

ADDRESSING THE CONSENSUS PROBLEM IN REAL-TIME USING

LIGHTWEIGHT MIDDLEWARE ON DISTRIBUTED DEVICES

A Thesis

by

KEITH ANTON HALL

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

August 2011

Major Subject: Industrial Engineering

Addressing the Consensus Problem in Real-time Using

Lightweight Middleware on Distributed Devices

Copyright 2011 Keith Anton Hall

ADDRESSING THE CONSENSUS PROBLEM IN REAL-TIME USING

LIGHTWEIGHT MIDDLEWARE ON DISTRIBUTED DEVICES

A Thesis

by

KEITH ANTON HALL

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTERS OF SCIENCE

Approved by:

Chair of Committee, Abhijit Deshmukh
Committee Members, Guy Curry
 Salih Yurttas
Head of Department, Brett Peters

August 2011

Major Subject: Industrial Engineering

iii

ABSTRACT

Addressing the Consensus Problem in Real-time Using Lightweight Middleware

on Distributed Devices. (August 2011)

Keith Anton Hall, B.S., Texas A&M University

Chair of Advisory Committee: Dr. Abhijit Deshmukh

With the advent of the modern technological age, a plethora of electronic tools

and devices are available in numbers as never before. While beneficial and ex-

ceedingly useful, these electronic devices require users to operate them. When

designing systems capable of observing and acting upon an environment, the

number of devices can become unmanageable. Previously, middleware systems

were designed for large-scale computational systems. However, by applying

similar concepts and distributing logic to autonomous agents residing on the de-

vices, a new paradigm in distributed systems research on lightweight devices is

conceivable. Therefore, this research focuses upon the development of a light-

weight middleware that can reside on small devices enabling the capability for

these devices to act autonomously.

In this research, analyses determine the most advantageous methods for solving

this problem by defining a set of requirements for the necessary middleware as

well as assumptions for the environment and system in which it would operate

achieved a proper research focus. By utilizing concepts already in existence

iv

such as peer-to-peer networking and distributed hash tables, devices in this sys-

tem could communicate effectively and efficiently. Furthermore, creating custom

algorithms for communicating with other devices and collaborating on task as-

signments achieves an approach to solving the consensus problem in real time.

The resulting middleware solution allows a demonstration to prove the efficacy.

Using three devices capable of observing the environment and acting upon it,

two tests highlight the capabilities of the consensus-finding mechanism as well

as the ability of the devices to respond to changes in the environment autono-

mously.

v

DEDICATION

To my friends and family who have been my source of

encouragement and inspiration

vi

ACKNOWLEDGEMENTS

I would sincerely like to thank my advisor, Dr. Abhijit Deshmukh, for his support

and guidance as well as for sparking my interest in research. I would also like to

thank Dr. Salih Yurttas for his support as a member of my committee and for his

advice and knowledge throughout the last year of my studies. Additionally, I

would like to thank Dr. Guy Curry for his invaluable advice and guidance

throughout my graduate career. I would also like to express my gratitude to Dr.

Gunnar Feldmann whose friendship and mentorship are deeply appreciated.

vii

TABLE OF CONTENTS

 Page

ABSTRACT .. iii

DEDICATION .. v

ACKNOWLEDGEMENTS ... vi

TABLE OF CONTENTS ... vii

LIST OF FIGURES ... ix

LIST OF TABLES .. x

TRADEMARKS AND SPECIAL TERMS ... xi

1. INTRODUCTION ... 1

1.1 Objective .. 2

1.2 Utility .. 2

1.3 Outline .. 3

2. LITERATURE REVIEW ... 4

2.1 The Consensus Problem .. 4

2.2 Information Distribution .. 5

2.3 System and Data Robustness .. 6

2.4 Middleware Development ... 7

3. PROBLEM DEFINITION .. 8

3.1 Problems .. 8

3.2 Assumptions ... 9

3.3 Definitions .. 11

4. LIGHTWEIGHT MIDDLEWARE SOLUTION ... 14

4.1 Requirements ... 14

4.2 System Design ... 17

4.3 Architecture .. 29

viii

Page

5. IMPLEMENTATION ... 36

6. CONCLUSION ... 46

REFERENCES .. 48

VITA ... 51

ix

LIST OF FIGURES

 Page

Figure 2.1. Standard network topologies [5] .. 5

Figure 3.1. Individual views of environment by agents 10

Figure 4.1. Centralized network topography .. 18

Figure 4.2. Peer-to-peer network topology .. 19

Figure 4.3. New node initial collection ... 20

Figure 4.4. Distributed hash table .. 21

Figure 4.5. New node initialization ... 24

Figure 4.6. Software architecture diagram ... 35

Figure 5.1. Device configuration .. 38

Figure 5.2. Web interface with list of devices ... 39

Figure 5.3. Robots in environment without red target .. 41

Figure 5.4. Robots in environment with red target ... 42

Figure 5.5. All robots have found the red target ... 42

Figure 5.6. Assigned robot approaches red target ... 43

Figure 5.7. Reassigned robot approaches red target... 44

Figure 5.8. Web interface during experiment ... 45

x

LIST OF TABLES

 Page

Table 4.1: Ubuntu hardware requirements .. 34

Table 5.1: Agent for each laptop-robot pair ... 37

xi

TRADEMARKS AND SPECIAL TERMS

Author’s Note: The following terms are acknowledged as trademarks, registered

trademarks, or external material. In the body of the thesis, they are identified by

italics.

 Apache®

 Apple® iPad®

 Apple® iPhone®

 Apple® Mac OS® X

 Chord

 Entangled

 HyperText Markup Language (HTML)

 JavaScript®

 jQuery

 Kademlia

 Lighttpd

 Linux®

 Microsoft® Internet Information Services (IIS)

 Microsoft® Windows® XP

 Nginx™

 Pastry

 PHP Hypertext Preprocessor (PHP)

xii

 Python®

 SQLite®

 Synaptec

 Ubuntu®

1

1. INTRODUCTION1

The development of human language stems from the innate need of intelligent

beings to communicate with one another. In the case of early humans, commu-

nication was crucial to survival as man was generally not as strong or as fast as

his animal predators and prey. However, with advanced cognitive and communi-

cation abilities, early man eventually conquered and proved his worth in the pre-

historic ecosystem.

Technology has since advanced to allow electronic communication. In 1971, the

first electronic distributed message was sent from one computer to another [1].

This one message paved the way for the development of email and later, the in-

ternet, the distributed information communication infrastructure of the world. Ra-

ther than consisting of single points of contact, systems now have seemingly un-

limited number of resources easily disposable for solving problems.

Regardless of the objective or specific objective, whether it is to express oneself,

to disseminate information, or coordinate resources and personnel, the goal for

the communication is ultimately to reach a mutual agreement or understanding

— a consensus. While the uses of language have evolved and diverged greatly,

the mechanisms for allowing networked devices to collaborate with one another

to solve problems or reach consensus autonomously still lack in maturity. Fur-

thermore, with the advent of the modern technological age, most information and

This thesis is in the style of IEEE Transactions on Automatic Control.

2

data processing as well as communication occur in a distributed fashion. With

electronic devices not only being deployed in localized environments, but also

dispersed globally, the importance of autonomously managing them increases

continuously.

1.1 Objective

The primary objective of this research is to provide a means for autonomous or

semi-autonomous agents to solve a consensus problem dynamically using real-

time analysis and allow dynamic reallocation of resources via collaboration and

communication. This objective can be decomposed into several sub-objectives:

1. Create a distributed and decentralized middleware for communication and

data exchange

2. Create a common interfacing mechanism between agents

3. Create a mechanism to utilize consensus-reaching algorithms

4. Provide a means for information dissemination to the appropriate agents

1.2 Utility

The world as a whole is becoming increasingly digitalized, where everything

from government, infrastructure, economies, and war have strong technology

ties to increase efficiency and ease. However, the true potential of technology

assimilation is not realized unless technologies can work together to provide

more powerful solutions. If technology can solve human problems with little to no

interaction from the users or operators, the utility increases dramatically.

3

The power of distributed computing is understood well and realized, but its ap-

plication is limited and unimaginative although nontrivial. Rather than using dis-

tributed computing to perform complex calculations, one could use a network of

small, lightweight, and agile agents or devices to analyze problems and to solve

them optimally autonomously and in real-time. Potential application areas in-

clude, but are not limited to battlefield analysis, distributed surveillance, infra-

structure monitoring, smart sensor networks, weather monitoring, and smart dis-

tributed safety systems. At this pivotal point in technological evolution, method-

ologies must be developed that can utilize the ever increasing power as well as

ever decreasing size of devices.

1.3 Outline

The next section, Literature Review, covers much of the current work in both dis-

tributed systems as well as the approaches to solving the consensus problem for

this topic. The following section, Problem Definition, lists the problems to be ad-

dressed along with the assumptions that involve them. Afterwards, a theoretical

solution is proposed along with the requirements and software solution in the

Lightweight Middleware Solution section. In the next section, Implementation,

two test cases demonstrate the effectiveness of the solution. Finally, the Con-

clusion summarizes the thesis and presents any open problems.

4

2. LITERATURE REVIEW

As the utility for distributed smart device networks gains notoriety and traction,

the needs and uses continue to evolve rapidly. The uses for distributed smart

device networks have been recognized; however, several aspects have received

little attention from the research community to solve for dynamism. Additionally,

the consensus problem itself is still relatively new. Furthermore, because this

research focuses upon deployment of lightweight devices, the applicability of

many of the current solutions in the literature also is critiqued.

2.1 The Consensus Problem

The ideas of the consensus problem and the methods to solve it have been an

active area of research since the 1980s [2]. Typically, the consensus problem is

solved by parameterizing the agents involved in the system and their vantage

points as decision variables in an a priori optimization algorithm to find an opti-

mal or near-optimal consensus point [3], [4].

However, when dealing with a live environment in which agents already interact,

the system must be able to adapt to changes. When agents join or leave the

network, the solution must be found quickly while still accounting for the dynamic

changes. Predetermined consensus points may be able to cover the spectrum of

possibilities for a small number of agents; however, as the number of agents

scales to larger numbers, the ability to store the consensus point for every sce-

nario becomes infeasible – especially with lightweight devices.

5

2.2 Information Distribution

When dealing with multi-agent systems, an important consideration is the distri-

bution of data. More importantly, how is the correct data shared with the appro-

priate agents? In small networks, any standard network topology should be suf-

ficient, the most popular of which appear in Figure 2.1.

Figure 2.1. Standard network topologies [5]

However, in the simple topologies, e.g. ring, line, and bus, scalability suffers as

all the data must pass through all the agents. In the star and tree topologies, re-

moving the central node or connecting nodes can render the system inert. Final-

ly, the fully connected topology maintains data robustness, but the does not

scale well to a large number of lightweight devices.

6

In an attempt to alleviate these problems, several solutions have been proposed.

One choice is the use of synchronous message passing with end-point verifica-

tion. In this type of system, data incapable of propagating to every agent asyn-

chronously, such as data received at a target, is likely to be out of date by the

time it traverses the network [6]. Instead, agents must store data received and

after a predetermined time, verify that the source is still active [6].

Another popular choice is the so called publisher/subscriber system. Typically

with these systems, a publisher is an agent which disseminates information to its

subscribers [7], [8]. As such, the subscribers have predetermined lists of pub-

lishers from which they await information. While an effective way to distribute

information for networks with a small number of agents, it does not scale well

and does not perform properly when failures occur. This technology was im-

proved with event-based notification systems [9]. While this technology is scala-

ble and fault-tolerant, it is still possible to reduce the overhead and improve the

data integrity with increased fault-tolerance and system dynamism.

2.3 System and Data Robustness

Another problem identified by early works was the failure of consensus algo-

rithms given faulty processes or agents [10]. During the early methodologies, the

consensus problem was solved by using existing and new optimization algo-

rithms [10], [11]. However, the issues facing the consensus problem were real-

7

ized, and one of the main concerns was ensuring data integrity and system resil-

ience when failures occur [11].

However, the problem of how to ensure that the distributed system remains

functional when unexpected circumstances remove agents has yet to be ad-

dressed. Additionally, when dealing with lightweight devices, the amount of in-

formation being distributed and stored must not exceed the capabilities of the

devices. In fact Culler et. al. have identified this restriction as one of the main

limiting factors for the advancement of sensor network research [12].

2.4 Middleware Development

While the idea of middleware itself has existed since the late 1960’s as the de-

scription of the software that lies between the application layer and the service

layer [13], the truly distributed systems approach to middleware did not begin

gaining traction until the early 1990’s [14].

A common method for solving consensus problems is grid computing. In grid

computing, resources of agents are shared among one another in an effort to

solve a common problem. Typically, grid computing utilizes distributed comput-

ers to share computing power, data, and other tools, e.g. Globus [15]. However,

large computational grid software is not appropriate for deployment on small de-

vices. Sarjoughian et. al. provide a logical framework for designing lightweight

middleware systems which can also apply to this solution [16].

8

3. PROBLEM DEFINITION

Knowing that the collaboration among agents is growing in necessity and that

the current state-of-the-art lacks several core competencies to address these

needs, several problems must be addressed. A formalized statement of the

problems follows. Then, some definitions are provided to help familiarize the

reader with the terminology of this thesis; and, finally, the assumptions about the

problem as a whole are presented.

3.1 Problems

When trying to reach an agreement in an effort to solve a problem automatically,

several issues arise. The first problem encountered involves the process for de-

termining when a consensus is reached. Without human operators or users di-

rectly providing logic, an innovative algorithm must be created. However, be-

cause the objective is to solve this problem in real-time, the algorithm must be

adaptive and respond to changes in the environment.

The second problem to address is the distribution and sharing of information

among the autonomous agents. Any relevant information necessary for finding

the consensus point should be distributed to the agents that are involved direct-

ly. It is wasteful of resources and time to send every piece of information to eve-

ry agent in the system. As such, a proper data-passing algorithm must be em-

ployed.

9

The third problem to address is the robustness of the distributed network. Given

that the agents are to be distributed, if a centralized data and communication re-

pository or server were to fail or go offline, the entire infrastructure would be-

come unusable. Therefore, data must be distributed such that the entire system

will not fail if one agent fails. Given a decentralized infrastructure, appropriate

assignment is crucial to avoid unnecessary waste or processing.

Finally, if this system is to function on embedded devices, the software and

hardware requirements must be minimal. Thus, a lightweight approach must be

used to ensure that the system can function on the smallest feasible

devices.

3.2 Assumptions

Assumption 1. Each agent has a limited view of the environment as a whole

and is also limited by the sensing capabilities of the hardware of the device it

controls, i.e. an agent can only detect that which it is capable of detecting.

This distinction is necessary to separate not only the independent agents, but

also the data that are observable by each agent. Figure 3.1 is a simplified graph-

ical representation of this assumption.

10

ENVIRONMENT

Agent Observable Area

Figure 3.1. Individual views of environment by agents

Assumption 2. The network is volatile, and agents will join and leave the sys-

tem at an unpredictable rate.

By assuming deployment scenarios in which hardware or network failures

occur, the solution must retain system integrity. Similarly, if new agents are in-

stalled, the system should capitalize on the increased capacity.

11

Assumption 3. The system must be able to accommodate a large number of

agents.

Despite the limited resources of the laboratory environment, the system must be

designed such that it can scale from a small number of agents, e.g. 3, to a large

number, e.g. ten thousand.

Assumption 4. The devices on which the agent software resides are limited in

terms of computational power and functionality.

Assuming the system software will reside on sensors, embedded devices, or

small robots, the hardware requirements must be minimal.

Assumption 5. The devices are non-homogeneous.

While a system may be composed of one type of device, unforeseen circum-

stances may arise which necessitate newer or otherwise different hardware. As

such, the system must work with both a heterogeneous and homogeneous array

of devices.

3.3 Definitions

Definition 1. A middleware is a software layer that connects software compon-

ents to one another or agents to one another.

Definition 2. The system is an interconnected network of devices, the commu-

nication between them, and the environment in which they operate.

12

Definition 3. A dynamic system is one in which the properties of the system

change over time, often unpredictably.

Definition 4. An agent is an autonomous entity that observes and acts

upon an environment through the middleware and directs its activity towards

achieving goals [17].

Definition 5. A device is an electronic machine capable of attaining some end.

Definition 6. A centralized network is a network architecture in which agents

communicate through a central server.

Definition 7. A peer-to-peer network is a network architecture in which agents

communicate with one another rather than through a central server.

Definition 8. A distributed hash table (DHT) is a service for passing data be-

tween nodes according to a unique (key, value) pair while limiting the propaga-

tion of data to enable large-scale applications.

Definition 9. A data store is a database stored on each node containing the

DHT data. A common data language must be used between all nodes.

Definition 10. A node is a connection point in the network that is capable of

sending and receiving data over a communication channel.

13

Definition 11. A bootstrap node or rendezvous host is a predefined initial con-

nection point to which other nodes connect to join the peer-to-peer distributed

network. After initialization, the new node is able to communicate normally with-

out bootstrap node dependency.

Definition 12. An edge node is a node that exists within the system that can

communicate with other edge nodes. Bootstrap nodes are also edge nodes.

Definition 13. Initialization is the process of connecting a new node to the net-

work, usually through a bootstrap node unless the new node is itself is the first

node to start the system.

14

4. LIGHTWEIGHT MIDDLEWARE SOLUTION

To overcome these challenges, I propose a distributed device network that fea-

tures dynamic discovery with limited to no operator intervention. Before design-

ing the middleware component, the requirements for the devices and the soft-

ware must be defined clearly to ensure that the correct solution is implemented.

4.1 Requirements

Requirement 1. New devices should integrate into the system quickly and

easily.

In a dynamic system, devices join the network and leave the network unexpect-

edly. Therefore, the system must be sensitive enough to detect these changes.

However, if devices are difficult to integrate into the system, the rest of the sys-

tem cannot utilize the increased capacity to find a better solution.

Requirement 2. Devices should be able to talk to one another both internally

and externally.

Without basic network protocols such as Transmission Control Protocol (TCP) or

User Datagram Protocol (UDP), the devices cannot communicate with one an-

other. By utilizing already proven technologies, the middleware should directly

solve the challenges stated in Subsection 3.1.

15

Requirement 3. Devices should store limited data.

When dealing with lightweight devices, processing power and memory are se-

verely limited. Therefore, the middleware must accommodate the hardware limi-

tations of the devices on which it resides.

Requirement 4.The middleware must be modular.

Because this problem deals with a non-homogenous array of devices, the ability

to substitute quickly not only devices, but also their individual capabilities, is es-

sential. By providing the means to substitute one device for another, the can

adapt better to respond to dynamism.

Requirement 5. The system and data storage must be decentralized.

In a centralized system, a single point of failure, typically known as a ―server‖,

exists that threatens the integrity of the system as well as the data. If the server

is compromised, the rest of the system is incapacitated. To safeguard against

data loss or system downtime, the middleware must distribute the communica-

tion channels as well as the data storage.

Requirement 6. Devices must be able to join from any internet-enabled location.

As long as a device is connected to the internet, it should be able to join the sys-

tem. Any intermediary firewalls should not interfere with the connection.

16

Requirement 7. The devices must be able to adapt to changes in the environ-

ment.

If the goal of the agents changes while executing, the system must be able to

respond. Additionally, if agents join or leave while executing a task, the system

must adjust to the change in capacity.

Requirement 8. Based upon logic algorithms, the devices must be able to reach

consensus autonomously.

In order to reach consensus for a specific scenario, the middleware agent on

each device must include logic patterns to aid each device in making the right

decisions. With each device having its own logic, they must determine the con-

sensus point by communicating with one another.

Requirement 9. User interaction with the devices and the system should be lim-

ited, if necessary.

The purpose of this system of autonomous devices is to solve the consensus

problem without the need for a human to micro-manage it. Additionally, if users

influence the process, the algorithms might yield an incorrect consensus point or

take longer than necessary.

Thus, user interaction should be limited to the initial configuration of the devices.

After the device has the middleware installed and the properties configured, the

17

device can be deployed and join the system. At this point, the user should not

need to touch the device again unless hardware maintenance is required.

4.2 System Design

Taking into account the requirements for the middleware as well as the assump-

tions that shape the system and the environment, the following solutions are

proposed for incorporation into the lightweight middleware.

4.2.1 Decentralized Networking

As discussed in Subsection 3.1, one of the problems present in many distributed

systems is reliance upon a centralized hub or server. If and when the central hub

or server fails or unexpectedly leaves the network, the rest of the network fol-

lows suit. Figure 4.1 provides an illustration of a centralized network topology.

The need for decentralizing the distributed system is obvious.

Luckily, decentralized solutions already exist. As shown in Figure 2.1, fully con-

nected and mesh network topologies remove the need for a central hub or serv-

er by distributing the information. While fully connected networks distribute data,

all the data are replicated across all the nodes. Therefore, using the fully con-

nected network topology would violate Requirement 3.

18

Figure 4.1. Centralized network topography

However, the mesh network does not necessarily require that every node be

connected to every other node. If the mesh network can establish communica-

tion channels intelligently among nodes, both Requirement 2 and Requirement 5

would be satisfied. A peer-to-peer network, as shown in Figure 4.2, facilitates

the communication between peer nodes as necessary. If a certain node re-

quests data from another, a communication channel enables the data transfer

either unidirectionally or bidirectionally.

19

Figure 4.2. Peer-to-peer network topology

4.2.2 Data and Communication

Once a node joins the system, it must update its data repository. By using the

well-developed concept of a distributed hash table (DHT), the new node can

quickly learn of its surroundings by asking its nearest neighbors. Likewise, the

nearest neighbors of the new node learn of the new node and store its related

data - an example of which appears in Figure 4.3 and Algorithm 4.1. In the fig-

ure, the green lines represent the communication channels with the new node

and its nearest neighbors. The black line represents an established channel be-

tween the two existing nodes.

20

Bootstrap Node

New Node

Figure 4.3. New node initial collection

 1| # Load the configuration for the device
 2| config = load_device_configuration()
 3|
 4| # Load any predefined neighbors to seek
 5| known_nodes = None
 6| if config.known_nodes
 7| known_nodes = config.known_nodes
 8|
 9| # Initialize the datastore on the device
10| datastore = create_datastore()
11|
12| # Create the node object using datastore
13| node = create_node(datastore)
14|
15| # Connect the node to the P2P network
16| node.join_network(known_nodes)

Algorithm 4.1. New node initialization

21

If a node fails or otherwise leaves the system, the information associated with

that node also leaves. This prevents the system from becoming overburdened

by extra data that is not useful in finding the consensus point.

In order to ensure proper communication among nodes, the system requires a

common interface and data representation language. A fundamental component

of a DHT is the hashed (key, value) pair. Upon data creation, it passes through a

unique hashing function that converts readable data into an encoded key. Then,

this key is shared along with its values to the receiving nodes. Figure 4.4 pro-

vides an illustration of this concept, and Algorithm 4.2 is an example using the

hashing function with sample output.

Distributed

Network

Datum 1

Datum 2

Datum 3

D84BC3F

AF420DC

72DC98E

Value Hashed Key Receiving Nodes

Figure 4.4. Distributed hash table

22

 1| data_value_1 = “Datum 1”
 2| hashed_key_1 = hash_function(data_value)
 3| hashes.append(hashed_key_1)
 4|
 5| data_value_2 = “Datum 2”
 6| hashed_key_2 = hash_function(data_value)
 7| hashes.append(hashed_key_2)
 8|
 9| # Print Pairs
10| for hash in hashes
11| print hash | hash.lookup_value()

OUTPUT
D84BC3f | Datum 1
AF420DC | Datum 2

Algorithm 4.2. Creating a hashed (key, value) pair

Additionally, because the DHT only passes data to nodes as needed instead of

broadly broadcasting to every node simultaneously, less data clogs the commu-

nication channels and less information must be stored on the individual devices.

As proposed, the data and communication architecture satisfy Requirement 1,

Requirement 2, Requirement 3, and Requirement 5.

4.2.3 Bootstrap and Edge Nodes

In order to facilitate the design of the distributed system software, two types of

nodes are necessary: bootstrap and edge nodes. The purpose for the bootstrap

node is to allow other nodes, either fellow bootstrap or edge, to join the network

by serving data to them. In essence, the bootstrap node is a predefined stable

node that is already part of the distributed network that provides configuration

23

information to new nodes – a stable constant in a dynamic system. Only one

bootstrap node is required to start the peer-to-peer network; any other bootstrap

node in the system exists only for redundancy.

Bootstrap nodes are also capable of poking holes through firewalls that exist be-

tween the distributed system network and the new node requesting access.

By contrast, edge nodes join the network by contacting a bootstrap node. De-

spite this setup, any edge node can become a bootstrap node, and any boot-

strap node still functions as an edge node by default. The only distinction be-

tween the two is that a bootstrap node is visible to other nodes external to the

network as well. Hence, the communication port for the bootstrap node must be

accessible from outside the network if located behind a firewall or other routing

devices. In Algorithm 4.1, an edge node would have the bootstrap nodes defined

as ―known hosts” in the configuration file for the device.

Because the system is dynamic, it is not feasible to require the middleware to

scan constantly for new devices. Instead, new devices should communicate with

the bootstrap nodes to receive the necessary credentials to join the network. As

shown in Figure 4.5, the steps for the initialization process are:

24

1) The new node must contact the bootstrap node and request access.

2) Bootstrap node verifies new node and sends back connection data. In this

step, the message back opens the firewall(s) for the new node.

3) The new node may now join the network and communicate freely.

Firewall

Distributed

Network

22122 New Node

22222

Bootstrap Node

33333

Figure 4.5. New node initialization

The node architecture as described satisfies Requirement 1, Requirement 4

Requirement 6 and partially satisfies Requirement 2.

4.2.4 Web Nodes

In addition to the edge and bootstrap nodes, any of either type can be assigned

an additional role: web node. The purpose of a web server residing on a node is

to provide platform-independent access to the system. Through the use of a

web-based interface, a user can gain access to the system from any internet-

ready device from any location capable of connecting to the network. Further-

25

more, a web-based approach provides an additional degree of flexibility for de-

ployment scenarios. For example, the system status can be assessed remotely.

Algorithm 4.3 demonstrates the method used by the web node to display device

status to the web interface.

 1| # Query datastore for online devices
 2| devices = datastore.query(“get online devices”)
 3|
 4| json_data = None
 5| for device in devices
 6| this_data = jsonify(device.address,
 7| device.uuid,
 8| device.name,
 9| device.description
10| device.current_task,
11| device.messages)
12|
13| json_data.append(this_data)
14|
15| # Send JSON data to web interface
16| send_to_web(json_data)

Algorithm 4.3. Show system status on web interface

Furthermore, given the dynamic capabilities of the proposed middleware, users

require an interface into the system from which tasks can be assigned. Algorithm

4.4 demonstrates the mechanism for assigning tasks to agents that are actually

capable of solving the task based on the requirements of the task.

26

 1| # Select a predefined task
 2| task = tasks[choice]
 3|
 4| # Check datastore for online devices
 5| devices = datastore.query(“get online devices”)
 6|
 7| # Load middleware agents
 8| agents = None
 9| for device in devices
10| # Capabilities match requirements
11| if compare(device.capabilities, task.requirements)
12| agent = device.get_agent()
13| agents.append(agent)
14|
15| # Send task to agents on devices
16| for agent in agents
17| agent.send_task(task, agents)
18|
19| # Send task function
20| function send_task(task, agents)
21| rpc_call(agent.address, agent.port, task)
22|
23| # Update Node Contacts
24| node.contact(agents)

Algorithm 4.4. Assign task to available agents

A web node designed with this goal should enable users to see the state of the

system quickly from different views. Primarily, the user should be able to see:

 A list of devices currently connected to the system,

 The information stored on each device,

 The objective, if any, of a given device, and

 The consensus point found by each group of agents.

27

Additionally, the more nodes assigned the additional web server role, the more

redundant the system becomes. If a web node leaves the network, web traffic

can reroute to another web node that is still online.

The web node functionality as described satisfies Requirement 9.

4.2.5 Task Completion

When the user assigns a task to the system, the middleware agents residing on

each device should receive the instruction and automatically coordinate with one

another to assign the task appropriately. Once the task has been assigned, the

system can adapt dynamically to changes to successfully find a solution agreed

upon by the agents and execute to completion.

When each agent has properly assessed the environment in relation to its as-

signed task, it sends a message to the other agents assigned to the same task

via the DHT. After a predefined waiting period, the agents confer with one an-

other according to any logic algorithms they have been assigned to determine

how the task would be completed best. At this point, the agents send the instruc-

tions to the devices to execute the task to completion.

However, if during this process a device leaves the network caused by a hard-

ware failure or user interruption, the middleware must adapt in real-time. If a task

originally has four devices, and one leaves, the other three must reposition

themselves to observe the environment from a wider viewpoint. Conversely, if a

28

new device joins the system and is automatically assigned to a task already in

progress, it may affect the consensus algorithm and take over responsibility, if it

is best suited for the task. Algorithm 4.5 demonstrates this logic.

 1| last_contacts = None
 2| last_assigned = None
 3|
 4| while running()
 5| contacts = task.get_agents() # excluding self
 6|
 7| # Check if the number of contacts has changed
 8| if contacts is not equal to last_contacts
 9| consensus = consensus.find(contacts)
10|
11| assigned = consensus.assigned_agent
12|
13| # Change the execution state to stop the running agent
14| if assigned is not equal to last_assigned
15| executing = False
16|
17| # Check if the agent is assigned
18| if assigned is self
19| status = EXECUTING
20|
21| # Execute task
22| executing = True
23| task.execute()
24| else
25| status = WAITING
26|
27| # Used for iterative comparison
28| last_contacts = contacts
29| last_assigned = consensus.assigned

Algorithm 4.5. Task execution for each agent

29

Throughout the entire task assignment and executing process, up-to-date infor-

mation is pushed to the web node so that any users observing the system know

what is happening in real-time.

The methodology described in this section satisfies Requirement 7 and

Requirement 8.

4.3 Architecture

The design of the middleware and supporting software is based upon several

considerations. First, free and open source software is desirable to avoid licens-

ing issues and to minimize costs. Second, the end result must be fast and light-

weight (having minimal hardware requirements). Third, the software must be us-

able across a wide variety of devices.

4.3.1 Networking

While the study of peer-to-peer networking is not new, it is still an active field of

research. Despite the available improvements possible, the development of a

new networking architecture is beyond the scope of this work. Therefore, several

peer-to-peer networking implementations were compared an effort to select the

most appropriate for this application. The reader should examine the following

protocols: Chord [18], Pastry [19], and Kademlia [20].

30

Ultimately, Entangled was selected for the following reasons:

1) The distributed hash table (DHT) is based on Kademlia

2) It provides a mechanism for deleting (key, value) pairs from the DHT

3) It incorporates keyword-aware operations like publish, search, remove

4) It incorporates a distributed tuple space12

5) It is written in the Python programming language

6) It users the Twisted framework [21] and SQLite database engine

7) It is open-source under the LGPLv3+ license

By utilizing the advanced capabilities of Entangled, better management of the

DHT is achievable. Given a key, values can be retrieved easily because they are

distributed across the nodes. Any changes to the state of the nodes (failure, new

arrival, departure, or maintenance) cause minimal disruption. This characteristic

also allows the network to scale to a large number of nodes without affecting the

responsiveness of the system as a whole.

Kademlia itself is a peer-to-peer information system based upon the XOR metric

[20]. Through node lookups, Kademlia specifies the structure of the network and

the exchange of information. Additionally, Kademlia uses the UDP protocol to

communicate between nodes. This provides an advantage over systems that

use TCP because of the broadcast functionality and firewall and router travers-

ing capabilities. Unlike TCP, UDP is a stateless protocol, meaning data can be

1 Concurrently accessible ordered list of objects

31

sent between nodes without initializing a connection. Each node has a unique

identifier that enables efficient (key, value) lookup functionality.

Also central to Entangled is the implementation of Twisted, an asynchronous Py-

thon programming framework. The use of Twisted allows the middleware run in

a non-blocking fashion that is particularly advantageous in a decentralized net-

work where the nodes join and leave unpredictably. Unlike synchronous ap-

proaches where programs wait for responses, the asynchronous approach re-

sponds temporarily with a deferred object that can be passed as a substitute for

a true response. The program runs continuously while the deferred system han-

dles the responses until an answer is returned. If a time-out occurs, the answer

is passed to the error handling system. Another benefit of Entangled is its im-

plementation of remote procedure calls (RPC). This feature allows code to be

instantiated on one node and executed on another. Such calls enable the sys-

tem to store, delete, and search for (key, value) pairs.

Furthermore, Entangled makes use of SQLite for the DHT data store. Given the

necessity for interoperability among technologies at all levels of the middleware,

this database engine is particularly advantageous because of its wide-spread

adoption and support. Recent versions of Python have SQLite embedded in the

language because of its ubiquity.

32

4.3.2 Web Interface

The next major component for the middleware to address is the user interaction

with the system. While the final aim is an autonomous system, users still play a

key role in decision making and management in external systems. Two major

goals for the web interface are: it be lightweight and platform independent. The

web interface must be lightweight to ensure that it can fit on small, embedded

devices while still being able to scale considerably. Platform independence is

vital because of the fragmentation of internet-capable devices.

To display any web site, web server software must serve content. Popular web

servers include Apache, Internet Information Services (IIS), Lighttpd, and Nginx,

among others. Lighttpd was selected as the web server because it:

1) Is lightweight (less than 1 MB23when installed)

2) It is scalable34

3) It is free and open source

4) It supports server-side languages, e.g. Python and PHP

To serve the information stored on the DHT requires an interface language.

Without bias, the PHP Hypertext Preprocessor (PHP) was selected because of

prior experience, ease of use, and performance when combined with Lighttpd.

The use of PHP enables the querying of the SQLite data store and the dynamic

display of content.

2 http://www.lighttpd.net/download/
3 http://www.lighttpd.net/story

33

As with all web sites, content is displayed using the HyperText Markup Lan-

guage, or HTML. Every web browser incorporates its own HTML renderer that

offloads this processing from the web node. Additionally, most web browsers,

including smart phones, support JavaScript natively. To simplify the develop-

ment process, the jQuery JavaScript Library was used. jQuery is fast, lightweight

(31 KB), and well documented [22].

With these technologies working together, asynchronous requests to the DHT

data store can be made and the results published in real-time to the user via the

web interface. Additionally, when a user assigns a task or updates a device or

setting, the requests are sent and then immediately reflected.

4.3.3 Operating System

While mainstream operating systems such as Windows and OS X are capable of

running such middleware, they cannot run on small devices. Therefore, an oper-

ating system must be selected that maintains minimal hardware requirements.

Based upon the selection of technologies in Subsection 4.3.1, the Linux distribu-

tion Ubuntu is desirable. Ubuntu is currently one of the most popular Linux dis-

tributions. Additionally, support for Python is included by default and the other

applications are easily installed and maintained via the Synaptec package man-

agement software. The minimum hardware requirements for Ubuntu are shown

in Table 4.1.

34

Table 4.1. Ubuntu hardware requirements [23]

Environment RAM Hard Drive

Without Desktop* 64 MB 1 GB

With Desktop 64 MB 5 GB

4.3.4 Consensus Algorithms

The lightweight middleware is modular. Thus, it contains no built-in algorithms

because the application of the middleware is specific to a certain purpose. In-

stead, the mechanism for deploying algorithm tailored to a specific purpose or

task has been created. The next section contains an example of the middleware

implementation and the consensus-finding methodology for the problem pre-

sented.

4.3.5 Summary

The underlying architecture used for the middleware is based upon Ubuntu, En-

tangled, Lighttpd, PHP, and jQuery - shown in Figure 4.6. Given these compo-

nents, the Entangled network creates a decentralized distributed network. The

underlying DHT ensures that nodes can be added and removed from the system

without disrupting operations. Furthermore, the use of the DHT allows the net-

work to scale in size while simultaneously handling a large number of requests.

35

The capabilities of each node are distributed upon initialization, and the subse-

quent changes are updated in the SQLite data store for each node according to

the DHT algorithm. Finally, the web node asynchronously queries the data store

to ascertain the status of the connected nodes and the system and to assign

tasks dynamically via remote procedure calls. Because the system changes dy-

namically, the web content is updated according to the PHP and jQuery scripts.

Figure 4.6. Software architecture diagram

36

5. IMPLEMENTATION

In order to demonstrate the capabilities of this approach for the consensus prob-

lem with distributed devices, a scenario was created that utilizes three network-

capable sensing devices that can reach a consensus point heuristically in real-

time given an assigned task. While many robots or sensing devices may be

used with this system, the Sony AIBO ERS-7 robotic dogs [24] were chosen be-

cause of their:

1) Wireless networking capability

2) Programmable logic for control

3) Video camera at 30 frames per second

4) Three infrared proximity sensors

5) Three-dimensional accelerometers

6) Sensors that update every 32 ms with 4 samples per update

However, because the operating system on the Sony AIBO robots is not acces-

sible, each was paired with a laptop that ran the middleware. Essentially, the

laptop served as the node for the peer-to-peer network and as the agent for the

middleware. The agent on each laptop was programmed to control its own Sony

AIBO, specifically on the hardware layer. Table 5.1 displays this setup.

37

Table 5.1. Agent for each laptop-robot pair

Device Laptop Agent Name

Sony AIBO 1 (dog1) dog1_laptop dog1_agent

Sony AIBO 2 (dog2) dog2_laptop dog2_agent

Sony AIBO 3 (dog3) dog3_laptop dog3_agent

On each laptop, the modules necessary to control the robot were loaded into the

middleware software at runtime. In order to interface the hardware layer with a

common language, the Pyro Python hardware abstraction software was utilized.

Essentially, Pyro provides an application programing interface (API) in Python

for controlling the Sony AIBO robots. A list of common commands and usage is

available on the Pyro documentation page [24].

In addition to the robots, a web node was added to provide real-time information

regarding the system. An Intel Atom-based Sony VAIO P-series laptop held the

middleware, the web node functionality, and the bootstrap functionality. This

netbook was selected for the bootstrap and web node because it showcases

that the most demanding configuration of the middleware can run on a device

with low hardware requirements. The final configuration is in Figure 5.1.

38

tablet

dog1

dog2

dog3 dog3_laptop

web node

(bootstrap)

dog2_laptop

dog1_laptop

Distributed

Network

VAIO P smart phone

pc

Figure 5.1. Device configuration

Also shown in Figure 5.1 are the external devices that can connect to the web

node and load the web interface. Included are a tablet device, specifically an

iPad, a smart phone, specifically an iPhone, and a desktop computer, loaded

with Windows XP.

39

Each robot is linked statically to its prescribed laptop, i.e. ―dog1‖ is hard coded to

connect to ―dog1_laptop‖, etc. Each of the laptops upon which the middleware

resides automatically obtains a network address via the Dynamic Host Configu-

ration Protocol (DHCP). DHCP was selected for IP (Internet Protocol) assign-

ment because it reflects not only the decentralized concept better, but also the

dynamic connection and disconnection of nodes to the network without the need

for reconfiguration.

As the robots become available, the information concerning each asynchronous-

ly appears on the web interface in the order in which they join the network. Fig-

ure 5.2 shows a sample of this interface. Upon double-clicking a device on the

web interface, the user is presented with a list of the capabilities of the device,

the network information, and any device-specific messages.

Figure 5.2. Web interface with list of devices

40

To demonstrate the functionality of this approach, the robots were placed in an

enclosed environment and were assigned the task to find a randomly placed red

target. Upon finding the target, the robots had to communicate with one another

to determine which one was to approach the red target based upon distances

from the targets. The robot with the shortest distance was to approach the tar-

get.

To test the response to the dynamic changes in the system, two tests were per-

formed: one in which the all devices survived throughout the experiment, and

one in which the robot assigned to approach failed mid-experiment. For each

experiment, the target was placed after devices had already started the search

algorithm. To begin each test, the robots were placed in the environment without

the red target present, as in Figure 5.3. In the following figures, each dog can be

identified by the number of yellow stripes on the head, e.g. dog2 has two yellow

stripes.

41

Figure 5.3. Robots in environment without red target

To initialize the experiment, the task must be assigned. On the web interface,

this task was hard-coded into the ―Run Demo‖ button that appears in Figure 5.2.

Upon clicking it, a remote procedure call is executed that sends the task to the

devices capable of executing it – in this case, the three robotic dogs.

As the robots performed the search sequence, the target was placed at such a

distance that each device would report a different value from the proximity sen-

sor as shown in Figure 5.4. As the robots completed the search algorithm, they

would report to one another, via the DHT, the value obtained from the proximity

sensor. Then, they would decide amongst themselves which robot should ap-

proach the target. This decision-making period is shown in Figure 5.5.

dog1

dog2

dog3

42

Figure 5.4. Robots in environment with red target

Figure 5.5. All robots have found the red target

43

After deciding which robot should approach the target, the assigned robot com-

pletes the task by approaching the red target, as shown in Figure 5.6.

Figure 5.6. Assigned robot approaches red target

For the second experiment, the goal is to show the flexibility of the system when

the assigned device fails while attempting to complete the task. If, in the previ-

ous scenario, ―dog1‖ (the robot closest to the target) were to become discon-

nected from the network as it approached the target (simulated failure), the

agents on the other robots would realize that the assigned robot was no longer

available. Then, the agents belonging to the remaining robots would compare

against each other to determine which should now approach the target and

44

complete the task. As is evident from Figure 5.7, ―dog3‖ completed the task that

dog1 left unfinished.

Figure 5.7. Reassigned robot approaches red target

Throughout the experiments, the status of each device is updated on the web

interface asynchronously. Additionally, a live feed from the camera of each de-

vice is visible to monitor the progress. Therefore, any user observing the system

has real-time information similar to that shown in Figure 5.8. All the while, the

operator can modify the system and the environment as well as send tasks and

messages.

45

Figure 5.8. Web interface during experiment

dog1 dog2 dog3

46

6. CONCLUSION

Lightweight devices can run advanced middleware given the correct design ap-

proach. Using the principles of peer-to-peer networking, a sustainable distributed

and decentralized network is attainable while still keeping the footprint of the

middleware small. Therefore, the distributed system can scale to a large number

of devices. When solving the consensus problem directly on the devices, the

larger the number capable of observing and acting upon the environment, the

better.

Contained in this work is the methodology not just for creating a lightweight mid-

dleware, but also for using the middleware to solve consensus problems as de-

termined by users. In addition to this functional approach, the system is de-

signed such that the labor involved in establishing, modifying, and interacting

with devices is minimal.

A web interface also improves the user-system interaction. By presenting the

usable information of the system along with the status of each device, a user

acting remotely has useful, up-to-date information. Additionally, the web inter-

face provides a means for users to assign tasks that enable the devices to solve

the consensus problem using the prescribed algorithms.

The concept of dynamic distributed systems is an emerging field with promise

for further potential research. While this thesis primarily focused upon the design

47

of a middleware that enables the communication and collaboration of networked

devices, future work might focus upon multi-task assignment or improved opti-

mization strategies.

48

REFERENCES

[1] R. Tomlinson. (2010, April) The first network email. [Online].
http://bbn.com/resources/pdf/FirstemailRTN.pdf

[2] M.J. Fischer, "The consensus problem in unreliable distributed systems (a
brief survey)," Foundations of Computation Theory, vol. 158, pp. 127-140,
1983.

[3] B. Johansson, A. Speranzon, M. Johansson, and K.H. Johansson, "On
decentralized negotiation of optimal consensus," Automatica, vol. 44, no. 4,
pp. 1175-1179, April 2008.

[4] A. Tahbaz-Salehi and A. Jadbabaie, "A necessary and sufficient condition
for consensus over random networks," IEEE Transactions on Automatic
Control, vol. 53, no. 3, pp. 791-795, April 2008.

[5] Wikipedia. (2011, June) Network topology - wikipedia, the free encylopedia.
[Online]. http://en.wikipedia.org/wiki/Network_topology

[6] R. Baldoni, S. Bonomi, A.-M. Kermarrec, and M. Raynal, "Implementing a
register in a dynamic distributed system," in Proceedings of the 29th IEEE
International Conference on Distributed Computing Systems, Montreal, QC,
2009, pp. 639-647.

[7] A. Carzaniga, D.S. Rosenblum, and A.L. Wolf, "Design and evaluation of a
wide-area event notification service," ACM Transactions on Computer
Systems, vol. 19, no. 3, pp. 332-383, August 2001.

[8] G. Banavar, T. Chandra, B. Mukherjee, J. Nagarajarao, R.E. Strom, et al.,
"An efficient multicast protocol for content-based publish-subscribe
systems," in Proceedings of the 19th IEEE International Conference on
Distributed Computing Systems, Austin, TX, 1999, pp. 262 -272.

[9] P.R. Pietzuch and J.M. Bacon, "Hermes: a distributed event-based
middleware architecture," in Proceedings of the 22nd International
Conference on Distributed Computing Systems Workshops, Vienna, Austria,
2002, p. 661.

49

[10] M.J. Fischer, N.A. Lynch, and M.S. Paterson, "Impossibility of distributed
consensus with one faulty process," Journal of the ACM, vol. 32, no. 2, pp.
374-382, April 1985.

[11] M. Barborak, A. Dahbura, and M. Malek, "The consensus problem in fault-
tolerant computing," ACM Computing Surveys, vol. 25, no. 2, pp. 171-220,
June 1993.

[12] D. Culler, P. Dutta, C.T. Ee, R. Fonseca, J. Hui, et al., "Towards a sensor
network architecture: lowering the waistline," in Proceedings of the 10th
Conference on Hot Topics in Operating Systems, Volume 10, Santa Fe,
NM, 2005, p. 24.

[13] N. Gall. (2005, July) Update on the origin of the term "middleware". [Online].
http://ironick.typepad.com/ironick/2005/07/update_on_the_o.html

[14] Oxford University Press. (2011, March) Middleware, n.: oxford english
dictionary. [Online]. http://www.oed.com/view/Entry/250908

[15] The Globus Alliance. (2011, June) Home. [Online]. http://www.globus.org/

[16] H.S. Sarjoughian, B.P. Zeigler, and S. Park, "Collaborative distributed
network system: a lightweight middleware supporting collaborative devs
modeling," Future Generation Computer Systems, vol. 17, no. 2, pp. 89-105,
October 2000.

[17] S.J. Russell and P. Norvig, Artificial intelligence: a modern approach (2nd
ed.). Englewood Cliffs, NJ: Prentice Hall, 2002.

[18] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakrishnan, "Chord: a
scalable peer-to-peer lookup service for internet applications," SIGCOMM
Computer Communication Review, vol. 31, no. 4, pp. 149-160, October
2001.

[19] A. Rowstron and P. Druschel, "Pastry: scalable, decentralized object
location, and routing for large-scale peer-to-peer systems," in Proceedings
of the IFIP/ACM International Conference on Distributed Systems Platforms
Heidelberg, London, UK, 2001, pp. 329-350.

50

[20] P. Maymounkov and D. Mazières, "Kademlia: a peer-to-peer information
system based on the XOR metric," in Revised Papers from the First
International Workshop on Peer-to-peer Systems, London, UK, 2002, pp.
53-65.

[21] Twisted Matrix Labs. (2011, June) Home. [Online]. http://twistedmatrix.com

[22] J. Resig. (2011, May) Jquery: the write less, do more, javascript library.
[Online]. http://jquery.com

[23] Ubuntu. (2007, April) Meeting minimum hardware requirements. [Online].
https://help.ubuntu.com/7.04/installation-guide/i386/minimum-hardware-
reqts.html

[24] Pyro, Python Robotics. (2010, February) using the sony aibo robot. [Online].
http://pyrorobotics.org/?page=Using_20the_20Sony_20AIBO_20Robot

51

VITA

Name: Keith Anton Hall

Address: 241 Zachry Engineering Building

3131 TAMU

College Station, TX 77843-3131

Email Address: khall@tamu.edu

Education: B.S., Industrial Engineering, Texas A&M University, 2008

 M.S., Industrial Engineering, Texas A&M University, 2011

	Abstract
	Dedication
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	Trademarks and Special Terms
	1. Introduction
	1.1 Objective
	1.2 Utility
	1.3 Outline

	2. Literature Review
	2.1 The Consensus Problem
	2.2 Information Distribution
	2.3 System and Data Robustness
	2.4 Middleware Development

	3. Problem Definition
	3.1 Problems
	3.2 Assumptions
	3.3 Definitions

	4. Lightweight Middleware Solution
	4.1 Requirements
	4.2 System Design
	4.2.1 Decentralized Networking
	4.2.2 Data and Communication
	4.2.3 Bootstrap and Edge Nodes
	4.2.4 Web Nodes
	4.2.5 Task Completion

	4.3 Architecture
	4.3.1 Networking
	4.3.2 Web Interface
	4.3.3 Operating System
	4.3.4 Consensus Algorithms
	4.3.5 Summary

	5. Implementation
	6. Conclusion
	References
	Vita

