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ABSTRACT 

 

Project Bidding Strategy  

Considering Correlations between Bidders.  

(August 2011) 

Minsoo Kim, B.E., Kyungwon University, Korea 

Chair of Advisory Committee: Dr. Kenneth F. Reinschmidt 

 

One of the most important considerations in winning a competitive bid is the 

determination of an optimum strategy developed by predicting the competitor’s most 

probable actions. There may be some common factors for different contractors in 

establishing their bid prices, such as references for cost estimating, construction 

materials, site conditions, or labor prices. Those dependencies from past bids can be 

used to improve the strategy to predict future bids. By identifying the interrelationships 

between bidders with statistical correlations, this study provides an overview of how 

correlations among bidders influence the bidders winning probability. With data 

available for over 7,000 Michigan Department of Transportation highway projects that 

can be used to calculate correlations between the different contractors, a Monte Carlo 

simulation is used to generate correlated random variables and the probability of 

winning from the results of the simulation. The primary focus of this paper outlines the 

use of conditional probability for predicting the probability of winning to establish a 

contractor’s strategy for remaining bids with their estimated bid price and known 
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information about competitors from past data. If a contractor estimated his/her bid price 

to be lower than his/her average bid, a higher probability of winning would be achieved 

with competitors who have a low correlation with the contractor. Conversely, the lower 

probability of winning decreases as the contractor bid with highly correlated contractors 

when their bid price is estimated to be higher than the average bid.  
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1. INTRODUCTION 

1.1. Overview 

Success in a project begins with winning a bid based on a rational strategy after 

estimating the appropriate bid price affected by the uncertainty of various factors. The 

estimation of a bidding price consists of two steps: cost estimation and the addition of an 

appropriate markup to the cost estimate. The cost estimation of a construction project is 

complicated, due to the characteristics of the construction industry, such as economic 

factors, the complexity of projects, and the long duration of projects. Bidding is a major 

source of financial risk in construction projects. Uncertainty remains, because 

competitors’ bids are typically unpredictable. For example, sometimes contractors lose 

bids even when they think their bidding price is low enough or win bids with high bid 

prices. Hence, establishing a bidding strategy is a first step in developing a successful 

project and is regarded as one of the most important strategies of a company.  

A competitive bidding process that selects a winner based on the lowest bid dominates 

the construction industry in the U.S. (Ioannou and Awwad 2010). With fierce 

competition, the most successful managers are able to make accurate predictions more 

successfully than their competitors in the determination of a bid price. Managers are able 

to make decisions based on available information, such as the size and type of project, 

number of competitors involved, owners’ willingness to accept the bid price, distribution 

____________ 
This thesis follows the style of Construction Management and Economics. 
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of competitors’ bids and the current industry workload. 

The most widely used method in academic studies for setting a bid price is that managers 

estimate the probability of winning in competitive bidding against each competitor 

according to their markup, after analyzing the ratio between the competitors’ bid price 

and their estimated price. This approach was first suggested by Friedman (1956). The 

main idea behind this approach is that each bid submitted on a project is considered to be 

independent, with the probability distributions of all potential bidders derived from the 

past data. However, in reality, each bidder’s strategy is established on the basis of others’ 

strategies, and bidder’s strategies have an interdependent relationship.  

Reinschmidt (2010) points out that bids are not necessarily independent, but are instead 

correlated. In construction projects, there are many factors that can impact bidding prices. 

From those factors, there may be some common factors for different contractors used to 

establish bid prices, such as the reference for cost estimating, construction materials, site 

conditions, or labor prices. These dependencies from past bids can be used to improve a 

strategy to predict future bids.  

This study was conducted in two phases. The first phase explored the relationship 

between correlations and the probability of winning, allowing for the development of a 

model to explain how correlations with other competitors affect the probability of 

winning. The second phase involved investigating the conditional probability for 

predicting the probability of winning in different conditions. The analysis was used to 

model bidding strategies and assist companies in competing in an effective way.  
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A Monte Carlo model was developed to establish a relationship between correlations for 

different contractors and the probability of winning that affects bidding strategies. A 

Monte Carlo simulation that can be used to generate correlated random variables was 

used to model bidding strategies and their effects on the probability of winning. The data 

collection process was performed to validate the simulation results by obtaining bidding 

information for each firm from the website of Michigan Department of Transportation’s 

(MDOT) (http://mdotwas1.mdot.state.mi.us/public/bids/).    

1.2. Contribution of this study 

There are two significant issues addressed in this study. (1) the first consideration of 

interrelationships between contractors, and (2) the application with enough practical data. 

Most bidding studies focus on individual firms, while pointing out that bidding involves 

a complex relationship between potential bidders. In complex probabilistic systems, the 

interrelationships between random variables are specified by their correlations. 

Therefore, the explicit consideration of correlations should lead to a better understanding 

of the bidding process. This study is the first to compute and study these interactions by 

applying an extensive amount of real data. 

The correlation between contractors is measured by the degree of variation between their 

bidding prices on previous bidding opportunities. It measures how much bidding prices 

between contractors changes together and how much the bidding price of a contractor 

varies with the other contractors. For example, using historical data, it was determined 

that the correlation between the bidding price of Bidder 1 and Bidder 2 may be positive, 

http://mdotwas1.mdot.state.mi.us/public/bids/
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implying that when the bidding price of Bidder 1 is higher, Bidder 1 would expect that 

the bidding price of Bidder 2 would be higher as well.  

Laryea and Hughes (2008) point out that one of the major problems with developing 

bidding models is a lack of empirical data. Even if someone establishes a good model to 

predict bid prices theoretically, one needs data to prove the model and validate the 

conclusions. One point of significance in this study is that all analyses are conducted 

with actual project data. The correlations used in this study are computed from real 

bidding histories of contractors and validation of the model is proven by the data. Over 

7,000 projects were used to model the relationship between correlations of different 

contractors and their probability of winning.  

1.3. Research objectives  

The six hypotheses in this study are as follows:  

1. Bids for actual construction projects are not independent, rather are highly 

correlated. 

2. Winning bids divided by the engineer’s estimate is normally distributed. 

3. A larger number of bidders are associated with a lower winning bid price. 

4. Correlations affect the probability that any bid will be the winning bid. 
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5. The probability of winning, estimated by the Monte Carlo simulation for 

generating correlated random variables, is more accurate than the 

independent case compared with the historical probability of winning. 

6. Contractors with low correlations with competing contractors have a higher 

probability of winning than contractors with high correlations with competing 

bidders in the case that their estimated bid is lower than their average bid. 

Conversely, contractors that have higher correlations with competing bidders 

have higher probability of winning when their estimated bid price is higher 

than their average bid.  

The overall goal of this study is to help state Departments of Transportation (DOT) 

predict the probability of winning for different bidders and help contractors set up their 

bidding strategies by predicting the probability of winning at a certain bid. The goals 

were achieved by accomplishing the following objectives: 

1. To identify and describe the correlation of various firms 

2. To clarify and define the relationship between the probability of winning and 

the correlation  

3. To model the relationship between the correlation and the probability of 

winning 

4. To model the probability of winning by the change in the bidding price 
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5. To validate the model using the data from the MDOT  

6. To offer conclusions and recommendations and state limitations of the study 
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2. LITERATURE REVIEW 

 

Decision-making for the process of bidding on a project is complex, due to the 

characteristics of the construction industry, such as a long duration and the large size of 

projects.  A long duration and large size is affected by the uncertainty of various factors 

that affect a contractor’s bidding decision. Bidding strategies are difficult to model and 

predict, due to this uncertainty. This section reviews three sets of related literature: 

factors that impact bidding decisions, historical bidding models, and the uses of the 

Monte Carlo simulation with the consideration of correlations among uncertainties.  

2.1. Factors that impact on bid 

Many factors affect the bidding decisions of contractors in the construction industry. 

These factors are comprised of hard facts, experience, judgment, and perceptions 

(Ahmad and Minkarah 1988). Bidding strategies are difficult to model and predict, since 

what is attractive to bidders is not constant and that the set of bidders changes from bid 

to bid. Individual factors, such as the size of the contract, bidding time, backlog, and 

available resources, weigh differently based on the attractiveness of the job.   

Ahmad and Minkarah (1988) conducted a questionnaire survey of the top-400, general 

contractor/construction firms in the U.S.  The objective of the survey was to identify the 

decisive factors for bidding decisions and the percentage of profit markup. The relative 

importance of the factors was found to differ depending on the stage of the bidding 

process. Overall, the type of the job, need for work, experience with the owner, historic 



8 

 

 

8
 

profits and degree of hazards were the top five factors affecting the bid/no-bid decision. 

However, the degree of hazard, degree of difficulty, type of job, uncertainty in the 

estimate and historic profit were the top five factors affecting the percent-markup 

decision. This study also illustrated that the client relationship, quality of design and 

reliability of subcontractors had a substantial influence on the bidding decisions.   

Shash (1993) conducted a similar study and identified different factors influencing the 

bidding decisions and profit markup sizes made by top United Kingdom (UK) 

contractors. He found that the need for work, competition, and previous experience on 

similar projects were identified as the top three factors that affected a contractor’s 

decision to bid for a project, while the degree of difficulty, the risk involved, and the 

current work load were the highest ranked factors affecting profit markup size decisions. 

In proposing a neural network bid/no bid model, Wanous (2003) surveyed contractors in 

Syria to determine the factors that had the most influence on the bid/no bid decision-

making process. The survey revealed that client characteristics had the largest influence. 

The conditions in the contract, financial capability of the client and relationship with 

clients had the greatest effect.  Smith and Bohn (1999) also supported the view that 

owner capabilities are considered important factors in decisions to bid/no bid on 

construction projects.  Project size and the amount of time required to bid were next in 

importance.   

The contractor’s estimate is vital to the success of a company. Bidding too low can lead 

to bad consequences, such as small profits, losses, or the termination of the business, in 
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extreme cases. Shash and Abdul-Hadi (1993) investigated the factors that contractors in 

Saudi Arabia considered when deciding to bid for projects.  They found that project cash 

flow, contract type, staff capability, familiarity with the project and project size had an 

influence.    

In developing a bid reasoning model, Chua and Li (2000) identified four areas of 

consideration in bidding decisions by interviewing six experienced individuals. Through 

discussions with experts in the industry, they found that competition, risk, company’s 

position in bidding, and the need for work were the determining factors in the 

contractor’s bidding decision. By using the Analytic Hierarchy Process (AHP), the study 

was able to rank and determine their relative importance in achieving their sub-goals. 

2.2. Bidding models 

Kangari and Riggs (1989) divided the risk analysis model into two major categories: 

classical models, such as probability theory or Monte Carlo simulations, and conceptual 

models that assess risk in linguistic terms. They point out that most information for 

determining a risk analysis is not numerical that is necessary for a classical model, but 

linguistic expressed risk information in terms of words using a natural language, and 

there is not enough numerical data to develop statistical patterns. However, there are 35 

classical models out of the available 45 risk models developed since 1990 that can be 

used to analyze the data (Laryea and Hughes 2008).   
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The earliest bidding model is Friedman’s Model (1956), a probabilistic model that 

determines the probability of winning numerically. The main point of the model is that 

the probability of winning is estimated from the probability distribution of the ratio 

between the competitors’ bids and the estimated bid price. Using an estimation of all 

potential competitors’ previous bidding patterns, a known probability distribution is 

calculated.  Then he predicted the probability of winning by considering each bid 

submitted on a project as independent. He also suggested the estimation of the number of 

bidders based on a regression analysis between the number of bidders and a contractor’s 

cost estimates in the previous bidding history. Most models developed later have 

referred to Friedman’s model (Mayo 1992). 

Gate (1967) criticized the Friedman model and recommended a solution by calculating 

the probability of winning and the assumption of independence. Griffis (1971) also 

disputed the problem of Friedman’s model, that bids must be independent. He 

maintained some common factors to bidders when they bid, such as labor, materials, or 

subcontractors. Morin and Clough (1969) also recommended minor changes in 

Friedman’s assumption about the estimation of the number of bidders. They placed 

emphasis on major competitors and more recent bids compared with Friedman’s average 

bidder. McCaffer (1976) recommended a way of estimating the normalized bid value 

from the relationship between the mean bid and the lowest bids from the overall 

distribution. From the normalized bid for each bidder, he established contractors’ 

behavior patterns to identify major competitors.  
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There are many models available, but static assumptions are applied. Contractors’ 

objectives can change over time, based on their current workload (Griffis 1971). In 

proposing a new and improved bidding model considering a static and non-static bidding 

environment, Christodoulou (2000) analyzed the deficiency of previous methods and 

suggested a bidding model that incorporated the historical bidding data of the 

competitors. He applied artificial neural networks for the analysis and determined 

patterns of factors that affect the bidding characteristics and method of Parzen Windows 

for estimating multi-dimensional probability distribution functions. The model was 

validated as an improvement to the previous methods by conducting testing using data 

from the earlier literature, as well as data from the New York City public agency.  

2.3. Correlation between bidders 

Varying degrees of imperfect knowledge that affect the bidding decision of each 

contractor and previous bidding models are presented. In this section, papers that use the 

Monte Carlo simulation as one of the methodologies to reflect the correlation among 

uncertainties are introduced.  

One of the common errors in using the Monte Carlo simulation to estimate the total cost 

is the assumption of independence among cost components (Touran and Wiser 1992). To 

estimate the total construction cost, Touran and Wiser (1992) selected a Monte Carlo 

simulation by considering the dependence of the cost components with the multivariate 

lognormal distribution as a statistical distribution for the cost components. The model 

was validated by showing more accuracy in predictions using the cost data of a low-rise 
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office building from R. S. Means (Touran and Wiser 1992). Chau (1995) also mentioned 

the problem of the widely accepted assumption that cost distribution is independent and 

triangular. The paper proved that the assumption of independence in cost components 

caused an underestimation of uncertainties, while the triangular assumption 

overestimates the uncertainties.  

The consideration of correlations between uncertainties in a construction project is not 

only utilized with cost components, but also with activity durations. Wang and Demsetz 

(2000) insisted that the correlation between each activity increases with the variation of 

the project duration. They analyzed the impact of correlations on the full project duration 

by comparing some simulations that do not consider correlations in durations with their 

own model (networks under correlated uncertainty). The results revealed that the 

variability of project duration is enormous when the correlation is considered.   

Correlations between uncertainties are also utilized to approximate the behavior of 

financial markets. A number of books about Value at Risk (VaR), including (Jorion 2007; 

Marrison 2002) deal with the Monte Carlo simulation by considering the correlation 

across risks, such as the market risk or the credit risk. For example, the credit quality of 

a firm may be changed by the market conditions or financial conditions of the firm. 

Other models considering correlations have also been developed (Okmen and Ozta,  

2008; Skitmore and Ng 2002; Touran 1993; Touran and Suphot 1997). 
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3. DATA DESCRIPTION 

 

All data used in this study were collected by obtaining the bidding data on the closing 

prices from the MDOT website (http://mdotwas1.mdot.state.mi.us/public/bids/). The 

data included all Michigan highway construction projects from January 2001 to 

December 2009, totaling 7,395 projects, excluding projects with missing information 

and projects with only one bidder, which are not in a competitive situation.  

3.1. Engineer’s estimate 

The engineer's estimate (EE) is the in-house engineer’s cost estimate of the amount that 

the DOT considers an acceptable contracting price. Each state DOT has a different 

policy about the timing in relation to releasing an EE. Some auction literature shows that 

publishing the owner’s value before bid letting causes bidders to establish a more 

aggressive bidding behavior and leads to lower bids. As an empirical result, (De Silva, 

Dunne, Kankanamge, and Kosmopoulou 2008) showed that the average bid divided by 

the EE in Oklahoma declined by about 0.09, while the standard deviation decreased by 

about 0.068, after a change in the EE release policy that released their EE prior to the 

bidding process.  

With regard to modeling bid values, Drew and Skitmore (1997) measured the value of 

each bidder as a ratio of the bid over the lowest bid.  By expressing bids as a ratio to the 

lowest bid, the value of the bid can be normalized and made easier to understand.  

However, this process can only be done ex-post, after the bids are opened.  Since the 

http://mdotwas1.mdot.state.mi.us/public/bids/
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MDOT releases the state’s internal estimates of the costs to complete highway 

construction projects prior to bid (the first four digits of the EE), each bidder can have 

knowledge of the EE in advance. By using the EE as a baseline, it helps bidders to 

predict a percentage relative to the EE, prior to their own project estimation process. In 

extending Drew and Skitmore’s study, an alternative normalized bid that is the ratio 

between the bids and the EE is measured.  

 
'

Bid
X

Engineer sEstimate
  (3.1) 

Figure 3-1 illustrates a frequency histogram of the ratio of the low bid over the EE. The 

green line is a smoothed curve of the frequency distribution and the red line is a normal 

curve fitted to the data.  Although there is slight difference between the two curves, it is 

apparent to the eye that the shape of the histogram approximately follows a normal 

distribution. The mean value of the ratio of the low bid to the EE for all 7,431 projects is 

0.931, approximately 3% higher than that of the Oklahoma DOT from the study in De 

Silva, et al. (2008). In other words, the average awarded bid amount is about 7% below 

the EE; there is a 50% probability of winning when contractors bid with a price 7% 

below the EE. The standard deviation of the ratio of the low bid to the EE was 0.1457. 

More information about the histogram, such as a Q-Q plot which compares the 

distribution of the data with the normal distribution by plotting their quantiles or 

cumulative distribution functions, is presented in Appendix A. 
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Figure 3-1. Low bid divided by engineer’s estimate for 7395 projects 

 

 

 

There were a total of 715 bidders who bid at least one time on the MDOT projects. 

Figure 3-2 illustrates the frequency histogram of the number of jobs bid per bidder in the 

9 years. The firm who bid the most on the MDOT projects participated 1,315 times; the 

least amount of times a company bid was once. The average number of bids for each 

company was 53; 90% of the contractors attended bids less than 158 times.  
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Figure 3-2. The histogram of the number of jobs contractors bid 

 

 

 

3.2. Correlations between bidders 

Although early bidding models, such as Friedman’s model, considers each bid submitted 

by different contractors independently, it is apparent that there are correlations between 

bids in the database. Table 3-1 shows the correlation matrix of the top 20 contractors 

who bid most on projects from the MDOT, excluding cases in which two contractors bid 

on the same projects fewer than 10 times. The maximum number of bids that two 

contractors in top 20 bid on the same projects was 464 times. With information about the 

top 20 bidders identified from the Excel spreadsheet, pairwise bid information between 

the two bidders in the top 20 was extracted by Matlab when the two bidders had bidding 

histories for the same project. Table 3-1 illustrates the mean correlation coefficient 

between the top 20 contractors as 0.6 with a maximum of 0.865 and minimum of 0.101. 
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The method used to calculate the correlations between the two bidders is introduced in 

Section 4.2.1. 

3.3. The number of bidders 

Many studies suggest that competition is another key factor that influences the bidding 

price decision. Shash (1993) conducted a contractor questionnaire, determining that the 

number of competitors tendering is the second most important factor affecting the 

bidding price. Shash (1993) then determined that the intensity of competition is regarded 

as the second most significant element (following the need for work) among the top UK 

contractors. 

Many bidding strategies are based on the knowledge that increasing the number of 

bidders causes more intense competition. The observation here is that the number of 

competitors participating in the project bidding process is inversely related to the 

winning bidding price. Kuhlman and Johnson (1983), in studying the relationship 

between competition and the winning price divided by EE, identified two methods that 

can be used to measure the intensity of competition. One method is to consider the 

number of expected bidders before the bidding opening with a public list of potential 

bidders. The other method is to consider the number of actual bidders after the bidding 

opening. This study concluded that the number of actual bidders who participated in the 

bidding is a more appropriate variable, as it has a higher significant level in the 

regression analysis than the number of expected bidders. 
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Table 3-1. Correlation matrix between top 20 bidders 

 

 
540 45 103 459 441 349 431 24 499 180 510 439 64 43 182 109 341 20 69 244 

540 1 
 

0.554 0.365 0.471 0.617 0.536 0.543 0.626 
   

0.560 
 

0.416 
  

0.500 0.767 
 

45 
 

1 
 

0.583 0.791 0.741 
   

0.780 0.754 0.653 
 

0.639 0.661 0.757 
    

103 0.554 
 

1 0.596 0.571 0.507 0.722 0.654 
 

0.816 
   

0.667 0.316 0.430 0.865 0.407 0.551 0.674 

459 0.365 0.583 0.596 1 0.612 0.569 0.707 
  

0.604 0.817 
  

0.375 0.525 
  

0.390 0.477 
 

441 0.471 0.791 0.571 0.612 1 0.718 0.537 
  

0.514 0.644 0.504 
 

0.101 0.620 0.614 
 

0.226 
  

349 0.617 0.741 0.507 0.569 0.718 1 0.584 
      

0.375 0.435 
  

0.459 
 

0.558 

431 0.536 
 

0.722 0.707 0.537 0.584 1 0.779 
         

0.598 0.607 
 

24 0.543 
 

0.654 
   

0.779 1 
 

0.710 
   

0.603 
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Figure 3-3 illustrates the relationship between the MDOT award cost over the EE and 

the number of bidders. The non-linear regression line in the scatter plot shows that the 

award cost over the EE decreases as the number of bidders increases. Even though the 

R-squared value is low (0.048), there is reasonable evidence that there is an effect due to 

the number of bidders from the result of a t-test (Appendix B). Using the parameter from 

the regression analysis, it can be concluded that the ratio between the low bid and EE 

decreases with each additional competitor. Since different contractors have different bid 

distributions, the variance of the bid value will be high when the number of competitors 

increases; this may lead to a lower winning bid value. Increasing the number of bidders 

is advantageous to the DOT, who makes great efforts to get more contractors to bid. 

 

 
 

Figure 3-3. The relationship between bid award and the number of bidders 
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Figure 3-4 shows the histogram of the number of bidders per a bid for 7395 projects with 

the average number of bidders of 5.15. The maximum number of bidders was 28 and the 

minimum number was 2, because the case for only one bidder was excluded. From the 

probability distribution, it was determined that 90% of the projects had fewer than 9 

bidders. 

 

 

Figure 3-4. The histogram of the number of bidders per bid 

 



21 

 

 

2
1
 

4. MONTE CARLO SIMULATION FOR CORRELATED BIDDERS 

 

4.1.  The probability of winning with mean and standard deviation  

Before investigating the effect of correlations between bidders on the probability of 

winning thorough the Monte Carlo simulation for generating correlated random 

variables, one may ask a question how varying mean and standard deviation influence on 

the probability of winning. Reinschmidt (2010) examined the effect of varying mean and 

standard deviation on the probability of winning. By assuming that all bidders are 

independent and their distributions are normally distributed with known means and 

standard deviations, the Monte Carlo simulation is conducted with 100000 trials for each 

case. Table 4-1 shows the base case of three bidders. 

 

Table 4-1. The base information of three bidders 

 

 Bidder 1 Bidder 2 Bidder 3 

Mean 1 1 1 

Std. Dev 0

.2 

0

.2 

0

.2 
 

 

 

As a first case, in order to explore how the probability of winning changes with respect 

to bidder 1’s average bids, mean values of probability distribution of bidder 1 are varied 

from 0.8 to 1.2, while the standard deviations remain equal. It is expected that the 

probability of winning by bidder 1 is larger when the average bid of bidder 1 is smaller 

and vice versa. Figure 4-1 shows the same result as it was expected.  
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Figure 4-1. The probability of winning bid by varying means 

 

 

 

Figure 4-2 shows the influence of changing the standard deviation of the bids by bidder 

1 while all others are equal to the base case in table 4-1. The standard deviation of bidder 

1 ranges from 0.01 to 0.4. If the variance of the bids by bidder 1 is larger, the probability 

of winning also is larger. On the other hand, the probability of winning decreases as 

bidder 1’s bids have less variation. If the standard deviation of bidder 1 is close to zero, 

his winning probability is approximately 25% which is the probability that two 
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Figure 4-2. The probability of winning bid by varying standard deviations 

 

 

 

4.2.  Process for formulation of simulation 

From this section, the Monte Carlo simulation for creating correlated random variables 

using Cholesky decomposition of the covariance matrix is described. The Monte Carlo 

simulation generates random variables with known probability distributions. With 

decomposition of the covariance matrix, the Monte Carlo approach allows one to create 
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4. Generate random variables with decomposed covariance matrix 

5. Count the number of jobs for which each bidder is low bidder 

4.2.1. Review of covariance matrix 

Unlike independent variables, some variables tend to vary in the same direction or in the 

opposite direction. Suppose that if the bidding prices of two bidders are affected by the 

same factors, their bidding prices increase or fall at the same time, then it can be said 

that their bidding prices have positive correlation. Let 1 2[ , , , ]nX x x x  be a vector of 

bid prices for contractors. Given any pair of bidding prices, the covariance is defined by  

 
,cov( , ) [( )( )]i j i j i i j jx x E x x        (4.1) 

where i and j are mean bid values of contractor i  and j . 

 

With the covariance between two contractors, the Covariance matrix of C is 

 

11 1

1

n

n nn

C

 

 

 
 

  
 
 

 (4.2) 

The correlation coefficient between contractor X and Y is given by 

 
cov( , )

( , )
i j

i j ij

i j

x x
corr x x 

 
   (4.3) 

where i and j are standard deviations of the bids of contractor i  and j .  
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4.2.2.  Decomposition of covariance matrix 

4.2.2.1. Cholesky decomposition 

One widely used way to transform independent random variables into correlated random 

variables is Cholesky decomposition discovered by André-Louis Cholesky. The 

Cholesky decomposition generates a new matrix A such that the given covariance matrix 

C is the product of a triangular matrix A  and the transposed matrix
TA : 

 TC AA  (4.4) 

In order to generate correlated random variables, one needs to take the lower triangular 

matrix A and standard normal random variable Z which has mean zero and standard 

deviation 1. By post multiplying A by Z we can produce correlated standard normal 

variables Y: 

 Y AZ  (4.5) 

The confirmation that the values of Y have the desired correlation can be proved by 

calculating the covariance matrix of Y: 

cov( ) [ ] [ ] [ ]T T T T T TY E YY E AZZ A AE ZZ A AA C      

where [ ]TE ZZ I (identity matrix) because Z is a matrix of independent variables, so 

E[Z]=0. 
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It is easy to compute Cholesky decomposition in MATLAB using chol function. 

Cholesky decomposition is relatively straight forward to program, but the Cholesky 

matrix does not work if the matrix is not positive definite. A true covariance matrix must 

be positive definite, in which all eigenvalues of the covariance matrix must be greater 

than zero, and it is not a true covariance matrix if the matrix is not positive definite. 

However, in practice, there are usually not enough data to accurately compute the true 

covariance matrix (Lurie and Goldberg 1998). In order to compute the true covariance 

matrix, a huge amount of data points is required to get enough subsets of contractors that 

bid against each other. Therefore, in this study, correlation coefficients are computed 

pairwise in order to use the maximum number of data points available for each pair and 

to maximize the accuracy of each computed correlation. The positive definite problem 

resulting from not having a true covariance matrix is avoided by altering the eigenvalues 

to be positive. 

4.2.2.2. Eigenvalue problem 

In spite of the negative eigenvalue problem, there are alternative methods to decompose 

the covariance matrix such as adjustment of eigenvalues in the matrix, eigenvalue 

decomposition, or singular value decomposition. Even though there are more ways to 

decompose the covariance matrix, the three ways mentioned above are applied in this 

study. 

If someone prefers to use Cholesky decomposition even though some of the eigenvalues 

are negative, it is possible to create a positive definite matrix by relatively small 
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adjustments to the eigenvalue matrix by forcing negative eigenvalues to be zero or 

slightly positive. With some functions in MATLAB, the decomposition processes go 

through by changing some negative eigenvalues to positive and then back-computing the 

covariance matrix. 

Also there is another solution, which is eigenvalue decomposition when faced with the 

positive definite problem in the covariance matrix.  It is more difficult than Cholesky 

decomposition, but it can work for covariance matrices that are not positive definite. 

Eigenvalue decomposition works by looking for two matrices,   and E, to satisfy the 

following equation: 

 TC E E   (4.6) 

C is the covariance matrix and E is a matrix of eigenvectors from the covariance matrix. 

Since Λ is a diagonal matrix such that all the elements are zero except for elements on 

the main diagonal, it allows us to decompose the covariance matrix as shown below. 

After decomposing the covariance matrix, the process of generating correlated random 

variables is the same as in the Cholesky decomposition case. 

 TC B B  (4.7) 

where B E   

Lastly, the singular value decomposition can be an alternative method.  That is 

 TC U V   (4.8) 
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The left singular vector U is composed of the eigenvectors of TCC  and the right singular 

vector V is composed of the eigenvectors of TC C . The process to generate correlated 

random variables with singular value decomposition after decomposition of the 

covariance matrix is same as the eigenvalue decomposition case.  

4.3. Generation of correlated random variables 

MATLAB randn function generates random numbers from the standard Normal 

distribution with any number of indicated trials. Since the statistical distribution for low 

bid price over EE is seen to be a Normal distribution, Normal random variables Z with 

specific mean µ and variance v  can be obtained from: 

 X Zv    (4.9) 

Similar to the way to generate independent Normal random variables, correlated 

dependent variables Y can be generated from the matrix multiplication of lower 

triangular matrix A from decomposition method and Normal independent variates Z:  

 Y AZ    (4.10) 

To compare with the correlation and probability of winning, a correlation matrix of six 

contractors was computed from MDOT data. The six contractors are taken from the top 

10 bidders who bid on the most projects in MDOT for the past 9 years. Also, they are 

selected when they have enough bidding history between two contractors. Correlations 

were computed pairwise between contractors for all bids by listing all contracts that were 
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bid by both of them. As a reminder, correlation coefficients are calculated from the 

normalized values of X from equation (3.1). The correlation coefficient matrix and 

average correlation coefficients with other five contractors for each contractor are shown 

in Table 4-2. The contractor 431 has the highest average correlation with other five 

contractors and contractor 540 has the lowest correlation with others. 

 

Table 4-2. Correlation matrix among six bidders 

 

Contractor 

number 
540 103 459 441 349 431 Average 

540 1.0000 0.5539 0.3650 0.4711 0.6170 0.5361 0.5086 

103 0.5539 1.0000 0.5956 0.5708 0.5070 0.7223 0.5899 

459 0.3650 0.5956 1.0000 0.6120 0.5688 0.7074 0.5697 

441 0.4711 0.5708 0.6120 1.0000 0.7184 0.5368 0.5818 

349 0.6170 0.5070 0.5688 0.7184 1.0000 0.5836 0.5989 

431 0.5361 0.7223 0.7074 0.5368 0.5836 1.0000 0.6172 

 

 

 

The Monte Carlo simulation is conducted by drawing X at random for each of the six 

bidders. In order to analyze the relationship between correlation with others and the 

probability of winning, the condition is given that the only difference among bidders in 

this simulation is the correlation coefficient while other things remain equal (means and 

standard deviations for all bidders are 1 and 0.2). Figure 4-3 shows the results after 

100,000 random trials by considering each trial as a bid situation by the six bidders. It 

plots the percentage of contracts won by each bidder and the average correlation 

coefficient for each bidder from Table 4-2. With R-square of 0.98 in the figure, the very 

strong linear relationship between those two factors can be seen. With the result of this 
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simulation, one would conclude that contractors that are highly correlated with other 

contractors win fewer bidding competitions than firms that are less highly correlated. 

Conversely, it would be advantageous for contractors to be as little correlated with other 

bidders as possible. The result was also same as the case that mean and standard 

deviation is above or less than base case (mean=1 Std. Dev=0.2). The back computed 

mean, standard deviation and correlation matrix from random variables are given in 

Appendix C. 

 

 

Figure 4-3. Average correlation vs. probability of winning 
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random variables and original matrix shown in Table 4-3, revised original covariance 

matrix to avoid negative eigenvalue problem is selected and shown in Table 4-4. The 

back computed covariance matrices from random variables with three kinds of methods 

can be checked in Appendix D.  

 

Table 4-3. Original covariance matrix (Not positive definite) 

 

Contractor 

number 
540 45 103 459 441 349 431 

540 0.0400  0.0251  0.0222  0.0146  0.0188  0.0247  0.0214  

45 0.0251  0.0400  0.0371  0.0233  0.0317  0.0296  0.0299  

103 0.0222  0.0371  0.0400  0.0238  0.0228  0.0203  0.0289  

459 0.0146  0.0233  0.0238  0.0400  0.0245  0.0228  0.0283  

441 0.0188  0.0317  0.0228  0.0245  0.0400  0.0287  0.0215  

349 0.0247  0.0296  0.0203  0.0228  0.0287  0.0400  0.0233  

431 0.0214  0.0299  0.0289  0.0283  0.0215  0.0233  0.0400  

 

 

 

Table 4-4. Revised covariance matrix (Positive definite) 

 

Contractor 

number 
540 45 103 459 441 349 431 

540 0.0399 0.0249 0.0219 0.0147 0.0189 0.0246 0.0214 

45 0.0249 0.0400 0.0369 0.0234 0.0317 0.0295 0.0300 

103 0.0219 0.0369 0.0399 0.0238 0.0228 0.0203 0.0290 

459 0.0147 0.0234 0.0238 0.0400 0.0246 0.0228 0.0285 

441 0.0189 0.0317 0.0228 0.0246 0.0402 0.0288 0.0216 

349 0.0246 0.0295 0.0203 0.0228 0.0288 0.0399 0.0234 

431 0.0214 0.0300 0.0290 0.0285 0.0216 0.0234 0.0402 

 

 

 

Using Cholesky decomposition with the revised covariance matrix, seven correlated 

random numbers are generated and the probability of winning for each contractor is 
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calculated as in the six bidders’ case. Even though the R-square goes down slightly by 

0.93, there is still strong relationship between correlation and percentage of wins. Figure 

4-4 shows the result that supports the same conclusion as in the previous case, in which 

low correlation coefficients with competing bidders are associated with higher 

probability of winning the bid. 

 

 

Figure 4-4. Average correlation vs. probability of win 
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5. CONDITIONAL PROBABILITY DISTRIBUTION 

 

Throughout the previous section, the correlations between contractors and their 

probability of winning was introduced by generating correlated random variables under 

limitation that the only difference between bidders is correlation and all other parameters 

are equal. So, how can bidders establish their strategy for remaining bids with their 

estimated bid price and known information from past data? The probability of winning 

needs to be reevaluated after bidding price data becomes available. The probability of 

winning a given or assumed contractor’s bidding price for a bid is called conditional 

probability.   

This section examines how a contractor’s estimated bid price affects its probability of 

winning. The same assumption with the previous section is used in this section, in which 

each contractor’s bid is approximately Normally distributed from historical data and is 

correlated. Using Bayes’ Law and the assumption above, it is possible to compute the 

conditional probability distribution on bids (Reinschmidt 2010).  

5.1.  Bivariate normal 

 As a first simple bidding model, the consideration of this model is the relationship 

between one contractor and other contractors. This model considers the case in which 

one contractor only knows the correlation with other contractors and does not know the 

correlation among others due to the lack of information about others. Suppose that 

contractors have their average bids with i  and standard deviation of i  from 
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normalized past data with equation (3.1).  With that information, a Univariate Normal 

distribution of each contractor can be represented by  

 
21 1

( ) exp{ ( ) }
22

i i
i i

ii

x
f x






   (5.1) 

Two random variables of 1x
 and 2x

 from bids of contractor 1 and 2 can be represented 

by the joint probability distribution denoted with correlation coefficient of    . 

 

21 1
1,2 1 2 22

12 11 2 12

212 1 1 2 2 2 2

1 2 1

1 1
( , ) exp[ {( )

2(1 )2 1

2 ( )( )
( ) }]

x
f x x

x x x



   

   

  


 



  
 

 (5.2) 

With Bayes’ theorem 

 

( ) ( ) ( ) ( ) ( ) ( )P A B P A B P B P B A P B A P A    
 

the conditional probability density function of 1x given 2 2x X is 

 

 
1,2 1 2

1 2 2(1

2 2

( , )
( )

( )

f x x
f x x X

f x
    (5.3) 

With correlation coefficient, 12 , between two contractors, the joint probability density 

function for the two bids is Bivariate normal. 
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2 1

2 21 1 12 1 1 2 2 2 2
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12 1 1 2 11 2 12

2( )
21 1

1 1

2 ( )( )1 1
exp[ {( ) ( ) }]

2(1 )2 1
( )

1 1
exp{ ( ) }

2 2

x x

x x x x

f x
x

    

      



 



   
  







                                                                                                                                (5.4) 

with mean 

2
1 12 1 1

1

( )x


  


   

 

and standard deviation 

2

1 121   

5.2. Pairwise comparison 

As a first example, how correlation impacts the probability of winning according for 

variance bid prices is studied. The condition is given that the only difference among 

bidders is the correlation coefficient while other things are equal. Data for contractors 

come from top 10 contractors who bid most on projects from MDOT. Based on 

contractor 459 who bid most on projects with other bidders in top 10, correlations with 

other 7 contractors are applied to estimate the probability of winning by using 

conditional probability distributions except for two contractors who rarely have 

information about bids with contractor 459. The following Table 5-1 shows the 

correlation coefficients between contractor 459 and other 7 contractors.  
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Table 5-1. The number of bidders against bidder 459 

 

Contractor number 
Correlation coefficient 

with bidder 459 

540 0.3650 

45 0.5830 

103 0.5956 

441 0.6120 

349 0.5688 

431 0.7074 

180 0.6041 

 

 

 

In order to understand the effect of correlation, in this section, suppose that all bidders’ 

means and standard deviations are equal as 1, 0.2i i   , which means the only 

difference among bidders are their correlation coefficients. Let’s consider that contractor  

459  bids on a project with the price that is 5% higher and 5% lower than his mean that 

can be represented by conditional distribution of other i  competitors such as 

459( )
( 1.05)ii

f x x


   and 459( )
( 0.95)ii

f x x


  . Changed means and standard 

deviations of other 7 contractors interacting with the bidding price of contractor 459 are 

shown in Appendix E. The relationship between correlation coefficient and bidder 459’s 

probability of winning when bidder 459 has different strategies is shown in Figure 5-1. 
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Figure 5-1. The relationship between correlation and probability of winning with 

given conditions 
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competitors were highly correlated, so they would be more likely to bid high as well and 

less likely to underbid contractor 459.  

5.3. Pairwise comparison with real data 

To validate the points mentioned previously, a comparison between the probability of 

winning from the theoretical model and the historical result is conducted. In order to 

apply more information than correlation coefficients, means and variances of 8 

contractors are calculated from their whole bidding history that is the total number of 

jobs bid by the contractors. It can be considered by two cases about getting information 

about their competitors. First case is that a firm only knows competitors’ bid 

information when they bid on the same projects. Second one is that contractors can have 

access to all bidding information about other bidders through the posted bids on the 

DOTs’ websites. The second case is applied in this study because the more data we have, 

the more accurate information contractors can get about their competitors. Also, in the 

first case, if we use only the information that both contractors bid on, there would be a 

different mean and variance for every pair of bidders, which would be even more 

complicated. In second case, there is one mean and one variance for each contractor. 

Moreover, since many DOTs release their bid results from their Website these days, it is 

relatively easy to get data on all competitors’ previous bids. We do not have information 

on which contractors may be using these data to improve their winning percentages.  The 

comparison between case one and case two is attached in Appendix E with the following 

example. 
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Table 5-2 shows the number of bids and correlation coefficients with contractor 459 for 

7 other contractors, and means and standard deviations of eight contractors for all 

normalized bids from 2001 to 2009.  

 

Table 5-2. Contractors’ information about the number of bids and correlation 

coefficients with contractor 459, and means and standard deviations 

 

Contractor number Mean Std. Dev 
The number of bids 

with bidder 459 

Correlation 

coefficients 

with bidder 459 

459 1.073 0.156 - - 

540 1.025 0.183 55 0.365 

45 1.108 0.268 37 0.583 

103 1.032 0.160 327 0.596 

441 1.015 0.166 329 0.612 

349 1.047 0.159 426 0.569 

431 0.990 0.161 65 0.707 

180 1.007 0.196 17 0.604 

 

 

 

With means, standard deviations, and correlation coefficients in Table 5-2, the 

simulation is conducted to compare the probabilities from simulations with independent 

case and correlated case and prior history. From the results in Figure 5-2 and Table 5-3, 

correlated cases are closer to the probabilities from prior history than independent case 

except for the one exceptional case with contractor 45. Even though average value of 

contractor 45 is higher than contractor 459 from their whole bidding history, the 

contractor 45 bid lower many times than the contractor 459 when the projects that the 

two bidders bid on is considered. Thus the estimated probability of winning of contractor 

459 is higher than contractor 45.  
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Figure 5-2. Comparison of probabilities from simulation and prior history 

 

 

 

Table 5-3. Comparison of probabilities from simulation and prior history 

 

Contractor 

number 

Probabilities of win 

Prior 

history 

Correlated case  

(difference with Prior history) 

Independent case 

(difference with Prior history) 

540 0.382 0.398 (0.016) 0.422 (0.04) 

45 0.432 0.564 (0.132) 0.545 (0.113) 

103 0.336 0.388 (0.052) 0.428 (0.092) 

441 0.289 0.342 (0.053) 0.400 (0.111) 

349 0.387 0.428 (0.041) 0.451 (0.064) 

431 0.262 0.246 (-0.016) 0.351 (0.089) 

180 0.294 0.342 (0.048) 0.399 (0.105) 

 

 

 

Consider the case in which contractor 459 bids with 459 1.126X   and 459 1.019X  that 

is about 5% higher and less than the mean from historical data and others bids 
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probability density functions on iX  given condition on the value of 459 1.126X   and 

459 1.019X  are 

,459 459

459(

459 459

( , )
( 1.126,1.019)

( )

i i

ii

f x x
f x x

f x
  

 

with means 
459 459 459

459

( ( ))i
i i x


  


  and standard deviations

2

4591i i  . 

Table 5-4 shows the changed probability of winning conditional on bid prices of bidder 

459, which are 5% higher and lower than his average. The conditional probabilities of 

winning for contractor 459 are estimated with pairwise comparison. In both cases that 

the contractor 459 bids 5% higher and lower than his average, the highest chance of 

winning is expected when he bids with contractor 45. Also, the contractor 540 shows 

biggest change in probability of winning with regard to conditional bid value of 

contractor 459. 

 

Table 5-4. The relationship between simulation results and prior history given 

means and standard deviations 

 

Contractor  

number 

P(Bid 459 < Bid   

∣ Bid 459=1.019) 

(increase) 

P(Bid 459 < Bid   

∣ Bid 459=1.073) 

P(Bid 459 < Bid   

∣ Bid 459=1.126) 

(decrease) 

540 46.0% (7.1%) 39.0% 32.3% (6.7%) 

45 56.3% (0.0%) 56.3% 56.3% (0.0%) 

103 43.9% (6.3%) 37.6% 31.6% (6.0%) 

441 38.3% (5.3%) 33.0% 28.0% (5.0%) 

349 48.9% (6.9%) 42.0% 35.4% (6.6%) 

431 27.4% (4.0%) 23.3% 19.6% (3.7%) 

180 36.7% (3.0%) 33.7% 30.8% (2.9%) 
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Figure 5-3 shows the comparison between the probabilities of winning estimated from 

conditional probability with average bid price and the prior history probability that the 

bidder 459 bids lower than the others when they bid on the same project. The relatively 

high R-square tells that the analysis with conditional distribution and historical results 

are similar, which also means 7 contractors bid history is close to normal distribution. 

The estimated probability of winning of bidder 459 from the Monte Carlo simulation 

with the past data and conditional probability given 459 1.07X   with are shown in 

Appendix F. 

 

 

Figure 5-3. The comparison between conditional probability and real history 
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5.4. Trivariate case 

In addition to two bidders’ case, this section considers the case in which there are three 

bidders. The same assumption that bidding price for each bidder is normally distributed 

and correlated is still in effect. With their average bids of i  and standard deviation of 

i , a Univariate Normal distribution of each contractor is represented in the equation 

(5.1). In order to explain three bidders’ case with three marginal density functions, the 

expression about trivariate joint distribution is referenced from (Reinschmidt 2010) that 

is originally derived from (Burrington and May 1953). 

Three random variables of 1 2,x x  and 3x  from bids of contractor 1, 2 and 3 can be 

represented by the trivariate joint probability density function: 

 
/2

123 1 2 3 3/2

1 2 3

( , , )
(2 )

e
f x x x

R



   



  (5.5) 
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R = the determinant of R ( 2 2 2

12 13 23 12 13 231 2         ) 

ijR  = the cofactor of thi  row and 
thj  column of R 
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Suppose that bidder 3 estimates a bid price as 3X  and he wants to know the probability 

of winning with other two bidders based on the estimated bid price. Using Baye’s Law 

mentioned in the previous section, the conditional probability density function on 1 2,x x  

given 3 3x X : 

 

123 1 2 3
1 2 3 312 3

3 3

123 3

2 2 2

1 2 12 13 23 12 13 23

( , , )
( , )

( )

exp( )
2

2 1 2

f x x x
f x x x X

f x

 

       


  

 


   

 (5.6) 

with the condition 
2 2 2

12 13 23 12 13 231 2 0         
  

Two random variables of 1x  and 2x  from bids of contractor 1 and 2 conditional on 

3 3x X can be represented by the joint probability distribution shown in equation (5. 2) 

with revised means and standard deviations: 

1
1 13 3 31 3
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The conditional probability distribution on 1 2,x x  given 3 3x X  can be generated by 

Monte Carlo simulation with the revised means, standard deviations and correlation 

coefficients. By comparing those two random variables and fixed 3X , the probability of 

winning conditional on 3 3x X
 
can be estimated.   

5.4.1. The probability of winning with different conditions 

In order to study how bidders’ conditional values affect the probability of winning, the 

probability of winning under given conditions is estimated with different means, 

standard deviations and correlation coefficients. Bidder 3’s probability of winning for 

each conditional value of 3X  from 0.8 to 1.2 is estimated from conditional probability 

distribution with 100000 trials of Monte Carlo simulation. There are three different 

correlations, 0.01, 0.5, and 0.95, and all other conditions are equal having same means 

and standard deviations, which are 1.0 and 0.2.  

 

Table 5-5. The conditions to generate conditional probability distribution 

 

 Bidder 1 Bidder 2 Bidder 3 

Mean 1.0 1.0 1.0 

Standard deviation 0.2 0.2 0.2 

Correlation coefficient among all bidders 0.1, 0.5, 0.95 
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According to the result shown in Figure 5-4, the sensitivity of probability of winning 

depending upon conditional value of bidder 3 is high when the correlation with others is 

low and vice versa. For independent case (correlation =0.01), the probability of winning 

increases substantially when bidder 3 has a smaller bid price than his average ( 3X < 1.0). 

However, for the high correlation case, if bidder 3’s bid price is smaller, his probability 

of winning increases by a small amount. Let’s assume that bidder 3 established his bid 

value at 0.95, which is 5% smaller than usual. The probability of winning is higher by 

11.2% in the independent case but only 1.4% in highly correlated case. However, when 

the bidder 3 has bid value higher by 5%, his probability of winning is lower by 8.6% in 

the independent case and lower by 1.8% in the dependent case. Therefore, as a strategy 

of bidder 3, if he is trying to bid higher than normal, it is better to bid against highly 

correlated competitors and to avoid low correlated bidders. Conversely, when his 

estimated price is smaller than his average, it is better to bid with low correlated bidders. 

This result shows the same result with bivariate case. The specific table is shown in 

Appendix G.   
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Figure 5-4. Conditional probability of winning with different correlation 

coefficients 

 

 

 

Additionally, the effect of varying mean and standard deviation on the probability of 

winning with fixed correlation coefficient of 0.5 is shown in Figures 5-5 and 5-6. It is 

sure that if they have low means, the probability of winning is higher. In the case of 

different standard deviations case, if their bid price is lower than average, the probability 

of winning increases when their variation of bid price is high. In the other hand, for 

bidders who have small variation of bid price, the small amount of the probability of 
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Figure 5-5. Conditional probability of winning with different means 

 

 

 

 
 

Figure 5-6. Conditional probability of winning with different standard deviations 
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5.4.2. Trivariate case with real data 

In order to validate the trivariate case, a comparison between the probability of winning 

from the Monte Carlo simulation with three correlated bidders and their historical results 

when the three bidders bid on the same project is conducted. Correlation coefficients for 

three bidders are calculated by pairwise same as two bidders’ case in the previous 

section. More information than correlation coefficients, which are means and variances 

of 3 contractors, are calculated from their whole bidding history that is the total number 

of jobs bid by the contractors. The Table 5-6 shows means, standard deviations and 

correlation coefficients of the three contractors for all normalized bids from 2001 to 

2009.  

 

Table 5-6. Three contractors’ information about their correlation coefficients, 

means and standard deviations 

 

  103 349 459 Mean Std. Dev 

103 1.0000  0.5070  0.5956  1.032  0.160  

349 0.5070  1.0000  0.5688  1.047  0.159  

459 0.5956  0.5688  1.0000  1.073  0.156  

 

 

 

With means, standard deviations, and correlation coefficients in Table 5-6, the 

simulation is conducted to compare the probabilities from simulations with independent 

case and correlated case and prior history. From the results in Figure 5-7 and Table 5-7, 

correlated case is closer to the probabilities from prior history than independent case. 
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Figure 5-7. Comparison of probabilities from simulation and prior history 

 

 

 

Table 5-7. Comparison of probabilities from simulation and prior history 

 

Contractor number 
Probabilities of winning 

Prior history Correlated case Independent case 

103 0.423 0.413 0.386 

349 0.395 0.360 0.341 

459 0.182 0.228 0.274 
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459 1.019X   , which is 5% higher and less than the average from historical data and 
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and 349. 

The Table 5-8 shows the each contractor’s changed probability of winning conditional 

on the bid price of bidder 459. With bidder 103 and 346, the probability of winning of 

bidder 459 increases 5.8% when they bid 5% below than their average bid price and 

decreases 4.9% when they bid 5% more than their average bid price.   

 

Table 5-8. The relationship between simulation results and prior history given 

means and standard deviations 

 

 
103 349 459 

Probability of winning conditional on Bid 459=1.073 43.1% 37.2% 19.7% 

Probability of winning conditional on Bid 459=1.019 

(increased probability of winning of bidder 459) 
40.4% 34.1% 

25.5% 

(5.8%) 

Probability of winning conditional on Bid 459=1.126) 

(decreased probability of winning of bidder 459) 
45.6% 39.6% 

14.8% 

(4.9%) 

 

 

 

Figure 5-8 shows the comparison of each bidder’s probability of winning estimated from 

conditional probability with average bid price of bidder 459 and the probability of 

winning from the prior history (220 times) of three bidders. The relatively high R- 
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square tells that the analysis with conditional distribution and historical results are 

similar. 

 

 

Figure 5-8. The comparison between conditional probability and real history 
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6. CONCLUSIONS AND RECOMMENDATIONS 

 

This study began with the hypothesis that bids on construction projects for state DOTs 

are not necessarily independent, but instead are correlated. This hypothesis is supported 

by the MDOT data analysis, which illustrates actual bids correlated over a wide range of 

correlations, from 0 to 0.9. Before investigating how correlations affect the probability 

of winning, the characteristics of winning bids are examined using the following two 

hypotheses: winning bids divided by the EE is normally distributed and a larger number 

of bidders is associated with a lower winning bid price. With the shape of the Q-Q plot 

and cumulative distribution function, the hypothesis that the distribution of the winning 

bids divided by the EE follows a normal distribution is proven. In addition, the results of 

the regression analysis between the number of bidders per bid and low bids have 

demonstrated that the higher the number of bids, the lower is the winning bids divided 

by EE. It is advantageous for the DOT to have more bidders per project to decrease the 

awarded bid prices. 

To prove the hypothesis that the correlations affect the probability that any bid will be 

the winning bid, a Monte Carlo simulation generating the correlated random variables 

was utilized to establish the relationship between the correlations and the probability of 

winning with the condition that the only difference among bidders in the simulation is 

the correlation coefficients, other things are equal. With 100,000 random trials by 

considering each trial as a bid situation, the percentage of contracts won by each bidder 
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and the average correlation coefficient for each bidder was estimated. The results 

illustrate that the exact pattern for the correlations affects the probability of winning.  

According to the hypothesis that the consideration of the correlation more accurately 

predicts the probability of winning than in the independent case, a Monte Carlo 

simulation with a means, standard deviation, and correlation coefficient from the 

historical data was conducted. From the results of the comparisons among the 

probabilities from the simulations with the independent case and correlated case and 

from the prior history, the case considering the correlations was more similar to the 

probability of winning from the prior history, than in the independent case.  

The conditional probability for predicting the probability of winning in different 

conditions was explored. To help contractors establish their strategy for the remaining 

bids with their estimated bid prices and known information from the previous data, the 

probability of winning was found to be conditional on the knowledge of the contractors’ 

estimated bidding price. From the results of the analysis with the conditional probability, 

the hypothesis that contractors with low correlations with competing contractors have a 

higher probability of winning than contractors with high correlations with competing 

bidders in the case that their estimated bid is lower than their average bid is proven. 

Conversely, contractors having higher correlations with competing bidders have a higher 

probability of winning when their estimated bid price is higher than their average bid. 

This study contributes to the literature in two primary ways. One is that the consideration 

of interrelationships between contractors to contractors’ bidding strategies and the 
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application of enough practical data. In bidding, which involves a complex relationship 

between potential bidders, the consideration of interrelationships between contractors 

specified by correlations, in addition to considering the means and variances, would be a 

contribution in the competitive bidding literature. In addition, the distribution of bid 

values, correlations for different contractors and their probability of winning were 

estimated from data for over 7,000 projects.  

There are a few limitations to this study, which provides an area of opportunity for 

improvements. Even though this study draws the general relationship between 

correlations and the probability of winning, the analysis is limited to relationships 

between two bidders and three bidders, because there is not enough bidding history to 

prove the case for more than three bidders continuously bidding on the same projects.  In 

this study, correlations estimated by any contractor pair with less than 10 jobs are 

excluded due to the belief that fewer than 10 is a small sample, leading to inaccurate 

estimates of correlation. A Bootstrapping can be a way to alleviate small sample size 

difficulty when estimating correlations. 

Similar to previous models, this study is based on the assumption that competitors will 

continue to bid in the same way as they have in the past. However, a contractors’ 

bidding strategy can change, depending on their circumstances. Parameters considered in 

this study, such as the means, variances and correlations can change over the time span 

of the bidding data. It can be possible to develop dynamic models by taking into account 

the interrelationships between competitors, as well as the means and variances, with 
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respect to time. In this study, it is assumed that all projects are essentially the same. 

However, the parameters used in this study can change with the type of project, such as 

pavement, bridge and miscellaneous projects. There is some evidence in the database 

that can be used to categorize types of projects.  

The data for this study was gathered specifically from the state of Michigan, in which 

the bidders know the EE prior to bidding. Only eight states (LA, MA, MI, NV, OK, TX, 

UT, and NH) release their EE prior to bid letting (De Silva, et al. 2008). Therefore, the 

assumptions used in this study, that the bidders know the EE prior to bidding and the EE 

can be used to normalize bids, is limited to these eight states. If information about the 

EE is not available, the estimated bid price of a specific contractor interested in other 

competitors’ bids can be used with the determination of an appropriate distribution, 

similar to Friedman’s model. In this case, however, a large amount of historical data is 

needed to analyze other competitors’ parameters, based on the estimated price of one 

contractor and the correlations with them. As such, the low bid value can be used to 

normalize the bids. With normalized values by low bids for each bidder from historical 

data, the same parameters used in this study are obtainable with the determination of the 

appropriate distribution of normalized bids, such as the lognormal distribution.  

Further study may incorporate additional factors to enhance the model, such as the 

contractors’ current work load (backlog) or economic indices. Another good topic 

includes how their bid/no bid decisions are associated with the correlations between 

contractors or with some specific contractors. Commercial projects would also be of 
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interest. However, this study has determined that very large amounts of data are needed 

to obtain accurate parameters. To get a more accurate estimate of parameters with a few 

data points, bootstrapping would be useful to improve the accuracy of the computation 

of the correlation coefficients. 

In conclusion, in the case that a contractor’s estimated bid price is lower than his/her 

average bid price, it is better to bid with a high variance in the bidding price and to bid 

with less correlated contractors. Conversely, it is advantageous for a contractor to set the 

bid price with a low variance and to bid with highly correlated contractors, if the 

contractor’s estimated bid price is lower than the average bid price.  
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APPENDIX A 

 

 

 
 

Figure A-1. Normal Quantile plot of low bids divided by EE 

 

 

 
 

Table A-1. Information about the histogram in Figure 3-1 

 

100.0% maximum 2.39214 Mean 0.9309897 

99.5%  1.43419 Std Dev 0.145655 

97.5%  1.2285 Std Err Mean 0.0016897 

90.0%  1.09408 Upper 95% Mean 0.9343019 

75.0% quartile 1.00455 Lower 95% Mean 0.9276774 

50.0% median 0.92562 N 7431 

25.0% quartile 0.84863 Sum 6918.1841 

10.0%  0.76976 Variance 0.0212154 

2.5%  0.64911 Skewness 0.8205661 

0.5%  0.5271 Kurtosis 6.4069143 

0.0% minimum 0.1645 Mean 0.9309897 
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Figure A-2. Cumulative distribution of low bids divided by Engineer’s Estimate for 

7395 projects 

 

 

 

 

 



63 

 

 

6
3
 

APPENDIX B 

 

Transformed Fit to Log 

Low bid over EE = 1.0205791 - 0.059966*Log(N of bidder) 

 

Summary of Fit 

RSquare 0.048098 

RSquare Adj 0.04797 

Root Mean Square Error 0.142119 

Mean of Response 0.93099 

Observations (or Sum Wgts) 7431 

 

Analysis of Variance 

Source DF Sum of Squares Mean Square F Ratio 

Model 1 7.58172 7.58172 375.3758 

Error 7429 150.04866 0.02020 Prob > F 

C. Total 7430 157.63039  <.0001* 

 

Parameter Estimates 

Term Estimate Std Error t Ratio Prob>|t| 

Intercept 1.0205791 0.004909 207.89 <.0001* 

Log(N of bidder) -0.059966 0.003095 -19.37 <.0001* 
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APPENDIX C 

Back computed correlation matrix, means and variances from the Monte Carlo 

simulation for 100,000 random trials in order to compare how close to the original 

parameters 

Table C-1. Back computed correlation matrix 

 

Contractor number 540 103 459 441 349 431 

540 1.0000 0.5508 0.3596 0.4709 0.6150 0.5340 

103 0.5508 1.0000 0.5929 0.5707 0.5009 0.7217 

459 0.3596 0.5929 1.0000 0.6128 0.5675 0.7053 

441 0.4709 0.5707 0.6128 1.0000 0.7185 0.5372 

349 0.6150 0.5009 0.5675 0.7185 1.0000 0.5803 

431 0.5340 0.7217 0.7053 0.5372 0.5803 1.0000 

 

 

Table C-2. Back computed mean and Std. Dev (original mean=1, Std. Dev=0.2) 

 

Contractor number Mean Std. Dev 

540 0.9998 0.1994 

103 0.9999 0.1999 

459 1.0001 0.1997 

441 0.9997 0.2000 

349 1.0001 0.1998 

431 1.0003 0.1993 
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APPENDIX D 

 

Table D-1. Back computed covariance matrix by revised Cholesky decomposition 

 

Contractor 

number 
540 45 103 459 441 349 431 

540 0.0399 0.0249 0.0219 0.0147 0.0189 0.0246 0.0214 

45 0.0249 0.0400 0.0369 0.0234 0.0317 0.0295 0.0300 

103 0.0219 0.0369 0.0399 0.0238 0.0228 0.0203 0.0290 

459 0.0147 0.0234 0.0238 0.0400 0.0246 0.0228 0.0285 

441 0.0189 0.0317 0.0228 0.0246 0.0402 0.0288 0.0216 

349 0.0246 0.0295 0.0203 0.0228 0.0288 0.0399 0.0234 

431 0.0214 0.0300 0.0290 0.0285 0.0216 0.0234 0.0402 

 

Table D-2. Back computed covariance matrix by Eigenvalue decomposition 

 

Contractor 

number 
540 45 103 459 441 349 431 

540 0.0399 0.0249 0.0221 0.0144 0.0185 0.0244 0.0211 

45 0.0249 0.0401 0.0369 0.0232 0.0314 0.0293 0.0296 

103 0.0221 0.0369 0.0402 0.0237 0.0227 0.0202 0.0288 

459 0.0144 0.0232 0.0237 0.0398 0.0242 0.0225 0.0281 

441 0.0185 0.0314 0.0227 0.0242 0.0398 0.0284 0.0213 

349 0.0244 0.0293 0.0202 0.0225 0.0284 0.0397 0.023 

431 0.0211 0.0296 0.0288 0.0281 0.0213 0.023 0.0398 

 

Table D-3. Back computed covariance matrix by Singular value decomposition 

 

Contractor 

number 
540 45 103 459 441 349 431 

540 0.0401 0.0252 0.0222 0.0145 0.0189 0.0248 0.0214 

45 0.0252 0.0401 0.0368 0.0232 0.0316 0.0296 0.0298 

103 0.0222 0.0368 0.0399 0.0236 0.0228 0.0203 0.0287 

459 0.0145 0.0232 0.0236 0.0399 0.0244 0.0227 0.0282 

441 0.0189 0.0316 0.0228 0.0244 0.0401 0.0287 0.0215 

349 0.0248 0.0296 0.0203 0.0227 0.0287 0.04 0.0233 

431 0.0214 0.0298 0.0287 0.0282 0.0215 0.0233 0.0399 
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APPENDIX E 

Means and standard deviations from conditional probability density function of 

ix given 459 1.05,0.95x   and probability of winning of bidder 459 from the conditional 

probability 

Table E-1. Changed means and standard deviations by condition of 459 1.05X    

 

  Mean Std. Dev P(Bid459 < Bid i│Bid 459=1.05) 

                    1.018 0.186 0.432 

                   1.029 0.162 0.455 

                    1.030 0.161 0.457 

                    1.031 0.158 0.459 

                    1.028 0.164 0.454 

                    1.035 0.141 0.469 

                    1.030 0.159 0.458 

 

 

 

Table E-2. Changed means and standard deviations by condition of 459 0.95X   

 

 
Mean Std. Dev P(Bid 459 < Bid i│Bid 459=0.95) 

                    0.982 0.186 0.568 

                   0.971 0.162 0.545 

                    0.970 0.161 0.543 

                    0.969 0.158 0.541 

                    0.972 0.164 0.546 

                    0.965 0.141 0.531 

                    0.970 0.159 0.542 
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APPENDIX F 

Figure F-1 shows the case one that used means and variances of competitors 

when they bid on the same projects in order to compare with the case two in the figure 5-

3. The case two used in this study shows higher R-squares. 

 

 
 

Figure F-1. The comparison of results between prior history and Monte Carlo 

simulation for case one 

 

 

 

Figure F-2 shows the probability of winning estimated from the Monte Carlo 

simulation and prior history in order to compare with the figure 5-3 that shows the 

probability of winning estimated from joint probability density function conditional on 

the average bid value of contractor 459.  From the figure F-3, it is proved that two results 

are almost same. 
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Figure F-2. The comparison of results between prior history and Monte Carlo 

simulation 

 

 

 

 
 

Figure F-3. The comparison of results between Monte Carlo simulation and 

conditional probability 
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APPENDIX G 

Table G-1. Conditional probability of winning with different correlations 

 
X3 Correl=0.01 Correl=0.5 Correl=0.95 

0.8 0.70606 0.55857 0.39838 

0.81 0.68363 0.5411 0.39339 

0.82 0.6645 0.53177 0.39028 

0.83 0.63963 0.51715 0.38672 

0.84 0.62046 0.50123 0.38322 

0.85 0.59529 0.49376 0.37789 

0.86 0.57333 0.47623 0.37762 

0.87 0.54887 0.46279 0.37612 

0.88 0.5263 0.45017 0.36897 

0.89 0.50193 0.4395 0.3646 

0.9 0.4752 0.42693 0.36333 

0.91 0.4539 0.41189 0.36088 

0.92 0.42738 0.40033 0.35897 

0.93 0.40651 0.38575 0.35511 

0.94 0.38142 0.37474 0.35034 

0.95 0.36193 0.36428 0.34761 

0.96 0.33522 0.35034 0.34322 

0.97 0.31375 0.33789 0.3409 

0.98 0.29307 0.32812 0.33568 

0.99 0.27184 0.315 0.33227 

1 0.25006 0.30453 0.33326 

1.01 0.23102 0.29172 0.32932 

1.02 0.21577 0.2809 0.32539 

1.03 0.19667 0.26756 0.3218 

1.04 0.18033 0.25885 0.31667 

1.05 0.16256 0.24912 0.31497 

1.06 0.14866 0.2386 0.31389 

1.07 0.13435 0.22882 0.31024 

1.08 0.12211 0.21805 0.30641 

1.09 0.11043 0.20899 0.30414 

1.1 0.0972 0.19804 0.29923 

1.11 0.08686 0.19277 0.29627 

1.12 0.07871 0.18224 0.29078 

1.13 0.06777 0.17354 0.28899 

1.14 0.06072 0.16639 0.28709 

1.15 0.05243 0.15674 0.28411 

1.16 0.0464 0.14625 0.28115 

1.17 0.04157 0.14134 0.27818 

1.18 0.03522 0.13352 0.27417 

1.19 0.03151 0.12652 0.27213 

1.2 0.02705 0.12064 0.26905 
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Table G-2. Conditional probability of winning with different means 

 
X3 Mean=1.1 Mean=1.0 Mean=0.9 

0.8 0.42577 0.55521 0.67916 

0.81 0.41342 0.54485 0.66723 

0.82 0.40065 0.53066 0.65741 

0.83 0.38787 0.51457 0.64217 

0.84 0.37369 0.50705 0.634 

0.85 0.36321 0.49167 0.62057 

0.86 0.35181 0.48032 0.60667 

0.87 0.3386 0.46731 0.596 

0.88 0.32504 0.45172 0.57936 

0.89 0.31679 0.43771 0.57067 

0.9 0.30168 0.42646 0.55562 

0.91 0.29166 0.41359 0.5444 

0.92 0.27883 0.40249 0.53148 

0.93 0.2709 0.38942 0.51594 

0.94 0.2621 0.37731 0.5049 

0.95 0.2476 0.36115 0.49007 

0.96 0.23741 0.35006 0.48003 

0.97 0.22892 0.34067 0.46588 

0.98 0.2188 0.32931 0.45197 

0.99 0.20894 0.31587 0.43919 

1 0.20095 0.30503 0.4261 

1.01 0.19268 0.29319 0.41475 

1.02 0.18196 0.2826 0.40052 

1.03 0.17283 0.27039 0.38825 

1.04 0.16454 0.26115 0.37673 

1.05 0.15727 0.25089 0.36337 

1.06 0.1503 0.23949 0.34978 

1.07 0.14077 0.22988 0.33933 

1.08 0.13487 0.21998 0.32795 

1.09 0.12546 0.20989 0.31273 

1.1 0.12075 0.19937 0.30233 

1.11 0.1145 0.1929 0.29515 

1.12 0.10874 0.18324 0.28392 

1.13 0.10187 0.17429 0.27014 

1.14 0.09789 0.1647 0.26251 

1.15 0.09015 0.15677 0.24882 

1.16 0.08435 0.14917 0.23979 

1.17 0.07904 0.14064 0.23033 

1.18 0.07428 0.13317 0.21872 

1.19 0.07196 0.12614 0.20898 

1.2 0.06592 0.11822 0.19683 
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Table G-3. Conditional probability of winning with different standard deviations 

 
X3 St.dev=0.1 St.dev=0.2 St.dev=0.3 

0.8 0.30234 0.55521 0.638 

0.81 0.30451 0.54485 0.62415 

0.82 0.30484 0.53066 0.60848 

0.83 0.30594 0.51457 0.59174 

0.84 0.3034 0.50705 0.56957 

0.85 0.30612 0.49167 0.55431 

0.86 0.30344 0.48032 0.53679 

0.87 0.30296 0.46731 0.52264 

0.88 0.30368 0.45172 0.50452 

0.89 0.30261 0.43771 0.48747 

0.9 0.30262 0.42646 0.46652 

0.91 0.30415 0.41359 0.45108 

0.92 0.30324 0.40249 0.43638 

0.93 0.30575 0.38942 0.41751 

0.94 0.3048 0.37731 0.39831 

0.95 0.30358 0.36115 0.38616 

0.96 0.30359 0.35006 0.36651 

0.97 0.30412 0.34067 0.34988 

0.98 0.30079 0.32931 0.3343 

0.99 0.30231 0.31587 0.32237 

1 0.3023 0.30503 0.30363 

1.01 0.30554 0.29319 0.2889 

1.02 0.3039 0.2826 0.27389 

1.03 0.30325 0.27039 0.25929 

1.04 0.30428 0.26115 0.24562 

1.05 0.30409 0.25089 0.2313 

1.06 0.30442 0.23949 0.22119 

1.07 0.30153 0.22988 0.2059 

1.08 0.30466 0.21998 0.19206 

1.09 0.30175 0.20989 0.17948 

1.1 0.30065 0.19937 0.16806 

1.11 0.30687 0.1929 0.15982 

1.12 0.30435 0.18324 0.14877 

1.13 0.30525 0.17429 0.13813 

1.14 0.30651 0.1647 0.12892 

1.15 0.30647 0.15677 0.11967 

1.16 0.30368 0.14917 0.11159 

1.17 0.30657 0.14064 0.10294 

1.18 0.30505 0.13317 0.09591 

1.19 0.30548 0.12614 0.08776 

1.2 0.30428 0.11822 0.07976 
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