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ABSTRACT

Heterogeneous Beliefs, Collateralization, and Transactions

in General Equilibrium. (August 2011)

Xu Hu, B.B.A., The University of Science and Technology of China

Co–Chairs of Advisory Committee: Dr. Leonardo Auernheimer
Dr. Rajiv Sarin

This study includes two theoretical works. In both works, I assume that economic

agents have heterogeneous beliefs. I study collateralized loan transactions among

economic agents arising from the divergent beliefs. Moreover, I make collateral re-

quirements endogenously determined, along with interest rates and loan quantities.

The theme of the first work is to study private transactions in currency crises.

I assume that domestic residents have different beliefs on how resilient the central

bank is in defending the currency. Due to the different beliefs, domestic residents

willingly borrow and lend among themselves. I show that the heterogeneity of beliefs

per se brings stability to the system, but that short-term collateralized loans among

domestic residents arising from the divergent opinions make an exchange rate peg

vulnerable.

The second work is to understand credit default swaps in general equilibrium.

The model features a market for a risky asset, a market for loans collateralized by the

risky asset, and a market for credit default swaps referencing these loans. I show that

the introduction of credit default swaps only as insurance has no effect on the price of

the risky asset. And the introduction of credit default swaps both as insurance and

as tools for making side bets depresses the price of the risky asset in general but has

no effect when the majority of the economy hold bearish views on the risky asset.
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CHAPTER I

INTRODUCTION

This study includes two theoretical works. They are unrelated in the subject matter,

but they share several similarities from the modeling perspective. In both works, I

assume that economic agents have heterogeneous beliefs. I study collateralized loan

transactions among economic agents arising from divergent beliefs. Moreover, I make

collateral requirements endogenously determined in the market for loans, along with

interest rates and loan quantities. The first work is to study transactions within the

private sector in the context of speculative currency crises. The second one is to

understand credit default swaps in a general equilibrium model. Below, I introduce

the subject, discuss key research questions and related works, and preview main

findings briefly.

A. Speculative currency crises

A crisis of a pegged nominal exchange rate is an episode in which the public sell

off domestic money in foreign exchange markets in a sizable scale, as the public’s

confidence in the exchange rate peg falters; meanwhile to defend the peg, the central

bank intervenes, selling foreign exchanges and buying domestic money; as a result,

the central bank loses foreign reserves in a short period of time; such a drastic decline

in foreign reserves triggers the central bank to abandon the peg and devalue the

currency.

Theoretical models in the literature of currency crises often assume the public to

This dissertation follows the style of Econometrica.
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be a homogeneous entity and ignore possible interactions within the private sector in

time of crisis. First-generation models, á la, Krugman (1979), and Flood and Garber

(1984), show that due to fiscal imbalances, a government inevitably abandons a fixed

exchange rate at a predictable time. On the contrary, second-generation models, á

la, Obstfeld (1986), show that crises can be unpredictable due to the existence of

multiple equilibria, i.e., a fixed exchange rate can be brought down by self-fulfilling

speculative attacks, even if it would have been viable perpetually in the absence of

attacks.

One notable strand of research, departing from the paradigm of homogeneous

agents, is pioneered by Morris and Shin (1998). They introduce private information

into a second-generation model and show the uniqueness of equilibrium. A recent

contribution by Broner (2008) introduces private information into a first-generation

model. And he shows that multiple equilibria exist and that unpredictable and large

devaluations are possible in certain equilibria.

Nevertheless, there is no theoretical attempt so far made in the literature to

understand transactions within the private sector in the context of currency crises.

In this work, I postulate that domestic residents have heterogeneous beliefs regarding

how resilient the central bank is in defending the currency. And I study short-term

collateralized loan transactions arising from the divergent beliefs among domestic

residents.

In particular, I consider a small open economy with perfect capital mobility and

a pegged nominal exchange rate. I assume that the domestic central bank abandons

the exchange rate peg and devalues the currency, if its stock of foreign reserves falls

below a critical level.1 I assume domestic residents may do not know the true value

1A different assumption is that after the stock of foreign reserves reaches a critical
level, the central bank floats the exchange rate and controls the resulting nominal
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of this critical level and may have heterogeneous beliefs about it.2 This critical level

measures how resilient the central bank is in defending the currency peg in face of

speculative attacks. With heterogeneous beliefs, it is likely that given the current level

of foreign reserves, some residents expect the peg to remain while others expect the

peg to collapse. As market opinions diverge, loan transactions shall emerge voluntarily

within the private sector. Intuitively, people, who expect the peg to collapse and thus

expect the currency to be devalued, have incentives to sell domestic money short.

They want to borrow domestic money and sell it off in foreign exchange markets. Even

with a high nominal interest rate, due to an expected devaluation, they anticipate

handsome profits from the arbitrage. Others, who expect the peg to remain, willingly

take the counterpart position: lend with an interest rate perceived to be high in both

nominal and real terms.

I study first the benchmark case where all domestic residents’ beliefs about this

critical level of defense are the same and coincide with the true value. I show that

as long as the central bank is resilient enough in defending the currency, the fixed

exchange rate can survive perpetually. Otherwise the pegged exchange rate either

remains viable forever or is brought down by an economy wide self-fulfilling run on

the central bank at some arbitrary time.

And then I introduce heterogeneous beliefs. I assume that domestic residents’

beliefs about the critical level of defense are uniformly distributed over an interval,

money supply, as in Krugman (1979), Flood and Garber (1984), and Obstfeld (1986).
Under this assumption, the floating exchange rate is an endogenous variable, and
there can be no discrete devaluations after the fixed exchange rate collapses.

2One empirical evidence for heterogeneous expectations of the credibility of the
currency peg is presented in Valev and Carlson (2008). It gives a series of survey
data from 2001 to 2004 taken in Bulgaria which introduced a currency board in
1997, showing respondents disagree over the likelihood that the currency board would
collapse in different horizons.
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centered on the true value. I find that loan transactions within the private sector

arising from heterogeneous beliefs make an exchange rate peg vulnerable to specula-

tive attacks. In particular, I show that given a distribution of beliefs across domestic

residents, a fixed exchange rate which remains viable forever if private loans are not

allowed, may be brought down by self-fulfilling speculative attacks at some arbitrary

time if private loans are allowed. And I also show that a peg which remains viable

forever if private loans are allowed, must remain viable if private loans are not allowed.

The core reason is that the possibility to engage in loans pushes up the opportu-

nity cost of holding domestic money—those who expect the peg to collapse perceive

profits of selling domestic money short while those who expect the peg to remain en-

joy high interest rates from the private loans—and thus lowers the aggregate demand

for domestic money.

Interestingly, the heterogeneity of beliefs per se brings stability to the system of

a fixed exchange rate. In particular, I show that a pegged exchange rate which is

subject to self-fulfilling crises if domestic residents’ beliefs are the same, may remain

viable forever if a perturbation of beliefs is introduced. And I also show that a peg

which remains viable forever if domestic residents’ beliefs are the same, must remain

viable if the beliefs are heterogeneous. Intuitively, differences in opinion make the

public’s moves less synchronous. A decline in foreign reserves might gather only a

handful of domestic residents into the crowd to attack the central bank, since some

people do not expect the peg to collapse given their own beliefs.

Hence what gives rise to the vulnerability of the system of a fixed exchange rate

is not the heterogeneity of beliefs per se but the private transactions arising from it.

The assumption of heterogeneous beliefs thus has two consequences: one is desyn-

chronizing actions taken by the public while the other is creating incentives for side

bets among private investors. The former brings stability while the latter generates
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destablizing private transactions. I show that provided the beliefs are not too diverse,

the latter effect dominates. In particular, I show that a pegged exchange rate which

is viable if domestic residents’ beliefs are the same, is subject to self-fulfilling crises if

the beliefs are heterogeneous and private loan transactions are allowed, provided the

perturbation of beliefs is small enough.

In the market for loans, I choose collateral to enforce loan repayments, i.e., when

loans are initiated, borrowers need to pledge certain properties as collateral to secure

loan repayments; failures to repay give lenders the right to seize the pledged prop-

erties. Furthermore, I make collateral negotiable and thus endogenously determined,

following Geanakoplos (1997, 2003, 2010).

From the modeling perspective, it is important to be explicit on enforcement

mechanism when participants in asset markets have different beliefs and meanwhile

unlimited short-selling is not excluded for exogenous reasons. Hart (1974) shows when

short-selling is unlimited, the equilibrium might not exist if people have too much

disagreement over the security returns while the equilibrium does exist if people’s be-

liefs are identical. As Milne (1980) argues, the key assumption that gives rise to the

non-existence result in Hart (1974) is that lenders never question borrowers’ ability

of paying off the loan. Milne (1980) argues even though no restriction on short-selling

is exogenously assumed, some constraints on borrowing shall arise from lenders’s per-

ceptions of default risk. And Milne (1980) shows after introducing some enforcement

mechanism an equilibrium does exist in an asset economy. One alternative mechanism

considered by Milne (1980) is to assume lenders are able to access the information of

borrowers’ portfolios and a loan will be made only when the borrower is solvent in

every contingency which the lender perceives will occur with a positive probability.

The prime advantage of collateral being the enforcement mechanism is anonymity.

As long as the collateral pledged is sound, there is no need for a lender to know the
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identity of the borrower, to have any information of the borrower’s portfolios, and to

believe the borrower is honest.

B. Credit default swaps

Credit default swaps, a class of financial derivatives, had attracted enormous attention

from the public and policy-makers3 since this recent financial crisis.4

A credit default swap is often described as a form of insurance which protects

a lender if a borrower defaults.5 For example, suppose an investor holds a bond

issued by the General Motors Company (GM) and he worries that GM might file a

bankruptcy soon. To hedge the default risk, the investor goes to buy a credit default

swap on GM’s bond. He makes periodic payments to the seller of the credit default

swap in exchange for certain payoffs if GM defaults. In contrast to usual insurance

contracts, credit default swaps have a peculiar feature. The buyer of a credit default

swap is not required to have the insurable interest. It is unnecessarily true that the

buyer suffers a loss from the default. In the example above, without being exposed

to GM’s default, an investor can buy a credit default swap on GM’s bond merely

because he speculates that GM is going to default. For this reason, a credit default

swap can either be used as insurance, hedging default risk, or be used to gamble,

betting against a security, (e.g. GM’s bond in the example above).

The recent financial crisis was preceded by busts in housing markets and subprime

3See Che and Sethi (2011) for a short review of arguments for and against policies
regulating credit default swaps.

4On September 16th 2008, American International Group, Inc. (AIG), the insur-
ance giant, received bailout money up to $85 billion from the Federal Reserve Bank of
New York, following the downgrade of its credit rating. The liquidity problem facing
AIG at the time was to deposit additional collateral with its trading parties, mainly
with those who had bought credit default swaps from AIG.

5See Stulz (2010) for a review of the mechanics of credit default swaps.
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mortgages. And the credit default swaps involved in the crisis were those on mortgage-

backed securities. The linkage between the decline in home prices and the trading

of credit default swaps on mortgage-backed securities stirred a vast interest from the

public. Nevertheless, theoretical works aimed at understanding this linkage are rare.

One notable contribution is by Geanakoplos (2010). In a model of risk-neutral agents

with heterogeneous beliefs about the return rate of a risky asset, Geanakoplos (2010)

shows that when loans collateralized by the risky asset are allowed, the introduction

of credit default swaps on these collateralized loans depresses the equilibrium price

of the risky asset and eliminates transactions of collateralized loans in equilibrium.

In this work, I study credit default swaps in a general equilibrium model similar to

Geanakoplos (2010). But unlike Geanakoplos (2010), I start with a general framework

which allows for risk-averse agents and allows for more than two states of nature. The

model features a market for a risky asset, (house), a market for loans collateralized

by the risky asset, (mortgages), and a market for credit default swaps which reference

the collateralized loans. Like Geanakoplos (2010), I only consider loans denominated

in a risk-free asset, (cash), and exclude short sales against the risky asset. Following

Geanakoplos (1997, 2003, 2010), collateral requirements, along with interest rates and

loan quantities, are endogenously determined in the market for loans.

Individuals are assumed to be identical in all aspects except for the belief about

the return rate of the risky asset. Due to heterogeneous beliefs, individuals have

incentives to borrow and lend among themselves. Individuals with bullish views want

to purchase the risky asset through borrowing and meanwhile use the obtained risky

asset as collateral, i.e., buying the risky asset on margin. Meanwhile, individuals with

bearish views want to lend, provided the interest rate is high enough and the collateral

is sound enough. Also due to heterogeneous beliefs, individuals have incentives to buy

and sell credit default swaps on these loans among themselves. Since these loans are
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collateralized by the risky asset, for bulls these loans have good chances to be repaid

while for bears these loans are likely to go bad. Hence the former are willing to insure

the repayments of these loans with the latter.

I make two assumptions about trading credit default swaps. First I assume that

a sufficient amount of collateral must be posted to back up the promise made in a

credit default swap so that the seller of the credit default swap would be able to

deliver payoffs in all contingencies. Second, I assume that sellers of credit default

swaps can economize on collateral, meaning that the remnant of the collateral posted

for a credit default swap on a loan can be used as an equivalent substitute for the

risky asset as collateral for the same loan. The consequences of these two assumptions

are (1) buying credit default swaps to alleviate potential losses from loan defaults is

equivalent with lending less and holding additional amounts of the risk-free asset,6

and (2) selling credit default swaps is equivalent with lending under the corresponding

loans.7

Due to these two facts, I show that the introduction of credit default swaps as

insurance only has no effect on the equilibrium price of the risky asset and the market

for collateralized loans. Note this result does not depend on how individuals’ beliefs

about the return rate of the risky asset are specified.

To analyze the effect of introducing credit default swaps both used to hedge

default risk and used to bet against loans collateralized by the risky asset, I make a

6As it is noted in the book by Lewis (2010), the best way to avoid the risk of GM’s
default is not to lend to GM in the first place.

7In practice, credit default swaps are used to structure synthetic collateralized
loans, an example of which is ABACUS 2007-AC1 in the center of the lawsuit against
the Goldman Sachs Group, Inc. (Goldman Sachs) filed by the Securities and Exchange
Commission (SEC). According to SEC, investors who bought ABACUS 2007-AC1
were in essence the sellers of the credit default swaps which referenced a variety of
subprime mortgage-backed securities. The official document of the lawsuit is available
at http://www.sec.gov.
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concrete specification of individuals’ beliefs about the return rate of the risky asset.

I assume the economy is divided into two groups: “optimists” and “pessimists”.

Individuals within a group have the same point estimate about the return rate of the

risky asset. Optimists, as their name suggests, have a higher estimate than pessimists

do.

I solve analytically for the price of the risky asset in equilibrium when credit

default swaps both are prohibited and are allowed. I find that as the market for

credit default swaps is introduced, the price of the risky asset in general falls, but this

is not always the case. When the population of pessimists is large enough, opening

up the market for credit default swaps does nothing to the price of the risky asset

and the market for loans collateralized by the risky asset. Interestingly, this is not

because pessimists have no incentives to buy the credit default swaps but because

optimists perceive that the return rate of buying the risky asset on margin dominates

that of selling the credit default swaps and hence there is a lack of incentive on the

side of sellers.

Further, unlike Geanakoplos (2010), I find that in general the introduction of

credit default swaps does not eliminate transactions of collateralized loans in equilib-

rium. It is true only when the population of pessimists is small enough.
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CHAPTER II

SPECULATIVE CURRENCY CRISES

This chapter is devoted to my study on speculative currency crises. The theme of

this study is to theoretically analyze short-term collateralized loans among domestic

residents arising from heterogeneous beliefs in currency crises.

A. The basic model

1. Setup

Consider a small open economy inhabited by a continuum of infinitely lived residents

of mass 1. The time is discrete, meaning markets open only at a set of dates separated

by a unit length of time, i.e., t− 1, t, t+ 1, ....

The domestic central bank stands ready to buy and sell foreign exchanges to peg

the spot nominal exchange rate, defined as the price of foreign currency (dollar) in

terms of domestic currency (peso).

The economy produces and consumes a single trade-able good which perishes in

a unit length of time. Assume purchasing power parity prevails at all times, and the

dollar price of the good is normalized to 1. Hence the domestic price level is equal to

the nominal exchange rate.

A foreign consol-type bond is available to domestic residents, which pays a inter-

est rate with certainty in dollars in perpetuity. Precisely, each unit of the foreign bond

gives i∗ dollars as the interest in each date. The foreign bond is supplied elastically to

the residents in the small economy at a given price, which is exogenously determined

in the rest of the world. Normalize the price of the foreign bond to 1 dollar per unit.

I assume foreigners do not desire peso and peso-denominated assets. I assume
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that the local government does not issue bonds and there are no other domestic assets

except the domestic currency and private loans among residents. Holding domestic

money provides liquidity and thus is desired, even though it yields no interest. When

domestic residents are homogeneous, in equilibrium there are no actual loan transac-

tions, and thus it is safe to drop private loans from their portfolio decision. Below, I

proceed to discuss the problem facing a typical domestic resident with private loans,

while I discuss in detail how domestic residents trade loans later as I introduce het-

erogeneous beliefs.

A typical domestic resident lives forever and maximizes the lifetime utility:

∑
1,2,...,∞

u(zt,mt)

(1 + i∗)t−1
, (2.1)

where z denotes consumption and m denotes real cash balance defined as M
S

, M

denotes the holding domestic money and S denotes the nominal exchange rate. Above,

I assume that holding domestic money gives utility directly. Further, I assume that

the utility function is separable in z and m and that the intertemporal substitution

of consumption is perfectly elastic, i.e.,

u(z,m) = z + l(m) . (2.2)

A typical domestic resident is facing two budget constraints at each date: a stock

constraint and a flow one. Let w denotes the wealth in real terms held by a domestic

resident, which is equal to the sum of the real money stock and the foreign bond, i.e.,

for all t,

wt = mt + ft , (2.3)

where f denotes the holding of the foreign bond. Initially a typical domestic resident
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starts with some nominal money stock M0 > 0 and some foreign bond f0 > 0. I use

w0 to denote the initial wealth for a typical resident. Hence w0 = f0 + M0

S0
. The flow

constraint at date t gives,

wt − wt−1 + zt = i∗ · ft−1 −mt−1πt + y , (2.4)

where y denotes the exogenous constant income flow received by a typical individual,

πt denotes the rate of depreciation of domestic money defined as πt ≡ St−St−1

St
.

At each date, a typical domestic resident chooses consumption and portfolio given

the wealth that he is left with from the past. The necessary conditions for maximizing

(2.1) subject to (2.3) and (2.4) imply: first consumption zt is indeterminate; second

the demand for money is given by

l′(mt) =
i∗ + πt+1

1 + i∗
. (2.5)

Let L(·) = [l′(·)(1 + i∗)]−1. Hence

mt = L(i∗ + πt+1) . (2.6)

The local fiscal authority does not issue bonds, and the local central bank holds

the foreign bond as reserves to peg the nominal exchange rate at S̄ > 0. The consol-

idated government flow budget constraint at date t gives,

f gt − f
g
t−1 + gt = mt −mt−1 +mt−1πt + i∗ · f gt−1 , (2.7)

where f g denotes the foreign bond held by the central bank and g denotes the gov-

ernment spending. I assume the central bank maintains a sufficient amount of foreign

reserves just enough to absorb the entire money supply at all dates. Initially M0

S0
= f g0 .

Without loss of generality, let f g0 = 1. As a result, the government spending is fi-

nanced by the interest earned from the foreign bond plus revenues from the inflation
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tax. Since the central bank pegs the exchange rate at a constant level S̄, the inflation

tax is zero, and hence,

i∗ · f gt = gt . (2.8)

Combine flow budget constraints for the private sector and the government, (2.3),

(2.4), and (2.7), I get the balance of payments equation,

fat − fat−1 = y − zt − gt + i∗ · fat−1 , (2.9)

where fa denotes the aggregate holding of the foreign bond by the entire economy,

i.e., fa = f+f g. The long-run stationary equilibrium requires that fat = fat−1. Hence,

in the long-run equilibrium,

zt = y + i∗ · ft−1 . (2.10)

And the real cash balances for a typical resident in the long-run stationary equilibrium

should be L(i∗). Without loss of generality, let L(i∗) = 1.

2. Speculative currency crises

In the basic setup described above, the central bank never abandons the pegged

exchange rate. From now on, I assume that the decision for the domestic central

bank to abandon the peg is dependent on the amount of foreign reserves. At the

beginning of each date just before markets open, the domestic central bank announces

the decision: either it continues to peg the nominal exchange rate at S̄ or it devalues

the currency. I assume in the event of devaluation, the domestic central bank will

peg the nominal exchange rate at a new level thereafter and the new peg is known to
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the public, denoted by Ŝ > S̄. Let

π̄ ≡ Ŝ − S̄
Ŝ

. (2.11)

The central bank decides to abandon the peg at date t provided f gt−1 falls below

a critical level, denoted by f̄ g ∈ [0, 1], which captures the resilience of the system

of a fixed exchange rate. The value of f̄ g is not necessarily known to the public.

Moreover, in the succeeding section, I assume that domestic residents might have

different beliefs about f̄ g, which induces heterogeneous expectations regarding the

prospective exchange rates. Before heading forward, I analyze the case where domestic

residents all have the same belief about f̄ g which also coincides with the true value.

θ ∈ [0, 1] denotes the true value of f̄ g.

Suppose at date t, the central bank devalues the currency. Since the public

anticipates no more devaluation thereafter, and then the economy reaches the long-

run stationary equilibrium immediately. All variables stay constant starting from date

t. The real cash balances is equal to L(i∗), the consumption is equal to (i∗ft + y),

and ft is given by

(1 + i∗)ft + L(i∗) = (1 + i∗)ft−1 + (1− π̄)mt−1 . (2.12)

Suppose at date t, the central bank still pegs the nominal exchange rate at S̄.

The public understand that the expected devaluation rate should be dependent on

f gt , i.e.,

πt+1 = 1{f gt < θ} · π̄ + 1{f gt ≥ θ} · 0 . (2.13)

Meanwhile the demand for money at date t by the public is given by L(i∗ + πt+1).
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By the central bank’s balance sheet, mt = f gt . In equilibrium,

f gt = L
(
i∗ + π̄ · 1{f gt < θ}

)
. (2.14)

For illustration, in Fig. 1, I graph the demand for money at date t, which is the

right hand side of the equation above, against the stock of foreign reserves for the

central bank at date t, i.e., f gt . The intersections of the curve with the 45◦ line are

the possible solutions to the equation above and thus are the possible equilibria.

As Fig. 1 shows, depending on where the true value of f̄ g lies relative to L(i∗+π̄),

there are in general two scenarios. If the system of the fixed exchange rate at S̄ is

resilient, i.e., θ is low, if all domestic residents expect the peg to collapse, the loss of

foreign reserves is not sufficient to bring down the system, precisely, i.e., θ ≤ L(i∗+π̄),

and hence the central bank is not subject to self-fulfilling currency attacks. If the

peg S̄ is not resilient, i.e., θ > L(i∗ + π̄), the system of the fixed exchange rate can

be brought down by an economy wide speculative attack at any arbitrary time, even

if it might remain viable permanently in the absence of the attack. The results are

formally stated in the following theorem.

Theorem 1. When it it assumed that domestic residents believe f̄ g = θ, if θ ∈

(0,L(i∗ + π̄)], and then the equilibrium is unique: at all dates domestic residents all

hold domestic money L(i∗) and the domestic central bank pegs the exchange rate at

S̄; if θ ∈ (L(i∗ + π̄), 1], and then there are two types of equilibria: (1) at all dates

domestic residents all hold domestic money L(i∗) and the domestic central bank pegs

the exchange rate at S̄, and (2) at some arbitrary date, domestic residents all lower

the demand for domestic money to L(i∗+ π̄), which triggers the domestic central bank

to abandon the peg S̄ and to devalue the currency at the rate π̄ at the succeeding date.
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Fig. 1. Equilibria with homogeneous belief.

Above I obtain the standard result of multiple equilibria in the literature of

currency crises. Below, I depart from the assumption that domestic residents’ beliefs

about f̄ g are the same.
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B. Heterogeneous beliefs

From this section on, I assume that domestic residents’ beliefs about f̄ g are uniformly

distributed over [θ − δ, θ + δ] ⊂ [0, 1]. K(·) denotes the mass of domestic residents

whose beliefs on f̄ g are less than a given value. For the sake of exposition, θx is used

to denote the belief about f̄ g by domestic resident x ∈ [0, 1].

1. Without private loans

To understand the role that private loans play in currency crises, in this subsection,

I first study the case with heterogeneous beliefs but without private loans. Since

domestic residents’ beliefs on f̄ g may not coincide with the true value, it is possible

that as some domestic residents run on the central bank, the loss of foreign reserves is

not sufficiently large to trigger the collapse of the peg. After unsuccessful speculative

attacks, domestic residents should refine or correct their beliefs about f̄ g. Neverthe-

less, I restrict attention to the type of equilibria in which speculative currency attacks

take place at most once.

Suppose at date t, the central bank still pegs the nominal exchange rate at S̄.

For domestic residents θx ≤ f gt , they hold real cash balances L(i∗), while for domestic

residents θx > f gt , L(i∗ + π̄). Hence in the aggregate,

f gt = K(f gt ) · L(i∗) + (1−K(f gt )) · L(i∗ + π̄) , (2.15)

where K(f gt ) =
fg

t −θ+δ
2δ

if f gt ∈ [θ − δ, θ + δ]; K(f gt ) = 0 if f gt < θ − δ, and K(f gt ) = 1

if f gt > θ + δ.

In Figs. 2-3, I graph the aggregate demand for money at date t, which is the

right hand side of the equation above, against the stock of foreign reserves for the

central bank at date t, i.e., f gt . The intersections of the curve with the 45◦ line are
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the possible solutions to (2.15) and thus are the possible equilibria. Fig. 2 shows the

case with no speculative attacks, while Fig. 3 shows two other cases. For both cases,

there exists a type of equilibria in which only a fraction of the economy expecting the

central bank to abandon the peg S̄. The difference is that, in this type of equilibria,

in one case the central bank in fact abandons the peg while in the other case it does

not. Theorem 2 states the possible equilibria, given a range of values for θ.
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Fig. 2. Unique equilibrium with heterogeneous beliefs without private loans.
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(b) one successful attack and the other unsuccessful

Fig. 3. Multiple equilibria with heterogeneous beliefs without private loans.

Theorem 2. When it is assumed that domestic residents’ beliefs about f̄ g are uni-

formly distributed over [θ − δ, θ + δ] ⊂ [0, 1], if θ ∈ (0,L(i∗ + π̄) + δ), the equilibrium

is unique: at all dates domestic residents all hold domestic money L(i∗) and the do-
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mestic central bank pegs the exchange rate at S̄; if θ ∈ [L(i∗ + π̄) + δ, 1), there are

three types of equilibria: (1) at all dates domestic residents all hold domestic money

L(i∗) and the domestic central bank pegs the exchange rate at S̄, (2) at some arbitrary

date, domestic residents all lower the demand for domestic money to L(i∗+ π̄), which

triggers the domestic central bank to abandon the peg S̄ and to devalue the currency at

the rate π̄ at the succeeding date, and (3) at some arbitrary date, domestic residents

of mass θ−δ−L(i∗+π̄)
L(i∗)−L(i∗+π̄)−2δ

hold domestic money L(i∗) while the rest lower the demand

for domestic money to L(i∗ + π̄), which in the aggregate depletes the foreign reserves

to

L(i∗)(θ − δ)− L(i∗ + π̄)(θ + δ)

L(i∗)− L(i∗ + π̄)− 2δ
, (2.16)

which triggers the domestic central bank to abandon the peg S̄ and to devalue the

currency at the rate π̄, provided θ < L(i∗+π̄)+L(i∗)
2

.

One main implication of Theorem 2 is as follows. If θ, the index of resilience

of the system, lies in the interval (L(i∗ + π̄),L(i∗ + π̄) + δ), the system of the fixed

exchange rate at S̄ is subject to self-fulfilling currency crises when domestic residents’

beliefs are homogeneous and coincide with θ, while the peg S̄ shall remain viable

permanently when a perturbation of beliefs is introduced. Intuitively, this means that

a heterogeneity of beliefs per se would make self-fulfilling currency crises less likely

to take place. Note as δ approaches to zero, the interval (L(i∗ + π̄),L(i∗ + π̄) + δ)

vanishes to a void set.

It is interesting to note that when θ ≥ L(i∗+ π̄) + δ, as θ decreases, for the type

of equilibria in which only a fraction of the economy expecting the central bank to

abandon the peg S̄, the speculative attack goes from failure to success. This appears

to say counter-intuitively that as the system of the fixed exchange rate at S̄ becomes
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more resilient, the system becomes more likely to collapse. The key is to note that as

θ decreases, not only the system in fact becomes more resilient, but also the public

anticipate that the losses of reserves must be larger to bring the system down. Hence

if there is a speculative attack launched by a fraction of domestic residents, the stock

of foreign reserves must be lower and thus the fraction must be larger as θ decreases.

That the fraction of speculators gets larger implies that the decline in foreign reserves

must exceed that in θ. This explains why as θ decreases the speculative attack goes

from failure to success.

2. Market for private loans

All private loans mature in a unit length of time, i.e., a loan initiated at date t matures

at date t + 1. Private loans are denominated in pesos.1 If a domestic resident lends

at date t, he pays some pesos at date t and is supposed to receive some pesos as

the repayment at date t + 1; if the domestic resident borrows, he instead receives

some pesos and is required to hold some assets as the collateral at date t, and he is

supposed to repay some pesos at date t + 1. When the loan is not repaid at date

t+ 1, the collateral is seized to pay off the loan. I assume peso and the foreign bond

are enforce-able collateral for loans among domestic residents.

A peso-denominated private loan is defined by a triple, (R, cf , cm), which states

the repayment rate and the characteristics of collateral. Table I gives the definition

for each contract terms. Geanakoplos (2010) points out that the key to endogenize

1Dollar-denominated loans are redundant, provided I assume peso-denominated
loans can not be used as collateral. If a domestic resident wants to borrow in dollars,
he needs to pay a gross interest rate, not smaller than (1 + i∗). To back up the loan
repayments, he can post either the foreign bond or peso as the collateral. But the
reason why some domestic residents want to borrow in dollars presumably is to take
the advantage of the interest rate gap between the foreign bond and some domestic
peso-denominated loans. Since they are unable to buy peso-denominated loans on
margin, these domestic residents do not find incentives to borrow in dollars any more.
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Table I. Three contract terms in a loan

Variable

R Pesos to repay / Notional value

cf Peso value of the foreign bond posted as collateral / Notional value

cm Pesos posted as collateral / Notional value

collateral is to index promises by their collateral as we index commodities by their

qualities. Barro (1976) makes a similar point that a price of a loan should not only

include the interest rate but also the characteristics of collateral.

For example, suppose the notional value of a loan (1.2, 0.8, 0.1) is 100. R = 1.2

means 120 pesos needs to be repaid when the loan is due, cm = 0.1 implies 10 pesos

is put up as the collateral when the loan is initiated. cf = 0.8 means the amount of

the foreign bond pledged as the collateral is worth 80 pesos at time when the loan is

initiated.

Domestic residents borrow and lend not in a bilateral way but in Walrasian

markets. For each loan, given its associated price, domestic residents submit their

orders of borrowing or lending to a Walrasian auctioneer. For example, if domestic

residents want to borrow or to lend under loan (1.2, 0.8, 0.1), they need to tell the

auctioneer how much they want to borrow or to lend. The notional value is the number

that domestic residents use to communicate with the auctioneer about the quantity

to borrow or to lend. If a borrowing order is placed under loan (1.2, 0.8, 0.1) of a

notional value 100, the auctioneer writes −100 in its calculation of market clearing.

If a lending order is placed of a notional value 150, the auctioneer adds +150. The

market for loan (1.2, 0.8, 0.1) is cleared, when after summing up the numbers from all

orders the auctioneer gets zero.
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The price of a loan is pesos per notional value to pay for those who want to lend

(or to receive for those who want to borrow) when the loan is initiated. For example,

if the price of loan (1.2, 0.8, 0.1) is 0.5 pesos per notional value, and if a domestic

resident wants to lend under loan (1.2, 0.8, 0.1) of a notional value 100, he needs to

pay 50 pesos. Formally, there is a mapping which associates a loan with a price,

pt(R, cf , cm) : <3
+ → <+ , (2.17)

where pt(R, cf , cm) is the price for loan (R, cf , cm) at date t. The auctioneer announces

the price of a loan and adjusts it until the market for the loan is cleared. After a

market clearing price is reached, the auctioneer collects payments from those who

place a lending order and distribute them to those who place a borrowing order when

the loan is initiated and collects repayments from borrowers and distribute them to

lenders when the loan matures. The promised repayment of a loan does not necessarily

coincide with the actual repayment. Under the collateral mechanism, borrowers will

repay the loan only when the collateral is worth more than the amount due, i.e.,

whenever

R ≤ cf ·
St+1

St
· (1 + i∗) + cm , (2.18)

the loan will be paid off, otherwise borrowers default and the collateral is seized. Note

whether or not the loan is paid off is contingent on St+1

St
.

r(πt+1;R, cf , cm) denotes the actual return rate for loan (R, cf , cm), and

r(πt+1;R, cf , cm) = min{R, 1 + i∗

1− πt+1

· cf + cm} . (2.19)

Note r(πt+1;R, cf , cm) is homogeneous of degree one with respect to (R, cf , cm). So

is pt(R, cf , cm), if certain types of arbitrage activities are allowed. Without loss of

generality, I assume domestic residents restrict their choices to the set of loans the
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price of which is 1. Ωt denotes this set at date t,

Ωt = {(R, cf , cm) ∈ <3
+ ‖ pt(R, cf , cm) = 1} . (2.20)

3. Individual problem with private loans

Since domestic residents are identical in all aspects except for beliefs about f̄ g, the

analysis below is applicable to all.

Given Ωt, the set of private loans available in the market at date t, a typi-

cal domestic resident decides the quantity of borrowing or lending for each peso-

denominated loan. The choices are represented by a mapping,

Bt

(
R, cf , cm

)
: Ωt −→ < , (2.21)

which associates a loan with the notional value of the loan to borrow or to lend. If

Bt

(
R, cf , cm

)
< 0, it indicates borrowing. I define

bt(R, cf , cm) =
Bt(R, cf , cm)

St
, (2.22)

where bt(R, cf , cm) is the holding of private loan (R, cf , cm) in real terms.

The stock budget constraint becomes,

wt = ft +mt +
∑
Ωt

bt(R, cf , cm) . (2.23)

The flow budget constraint becomes,

ft +mt +
∑
Ωt

bt(R, cf , cm) + zt =

(1 + i∗)ft−1 + (1− πt)mt−1 + y +
∑
Ωt−1

r(πt;R, cf , cm) · (1− πt) · bt−1(R, cf , cm) .

(2.24)
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In addition, there are two collateral constraints,

mt ≥ −
∑
Ωt

[
cm ·min

{
bt(R, cf , cm), 0

}]
, (2.25)

ft ≥ −
∑
Ωt

[
cf ·min

{
bt(R, cf , cm), 0

}]
. (2.26)

The following lemma gives the Euler-Lagrange equations. Let λ denote the La-

grange multiplier with respect to the flow constraint (2.24), µm the Lagrange multi-

plier with respect to collateral constraint (2.25), and µf the Lagrange multiplier with

respect to collateral constraint (2.26).

Lemma 1. If {zt,mt, ft, bt(·), λt, µft , µmt }∞1 maximizes (2.1) subject to (2.24), (2.25),

and (2.26), it should satisfy following conditions,

1− λt ≤ 0 , (2.27)

where the equality holds if zt > 0;

λt+1 − λt + µft ≤ 0 , (2.28)

where the equality holds if ft > 0;

1− πt+1

1 + i∗
λt+1 + l′(mt)− λt + µmt ≤ 0 , (2.29)

where the equality holds if mt > 0; for any (R, cf , cm) ∈ Ωt such that bt(R, cf , cm) 6= 0,

it must be,

r
(
πt+1;R, cf , cm

)1− πt+1

1 + i∗
λt+1 − λt + (µmt cm + µft cf ) · 1{bt(R, cf , cm) < 0} = 0 ;

(2.30)
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for any (R, cf , cm) ∈ Ωt such that bt(R, cf , cm) = 0, it must be,

r
(
πt+1;R, cf , cm

)1− πt+1

1 + i∗
λt+1 − λt ≤ 0 , (2.31)

r
(
πt+1;R, cf , cm

)1− πt+1

1 + i∗
λt+1 − λt + µmt cm + µft cf ≥ 0 . (2.32)

C. Equilibria with private loans

As in the case where private loans are not allowed, I restrict attention to the type of

equilibria in which speculative currency attacks take place at most once. Suppose up

to date t, the central bank still pegs the exchange rate at S̄. The following lemma

proves the impossibility of no transaction of private loans whenever there exists a

division among domestic residents at date t: some expect the peg S̄ to remain at date

t+ 1 while the rest expect it to collapse.

Lemma 2. In equilibria with collateralized private loans, and f gt ∈ (θ − δ, θ + δ), it

is impossible that no private loan is traded at date t.

Proof. Prove by contradiction. Suppose, in an equilibrium, f gt ∈ (θ−δ, θ+δ), there is

no transaction of private loans among domestic residents. Due to f gt ∈ (θ− δ, θ + δ),

λt+1 = 1 since the run on the central bank would not take place after date t. No

transaction of private loans implies that for all domestic residents µft = µmt = 0 and

λt = 1. Hence ∀θx ∈ [θ − δ, θ + δ], ∀(R, cf , cm) ∈ Ωt,r(πt+1;R, cf , cm) · 1−πt+1

1+i∗
= 1 .

Note πt+1 = π̄ · 1{f gt < θx}+ 0 · 1{f gt ≥ θx}. Contradiction.

The following two lemmas state the possible patterns of loan transaction in equi-

librium. The proofs are in Appendix A. As f gt ∈ (θ− δ, θ+ δ), there is a line dividing

the economy into two brigades: domestic residents θx ≤ f gt expect πt+1 = 0 while

domestic residents θx > f gt expect πt+1 = π̄. In preview, the type of transactions of

substance is that domestic residents θx > f gt borrow. Nevertheless, it is possible that
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θx ≤ f gt borrow, but the transactions can be omitted without impact and thus are

redundant.

Lemma 3. In the type of equilibria in which speculative currency attacks take place at

most once and collateralized private loans are allowed to trade freely among domestic

residents, if f gt ∈ (θ − δ, θ + δ) and domestic residents θx ≤ f gt borrow from domestic

residents θx > f gt under some loan (R, cf , cm) ∈ Ωt, it must be that

• either R ≥ 1+i∗

1−π̄ and cf (1 + i∗) + cm(1− π̄) = (1 + i∗),

• or R = 1+i∗

1−π̄ , cf = 0, and cm(1− π̄) > (1 + i∗).

When cm > 0, for domestic residents θx ≤ f gt , µmt = 0, λt = 1
1−π̄ , and domestic

residents θx ≤ f gt must lend to domestic residents θx > f gt under other loans.

Lemma 3 states the loans that domestic residents θx ≤ f gt would possibly borrow

in equilibrium. According to Lemma 3, if they borrow, domestic residents θx ≤ f gt

lower the demand for money at date t from L(i∗) to L( i
∗+π̄
1−π̄ ). And they do not hold

the foreign bond except as the collateral. It shall be seen later that the transactions

in which domestic residents θx ≤ f gt borrow are of no substance and can be omitted.

Lemma 4. In the type of equilibria in which speculative currency attacks take place at

most once and collateralized private loans are allowed to trade freely among domestic

residents, if f gt ∈ (θ − δ, θ + δ) and domestic residents θx > f gt borrow from domestic

residents θx ≤ f gt under some loan (R, cf , cm) ∈ Ωt, there can be two scenarios: (1)

for domestic residents θx > f gt , µft = µmt = 0, either R = 1+i∗

1−π̄ and cf (1 + i∗) + cm ≥
1+i∗

1−π̄ , or cf = 0, cm = 1+i∗

1−π̄ , and R > 1+i∗

1−π̄ ; (2)for domestic residents θx > f gt ,

µft = µmt (1 + i∗) > 0, either R = cf (1 + i∗) + cm < 1+i∗

1−π̄ , or cf = 0, R > cm, and

0 < cm < 1+i∗

1−π̄ .
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Combining Lemma 2-4, given a value f gt ∈ (θ − δ, θ + δ), what happens in the

market for private loans falls into two categories: (1) for domestic residents θx > f gt ,

µft = µmt = 0, i.e., when both collateral constraints are slack, and (2) for domestic

residents θx > f gt , µft , µ
m
t > 0, i.e., when both collateral constraints are binding. In

the first case, the set of private loans available, Ωt, should satisfy,

Ωt = { (R, cf , cm) ∈ <3
+ ‖ r(π̄;R, cf , cm) =

1 + i∗

1− π̄
} , (2.33)

and thus domestic residents θx > f gt view all private loans in Ωt indifferent to the for-

eign bond. Fig. 4 depicts Ωt in a 3-dimensional space. By Lemma 3, the transactions

in which domestic residents θx ≤ f gt borrow can only happen in the first case.

 

 

 

 

 

 

 

 

 

�1 � ��� �1 � �	�⁄  

1 �1 � �	�⁄   

 

�1 � ��� �1 � �	�⁄   

c� 

c 

1 

R 

Ω� : shaded surface  

Fig. 4. Ωt when for domestic residents θx > f gt both collateral constraints are slack.
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Further, Ωt can be classified into three parts, not necessarily exclusive, namely

D1, D2, and D3.

D1 ≡ { (R, cf , cm) ∈ <3
+‖R ≥

1 + i∗

1− π̄
, cf (1 + i∗) + cm(1− π̄) = 1 + i∗ }

∪ { (R, cf , cm) ∈ <3
+‖R =

1 + i∗

1− π̄
, cf = 0, cm >

1 + i∗

1− π̄
} , (2.34)

D2 ≡ { (R, cf , cm) ∈ <3
+‖R =

1 + i∗

1− π̄
, cf (1 + i∗) + cm <

1 + i∗

1− π̄
< cf } , (2.35)

D3 ≡ { (R, cf , cm) ∈ <3
+‖R =

1 + i∗

1− π̄
, cf (1 + i∗) + cm ≥

1 + i∗

1− π̄
}

∪ { (R, cf , cm) ∈ <3
+‖R >

1 + i∗

1− π̄
, cf = 0, cm =

1 + i∗

1− π̄
} . (2.36)

D1 represents all loans under which domestic residents θx ≤ f gt would possibly borrow

in the first case. D3 represents all loans under which domestic residents θx ≤ f gt

willingly lend to those θx > f gt in the first case.

Any loans in D3 are preferred by domestic residents θx ≤ f gt over the foreign

bond and hence the incentives for domestic residents θx ≤ f gt to borrow do not come

from financing the purchases of the foreign bond but come either from financing the

purchases of the private loans in D3 or from the liquidity concerns. That private loans

can not be used as collateral and that for loans in Ωt, cf + cm ≥ 1, imply that there

is no funds left to purchase the private loans in D3 from the revenue of borrowing.

Therefore, domestic residents θx ≤ f gt borrow only because they invest too much in

the private loans in D3, which results in a shortage of cash. Hence the quantities of

borrowing for domestic residents θx ≤ f gt are residuals after the quantities of lending

under the loans in D3 and the holding of domestic money are determined. As a result,

it is safe to set the quantities of borrowing for domestic residents θx ≤ f gt to zero.

For domestic residents θx ≤ f gt , the loans in D3 are the same and they are willing

to use all resources available at date t, subtracting the demand for domestic money,

to lend under the loans in D3. Meanwhile, domestic residents θx > f gt must hold a
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sufficient amount of collateral to absorb the borrowing orders under the loans in D3,

which leads to a condition,

1− π̄
π̄
·

(1 + i∗)f0 +m0 + y − i∗

1+i∗
L(i∗ + π̄)

(1 + i∗)f0 +m0 + y − L( i
∗+π̄
1−π̄ )

≥ K(f gt )

1−K(f gt )
. (2.37)

For the convenience of exposition, let

β ≡
(1− π̄) · [(1 + i∗)f0 +m0 + y − i∗

1+i∗
L(i∗ + π̄)]

(1 + i∗)f0 +m0 + y − π̄ · L( i
∗+π̄
1−π̄ )− (1− π̄) i∗

1+i∗
L(i∗ + π̄)

. (2.38)

According to Lemma 4, in the second case where for domestic residents θx > f gt ,

µft , µ
m
t > 0, for a given value of f gt ∈ (θ − δ, θ + δ), there exists a constant, R̂ ∈

(1 + i∗, 1+i∗

1−π̄ ) such that domestic residents θx > f gt borrow from those θx ≤ f gt under

the loans in D4, defined as follows,

D4 ≡ { (R, cf , cm) ∈ <3
+‖R = cf (1 + i∗) + cm = R̂ }

∪ { (R, cf , cm) ∈ <3
+‖R > R̂, cf = 0, cm = R̂ } . (2.39)

Moreover, in the second case, for domestic residents θx > f gt , the demand for money

is equal to L( (1+i∗)(R̂−1)π̄

R̂−(1+i∗)
) while for domestic residents θx ≤ f gt , the demand for money

is equal to L(R̂− 1). Further, the clearing condition in the market for loans gives,

R̂− (1 + i∗)

1 + i∗
=

1−K(f gt )

K(f gt )
·

(1 + i∗)f0 +m0 + y − i∗

1+i∗
L( (1+i∗)(R̂−1)π̄

R̂−(1+i∗)
)

(1 + i∗)f0 +m0 + y − L(R̂− 1)
. (2.40)

The equation above defines a mapping from f gt ∈ (θ − δ, θ + δ) to R̂. Let s(·) denote

this mapping, i.e., R̂ = s(f gt ). In the second case, the set of loans available in the
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market can be as follows. Fig. 5 depicts Ωt in the second case.

Ωt = { (R, cf , cm) ∈ <3
+‖R = R̂, cf (1 + i∗) + cm ≥ R̂ }∪

{ (R, cf , cm)<3
+‖R > R̂,R 1−π̄

1+i∗
+ (1+i∗)−R̂(1−π̄)

R̂−(1+i∗)
(cf + cm

1+i∗
) = R̂π̄

R̂−(1+i∗)
, cf R̂ + cm ≥ R̂ }

∪ { (R, cf , cm)<3
+‖R 1−π̄

1+i∗
+ (1+i∗)−R̂(1−π̄)

R̂−(1+i∗)
(cf + cm

1+i∗
) > R̂π̄

R̂−(1+i∗)
, cf R̂ + cm = R̂ } .

(2.41)
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Fig. 5. Ωt when for domestic residents θx > f gt both collateral constraints are binding.

The following lemma states provided K(f gt ) ≤ β, what happens in the market

for private loans falls into the first category, otherwise the second one.
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Lemma 5. In the type of equilibria in which speculative currency attack takes place at

most once and collateralized private loans are allowed to trade freely among domestic

residents, if f gt ∈ (θ − δ, θ + δ), there are only two possibilities.

1. When 0 < K(f gt ) ≤ β: for domestic residents θx ≤ f gt , the holding of domestic

money is L( i
∗+π
1−π ); for domestic residents θx > f gt , the holding domestic money

is L(i∗ + π).

2. When β < K(f gt ) < 1: for domestic residents θx ≤ f gt , the holding of domestic

money is L(R̂−1); for domestic residents θx > f gt , the holding domestic money

is L( (1+i∗)(R̂−1)π̄

R̂−(1+i∗)
), where R̂ is defined in (2.40).

Note β is defined in (2.38).

Immediately from Lemma 5, the aggregate demand for money at date t can be

written as a function of f gt .

mt(f
g
t ; δ, π̄) = 1{K(f gt ) = 0} · L(i∗ + π̄) + 1{K(f gt ) = 1} · L(i∗)

+K(f gt ) ·
[
1{β < K(f gt ) < 1} · L(s(f gt )− 1) + 1{0 < K(f gt ) ≤ β} · L(

i∗ + π̄

1− π̄
)
]

+ (1−K(f gt )) ·
[
1{β < K(f gt ) < 1} · L(

(1 + i∗)(s(f gt )− 1)π̄

s(f gt )− (1 + i∗)
)

+ 1{0 < K(f gt ) ≤ β} · L(i∗ + π̄)
]
. (2.42)

For any given value of f gt ∈ (θ − δ, θ + δ), opening the market for private loans

lowers the aggregate demand for money. The possibility to engage in loans pushes

up the opportunity cost of holding cash: domestic residents all find some lucrative

businesses yielding higher returns than the foreign bond. For those who expect the

peg S̄ to remain, by lending to the other crowd, they enjoy an interest rate higher

than (1 + i∗); for those who expect the peg S̄ to collapse, by borrowing under a high

nominal interest rate but accordingly a low real rate, they enjoy the arbitrage from
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selling pesos short. Therefore, private loan transactions lower the demand for money

in the aggregate for any given value of f gt ∈ (θ − δ, θ + δ).

Further, counter-intuitively the aggregate demand for domestic money can be

lower when only a fraction of domestic residents who expect the peg to collapse than

when all domestic residents expect so. Precisely, mt(f
g
t ; θ, δ) = L(i∗ + π̄) provided

f gt ≤ θ−δ; mt(f
g
t ; θ, δ) = β ·L( i

∗+π̄
1−π̄ )+(1−β)·L(i∗+π̄), when K(f gt ) = β. Interestingly,

the nominal interest rate prevailing in the market is i∗+π̄
1−π̄ both when f gt ≤ θ − δ and

when K(f gt ) = β. What makes the difference in the aggregate demand for money

is that in the latter case a fraction of domestic residents expect the peg to remain

while they expect it to collapse in the former case. Given the same nominal interest

rate, a resident perceives a higher opportunity cost of holding domestic money when

a devaluation is expected than when it is not.

Due to the observations above, intuitively loan transactions within the private

sector arising from heterogeneous beliefs might make a pegged exchange rate vulner-

able to speculative attacks. The following two results formalize this idea. I first show

that given a distribution of beliefs on f̄ g, there exists a situation in which the peg S̄

can remain viable permanently provided private loans are not allowed but it can be

brought down by speculative attacks at some arbitrary date when private loans are

allowed.

Theorem 3. Domestic residents’ beliefs about f̄ g are uniformly distributed over [θ−

δ, θ+ δ] ⊂ [0, 1]. ∃ a value for θ < L(i∗+ π̄) + δ, such that when collateralized private

loans are allowed to trade freely among domestic residents, there exist at least two

types of equilibria.

1. At all dates all domestic residents expect no devaluation and hold domestic

money L(i∗), and the domestic central bank pegs the exchange rate at S̄ at all
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dates.

2. At at some arbitrary date t, f gt ∈ (θ − δ, θ), and the central bank abandons the

peg S̄ at date t+ 1.

Proof. Since mt(θ−δ; θ, π̄) = L(i∗+π̄) > θ−δ, it is always possible to find a value for θ

such that ∃0 < ε < β, ε·L( i
∗+π̄
1−π̄ )+(1−ε)·L(i∗+π̄) < f gt and f gt = θ−(1−2ε)δ < θ.

Second, I show that when θ = L(i∗ + π̄) the peg S̄ is perpetually viable if

domestic residents have the homogeneous belief about f̄ g which coincides with the

true value, while the peg S̄ can be brought down by speculative attacks as a small

enough perturbation of beliefs is introduced, i.e., as δ is small enough.

Theorem 4. When θ = L(i∗ + π̄), ∃ a value for δ, such that if domestic residents’

beliefs about f̄ g are uniformly distributed over [θ−δ, θ+δ] ⊂ [0, 1] and if collateralized

private loans are allowed to trade freely among domestic residents, there exist at least

two types of equilibria.

1. At all dates all domestic residents expect no devaluation and hold domestic

money L(i∗), and the domestic central bank pegs the exchange rate at S̄ at all

dates.

2. At at some arbitrary date t, f gt ∈ (θ − δ, θ), and the central bank abandons the

peg S̄ at date t+ 1.

Proof. Since mt(θ− δ; θ, π̄) = L(i∗+ π̄) = θ, it is always possible to find a value for δ

such that ∃0 < ε < β, ε·L( i
∗+π̄
1−π̄ )+(1−ε)·L(i∗+π̄) < f gt and f gt = θ−(1−2ε)δ < θ.
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CHAPTER III

CREDIT DEFAULT SWAPS

A. The model

1. Setup

Consider an economy of two periods, which is inhabited by a continuum of individuals

of mass 1. There are one consumption good, and two perfectly divisible assets both

of which yield nothing in the 1st period but some exogenous flows of the consumption

good in the 2nd period. The difference is: one pays a non-random return rate and

the other random. I call the former the risk-free asset denoted by a, (cash and unit

is dollar) while the latter the risky asset denoted by k, (house).

I normalize the return rate for the risk-free asset to 1, i.e., holding 1 unit of

the risk-free asset in the 1st period gives 1 unit of the consumption good in the 2nd

period. The return rate of the risky asset is denoted by a random variable X, and x

denotes the realization of X. The aggregate supplies of both assets in the economy

are fixed. All individuals are initially endowed with a0 amount of the risk-free asset

and k0 amount of the risky asset, but there is no endowment of the consumption good

in the 1st period.

In addition to the two physical assets mentioned above, I consider loans among

individuals collateralized by the risky asset (mortgages). But I only consider loans in

which the repayments are expressed in terms of the risk-free asset (cash) and hence

I exclude short sales against the risky asset (house). Further, I introduce credit

default swaps which reference the collateralized loans. Detailed discussions of these

two financial assets are in the succeeding subsections.
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Individuals are identical in all aspects expect for the beliefs about X. Heteroge-

neous beliefs about the return rate of the risky asset give rise to transactions of loans

and credit default swaps among individuals. The problem facing a typical individual

is to select a portfolio in the 1st period, given its belief about X. Individuals do not

consume in the 1st period and the menu for choosing a portfolio includes: the risk-

free asset, the risky asset, loans collateralized by the risky asset, and credit default

swaps on collateralized loans. In the 2nd period, after the true value of X is revealed,

individuals collect proceeds, make payments, and consume. The utility function for

a typical individual, denoted by u(·), depends on its consumption in the 2nd period

only. I make the standard assumptions: u′(·) > 0 and u′′(·) ≤ 0.

2. Collateralized loans

Loans are all initiated in the 1st period and mature in the 2nd period. If an individual

lends, he pays certain amount of the risk-free asset in the 1st period and is supposed

to receive a promised amount of the risk-free asset as the repayment in the 2nd period;

if the individual borrows, he receives certain amount of the risk-free asset instead and

meanwhile is required to hold certain amount of the risky asset as the collateral in

the 1st period, and in the 2nd period he is supposed to repay the promised amount

of the risk-free asset. When the loan is not repaid, the collateral is seized to pay off

the loan.

A collateralized loan is defined as a pair, (R, c), which states the promised re-

payment rate and the collateral rate. Table II gives the definition for each contract

terms.

For example, consider loan (1.2, 1.1) and suppose the notional value is 100. R =

1.2 means that 120 units of the risk-free asset needs to repaid in the 2nd period.

ck = 1.1 means the risky asset pledged as the collateral is worth 110 units of the
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Table II. Two contract terms in a loan

Variable

R the Gross Interest Rate

Formula: promised amount of the risk-free asset/ notional value

c the Collateral Rate

Formula: value of the risky asset posted as the collateral/ notional value

risk-free asset in the 1st period.

Individuals borrow and lend not in a bilateral way but in Walrasian markets.

For each loan, given its associated price, individuals submit their orders of borrowing

or lending to a Walrasian auctioneer. For example, if individuals want to borrow

or to lend under loan (1.2, 1.1), they need to tell the auctioneer how much they

want to borrow or to lend. The notional value is the number that individuals use

to communicate with the auctioneer about the quantity to borrow or to lend. If a

borrowing order is placed under loan (1.2, 1.1) of a notional value 100, the auctioneer

writes −100 in its calculation of market clearing. If a lending order is placed of a

notional value 150, the auctioneer adds +150. The market for loan (1.2, 1.1) is cleared,

when after summing up the numbers from all orders the auctioneer gets zero.

The price of a loan is the amount of the risk-free asset per notional value to pay

for those who want to lend (or to receive for those who want to borrow) in the 1st

period. For example, if the price of loan (1.2, 1.1) is 0.5 units of the risk-free asset per

notional value, and if an individual wants to lend under loan (1.2, 1.1) of a notional

value 100, he needs to pay 50 units of the risk-free asset. Formally, there is a mapping
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which associates a loan with a price,

p(R, c) : <2
+ → <+ , (3.1)

p(R, c) is the price for loan (R, c). The auctioneer announces the price of a loan and

adjusts it until the market for the loan is cleared. After a market clearing price is

reached, the auctioneer collects payments from those who place a lending order and

distribute them to those who place a borrowing order in the 1st period and collects

repayments from borrowers and distribute them to lenders in the 2nd period. The

promised repayment of a loan does not necessarily coincide with the actual repayment.

Under the collateral mechanism, borrowers will repay the loan only when the collateral

is worth more than the amount due, i.e., whenever

R ≤ X

q
· c , (3.2)

the loan will be paid off, otherwise borrowers default and the collateral is seized.

Note whether or not the loan is paid off is contingent on the value of X. rl(X, q;R, c)

denotes the actual return rate for loan (R, c), and

rl(X, q;R, c) = min{R, (X
q
· c)} . (3.3)

Note rl(X, q;R, c) is continuous and homogeneous of degree one with respect to (R, c).

So is p(R, c), if certain types of arbitrage activities are allowed. Without loss of

generality, I assume individuals restrict their choices to the set of loans the price of

which is 1. Ω denotes this set,

Ω ≡ {(R, c) ∈ <2
+ ‖ p(R, c) = 1} . (3.4)

Ω represents all loans available in the market.
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3. Credit default swaps

For each loan, there is a corresponding credit default swap (CDS). In the 1st period,

if an individual buys a CDS on a particular loan (R, c) of a notional value, he pays

certain amount of the risk-free asset as the premium in the 1st period; he receives

the premium if the individual sells the CDS. In the 2nd period only if loan (R, c) is

not paid off, i.e., when R > X
q
· c, the individual pays as a CDS seller (or receives

as a CDS buyer) the difference between the promised loan repayment and the value

of the collateral, i.e., R − (X
q
· c) units of the risk-free asset per notional value. The

spread of a CDS is defined as the amount of the risk-free asset per notional value to

pay for those who buy the CDS (or to receive for those who sell the CDS) in the 1st

period. Formally,

π(R, c) : <2
+ → <+ , (3.5)

π(R, c) denotes the spread of the CDS on loan (R, c). Take the example of loan

(1.2, 1.1), and suppose q = 1, and π(1.2, 1.1) = 0.2. If an individual buys the CDS

on loan (1.2, 1.1) of a notional value 100, the individual needs to pay 20 units of the

risk-free asset in the 1st period as the premium. If x = 2, loan (1.2, 1.1) is paid off

and the individual gets nothing in this contingency. If x = 1, loan (1.2, 1.1) is not

paid off and the individual receives 10 (= 120−110) units of the risk-free asset in the

2nd period. rs(X, q;R, c) denotes the actual return rate for the CDS on loan (R, c),

and

rs(X, q;R, c) = max{R− (
X

q
· c), 0} . (3.6)

I make two assumptions on CDS trading, which have important consequences

throughout the paper. The first assumption makes sure that all credit default swaps
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are backed by a sufficient amount of collateral so that in any contingency CDS sellers

are able to deliver promised payoffs.

Assumption 1. Sellers of credit default swaps need to post a sufficient amount of

collateral so that the promised payments made on a credit default swap will be made

in every contingency, i.e., for a credit default swap on loan (R, c), a seller needs to

hold R units of the risk-free asset per notional value in the 1st period.

The immediate consequence of this assumption is that lending under any loan

and meanwhile buying the corresponding CDS of the same notional value give a

risk-free return rate. Formally, ∀x, q, and (R, c),

rl(x, q;R, c) + rs(x, q;R, c) = R . (3.7)

Since Assumption 1 requires CDS sellers to post a sufficient amount of collateral

which might be unnecessary for certain contingencies. The second assumption allows

CDS sellers to economize on collateral: the abundant part of the collateral used for

credit default swaps can be used for corresponding loans. The rationale for the second

assumption comes from the fact that the collateral posted for the credit default swap

on loan (R, c) of a notional value 1 minus the promised payment is R−rs(X, q;R, c) =

rl(X, q;R, c), which can be used as an equivalent substitute for the risky asset as

collateral for loan (R, c).

Assumption 2. The remnant of the collateral used to back up a credit default swap

on a loan can be used as collateral for the same loan and it is viewed as an equivalent

substitute for the risky asset.

Under two assumptions above and if certain types of arbitrage activities are

allowed, the sum of the spread of a CDS and the price of the corresponding loan
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should be equal to the promised repayment rate on the loan, i.e., ∀(R, c) ∈ <2
+,

π(R, c) = R− p(R, c) . (3.8)

The implications of the equality (3.8), Assumption 1, and Assumption 2 are profound.

Several comments are in order. First, if an individual wants to lend under a loan and

buy the credit default swap on the same loan, the individual can in fact obtain the

same payoffs in all contingencies by lending less and holding some additional amount

of the risk-free asset. For example, consider lending under loan (1.05, 1.1) of a notional

value 10000 and buying the credit default swap on loan (1.05, 1.1) of a notional value

1000. Regardless of the value of x, this operation yields the same payoffs as lending

under loan (1.05, 1.1) of a notional value 9000 and meanwhile holding 1050 units of

the risk-free asset.

Second, if an individual wants to sell a CDS on a loan, the individual can obtain

an equivalent payoffs schedule by lending under the corresponding loan. This is due

to equality (3.8) and (3.7).

Third, as I examine the role that credit default swaps play as insurance only, i.e.,

to hedge default risks, the first fact that buying credit default swaps to alleviate po-

tential losses from loan defaults is equivalent with lending less and holding additional

amounts of the risk-free asset and the second fact that selling credit default swaps

is equivalent with lending under the corresponding loans, constitute the core reasons

why the introduction of credit default swaps only as insurance has neither effect on

the price of the risky asset nor the market for collateralized loans. Note these two

facts are independent of assumptions on individuals’ beliefs on X.



42

4. Individual problem

Since individuals are different only by their beliefs about X, I analyze individuals’

choices in the 1st period in a generic way. I assume that a typical individual has

a subjective probability distribution regarding X and the cumulative distribution

function is denoted by F (·). The objective for a typical individual is to maximize∫
u(z)dF (x) , (3.9)

where z denotes the consumption in the 2nd period,

z = x · k + a+
∑

Ω

[
rl(x, q;R, c) · L(R, c) + rs(x, q;R, c) · S(R, c)

]
, (3.10)

where L(R, c) denotes the notional value of loan (R, c) to borrow or to lend (If

L(R, c) < 0 it denotes borrowing); S(R, c) denotes the notional value of CDS on

loan (R, c) to buy or to sell (If S(R, c) < 0 it denotes selling), subject to

q · k + a+
∑

Ω

[
1 · L(R, c) + π(R, c) · S(R, c)

]
= q · k0 + a0 , (3.11)

and two collateral constraints,

−
∑

Ω

R ·min{S(R, c)} ≤ a , (3.12)

−
∑

Ω

[
c ·min

{
(min{L(R, c), 0} −min{S(R, c), 0}), 0

}]
≤ q · k . (3.13)

Note (3.12) is due to Assumption 1, and (3.13) considers S(·) is due to Assumption 2.

To write out the Lagrange, where λ is the lagrange multiplier for (3.11), ν for (3.12),

and µ for (3.13).



43

Lagrange:

u(z)

+ λ · (qk0 + a0 − q · k − a−
∑

Ω

[
L(R, c) + π(R, c)S(R, c)

]
)

+ ν · (a+
∑

Ω

R ·min{S(R, c), 0})

+ µ · (q · k +
∑

Ω

[
c ·min

{
(min{L(R, c), 0} −min{S(R, c), 0}), 0

}]
) . (3.14)

As I have illustrated intuitively, under Assumption 1, Assumption 2, and equal-

ity 3.8, lending under a loan and meanwhile buying a CDS on the same loan of the

same notional value should be equivalent with holding the risk-free asset, and sell-

ing a CDS on a loan is equivalent with lending under the same loan. The following

lemma formalizes these results. And note this lemma holds true regardless of the

assumptions on beliefs about X.

Lemma 6. Assumption 1-2 and equality 3.8 hold. Suppose {k, a, L(·), S(·)} max-

imizes (3.9) subject to (3.11)-(3.13). If a particular loan (R0, c0) ∈ Ω such that

L(R0, c0) 6= 0 and S(R0, c0) 6= 0, and then ∃{k̃, ã, L̃(·), S̃(·)}, which is a maximizer

too but L̃(R0, c0) · S̃(R0, c0) = 0.

By the lemma above, I can concentrate on choices by a typical individual in which

∀(R, c) ∈ <2
+, L(R, c) · S(R, c) = 0. In below, I state the necessary conditions for the

degenerate case of F (·), i.e., the individual has a point estimate of X. Therefore, the

objective to maximize (3.9) is equivalent to maximize (3.10).

Lemma 7. Suppose {k, a, L(·), S(·)} maximizes (3.10) subject to (3.11)-(3.13), and
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∀(R, c) ∈ <2
+, L(R, c) · S(R, c) = 0. The conditions in below must be satisfied.

x− λ · q + µ · q ≤ 0 , (3.15)

where the equality holds if k > 0;

1− λ+ ν ≤ 0 , (3.16)

where the equality holds if a > 0; ∀(R, c) ∈ Ω, if L(R, c) 6= 0, S(R, c) = 0,

rl(x, q;R, c)− λ+ µ · c · 1{L(R, c) < 0} = 0 , (3.17)

rs(x, q;R, c)− π · λ ≤ 0 , (3.18)

rs(x, q;R, c)− π · λ+ ν ·R− µ · c · 1{L(R, c) < 0} ≥ 0 , (3.19)

if L(R, c) = 0, S(R, c) 6= 0,

rl(x, q;R, c)− λ ≤ 0 , (3.20)

rl(x, q;R, c)− λ+ µ · c · 1{S(R, c) > 0} ≥ 0 , (3.21)

rs(x, q;R, c)− π · λ+ ν ·R · 1{S(R, c) < 0} = 0 , (3.22)

if L(R, c) = 0, S(R, c) = 0,

rl(x, q;R, c)− λ ≤ 0 , (3.23)

rl(x, q;R, c)− λ+ µ · c ≥ 0 , (3.24)

rs(x, q;R, c)− π · λ ≤ 0 , (3.25)

rs(x, q;R, c)− π · λ+ ν ·R ≥ 0 . (3.26)
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B. Equilibrium

An equilibrium is defined as a state in which given p(·) and q all markets are cleared in

the 1st period. In below, I first examine the effect of introducing credit default swaps

only as insurance. The following result does not depend on how individuals’ beliefs

about X are specified. To restrict the uses of credit default swaps to insurance only,

the possibility of buying credit default swaps with no investment in the corresponding

loans must be excluded. The following assumption states this restriction formally.

Assumption 3. It is not allowed to purchase credit default swaps on any loan of

a notional value exceeding the actual holding of this loan. Precisely, ∀(R, c) ∈ <2
+,

L(R, c) ≥ S(R, c) provided S(R, c) > 0.

I show that the introduction of credit default swaps only as insurance has no effect

on the price of the risky asset and the market for collateralized loans in equilibrium.

As I have mentioned earlier, the core reasons for the zero-effect result stem from two

facts: under Assumption 1-2 and equality 3.8, first buying credit default swaps to

alleviate potential losses from loan defaults is equivalent with lending less and holding

additional amounts of the risk-free asset, and second selling credit default swaps is

equivalent with lending under the corresponding loans. The following theorem states

the result formally.

Theorem 5. Under Assumption 1-2 and equality 3.8, if {q∗, p∗(·)} is an equilibrium

when credit default swaps are not allowed, it must be an equilibrium when credit default

swaps are allowed but the uses of them are restricted under Assumption 3, vise versa.

The theorem above deals with the effect of introducing credit default swaps only

as insurance. In below, I assume that credit default swaps not only can be used to

hedge default risks but also to bet against loans collateralized by the risky asset.
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Moreover, I make a concrete specification of individuals’ beliefs about X. Precisely,

I assume that the economy is divided by two groups: “optimists” and “pessimists”,

both of which have a point estimate of X, as Table III illustrates. I use the notations

in Table IV to differentiate variables associated with two separate groups.

Table III. Specification of beliefs

groups point estimate of X population

optimists xh 1− θ

pessimists xl θ

Table IV. Notations

variable optimists pessimists

a: ao ap

k: ko kp

L(·): Lo(·) Lp(·)

S(·): So(·) Sp(·)

λ: λo λp

µ: µo µp

ν: νo νp

When both collateralized loans and credit default swaps are not allowed, in the

1st period there are only two assets, the risky and risk-free asset. It is easy to derive
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the equilibrium value for q in this case.

q = 1−θ
θ
· a0

k0
, if

a0

k0
xh+

a0

k0

< θ <
a0

k0
xl+

a0

k0

;

q = xl , if θ ≥
a0

k0
xl+

a0

k0

;

q = xh , if θ ≤
a0

k0
xh+

a0

k0

.

(3.27)

From this point on, I assume that loans collateralized by the risky asset are always

allowed, and I solve for {q, p(·)} in equilibrium analytically when credit default swaps

are banned and are allowed respectively, and then compare the differences. Before

heading forward, I provide a result, useful later and independent of whether or not

credit default swaps are allowed. The following lemma states that the price of the

risky asset should lie in between two polars of opinion among individuals.

Lemma 8. In equilibrium, when collateralized loans are allowed, regardless of whether

or not trading credit default swaps is allowed, the price of the risky asset, q ∈ [xl, xh].

Proof. Step1: suppose q > xh. ∃ an individual in the economy who holds the risky

asset. q > xh implies that he must borrow under some loan (R, c) ∈ Ω. To make the

loan (R, c) attractive, it must be c > 1, which in turn implies no one in the economy

wants to borrow under the loan (R, c). Step2: suppose q < xl. ∃ an individual in

the economy who holds the risk-free asset. q < xl implies that he must sell a CDS

on a loan (R, c) ∈ Ω and thus min{R, xl

q
c} > 1, which implies no one in the economy

wants to buy CDS on the loan (R, c).
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1. Without credit default swaps

To solve for {q, p(·)}, first I derive the equilibrium conditions on q and Ω, given

how individuals transact collateralized loans. There are only three cases: no loan

transaction at all, pessimists borrowing from optimists, or optimists borrowing from

pessimists.

Lemma 9. When trading credit default swaps is not allowed, if in equilibrium there

is no loan transaction among individuals, it must be that

Ω = {(R, c)‖rl(xh, q;R, c) = 1} , (3.28)

and q = xh ≤ 1−θ
θ

a0

k0
.

Proof. Optimists must hold non-zero risky asset. Since there is no borrowing and

lending, µo = 0. Hence Ω = {(R, c)‖rl(xh, q;R, c) = xh

q
}. Since rl(xl, q;

xh

q
, xh

xl
) = xh

q
,

it must be that xh

q
= 1, otherwise no one holds the risk-free asset. When q = xh,

pessimists must hold zero risky asset. Hence the market clearing condition requires

that qk0 + a0 ≥ q k0
1−θ , which implies xh ≤ 1−θ

θ
a0

k0
.

Lemma 10. When trading credit default swaps is not allowed, if in equilibrium pes-

simists borrow from optimists under some loan (R, c) ∈ Ω, it must be that c = 1,

R ≥ 1, q = xh, and Ω satisfies (3.28).

Proof. Suppose optimists lend to pessimists under loan (R, c) ∈ Ω. It must be that,

rl(xh, q;R, c) ≥ max{1, xh

q
}. Step1: R < xl

q
c. It must be that R = 1 and q = xl. But

meanwhile, rl(xh, q;R, c) = R = 1 ≥ xh

q
, and thus xl ≥ xh. Contradiction. Step2:

R ≥ xl

q
c. It must be that c = 1. Hence rl(xh, q;R, c) = λo = xh

q
, which implies µo = 0

and R ≥ xh

q
. Hence Ω = {(R, c)‖rl(xh, q;R, c) = xh

q
}. Since rl(xl, q;

xh

q
, xh

xl
) = xh

q
, it

must be that xh

q
= 1, otherwise no one holds the risk-free asset.
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Lemma 11. When credit default swaps are not allowed, if in equilibrium optimists

borrow from pessimists under loan (R, c) ∈ Ω, it must be that rl(xl, q;R, c) = 1 and

1 = R ≤ xl

q
c. Either µo = 0, q = xh, and Ω satisfies (3.28) or µo > 0, q < xh,

R = xl

q
c, and Ω is not unique and a possible solution is:

Ω = {(R, c)‖R >
xh
q
, c = 1} ∪ {(R, c)‖R = 1, c >

q

xl
}

∪ {(R, c)‖(R, c) = β · (xh
q
, 1) + (1− β) · (1, q

xl
), β ∈ [0, 1]} . (3.29)

Proof. Suppose in the equilibrium that optimists borrow from pessimists under loan

(R, c) ∈ Ω where R > xl

q
c = 1. If R ≥ xh

q
c, it must be that c = 1, which implies q = xl

and thus for pessimists µp = 0. Hence Ω = {(R, c)‖rl(xl, q;R, c) = 1}. And thus loan

(1, 1) ∈ Ω. Optimists want to borrow to infinity under loan(1, 1). Contradiction. If

xl

q
c < R < xh

q
c, ∃ε > 0 such that R− ε > xl

q
c, to make pessimists indifferent between

loan (R, c) and (R − ε, c), p(R − ε, c) = 1, which implies that optimists prefer loan

(R− ε, c) over (R, c). Contradiction.

The following theorem presents how the equilibrium changes as θ increases. The

equilibrium price of the risky asset in general falls as θ increases, which is illustrated

in Fig. 6. When

θ ≤
xl + a0

k0

xh + a0

k0

, (3.30)

q = xh, the price of the risky asset reaches a level so that optimists are indifferent

between the risky and risk-free asset, indifferent between borrowing and lending for

all loans in Ω. Fig. 7 depicts Ω in this case. Since in this case the price of the risky

asset in the 1st period is so high that pessimists would not hold the risky asset. Hence

optimists as the counterpart need to absorb the entire supply of the risky asset in the

economy.
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Fig. 6. q when credit default swaps are prohibited.

When

θ ≤
a0

k0

xh + a0

k0

, (3.31)

optimists can absorb the entire supply of the risky asset without borrowing. But

when

a0

k0

xh + a0

k0

< θ ≤
xl + a0

k0

xh + a0

k0

, (3.32)

optimists finance the purchase of the entire supply of the risky asset through the

collateralized loans. Moreover, in this case, optimists can still provide plenty of

collateral.
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Fig. 7. Ω when credit default swaps are prohibited and θ ≤
xl+

a0

k0
xh+

a0

k0

.

As the population of pessimists rises further, i.e., as

θ >
xl + a0

k0

xh + a0

k0

, (3.33)

a single individual in the optimistic crowd needs to borrow more while borrowing is

restricted by the amount of collateral, and hence the price of the risky asset and the

collateral rate have to fall. Fig. 8 depicts Ω in this case.
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Fig. 8. Ω when credit default swaps are prohibited and θ >
xl+

a0

k0
xh+

a0

k0

.

Theorem 6. When the market for credit default swaps is not open, the equilibrium

changes as follows.

• If xh − xl

θ
≤ 1−θ

θ
a0

k0
, q = xh, Ω satisfies (3.28). Moreover, if xh ≤ 1−θ

θ
a0

k0
, the

quantities of loans traded are indeterminant and it is possible there are no loan

transactions at all. If there are loan transactions, possibilities are: optimists

borrow from pessimists under loans (1, c) with c ≥ xh

xl
; pessimists borrow from

optimists under loans (R, 1) with R ≥ 1. When xh− xl

θ
≤ 1−θ

θ
a0

k0
< xh, optimists

must borrow from pessimists under loans (1, c) with c ≥ xh

xl
.

• If 1−θ
θ

a0

k0
< xh − xl

θ
, q = xl

θ
+ 1−θ

θ
a0

k0
, the only loan transaction is that optimists

borrow from pessimists under loan (1, q
xl

), and Ω satisfies (3.29). Moreover, if
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xl

θ
+ 1−θ

θ
a0

k0
< xl(2− xl

xh
), another possible solution for Ω is:

Ω = {(R, c)‖rl(xl, q;R, c) = 1} . (3.34)

Proof. Step1: suppose xh − xl

θ
≤ 1−θ

θ
a0

k0
. It must be that µo = 0. µo > 0 implies that

optimists borrow from pessimists under loan (1, q
xl

). Hence xh > q > xl. To clear

the market for the risky asset, a typical optimist should hold the risky asset k0
1−θ and

borrow a0 − θ
1−θqk0. By µo > 0, it must be that 1−θ

θ
a0

k0
+ xl

θ
= q. Hence q = xh.

Contradiction. Step2: suppose xh − xl

θ
> 1−θ

θ
a0

k0
. It must be that µo > 0. µo = 0

implies q = xh and 1−θ
θ

a0

k0
+ xl

θ
≤ xh. Contradiction.

One implication of the theorem above is that in general borrowing and lending

among individuals push up the price of the risky asset. Intuitively, with the aid of

loans collateralized by the risky asset, optimists can purchase the risky asset through

borrowing, which as a result lifts up the demand for the risky asset in general. But

there is one exception. As the population of pessimists is small enough, precisely,

i.e., as θ < a0/k0
xh+a0/k0

, opening up the market for collateralized loans does not alter

the equilibrium price of the risky asset. To see the point, I graph the equilibrium

price of the risky asset against the population of pessimists when both collateralized

loans are allowed and are prohibited. Fig. 9 illustrates the point for the case where

x2
l + 2xl

a0

k0
< xh

a0

k0
.
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Fig. 9. q in equilibrium when collateralized loans are prohibited and are allowed.

2. With credit default swaps

To solve for {q, p(·)}, I derive the conditions on q and Ω, and how individuals pos-

sibly transact loans and credit default swaps, given the values for λo and λp. The

following lemma guarantees that a restriction on individuals’ choices does not alter

the equilibrium.

Lemma 12. Under Assumption 1-2 and equality 3.8, if {q∗, p∗(·)} is an equilibrium

when credit default swaps are allowed, it must be an equilibrium when credit default

swaps are allowed but for all individuals ∀(R, c) ∈ <2
+, L(R, c) · S(R, c) = 0, vise

versa.
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The following lemma states that it is impossible that in equilibrium individuals

neither transact loans nor credit default swaps.

Lemma 13. When credit default swaps are allowed, it is impossible in equilibrium

that λo = xh

q
and λp = 1. As a result, it is impossible that individuals neither transact

loans nor credit default swaps in equilibrium.

Proof. Suppose in an equilibrium, λo = xh

q
and λp = 1. By Lemma 7 µo = 0

and νp = 0. And thus ∀(R, c) ∈ Ω, rl(xh, q;R, c) = xh

q
and rl(xl, q;R, c) = 1.

Contradiction. Note q ∈ [xl, xh] in equilibrium by Lemma 8.

λp > 1 and λo > xh

q
imply that pessimists and optimists respectively are involved

in some businesses which can earn a higher return than holding both the risky and

risk-free asset. Note by Lemma 8, q ∈ [xl, xh] in equilibrium.

When λo = xh

q
and λp > 1, the following lemma states that Ω should be like the

one shown in Fig. 10. In this case optimists are indifferent between the loans in Ω

and the risky asset while pessimists perceive it lucrative to bet against loan (xh

q
, 1)

which they expect to go bad in the 2nd period. It is also possible in this case that

optimists borrow from pessimists under loans (xh

q
, c) with c ≥ xh

xl
and that pessimists

borrow from optimists under loans (R, 1) with R ≥ xh

q
.

Lemma 14. When credit default swaps are allowed, if in equilibrium λo = xh

q
and

λp > 1,
x2

h

2xh−xl
≤ q < xh,

Ω = {(R, c)‖rl(xh; q, R, c) =
xh
q
} , (3.35)

and the possible transactions are: pessimists buy from optimists the credit default swap

on loan (xh

q
, 1), optimists borrow from pessimists under loans (xh

q
, c) with c ≥ xh

xl
, and

pessimists borrow from optimists under loans (R, 1) with R ≥ xh

q
.
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Proof. λo = xh

q
implies µo = 0 and thus Ω satisfies (3.35).

x2
h

2xh−xl
> q implies that loan

(xh

q
, xh

xl
) ∈ Ω dominates the risk-free asset in return and that there are no transactions

of CDS. Hence no one holds the risk-free asset. Contradiction. q = xh implies the

CDS on loan (xh

q
, 1) costs nothing to buy while pessimists expect loan (xh

q
, 1) to go bad

and hence buy the corresponding CDS to infinity. Contradiction. x2
h/(2xh − xl) = q

implies that for pessimists buying CDS on loan (xh

q
, 1) has the same return rate as

lending under loans (xh

q
, c) with c ≥ xh

xl
. For optimists, loans in Ω are indifferent.

Loans (R, 1) with R ≥ xh

q
are equivalent with the risky asset for optimists except

that the loans can not be used as collateral. Borrowing under loans (R, 1) with

R ≥ xh

q
is of no real substance for pessimists.
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Fig. 10. Ω when credit default swaps are allowed and λo = xh

q
, λp > 1.

When λo > xh

q
and λp = 1, the following lemma states that Ω should be like the

one shown in Fig.11. In this case pessimists are indifferent between the loans in Ω
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and the risk-free asset while optimists perceive it lucrative to buy the risky asset on

margin under loan (1, q
xl

). It is also possible that pessimists buy from optimists the

credit default swaps on loans (R, q
xl

) with R ≥ xh

xl
.
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Fig. 11. Ω when credit default swaps are allowed and λo > xh

q
, λp = 1.

Lemma 15. In equilibrium, if λo > xh

q
and λp = 1, Ω satisfies (3.34), xl < q ≤

xl(2− xl

xh
), and the possible transactions are: optimists borrow from pessimists under

the loan (1, q
xl

) and pessimists buy from optimists the credit default swaps on loans

(R, q
xl

) with R ≥ xh

xl
.

Proof. λp = 1 implies νp = 0 and thus Ω satisfies (3.34). q > xl(2 − xl

xh
) implies

that loan (xh

xl
, q
xl

) ∈ Ω dominates the risky asset in return and that there are no loan

transactions. Hence no one holds the risky asset. Contradiction. q = xl implies

that optimists can and are willing to borrow as much as possible. Contradiction.

q = xl(2 − xl

xh
) implies that for optimists, borrowing under loan (1, q

xl
) has the same
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return rate as selling CDS on loans (R, q
xl

) with R ≥ xh

xl
. For pessimists, buying CDS

on loans (R, q
xl

) with R ≥ xh

xl
gives the same return rate as lending under loan (1, q

xl
).

Hence it is possible pessimists buy from optimists the credit default swaps on loans

(R, q
xl

) with R ≥ xh

xl
.

When λo > xh

q
and λp > 1, the following lemma states that Ω should be like the

one shown in Fig.12. In this case pessimists perceive it profitable to buy the credit

default swap on a loan which they expect to go bad in the 2nd period while optimists

perceive it profitable to buy the risky asset on margin under a different loan.
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Fig. 12. Ω when credit default swaps are allowed and λo > xh

q
, λp > 1.

Lemma 16. In equilibrium, if λo > xh

q
and λp > 1, min{xl(2 − xl

xh
),

x2
h

2xh−xl
} < q <

max{xl(2− xl

xh
),

x2
h

2xh−xl
}, the only transactions are: optimists borrow from pessimists

under the loan (R1, c1) and meanwhile pessimists buy from optimists the credit default
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swaps on loan (R2, c2), where

R1 =
xl
q
c1 , (3.36)

R2 =
xh
q
c2 , (3.37)

R1 =
R2 − xl

q
c2

R2 − 1
> 1 , (3.38)

R2 =

xh

q
c1 −R1

c1 − 1
>
xh
q
, (3.39)

1− θ
θ

a0

k0

[1− 1

R2(1− θ)
]− (1− 1

c1θ
)q = 0 , (3.40)

and

Ω = {(R, c)|R > R2 , c = c2} ∪ {(R, c)|R = R1 , c > c1}

∪ {(R, c)|(R, c) = β · (R1, c1) + (1− β) · (R2, c2) , ∀β ∈ [0, 1]} . (3.41)

Proof. Step1: λo > xh

q
and λp > 1 imply that optimists must borrow and pessimists

must buy CDS. That optimists do not borrow under any loan implies that optimists

do not hold the risky asset. Since λp > 1, that pessimists hold the risky asset

implies that they borrow under certain loans. Suppose pessimists borrow under a

loan (R0, c0) ∈ Ω. It must be that R0 > 1 since λo > xh

q
≥ 1, which implies R0 ≥ xl

q
c0

and thus c0 = 1. But xl

q
≤ 1. Contradiction. Hence no one holds the risky asset.

Contradiction. That pessimists do not buy CDS on any loan implies that optimists

do not hold the risk-free asset. Since λp > 1, that pessimists hold the risk-free asset

implies that they sell CDS on certain loans. Suppose pessimists sell CDS under a

loan (R0, c0) ∈ Ω. It must be that R0 > 1 and xl

q
c0 > 1 since λp > 1, and

R0−
xh
q
c0

R0−1
> 1

since λo > xh

q
≥ 1. Hence xh

q
c0 < 1 contradicting with xl

q
c0 > 1. Therefore no one

holds the risk-free asset. Contradiction. Step2: Express R2 in q by using equations
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(3.36)-(3.39):

R2 =
(xh

xl
− 1)(1− xl

xh
)− 1

q
xl

(1− xl

xh
)− 1

.

Since R2 ∈ (xh

q
, xh

xl
), min{xl(2 − xl

xh
),

x2
h

2xh−xl
} < q < max{xl(2 − xl

xh
),

x2
h

2xh−xl
}. Step3:

optimists borrow from pessimists under loan (R1, c1), it must be that R1 = xl

q
c1;

pessimists buy from optimists CDS on loan (R2, c2), it must be that R2 = xh

q
c2.

Step4: it is easy to check that when Ω satisfies (3.41), the only loan transaction is on

loan (R1, c1) and the only transaction of CDS is on loan (R2, c2).

The following theorem presents how the equilibrium changes as θ increases.

Fig. 13 illustrates how the price of the risky asset changes as θ increases when

credit default swaps both are prohibited and are allowed, in the case where
x2

h

2xh−xl
>

xl(2− xl

xh
). 
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Fig. 13. q when credit default swaps are allowed and
x2

h

2xh−xl
> xl(2− xl

xh
).



61

Theorem 7. When trading credit default swaps is allowed, the equilibrium changes

as follows.

• If

θ >
xl + a0

k0

xl(2− xl

xh
) + a0

k0

, (3.42)

q = 1−θ
θ

a0

k0
+ xl

θ
, optimists borrow from pessimists under the loan (1, q

xl
), there is

no transaction in the market for credit default swaps, and Ω satisfies (3.34).

• If

xl + a0

k0
(1− xl

xh
)

xl(2− xl

xh
) + a0

k0

≤ θ ≤
xl + a0

k0

xl(2− xl

xh
) + a0

k0

, (3.43)

q = xl(2− xl

xh
), optimists borrow from pessimists under the loan (1, q

xl
), pessimists

buy from optimists the credit default swaps on loans (R, q
xl

) with R ≥ xh

xl
, and

Ω satisfies (3.34).

• If

θ <

a0

k0
(1− xl

xh
)

xh + a0

k0
(2− xl

xh
)
, (3.44)

q = (1−θ)a0xh

xhθk0+a0
, pessimists buy from optimists the credit default swaps on loan

(xh

q
, 1), there is no loan transaction, and Ω satisfies (3.35).

• If

a0

k0
(1− xl

xh
)

xh + a0

k0
(2− xl

xh
)
≤ θ ≤

xl + a0

k0
(1− xl

xh
)

xh + a0

k0
(2− xl

xh
)
, (3.45)

q =
x2

h

2xh−xl
, pessimists buy from optimists the credit default swaps on loan (xh

q
, 1),

optimists borrow from pessimists under loans (xh

q
, c) with c ≥ xh

xl
, and Ω satisfies

(3.35).
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• If

xl + a0

k0
(1− xl

xh
)

xh + a0

k0
(2− xl

xh
)
< θ <

xl + a0

k0
(1− xl

xh
)

xl(2− xl

xh
) + a0

k0

, (3.46)

optimists borrow from pessimists under loan (R1, c1), pessimists buy from opti-

mists the credit default swaps on loan (R2, c2), such that (3.36)-(3.40) hold, and

Ω satisfies (3.41).

Two implications from the theorem deserve to be mentioned. First, as credit

default swaps are introduced, the price of the risky asset falls in general. The intuitive

reason is that pessimists use credit default swaps to bet against some loans backed by

the risky asset. Pessimists believe the return from the risky asset to be low and hence

they expect some loans to go bad for sure in the 2nd period. Meanwhile, optimists

believe the return from the risky asset to be high and hence that these loans will be

paid off. Selling the credit default swaps requires optimists to hold certain amount

of the risk-free asset as the collateral, and as long as the spreads of the credit default

swaps are high, optimists are directed from buying the risky asset on margin to selling

the credit default swaps, which as a result dampens the demand for the risky asset

in general.

Second, it is not always the case that the price of the risky asset falls as credit

default swaps are introduced. When the population of pessimists is large enough, the

introduction of credit default swaps in fact does nothing to the price of the risky asset

and the market for collateralized loans. As Fig. 13 illustrates, this is when (3.42)

holds. In this case, before credit default swaps are introduced, optimists perceive

sizable profits of buying the risky asset on margin. After credit default swaps are

introduced, no transactions of credit default swaps take place in equilibrium. This

is not because there is a lack of incentive on the side of CDS buyers, but because
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optimists perceive that the return rate of buying the risky asset on margin dominates

that of selling the credit default swaps and hence there is a lack of incentive on the

side of CDS sellers. As in Fig. 11, pessimists perceive that the return rate of buying

the credit default swap on loan (xh

xl
, q
xl

) is 1, which is equal to that of lending under

loan (1, q
xl

), while optimists perceive that the return rate of selling the credit default

swap on loan (xh

xl
, q
xl

) is xh

xl
, which is less than the return rate of buying the risky asset

on margin under loan (1, q
xl

).
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CHAPTER IV

CONCLUSION

In the present study, I postulate that economic agents have heterogeneous beliefs,

and I theoretically analyze collateralized loan transactions among economic agents

arising from the different beliefs. And I make collateral requirements endogenously

determined. Below, I discuss possible extensions for the two works.

A. Speculative currency crises

I show that loan transactions among domestic residents arising from heterogeneous

beliefs make an exchange rate peg vulnerable even though heterogeneous beliefs per

se bring stability. This result has an immediate policy implication: the central bank

should try to curb private transactions which destabilize the system. Nevertheless, it

is not obvious what instruments that the central bank should use to accomplish this

goal.

An interest rate defense is a policy measure, which is often mentioned among

policy-makers. It says that central banks should raise interest rates to fend off spec-

ulative attacks. The idea is that high interest rates discourage short sales against

domestic money. Since in the standard models of currency crises the private sector

is a homogeneous entity, if some one wants to sell domestic money short, no one

willingly takes the counterpart position. In my model, due to heterogeneous beliefs,

some domestic residents sell domestic money short and others willingly lend. Hence

I am able to use the framework in the present study to examine the conventional

wisdom on an interest rate defense.
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B. Credit default swaps

I show that credit default swaps only as insurance have no effect on asset prices. The

key assumption is that a sufficient amount of collateral must be posted to back up

the promise made in a credit default swap so that the seller of the credit default swap

would be able to deliver payoffs in all contingencies. This is obviously counter-factual

in the light of the case of AIG. To relax this assumption and see how the equilibrium

changes is a main direction to explore.
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APPENDIX A

PROOFS

Proof of Lemma 3

Proof. Suppose in an equilibrium domestic residents θx ≤ f gt borrow from domestic

residents θx > f gt at date t under the loan (R, cf , cm) ∈ Ωt. Step1: If cm = 0, it must

be that cf = 1 and R ≥ 1+i∗

1−π̄ . Since r(0;R, cf , cm) ≥ r(π̄;R, cf , cm)(1− π̄) ≥ (1 + i∗),

cf > 1 implies r(0;R, cf , cm) = 1 + i∗ and r(π̄;R, cf , cm)(1 − π̄) = 1 + i∗, which in

combination, implies R = 1+i∗

1−π̄ and R = 1 + i∗. Contradiction. Step2: If cm > 0,

cf > 0, and R < cf (1 + i∗) + cm, r(0;R, cf , cm) > r(π̄;R, cf , cm)(1 − π̄) ≥ (1 +

i∗). Hence for domestic residents θx ≤ f gt , µft > 0. As a result, this case can not

happen in the equilibrium, intuitively because domestic residents θ ≤ f gt as borrowers

have incentives to ask domestic residents θx > f gt as lenders to lower the collateral

requirements. Precisely, ∃ε > 0, such that R < (cf − ε)(1 + i∗) + cm. To make

domestic residents θx ≤ f gt not prefer loan (R, cf − ε, cm) over (R, cf , cm) ∈ Ωt in

borrowing, it must be that pt(R, cf − ε, cm) < 1 due to the fact that for domestic

residents θx ≤ f gt , µft > 0. But domestic residents θx > f gt prefer (R, cf − ε, cm) over

(R, cf , cm) in lending provided p(R, cf − ε, cm) < 1 due to the fact that r(π̄;R, cf −

ε, cm)(1− π̄) = r(π̄;R, cf , cm)(1− π̄). Contradiction. Step3: The case cm > 0, cf ≥ 0,

R ≥ cf (1+i∗)+cm but R(1−π̄) < cf (1+i∗)+cm(1−π̄) can not happen in equilibrium

as well, for the same reason as in Step2, i.e., intuitively because domestic residents

θx ≤ f gt as borrowers have incentives to ask domestic residents θx > f gt as lenders

to lower the collateral requirements. Step4: The case cm > 0, cf > 0, R(1 − π̄) ≥

cf (1+i∗)+cm(1− π̄) can happen in the equilibrium only when cf (1+i∗)+cm(1− π̄) =

1 + i∗ and thus R ≥ 1+i∗

1−π̄ . When cm > 0 and cf > 0, it must be that for domestic
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residents θx ≤ f gt , λt

λt−l′(mt)
= 1+i∗

1−π̄ and λt = l′(mt)cm
cm+cf−1

, which in combination implies

cf (1+i∗)+cm(1−π̄) = 1+i∗. Hence for domestic residents θx > f gt , λt = 1. Moreover,

for domestic residents θx ≤ f gt , λt = 1
1−π̄ . If for domestic residents θx ≤ f gt , λt >

1
1−π̄ ,

they do not lend to domestic residents θx > f gt , which implies domestic residents θx ≤

f gt hold more domestic money than what is given by l′(mt) >
i∗

1+i∗
. Contradiction.

Step5: The case cm > 0, cf = 0, and R < cm can happen in equilibrium provided

for borrowers µmt = 0. As a result, for domestic residents θx ≤ f gt , λt = R
1+i∗

and

R ≥ 1+i∗

1−π̄ . R > 1+i∗

1−π̄ implies that for domestic residents θx > f gt , λt = R 1−π̄
1+i∗

> 1.

Domestic residents θx ≤ f gt do not lend under loans the return of which in the

contingency of no collapse is less than R. Suppose ∃ some loan (R̃, c̃f , c̃m) ∈ Ωt

such that r(0; R̃, c̃f , c̃m) ≥ R. To domestic residents θx > f gt want to borrow under

(R̃, c̃f , c̃m), it must be that r(π̄; R̃, c̃f , c̃m)(1 − π̄) = R(1 − π̄), which further implies

c̃f = 0 and domestic residents θx > f gt , µmt = 0. The aggregate real cash balances at

date t is K(f gt )L(R−1)+(1−K(f gt ))L(i∗+ π̄) < K(f gt )L(i∗)+(1−K(f gt ))L(i∗+ π̄),

which contradicts with the fact the public as a whole do not hold the foreign bond

and do not consume at date t. Step6: When cm > 0, cf = 0, and R ≥ cm it must

be that cm = 1+i∗

1−π̄ . If cm > 1+i∗

1−π̄ , since for domestic residents θ ≤ f gt , l′(mt) ≥ cm−1
1+i∗

,

and then for domestic residents θx ≤ f gt , λt >
1

1−π̄ . Contradiction as the same as in

Step5.

Proof of Lemma 4

Proof. Step1: The case R > cf (1+i∗)+cm and cf > 0 can not happen in equilibrium,

intuitively because domestic residents θx > f gt as borrowers have incentives to ask

domestic residents θx ≤ f gt as lenders to lower the promised interest rate. Formally,

∃ε > 0 such that R− ε > cf (1 + i∗) + cm and (R− ε)(1− π̄) < cf (1 + i∗) + cm(1− π̄)

provided cf > 0. To make domestic residents θx > f gt not prefer loan (R − ε, cf , cm)
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over loan (R, cf , cm) ∈ Ωt in borrowing, pt(R− ε, cf , cm) < 1. But domestic residents

θx ≤ f gt prefer loan (R− ε, cf , cm) over loan (R, cf , cm) provided pt(R− ε, cf , cm) < 1.

Contradiction. Step2: The case that for domestic residents θx > f gt , µft > 0 and

µmt = 0 can not happen in equilibrium. If R ≤ cf (1 + i∗) + cm, cf = 0 due to

µft > 0 and µmt = 0. If domestic residents θx > f gt hold the foreign bond, they

must borrow under some loan (R̃, c̃f , c̃m) ∈ Ωt where c̃f > 0, which is impossible

by Step1. Hence domestic residents θx > f gt do not hold the foreign bond, do not

consume, and moreover do not lend due to µft > 0 by Lemma 3 and thus λt > 1,

which contradicts with the fact that for domestic residents θx > f gt , l′(mt) >
i∗+π
1+i∗

.

Step3: The case that for domestic residents θx > f gt , µft = 0 and µmt > 0 can not

happen in equilibrium. If R ≤ cf (1 + i∗) + cm, cm = 0 due to µft = 0 and µmt > 0.

Hence domestic residents θx > f gt must borrow under some loan (R̃, 0, c̃m) ∈ Ωt, where

R̃ > c̃m by Step1. For domestic residents θx > f gt , λ = 1 and thus c̃m < 1+i∗

1−π̄ due to

µm > 0. Since (1+i∗

1−π̄ ,
1

1−π̄ , 0) ∈ Ωt, the loan (R̃, 0, c̃m) are not preferred by domestic

residents θx ≤ f gt . Step4: In the case that for domestic residents θx > f gt , µft = 0 and

µmt = 0, either 1+i∗

1−π̄ = R ≤ cf (1 + i∗) + cm, or cf = 0 and R > cm = 1+i∗

1−π̄ . Step5: In

the case for domestic residents θx > f gt , µft , µ
m
t > 0, either R = cf (1 + i∗) + cm, or

cf = 0 and R > cm. When R = cf (1 + i∗) + cm, if cf , cm > 0, and then for domestic

residents θx > f gt , µft = µmt (1 + i∗) and R < 1+i∗

1−π . When R = cf (1 + i∗) + cm, if

cf > 0 but cm = 0, and then cf <
1

1−π̄ and R < 1+i∗

1−π̄ . When cf = 0 and R ≥ cm,

domestic residents θx > f gt do hold the foreign bond and thus must borrow under

some loan (R̃, c̃f , c̃m) ∈ Ωt such that R̃ = c̃f (1 + i∗) + c̃m and c̃f > 0. As a result,

cm = R̃ < 1+i∗

1−π̄ . When R = cf (1 + i∗) and cm = 0, for domestic residents θx > f gt ,

µft = µmt (1 + i∗). Suppose µft < µmt (1 + i∗). Domestic residents θx > f gt must borrow

under some loan (R̃, 0, c̃m) ∈ Ω where R̃ ≥ c̃m = R = cf (1 + i∗), which contradicts

with µft < µmt (1 + i∗).
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Proof of Lemma 6

Proof. Let L̃(·)|Ω∼(R0,c0) = L(·)|Ω∼(R0,c0), and S̃(·)|Ω∼(R0,c0) = S(·)|Ω∼(R0,c0). Step1:

L(R0, c0) > 0 and S(R0, c0) > 0. Let L̃(R0, c0) = max{L(R0, c0) − S(R0, c0), 0},

S̃(R0, c0) = max{S(R0, c0)−L(R0, c0), 0}, k̃ = k, and ã = a+R0·min{S(R0, c0), L(R0, c0)}.

{k̃, ã, L̃(·), S̃(·)} is feasible and generates the same amount of consumption good in

the 2nd period as {k, a, L(·), S(·)} for any given value of x. Step2: L(R0, c0) > 0

and S(R0, c0) < 0. Let L̃(R0, c0) = L(R0, c0) − S(R0, c0), S̃(R0, c0) = 0, k̃ = k,

and ã = a + R0S(R0, c0). Step3: L(R0, c0) < 0 and S(R0, c0) < 0. Let L̃(R0, c0) =

min{L(R0, c0) − S(R0, c0), 0}, S̃(R0, c0) = min{S(R0, c0) − L(R0, c0), 0}, k̃ = k, and

ã = a+R0 ·max{S(R0, c0), L(R0, c0)}. Step4: L(R0, c0) < 0 and S(R0, c0) > 0. Sup-

pose R0 >
x
q
c0. L(R0, c0) < 0 implies c0 = 1. Let L̃(R0, c0) = 0, S̃(R0, c0) = S(R0, c0),

qk̃ = qk+L(R0, c0) and ã = a. Suppose R0 ≤ x
q
c0. S(R0, c0) > 0 implies R0 = 1. Let

L̃(R0, c0) = L(R0, c0), S̃(R0, c0) = 0, k̃ = k and ã = a.

Proof of Theorem 5

Proof. One direction: suppose {q∗, p∗(·)} is an equilibrium when credit default swaps

are not allowed and {ki, ai, Li(·), 0} denotes the corresponding choice by individual

i ∈ [0, 1] in the equilibrium. The claim is sufficient to prove this direction that when

the price of the risky asset is q∗, the price system for the collateralized loans is p∗(·),

and credit default swaps are allowed but the uses of them are restricted under As-

sumption 3, for individual i, {ki, ai, Li(·), 0} maximizes (3.9) subject to (3.11)-(3.13).

Prove by contradiction. Suppose ∃{k̃i, ãi, L̃i(·), S̃i(·)} which gives more consump-

tion good in the 2nd period than {ki, ai, Li(·), 0}. Due to the proof in Lemma 6,

let ∀(R, c), p∗(R, c) = 1, S̃i(R, c) = 0. Contradiction. The opposite direction: sup-

pose {q∗, p∗(·)} is an equilibrium when credit default swaps are allowed but the uses



72

of them are restricted under Assumption 3 and {ki, ai, Li(·), Si(·)} denotes the cor-

responding choice by individual i ∈ [0, 1] in the equilibrium. Due to the proof in

Lemma 6, I transform all individuals’ choices by zeroing the transactions of CDS,

i.e., ∃{k̃i, ãi, L̃i(·), S̃i(·)} which is a maximizer too. And ∀(R, c), p∗(R, c) = 1, k̃i = ki,

ãi = ai+R ·Si(R, c), L̃i(R, c) = Li(R, c)−Si(R, c), S̃i(R, c) = 0. I show that after the

transformations, all markets are cleared, i.e.,∀(R, c), p∗(R, c) = 1,
∫ 1

0
L̃i(R, c)di = 0,

and
∫ 1

0
ãi di =

∫ 1

0
ai di = a0.

Proof of Theorem 7

Proof. Step1: when λo > xh

q
and λp = 1,

θ ≥
xl + a0

k0
(1− xl

xh
)

xl(2− xl

xh
) + a0

k0

. (A.1)

Step2: when λo = xh

q
and λp > 1,

θ ≤
xl + a0

k0
(1− xl

xh
)

xh + a0

k0
(2− xl

xh
)
. (A.2)

Step3: when λo > xh

q
and λp > 1 and

x2
h

2xh−xl
> xl(2 − xl

xh
), R2 is decreasing in

q, and thus the left hand side of equation (3.40) is decreasing in q for any θ and

is always decreasing in θ for any q. For θ satisfying (A.2), equation (3.40) holds

provided q >
x2

h

2xh−xl
. Contradiction. For θ satisfying (A.1), equation (3.40) holds

provided q < xl(2 − xl

xh
). Contradiction. Hence (3.46) holds. Step4: when λo > xh

q

and λp > 1 and
x2

h

2xh−xl
= xl(2− xl

xh
), q = xl(2− xl

xh
). For θ satisfying (A.2), equation

(3.40) holds provided R2 <
xh

q
. Contradiction. Forθ satisfying (A.1), equation (3.40)

holds provided R2 >
xh

xl
. Contradiction. Hence (3.46) holds. Step5: when λo > xh

q

and λp > 1 and
x2

h

2xh−xl
< xl(2 − xl

xh
), the left hand side of equation (3.40) is always

monotonic in q given θ and is always decreasing in θ. For θ satisfying (A.2), if the

left hand side of equation (3.40) is decreasing in q, equation (3.40) holds provided
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q > xl(2− xl

xh
); if the left hand side of equation (3.40) is increasing in q, equation (3.40)

holds provided q <
x2

h

2xh−xl
. Contradiction. For θ satisfying (A.1), if the left hand side

of equation (3.40) is decreasing in q, equation (3.40) holds provided q <
x2

h

2xh−xl
; if

the left hand side of equation (3.40) is increasing in q, equation (3.40) holds provided

q > xl(2− xl

xh
). Contradiction.
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