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ABSTRACT 

 

Green Water Flow Kinematics and Impact Pressure on a Three Dimensional Model 

Structure. 

 (August 2011) 

Hanchapola Appuhamilage Kusalika Suranjani Ariyarathne,  

B.S.; M.S., University of Peradeniya; M.S., Texas A&M University 

Chair of Advisory Committee: Dr. Kuang-An Chang 

 

 Flow kinematics of green water due to plunging breaking waves interacting with 

a simplified, three-dimensional model structure was investigated in the laboratory. Two 

breaking wave conditions were tested: one with waves impinging and breaking on the 

vertical wall of the model at the still water level and the other with waves impinging and 

breaking on the horizontal deck surface. The Bubble Image Velocimetry (BIV) 

technique was used to measure the flow velocity. Measurements were taken on a vertical 

plane located at the center of the deck surface and a horizontal plane located slightly 

above the deck surface.  

The evolution of green water flow kinematics in time and space is revealed in the 

study. It was observed that the maximum velocity appears near the green water wave 

front and is 1.44C with C being the wave phase speed for the deck impingement case 

and 1.24C for wall impingement case. The velocity variations in the present study were 

compared with that in an earlier study using a two-dimensional model with the same 
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wave condition as in the wall impingement condition. The applicability of dam-break 

theory on green water velocity prediction for the three-dimensional model was also 

investigated.  

Furthermore, pressure measurements were performed at two vertical planes: one 

at the centre and the other at 0.05 m away from the centre. Ensemble averaged pressure 

variations were compared. Impact pressure was successfully related to the pressure 

rising time. Void fraction was measured for few locations near the model front edge. 

After correcting the density considering void ratio, predictions of maximum impact 

pressure based on the measured pressure and flow velocity were investigated linking 

pressure with kinetic energy. It was also found that there is a linear relationship between 

the rising pressure gradient and the impact coefficient. 
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CHAPTER I 

INTRODUCTION AND LITERATURE REVIEW* 

 

 Interactions between extreme waves and offshore structures are of primary 

interest to ocean and coastal engineers. In heavy storm conditions wave heights increase.  

If wave heights reach above the free board, waves overtop the structure and form green 

water. Green water may cause stability, integrity, safety and operability failures to 

offshore structures. In most offshore structures, facilities and equipment are located on 

the deck. It is thus important to study the green water flow. Due to the severity of recent 

hurricanes, such as Hurricanes Ivan, Rita, and Katrina in the Gulf of Mexico, and the 

popularity of permanently moored offshore structures, the importance of understanding 

green water phenomena is heightened.  

 

 

 

 

 

 

 

________ 

This dissertation follows the style of Coastal Engineering. 

* Part of the data reported in this chapter is reprinted with permission from “Three-

dimensional green water velocity on a model structure” by Chang, Ariyarathne and 

Mercier (2011). Experiments in Fluids, DOI: 10.1007/s00348-011-1051-0, Copyright 

[2011] Springer. 
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 The green water problem has been studied both numerically and experimentally 

for decades. Most of these studies are limited to motions (surge, heave, and pitch), 

impact loads, and probability of deck wetness. It is very difficult to simulate the flow 

due to its multiphase and turbulent nature. Similarly, in most laboratory work 

measurements were limited to wave height and pressure with few reports providing flow 

velocity field measurements. 

Buchner (1995a,b) conducted an experimental investigation on the effect of 

green water on Floating Production Storage and Offloading (FPSO) units. Occurrence of 

green water due to the influence of wave height, wave period, and current velocity, and 

related design aspects of FPSOs were discussed. Relation between relative motion and 

deck wetness, behavior and loading of green water on the deck, and impact loading on 

deck structures were also investigated. He identified the sequence of green water 

occurrence as: the relative wave motions around the bow, the water flow onto the deck, 

the shallow water wave over the deck, and the final impact of the water to the structure.  

Furthermore, he mentioned that the dynamic pressure is contributed from the vertical 

acceleration and rate of change of water height. Design aspects in terms of influence of 

the bow shape, position of equipments on deck, and shape of break waters were also 

discussed. Buchner (1996) later discussed the influence of the bow shape of FPSO on the 

drift force and green water loading. A traditional tanker bow, a sharp alternated bow 

without flare, and the same alternated bow with a significant flare above the still 

waterline were tested. He concluded that the mean wave drift force and low frequency 

drift force are smaller for the sharper alternated bows if compared to the traditional bow.  
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However, the relative motion around the bow is the largest for alternated bows, hence 

more water flows on to the deck. He further concluded that the impact pressure is 

significantly higher for the alternated bow.      

 Hamoudi and Varyani (1998) performed laboratory tests and investigated the 

probability of green water occurrence as a function of Froude number and significant 

wave height. Wan and Wu (1999) developed a numerical model to investigate two- 

dimensional (2D) green water flows. In their model a longitudinal section of a typical 

ship was considered. Navier-Stokes equations were solved with fully non-linear 

boundary condition on the free surface, and the evolution of free surface was solved by 

the volume of fluid (VOF) method. The analysis allows the waves to overturn and break.  

Results were given for velocity, elevation, and pressure along a vertical section at the 

deck center. Fekken et al. (1999) developed a numerical model to solve Navier-Stokes 

equations with three-dimensional (3D) cartesian grid. The VOF method was used to 

track the free surface. Green water loading on the foredeck of a ship, water heights, 

pressure, and water contour forces on different structures placed on the deck were 

produced and compared to experimental results.      

 Cox and Scott (2001) conducted laboratory measurements to examine the 

instantaneous free surface elevation, velocity, and overtopping rate at the leading edge of 

a model deck. Based on experimental results the probability distributions of the extreme 

water level and wave overtopping rate were obtained, and theory for statistics of extreme 

wave crests was developed. Subsequently, Cox and Ortega (2002) quantified wave 

overtopping a horizontally fixed deck surface above the free surface level based on 
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laboratory experiments. Free surface and velocity measurements were taken for the 

conditions with and without the deck to examine the effects of deck surface on flow 

kinematics. It was observed that both the free surface above the leading edge and 

maximum horizontal velocity increase with the existence of the deck. Moreover, Mori 

and Cox (2003) developed a statistical model for predicting the wave overtopping 

volume and rate of extreme waves on a fixed deck.     

 Schonberg and Rainey (2002) developed a numerical model based on the 

potential flow assumption to calculate velocity of water on the deck area. The model 

simulates a shelf submerging into a pool. The resulting flow was modeled using a 

desingularized boundary integral equation method combined with an implicit time 

stepping algorithm. Faltinsen et al. (2002) developed a numerical model to predict green 

water loading and investigated the influencing factors on green water loading. The use of 

dam-break model in green water predictions was also discussed.   

 Nielsen and Mayer (2004) developed a numerical model employing a Navier-

Stokes solver and a free surface capturing scheme to model green water loads on a 

moored FPSO exposed to head sea waves. Green water on a fixed vessel and a moving 

vessel was investigated, and the water height on the deck and impact pressure were 

obtained. Kleefsman et al. (2005) developed a numerical model to estimate green water 

load. The model is based on Navier-Stokes equations, and the equations were discretized 

using the finite volume method. The predictions of water surface, pressure, and velocity 

were compared with experimental data, and the model was successfully validated with 

the laboratory data for wave elevation and impact pressure. Xu et al. (2008) performed 
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an experimental investigation on wave impact and dynamic response on a FPSO. Xu and 

Barltrop (2008) later developed a numerical model to calculate the impact load.  

 Even though the green water problem has been studied for a long time, there are 

not many studies focusing on flow kinematics. Among those, most are numerical studies 

based on linear wave theory and single phase assumption. The multiphase, turbulent 

nature of green water flow is therefore not realistically simulated. Bubble formation and 

defragmentation in highly nonlinear multiphase green water continue to pose great 

challenges to numerical modeling. Lack of laboratory data on green water flow 

velocities for validation of numerical models also hinders progress.   

 Not only does bubble formation challenge numerical modeling of flow 

kinematics, it also causes problems in experimental measurements. Available methods 

such as Acoustic Doppler Velocimetry (ADV), Laser Doppler Velocimetry (LDV), and 

Particle Image Velocimetry (PIV) are incapable of measuring highly aerated flow due to 

uncontrollable acoustic and laser scattering caused by bubbles.    

 Ryu et al. (2005) recently developed and successfully applied a technique called 

Bubble Image Velocimetry (BIV) that combines PIV and the shadowgraphy method for 

velocity measurement in aerated regions of multiphase flow. Instead of correlating 

images of small seeding particles as in the traditional PIV technique, the BIV technique 

obtains velocity by correlating the “texture” in images created by bubbles and air-water 

interfaces. The technique has been validated using velocities measured by Fiber Optics 

Reflectometer (FOR) developed by Chang et al. (2003).     

 Using BIV, Ryu et al. (2007a) performed an experimental study to measure the 
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green water velocity on a 2D model structure due to a plunging breaking wave impact.  

Flow kinematics and turbulence properties were examined, and a similarity model for 

the green water velocity distribution was developed. Based on the measured velocity 

distribution, Ryu et al. (2007b) examined the applicability of dam-break theory for 

predicting the horizontal velocity of green water over the deck. Moreover, Ryu and 

Chang (2008) measured the void fraction in the green water flow using FOR. Based on 

the void ratio they examined the flow rate, momentum flux, and water volume of the 

overtopping flow.          

 All studies mentioned above are relevant for understanding the green water 

phenomenon. However, clear conclusions have not been available, and some studies are 

in contradiction with others due to the involved parameters. In this regard, experimental 

studies would play a fundamental role in verification. The most common way of 

analyzing green water events is to apply probability analysis with linear wave theory.  

The relative vertical motion is a main parameter which decides the green water 

occurrence. In calculating the relative motion, in most studies the incident wave height is 

used but not the local wave height, while the structure’s vertical motion (heave) and the 

ship speed are not considered. Using linear wave theory completely omits the turbulent 

and highly nonlinear green water nature. So far, there is no reliable theoretical method 

for predicting the height of water on deck and water particle velocities across the deck. 

 The objective of the present study is to investigate the flow kinematics of a 

plunging wave breaking and impinging on a 3D model structure in the laboratory.  

Velocities of green water due to breaking waves were measured using the BIV 
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technique. Two different wave impact conditions were selected. Velocity measurements 

were taken on both a horizontal plane and a vertical plane. Ensemble averaged velocity 

fields were obtained from repeated measurements. The time history of maximum 

velocity in the green water flow was analyzed and compared. Application of dam-break 

theory for predicting the horizontal flow velocity over the deck surface was examined. 

The present velocity measurements on the 3D structure were compared with that 

measured on a similar two-dimensional structure.  

Pressure measurements were also taken for both wave conditions. Ensemble 

averaged pressure variations in time and space were examined. The maximum impact 

pressure was successfully related to the rise time. Void fraction was measured using 

FOR technique. After corrections were made for the flow density, possibility of 

predicting the maximum impact pressure using the measured velocity was investigated. 

 In this report, the experimental setup and conditions for flow kinematics 

measurements are presented in Chapter II. Details of flow kinematics are discussed in 

Chapter III. Application of dam-break theory to predict the green water velocity is 

presented in Chapter IV. Measurement of green water impact pressure and void ratio, 

comparison of the spatial and temporal variations of these parameters, and relating 

impact pressure with velocity are discussed in Chapter V. Chapter VI concludes the 

study.   
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CHAPTER II 

EXPERIMENTAL SETUP* 

 

 Laboratory experiments were conducted in a glass-walled tank located at Zachry 

Department of Civil Engineering at Texas A&M University. The wave tank is 36 m 

long, 0.9 m wide and 1.5 m deep. The wave generator is a Sea Sim Rolling Seal 

absorbing wavemaker (RSW 90-85). It is a dry back, aluminum space frame, and PVC 

cased, modular, hinged flap type. The flap is sealed by a low friction rolling seal and is 

driven by a precision, electronically commutated synchronous servo meter, while being 

hydrostatically balanced using an automatic near constant force, pneumatic control 

system (Sea Sim Rolling Seal Absorbing Wavemaker manual, data sheet RSW 382).  

The wavemaker was controlled by a computer equipped with a National Instruments 

AT-MIO-16E-2 data acquisition board and an in-house developed National Instruments 

LabVIEW program. There is a 1:5.5 sloping beach at the other end of the tank with a 

layer of horsehair to absorb the wave energy and to reduce wave reflection. Water depth 

was kept constant at 0.80 m throughout the tests. Fig. 2.1 shows a schematic sketch of 

the experimental setup.         

  

_________ 

* Part of the data reported in this chapter is reprinted with permission from “Three-

dimensional green water velocity on a model structure” by Chang, Ariyarathne and 

Mercier (2011). Experiments in Fluids, DOI: 10.1007/s00348-011-1051-0, Copyright 

[2011] Springer. 
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The breaking waves were generated by using the wave focusing technique, the 

waves are consisted of a train of waves of various frequencies and amplitudes. The wave 

focusing method generates short waves followed by long waves; the faster moving 

longer waves catch up with the slower moving shorter waves at a desired location and 

form the breaking waves. The characteristics of the breaking waves were controlled by 

modification of the software input parameters in the LabVIEW signal diver program.  

Waves were generated by a DC voltage analog output signal sent by the signal driver. 

 

 

 

0.9 m

beach

Y

light

camera

translucent plastic sheet

light

36 m

21.5 m

wave maker

model

1.5 m

X

 

Fig. 2.1. Experimental setup (top view, not to scale). 
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A simplified 1:169 scale model structure that may be considered as a ship bow or 

a square column of a platform was constructed using Plexiglas and was located at 21.5 m 

away from the wavemaker. A sketch of the model structure is shown in Fig. 2.2. The 

model was supported by an aluminum frame which was fixed to the tank bottom. The 

draft of the model structure is 0.20 m and the freeboard is 0.11 m. The origin of 

coordinate system (X, Y, Z) = (0, 0, 0) is at the leading edge, centerline, and surface of 

the deck, respectively, as shown in Fig. 2.2. The still water level is thus at Z = -0.11 m. 

Two wave conditions were tested: one with breaking waves impinging on the vertical 

wall of the model at the still water level (hereafter called the wall impingement case) and 

the other with breaking waves impinging on the horizontal deck surface (hereafter called 

the deck impingement case). A schematic of the two wave conditions is shown in Fig. 

2.3. 

Breaking waves were generated using a wave focusing technique. The waves are 

nearly identical to that in Ryu et al. (2007a). A wave train that consists of wave 

components ranging from 0.7 Hz to 1.3 Hz with shorter waves followed by longer waves 

was generated by the wavemaker. Only one breaking event occurred in the wave train. 

The breaking waves were carefully controlled so they break at a desired location on the 

model structure. The breaking waves were designed in such a way that the waves 

resemble the measured maximum wave in Hurricane Ivan which has a wave height of 

27.7 m and a wave period of 16.8 s (Wang et al., 2005). The laboratory generated waves 

were verified as being highly repeatable. 
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(a) 

FOV = 0.44 x 0.44 m2

0.11 m

0.20 m

DOF = 0.19 m
focal plane

X
Z

h = 0.8 m

 

(b) 

FOV 0.44 × 0.44 m2

0.37 m

0.21 m

focal plane

DOF 0.07 m

tank wall

X

Y

tank wall
 

Fig. 2.2. Model structure and FOV: (a) side view with a vertical-plane FOV; (b) top view 

with a horizontal-plane FOV. 
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                              (a) 

 

 

                             (b) 

 

Fig. 2.3. The two test wave conditions: (a) wall impingement case with waves impinging on 

the vertical wall at the still water level; (b) deck impingement case with waves impinging on 

the horizontal deck surface. 

 

 

 

Control and trigger signals to the wavemaker, the BIV system, the pressure and 

void ratio sensor control units were created by an in-house developed National 

Instruments LabVIEW program. This setup synchronizes data acquisition for the 

systems in the experiment. To ensure repeatability of the test condition, water in the 

wave tank was allowed to settle for twenty minutes in between test runs. 

 

2.1. Wave elevation measurement 

 

 The free surface elevation was measured using double-wired resistance type 

wave gauges located at 5 m (X = -16.5 m), 15 m (X = -6.5 m), and 21.5 m (at the leading 

edge of the model structure at X = 0) away from the wavemaker. Water elevation was 

measured with and without the presence of the model structure. The measured water 

elevation with the presence of the structure at  X = -16.5 m was considered in calculating 
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incoming wave parameters and at X = 0 was considered as the water elevation at the 

front edge of the model. These wave gauges are more effective in measuring the wave 

elevation in the non aerated region since they basically measure the total wetted length 

of the wires that are in contact with water.  Signals from the wave gauges were 

converted to voltage and sent to a data acquisition board. The measured surface 

elevations for the tested waves are shown in Fig. 2.4 and Fig. 2.5.    

 The water surface elevation of each wave gauge was recorded at a sampling rate 

of 25 Hz for a duration of 100 seconds for twenty trials before the ensemble averaged 

water elevation was calculated. The primary wave period was obtained by zero up 

crossing. The primary wave is the specific wave in the wave train which has the largest 

wave amplitude and leads to the breaking event. 

 The wave period (T), wave height (H), and phase speed (C) for the breaking 

wave of the wall impingement case are T = 1.37 s (equivalent to 17.8 s in prototype 

based on Froude scaling), H = 0.17 m (equivalent to 28.7 m in prototype), and C = 2.02 

m/s (equivalent to 26.3 m/s or 95 km/hr in prototype). The breaking wave condition for 

the deck impingement case is nearly identical to that of the wall impingement case with 

a slight difference of 0.01 s (0.7%) in wave period and 0.02 m/s (1.0%) in phase speed 

so the wave conditions for the two cases may be considered as identical. They are also 

considered as identical to that in Ryu et al. (2007a). The wave period is obtained from 

the zero up-crossings of the free surface record while the phase speed is calculated using 

the linear dispersion relationship. 
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 If the water elevation measurement measured at  X = -16.5 m without the 

presence of the model structure is used for calculating the incoming parameters, the 

wave period (T), wave height (H), and phase speed (C) for the breaking wave of the wall 

impingement case are T = 1.17 s (equivalent to 15.2 s in prototype based on Froude 

scaling), H = 0.25 m (equivalent to 42.2 m in prototype), and C = 1.79 m/s (equivalent to 

23.3 m/s or 84 km/hr in prototype). The breaking wave condition for the deck 

impingement case is nearly identical to that of the wall impingement case with a slight 

difference of 0.04 s (3%) in wave period and 0.05 m/s (3.0%) in phase speed so the wave 

conditions for the two cases may be considered as identical.   

As Figs. 2.4 and 2.5 show, the measured surface elevation is almost the same for 

both with and without the presence of the model structure. However, for the 

measurements near the model, the time history of the surface elevation is smoother for 

measurements without the presence of the model structure for both wall impingement 

and deck impingement waves. 

 Fig. 2.6 and Fig. 2.7 show the calculated standard deviation for wall 

impingement and deck impingement waves respectively. Standard deviation was 

calculated for both measurements with and without the presence of the model structure. 

As Fig. 2.6 shows, the highest standard deviation of about 0.01 m was observed for wall 

impingement wave condition, for measurements at X = 0. For the deck impingement 

wave the highest standard deviation of 0.06 m was observed for measurement at X = 0. 

For both wall impingement and deck impingement waves, the standard deviation for X = 

-16.5 is very small, and lies around 0.02 m.  
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(i) 

(a) 

 
(b) 

 
(c) 

 
(ii) 

(a) 

 
(b) 

 
(c) 

 
 

 

Fig. 2.4. Measured free water elevation for the wall impingement wave. (i) With the 

model structure, (ii), without the model structure. (a) Close to the wavemaker at  

X = -16.5 m; (b) at X = -6.5 m (c) at the model at X = 0 m. 
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(i) 

(a) 

 
(b) 

 
(c) 

 
(ii) 

(a) 

 
(b) 

 
(c) 

 
 

 

Fig. 2.5. Measured free water elevation for the deck impingement wave. (i) With the 

model structure, (ii), without the model structure. (a) Close to the wavemaker at  

X = -16.5 m; (b) at X = -6.5 m (c) at the model at X = 0 m. 
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                                   (a) 

 

 

                                 (b) 

 

Fig. 2.6. Calculated standard deviation for the wall impingement wave. Upper raw at X = 

-16.5 m; middle raw at X = -6.5 m; lower raw at the model at X = 0 m. Left column, with 

the model structure; right column, without the model structure. 
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                                   (a) 

 

 

                                 (b) 

 

Fig. 2.7. Calculated standard deviation for the deck impingement wave. Upper raw at X 

= -16.5 m; middle raw at X = -6.5 m; lower raw at the model at X = 0 m. Left column, 

with the model structure; right column, without the model structure. 
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2.2. Velocity measurement 

 

 The flow became highly turbulent and aerated after the breaking waves impinged 

on the structure. Conventional methods for velocity measurements like PIV and LDV do 

not work well in situations with bubble formation. There have been few studies with 

successful velocity measurements in the aerated region. The BIV technique introduced 

by Ryu et al. (2005) was used in the present study. The technique combines the PIV and 

shadowgraphy technique, and correlates images formed by bubbles and air-water 

interfaces for velocity determination. 

 Images were captured using a high speed camera (Vision Research, Phantom 5.1) 

mounted with a Nikon 50 mm focal lens. The camera has a resolution of 1024×1024 

pixels, 8 bit dynamic range, and a maximum framing rate of 1200 frames per second 

(fps). The framing rate was set to 1000 fps throughout the experiment. Flow velocities 

covering a field of view (FOV) of 0.44×0.44 m
2
  were measured on both a vertical plane 

(side view) along the centerline of the deck surface, and a horizontal plane (plan view) 

above the deck surface, as illustrated in Fig. 2.2(a) and (b), respectively. For the vertical-

plane measurements, flow illumination was achieved by using 600 W lights at the back 

side of the tank. A thin, white translucent sheet was attached to the back side of the tank 

wall so the back lit light became more uniform (see Fig. 2.1). For regions with very high 

bubble concentration, the images may appear as dark. To reduce this effect and to 

increase the texture in the images, a light was also placed at the front side of the tank 

with an angle. For the horizontal-plane measurements, the lights were placed on both 
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sides of the tank facing downward towards to the tank bottom. The reflected light from 

the white tank bottom created a near uniform back-lit effect that is similar to the 

illumination in the horizontal plane measurements for BIV image acquisition. 

 The BIV technique does not require the use of a laser light sheet; the location of 

the measurement plane was controlled by minimizing the Depth of Field (DOF) in 

images by adjusting the aperture and the distance between the model and the camera. 

The DOF is the distance where the captured objects are focused and sharp. According to 

Ray (2002), the nearest limit is ( )2 2

c
R Lf f NLC= +  and farthest limit is 

( )2 2

c
S Lf f NLC= − , where L is the distance from the camera to the object, f is camera 

focal length, Cc is circle of confusion, and N is the f-number of the camera aperture. The 

DOF is D S R= − .  

In the present study the DOF for the vertical plane measurements was limited to 

0.07 m and for the horizontal plane measurements was limited to 0.19 m. They were 

calculated as below. For the vertical-plane measurements, L = 1.5 m, f = 50 mm, N = 1.4, 

and Cc = 0.03 mm. The calculated S is about 1.53 m and R is about 1.46 m, therefore the 

corresponding DOF in the present study is D = 0.07 m. For the horizontal-plane 

measurements, L = 2.0 m, f = 50 mm, N = 2.0, and Cc = 0.03 mm. The calculated S is 

about 2.10 m and R is about 1.91 m, therefore the corresponding DOF is D = 0.19 m. 

For the vertical-plane measurements, the camera was located 1.5 m in front of the 

focal plane with the center of the focal plane coincident with the centerline of the model 

structure. Ryu et al. (2005) concluded that objects located in front and behind the DOF 

appear as blur and do not affect the velocity calculation. The uncertainty in the location 
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of bubble images in the cross tank direction is half of the DOF, hence the error due to 

limited thickness of DOF in the velocity measurements is 2D L . For the horizontal-

plane measurements, the camera was located 2.0 m above the deck surface with the 

center of the focal plane at Z = 0.10 m. Due to wave motion in the vertical direction, the 

DOF was limited to 0.19 m, as indicated in Fig. 2.2(a). The calculated uncertainties as of 

the measured velocities due to the limited thickness of the DOF are 2.3% and 4.8% for 

the vertical plane and horizontal plane velocity measurements, respectively. Note that 

certain effects that result in only out of focus images (but without in-focus images) and 

cause a greater or unknown uncertainty in some measurement areas will be specifically 

pointed out in the study.  

Commercial software from La Vision Inc. and MPIV software developed by 

Mori and Chang (2003) were used to analyze BIV images and obtain velocity vectors.  

An adaptive multi-pass algorithm with an initial window size of 64×64 pixels and a final 

window size of 32×32 pixels was employed with 50% overlap between adjacent 

windows. For the second pass with window shift, the calculated velocity in the first pass 

was used, hence improving the signal to noise ratio. Raw images were first inverted so 

that high intensity (bright) represents bubbles. Cross correlation was then applied to 

compute velocity vectors. Fig. 2.8 demonstrates the procedure. Note that the BIV 

technique does not work in the areas where there are no bubbles or air-water interfaces.  

The technique captures the wave front velocity well, which is typically the maximum 

velocity. For each wave condition, measurements were repeated 30 times with identical 

initial and boundary conditions. Mean velocities were calculated by ensemble averaging 
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the 30 instantaneous velocities obtained from the 30 repeated measurements. A median 

filter was used to remove spurious vectors, and Kriging interpolation was applied to fill 

the removed vectors.  

 

 

 

                    (a) 

 

 

                        (b) 

 

 
                            (c) 

 

 

                          (d) 

 

 
 

Fig. 2.8. Velocity determination in the BIV technique. (a-b) Original image and its 

close up, (c) inverted image, (d) calculated velocity. 
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CHAPTER III 

GREEN WATER FLOW KINEMATICS* 

 

3.1. Flow kinematics - wall impingement case 

 

Flow fields and evolution of the wall impingement case are demonstrated in Figs. 

3.1 and 3.2 for the vertical-plane (side view) and horizontal-plane (top view) mean 

velocities, respectively. The left column shows normalized velocity vectors whereas the 

right column shows velocity contours, normalized by the phase speed C. The location of 

the maximum velocity can thus be identified from the right column. Note that the 

velocity fields are the ensemble averaged mean velocities using 30 repeated 

instantaneous velocity measurements, while the background images were arbitrarily 

selected from one of the 30 realizations. The time t = 0 was defined as the moment when 

the wave front crosses X = 0 at the leading vertical front wall. 

 

 

 

 

 

 

 

_________ 

* Part of the data reported in this chapter is reprinted with permission from “Three-

dimensional green water velocity on a model structure” by Chang, Ariyarathne and 

Mercier (2011). Experiments in Fluids, DOI: 10.1007/s00348-011-1051-0, Copyright 

[2011] Springer. 
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 (a) 

       

(b) 

      

 

Fig. 3.1. Mean velocity fields on the vertical plane for the wall impingement case at t = 

(a) 0.000 s, (b) 0.025 s, (c) 0.050 s, (d) 0.075 s, (e) 0.100 s, (f) 0.125 s, (g) 0.150 s, (h) 

0.175 s, (i) 0.200 s, (j) 0.225 s, (k) 0.250 s, (l) 0.275 s. Left column: normalized velocity 

(normalized using phase velocity, C) vectors; right column: velocity contours. The scale 

of the contour color bar is C. 
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(c) 

      

(d) 

      

(e) 

      

Fig. 3.1 continued. 



 

 

26 

(f) 

      

(g) 

      

(h) 

      

Fig. 3.1 continued. 
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(i) 

      

(j) 

      

(k) 

      

Fig. 3.1 continued. 
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(l) 

      

Fig. 3.1 continued. 
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(a) 

      

(b) 

      

 

Fig. 3.2. Mean velocity fields on the horizontal plane for the wall impingement case at 

t = (a) 0.000 s, (b) 0.025 s, (c) 0.050 s, (d) 0.075 s, (e) 0.100 s, (f) 0.125 s, (g) 0.150 s, 

(h) 0.175 s, (i) 0.200 s, (j) 0.225 s, (k) 0.250 s, (l) 0.275 s. Left column: normalized 

velocity (normalized using phase velocity, C) vectors; right column: velocity contours.  

The scale of the contour color bar is C. 
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(c) 

      

(d) 

      

(e) 

      

Fig. 3.2 continued. 
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(f) 

      

(g) 

      

(h) 

      

Fig. 3.2 continued. 
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(i) 

      

(j) 

      

(k) 

      

Fig. 3.2 continued. 
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(l) 

      

Fig. 3.2 continued. 

  

 

 

Figs. 3.1(a) and 3.2(a) show the moment when the breaking wave front touched 

the structure wall (at the still water level). Immediately after 0.032 s (not shown here), 

the wave rushed upward with a large vertical velocity component, and reached the 

horizontal deck surface. The wave front was also deflected around the leading edge of 

the structure, as shown in Fig. 3.2(b), due to the three-dimensional nature of the 

structure. The up rushing wave front near the centerline continued to move up and onto 

the deck with a significant vertical component, as shown in Fig. 3.1(d-e), but the 

horizontal component near the centerline was much smaller than the ambient velocity 

near the two side edges of the structure, as shown in Fig. 3.2(d-e). Fig. 3.2(e) also 

demonstrates that the flow on the deck had a mainly X-direction velocity, but outside the 

deck area the flow had a significant Y-direction velocity component due to deflection by 

the structure. The velocity near the leading edge of the structure, i.e., at (X, Y) = (0, 0), 

was indeed relatively small due to the sharp edge that deflected the flow to both sides 
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and allowed only a small amount of the flow to directly move upward along the 

centerline. This can be seen from Fig. 3.2(e-g). However, Fig. 3.1(e-g) shows the X- and 

Z-direction velocities are quite large, especially near the front. The contradiction is due 

to the limited DOF used in the vertical plane measurements that captures velocity at a 

certain distance away from the centerline but within the DOF. Fig. 3.2(i-k) shows that 

the horizontal profile of the wave front is a bell shape with the flow near the centerline 

moving slower than that near the side edges. Fig. 3.1(i-k) shows the vertical velocity 

profile with an unknown uncertainty due to its view at the centerline being blocked by 

the water near the front tank wall. Even so, Fig. 3.1(e-g) shows the velocity started to 

lose its vertical momentum and became more horizontally orientated; the velocity might 

start to move downward as depicted in Fig. 3.1(i-k).     

 By examining the velocity fields in Figs. 3.1 and 3.2, it can be concluded that the 

maximum velocity occurred near the front of the flow as it moved onto the deck, 

regardless of whether the maximum is near the centerline (see Fig. 3.1(c-g)) or away 

from it (see Fig. 3.2(c-g)). Note that the velocities near (X, Y) = (150, 200) mm and (150, 

-200) mm in Fig. 3.2(e) were not at the front; they are associated with flow below the 

deck surface. This is due to the fact that velocities may still be obtained from out of 

focus (flatter) images if there are no in focus (sharp) images in the correlation window.  

The scenario can be identified by checking the raw images. Careful examination of the 

images confirmed that the front velocities above the deck are indeed the maximum 

velocities near (X, Y) = (100, 200) mm and (100, -200) mm.    
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Based on the vertical plane measurements, the flow accelerated vertically after 

the breaking jet in Fig. 3.1(a) impinged the vertical wall of the structure at t = 0. The jet 

then took about 0.032 s (at t = 0.032 s, not shown here) to move from the impact location 

at the still water level to the deck level at 0.11 m above. By assuming the front of the jet 

consists of the same fluid particle, this is equivalent to a vertical velocity of 3.4 m/s (or 

1.7C). Shortly after the wave front moved onto the deck, the front reached the maximum 

total velocity of 2.5 m/s (or 1.24C) at t = 0.086 s at about X = 0.17 m, with a horizontal 

component of 1.17C. More details about maximum velocities will be shown in the 

figures on pages 51 and 53. Fig. 3.2(b) corresponds to the moment immediately after the 

water appeared on the deck. A close-up of this figure is shown in Fig. 3.3(a). The green 

water inundated the deck with an angle mainly in the X direction, while the water moved 

around the structure below the deck. At the edge of water run-up (midway at the 45 

degree structure front edges), the entering velocity (onto the deck) is nearly 

perpendicular to the edges. This transverse component (converging towards the 

centerline) caused water to gather at the middle of the deck surface during the early run-

up process, and subsequently gave rise to the formation of a protruding “tongue” of 

about 30 mm length at the middle (centerline) of the deck surface, as shown in Fig. 

3.3(b), which is a close up of Fig. 3.2(i) at around X = 300 mm. This tongue was 

observed in all 30 repeated tests so it is a repeatable phenomenon. This flow pattern was 

also observed by Buchner (1995a) and Nielsen and Mayer (2004).    
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             (a) 

 

             (b) 

 

Fig. 3.3. Close up view of green water front corresponding: (a) Figure 3.2(b); (b) 

Figure 3.2(i). 
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Based on the horizontal plane measurements, the flow accelerated with time, and 

attained its maximum horizontal velocity of 1.69 m/s (or 0.84C, about 0.83C in the X 

component) at t = 0.09 s (close to the moment in Fig. 3.2(e)) and about X = 190 mm.  

The maximum velocity appeared mostly at the wave front but away from the deck 

centerline (near the deck side edge). 

 

3.2. Flow kinematics - deck impingement case 

 

 The flow fields of the deck impingement case are shown in Figs. 3.4 and 3.5.  

Similar to that in Figs. 3.1 and 3.2 for the wall impingement case, the velocities are 

ensemble averaged mean quantities from 30 repeated instantaneous velocity 

measurements, and the background images are instantaneous and selected from one of 

the 30 realizations. The time t = 0 was defined as the moment when the wave crossed the 

leading edge of the deck. 
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(a) 

      

(b) 

      

 

Fig. 3.4. Mean velocity fields on the vertical plane for the deck impingement case at t 

= (a) 0.000 s, (b) 0.025 s, (c) 0.050 s, (d) 0.075 s, (e) 0.100 s, (f) 0.125 s, (g) 0.150 s, (h) 

0.175 s, (i) 0.200 s, (j) 0.225 s. Left column: normalized velocity (normalized using 

phase velocity, C) vectors; right column: velocity contours. The scale of the contour 

color bar is C. 
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(c) 

      

(d) 

      

(e) 

      

Fig. 3.4 continued. 
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(f) 

      

(g) 

      

(h) 

      

Fig. 3.4 continued. 
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(i) 

      

(j) 

      

Fig. 3.4 continued. 
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(a) 

      

(b) 

      

 

Fig. 3.5. Mean velocity fields on the horizontal plane for the deck impingement case at 

t = (a) 0.000 s, (b) 0.025 s, (c) 0.050 s, (d) 0.075 s, (e) 0.100 s, (f) 0.125 s, (g) 0.150 s, 

(h) 0.175 s, (i) 0.200 s, (j) 0.225 s. Left column: normalized velocity (normalized using 

phase velocity, C) vectors; right column: velocity contours. The scale of the contour 

color bar is C. 
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(c) 

      

(d) 

      

(e) 

      

Fig. 3.5 continued. 
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(f) 

      

(g) 

      

(h) 

      

Fig. 3.5 continued. 
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(i) 

      

(j) 

      

Fig. 3.5 continued. 
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 In Figs. 3.4(a-b) and 3.5(a-b), the overturning jet of the breaking wave is higher 

than the deck level; the jet impinged the deck surface at about X = 30 mm. The wave 

front profile above the deck was more or less a straight line in the early process, as 

shown in Fig. 3.5(a-b). The horizontal velocity profile of the wave front then rapidly 

changed to a triangular shape, then a bell shape, as shown in Fig. 3.5(e-g). The front 

profile after this moment seems to become similar to that in the wall impingement case. 

Similar to the wall impingement case, the maximum velocity appeared at the wave front.  

However, unlike the wall impingement case, the velocities in the deck impingement case 

were horizontally dominant on deck without a large Z component, as shown in Fig. 

3.4(e-g). In addition, the water in the deck impingement case seems to move as a bulk 

fluid body above the deck surface, in contrast to the wall impingement case in which the 

water moves mainly as a water jet above the deck surface. The deck impingement 

condition hence would produce more adverse effects on objects located on the deck area. 

 There are several distinct features between the deck impingement case in Fig. 3.4 

and the wall impingement case in Fig. 3.1. The wall impingement case features a large 

vertical velocity component due to the impact of the jet on the vertical front wall of the 

structure. As expected, the splash reached a much higher elevation above the deck 

surface, as shown in Fig. 3.1(c-g). The maximum water level above the deck surface 

reached 0.17 m in the wall impingement case, whereas it reached only 0.08 m (about 

50% lower) in the deck impingement case. On the contrary, the horizontal velocity in the 

deck impingement case is higher, so the green water front required a shorter time to pass 

the deck surface. In the deck impingement case, the wave front reached a maximum 
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velocity of 2.94 m/s (or 1.44C) at t = 0.112 s and at about X = 240 mm, close to the 

moment in Fig. 3.4(e). The maximum velocity was lower at 2.5 m/s (1.24C) in the wall 

impingement case. Detailed velocity comparisons will be made and discussed in the next 

section.           

 Fig. 3.6(a) shows the water front just after impinging on the deck (at a time in 

between Fig. 3.5(a) and 3.5(b)). Notice that, due to the shape of the model, once the 

wave impinges on the horizontal deck surface the water at the middle tends to flow 

straight, while the water near middle tends to flow with a transverse component. The 

water tongue formed in the wall impingement case as shown in Fig. 3.3(b) was not 

observed in the deck impingement case here in Fig. 3.6(b). However, Fig. 3.6(c) shows a 

narrow needle-like water jet protruding out at the center of the wave front. It is indeed 

the 40 degree jet near the wave front above Z = 50 mm in Fig. 3.4(e-g). This narrow jet 

was observed in 21 out of the 30 repeated tests.      

 Note that the BIV technique did not result in velocity measurements in the whole 

measurement area. For example, the velocity measurements were unsuccessful in the 

region with no bubbles, and uncertain in the region with flow blocking part of the focal 

plane in the FOV due to the three-dimensional nature of the problem. Note that if an area 

in the image is out of focus and blurry without sharp and well focused objects (such as 

bubbles) inside it, the blurry area may still result in velocities through correlation due to 

its intensity being the highest. However, the technique captured velocities of the wave 

front quite well; these velocities are perhaps the most crucial and relevant in the study of 

green water flow.  
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          (a) 

 

 

          (b) 

 

       (c) 

 

Fig. 3.6. Close up view of green water front for the deck impingement case: (a) just after 

the impingement; (b), (c) wave front image with the narrow jet in circle.  
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3.3. Maximum velocities and comparisons 

 

The evolution of the green water flow has been measured. To quantify possible 

adverse effects to a structure, the maximum velocities, usually at the front of green 

water, were extracted from the measurements at each time step for both the wall and 

deck impingement cases. Since the flow is three-dimensional but the measurements are 

two-dimensional, the velocities measured on the vertical plane and horizontal plane are 

plotted separately. The plotted velocities are therefore ( )
1/ 2

max
UU WW+  and ( )

1/ 2

max
UU VV+  

for the vertical-plane and horizontal-plane measurements, respectively, with (U, V, W) 

being the mean velocities in the (X, Y, Z) directions. In addition, only velocities 

vertically above the deck are included in the plots; higher velocities outside the deck 

area are not included as they have neither impact nor influence on the structure.  

 Fig. 3.7(a) and 3.7(b) show the maximum velocities for the wall impingement 

and deck impingement cases, respectively. Velocity components from both the 

horizontal and vertical plane measurements were plotted, so there are four velocities in 

each plot with two being the X components. By comparing the X-direction horizontal 

velocities in Fig. 3.7(a) and 3.7(b), the deck impingement case, as discussed earlier, has 

a higher maximum U of 1.44C (about 16% higher) compared to the maximum U of 

1.24C in the wall impingement case, whereas the maximum vertical velocity in the deck 

impingement case is slightly lower (about 8% lower) than that in the wall impingement 

case. Note that the two X-direction velocities in each case are not identical. The reason is 

that the two velocities were measured at different locations: one near the centerline of 
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the structure (the vertical measurement plane) and the other on or near the water surface 

(the horizontal measurement plane). The maximum velocity on the vertical measurement 

plane was found to be beneath the water surface, and the maximum velocity on the 

horizontal measurement plane was found to be away from the centerline and near the 

outer edges of the structure. As a result, the difference between these two X-direction 

velocities is quite significant, especially in the wall impingement case. 

In Fig. 3.7(a-b), the vertical upward velocity (W) in the wall impingement case 

rose to its maximum immediately after the wave impacted the vertical structure wall, 

whereas in the deck impingement case the wave front traveled a certain distance before 

it impacted the deck surface and increased its vertical velocity to the maximum. The 

magnitude of the maximum vertical velocity is 0.81C in the wall impingement case, 

which is higher by 9% than the value of 0.74C for the deck impingement case. In 

addition, the transverse velocities (V) are quite small in both cases. The maximum value 

of V is no greater than 23% and 29% of the maximum U (based on the values measured 

from the horizontal plane) in the wall and deck impingement cases, respectively. 
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(a) 

 

(b) 

 

                               (c) 

  

Fig. 3.7. Time history of maximum velocities. (a) Wall impingement case; (b) deck 

impingement case; (c) comparison of ( )
1/ 2

max
UU WW+ . , Umax from vertical plane; , Umax 

from horizontal plane; , Vmax; , Wmax; , ( )
1/ 2

max
UU WW+ wall impingement; , 

( )
1/ 2

max
UU WW+ deck impingement. 
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Fig. 3.7(c) plots the time history of maximum velocity ( )
1/ 2

max
UU WW+  in the wall 

and deck impingement cases. Since the dominant velocities are mainly in the X direction 

while the Y direction velocity is relatively small, the magnitude of ( )
1/ 2

max
UU WW+  may 

not be too different from that of 2/1

max)( WWVVUU ++  (as stated above, 0.3V U<  so 

2 20.1V U< ). By comparing the results, the deck impingement case again has a 

maximum value of 1.44C, which is 16% higher than the maximum value of 1.24C in the 

wall impingement case. It is thus reasonable to believe that deck impingement is more 

likely to cause more damage due to the high velocity and therefore momentum and 

impact loads on objects on the structure deck. 

An offshore structure is not fixed in space in ocean, but is allowed to move with 

six degrees of freedom. This causes the geometry of interaction and, thus the flow to 

change continuously with waves. The ship wave interaction is important as it may 

increase the diffraction of the incoming wave and it will affect the flow onto the deck. 

The relative ship motion is the key parameter in most of the present methods for 

determining green water loads. However allowing the model to move freely would have 

considerably increased the complexity of the current study. Therefore the model was 

kept stationary in the present study. 
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                             (a) 

 
 

 

 

 

                            (b) 

 

                             (c) 

 

                            (d) 

 

Fig. 3.8. Locations of maximum X-direction horizontal velocities. (a) center vertical 

plane velocities in wall impingement case; (b) center vertical plane velocities in deck 

impingement case; (c) horizontal plane velocities in wall impingement case; (d) 

horizontal plane velocities in deck impingement case. , wall impingement; , deck 

impingement. 
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Fig. 3.8 demonstrates the locations of the maximum X-direction horizontal 

velocities, which can be considered as close to that of the maximum velocity magnitude.  

Fig. 3.8 (a-b) shows the location of maximum horizontal velocities on the vertical 

measurement planes for the two cases. For the wall impingement case (Fig. 3.8(a)), it is 

observed that the highest horizontal velocity near the structure front appears to be above 

the deck surface. This may be caused by higher vertical momentum as the wave impacts 

the front wall and rushes upward. On the contrary, Fig. 3.8(b) shows that the location of 

maximum horizontal velocity near the structure front for the deck impingement case 

seems to be close to the deck surface before the wave impacts the deck surface. The 

location then elevates after the impact (the wave reflects upward after impact).  

Fig. 3.8(c-d) shows the location of maximum horizontal velocities on the 

horizontal measurement planes for the two cases. In both cases, the locations are 

consistently near or at the edges of the structure. This is expected since the horizontal 

velocity profiles of the wave front are bell shaped or triangular, as shown in Figs. 3.2 

and 3.5, implying higher horizontal velocities are away from the centerline and toward 

the edges. 

 Similar to the present three-dimensional (3D) experimental study, a two-

dimensional (2D) experimental study was conducted by Ryu et al. (2007a) for the wall 

impingement wave condition. The wave parameters (wave height, wave period, and 

water depth) are approximately the same for the present study and Ryu et al.’s study.  

The only difference between these two studies is the shape of the structure, i.e., 3D 

versus 2D. In Ryu et al. the model structure has a vertical plane-front wall spanning the 
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width of the tank (i.e., the structure looks like a rectangular box). The experiment is 

therefore considered as two-dimensional, in contrast to the three-dimensional geometry 

and flow structure of the present study. The free board (0.11 m) and draft (0.20 m) are 

also the same for both studies, and so is the location of wave impingement (on the still 

water level of the structure vertical wall). 

The comparison of maximum velocities for the 2D and 3D studies is shown in 

Fig. 3.9. Interestingly, both the 2D and 3D studies observed a maximum horizontal 

velocity of 1.2C above the deck after the wave rushed onto the deck. However, the 

maximum vertical velocity, after the wave impinged the vertical front structure wall, 

reached only 1.7C in the 3D study, whereas it reached 2.9C in the 2D study. The huge 

difference is due to the sharp leading edge of the 3D structure that diverges the flow to 

the sides and significantly reduces the up-rushing component of the flow. If the front 

edge happens to be a flat edge instead of the sharp leading edge, the vertical run up 

velocity would be higher than the present observation, since the incoming flow will be 

more disturbed and the vertical run up component will be larger.  The 2D results may be 

considered as a conservative scenario. 
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Fig. 3.9. 3D and 2D maximum velocities in the wall impingement case. (a) 3D result in 

the present study, (b) 2D result in Ryu et al. (2007a). 
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CHAPTER IV 

MODELING GREEN WATER AS A DAM-BREAK FLOW* 

 

4.1. Introduction and literature review 

 

It is known that dam-break flow theory may be used to predict wave overtopping 

an offshore structure and the associated green water flow. Buchner (1995a) 

demonstrated the resemblance of a dam-break flow to green water. Due to possible 

similarity between these two flows, there have been many studies that applied dam-break 

theory to green water predictions. 

Certain design and analysis in estimating the velocity in a green water incident is 

to use dam-break solutions (Schoenberg and Rainey, 2002). The dam-break flow is a 

classic problem with many solutions being proposed for various cases of the flow.   

 

 

 

 

  

_________ 

* Part of the data reported in this chapter is reprinted with permission from “Three-

dimensional green water velocity on a model structure” by Chang, Ariyarathne and 

Mercier (2011). Experiments in Fluids, DOI: 10.1007/s00348-011-1051-0, Copyright 

[2011] Springer. 

 



 

 

58 

Ritter’s solution is perhaps the most widely used analytical solution; it is considered as 

the simplest for a frictionless dry flat bed (Lauber and Hager, 1998).However, Lauber 

and Hager (1998) found, based on their experimental result, that the front velocity of a 

dam-break flow is unsteady and decreasing with time, disagreeing with the constant 

front velocity in Ritter’s solution. However, Ritter’s solution has been used for green 

water predictions by industry and in many studies (Buchner, 1995a; Schoenberg and 

Rainey, 2002). Even so, quantitative validations have not yet been accomplished, mainly 

due to the difficulty in measuring and modeling green water velocity. 

Fekken et al. (1999) and Kleefsman et al. (2005) simulated green water incidents 

using a Navier-Stokes solver with a volume-of-fluid method for free surface modeling.  

They modeled a dam-break flow to mimic the water flow on a ship deck. The effects of 

ship-wave interaction and ship motion were not considered in these studies. 

Schonberg and Rainey (2002) developed a numerical model to calculate water 

velocity on a deck due to green water. The flow was modeled as a shelf submerging into 

a pool, thus incorporating the fact that the green water inflow on the deck is finite. The 

numerical model utilizes potential flow theory in desingularized boundary integral 

equation method combined with an implicit time-stepping algorithm. 

Yilmaz et al. (2003) developed a numerical model to simulate green water on a 

deck. A nonlinear dam-break problem was formulated using equations of motion in the 

Lagrangian form and solved as an infinite series in time. A semi-analytical solution for 

pressure was also obtained. Based on calculated pressure, object displacements were 

computed using equation of motion. The solution was compared with results obtained 
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based on shallow water assumption. They observed that the shallow water assumption 

causes some errors in the water elevation profile. 

Shigematsu et al. (2004) developed a numerical model to investigate the dam-

break waves during the initial stage of green water process. The model is based on 

Reynolds averaged Navier-Stokes equations with k-ε turbulence closure. The effect of 

water depth in front of the dam was investigated. They mentioned that the dam-break 

generated waves during the initial stage cannot be modeled adequately by a long wave 

model because in the long wave model the vertical velocity and turbulence are ignored. 

Furthermore, they concluded that, depending on the ratio of water depth in the reservoir 

and the water depth in front of the dam, the waves can behave like a plunger or spiller. 

Pham and Varyani (2005) investigated the use of a dam-break model for 

estimating green water loading. They used measured wave elevation data to estimate the 

initial green water velocity. They later used this information as the initial condition in 

their numerical model for dam-break calculation. They concluded that the dam-break 

model, with an appropriate initial velocity, predicts the horizontal green water velocity 

well. 

Ryu et al. (2007b) investigated the applicability of dam-break theory based on 

their measured green water velocities over a two-dimensional model structure. Two 

approaches were introduced and compared to define the initial water depth behind the 

dam. They concluded that the dam-break theory predicted velocity agrees surprisingly 

well with the measured front velocity (which is also the maximum velocity), even 

though the spatial and temporal distributions of the velocity profile match poorly. 
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Even though there are many studies that investigated similarities between the 

dam-break flow and the green water flow, there are some obvious differences between 

these two flows. For example, green water is three dimensional with water coming from 

underneath the deck, whereas the dam-break flow is two-dimensional with water coming 

from above the bed. The amount of water entering the deck is finite, whereas dam-break 

theory assumes the water input is infinite. In reality the deck moves and the height of 

free board varies with time, whereas the dam-break flow assumes a stationary, horizontal 

bed. Furthermore, the green water flow is very complex due to bubbles formation and 

turbulence, while the dam-break theory neglects these effects. Even though there are 

some differences between the dam-break flow and the green water flow, application of 

the dam-break theory to green water velocity prediction may still be viable in practical 

design. The dam-breaking theory has a simple analytical solution and, according to 

previous studies, provides a reasonable approximation to the green water flow, at least to 

the front maximum velocity. It is far workable in comparison to complex and expensive 

numerical and experimental modeling of the phenomenon. 

In the present study, applicability of Ritter’s dam-break flow solution for 

predicting green water velocity over the same three-dimensional structure as in Chapters 

II and III was investigated. Laboratory measurements on the three-dimensional model 

structure for both the wall impingement and deck impingement wave conditions were 

compared with the theory. Both horizontal plane measurements and vertical plane 

measurements were considered in the study. The theory was compared with the 

following measurement data: the spatial variations of the maximum horizontal velocity 
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and averaged horizontal velocity, and measurements from the two-dimensional structure 

in Ryu et al. (2007b), as stated in Chapter III. 

 

4.2. Results and discussion 

 

Green water has been modeled as a dam-break flow in practice for many years.  

The dam-break flow has many solutions based on different assumptions. Among the 

available solutions, Ritter’s solution is considered as the simplest. 

Applying the conservation of mass equation and the one-dimensional 

conservation of momentum equation for dam-break flow leads to 
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where X is the downstream distance from the dam, t is time after the dam breaks, h is the 

water depth, U is the horizontal velocity, g is gravity, S0 is the bottom slope, and Sf is the 

friction slope. Ritter (1892) presented an analytical solution for the dam-break flow by 

assuming that the flow is one-dimensional, the velocity distribution is uniform over the 

depth, and pressure is hydrostatic. 
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According to Ritter’s analytical solution, the water depth and velocity can be 

found as: 
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                                                                        (4.2) 
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                                                                            (4.3) 

where h0 is the initial water depth behind the dam. Note that the front of the dam-break 

flow moves at a constant velocity of 

02fU gh=                                                                                        (4.4) 

the above equations thus are valid for 02
X

gh
t

≤ , and the water depth 

0h = for 02
X

gh
t

> .  See Fig. 4.1 for a sketch of the theoretical dam break flow after 

time t. The constant water depth at the dam at 0X = is thus 
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Fig. 4.1. Theoretical dam break flow after time t. 
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Before applying the Ritter’s dam-break flow solution, it is required to match the 

variables between the dam-break flow solution and the present green water 

measurements. The location of the dam at 0X = is set as the leading edge of the model 

structure. The initial time of dam breaking at 0t = is set as the moment when the water 

front is passing the front vertical edge of the model structure. 

In the application of dam-break theory to green water prediction, there is no clear 

definition given in selecting certain required parameters. For example ambiguity exists 

when choosing the equivalent initial water depth h0 in the green water flow. Following 

Ryu et al. (2007b), the initial depth was calculated using two approaches: using the free 

board exceedance, and matching the green water front velocity. 

In the first approach in Ryu et al. (2007b), it was assumed that the wave reflects 

perfectly. Based on linear wave theory, the amplitude of a perfectly reflected wave 

equals to the incoming wave height. Thus the initial depth may be calculated based on 

the difference between the wave height and the free board, i.e., 

0 deck
h H z= −                                                                             (4.6) 

where 
deck

z is the height of the free board. Ryu et al. (2007b) directly used this difference 

as the initial depth h0, treating it as the water level far behind the dam. 

 On the other hand, Schonberg and Rainey (2002) and Buchner (2002) used the 

difference of local water level at the dam and the free board height as the constant water 

level at the dam, and applying Equation (4.5) to obtain 

( )0

9

4
deck

h H z= −        (4.7) 
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In the present study, the primary wave heights are 172.8 mm and 169.0 mm for 

the wall impingement and deck impingement wave conditions, respectively. The free 

board was kept at 110 mm for both tested wave conditions. Accordingly, applying Eq. 

(4.6) we obtained h0 = 62.8 mm and 59.0 mm for the wall impingement and deck 

impingement cases, respectively. Alternatively, applying Eq. (4.7) the initial water 

depths behind the dam were calculated as h0 = 141.2 mm and 132.7 mm for the wall 

impingement and deck impingement cases, respectively. 

In the second approach in Ryu et al. (2007b), the measured green water front 

velocity was used to calculate the initial water depth behind the dam. The dam-break 

theory predicts that the front velocity is constant as shown in Eq. (4.4). This fact was 

employed by matching the measured green-water front velocity. For both the wall 

impingement and deck impingement cases, based on the recorded images on the vertical 

plane the wave front was tracked so its location versus time was obtained. The result of 

front location verses time is shown in Fig. 4.2. In the figure, the relation between the 

front location and time is linear, indicating the front velocity is indeed constant. The 

slopes in the figure are the green water front velocities UFG. They are 2.56 m/s (1.27C) 

for the wall impingement case and 2.84 m/s (1.39C) for the deck impingement case. It is 

slightly higher (less than 6%) than the value of 1.2C found by Ryu et al. (2007a) for the 

wall impingement case on a 2D structure.  

Since the green water front velocity is constant and consistent with the dam-

break theory calculation, Ryu et al. (2007b) obtained the following equation by replacing 

the front velocity of the dam-break flow Uf by that of the green water flow UFG. 
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Based on matching the front velocities between the dam-break theory and the 

measurements, the initial water depth behind the dam can be back calculated using Eq. 

(4.8). Accordingly, we obtained h0 = 167.0 mm and 205.5 mm for wall impingement and 

deck impingement cases, respectively. These depths from Eq. (4.8) are somewhat 

comparable to the initial water depths of h0 = 141.2 mm and 132.7 mm for the wall 

impingement and deck impingement cases, calculated based on free board exceedance 

using Eq. (4.7), although they are 15% and 35% higher. On the other hand, the depths 

calculated using Eq. (4.8) are 62% and 71% higher than the depth of 62.8 mm and 59.0 

mm in the wall impingement and deck impingement cases, respectively, based on Eq. 

(4.6). 
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Fig. 4.2. Time history of green water front location based on the vertical-plane images. 

, deck impingement case; , wall impingement case. 

 

 

 

Fig. 4.3 shows the spatial distributions of measured maximum horizontal velocity 

Umax and cross-averaged velocity UC and their comparison with the dam-break theory 

based on Eqs. (4.6-4.8) for the wall impingement case. The horizontal plane measured 

velocity was used for the comparison. The cross-average velocity UC is defined as, 
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in which y1 and y2 are the edges of the horizontal deck surface in the Y direction. 
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                        (a) 

 

                           (b) 

 

                         (c) 

 

                           (d) 

 

                         (e) 

 

                            (f) 

 

Fig. 4.3. Comparison between the dam-break theory predictions and the horizontal plane 

velocity measurements for the wall impingement case at  t = (a) 0.03 s; (b) 0.06 s; (c) 

0.09 s; (d) 0.12 s; (e) 0.15 s; (f) 0.18 s. , Umax; , UC; , Ritter’s solution based 

on Eq. (4.6); , Ritter’s solution based on Eq. (4.7); , Ritter’s solution based 

on Eq. (4.8). 
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As Fig. 4.3 shows the profiles from the dam-break theory predictions are linear, 

whereas the measured velocity profiles are not. It is clear that the theory predictions are 

higher compared to measured values except for the lowest velocity prediction using Eq. 

(4.6). The dam-break predictions are thus conservative and may be safe for design 

purpose. The measured maximum green water velocity agrees with Eq. (4.6) the best, 

whereas Eqs. (4.7-4.8) over predict. 

One may wonder why the comparison by matching the velocities between the 

dam-break flow and the green water flow does not work too well. The problem is cause 

by the variation of green water front velocity due to the 3D geometry of the structure.  

The front velocity of UFG = 2.56 m/s (1.27C) based on images on the vertical plane in 

Fig. 4.2 and used in Eq. (4.8) is different from that based on images on the horizontal 

plane. Fig. 4.4 shows the time history of green water front locations for the wall 

impingement case based on horizontal plane images. In the figure, lines (1a) and (2a) 

show consistent slopes (i.e., velocities) between the front most (on or outside the deck 

surface) velocity and edge velocity at the front most (angled section) of the structure.  

These two velocities of about 2.3 m/s (1.14C) measured on the horizontal plane is close 

to (or 10% lower than) the velocity UFG = 2.56 m/s (1.27C) measured on the vertical 

plane. However, beyond a short distance, the slopes or front velocities reduce to 1.70 

m/s (0.84C) and 1.66 m/s (0.82C) at the edge and center of the structure, respectively, 

after water reaching the constant-width section of the deck and moving out of the deck 

from the side edges. In Fig. 4.3, results from the horizontal plane images were used in 

the comparison so the measured front velocities appear to be lower when compared with 



 

 

69 

the dam-break velocity calculated based on Eq. (4.8). Note that slope 2(c) (the front 

velocity at the center of the deck) and slope 2(b) (the front velocity at the edge of the 

deck) in the wall impingement case are quite close to each other with a difference only 

about 2%. 

Fig. 4.5 shows the spatial distributions of Umax and UC and their comparison with 

the dam-break theory based on Eqs. (4.6-4.8) for the deck impingement case. Since the 

differences among the three dam-breaking predictions are relative small, they all predict 

the maximum velocity well, although Eq. (4.8) agrees the best. Similar agreement was 

also found in measurements on a 2D structure by Ryu et al. (2007b). 

Unlike the wall impingement case, the deck impingement case does not have the 

problem of lower measured front velocity on the deck as seen in Fig. 4.4. This is the 

fundamental difference between the wall impingement and deck impingement cases.  

Green water was deflected by the vertical and angled front wall in the wall impingement 

case before it rushes onto the deck. Once water is on the deck, the deflection effect 

causes water to move side way and out of the deck surface within a short distance. On 

the other hand, green water rushes directly onto the deck in the deck impingement case 

without a significant deflection effect caused by water hitting the structure vertical wall.  

The front velocity on the deck remains consistent. The flow patterns can be seen in Figs. 

3.2 and 3.5. 
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Fig. 4.4. Front locations of green water on the horizontal plane in the wall impingement 

case.  Line (1a): at the front most (on or outside the deck surface area) with a slope 2.30 

m/s; lines (2a-b), at the edge of the deck with slopes 2.27 m/s at the front most (angled 

section) and 1.70 m/s beyond that (constant width section); line (2c), at the centerline 

with a slope of 1.66 m/s. 

 

 

 

 

 

 

 

 



 

 

71 

                        (a) 

 

                         (b) 

 

                        (c) 

 

                         (d) 

 

                        (e) 

 

                          (f) 

 

Fig. 4.5. Comparison between the dam-break theory predictions and the horizontal plane 

velocity measurements for the deck impingement case at  t = (a) 0.03 s; (b) 0.06 s; (c) 

0.09 s; (d) 0.12 s; (e) 0.15 s; (f) 0.18 s. , Umax; , UC; , Ritter’s solution based 

on Eq. (4.6); , Ritter’s solution based on Eq. (4.7); , Ritter’s solution based 

on Eq. (4.8). 
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Fig. 4.6 shows that the green water front velocity based on vertical plane images 

is 2.84 m/s (1.39C) and the front velocity based on horizontal plane images is 2.60 m/s 

(1.27C) which is about 9% lower than that from the vertical plane measurements. The 

velocity measurements are thus consistent between these two planes. This can also be 

considered as a validation of the BIV measurement technique. A slightly lower velocity 

from the horizontal plane measurements is expected since the maximum velocity is not 

on the water surface but below the surface, as shown in the vertical plane measurements 

in Figs. 3.1 and 3.4. 

Ryu et al. (2007b) examined the applicability of dam-break theory on a 2D 

structure using the same wave parameters as the present study. The present 

measurements on the 3D structure were compared with Ryu et al.’s measurements.   

Since Ryu et al. only measured velocity on a vertical plane for the wall impingement 

case, the vertical plane measurements in the wall impingement case in the present study 

were used in the comparison for consistency. 
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Fig. 4.6. Front locations of green water in the deck impingement case. , vertical plane 

measurements; , horizontal plane measurements. 
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Both the maximum horizontal velocity Umax and the depth-averaged velocity UD 

were compared. The depth-averaged velocity is defined as 
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U UdZ
z z

=
− ∫                                                                    (4.10) 

where z1 and z2 are the lower and upper surface of green water in the Z direction on the 

horizontal deck surface. Note that on the 2D structure in Ryu et al. (2007b), X = 0 was 

defined as the front leading edge of the model structure, and t = 0 was defined as the 

instant when the water front crosses the leading edge of the model structure, similar to 

the definitions in the present study. 

The measured Umax and UD profiles for the 2D and 3D cases are shown in Fig. 

4.7. In the figure, both Umax and UD in the 2D case are higher than that in the 3D case.  

However, the difference is not too significant, especially at the beginning of the green 

water process. In general Eq. (4.8) seems to provide an overall best prediction, consistent 

with what Ryu et al. (2007b) found in their study using the 2D structure. 
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                           (a) 

 

                         (b) 

 

                           (c) 

 

                         (d) 

 

Fig. 4.7. Comparison of dam-break theory with the vertical plane velocity 

measurements for the wall impingement condition for the 2D and 3D cases at t = (a) 

0.02 s; (b) 0.06 s; (c) 0.10 s; (d) 0.14 s. , 3D Umax; , 3D UD; , 2D Umax; , 2D UD; 

 Ritter’s solution based on Eq. (4.6); , Ritter’s solution based on Eq. 

(4.7); , Ritter’s solution based on Eq. (4.8). 
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CHAPTER V 

GREEN WATER IMPACT PRESSURE* 

 

5.1. Introduction and literature review 

 

Wave impact pressure information is important in the design and safety of an 

offshore structure. This is especially important when the structure is under green water 

loading. Both numerical and experimental studies have been conducted to reveal the 

fundamental reasons for the huge impact pressure exerted on offshore structures by 

green water. Although impact pressure caused by non-breaking waves has been studied 

with good understanding, impact pressure caused by breaking waves is less understood 

and somewhat inconclusive among many studies. 

Bagnold (1939) conducted a detailed laboratory experimental study to investigate 

the nature of the shock pressure exerted on a vertical wall. He identified three types of 

impact pressure due to breaking waves. Firstly, if the location of wave breaking occurs 

early compared to the wall location, the wave front jet collapses before reaching the 

wall. Secondly, if the breaking occurs a little later, the jet may strike the wall before it 

falls. In doing so, it encloses a large cushion of air between the wall and wave front. 

 

_________ 

* Part of the data reported in this chapter is reprinted with permission from “Three-

dimensional green water velocity on a model structure” by Chang, Ariyarathne and 

Mercier (2011). Experiments in Fluids, DOI: 10.1007/s00348-011-1051-0, Copyright 

[2011] Springer. 
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In this case, when the concave front advances, the air is compressed, the water finally 

bursts upward with forming spray. Finally, if the breaking occurs beyond the above 

cases, which is the case where he observed highest impact pressure, the air cushion gets 

much thinner. A very flat vertical wave front hits the wall, and high impact pressure 

exists for a very short period of time. He observed a great variation in the pressure 

maxima from impact to impact, for the same incoming wave condition. With analytical 

approach, he proposed an equation to calculate the maximum impact pressure. He 

further mentioned that the impact pressure measured in the lab is higher than that 

observed in the field for the same wave condition due to different physical properties 

between sea water and fresh water. 

Blackmore and Hewson (1984) measured impact pressure on seawalls in the 

field, and compared them to predictions using existing semi-empirical equations. They 

showed that values calculated using these equations are not accurate. They later derived 

an expression for estimating impact pressure based on the local wave parameters and a 

void ratio coefficient. Ochi and Tsai (1984) conducted laboratory experiments to 

investigate impact pressure produced by deep water waves breaking on a circular 

cylinder, which represents a column of an offshore structure. Two different breaking 

conditions were considered: one is impact associated with waves breaking in close 

proximity to the structure, and the other is impact caused by waves approaching the 

structure after they have broken. For both breaking conditions, they presented that 

impact pressure is proportional to the square of impact velocity. A method to statistically 

predict the magnitude of the impact pressure is also given. 
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Chan and Melville (1988) obtained simultaneous measurements of kinematics 

and dynamics of impact pressures on a vertical wall resulting from a plunging breaking 

wave in deep water. They concluded that the characteristics and distributions of impact 

pressure depend on the wall location relative to the wave breaking location. Further they 

mentioned that for each location, identical incident wave conditions could give 

significantly different impact pressure due to randomness of trapped air dynamics during 

the wave breaking process. They observed that the impact occurs through focusing of 

incident wave front towards a localized zone on the wall. Within the localized zone, 

wave impact leads to a short rise time and high pressure maxima with oscillations 

immediately following the impact. Further, they observed that even though the 

magnitude of the maximum pressure varies, the impulse, which is the integration of the 

pressure over time, does not vary. By conducting similar experiments with a smaller 

scale, they obtained qualitatively very similar pressure characteristics compared to the 

previous large scale impact pressure measurements but the magnitude of the impact 

pressure was different. Subsequently, Chan (1994) examined pressure caused by a 

plunging breaking wave on a vertical wall in deep water based on laboratory 

measurements. He identified two scales of pressure, a slowly varying component in the 

order of stagnation pressure and a transient impact component with higher pressure. He 

concluded that the former scale is associated with wave evolution and latter scale is 

influenced by trapped air. Later, Chan et al. (1995) conducted laboratory tests to 

investigate pressure associated with plunging breaking waves on a vertical cylinder.  

Mechanics of the impact process was explained in terms of incident wave kinematics. 
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Kirkgoz (1990), Kirkgoz (1991), Kirkgoz (1992), Kirkgoz (1995) measured 

impact pressure, and deflections due to plunging breaking waves on both vertical and 

inclined wall, in a laboratory. Relations between impact pressure, force, and duration 

were investigated. The influence of water depth on the maximum values of the above 

three parameters were examined. It was found that the maximum values decrease rapidly 

as the wave breaks with the wave front parallel to the wall during the breaking process, 

and the maximum pressure occurs at the still water level. He found that the longer 

lasting low impact forces are more effective in producing larger deflections, whereas 

high amplitude impact forces with short durations have minor and local influences. He 

mentioned that comparing the impact loads on a vertical wall and sloped walls, the 

resulting forces on sloped walls can be greater than those on a vertical wall. He observed 

the maximum pressure at slightly below the still water level for all the sloping walls. 

Zhou et al. (1991) measured pressure distributions on surface piercing vertical 

cylinders due to breaking waves. Similar to many other researchers they noticed that the 

highest impact pressure is subject to considerable variability. A high impact region was 

found to be localized in time and space. They concluded that the variability is due to the 

random dynamics of the breaking wave front and the entrapped air. They also concluded 

that even though the repeatability of the incident wave hydrodynamics was not good, 

based on statistical methods the large impact pressure could be calculated with good 

accuracy. 

Hattori et al. (1994) conducted laboratory experiments to improve the 

understanding of impact pressure due to breaking waves. They found that the physics 
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and characteristics of the impact pressure greatly depended on the colliding conditions of 

the breaking waves. They studied three types of colliding conditions: flip through, 

collision of the vertical wave front, and plunging wave collision. They found that impact 

pressure increases considerably when a small amount of air is entrapped between the 

wave and the structure wall. Highest pressure of short duration was observed when a 

vertical wave front strikes the structure wall while trapping a small amount of air in the 

form of either bubbles or a thin lens shaped air pocket. They observed that the larger the 

entrapped air, the lower the impact pressure and longer the time it takes to attain the 

maximum pressure. In addition, they found that more air is entrapped in a plunging 

breaker, hence the magnitude of the impact pressure is low and it takes a longer time to 

reach the maximum, while this air damps the pressure oscillation. Based on their 

experiments, they concluded that the adiabatic processes of the air pocket play an 

essential role in the physics of high impact pressure. 

Azarmsa et al. (1996) did an experimental study on impact pressure 

measurements on spilling and plunging breaking waves on a vertical wall. They 

concluded that the impact pressure can be well expressed in terms of internal kinematics 

of breaking waves. Since they observed impact pressure for both spilling (without 

entrapped air) and plunging (with entrapped air) breaking waves, they concluded that 

entrapped air does not play any role in generation of the impact pressure, although 

pressure oscillations may be linked to entrapped air dynamics. They observed that the 

size of the impact zone is smaller for spilling breaker than that for plunging breaker. By 

applying a numerical model, they calculated the internal kinematics of breaking waves 
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and showed that the vertical components of velocity and acceleration of water particles 

should be considered in computing of the impact pressure. 

Bullock et al. (2001) examined the effects of level of aeration and violence of 

impact on maximum impact pressure. They developed a relationship which estimates the 

reduction of impact pressure due to aeration. More recently, Bullock et al. (2007) 

conducted laboratory tests to investigate the characteristics of wave impacts due to 

breaking waves impinging on a vertical wall and an inclined wall. They concluded that 

the characteristics of the impact depend on the breaker condition. They identified two 

types of impact pressures: low aeration impact characterized by localized high peak 

pressure and short rise times, and high aeration impact characterized by longer rise 

periods and sub atmospheric pressures. Giving attention to entrapped air, they concluded 

that a high level of aeration does not always reduce the peak pressure, but it increases the 

rise time and duration, hence the impulse force on the structure. In addition, they 

reported that alternative compression and expansion of the entrapped air could generate 

sub-atmospheric pressure. They also observed that the highest impact pressure occurs 

around the still water level, and pressure on a sloping wall is lower than that on a vertical 

wall, even though the impulse in the entire event is independent of the slope. They found 

that even though the pressure distribution is different for identical waves, the impulse is 

almost the same. 

Hull and Muller (2002) conducted detailed laboratory experiments of breaker 

shapes and wave impact pressure on a vertical wall. Photos were taken simultaneously 

with the pressure measurements. Velocity was measured using Particle Image 
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Velocimetry (PIV) technique. They concluded that all particles at the wave front aim at 

one point on the sea wall, thus most probably the high impact is caused by the impact of 

the horizontally moving wave crest. They observed that the maximum pressure for 

plunging breakers appears at the still water level, but they also observed high pressure 

for other breaker types above and below still water level. The point of maximum 

pressure was observed to shift from a position above still water level (SWL) for a flip 

through to SWL for breakers with small and large air pockets. 

Wienke and Oumeraci (2005) examined breaking waves acting on a slender 

cylindrical pile. They split the load into quasi-static and dynamic components. They 

concluded that the quasi-static component can be approximated by the Morison 

equation, but the dynamic component is associated with the impact of a mass of water on 

the cylinder. Further they developed an analytical formula for the impact force. 

Lugni et al. (2006) conducted laboratory experiments to investigate the 

kinematics and dynamics of impact of breaking waves on a vertical rigid wall. They 

observed church roof type pressure variations for most measurement locations, and the 

highest pressure was above the still water level. They noticed that the pressure does not 

depart much from the hydrostatic pressure during the wave advancement, but it differs a 

lot during the wave focusing stage due to intense locality and three dimensionality of the 

phenomenon. With the measured variations, they mentioned that for the cases without 

air entrapment a gradual pressure decrease appears after the impact, whereas for the 

cases with air entrapment the pressure oscillates. 
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Recently, Cuomo et al. (2010) conducted laboratory experiments to quantify 

wave impact forces on a steeply-battered wall. They compared the results with 

predictions from various empirical and analytical methods. They concluded that no 

existing methods are able to provide accurate predictions over the range of 

measurements. They introduced prediction formulae for quasi-static impact forces and 

overturning moments. The formulae were validated with existing measured data. 

Although most of the impact pressure studies are experimental, there exist a few 

numerical studies. Bredmose et al. (2009) developed a numerical model to calculate the 

impact pressure, with waves being modeled as irrotational flow. They considered 

different types of impact that may or may not lead to air entrapment. Impact pressure 

was calculated using a flow model based on energy conservation of a homogeneous 

mixture of incompressible liquid and ideal gas. They presented wave propagating 

towards a vertical wall, forming flip through type (no air is trapped), and overturning 

breakers (trapping large air packets) by varying the initial offshore wave height. They 

concluded that the impact pressure is very sensitive to the incident wave conditions. 

Further they concluded that even though the maximum pressure is sensitive to the wave 

conditions, the force and impulse are less sensitive to the wave conditions. Based on 

experiments they observed sub atmospheric pressure due to expansion of the trapped air 

following its initial violent compression. They observed highest impact pressures for 

waves that trapped a small amount of air. 

Duan et al. (2009) developed a numerical model to investigate impact pressure 

due to a plunging breaking wave hitting obliquely on a coastal structure. The problem 



 

 

84 

was modeled as an oblique collision of an asymmetrical water wedge and an 

asymmetrical solid wedge. Variations of wave elevation, pressure distribution, forces, 

and effects of different impact angles were investigated. Khayyer and Gotoh (2009) 

developed a numerical model based on a modified Moving Particle Semi-implicit (MPS) 

method to study impact pressure. By introducing new formulations for pressure gradient 

and the source term in Poisson pressure equation and by allowing a slight 

compressibility, they proposed a modified MPS method for the prediction of wave 

impact pressure on a coastal structure. The improved performance was verified by 

comparisons with experimental data. 

Even though a number of numerical models have been developed to predict 

impact pressure, most of them are based on simplified assumptions in both governing 

equations (such as inviscid and incompressible fluid, and single-phase flow) and in 

boundary conditions. None of the models is able to predict impact pressure with a high 

accuracy. The understanding of impact pressure is still poor due to the complex and 

violent process of wave breaking. 

Estimating impact pressure is difficult not only in numerical models but also in 

laboratory measurements. In laboratory studies a common limitation is the spatial 

resolution of measurements. Since impact occurs locally over a small area whereas the 

location varies with a slight variation of the incident wave parameters and the turbulent 

nature of the flow, it is difficult to obtain impact pressure accurately. Further difficulties 

arise in inaccurate high frequency response of pressure sensors and data acquisition 

devices. Measuring impact pressure due to breaking waves is even harder. In most of the 
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experimental studies, it is very difficult to measure impact pressure due to complex 

temporal and spatial dependence of impact zone. According to observations, the shape of 

the wave which affects rise of high impact pressure is also uncertain. Some researchers 

observed the high impact pressures when there is a large packet of entrapped air, 

whereas some researchers observed high impact pressure when there is a small amount 

of entrapped air. The location of the high impact pressure is also inconclusive. In some 

studies it was observed that high impact pressure appears at the still water level, while in 

some studies it was observed that high impact pressure appears above the still water 

level. 

When a wave breaks near a structure the flow becomes turbulent and two-phase. 

Knowledge of void ratio is necessary to correctly define the flow parameters such as 

density, mass, or momentum in two-phase flows. However due to the difficulties in 

measuring the void ratio in breaking waves, little information is available regarding this. 

Most of these studies are limited to breaking waves. Void ratio for flows where breaking 

waves interacting with a structure has been rarely studied. 

So far, measurements of void ratio are obtained by using variety of different 

techniques including video techniques, acoustic techniques and conductivity techniques 

and using a single probe or double probes. Lamarre and Melville (1992) developed an 

impedance probe and measured the temporal and spatial variation of void ratio for 

breaking waves in laboratory and in field. The probe is capable of measuring the void 

ratio in the initial period after wave breaking, where large void ratio prevails. Further, 

with the underwater video photography in field they demonstrated the evolution of 
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distinct bubble plumes and the presence of large bubbles with a radius of 6 mm and 

above. 

Chanson et al. (1997) studied air bubble entrainment at a pseudo plunging 

breaker and bubble detrainment process. They observed unsteady air water flow patterns 

and high levels of aeration. Subsequently, Chanson and Manasseh (2003) carried out 

laboratory experiments to measure air entrainment in a plunging jet. They used a 

conductivity probe and an acoustic technique to measure void ratio. Comparing the 

measurements of the two techniques they concluded that the acoustic technique can 

provide accurate void ratio data in high void ratio flows, and this acoustic technique 

could be used in hostile industrial or in the field where more delicate instruments are 

impractical. Deane (1997) did acoustic and optical measurements of individual breaking 

waves in the surf zone. He took pictures of the bubble plume formed beneath the 

breaking surf, which provided plume size, bubble size distribution and void ratio. Void 

ratios of 0.3-0.4 were measured. 

Deane and Stokes (2002) conducted laboratory experiments and field 

measurements to investigate bubble size distribution in breaking waves using a video 

technique. They provided a quantitative description of bubble formation mechanisms in 

the laboratory and identified two mechanisms controlling the size distribution. They 

concluded that after the initial injection phase the large and small bubble parts of the 

bubble size distribution followed a power law with exponents of -10/3 and -3/2 

respectively, where as after about 1.5 s these values fall to -6 and -2.3. Mori et al. (2007) 

carried out a series of laboratory experiments and simultaneously measured free surface 
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elevation, water velocity, void ratio and bubble distribution for a regular breaking wave 

on a plane slope using a dual tip resistivity probe. They made measurements in two wave 

flumes to check the scale effects on air entrapment. They mentioned that the effect of 

scale on void ratio is significant, where the void ratio of the mid scale experiments was 

2-4 times larger than the small scale experiments. Further, they observed that the bubble 

size follows a power law, the slope of the time and space averaged bubble size spectrum 

was independent of scale, and also observed that time averaged void ratio is linearly 

related to time averaged total kinetic energy. Rojas and Loewen (2007) conducted 

experiments to measure the temporal and spatial variations of void ratio and bubble size 

distribution under breaking waves. Measuring the void ratio using single tip fiber optic 

probe and a double tip fiber optic probe, they concluded that single tip fiber optic probe 

is able to provide accurate measurement. They provided data in the dense bubble plumes 

located just below the free surface and also in the disperse parts of bubble plume. 

Blenkinsopp and Chaplin (2010) measured size of bubbles entrained in the dense 

plumes generated by breaking waves using a pair of highly sensitive optical fiber phase 

detection probes. Details of spatial and temporal evolution of bubble sizes within breaker 

were discussed. They successfully compared the measurements with previous 

measurements in low void ratio parts of the flow, and also measured the void ratio 

within highly aerated regions present in the period shortly after wave breaking. They 

concluded that some large air cavities with diameters of tens of millimeters are 

entrapped. They observed that the bubbles resident within the plume rapidly decrease in 



 

 

88 

size with time and distance away from the point of primary entrainment as the large 

cavities initially entrained are broken to smaller bubbles. 

Even though there is some experimental work on measuring the void ratio of 

breaking waves, there are few studies of void ratio measurements for flows where the 

breaking wave interacts with a structure. Ryu and Chang (2008) measured overtopping 

green water void ratio over a two dimensional model structure in a laboratory. Fiber 

Optic Reflectometer (FOR) technique was applied. Temporal and spatial distribution of 

the void ratio over the deck surface was obtained and discussed. They concluded that the 

void ratio is high near the green water front where as it is low near the deck surface. 

Similarity profile for depth averaged void ratio is also given. 

The objective of the present study is to examine the maximum impact pressure 

on the deck area of the model structure, and to relate the pressure with the measured 

velocity on the deck. The spatial and temporal variations of impact pressure were 

investigated at two vertical planes: one at the center of the horizontal deck surface and 

the other at 50 mm away from the center for both the wall impingement and deck 

impingement wave conditions. Ensemble averaged pressure variations as a function of 

time and space were shown and compared for the two vertical planes and the two wave 

conditions. Normalized pressure variations were also presented. Two types of pressure 

variations were identified: impulsive type with high impact pressure and short rising 

time, and non impulsive type with a bell shape variation of pressure over time. The 

magnitude of the maximum impact pressure was tabulated and the location where it 

occurs was extracted. Possibility of obtaining a relationship between the maximum 
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impact pressure and the rising time was investigated. In the present study, the void ratio 

was measured for a few pressure measurement locations located near the front of the 

model. The ensemble averaged spatial and temporal variations of the void ratio are 

presented and discussed. It was observed that for most of the measurement locations, 

void ratio stays at a constant value over time. The objective of the study was to relate the 

measured impact pressure with the measured velocity, after correcting the density of the 

flow. Based on the images in the BIV measurements (Chapter III), it was observed that 

the green water flow over the deck behaves like a jet for both the wall impingement and 

deck impingement wave conditions. Hence, the kinetic energy was related with 

measured pressure for calculating impact pressure. With the measurements of void ratio, 

the density of the mixture of water and air was corrected, and the jet impact pressure was 

predicted based on the momentum of incoming wave and was compared with the 

measured impact pressure data. 

 

5.2. Experimental setup 

 

In the present study, pressure measurements were taken at two vertical planes for 

both wall impingement and deck impingement wave conditions: one at the center of the 

horizontal deck surface and the other 50 mm away from the center. For each plane, 

locations were selected at every 50 mm in the X direction along the horizontal deck 

surface starting from the leading front (X = 0) of the model, and at every 50 mm in the Z 

direction starting from Z = 20 mm above the deck surface to the highest water level. See 
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Figs. 5.1 and 5.2 for the pressure measurement locations for the wall impingement and 

deck impingement cases, respectively. At X = 100 mm, additional measurement points 

were introduced at Z = 50 mm. 

Pressure data was acquired using a piezo-resistive relative pressure sensor 

(Kistler type 4053A1). The sensor is capable of measuring the addition of hydrostatic 

pressure and dynamic pressure. The sensor is limited to pressure measurement up to 1 

bar, and it measures pressure differential with the surrounding atmospheric pressure as 

the reference. The natural frequency of the sensor is higher than 15 kHz, hence it is 

suitable for measuring dynamic pressure in the study. The sensor requires a constant 

input current, which is provided by an accompanying amplifier (Kistler type 4618A).  

Measurements were taken at a sampling rate of 10 kHz. A National Instruments data 

acquisition board (6259USB) was used to acquire the data. The pressure sensor was 

mounted on a thin vertical Plexiglas plate with a width of 25 mm facing the flow. The 

sensor is oriented perpendicular to the incoming waves (see Fig. 5.3), hence it measures 

the impact pressure resulting from the horizontal momentum. Note that in the vertical 

plane velocity measurements in Chapter III, it was observed that the vertical velocity on 

the structure deck is much lower than the horizontal velocity after the flow reaches the 

deck surface. The horizontal impact force thus dominates in the green water process. 
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                                    (a)                                                                            (b) 

 

 

                                                 (c) 

 

 

Fig. 5.1. Locations of pressure measurements for the wall impingement wave condition. 

(a) Side view, vertical plane at centerline; (b) side view, vertical plane at 50 mm away 

from the centerline; (c) plan view;    , locations of pressure measurements. 
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                                     (a)                                                                        (b) 

 

                                                (c) 

 

Fig. 5.2. Locations of pressure measurements for the deck impingement wave condition. 

(a) Side view, vertical plane at centerline; (b) side view, vertical plane at 50 mm away 

from the centerline; (c) plan view;   , locations of pressure measurements. 
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Before using the pressure sensor in the experiment, the sensor was calibrated.  The 

calibration was performed in water under a hydrostatic pressure condition for every 0.05 

m up to a maximum of 0.75 m water depth. Based on images in BIV measurements the 

maximum water level above the deck is 0.17 m for the wall impingement wave and 0.08 m 

for the deck impingement wave, thus calibrating up to 0.75 m pressure head may be 

adequate to cover the range of impact pressure. In the calibration the sensor was kept 

under water at each pre-determined depth for 10 s and the pressure readings were recorded 

at 10 kHz. Each test was repeated five times and averaged. The variation of averaged 

voltage versus hydrostatic pressure is plotted in Fig. 5.4. The figure confirms that the 

sensor response is linear. The standard deviation is estimated as 0.002 Volt, which is 

equivalent to a 2 mm pressure head in water. 

Since the green water flow is turbulent, repeating measurements at each given 

location is needed to average out the fluctuations. The pressure measurements were 

repeated five times at each measurement point. To examine whether the number of 

repeated tests is appropriate, ten runs were repeated for the wall impingement wave 

condition at location 2a in Fig. 5.1. The ensemble averaged value of the ten trials was 

compared with that of five trials and was plotted in Fig. 5.5. It was observed that the 

average of five trials is very close to that of ten trials, and it captures the peak pressure 

reasonably well. Hence for each measurement locations, the pressure measurements were 

repeated for five times. 
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vertical Plexiglas plate

pressure sensor

 
                              

Fig. 5.3. Pressure sensor setup. 
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Fig. 5.4. Pressure sensor calibration line. Gradient of the line is 9980.6 and intercept is 

-858.14. 
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                                                                      (a) 

 

                                                                      (b) 

 
 

Fig. 5.5. Comparison of ensemble averages of five trials and ten trials. (a) Ensemble average 

 of five trials; (b) ensemble average of ten trials. +, measured; +, moving average over  

nine points. 
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The pressure sensor has to be mounted at a required measurement location so the 

impact pressure can be measured. In the present study the pressure sensor was mounted 

on a plexiglas sheet. Since introducing a plexiglas plate is likely to affect the flow and 

therefore the pressure measurements, the effect of width of the supporting plate on the 

impact pressure was investigated. For the wall impingement wave condition, pressure 

variations at location 2b was measured for two plate widths: one with the sensor 

mounted on a 25 mm wide plate and the other with the sensor mounted on a 110 mm 

wide plate. Since the diameter of the sensor is 15 mm, the minimum width of the plate is 

limited to 25 mm. The ensemble averaged pressure variations of five repeats is shown in 

Fig. 5.6 for the two plates. Accordingly, the magnitude of the maximum pressure is 

almost same for both the 25 mm and 110 mm wide plates. Maximum pressure is 893 Pa 

for 25 mm plate and is 889 Pa for 110 mm plate, thus there is a 0.45% increase for 25 

mm plate compared to 110 mm plate. How ever the overall pressure variations are 

different. For the wider plate, negative pressure was observed after the peak pressure. 

Appearance of negative pressure may symbolize the expansion of entrapped air after the 

initial compression. Since the wider plate is likely cause more disturbances to the 

incoming flow, the turbulence level and complexity of the flow is higher. Hence there 

are some fluctuations/oscillations in the measured pressure for the wider plate, compared 

to the thin plate where the pressure variation is smooth. 
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A breaking wave impact is said to be very turbulent and short, thus the frequency 

of data acquisition is important in capturing the peak pressure. In order to identify the 

adequacy of measurements frequency on the measured impact pressure, pressure was 

measured at 5 kHz, 10 kHz and 20 kHz for the wall impingement condition at location 

2b. Fig. 5.7 shows the ensemble average of five repeats for each frequency. As the figure 

shows, even though the overall pressure distributions are qualitatively similar, 5 kHz 

may not be adequate to capture the peak pressure. Both 10 kHz and 20 kHz capture the 

peak pressure successfully. The magnitude of the peak pressure is 881 Pa, 1179 Pa and 

1207 Pa for 5 kHz, 10 kHz and 20 kHz respectively. Hence for 5 kHz and 10 kHz the 

difference is 27% and 2% in terms of peak pressure with 20 kHz. Thus 10 kHz was 

selected as the data acquisition frequency in the present study.  

In the vertical plane velocity measurements, it was observed that, after about 

0.15m away from the leading front edge of the model, the measured velocity has some 

uncertainty due to the blockage of the focused measurement plane. Hence, in the 

comparison of pressure and velocity, only locations with accurate velocity measurements 

were used. Hence for both wall impingement and deck impingement waves, pressure 

measurement points which are located within first 0.10 m from the leading front edge of 

the model structure were selected. Thus for the wall impingement wave, the locations 1a, 

1c, 2a, 2c, 3a, 3b and 3c were selected. For deck impingement wave condition, the 

locations 1a, 2a, 2b, 3a and 3b were selected. See Figs. 5.8 and 5.9 for the locations of 

void ratio measurements for the wall impingement wave and the deck impingement 

wave conditions respectively. 
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(a) 

 

(b) 

 

Fig. 5.6. Comparison of effect of width of plate on pressure measurements. Ensemble 

averaged pressure variations of five trials for (a) 25 mm wide plate; (b) 110 mm wide 

plate. 
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Fig. 5.7. Comparison of frequency of data acquisition on pressure measurements. 

Ensemble averaged pressure variations of five trials (a) 5 kHz; (b) 10 kHz; (c) 20 kHz.  
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                             (a)                                                                           (b) 

 

                                                   (c) 

 

Fig. 5.8. Locations of void ratio measurements for the wall impingement wave 

condition. (a) Side view, vertical plane at centerline; (b) side view, vertical plane at 50 

mm away from the centerline; (c) plan view;     , locations of void ratio measurements. 
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                                  (a)                                                                             (b) 

 

                                                (c) 

 

Fig. 5.9. Locations of void ratio measurements for the deck impingement wave 

condition. (a) Side view, vertical plane at centerline; (b) side view, vertical plane at 50 

mm away from the centerline; (c) plan view;    , locations of void ratio measurements. 
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Void ratio data was acquired using Fiber Optic Reflectometer technique, which 

was introduced by Chang et al. (2003). FOR technique can be used to measure the void 

ratio, velocity and the concentration (Chang et al. (2002) and Chang et al. (2003)). The 

technique is based on the coherent mixing of scattered signals with Fresnel reflection 

from the tip of an optical fiber. A diode laser, with a coherence length of about 200 µm, 

which is driven by a constant current, emits an optical signal, which is transferred to a 

signal mode optical fiber. The optical fiber transmits this signal through a fiber coupler 

to the testing fluid. The coherently mixed signal returns back to the signal fiber through 

the fiber coupler. This returning signal is detected and acquired by the data acquisition 

board. Since the voltage of the returning signal is high for the air medium compared to 

that of water, it is possible to easily identify the phase of a mixture of air and water. The 

setup of the FOR system depicted in Chang et al. (2003) is shown in Fig. 5.10. The 

details of the FOR sensor setup used in the present study is shown in Fig. 5.11. Since 

only disturbance to the flow is intrusion of a small fiber probe, the disturbance is 

minimal. The details of the FOR technique can be found in Chang et al. (2003). 

A sampling rate of 100 kHz for 10 s was used to obtain the void ratio for each 

measurement location. Following, Ryu and Chang (2008) the tests were repeated twenty 

times. In the acquired voltage signal, a high voltage represents air whereas a low voltage 

represents water, see Fig. 5.12. 
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Fig. 5.10. Setup of FOR system. Chang et al. (2003). 
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Fig. 5.11. FOR sensor setup. 
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Fig. 5.12. Instantaneous void ratio voltage signal. 
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The void ratio is defined as the ratio of air-phase residence time (
air

T ) to the 

duration of air-water mixture (
dur

T ) at the location. Thus, the value of void ratio may be 

affected by the selected
dur

T . To obtain the instantaneous void ratio for the twenty repeat 

tests at each measurement location, first the voltage was set to zero for water and to one 

for air. In the present study void ratio was calculated by averaging the voltage signal 

over a short time interval of 0.001 s, i.e. average over every hundred consecutive points. 

Hence the final temporal resolution is 1000 Hz which is identical to the frequency of 

velocity measurements. 

The definition of void ratio at a given point is expressed as, 

,

,

air i

i

dur i

T

T
α =         (5.1) 

i
α  is the instantaneous void ratio, ,air i

T  is the duration of air phase during ,dur i
T , ,dur i

T  is 

the time interval for void ratio binning, subscript i indicates the i th repeat. Therefore 

i
α = 1.0 means the probe is in air and 

i
α = 0.0 means the probe is in water. 
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5.3. Impact pressure - wall impingement case 

 

Fig. 5.13 shows the spatial and temporal variations of normalized pressure on the 

vertical plane at the centerline of the deck surface for wall impingement wave condition.  

The figure was plotted with each panel located at the corresponding measurement point 

as sketched in Fig. 5.1(a). Fig. 5.14 plots the measured pressure time history at all the 

measurement points in Fig. 5.13 together in one chart. As depicted in the figure only one 

single prominent pressure peak was observed for all the measurement points, although at 

some points lower magnitude peaks were also observed. No obvious pressure oscillation 

was found in the measurements on this vertical plane for the wall impingement 

condition. Negative pressure was observed for a few points, indicating the expansion of 

entrapped air. Even though simultaneous movies were taken in the present study, the 

movies were not well focused for the pressure measurement location. Hence it was not 

possible to observe the entrapped air. Appearance of negative pressure due to the 

expansion of entrapped air has been observed and reported previously by other 

researchers (e.g., Chan and Melville, 1988; Bullock et al., 2007; Bredmose et al., 2009). 

The magnitude of the maximum measured pressure and the rise time for the 

measurement locations on the vertical plane at the centerline for the wall impingement 

condition is summarized on page 114. 
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Fig. 5.13. Measured pressure (normalized by 2 / 2Cρ ) against time (normalized by T) on 

the vertical plane at the centerline of the deck surface for the wall impingement wave 

condition. The vertical axis is
20.5

P

Cρ
. The panels are arranged in accordance to Fig. 

5.1(a). 
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According to Figs. 5.13 and 5.14, the maximum pressure of 0.44 (normalized 

by 20.5 Cρ ) or 894 Pa (equivalent to 151 kPa in the prototype) appears at point 2c, 

located 0.10 m behind the front leading edge and 0.07 m above the deck surface. 

Measured pressure at Z = 0.07 m is higher than that at the top and bottom rows. That is 

consistent with what was found on the vertical-plane velocity measurements in Fig. 3.1 

in which the maximum velocity is neither near the deck surface nor near the upper free 

surface of the overtopping water on the deck. On the other hand, higher pressure does 

occur near the deck surface at the sections closer to the frontal edge and the end of the 

deck, as shown in the bottom row (Z = 0.02 m) in Fig. 5.13. This is also consistent with 

the velocity measurements. 

The exact location where the maximum pressure occurs is unknown due to the 

coarse measurement “grid” in the pressure measurements. The top row (Z = 0.12 m) has 

relatively low pressure; water barely reached this height. No indication of pressure was 

observed after 0.30 m away from the leading front edge of the model structure. 



 

 

111 

 

Fig. 5.14. Pressure time history for the vertical plane located at the center of the deck, 

for wall impingement wave condition. The legend corresponds to the measurement 

points in Fig. 5.1(a). 
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According Fig. 5.14, the overall pressure characteristics are similar for all the 

measurement points: pressure variations are smooth and bell shaped, pressure rises 

slowly, and pressure reaches the maximum and decreases gradually. All the pressure 

variations have a single peak. For the wall impingement condition on the vertical plane 

at the deck centre, no impulsive type (see Fig. 5.15(b)) pressure variations were 

observed. The impulsive type pressure rises instantaneously with small rising time was 

observed for deck impingement wave and will be discussed later. On the vertical plane at 

the deck centre the maximum pressure lies below 500 Pa. Notice that as given in Table 

5.1 the rise time decreases towards the end of the deck from 0.0297 s (0.02T) to 0.0047 s 

(0.003T), where T is the wave period, even though the magnitude of the maximum 

impact pressure does not necessarily increase. The magnitude of the maximum impact 

pressure at the elevation of 0.07 m is almost twice to that at the elevation of 0.02 m for 

locations 2, 4, and 6. As Table 5.1 shows the gradient of the pressure rise is below 250 

Pa/ms for all the measurement locations. Later it was observed that for impulsive type 

pressure the pressure rising gradient is above 250 Pa/ms. 
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(a) 

 

(b) 

 

Fig. 5.15. Pressure variation: (a) non – impulsive type; (b) impulsive type. 
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Table 5.1. Measured maximum pressure corresponding to Fig. 5.1(a). Pressure was 

normalized by 20.5 Cρ . 

Location Maximum pressure (Pa) 

Normalized 

maximum 

pressure 

Rise time 

(s) 

dp/dt 

(Pa/ms) 

1a 357 0.18 0.0297 12 

1c 155 0.08 0.0036 43 

2a 352 0.17 0.0196 18 

2b 603 0.30 0.0214 28 

2c 894 0.44 0.0135 66 

4a 303 0.15 0.0087 35 

4c 653 0.32 0.0084 78 

6a 440 0.22 0.0038 116 

6c 769 0.38 0.0061 126 

8a 434 0.21 0.0076 57 

8c 385 0.19 0.0047 82 

10a 475 0.23 0.0047 101 

 

 

 

Fig. 5.16 shows spatial and temporal variations of measured (normalized 

by 20.5 Cρ ) pressure on the vertical plane at 0.05 m away from the centerline of the deck 

for the wall impingement wave condition. The figure was plotted with each panel 

located at the corresponding measurement point in Fig. 5.1(b). Fig. 5.17 shows a detailed 

view over the peak pressure for all pressure variations in Fig. 5.16. 
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Fig. 5.16. Measured pressure (normalized by 2 / 2Cρ ) against time (normalized by T) on 

the vertical plane 0.05 m away from the centerline of the deck surface for the wall 

impingement wave condition. The vertical axis is
20.5

P

Cρ
. The panels are arranged in 

accordance to Fig. 5.1(b). 
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Fig. 5.17. Pressure time history for the vertical plane located at 0.05 m from the center of 

the deck for the wall impingement condition. The legend corresponds to the 

measurement points in Fig. 5.1(b). 
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Table 5.2. Measured maximum pressure corresponding to Fig. 5.1(b). Pressure was 

normalized by 20.5 Cρ . 

Location Maximum pressure (Pa) 

Normalized 

maximum 

pressure 

Rise time 

(s) 

dp/dt 

(Pa/ms) 

3a 389 0.19 0.0466 8 

3b 2237 1.10 0.0086 260 

3c 1790 0.88 0.0064 280 

5a 418 0.20 0.0108 39 

5c 973 0.48 0.0194 50 

5d 789 0.39 0.0051 156 

7a 500 0.25 0.0085 59 

7c 802 0.39 0.0085 95 

7d 1138 0.56 0.0057 200 

9a 366 0.18 0.0044 83 

 

 

 

Table 5.2 summarizes the magnitude of the maximum pressure, rise time and the 

gradient of the pressure given in Fig. 5.16. 

In Figs. 5.16 and 5.17, the maximum pressure of 1.10 (normalized by 20.5 Cρ ) or 

2237 Pa (equivalent to 303 kPa in the prototype) occurred at point 3b located 0.10 m 

behind the front leading edge (X = 0.10 m) and 0.05 m above the deck surface (Z = 0.05 

m). This location is very close to point 2c (at centerline) in both the X and Z positions 

except point 3b is 0.05 m away (in Y direction) from the deck centerline. However, the 

magnitude of pressure at point 3b is more than twice that at point 2c. This is consistent 

with the horizontal-plane velocity measurements in Fig. 3.2 which shows that the 

velocity is higher at the lateral edge of the structure and lower near the centerline. Since 

the highest pressure was observed near the front edge, and since many sensitive 
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equipment and facilities are likely to situate near the bow area, this high pressure may 

potentially cause intensive damages. 

The measured pressure at the vertical plane 0.05 m away from the centerline 

indicates that the higher pressure zone is neither near the deck surface nor near the upper 

surface of the green water, similar to what was found in the pressure measurements on 

the vertical plane at the centerline. 

In addition, the measured pressure in the zone closer to the upper free surface is 

higher (except near the deck front edge) than that near the deck surface; this is different 

from pressure on the vertical plane at the centerline. The maximum pressure at the 

bottom row, at Z = 0.02 m (near the deck surface) is lower than 1/4 of the maximum 

pressure at Z = 0.07 m, and lower than 1/2 of the maximum pressure at Z = 0.12 m (near 

the upper free surface). Similar to the previous observation, the peak pressure for the 

elevation of 0.02 m above the deck surface lies below 500 Pa. No indication of pressure 

was observed after 0.25 m away from the leading front edge of the model structure. 
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As Fig. 5.17 depicts the pressure time history for all the measurement locations 

has a single peak. However, on this vertical plane the pressure time history for locations 

3b and 3c shows a rapid increase towards the peak pressure. This is identified as the 

“impulsive type pressure” variation. According to Table 5.2, the gradient of pressure rise 

is above 250 Pa/ms. 

 

5.4. Impact pressure - deck impingement case 

 

Fig. 5.18 indicates spatial and temporal variations of measured pressure 

normalized by 20.5 Cρ on the vertical plane at the centerline of the deck for the deck 

impingement wave condition. The figure was plotted with each panel located at the 

corresponding measurement point in Fig. 5.2(a). Fig. 5.19 depicts a detailed view over 

the peak pressure for each pressure variation in Fig. 5.18. Table 5.3 summarizes the 

magnitude of the maximum pressure, rise time, and gradient of the pressure in Fig. 5.18. 
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Fig. 5.18. Measured pressure (normalized by 2 / 2Cρ ) against time (normalized by T) on 

the vertical plane at the centerline of the deck surface for the deck impingement wave 

condition. The vertical axis is
20.5

P

Cρ
. The panels are arranged in accordance to Fig. 

5.2(a). 
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Fig. 5.19. Pressure time history on the vertical plane located at the center of the deck for 

the deck impingement wave condition. The legend corresponds to the measurement 

points in Fig. 5.2(a). 

 

 

 

As Fig. 5.18 depicts, the maximum normalized pressure of 2.1 (normalized by 

20.5 Cρ ) or 4364 Pa (equivalent to 738 kPa in the prototype) occurred at point 8a, 

located 0.25 m behind the front leading edge and 0.02 m above the deck surface. A 

similar impact pressure peak of 4213 Pa appears at location 1a, located near the front 

edge at 0.05 m behind the front leading edge and 0.02 m above the deck surface. Notice 

that in the vertical plane velocity measurements as in Fig. 3.4, the maximum horizontal 

velocity of 1.44 C was observed at X = 0.24 m. This location is very close to the location 

where the peak pressure is observed. Further, it was observed that for the deck 

impingement wave condition the breaking wave impinges at 0.03 m on the deck behind 
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the leading edge of the model. This location is very close to where the second peak 

pressure was observed. Compared to the measured pressure history for the wall 

impingement wave condition, for deck impingement condition pressure near the deck 

surface is higher for all the measurement locations. No indication of wave impact is 

evident for 0.07 m height above deck surface.  

The deck impingement wave condition could cause severe damages since higher 

pressure was observed compared to the wall impingement condition, especially many 

sensitive facilities are located on deck surface. For the deck impingement wave case, 

pressures were observed towards the very end of the deck, where as for the wall 

impingement wave, no indication of pressure was observed after 0.30 m from the front 

edge. Similar to the wall impingement wave, no pressure appears above 0.07 m 

elevation. 

As Fig. 5.19 indicates, for deck impingement condition most of the locations 

show impulsive type pressure variations. The pressure time history shows an almost 

instantaneous rise. As Table 5.3 summarizes, the pressure gradient is above 250 Pa/ms 

for locations 1a, 8a, and 12a. Similar to the wall impingement condition, most of the 

pressure variations have one single peak and no oscillations. 
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Table 5.3. Measured maximum pressure corresponding to Fig. 5.2(a). Pressure was 

normalized by 20.5 Cρ . 

Location Maximum pressure (Pa) 

Normalized 

Maximum 

pressure Rise time (s) 

dp/dt 

(Pa/ms) 

1a 4213 2.02 0.0071 593 

2a 544 0.26 0.0313 17 

2b 1972 0.95 0.0088 224 

2c 469 0.23 0.0332 14 

4a 720 0.35 0.0426 17 

4c 649 0.31 0.0096 67 

6a 2158 1.04 0.0182 119 

6c 184 0.09 0.0115 16 

8a 4364 2.10 0.0031 1393 

10a 701 0.34 0.0145 48 

12a 2060 0.99 0.0045 459 

 

 

 

Fig. 5.20 indicates spatial and temporal histories of measured (normalized 

by 20.5 Cρ ) pressure on the vertical plane at 0.05 m away from the centerline of the deck 

for the deck impingement wave condition. The figure was plotted with each panel 

located at the corresponding measurement point in Fig. 5.2(b). Fig. 5.21 depicts a 

detailed view over the peak pressure for each and every pressure variations on Fig. 5.20. 

Table 5.4 summarizes the magnitude of the maximum pressure, rise time and the 

gradient of the pressure rise for the pressure time histories given in Fig. 5.20. 
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Fig. 5.20. Measured pressure (normalized by 2 / 2Cρ ) against time (normalized by T) on 

the vertical plane 0.05 m away from the centerline of the deck surface for the deck 

impingement wave condition. The vertical axis is
20.5

P

Cρ
.  The panels are arranged in 

accordance to Fig. 5.2(b). 
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Fig. 5.21. Pressure time history for the vertical plane located at 0.05 m from the center of 

the deck for the deck impingement wave condition. The legend corresponds to the 

measurement points in Fig. 5.2 (b). 
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Table 5.4. Measured maximum pressure corresponding to Fig. 5.2(b). Pressure was 

normalized by 20.5 Cρ . 

Location Maximum pressure (Pa) 

Normalized 

Maximum 

pressure Rise time (s) 

dp/dt 

(Pa/ms) 

3a 5048 2.43 0.0073 689 

3b 2642 1.27 0.0081 325 

3c 456 0.22 0.0465 10 

5a 947 0.46 0.0411 23 

5c 1519 0.73 0.0374 41 

7a 781 0.38 0.0249 31 

7c 807 0.39 0.0176 46 

9a 1027 0.49 0.0217 47 

9c 593 0.28 0.0133 44 

11a 796 0.38 0.0068 117 

13a 909 0.44 0.0071 128 

13c 683 0.33 0.0062 111 

 

 

 

According to the experimental results given in Fig. 5.20, the maximum 

normalized pressure of 2.43 (normalized by 20.5 Cρ ) or 5048 Pa (equivalent to 853 kPa 

in the prototype) occurred at point 3a located 0.10 m behind the front leading edge and 

0.02 m above the deck surface. This location is very close to the location where the 

breaking wave impinges on deck surface. The magnitude of the peak pressure is higher 

than that observed at the centre, which agrees well with the measured velocity. 

Impulsive type pressure variations having pressure rise gradients above 250 Pa/ms were 

observed at locations close to the leading front edge of the model at 3a and 3b. Similar to 

the measured pressure at centre, the pressure near the deck surface is higher for all the 

points to that compared to the wall impingement wave. Similar to the measurement at 

centre indication of pressure was observed towards the very end of the deck. Similar to 
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the wall impingement wave, most of the pressure variations have a single peak with no 

oscillations. 

 

Possibility of relating the peak impact pressure to the rise time has been 

investigated by several researchers such as Weggel and Maxwell (1970), Blackmore and 

Hewson (1984), Kirkgoz (1990), Hattori et al. (1994), and Cuomo et al. (2010). It was 

found that an upper envelope can be obtained for the individual peak pressure plotted 

against the rise time. Most of the researchers found that this relationship can be 

expressed in the form of, 

max

b

r
P at=         (5.2) 

where, maxp is peak pressure, 
r

t  is rising time, and a and b are coefficients. 

A wide range of values for a and b were proposed (see Table 5.5). These 

variations are attributed to scale, type of fluid used, and definition of 
r

t  etc. Although 

the value of coefficient b varies a lot, the value for coefficient a stays near unity. 

Considering the measured pressure time histories for both the wall impingement 

and deck impingement wave conditions and for both vertical planes, the possibility of 

correlating peak pressure and rise time was examined. Based on the measurements, an 

envelope and a best fit curve were obtained and shown in Fig. 5.22. Even though there 

are some data scattering, with close examination it is possible to reveal that the high 

impact pressure peaks associate closely with the short rise time and vice versa. Since the 

above relationship is dimensional; it is difficult to compare the present results with the 

existing proposed equations. 
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Fig. 5.22. Peak impact pressure, Pmax variation with rise time, tr. , wall impingement; , 

deck impingement; , envelope 112 t 
-0.80

; , curve fit 30 t 
-0.80

. R
2
=0.22. 
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Table 5.5. Relationships of peak impact pressure and rise time. 

Investigator Equation Equation in Pa and s a b 

Cuomo et al. 

(2010) 

0.60

max 7
r

F t
−=  

maxF - [kN], 
r

t - [s] 

   

Hattori et al. 

(1994) 

0.75

max 400
r

P t
−=  

maxP - [gf/cm
2
], 

r
t  - [ms] 

0.75725.34
max r

P t
−=  

 

725.34 -0.75 

Kirkgoz (1990) 4 0.90

max 25 10
r

P t
−= ×  

maxP - [Pa], 
r

t  - [ms] 

8 0.9

max 1.3 10
r

P t
−= ×  

 

81.3 10×  -0.90 

Blackmore and 

Hewson (1984) 

1.0

max 3.1
r

P t
−=  

maxP - [kPa], 
r

t  - [s] 

3 1.0

max 3.1 10
r

P t
− −= ×  

 

33.1 10−×  -1.00 

Weggel and 

Maxwell (1970) 
1.0

max 0.0069
r

P t
−= ; steepness, 

0

2

H

T
 =0.0589 

1.0

max 0.0033
r

P t
−=  ; steepness, 

0

2

H

T
 =0.2285 

maxP - [lb/in
2
], 

r
t  - [s] 

6 1.0

max 1.0 10
r

P t
− −= ×  

7 1.0

max 4.8 10
r

P t
− −= ×  

 

61.0 10−×  

74.8 10−×  

-1.00 

-1.00 
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5.5. Relation between impact pressure and velocity 

 

 Fig. 5.23 shows the spatial and temporal variations of ensemble averaged void 

ratio for measurement locations for the wall impingement wave condition. The figure 

was plotted with each panel located at the corresponding measurement point as shown in 

Fig. 5.1. Table 5.6 summarizes the average void ratio for each void ratio variation for the 

present study and the available averaged void ratio for the 2D study by Ryu and Chang 

(2008). 

 As Fig. 5.23 depicts the void ratio fluctuates a lot at the locations near the leading 

front edge of the model. After about 0.05 m away from the leading front edge, the void 

ratio stays at a constant level over time. For the locations near the front of the model, the 

void ratio near the deck surface (at Z = 0.02 m) is lower than that at 0.07 m above the 

deck. This is compatible with the variations Ryu and Chang (2008) observed. Further, 

the void ratio is high near the front edge, and gradually decreases along the deck surface. 

As Table 5.6 shows for most of the measurement locations, the averaged void ratio lies 

around 0.4. 
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Table 5.6. Averaged void ratio for the wall impingement corresponding to Fig. 5.23. 

Location Averaged void ratio 

for 3D model 

Averaged void ratio for 2D model  

(Ryu and Chang (2008)) 

1a 0.32 0.42 

1c 0.42 0.65 

2a 0.38 0.50 

2c 0.48 0.63 

3a 0.41  

3b 0.42  

3c 0.35  



 

    

1
3
2
  

 

 

 

 

 

  

  

 

   

Fig. 5.23. Measured void ratio for the wall impingement wave condition. The panels are arranged in accordance to Fig. 5.1.
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Fig. 5.24 shows the spatial and temporal variations of ensemble averaged void 

ratio for measurement locations for the deck impingement wave condition. The figure 

was plotted with each panel located at the corresponding measurement point as shown in 

Figure 5.2. Table 5.7 summarizes the average void ratio for each void ratio variation. 

Similar to the wall impingement wave condition, as Fig. 5.24 depicts the 

magnitude of the void ratio scatters a lot. For deck impingement wave condition, the 

void ratio is higher near the deck surface compared to wall impingement wave. Similar 

to wall impingement wave the void ratio lies around a constant over time. Further, the 

void ratio is high near the front edge, and gradually decreases along the deck surface. 

 

 

 

Table 5.7. Averaged void ratio for the deck impingement corresponding to Fig. 5.24. 

Location Averaged void ratio 

1a 0.56 

2a 0.63 

2b 0.38 

3a 0.44 

3b 0.42 

3c 0.61 
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Fig. 5.24. Measured void ratio for the deck impingement wave condition. The panels are arranged in accordance to Fig. 5.2.
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By examining the images and movies in the BIV velocity measurements, it was 

found that, for both wall impingement and deck impingement wave conditions, water 

flowing above the deck surface behaves like a water jet. The horizontal velocity 

becomes dominant once the flow reaches the deck level. Hence the green water impact 

phenomenon may have a considerable resemblance to a jet impinging perpendicularly at 

a plate. It is known that the peak pressure of a jet impinging on a plate perpendicularly 

may be formulated as         

2

i
P c Uρ=                                                                                      (5.3)   

where P is pressure, 
i

c  is called the impact coefficient, ρ is the fluid density, and U is the 

horizontal velocity. For example, based on empirical relations obtained from 

experiments Suhara et al. (1973) propose an impact coefficient 
i

c  = 1.4.   

 The measured velocities and pressure in the present study were used to examine 

the relationship in Equation (5.3). However, the vertical-plane velocity measurements 

may suffer from the flow-blocking-camera problem after green water advanced onto the 

deck and deflected by the angled front of the 3D structure. To make sure the velocity 

measurements are coincident to the pressure measurements, only points selected near the 

leading front edge of the model were used in the examination. As a result, we only 

selected the two front most points to ensure that the velocity measurements correctly 

correspond to the exact measurement positions. Thus we only selected points 1, 2 and 3 

at the elevations a, b, and c in Figs. 5.1 and 5.2.      

 Since the green water flow above the deck surface is a multi-phased flow, the 

fluid density may need to be corrected before applying Equation (5.3). Equation (5.3) is 
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applicable for a single-phased flow. In green water flow the fluid density needs to be 

corrected by introducing void fraction; i.e., the actual density becomes (1 )α ρ− . The 

equation can thus be rewritten as 

2(1 )
i

P c Uα ρ= −                                                                                 (5.4) 

in which α  is the void fraction of the bubbly flow with α =0 indicating 100% water and 

α =1 indicating 100% air. 

 Since the pressure and horizontal velocity are both a function of time, we used 

the maximum pressure ( maxP ) and maximum horizontal velocity (
max

U ) to estimate the 

impact coefficient 
i

c in Equation (5.4). This is based on the assumption that maxP occurs 

at the moment coincident to the occurrence of the maximum horizontal velocity
max

U .  

This may not be always true since maxP should occur at the moment of maximum 

momentum 2(1 )Uα− . 

 Fig. 5.25 shows the relation between maxP and 2

maxUρ for the wall impingement 

wave condition. The slope in the figure is 
i

c =0.74. The R
2
 value is 0.87. Since for wall 

impingement wave, for the locations of void ratio measurements, the averaged void ratio 

lies around a constant value, maxP  and 2

maxUρ  has a good linear relation.  

Fig. 5.26 shows the relation between maxP and 2

max(1 ) Uα ρ− for the wall 

impingement wave condition. The slope in the figure is 
i

c =1.28≈1.3, i.e., 

2

max max1.3(1 )P Uα ρ= −                                                                         (5.5) 
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The R
2
 value in the fit is 0.94, indicating the relation is quite linear. The impact 

coefficient is very close to 1.4 reported in Suhara et al. (1973). 

Relation between maxP and 2

max(1 ) Uα ρ− for the wall impingement wave condition 

using 2D measured void ratio is shown in Fig. 5.27. The slope in the figure is 

i
c =1.39≈1.4, i.e., 

2

max max1.4(1 )P Uα ρ= −                                                                         (5.6) 

The R
2
 value in the fit is 0.89 

 

 

 

 
 

Fig. 5.25. maxP versus 2

maxUρ for the wall impingement wave condition. The slope in the 

fit is 0.74 and the R
2
 value is 0.87. 
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Fig. 5.26. maxP versus 2

max(1 ) Uα ρ− for the wall impingement wave condition. The slope in 

the fit is 1.28 and the R
2
 value is 0.94. 
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Fig. 5.27. maxP versus 2

max(1 ) Uα ρ− for the wall impingement wave condition using 2D 

measured void ratio. The slope in the fit is 1.39 and the R
2
 value is 0.89. 
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Similar analysis was done considering the measurements for the deck 

impingement wave condition. See Fig. 5.28. However, for the deck impingement wave, 

it was not possible to obtain a simple linear variation for calculated pressure and 

measured pressure. It was observed that for wall impingement wave, most of the 

pressure variations were non impulsive. Hence a constant coefficient of 
i

c =1.28 exists. 

Where as, for the deck impingement wave, the measured pressure variations were 

impulsive for most of the locations. Hence the coefficient 
i

c is above 1.28 and varies 

from measurement point to point. Table 5.8 and Table 5.9 summarizes the calculated 
i

c  

for wall impingement wave and deck impingement wave respectively.  

 

 

 

Table 5.8. Values of coefficient 
i

c  for the wall impingement wave. 

 

 

 

 

 

 

 

 

 

 

Location 
maxP measured (Pa) maxP  calculated (Pa) 

i
c  

1a 
357.37 255.29 1.40 

2a 
352.44 373.12 0.94 

2c 
893.95 976.97 0.92 

3a 
389.18 352.40 1.10 

3b 
2237.08 1699.39 1.32 

3c 
1790.12 1208.39 1.48 
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Fig. 5.28. maxP versus 2

max(1 ) Uα ρ−  for the deck impingement wave condition. 
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Table 5.9. Values of coefficient 
i

c  for the deck impingement wave. 

 

 

 

Chan and Melville (1988) summarized the typical range of impact coefficients 

based on their and others research work. The impact coefficients were calculated using 

the normalized peak pressure 2/
m

P Cρ and shown in Table 5.10. Plates and cylinders 

were used in the work, and only the water density was considered. As the table shows, 

the impact coefficient varies considerably between 0.5 and 40, even though the 

experimental setup is quite similar among the different studies.    

 In the present study, the maximum observed 2/
m

P Cρ is 0.44, based on the wall 

impingement case in Table 5.1. However, the observed pressure is unlikely to be the 

maximum pressure in the flow since the distribution of pressure measurement points is 

quite sparse in the present study, and therefore, the value of 0.44 is likely lower than the 

real value. In other words, the value of 2/
m

P Cρ must be greater than 0.44. Interestingly, 

all the lower bound values in Table 5.10 are greater than 0.44.    

Location 
maxP measured (Pa) maxP calculated (Pa) 

i
c  

1a 4213.02 

 

582.07 

 

7.24 

 

2a 544.02 

 

920.46 

 

0.59 

 

2b 1971.73 

 

1612.67 

 

1.22 

 

3a 5047.87 

 

1392.75 

 

3.62 

 

3b 2641.95 

 

1503.89 

 

1.76 

 

3c 456.24 

 

772.46 

 

0.59 
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In Table 5.10, the phase speed C was used, not the maximum velocity  
max

U  used 

in Equations (5.3-5.4). The void fraction effect on the fluid density is also not considered 

in the table. If we convert 
max

U  in Equation (5.4) to C and approximate  
max

U by  1.2C 

for the wall impingement case as mentioned in Section 3.1, the impact coefficient would 

change from 1.28 to 1.84, i.e., 

2

max 2.0(1 )P Cα ρ= −                                                                           (5.7) 

The value 2.0 compares well with at least half of the studies in Table 5.10. 

 Similarly, for the deck impingement wave condition, if we convert 
max

U  in 

Equation (5.4) to C and approximate 
max

U by 1.44C 

The range of impact coefficient would change from 0.59-7.24 to 1.22-15. The range of 

values compare well with Table 5.10. 
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Table 5.10. Comparison of normalized peak pressure by Chan and Melville (1988). 

Investigator Typical range of peak 

pressure (
2

m
P

Cρ
) 

Structure 

Kjeldsen & Myrhaug (1979) 1-2 Vertical plate suspended above 

SWL (deep water) 

Kjeldsen (1981) 1-3 Inclined plate suspended above 

SWL (deep water) 

Ochi & Tsai (1984) 1.4 Surface-piercing cylinder (deep 

water) 

Bagnold (1939) 11-40 (highest 90) Surface-piercing plate on a 

sloping beach 

Hayashi & Hattori (1958) 3-15 Surface-piercing plate on a 

sloping beach 

Weggel & Maxwell (1970) 8-20 (highest 40) Surface-piercing plate on a 

sloping beach 

Kirkgoz (1982) 8-20 Surface-piercing plate on a 

sloping beach 

Blackmore & Hewson (1984) 0.5-4 Seawall (prototype structure) 

Chan & Melville (1984) 2-10 Surface-piercing cylinder (deep 

water) 

Chan & Melville (1988) 3-10 (highest 21) Surface-piercing plate (deep 

water) 

 

 

 

Since it was observed that the value of coefficient 
i

c depends on whether the 

pressure variation is impulsive or non impulsive, the gradient of the pressure increase 

was plot against
i

c . See Figure 5.29. As the Figure 5.29 depicts 
i

c  and dp/dt have a 

linear relationship with R
2
 value of 0.85. 
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Fig. 5.29. Variation of 
dp

dt
versus

i
c . R

2
 value is 0.85. 
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CHAPTER VI 

SUMMARY AND RECOMMENDATIONS FOR FUTURE STUDY* 

 

6.1. Summary 

 

The evolution and maximum velocities of green water flow on a three-

dimensional structure were successfully measured in the laboratory using the BIV 

technique. Froude scaled waves based on the maximum wave condition in Hurricane 

Ivan were used in the experiment. Two wave conditions were tested: one with waves 

impinging on the vertical wall of the model at the still water level and the other with 

waves impinging on the horizontal deck surface. In order to obtain the three-dimensional 

features of the event, velocity measurements were made on both the vertical plane (side 

view) along the structure centerline and the horizontal plane (plan view) above the 

structure deck surface. Illumination in both measurement planes was carefully set up so 

the back-lit effect was controlled. 

 

 

 

 

 

 

_________ 

* Part of the data reported in this chapter is reprinted with permission from “Three-

dimensional green water velocity on a model structure” by Chang, Ariyarathne and 

Mercier (2011). Experiments in Fluids, DOI: 10.1007/s00348-011-1051-0, Copyright 

[2011] Springer. 
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Some findings are summarized as follows: 

 (1) The maximum velocities in the green water flow occurred at the front of the 

flow.  The finding is similar to what was observed by Ryu et al. (2007a) in two-

dimensional model structure tests. 

(2) Due to deflection of the flow by the front of the structure, the horizontal 

profile of the green water front had a bell shape. The velocity at the centerline was 

slightly greater than that immediately away from the centerline. This resulted in a 

protruding “water tongue” at the centerline in the wall impingement case.  

(3) The deck impingement case resulted in a higher velocity above the deck in 

comparison to the wall impingement case. The maximum velocity was 1.44C in the deck 

impingement case with C being the phase speed of the breaking wave. That is 16% 

higher than that in the wall impingement case. However, the maximum elevation of 

splash-up in the deck impingement case was only 0.08 m above the deck level, 

approximately only one-half of the splash-up height in the wall impingement case. 

(4) Based on observation made from the horizontal measurement plane, the 

maximum velocities were located near the outer edges of the structure in both the deck 

and wall impingement cases. In addition, based on observation made from the vertical 

measurement plane, the maximum velocities were not on the upper surface of the green 

water flow but beneath the surface. 

(5) By comparing the present 3D results with the 2D measurement results in Ryu 

et al. (2007a), it was found that the maximum horizontal velocities are similar and close 

to 1.2C. However, the vertical velocities are quite different during the run-up stage. The 
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maximum observed vertical velocity was 1.7C in the present 3D study, whereas it 

reached 2.9C in Ryu et al.’s 2D study. The 2D study is therefore considered as a 

conservative condition. 

(6) Three approaches were used to examine the applicability of dam-break theory 

to the prediction of green water velocity over the deck. Two are based on the deck 

exceedance (one at the dam and the other at far upstream) and the third one is based on 

matching the measured green water front velocity with the front velocity of the dam-

break flow. The theory fails to predict the profile of green water, regardless the 

approaches. However, all three approaches give good engineering accuracy in predicting 

the maximum (i.e., front) green water velocity. Among the three dam-break flow 

approaches, the one matching the front velocity gives the most favorable and accurate 

prediction. 

(7) Two types of pressure variations were observed: impulsive type, where the 

pressure rises instantaneously with low rising time and non-impulsive type, where 

pressure variation has a smooth bell shape. For the wall impingement wave, most of the 

pressure time histories have non-impulsive variations whereas for deck impingement 

wave most of the pressure histories are of impulsive type. Higher impact pressure was 

observed for deck impingement compared to wall impingement. Maximum impact 

pressure was successfully related to the rise time. 

(8) Maximum impact pressure on the deck due to green water flow was found to 

be in the order of magnitude of 20.5 Cρ with ρ being the density of water. If void 

fraction (α ) is accounted for, the maximum pressure becomes highly correlated with the 
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kinetic energy 2

max(1 ) Uα ρ− . For the wall impingement wave constant impact coefficient 

was found as 1.3. The impact coefficient changes to 2.0 if the maximum pressure is 

correlated with 2(1 ) Cα ρ− . How ever, for deck impingement wave a constant impact 

coefficient does not exist. It was found that the gradient of pressure rise is linearly 

related to the impact coefficient.  

 

6.2. Recommendations for future study 

 

 In the present study the model was built using 1:169 Froude scale. A model with 

a larger scale would have given more accurate results, since with a larger scale the error 

due to scale effects will be less and results would be closer to reality. 

In this study two plunging breaking waves were tested, and it was observed that 

the deck impingement wave could result in more adverse damages. In the future more 

detailed measurements of velocity, pressure and force are to be obtained for deck 

impingement wave.  

In velocity measurements only the velocity near the wave front was successfully 

obtained using the BIV technique. PIV technique could be used to obtain the velocity at 

other areas, so a more complete velocity field could be acquired.  

The model was kept stationary in this study, it will be more realistic if the model 

is allowed to have movements, and especially if surge, heave and pitch motions could be 

added.  
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 In the present study pressure measurements were taken using a coarse grid, it will 

be better to have a grid with small gap in between the measurement locations, so the 

location of maximum pressure could be easily identified. 
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