 
DATE 2031 1  1.00000 
DATE 2031 5  1.00000 
DATE 2031 9  1.00000 
DATE 2032 1  1.00000 
DATE 2032 5  1.00000 
DATE 2032 9  1.00000 
DATE 2033 1  1.00000 
DATE 2033 5  1.00000 
DATE 2033 9  1.00000 
DATE 2034 1  1.00000 
DATE 2034 5  1.00000 
DATE 2034 9  1.00000 
DATE 2035 1  1.00000 
DTMAX 300 
DATE 2035 5  1.00000 
DATE 2035 9  1.00000 
DATE 2036 1  1.00000 
DATE 2036 5  1.00000 
DATE 2036 9  1.00000 
DATE 2037 1  1.00000 
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DATE 2037 5  1.00000 
DATE 2037 9  1.00000 
DATE 2038 1  1.00000 
DATE 2038 5  1.00000 
DATE 2038 9  1.00000 
DATE 2039 1  1.00000 
DATE 2039 5  1.00000 
DATE 2039 9  1.00000 
DATE 2040 1  1.00000 
DATE 2040 5  1.00000 
DATE 2040 9  1.00000 
DATE 2041 1  1.00000 
SHUTIN 'DW06' 
SHUTIN 'DW07' 
SHUTIN 'DW08' 
SHUTIN 'DW10' 
SHUTIN 'DW12' 
SHUTIN 'DW13' 
SHUTIN 'DW14' 
SHUTIN 'DW15' 
DATE 2041 5  1.00000 
DATE 2041 9  1.00000 
DATE 2042 1  1.00000 
DATE 2042 5  1.00000 
DATE 2042 9  1.00000 
DATE 2043 1  1.00000 
DATE 2043 5  1.00000 
DATE 2043 9  1.00000 
DATE 2044 1  1.00000 
DATE 2044 5  1.00000 
DATE 2044 9  1.00000 
DATE 2045 1  1.00000 
DATE 2045 5  1.00000 
DATE 2045 9  1.00000 
DATE 2046 1  1.00000 
DATE 2046 5  1.00000 
DATE 2046 9  1.00000 
DATE 2047 1  1.00000 
DATE 2047 5  1.00000 
DATE 2047 9  1.00000 
DATE 2048 1  1.00000 
DTMAX 1000 
DATE 2048 5  1.00000 
DATE 2048 9  1.00000 
DATE 2049 1  1.00000 
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DATE 2049 5  1.00000 
DATE 2049 9  1.00000 
DATE 2050 1  1.00000 
DATE 2050 5  1.00000 
DATE 2050 9  1.00000 
DATE 2051 1  1.00000 
DATE 2051 5  1.00000 
DATE 2051 9  1.00000 
DATE 2052 1  1.00000 
DATE 2052 5  1.00000 
DATE 2052 9  1.00000 
DATE 2053 1  1.00000 
DATE 2053 5  1.00000 
DATE 2053 9  1.00000 
DATE 2054 1  1.00000 
DATE 2054 5  1.00000 
DATE 2054 9  1.00000 
DATE 2055 1  1.00000 
DATE 2055 5  1.00000 
DATE 2055 9  1.00000 
DATE 2056 1  1.00000 
DATE 2056 5  1.00000 
DATE 2056 9  1.00000 
DATE 2057 1  1.00000 
DATE 2057 5  1.00000 
DATE 2057 9  1.00000 
DATE 2058 1  1.00000 
DATE 2058 5  1.00000 
DATE 2058 9  1.00000 
DATE 2059 1  1.00000 
DATE 2059 5  1.00000 
DATE 2059 9  1.00000 
DATE 2060 1  1.00000 
DATE 2060 5  1.00000 
DATE 2060 9  1.00000 
DATE 2061 1  1.00000 
DATE 2061 5  1.00000 
DATE 2061 9  1.00000 
DATE 2062 1  1.00000 
DATE 2062 5  1.00000 
DATE 2062 9  1.00000 
DATE 2063 1  1.00000 
DATE 2063 5  1.00000 
DATE 2063 9  1.00000 
DATE 2064 1  1.00000 
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DATE 2064 5  1.00000 
DATE 2064 9  1.00000 
DATE 2065 1  1.00000 
DATE 2065 5  1.00000 
DATE 2065 9  1.00000 
DATE 2066 1  1.00000 
DATE 2066 5  1.00000 
DATE 2066 9  1.00000 
DATE 2067 1  1.00000 
DATE 2067 5  1.00000 
DATE 2067 9  1.00000 
DATE 2068 1  1.00000 
DATE 2068 5  1.00000 
DATE 2068 9  1.00000 
DATE 2069 1  1.00000 
DATE 2069 5  1.00000 
DATE 2069 9  1.00000 
DATE 2070 1  1.00000 
DATE 2070 5  1.00000 
DATE 2070 9  1.00000 
DATE 2071 1  1.00000 
DATE 2071 5  1.00000 
DATE 2071 9  1.00000 
DATE 2072 1  1.00000 
DATE 2072 5  1.00000 
DATE 2072 9  1.00000 
DATE 2073 1  1.00000 
DATE 2073 5  1.00000 
DATE 2073 9  1.00000 
DATE 2074 1  1.00000 
DATE 2074 5  1.00000 
DATE 2074 9  1.00000 
DATE 2075 1  1.00000 
DATE 2075 5  1.00000 
DATE 2075 9  1.00000 
DATE 2076 1  1.00000 
DATE 2076 5  1.00000 
DATE 2076 9  1.00000 
DATE 2077 1  1.00000 
DATE 2077 5  1.00000 
DATE 2077 9  1.00000 
DATE 2078 1  1.00000 
DATE 2078 5  1.00000 
DATE 2078 9  1.00000 
DATE 2079 1  1.00000 
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DATE 2079 5  1.00000 
DATE 2079 9  1.00000 
DATE 2080 1  1.00000 
DATE 2080 5  1.00000 
DATE 2080 9  1.00000 
DATE 2081 1  1.00000 
DATE 2081 5  1.00000 
DATE 2081 9  1.00000 
DATE 2082 1  1.00000 
DATE 2082 5  1.00000 
DATE 2082 9  1.00000 
DATE 2083 1  1.00000 
DATE 2083 5  1.00000 
DATE 2083 9  1.00000 
DATE 2084 1  1.00000 
DATE 2084 5  1.00000 
DATE 2084 9  1.00000 
DATE 2085 1  1.00000 
DATE 2085 5  1.00000 
DATE 2085 9  1.00000 
DATE 2086 1  1.00000 
DATE 2086 5  1.00000 
DATE 2086 9  1.00000 
DATE 2087 1  1.00000 
DATE 2087 5  1.00000 
DATE 2087 9  1.00000 
DATE 2088 1  1.00000 
DATE 2088 5  1.00000 
DATE 2088 9  1.00000 
DATE 2089 1  1.00000 
DATE 2089 5  1.00000 
DATE 2089 9  1.00000 
DATE 2090 1  1.00000 
DATE 2090 5  1.00000 
DATE 2090 9  1.00000 
DATE 2091 1  1.00000 
DATE 2091 5  1.00000 
DATE 2091 9  1.00000 
DATE 2092 1  1.00000 
DATE 2092 5  1.00000 
DATE 2092 9  1.00000 
DATE 2093 1  1.00000 
DATE 2093 5  1.00000 
DATE 2093 9  1.00000 
DATE 2094 1  1.00000 
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DATE 2094 5  1.00000 
DATE 2094 9  1.00000 
DATE 2095 1  1.00000 
DATE 2095 5  1.00000 
DATE 2095 9  1.00000 
DATE 2096 1  1.00000 
DATE 2096 5  1.00000 
DATE 2096 9  1.00000 
DATE 2097 1  1.00000 
DATE 2097 5  1.00000 
DATE 2097 9  1.00000 
DATE 2098 1  1.00000 
DATE 2098 5  1.00000 
DATE 2098 9  1.00000 
DATE 2099 1  1.00000 
DATE 2099 5  1.00000 
DATE 2099 9  1.00000 
DATE 2100 1  1.00000 
DATE 2100 5  1.00000 
DATE 2100 9  1.00000 
DATE 2101 1  1.00000 
DATE 2101 5  1.00000 
DATE 2101 9  1.00000 
DATE 2102 1  1.00000 
DATE 2102 5  1.00000 
DATE 2102 9  1.00000 
DATE 2103 1  1.00000 
DATE 2103 5  1.00000 
DATE 2103 9  1.00000 
DATE 2104 1  1.00000 
DATE 2104 5  1.00000 
DATE 2104 9  1.00000 
DATE 2105 1  1.00000 
DATE 2105 5  1.00000 
DATE 2105 9  1.00000 
DATE 2106 1  1.00000 
DATE 2106 5  1.00000 
DATE 2106 9  1.00000 
DATE 2107 1  1.00000 
DATE 2107 5  1.00000 
DATE 2107 9  1.00000 
DATE 2108 1  1.00000 
DATE 2108 5  1.00000 
DATE 2108 9  1.00000 
DATE 2109 1  1.00000 
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DATE 2109 5  1.00000 
DATE 2109 9  1.00000 
DATE 2110 1  1.00000 
DATE 2110 5  1.00000 
DATE 2110 9  1.00000 
DATE 2111 1  1.00000 
DATE 2111 5  1.00000 
DATE 2111 9  1.00000 
DATE 2112 1  1.00000 
DATE 2112 5  1.00000 
DATE 2112 9  1.00000 
DATE 2113 1  1.00000 
DATE 2113 5  1.00000 
DATE 2113 9  1.00000 
DATE 2114 1  1.00000 
DATE 2114 5  1.00000 
DATE 2114 9  1.00000 
DATE 2115 1  1.00000 
DATE 2115 5  1.00000 
DATE 2115 9  1.00000 
DATE 2116 1  1.00000 
DATE 2116 5  1.00000 
DATE 2116 9  1.00000 
DATE 2117 1  1.00000 
DATE 2117 5  1.00000 
DATE 2117 9  1.00000 
DATE 2118 1  1.00000 
DATE 2118 5  1.00000 
DATE 2118 9  1.00000 
DATE 2119 1  1.00000 
DATE 2119 5  1.00000 
DATE 2119 9  1.00000 
DATE 2120 1  1.00000 
DATE 2120 5  1.00000 
DATE 2120 9  1.00000 
DATE 2121 1  1.00000 
DATE 2121 5  1.00000 
DATE 2121 9  1.00000 
DATE 2122 1  1.00000 
DATE 2122 5  1.00000 
DATE 2122 9  1.00000 
DATE 2123 1  1.00000 
DATE 2123 5  1.00000 
DATE 2123 9  1.00000 
DATE 2124 1  1.00000 
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DATE 2124 5  1.00000 
DATE 2124 9  1.00000 
DATE 2125 1  1.00000 
DATE 2125 5  1.00000 
DATE 2125 9  1.00000 
DATE 2126 1  1.00000 
DATE 2126 5  1.00000 
DATE 2126 9  1.00000 
DATE 2127 1  1.00000 
DATE 2127 5  1.00000 
DATE 2127 9  1.00000 
DATE 2128 1  1.00000 
DATE 2128 5  1.00000 
DATE 2128 9  1.00000 
DATE 2129 1  1.00000 
DATE 2129 5  1.00000 
DATE 2129 9  1.00000 
DATE 2130 1  1.00000 
DATE 2130 5  1.00000 
DATE 2130 9  1.00000 
DATE 2131 1  1.00000 
DATE 2131 5  1.00000 
DATE 2131 9  1.00000 
DATE 2132 1  1.00000 
DATE 2132 5  1.00000 
DATE 2132 9  1.00000 
DATE 2133 1  1.00000 
DATE 2133 5  1.00000 
DATE 2133 9  1.00000 
DATE 2134 1  1.00000 
DATE 2134 5  1.00000 
DATE 2134 9  1.00000 
DATE 2135 1  1.00000 
DATE 2135 5  1.00000 
DATE 2135 9  1.00000 
DATE 2136 1  1.00000 
DATE 2136 5  1.00000 
DATE 2136 9  1.00000 
DATE 2137 1  1.00000 
DATE 2137 5  1.00000 
DATE 2137 9  1.00000 
DATE 2138 1  1.00000 
DATE 2138 5  1.00000 
DATE 2138 9  1.00000 
DATE 2139 1  1.00000 
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DATE 2139 5  1.00000 
DATE 2139 9  1.00000 
DATE 2140 1  1.00000 
DATE 2140 5  1.00000 
DATE 2140 9  1.00000 
DATE 2141 1  1.00000 
DATE 2141 5  1.00000 
DATE 2141 9  1.00000 
DATE 2142 1  1.00000 
DATE 2142 5  1.00000 
DATE 2142 9  1.00000 
DATE 2143 1  1.00000 
DATE 2143 5  1.00000 
DATE 2143 9  1.00000 
DATE 2144 1  1.00000 
DATE 2144 5  1.00000 
DATE 2144 9  1.00000 
DATE 2145 1  1.00000 
DATE 2145 5  1.00000 
DATE 2145 9  1.00000 
DATE 2146 1  1.00000 
DATE 2146 5  1.00000 
DATE 2146 9  1.00000 
DATE 2147 1  1.00000 
DATE 2147 5  1.00000 
DATE 2147 9  1.00000 
DATE 2148 1  1.00000 
DATE 2148 5  1.00000 
DATE 2148 9  1.00000 
DATE 2149 1  1.00000 
DATE 2149 5  1.00000 
DATE 2149 9  1.00000 
DATE 2150 1  1.00000 
DATE 2150 5  1.00000 
DATE 2150 9  1.00000 
DATE 2151 1  1.00000 
DATE 2151 5  1.00000 
DATE 2151 9  1.00000 
DATE 2152 1  1.00000 
DATE 2152 5  1.00000 
DATE 2152 9  1.00000 
DATE 2153 1  1.00000 
DATE 2153 5  1.00000 
DATE 2153 9  1.00000 
DATE 2154 1  1.00000 
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DATE 2154 5  1.00000 
DATE 2154 9  1.00000 
DATE 2155 1  1.00000 
DATE 2155 5  1.00000 
DATE 2155 9  1.00000 
DATE 2156 1  1.00000 
DATE 2156 5  1.00000 
DATE 2156 9  1.00000 
DATE 2157 1  1.00000 
DATE 2157 5  1.00000 
DATE 2157 9  1.00000 
DATE 2158 1  1.00000 
DATE 2158 5  1.00000 
DATE 2158 9  1.00000 
DATE 2159 1  1.00000 
DATE 2159 5  1.00000 
DATE 2159 9  1.00000 
DATE 2160 1  1.00000 
DATE 2160 5  1.00000 
DATE 2160 9  1.00000 
DATE 2161 1  1.00000 
DATE 2161 5  1.00000 
DATE 2161 9  1.00000 
DATE 2162 1  1.00000 
DATE 2162 5  1.00000 
DATE 2162 9  1.00000 
DATE 2163 1  1.00000 
DATE 2163 5  1.00000 
DATE 2163 9  1.00000 
DATE 2164 1  1.00000 
DATE 2164 5  1.00000 
DATE 2164 9  1.00000 
DATE 2165 1  1.00000 
DATE 2165 5  1.00000 
DATE 2165 9  1.00000 
DATE 2166 1  1.00000 
DATE 2166 5  1.00000 
DATE 2166 9  1.00000 
DATE 2167 1  1.00000 
DATE 2167 5  1.00000 
DATE 2167 9  1.00000 
DATE 2168 1  1.00000 
DATE 2168 5  1.00000 
DATE 2168 9  1.00000 
DATE 2169 1  1.00000 



 121

DATE 2169 5  1.00000 
DATE 2169 9  1.00000 
DATE 2170 1  1.00000 
DATE 2170 5  1.00000 
DATE 2170 9  1.00000 
DATE 2171 1  1.00000 
DATE 2171 5  1.00000 
DATE 2171 9  1.00000 
DATE 2172 1  1.00000 
DATE 2172 5  1.00000 
DATE 2172 9  1.00000 
DATE 2173 1  1.00000 
DATE 2173 5  1.00000 
DATE 2173 9  1.00000 
DATE 2174 1  1.00000 
DATE 2174 5  1.00000 
DATE 2174 9  1.00000 
DATE 2175 1  1.00000 
DATE 2175 5  1.00000 
DATE 2175 9  1.00000 
DATE 2176 1  1.00000 
DATE 2176 5  1.00000 
DATE 2176 9  1.00000 
DATE 2177 1  1.00000 
DATE 2177 5  1.00000 
DATE 2177 9  1.00000 
DATE 2178 1  1.00000 
DATE 2178 5  1.00000 
DATE 2178 9  1.00000 
DATE 2179 1  1.00000 
DATE 2179 5  1.00000 
DATE 2179 9  1.00000 
DATE 2180 1  1.00000 
DATE 2180 5  1.00000 
DATE 2180 9  1.00000 
DATE 2181 1  1.00000 
DATE 2181 5  1.00000 
DATE 2181 9  1.00000 
DATE 2182 1  1.00000 
DATE 2182 5  1.00000 
DATE 2182 9  1.00000 
DATE 2183 1  1.00000 
DATE 2183 5  1.00000 
DATE 2183 9  1.00000 
DATE 2184 1  1.00000 
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DATE 2184 5  1.00000 
DATE 2184 9  1.00000 
DATE 2185 1  1.00000 
DATE 2185 5  1.00000 
DATE 2185 9  1.00000 
DATE 2186 1  1.00000 
DATE 2186 5  1.00000 
DATE 2186 9  1.00000 
DATE 2187 1  1.00000 
DATE 2187 5  1.00000 
DATE 2187 9  1.00000 
DATE 2188 1  1.00000 
DATE 2188 5  1.00000 
DATE 2188 9  1.00000 
DATE 2189 1  1.00000 
DATE 2189 5  1.00000 
DATE 2189 9  1.00000 
DATE 2190 1  1.00000 
DATE 2190 5  1.00000 
DATE 2190 9  1.00000 
DATE 2191 1  1.00000 
DATE 2191 5  1.00000 
DATE 2191 9  1.00000 
DATE 2192 1  1.00000 
DATE 2192 5  1.00000 
DATE 2192 9  1.00000 
DATE 2193 1  1.00000 
DATE 2193 5  1.00000 
DATE 2193 9  1.00000 
DATE 2194 1  1.00000 
DATE 2194 5  1.00000 
DATE 2194 9  1.00000 
DATE 2195 1  1.00000 
DATE 2195 5  1.00000 
DATE 2195 9  1.00000 
DATE 2196 1  1.00000 
DATE 2196 5  1.00000 
DATE 2196 9  1.00000 
DATE 2197 1  1.00000 
DATE 2197 5  1.00000 
DATE 2197 9  1.00000 
DATE 2198 1  1.00000 
DATE 2198 5  1.00000 
DATE 2198 9  1.00000 
DATE 2199 1  1.00000 
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DATE 2199 5  1.00000 
DATE 2199 9  1.00000 
DATE 2200 1  1.00000 
DATE 2200 5  1.00000 
DATE 2200 9  1.00000 
DATE 2201 1  1.00000 
DATE 2201 5  1.00000 
DATE 2201 9  1.00000 
DATE 2202 1  1.00000 
DATE 2202 5  1.00000 
DATE 2202 9  1.00000 
DATE 2203 1  1.00000 
DATE 2203 5  1.00000 
DATE 2203 9  1.00000 
DATE 2204 1  1.00000 
DATE 2204 5  1.00000 
DATE 2204 9  1.00000 
DATE 2205 1  1.00000 
DATE 2205 5  1.00000 
DATE 2205 9  1.00000 
DATE 2206 1  1.00000 
DATE 2206 5  1.00000 
DATE 2206 9  1.00000 
DATE 2207 1  1.00000 
DATE 2207 5  1.00000 
DATE 2207 9  1.00000 
DATE 2208 1  1.00000 
DATE 2208 5  1.00000 
DATE 2208 9  1.00000 
DATE 2209 1  1.00000 
DATE 2209 5  1.00000 
DATE 2209 9  1.00000 
DATE 2210 1  1.00000 
DATE 2210 5  1.00000 
DATE 2210 9  1.00000 
DATE 2211 1  1.00000 
STOP 
**--------------------  SIMULATION STOP  ------------------ 



 124

VITA 

 

Tausif Khizar Ahmed received his Bachelor of Science degree in petroleum 

engineering from Texas A&M University at Qatar in 2009. He entered the petroleum 

engineering distance learning program at Texas A&M University in September 2009. He 

completed his research at Texas A&M University at the Qatar campus and received his 

Master of Science degree in August 2011.  

His research interests include CO2 crude oil fluid characterization and CO2 

sequestration.  

 Mr. Ahmed may be reached at: tausif.k.ahmed@gmail.com, and:  

 

 Texas A&M University at Qatar 

P O Box 23874 

Education City 

Doha, Qatar 


