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ABSTRACT

Credit Conditions and Stock Return Predictability. (August 2011)

Heungju Park, B.A., Korea University;

M.S., Korea University

Co-Chairs of Advisory Committee: Dr. Shane A. Johnson
Dr. Michael F. Gallmeyer

This dissertation examines stock return predictability with aggregate credit con-

ditions. The aggregate credit conditions are empirically measured by credit standards

(Standards) derived from the Federal Reserve Board’s Senior Loan Officer Opinion

Survey on Bank Lending Practices. Using Standards, this study investigates whether

the aggregate credit conditions predict the expected returns and volatility of the stock

market.

The first essay, “Credit Conditions and Expected Stock Returns,” analyzes the

predictability of U.S. aggregate stock returns using a measure of credit conditions,

Standards. The analysis reveals that Standards is a strong predictor of stock returns

at a business cycle frequency, especially in the post-1990 data period. Empirically

the essay demonstrates that a tightening of Standards predicts lower future stock

returns. Standards performs well both in-sample and out-of-sample and is robust to

a host of consistency checks including a small sample analysis.

The second essay, “Credit Conditions and Stock Return Volatility,” examines

the role played by credit conditions in predicting aggregate stock market return

volatility. The essay employs a measure of credit conditions, Standards in the stock

return volatility prediction. Using the level and the log of realized volatility as the

estimator of the stock return volatility, this study finds that Standards is a strong

predictor of U.S. stock return volatility. Overall, the forecasting power of Standards

is strongest during tightening credit periods.
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1. INTRODUCTION

This dissertation contains two essays, as presented in Sections 2 and 3, which are

parts of larger research efforts of Chava, Gallmeyer, and Park (2011a) and Chava,

Gallmeyer, and Park (2011b), respectively. They focus on stock return predictability

using an aggregate credit condition variable. We use credit standards (Standards) as

the aggregate credit condition variable. Standards is derived from the Fed’s senior

loan officer opinion survey on bank lending practice. The Fed conducts a quarterly

survey of bank senior loan officers on the supply and the demand credit conditions.

The survey question on Standards deals with supply of Commercial and Invest-

ment Loans. For the question, bank senior loan officers answer using 5 ratings on

current loan conditions from considerably tightening to considerably easing. Lown

and Morgan (2006) measure Standards as the number of bank tightening minus the

number of bank easing divided by total number of banks. So, Standards includes

both quantitative and qualitative conditions of bank loan supply. Due to the in-

formation advantages, we apply Standards to aggregate stock return and volatility

predictability.

In the first essay, “Credit Conditions and Expected Stock Returns,”1 we study

the predictability of Standards for the excess stock returns. According to previous

research, such as Lown and Morgan (2006), Standards predicts macroeconomic vari-

ables and this predictability of Standards could be consistent with economic models,

like the credit channel of monetary policy transmission and the borrowers’ balance

sheet effects. For example, a tighter monetary policy leads to a reduced and costly

This dissertation follows the style of Journal of F inance.

1We would like to thank Dong-Hyun Ahn, Greg Bauer, Frederico Belo, Zhanhui Chen, Burton Holli-
field, Shane Johnson, Nishad Kapadia, Hagen Kim, Inmoo Lee, J. Spencer Martin, and participants
at the 2010 European Finance Association Meeting, the McGill Risk Management Conference, and
the UBC Summer Finance Conferences for helpful input. All errors are our own.
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bank loan supply and it has impacts on future economic activity. Also, if banks have

bad prospects on future economic conditions, they increase their Standards. It affects

the risk structure of the economy and also the risk characteristics of stock market.

While previous studies focus on the impact of Standards on macroeconomic variables,

they have not considered the direct influences of Standards on the stock market. We

examine whether Standards predicts variations of expected stock returns.

From our empirical findings, Standards is a strong predictor of U.S. aggregate

stock returns. That is, a tightening of Standards predicts lower future stock returns

and it is consistent with economic intuition. This result is confirmed both through

in-sample and out-of sample tests. In long horizon tests, we find that the predic-

tive power of Standards is sustained at a horizon of 1 year and less (business cycle

frequency) because the informational content of Standards decreases at longer hori-

zons. The predictive power of Standards is robust to many consistency checks, like

an analysis of small sample bias, an extension of sample periods, and an exclusion

of financial crisis data.

The predictability of Standards is particularly interesting in light of the findings

of Goyal and Welch (2008). Goyal and Welch (2008) show that most predictive

variables used in the literature have performed poorly both in-sample and out-of-

sample, especially over the last 30 years. On the other hand, we find that the

relationship between Standards and expected stock returns is especially strong in

the post-1990 time period. In a multivariate analysis, we use many predictors in

previous studies as control variables and find that only Standards is statistically

significant. Other predictors have their insignificant coefficients, which is consistent

with Goyal and Welch (2008)’s results. Though our sample is limited to the period

after the 1990s, the predictability of Standards is noteworthy according to the findings

in Goyal and Welch (2008).

Using Standards, we also examine predictability of different moment of aggregate

stock returns distribution. The second essay, “Credit Conditions and Stock Return



3

Volatility,”2 deals with the predictability of stock return volatility. Many predictabil-

ity literature about stock return volatility, including Schwert (1989) and Paye (2009),

argues that predictive powers of macro and financial variables are weak. This weak

evidence of the predictability of stock return volatility shows that the macroeconomic

variables fail to capture the asymmetric time-varying pattern of stock return volatil-

ity. A recent paper of Chava, Gallmeyer, and Park (2011a) finds that Standards has

the strong forecasting power in tightening periods and Standards might shed light

on the economic channel that drives the counter-cyclical and asymmetric pattern

of aggregate stock market return volatility given its micro foundations are not well

understood. Therefore, we examine whether Standards is related to the asymmetric

time-varying pattern of aggregate stock return volatility.

We find that Standards is a strong predictor of U.S. stock return volatility at

frequencies up to and including a year. This is not surprising, since Standards has

strong forecasting power of for both stock returns (Chava, Gallmeyer, and Park

(2011a)) and macroeconomic variables (Lown and Morgan (2006)). The ability of

Standards to track time-varying expected returns could help forecast future volatility.

The relation between stock volatility and Standards is positive, which implies that

tighter credit conditions predict higher future stock volatility. We also perform out-

of-sample forecasting tests and find that the forecasts of volatility with Standards are

more accurate than those with the historical mean and an AR(1) model of volatility.

The ability of Standards to predict stock return volatility is also robust to a host

of consistency checks including a bootstrap procedure, other model specifications of

volatility, and extended the sample period.

This empirical findings are related to the role played by financial intermediaries

in stabilizing economic volatility. Larrain (2006) examines the contemporaneous

2We would like to thank Bumjean Sohn for helpful input. All errors are our own.
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relationship between bank loan supply and output volatility and finds that on average

bank loan supply increases reduce industrial output volatility. Correa and Suarez

(2009) also find that firm-level employment, production, sales and cash flows are less

volatile after wider access to bank loans. However, past work has not considered the

effect of bank loan supply changes on the stock market volatility. In this paper, we

find that the aggregate bank loan supply, Standards affects variations of aggregate

stock return volatility.
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2. CREDIT CONDITIONS AND EXPECTED STOCK RETURNS

Recently, an active academic debate has arisen over whether any economic vari-

ables predict future excess stock returns better than historical average excess returns.

Goyal and Welch (2008) argue that many predictive variables used in the literature

perform poorly both in-sample and out-of-sample, especially over the last 30 years.

In contrast, Campbell and Thompson (2008) show that many predictive regressions

beat the historical average return, once weak restrictions are imposed on the signs

of coefficients and return forecasts. We contribute to this literature by providing

evidence that an economically-motivated predictive variable that measures credit

conditions has robust in-sample and out-of-sample predictive power in forecasting

future stock excess returns. Further, the predictive power is strongest in the post-

1990 time period and is quantitatively significant.

Our work is motivated by several papers that study how supply-based measures

of credit could impact the overall economy. Some of this work was prompted by pa-

pers that have studied the impact of the Federal Reserve’s monetary policy on stock

returns (Thorbecke (1997), Bernanke and Kuttner (2005), Patelis (1997) among oth-

ers) as well as the behavior of business condition proxies such as term premia, default

premia, and dividend yields (Jensen, Johnson, and Mercer (1996)). A possible expla-

nation of the predictive power of monetary indicators relates to the credit channel of

monetary policy transmission (Bernanke and Gertler (1995)). In particular, a tighter

monetary policy leads to a reduced and costlier bank loan supply that in turn impacts

future stock returns. However, past work has not considered the direct influence of

bank loan supply changes on stock returns. In particular, it is unclear whether the

credit channel either through a monetary policy transmission mechanism or some

other economic channel has predictive power for stock returns. In this paper, we

address this issue and examine whether shocks to the aggregate bank loan supply

affect stock returns.
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Besides the credit channel transmission mechanism, fluctuations in the supply

of bank loans can be caused by frictions in the credit creation process through the

bank’s view of future market conditions.3 In particular, if agency costs time-vary as

in the financial propagation mechanism described in Fazzari, Hubbard, and Petersen

(1988) and Bernanke and Gertler (1989), banks naturally can change their supply of

credit based on their views of the balance sheets of borrowers. In a recent speech,

Bernanke (2007) argues that this view of the role of bank loan supply is tightly linked

to the credit channel of monetary policy.

Bank lending standards, or the terms in which loans are offered, have been used as

a measure of bank loan supply in several papers to study whether banks change their

loan supply systematically over the business cycle and if there is an important loan

supply effect in macroeconomic fluctuations. Asea and Blomberg (1998) examine the

relationship between the cyclical component of aggregate unemployment and bank

lending standards using a bank-level panel data set constructed from the terms of

individual loan contracts obtained from the Federal Reserve Survey of Terms of Bank

Lending. They find that cycles in bank lending standards are important in explaining

aggregate economic activity. Our work uses survey data on bank lending standards

obtained from the Federal Reserve’s Senior Loan Officer Opinion Survey. An earlier

study using this data is Lown and Morgan (2006) who find that shocks to lending

standards are significantly correlated with innovations in commercial loans at banks

and in real output. In particular, they find that “bank lending standards are far more

informative about future lending than are loan rates.” Gorton and He (2008) show

that the relative performance of commercial and industrial loans leads to endogenous

credit cycles and is an autonomous source of macroeconomic fluctuations.

3See Berlin (2009) for a recent survey of models that explain bank lending cycles.



7

Despite this pro-cyclical feature of bank lending to macroeconomic variables,

limited evidence exists whether changes in bank loan supply affect stock returns

which is our contribution. Keim and Stambaugh (1986), Campbell (1987), Fama

and French (1988), Fama and French (1989), and Schwert (1990) provide evidence

that business condition proxies such as aggregate dividend yield, default spreads,

term spreads, and the level of short-term interest rates explain significant variation

in expected stock returns. Given these variables are also driven by market prices,

it is difficult to discern if their predictive power is driven by rational time-varying

opportunity sets or simply mispricing. We examine whether bank lending standards,

a variable that captures aggregate supply-side credit conditions that is not a direct

function of equity market prices, serves as a leading indicator of future stock returns.

Our work joins a growing literature that uses survey data to explain stock returns

and macroeconomic variables. Campbell and Diebold (2009) find that expected

business cycle conditions obtained from the Livingston survey data has forecasting

ability for stock returns. Ang, Bekaert, and Wei (2007) use the Livingston survey,

the Survey of Professional Forecasters, and the Michigan survey to build inflation

expectations. They show that the survey-based measures of inflation outperform

other forecasting methods out-of-sample. For predictions of various macro variables,

Engel, Mark, and West (2007), Engel and Rogers (2006), Engel and Rogers (2009),

and Ghysels and Wright (2009) use the Consensus Forecasts survey data. Lown

and Morgan (2006) document the predictive power of the Federal Reserve Board’s

Senior Loan Officer Opinion Survey on loan growth, GDP growth, and various other

measures of business activity. We use the Senior Loan Officer Opinion Survey to

provide direct evidence on the relationship between credit conditions through a bank

loan supply measure and future excess stock returns.

Overall, we find that our measure of credit conditions derived from the Federal

Reserve Board’s Senior Loan Officer Opinion Survey on Bank Lending Practices is

a strong predictor of U.S. stock returns at a frequencies up to and including a year.
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This measure contains additional information beyond the variables shown to have

predictive power from the past predictability literature. Given this measure has been

shown to predict macroeconomic variables in Lown and Morgan (2006), we provide

a direct link to the predictability of stock returns and an aggregate macroeconomic

supply variable. This credit condition measure performs well both in-sample and

out-of-sample. It is also robust to a host of consistency checks that we consider

including a small sample bias analysis as well as a Canadian stock return analysis.

The rest of the paper is organized as follows. Subsection 2.1 describes the data

used in the paper and presents detailed information about the Senior Lending Officer

Survey used in the paper. We describe the empirical methodology used in the paper

in Subsection 2.2. Subsection 2.3 presents evidence on stock return predictability,

while Subsection 2.4 addresses results from an extensive set of robustness checks.

Subsection 2.5 investigates the predictability of Standards and Subsection 2.6 con-

cludes.

2.1 Data

2.1.1 Senior Loan Officer Survey Data

Our measure of aggregate supply-side credit conditions through bank lending

standards is derived from a quarterly survey of bank senior loan officers published

by the Federal Reserve Board. The survey, titled the Senior Loan Officer Opinion

Survey on Bank Lending Practices, polls major U.S. banks around the country about

credit conditions. The survey was first publicly available starting in the first quarter

of 1967 with approximately 120 banks participating. As of the fourth quarter of

2008, 55 banks participated capturing the general trend of the number of U.S. banks

shrinking over time. The participating banks capture a sizeable portion of lending by

U.S. banks. From Lown and Morgan (2006), survey banks account for “about 60%



9

of all loans by U.S. banks and about 70% of all U.S. bank business loans.” Recent

survey results are available at http://www.federalreserve.gov/boarddocs/surveys.

The survey’s questions can be classified as measures of supply and demand for

commercial and industrial loans, commercial real estate loans, residential mortgage

loans, and consumer loans. Our focus is on the question that pertains to credit

standards for approving commercial and industrial (C&I) loans. The question in the

survey is currently (as of the fourth quarter 2008 survey) asked as follows:

For applications for C&I loans or credit lines – other than those to be

used to finance mergers and acquisitions – from large and middle-market

firms [annual sales of $50 million or more] that your bank currently is

willing to approve, how have the terms of those loans changed over the

past three months? 1) tightened considerably, 2) tightened somewhat, 3)

remained basically unchanged, 4) eased somewhat, 5) eased considerably.

To convert the survey data into a quantifiable time-series variable, we follow

Lown, Morgan, and Rohatgi (2000) and Lown and Morgan (2006, 2002) by creating

a credit standards index (Standards) as a net percentage of banks tightening credit.

Specifically, Standards is computed as the number of banks reporting tightening

standards less the number of banks reporting easing standards divided by the total

number reporting. The quarterly data is constructed by using the surveys conducted

in January (Q1), April (Q2), July (Q3), and October (Q4) of each year. The Federal

Reserve makes the results of these surveys public in the month following when the

survey was taken. For example in 2007, the Q1 through Q4 surveys were released on

February 5, May 17, August 13, and November 5 respectively. Hence, the Standards

number pertaining to a specific quarter is publicly known well before the end of that

quarter.

Lown and Morgan (2006) find that changes in Standards are strongly correlated

with real output and bank loan changes. In particular, they show that Standards

strongly dominates loan interest rates in explaining variation in the supply of business
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loans and aggregate output. They also show that Standards remains significant when

proxies for loan demand are included which suggests Standards can be used as a proxy

for loan supply as we do in our work.

Other recent studies also employ Standards as a measure of bank loan supply.

Gorton and He (2008) analyze the relationship between their Performance Differ-

ence Index (PDI) and Standards to explain the time-series behavior of the Credit

Standard Survey responses. Leary (2009) uses Standards as an alternate proxy for

changes in bank loan supply to show the role of credit supply in capital structure

choice. Our work differs in that we use Standards as a measure of aggregate supply-

based credit conditions to examine the link between stock return predictability and

supply-side credit conditions.

We use the Standards series from Q2:1990 to Q4:2008. Though the Senior Loan

Officer Opinion Survey was made public starting in 1967, the data from the com-

mercial and industrial (C&I) loan standards question pre-1990 faces several issues.4

First, the wording of the C&I loan standards question was not consistent across the

pre-1990 time period. From 1978 through 1983, the C&I loan standards question was

split into two separate questions. The first question asked how standards changed

for prime rate loans, while the second question asked how standards changed for

above prime rate loans. However, as documented in Brady (1985), the link between

market loan rates and the prime rate weakened during this time. Banks largely be-

gan pricing loans to large borrowers at market rates. Prime-based rate loans were

largely reserved for smaller and low credit quality borrowers. Hence, the C&I loans

standards questions was no longer a reflection of changing credit supply for large

borrowers. Second, the C&I loan standards question was even suspended for a time

as it was not asked from Q1:1984 until Q2:1990. Finally, Schreft and Owens (1991)

4See Schreft and Owens (1991) for a discussion of how the Senior Loan Officer Opinion Survey
evolved pre-1990.
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note that from 1967 through 1983 survey respondents almost never report a net eas-

ing of standards on business loans suggesting a possible bias in the early years of the

survey. They hypothesize that the incentive to always report tightening standards

might exist “if respondent banks perceive a risk of closer regulatory scrutiny if they

admit to having eased standards.”

Given these issues with the pre-1990 C&I loans standards question, the focus of

our study is on the post-1990 data. However, as a robustness check, we do con-

struct a Standards series from Q1:1967 to Q4:2008 by splicing together the Q1:1967

to Q4:1983 data with the Q2:1990 to Q4:2008 data.5 To fill in the missing data

from Q1:1984 to Q1:1990, we use one question that has remained relative constant

through the entire lifetime of the Senior Loan Officer Opinion Survey — a ques-

tion concerning a bank’s willingness to make consumer installment loans. Using a

similarly constructed variable for this consumer willingness question, we regress the

Standards variable from Q1:1967 to Q4:1983 on it. We then extrapolate from Q1:1984

to Q1:1990 using the consumer willingness variable with the regression model to con-

struct the missing Standards data.

Figure 2.1 plots the Standardsmeasure across time with the shaded regions repre-

senting the NBER recession periods. In our main analysis period, Q2:1990-Q4:2008,

there are three NBER-dated recessions. In all cases, it appears that Standards has

tightened entering a recession. Equally important, banks appear to relax lending

standards exiting a recession. From the figure, it appears that Standards is a lead-

ing indicator of a business cycle. At least at a univariate level, it seems plausible

that Standards is a contender for predicting stock returns.

5The Standards series, including updates for the most recent survey, is available at Donald Morgan’s
web site: http://www.newyorkfed.org/research/economists/morgan/index.html.
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2.1.2 Stock Returns

To study stock return predictability, we analyze stock returns on the CRSP value-

weighted index (CRSP-VW) and the S&P500 index. All stock returns are expressed

as continuously compounded returns with dividends included. To calculate excess

stock returns, we use the continuously-compounded 30 day T-bill rate as the risk-free

rate.

2.1.3 Other Stock Return Predictor Variables Used

To compare the forecasting power of Standards in the predictability regressions,

we also consider some of the standard price-based predictor variables used in the

literature: the dividend-price ratio (dp), the 30-day T-bill rate (RF ), the term spread

(TERM), and the default yield spread (DEF ). The dividend-price ratio, dp, is the

difference between the log of dividends and the log of the CRSP-VW index price.

The dividends are 12 month moving sums of dividends paid on the CRSP-VW index.

TERM is computed as the difference between the yield on a 10-year and a 1-year

government bond. DEF is computed as the difference between the BAA-rated and

AAA-rated corporate bond yield. Data on bond yields are collected from the FRED

database at the Federal Reserve Bank of St. Louis.

We also compare the forecasting power of Standards to the aggregate consumption-

wealth ratio measure cay from Lettau and Ludvigson (2001), a measure of corporate

issuing activity ntis from Goyal and Welch (2008), and a measure of the output

gap from Cooper and Priestley (2009). As a measure of the aggregate consumption-

wealth ratio, Lettau and Ludvigson (2001) estimate:

ct = α + βa · yt +
k∑

i=−k
ba,i ·∆at−i +

k∑
i=−k

by,i ·∆yt−i + εt, (2.1)

where t = k + 1, . . . , T − k, c is aggregate consumption, a is aggregate wealth, y

is aggregate income, and ε is an error term. Using estimated coefficient from the
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above equation provides cay ≡ ĉayt = ct − β̂a · at − β̂y · yt, t = 1, . . . , T . Goyal and

Welch (2008) also estimate a cay measure that excludes advance information from the

estimation equation. We use the Goyal-Welch measure of cay for our predictability

test.6

Goyal and Welch (2008) use Net Equity Expansion (ntis) as a measure of cor-

porate issuing activity. The variable ntis is computed as the ratio of the 12 month

moving sum of net issues by NYSE listed stocks divided by their total end-of-year

market capitalization. This dollar amount of net equity issuing activity (IPOs, SEOs,

stock repurchases, less dividends) for NYSE listed stocks is computed from CRSP

data as

NetIssuet = Mcapt −Mcapt−1 · (1 + vwretxt), (2.2)

where Mcap is the total market capitalization and vwret is the value-weighted return

(excluding dividends) on the NYSE index. Goyal and Welch document that ntis is

closely related to a payout variable proposed in Boudoukh, Michaely, Richardson,

and Roberts (2007).

To predict stock returns, Cooper and Priestley (2009) construct a measure of

the output gap, gap, which is measured as the deviation of the log of industrial

production from a trend that incorporates both a linear and a quadratic component:

pt = a+ b · t+ c · t2 + εt, (2.3)

where p is the log of industrial production, t is a time trend, and ε is an error term.

We estimate the gap variable using our sample period data.

6The Goyal-Welch measure of cay is available at Amit Goyal’s web site:
http://www.bus.emory.edu/AGoyal.
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Table 2.1
Descriptive Statistics

The table reports descriptive statistics and correlations for the stock return predictive variables. Ret is the log return

and Excess Ret is the log excess return on the CRSP-VW index. Standards is the tightening standards measure.

DEF is the BAA bond yield minus the AAA bond yield. TERM is the difference between the 10 year Treasury

yield and the 1 year Treasury yield. RF is the 1 month T-bill rate. The log dividend-price ratio is denoted dp. The

variable cay is the Lettau and Ludvigson (2001) consumption-wealth ratio variable. The variable ntis is the ratio of

the 12 month moving sum of net issues by NYSE listed stocks divided by the total end-of-year market capitalization.

The variable gap is the deviation of the log of industrial production from a trend that incorporates both a linear and

a quadratic component. The sample period is Q2:1990 to Q4:2008.

Panel A: Descriptive Statistics of Stock Return Predictive Variables

V ariable Obs Mean StdDev Min Max Autocorr

Ret 75 0.018 0.086 -0.272 0.193 0.021

Excess Ret 75 0.009 0.085 -0.273 0.183 0.010

Standards 75 0.089 0.242 -0.241 0.836 0.815

DEF 75 0.009 0.004 0.006 0.034 0.507

TERM 75 0.013 0.011 -0.004 0.032 0.922

RF 75 0.003 0.001 0.000 0.006 0.864

dp 75 -3.966 0.308 -4.513 -3.235 0.922

cay 75 0.004 0.024 -0.037 0.043 0.928

ntis 75 0.012 0.021 -0.053 0.046 0.903

gap 75 0.000 0.032 -0.059 0.086 0.847

Panel B: Correlations of Stock Return Predictive Variables

Standards DEF TERM RF dp cay ntis gap

Standards 1.000

DEF 0.655 1.000

TERM 0.078 0.243 1.000

RF -0.007 -0.433 -0.677 1.000

dp 0.031 0.227 0.362 0.097 1.000

cay 0.065 -0.145 0.283 0.343 0.646 1.000

ntis -0.441 -0.470 0.358 0.019 0.088 0.460 1.000

gap 0.238 -0.172 -0.648 0.630 -0.307 -0.238 -0.300 1.000
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2.1.4 Descriptive Statistics

Descriptive statistics (number of observations, mean, min, max, standard devi-

ation, and autocorrelation) of the various predictor variables and stock returns are

presented in Panel A of Table 2.1. The descriptive statistics of the standard pre-

dictor variables as well as the stock returns are in line with the results reported in

previous work (for example, Goyal and Welch (2008)), so we skip the discussion of

these results in the interest of space. The key variable of interest in the analysis,

Standards, has an autocorrelation of 0.81 at a quarterly frequency. This autocorre-

lation while high, is the second lowest of all the predictor variables considered in the

analysis (only DEF has a lower autocorrelation coefficient than Standards).

Panel B and C in Table 2.1 present the correlations across various predictor

variables. Standards is highly positively correlated with default spread DEF (65%)

and next with output gap, gap (24%). Not surprisingly, Standards is significantly

negatively correlated with net stock issuances ntis (-44%). The correlations across

other predictor variables are consistent with the earlier literature.

2.2 Empirical Methods

Following much of the existing predictability literature, we first assess the in-

sample predictive ability of Standards for stock excess returns. We estimate the

following univariate regression:

rt = α + β ·Standardst−1 + εt, (2.4)

where rt is the excess stock return, Standards is the net percent tightening of the C&I

loan supply, and ε is an error term. The in-sample predictive ability of Standards

is assessed via the t-statistic of the β estimate and the adjusted R2 from the excess

return regression. Under the null hypothesis that Standards does not predict excess

returns, β=0. We report Newey and West (1987) standard errors that correct for

serial correlation and heteroscedasticity.



17

For robustness tests of the predictability of stock returns using Standards, we

also consider the following predictor variables: DEF , TERM , RF , dp, cay, ntis,

and gap (CP and gap), defined by the vector Z added to the regression that includes

Standards and estimate

rt = α + β ·Standardst−1 + γ ·Zt−1 + εt, (2.5)

where γ is a vector of coefficient estimates on the variables in Zt−1, and ε is an

error term. After controlling for these predictor variables, we assess the in-sample

predictive ability of Standards.

To generate out-of-sample predictions, we compute four test statistics designed

to determine whether the Standards forecasting model has superior forecasting per-

formance relative to a model of historical average returns. We first calculate the

out-of-sample R2 (R2
oos), which following Fama and French (1989) is defined as

R2
oos = 1 − MSEA

MSEN
, (2.6)

where MSEA is the mean-squared error from the forecasting model with Standards,

and MSEN is the mean-squared error from the historical mean model. If the R2
oos is

positive, then the predictive regression has a lower average mean-squared prediction

error than the historical mean return model.

The second out-of-sample test statistic computed is the difference between the

root-mean-squared prediction error using the historical average return model and the

root-mean-squared prediction error using the predictive regression model, denoted

∆RMSE:

∆RMSE =
√
MSEN −

√
MSEA. (2.7)

The third test statistic is an out-of-sample MSE-F test developed by McCracken

(2007). It tests whether the historical mean model has a mean-squared forecasting

error that is equal to that of the Standards forecasting model:

MSE − F = (T − h+ 1) ·MSEN −MSEA
MSEA

, (2.8)
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where T is the number of observations and h is the degree of overlap (h=1 for no

overlap).

The last out-of sample test is the ENC-NEW test proposed by Clark and Mc-

Cracken (2001). We use the ENC-NEW test to examine whether the forecasts from

the historical mean model encompass those from the Standards forecasting model:

ENC −NEW =
T − h+ 1

T
·
∑T
t=1(ε2t − εt · et)
MSEA

, (2.9)

where εt is the vector of out-of-sample errors from the historical mean model and

et is the vector of out-of-sample errors from the Standards forecasting model. For

both the MSE-F and ENC-NEW tests, we follow the methodology in Clark and

McCracken (2005), which provides bootstrapped critical values for these tests.

For the out-of-sample tests, we use 10 years (40 quarters) of data as an initial

estimation window. We conduct the out-of-sample tests in two ways, as a recursive

regression and a rolling regression. The recursive approach assumes the model is

estimated with more data as the forecasting date moves forward in time. The rolling

approach assumes the model is estimated with a moving window of the most recent

40 observations as the forecasting moves forward in time.

2.3 Stock Return Predictability

We now explore the ability of Standards to predict stock returns. We start by

exploring in-sample evidence, followed by out-of-sample evidence. Lastly, we consider

several robustness checks of the stock return predictability regressions including a

small-sample analysis.
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2.3.1 In-Sample Evidence

Table 2.2 reports in-sample forecasting regressions with Standards, for the quar-

terly log excess returns on the CRSP-VW index and the S&P 500 index.7 In all of

the regressions in Table 2.2, the t-statistics are reported using a Newey and West

(1987) correction to account for serial correlation in the residuals.

Panel A of Table 2.2 reports results from a univariate regression of the CRSP-VW

and S&P500 quarterly excess returns on one lag of the Standards variable. Both the

CRSP-VW and the S&P500 excess returns are strongly predictable with negative

coefficients on the Standards variable at traditional significance levels. Also, the

adjusted R2 coefficients are 13% and 14% respectively. The negative sign implies

that a tightening loan supply results in a subsequent drop in stock returns which is

consistent with economic intuition.

Panel B of Table 2.2 reports estimates from predictability regressions that include

a variety of variables used in past predictability studies. Unreported results using the

log excess returns on the S&P500 index are very similar to those on the CRSP-VW

index. Shiller (1981), Campbell and Shiller (1988), and Fama and French (1988) find

that the dividend-price ratio has predictive power for excess returns. Bekaert and Ho-

drick (1992) find that the T-bill rate predicts returns, while Fama and French (1989)

study the forecasting power of the term and the default spreads. Henkel, Martin,

and Nardari (2011) present evidence that the dividend yield and term structure vari-

ables are effective predictors almost exclusively during recessions. We include these

financial market variables, DEF , TRM , RF , and dp, in our predictive regressions

on the CRSP-VW excess return.

7The results reported for the log excess returns are nearly identical to log actual returns, raw actual
returns, and raw excess returns.
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Table 2.2
Forecasting Quarterly Excess Stock Returns

The table reports estimates of OLS regressions of stock returns on one-quarter lagged predictive variables: rt =

α+β ·Standardst−1 +γ ·Zt−1 +εt, where rt is the log excess return on the CRSP-VW index and the S&P500 index.

The predictive variables are all defined in Table 2.1. Newey-West corrected t-statistics appear in parentheses below

the coefficient estimates and adjusted R2 statistics in square brackets. The sample period is Q2:1990 to Q4:2008.

Panel A: Excess returns on CRSP and S&P

CRSP S&P

Standards -0.14 -0.14

(-2.86) (-3.02)

Constant 0.02 0.01

(2.57) (1.82)

R̄2 [0.13] [0.14]

Panel B: Additional controls; Excess returns on CRSP

Standards -0.20 -0.15 -0.12 -0.15 -0.23

(-2.37) (-3.18) (-2.87) (-2.61) (-2.27)

DEF -11.36 4.40 9.42

(-1.94) (0.52) (0.88)

TERM -0.03 2.52 1.01

(-0.02) (1.21) (0.37)

RF -2.55 27.64 14.90

(-0.19) (1.32) (0.55)

dp 0.05 -0.03 -0.05

(0.99) (-0.48) (-0.84)

cay 0.63 0.72 0.96

(1.91) (2.18) (1.03)

ntis 1.15 0.63 0.23

(2.10) (1.42) (0.32)

gap -0.29 0.08 0.23

(-0.86) (0.23) (0.45)

Constant 0.31 -0.24 0.01 0.02 -0.01 0.01 0.01 0.02 -0.32

(1.29) (-0.69) (0.55) (2.26) (-0.41) (1.20) (0.81) (2.59) (-0.85)

R̄2 [0.06] [0.13] [0.02] [0.16] [0.07] [0.14] [-0.00] [0.12] [0.11]
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The first column of Panel B in Table 2.2 shows that these financial variables

together have less forecasting power at the quarterly frequency than Standards alone

and are individually statistically insignificant. The default spread (DEF ) is the only

predictor that could be considered marginally significant with a t-statistic of −1.94.

In the second column, Standards is included in the regression; this leads to DEF ’s

coefficient flipping signs and becoming strongly insignificant.8 Note that Standards

still retains its forecasting power with roughly the same coefficient size and same level

of statistical significance when compared to the financial market-based variables.

Moreover, the addition of Standards approximately doubles the adjusted R2 in our

forecasting regression.

Lettau and Ludvigson (2001) find that the ratio of consumption to wealth, cay,

predicts stock returns at a quarterly frequency. We are able to replicate the findings

of Lettau and Ludvigson (2001) for their sample period. During our sample period,

including cay by itself in the predictability regression in the third column leads

to a statistically insignificant positive coefficient with an adjusted R2 coefficient of

roughly 2%. In the fourth column of Panel B, including both cay and Standards

jointly leads to a significantly higher R2 of 16% as both coefficients are statistically

significant. The incorporation of Standards into the regression provides additional

information above and beyond cay generating the higher adjusted R2 coefficient.

Recent studies find evidence that corporate issuing activity forecasts stock re-

turns. Boudoukh, Michaely, Richardson, and Roberts (2007), Larrain and Yogo

(2008), Robertson and Wright (2006), and Bansal and Yaron (2006) document that

payout yields derived from dividends, repurchases, and issuances, as opposed to the

simple dividend yields, are robust predictors of excess returns. Moreover, Goyal and

Welch (2008) find that ntis which measures equity issuing and repurchasing (plus

8We also analyzed the predictive power of Standards on DEF . DEF is strongly predictable with
a positive coefficient on Standards at traditional significance levels.
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dividends) relative to the price level, has good in-sample performance, but a negative

out-of-sample adjusted R2. We add ntis in our predictability regression to determine

its in-sample performance relative to Standards. The fifth column of Panel B, shows

that ntis is statistically significant with an adjusted R2 of 7%. However, the next

column of Panel B reports a regression of returns on both ntis and Standards. It

shows that ntis is not statistically significant, but Standards is. Also, the inclusion

of Standards in the previous regression doubles the adjusted R2.

More recently, Cooper and Priestley (2009) show that the output gap, gap, as

measured by the deviation of the log of industrial production from a trend that

incorporates both a linear and a quadratic component, predicts excess returns on

stock indices and Treasury bonds. We are able to replicate the results of Cooper

and Priestley (2009) for their sample period. However, during our sample period,

gap does not seem to have forecasting power for excess stock returns. The differ-

ence can be attributed to the differences in the sample periods of the two studies.

After controlling for gap in our regression, Standards still has a significant negative

coefficient and a higher adjusted R2 coefficient.

In the last column of Panel B, we present the in-sample forecasting regression with

all the variables included. Interestingly, only Standards has a significant coefficient

among all the predictor variables and the adjusted R2 is very similar to that in the

univariate regression with Standards. This suggests that Standards is capturing

future excess stock returns at a quarterly frequency, while other predictor variables

have little predictive power of excess stock returns at this horizon. Goyal and Welch

(2008) show that most predictor variables lose their in-sample forecasting power after

the oil price crisis in the 1970s. Though our sample is limited to the period after

the 1990s, the in-sample predictability of Standards is noteworthy in view of the

findings in Goyal and Welch (2008).
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2.3.2 Out-of-Sample Evidence

Two recent papers, Goyal and Welch (2008) and Campbell and Thompson (2008),

examine the out-of-sample forecasting ability of predictor variables that can predict

in-sample. Goyal and Welch (2008) find little evidence that most predictor variables

can predict out-of-sample better than a constant, while Campbell and Thompson

(2008) find that the predictors have out-of-sample predictive power with sensible

restrictions on the forecasting models. We now examine the forecasting ability of

Standards in out-of-sample tests and compare it to other predictor variables.9

Table 2.3 compares forecasts based on the historic mean model to those based on

each predictor variable, using the CRSP-VW excess returns. We conduct four out-

of-sample tests — adjusted R2, ∆RMSE, MSE-F, and ENC-NEW — in recursive

and rolling regressions. For the tests, we consider the initial estimation period of

Q2:1990 to Q1:2000.

The first row of Table 2.3 shows that the forecasting model with Standards has

superior forecasting performance relative to the historic mean model in both the

recursive and the rolling regressions. The out-of-sample R2 is 17% in the recursive

regression and 9.3% in the rolling regression. The ∆RMSE is 0.009 in the recur-

sive regression and 0.005 in the rolling regression, which implies that the forecast

errors with Standards are lower than those with the historic average return. The

MSE-F test rejects the null hypothesis that the MSEs from the forecasts that use

Standards is equal to those based on the historical average return. The ENC-NEW

test also rejects the null hypothesis that the forecasts from the historical mean model

encompass those from the Standards forecasting model. These results suggest that

9We analyze the out-of-sample forecasting tests with other predictor variables which we use in the
in-sample regression, but we do not report the out-of-sample results of cay and gap. The reason is
that the estimation periods of both variables in the out-of-sample test are relatively short. From
our unreported results, cay shows better forecasting ability than the historical average return in
the recursive regression.
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Standards plays a strong role as a predictor of excess stock returns since the 1990s.

These results contrast with Goyal and Welch (2008) who find that in general variables

typically used in predictability regressions have been unsuccessful out-of-sample over

the last few decades. Interestingly, we do not impose any economic restrictions on

the forecasting model as Campbell and Thompson (2008) employ.

The remaining rows of Table 2.3 report the out-of-sample test results with the

other predictor variables. The variablesDEF and ntis show better forecasting ability

than the historical average return in both the recursive and the rolling regression.

However, the adjusted R2 and ∆RMSE for Standards are twice as large as that of

DEF , implying Standards has a higher forecasting power than DEF.

2.3.3 Long-Horizon Forecasts

Much of the existing predictability literature finds that some of the predictor

variables, such as dp and cay, forecast excess stock returns in sample at longer

horizons better than at shorter horizons. With the exception of gap, most of these

variables seem to predict stock returns at horizons larger than for example the length

of a typical recession.10 In this subsection, we investigate whether Standards tracks

longer-term tendencies in stock markets rather than providing shorter-term forecasts.

Table 2.4 reports long-horizon forecasting regressions of quarterly excess returns on

the CRSP-VW index. The dependent variable is the H-quarter log excess return on

the CRSP-VW index, equal to rt+1 + ...+ rt+H . We use the horizons of H = 1, 2, 4,

8, and 12 quarters.

From the top panel of Table 2.4, we document the forecasting power of Standards

for future excess returns at horizons ranging from 1 to 12 quarters. The coefficient

10Cooper and Priestley (2009) document “the average length of NBER contractions in the 1945-2001
period is 10 months.”
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Table 2.4
Long Horizon Regression: Quarterly Excess Stock Returns

The table reports results from long-horizon regressions of quarterly log returns on lagged variables. H denotes the

return horizon in quarters. The dependent variable is the sum of H log returns on the CRSP Value-weighted stock

market index, rt+1 + ...+rt+H . The regressors are all defined in Table 2.1. Newey-West corrected t-statistics appear

in parentheses below the coefficient estimate and adjusted R2 statistics in square brackets. The sample period is

Q2:1990 to Q4:2008.

Forecast Horizon H

Regressors 1 2 4 8 12

Standards -0.14 -0.23 -0.28 -0.39 -0.32

(-2.86) (-2.67) (-2.05) (-1.91) (-1.59)

R̄2 [0.13] [0.18] [0.11] [0.11] [0.04]

Standards -0.20 -0.33 -0.41 -0.34 0.06

(-2.37) (-2.86) (-3.52) (-1.61) (0.24)

DEF 4.40 8.07 16.28 4.44 -30.38

(0.52) (0.78) (1.40) (0.21) (-1.21)

TERM 2.52 3.96 3.87 1.76 1.21

(1.21) (1.21) (0.81) (0.24) (0.11)

RF 27.64 45.47 41.72 -19.88 -68.73

(1.32) (1.40) (0.92) (-0.34) (-0.79)

dp -0.03 -0.01 0.10 0.38 0.64

(-0.48) (-0.10) (0.82) (2.10) (2.48)

R̄2 [0.13] [0.24] [0.21] [0.36] [0.41]

Standards -0.23 -0.39 -0.54 -0.73 -0.36

(-2.27) (-2.98) (-3.46) (-3.34) (-1.67)

DEF 9.42 21.79 48.04 56.82 21.54

(0.88) (1.51) (3.50) (3.50) (1.19)

TERM 1.01 -0.61 -6.37 -7.43 -2.51

(0.37) (-0.16) (-1.12) (-1.30) (-0.40)

RF 14.90 14.86 -14.93 -88.49 -79.98

(0.55) (0.39) (-0.30) (-1.65) (-1.27)

dp -0.05 -0.06 -0.04 -0.07 0.01

(-0.84) (-0.77) (-0.31) (-0.34) (0.03)

cay 0.96 2.31 4.92 11.20 12.57

(1.03) (1.79) (2.45) (4.17) (4.04)

ntis 0.23 0.80 2.26 -3.03 -8.44

(0.32) (0.63) (0.63) (-1.24) (-3.49)

gap 0.23 0.22 0.06 -0.54 -3.58

(0.45) (0.33) (0.05) (-0.31) (-1.86)

R̄2 [0.11] [0.28] [0.36] [0.60] [0.75]
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for Standards is hump-shaped and peaks around 8 quarters in the sample. At an

8 quarter horizon, the coefficient estimate for Standards is insignificant and the

adjusted R2 is approximately 11%, so the predictive power decreases at a horizon

greater than 4 quarters. Here, Standards seems to better forecast future excess

returns at a business cycle frequency as the informational content of Standards

decreases at longer horizons.

After including the price-based variables DEF , TRM , RF , and dp, Standards

still exhibits a hump-shaped forecasting pattern. The forecasting significance peaks

at 4 quarters, declining at longer horizons. Regarding the adjusted R2 coefficient, it

increases with the horizon and is not hump-shaped. This is driven by the increased

predictive power of the dividend-price rate dp with the horizon and is consistent with

the findings in the predictability literature summarized for example in Campbell, Lo,

and MacKinlay (1997) and Cochrane (2001) for example.

In the last panel of Table 2.4, we add cay, ntis, and gap to the previous regression.

The hump-shaped forecasting pattern of Standards is robust, and the predictive

power of Standards is insignificant at a 12 quarter horizon. The predictive power of

cay and the adjusted R2 increase with the horizon, which supports the findings of

Lettau and Ludvigson (2001). Here Standards predictive power occurs at a shorter

horizon than most of the predictive variables explored in the literature.

2.4 Robustness

To examine the robustness of loan supply as captured by Standards as a stock

return predictor, we consider several robustness tests including performing a small

sample analysis, using other Senior Loan Officer Opinion Survey variables, extending
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the Standards data series to use earlier data, and studying stock return predictability

in the Canadian stock market.11

2.4.1 Small Sample Robustness of Stock Return Predictability

Many predictability studies find that regression coefficients and standard errors,

obtained from predictive regressions with a highly persistent predictor, exhibit small

sample biases (Mankiw and Shapiro (1986), Nelson and Kim (1993), Elliott and

Stock (1994), and Stambaugh (1999)). These biases have the potential to be severe,

especially when the predictor variables are scaled by price. Though Standards is a

persistent variable, its degree of persistence is not as strong as measures such as the

dividend price ratio (see Table 2.1). Additionally, it is not a priced-based variable.

However, given the length of the Standards data series, we explore whether the

in-sample results of Standards could be driven by small sample biases.

To address these small sample bias problems, we perform two robustness checks.

First, we compute the small-sample tests of Campbell and Yogo (2006). Campbell

and Yogo employ local-to-unity asymptotics to achieve a better approximation of the

finite sample distribution when the predictor variable is persistent. Their construc-

tion of the confidence interval uses the Bonferroni method to combine a confidence

interval for the largest autoregressive root of the predictor variable with confidence

intervals for the predictive coefficient conditional on the largest autoregressive root.

These results are presented in Panel A of Table 2.5. Following Campbell and Yogo,

we report the confidence interval for β̃=(σe/σu)β instead of β.12 In the fourth (fifth)

11Several other robustness checks are available from the authors including using monthly returns.
In these checks, we find that Standards still retains its predictive power.

12The standard deviations σe and σu are computed from the residuals of the following regression
model: rt = α+ βxt−1 + ut, xt = γ + ρxt−1 + et where rt denotes the excess stock return in period
t and xt denotes the predictor variable in period t.
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Table 2.5
Robustness: Test of Small Sample Bias

This table reports tests of small sample bias. Panel A shows OLS estimates along with 90% Bonferroni confidence

intervals following Campbell and Yogo (2006). The second and third columns report the t-statistics and the point

estimate β̂ from regressions of the log excess CRSP-VW return on a constant and on a one-quarter lagged predictive

variable. The predictive variables are all defined in Table 2.1. The next two columns report the 90% Bonferroni

confidence intervals for β using the t-test and Q-test, respectively. Panel B reports confidence intervals from a

bootstrap procedure. We generate 100,000 artificial time series of the size of our data set under the null hypothesis

of no predictability. The data generating process is rt = γ + et, Standardst = µ+ φ ·Standardst−1 + νt where rt is

the log excess return on the CRSP-VW index and the S&P500 index. The parameters in the data-generating process

are set to the sample estimates for the bootstrap. We then compute OLS regressions with a Newey-West standard

error correction: rt = α+β ·Standardst−1 + εt to compute the empirical distributions of the t-statistic of β̂ and the

R̄2 coefficient. We draw from the residuals of the system estimated under the null hypothesis. The sample period is

from Q2:1990 to Q4:2008.

Panel A: Campbell and Yogo (2006) Test

Variable t-stat(β̂) β̂ 90% CI: β

t-test Q-test

Standards -3.446 -0.187 [-0.282,-0.100] [-0.279,-0.099]

DEF -2.517 -0.281 [-0.516,-0.115] [-0.380,-0.025]

TERM -0.301 -0.012 [-0.075,0.053] [-0.075,0.053]

RF 1.394 0.067 [-0.009,0.153] [-0.002,0.156]

dp 1.069 0.034 [-0.059,0.062] [-0.049,0.074]

cay 1.512 0.062 [-0.039,0.115] [-0.027,0.136]

ntis 2.476 0.113 [0.031,0.186] [0.036,0.191]

gap -0.211 -0.010 [-0.083,0.068] [-0.077,0.072]

Panel B: Bootstrap Stock Return Test

Variable t-stat(β̂) 95% CI 99% CI R̄2 95% CI 99% CI

CRSP -2.86 (-2.29 2.29) (-3.10 3.14) 0.13 (-0.01 0.05) (-0.01 0.09)

S&P -3.02 (-2.28 2.29) (-3.12 3.13) 0.14 (-0.01 0.05) (-0.01 0.09)
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column of the table, we report the 90% Bonferroni confidence intervals for β using

the t-test (Q-test), whose the null hypothesis is β=0. Both the Bonferroni t-test

and the Q-test reject the null of no predictability for Standards, DEF , and ntis.

For example, the confidence intervals for the Standards coefficient using both the

t-test and the Q-test do not include zero, which implies we reject the null of no

predictability using both tests.

Our second method for addressing small sample bias problems is to use both a

bootstrap and a Monte Carlo simulation of the predictive regression. The data for

both simulations are generated under the null hypothesis of no predictability:

rt = γ + et, (2.10)

where γ is a constant. Also, we use an AR(1) specification for our predictive variable

Standards:

Standardst = µ+ φStandardst−1 + νt, (2.11)

where the values of µ and φ are those estimated from the actual data for Standards.

Then, we generate artificial sequences of excess returns and Standards by drawing

randomly from the sample residuals for the bootstrap procedure or a normal dis-

tribution for the Monte Carlo simulation under the null of no predictability. We

generate 100, 000 samples equal to the length of the Standards data series. Using

these samples created under either a bootstrap or Monte Carlo simulation, we then

estimate equation (2.4) which yields a distribution of our test statistics.

Panel B of Table 2.5 reports the results of the bootstrap procedure for the

Newey-West t-statistics and adjusted R2 coefficients of the predictive regression with

Standards.13 For both the CRSP-VW and S&P500 excess returns, the estimated

t-statistics of Standards lies outside of the 95% confidence interval based on the

13The results of Monte Carlo simulation are nearly identical to those of the bootstrap procedure.
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empirical distribution from the bootstrap procedure. This implies we can reject the

hypothesis that Standards has no predictive power for excess stock returns. In ad-

dition, the results show that the estimated adjusted R2 coefficient is outside of the

99% confidence intervals for the bootstrap adjusted R2 coefficients. Therefore, we

conclude that the predictability of Standards is robust to correcting for small sample

biases.

2.4.2 Other Survey Variables

In addition to the information used to construct Standards, the Senior Loan

Officer Opinion Survey contains other questions relating to the supply and demand

of commercial and industrial (C&I) loans, commercial real estate loans, residential

mortgage loans, and consumer loans. To measure Standards, we use the question of

supply for C&I loans and find that Standards has strong forecasting power for stock

excess returns.

As a robustness test, we examine whether other variables in the Survey also have

forecasting power. We focus on two other questions in the survey to construct mea-

sures of the demand for C&I loans (Demands) and the supply of consumer loans

(Consumer). Demands measures the net percentage of banks reporting stronger

demand for C&I loans. Consumer measures the net percentage of banks reporting

stronger willingness to grant consumer installment loans. The Demands series is

from Q1:1991 to Q4:2008. The Consumer series is from Q3:1966 to Q4:2008. The

variables Standards and Consumer represent information about the supply side of

lending. Given Standards captures net tightening, while Consumer captures net

willingness to lend, they should naturally be negatively correlated. Indeed, this is

the case as the correlation between Standards and Consumer is −71%. Addition-

ally, the correlation between Standards and Demands is −67%. Because of these

high correlations between Standards and other survey variables, we orthogonalize
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Table 2.6
Robustness: Other Survey Variables

The table reports estimates from OLS regressions of stock returns on one-quarter lagged predictive variables with

other survey variables: rt = α+β ·Standardst−1 + γ ·Zt−1 + εt, where rt is the log excess return on the CRSP-VW

index and the S&P500 index. Standards is the tightening standards for C&I loans from the Senior Loan Officer

Survey. Demands is the net percentage of banks reporting a stronger demand for C&I Loans. Consumer is the

net percentage of banks reporting a stronger willingness to grant consumer installment loans. Newey-West corrected

t-statistics appear in parentheses below the coefficient estimates. Adjusted R2 statistics are given in the square

brackets. The sample period is Q2:1990 to Q4:2008.

CRSP S&P

Standards -0.18 -0.17

(-4.29) (-4.18)

Demands -0.09 -0.07

(-2.08) (-1.64)

Consumer 0.13 0.10

(1.13) (0.92)

Constant 0.01 0.00

(0.71) (0.35)

R̄2 [0.20] [0.19]

Demands and Consumer by regressing them on Standards and use the orthogonal-

ized components of Demands and Consumer.

Table 2.6 report results for the predictive regressions of excess returns of the

CRSP-VW and S&P500 indices on the Survey variables: Standards, Demands, and

Consumer. Standards is significant with a negative coefficient after controlling for

Demands and Consumer. In addition, Demands is significant with a negative coef-

ficient in the CRSP-VW index regression. The result is consistent with a substitution

effect in the financial market. If the stock market is expected perform poorly in the

future, firms intend to rely on bank loans for financing, so the demand for C&I

loan increases. Thus, Demands should be negatively related to future stock returns.

However, compared to Table 2.2, the increase in the adjusted R2 is relatively low
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by adding Demands and Consumer, providing evidence that Standards is the best

predictor of future excess stock returns.

2.4.3 Extended Sample Period

Our main results use the Standards series from Q2:1990 to Q4:2008.14 This is the

longest time-series available after the C&I loan supply question was re-established in

the Senior Loan Officer Opinion Survey. For robustness, we build a Standards mea-

sure from Q1:1967 to Q4:2008 by constructing an estimate of the missing Standards

data. We accomplish this by using the Standards series before the question’s sus-

pension (Q1:1967-Q4:1983) to build an estimate of the missing Standards data from

Q1:1984 to Q1:1990. This is possible by using the Consumer series, a measure of the

supply of consumer loans, which is available over the entire history of the Senior Loan

Officer Opinion Survey. Given Standards captures net tightening, while Consumer

captures the net willingness to lend, they should naturally be negatively correlated.

Indeed, this is the case as the correlation between Standards and Consumer is

−71%.

Given Standards and Consumer are highly correlated and both provide loan

supply side information, we regress Standards on lagged Standards and current

Consumer over Q1:1967 to Q4:1983:

Standards t = α + β Standards t−1 + γ Consumer t + εt, (2.12)

Estimating this regression gives an adjusted R2 of 53% with significant coefficients.

This regression model is then used to extrapolate an estimate of the Standards

variable from Q1:1984 to Q1:1990. Splicing this estimated data into the earlier

14We also examined the in-sample predictability of Standards from Q2:1990 to Q2:2007 to eliminate
the financial crisis from the data. Our results were still robust. Details are available from the
authors.
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and later Standards data computed from the survey gives an unbroken Standards

variable from Q1:1967 to Q4:2008. This new series has a mean of 0.09 and a standard

deviation of 0.19.

Panel A and B of Table 2.7 show results for return predictability regressions using

various predictor variables over Q1:1967 to Q4:1983. During this period, Standards

is insignificant in both the univariate and the multivariate regressions. Additionally,

the adjusted R2 with Standards included is close to zero. On the other hand,

most predictor variables except ntis have strong predictive powers in multivariate

regression of stock excess returns, which is consistent with the finding of Goyal

and Welch (2008) that most predictability results from the periods before the oil

crises. Based on problems with the C&I loan standards question before 1990, the

insignificance of Standards is not necessarily surprising. As discussed earlier, the

C&I loan question before 1990 was re-worded several times and from 1978 through

1983 was framed in terms of the prime rate. Additionally, Schreft and Owens (1991)

document a reporting bias in the early years of the survey.

Panel C of Table 2.7 reports results from a univariate regression across the sam-

ple period from Q1:1967 to Q4:2008. The univariate regression shows a significant

negative Standards coefficients with an adjusted R2 coefficient of roughly 4%. These

results are weaker evidence of forecasting ability of Standards than the main sample

period (Q2:1990-Q4:2008). In Panel D of Table 2.7, we find Standards is significant

in most of the multivariate regressions. In addition, cay also has forecasting ability

which is consistent with the findings in Lettau and Ludvigson (2001).
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Table 2.7
Robustness: Extension of the Sample Period

The table reports estimates from OLS regressions of stock returns on one-quarter lagged predictive variables with

different sample periods: rt = α+β ·Standardst−1+γ ·Zt−1+εt, where rt is the log excess return on the CRSP-VW

index or the S&P500 index. The regressors are all defined in Table 2.1. Newey-West corrected t-statistics appear in

parentheses below the coefficient estimate and adjusted R2 statistics in square brackets.

Panel A: Excess returns on CRSP and S&P (1967:Q1-1983:Q4)

CRSP S&P

Standards -0.03 -0.02

(-0.36) (-0.27)

Constant 0.01 -0.01

(0.49) (-0.54)

R̄2 [-0.01] [-0.01]

Panel B: Additional controls; Excess returns on CRSP (1967:Q1-1983:Q4)

Standards -0.07 0.00 -0.02 -0.00 -0.09

(-1.09) (0.03) (-0.31) (-0.08) (-1.37)

DEF 6.74 7.47 5.95

(2.39) (2.50) (1.42)

TERM -1.69 -2.87 -4.69

(-1.24) (-2.03) (-3.49)

RF -22.09 -27.22 -28.87

(-5.24) (-4.81) (-4.44)

dp 0.18 0.19 0.17

(4.50) (4.51) (2.03)

cay 2.24 2.25 1.38

(2.22) (2.19) (0.90)

ntis -1.38 -1.36 0.43

(-1.43) (-1.40) (0.41)

gap -0.69 -0.68 -0.43

(-2.76) (-2.78) (-1.02)

Constant 0.65 0.73 0.03 0.03 0.03 0.04 0.00 0.00 0.68

(4.32) (4.54) (1.59) (1.47) (1.24) (1.52) (0.25) (0.26) (2.57)

R̄2 [0.18] [0.18] [0.07] [0.05] [0.01] [0.00] [0.10] [0.09] [0.17]
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Table 2.7 continued

Panel C: Excess returns on CRSP and S&P (1967:Q1-2008:Q4)

CRSP S&P

Standards -0.10 -0.10

(-2.29) (-2.35)

Constant 0.02 0.01

(2.69) (1.35)

R̄2 [0.04] [0.04]

Panel D: Additional controls; Excess returns on CRSP (1967:Q1-2008:Q4)

Standards -0.11 -0.09 -0.10 -0.09 -0.14

(-2.73) (-2.24) (-2.43) (-1.90) (-3.61)

DEF 0.49 1.74 7.79

(0.15) (0.65) (2.57)

TERM 0.51 -0.31 -2.87

(0.53) (-0.39) (-2.43)

RF -3.88 -8.12 -23.33

(-0.59) (-1.40) (-3.70)

dp 0.04 0.04 0.05

(1.53) (1.95) (2.49)

cay 0.86 0.80 1.66

(2.96) (3.04) (3.82)

ntis 0.05 -0.09 0.04

(0.11) (-0.22) (0.08)

gap -0.25 -0.19 0.28

(-1.31) (-1.02) (1.35)

Constant 0.15 0.19 0.01 0.02 0.01 0.02 0.01 0.02 0.26

(1.37) (1.93) (1.16) (2.58) (0.62) (2.23) (1.13) (2.50) (2.76)

R̄2 [0.01] [0.05] [0.03] [0.07] [-0.01] [0.03] [0.01] [0.04] [0.10]

2.4.4 Canadian Stock Return Predictability

In order to control for possible data-snooping issues, we examine the in-sample

predictability of Canadian stock returns using the Canadian equivalent of our Standards
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measure.15 Since 1999, the Bank of Canada has conducted a quarterly Senior Loan

Officer Survey of the business-lending practices of major Canadian financial institu-

tions.16 The survey gathers information on changes to both the price and non-price

terms of business lending over the current quarter and surveys the views of financial

institutions on how changing economic or financial conditions are affecting business

lending. Overall business-lending conditions are calculated as a simple average of

the pricing and non-pricing dimensions. We use overall business-lending conditions

as the measure of Standards and investigate whether these lending conditions help

predict Canadian stock market returns.

Table 2.8 presents results of the in-sample predictive regression on log excess

returns of the S&P/TSX Composite index. The sample period is from Q2:1999 to

Q4:2008. The excess returns are strongly predictable with negative coefficients on the

Standards variable and the adjusted R2 is 12% providing evidence that Standards

has predictive power in the Canadian stock market. For a small sample robustness

test of the Canadian stock market return predictability results, we construct con-

fidence intervals of the Newey-West t-statistics and adjusted R2 coefficients using

the same bootstrap and Monte Carlo simulation procedure from before. In both the

bootstrap and the Monte Carlo simulation procedures, the estimated t-statistics and

adjusted R2 lies outside of the 95% confidence level implying that we can reject the

hypothesis that Standards has no predictive power in the Canadian stock market.

15The Bank of England, the European Central Bank, and the Bank of Japan also conduct credit
condition surveys similar to the Senior Loan Officer Survey in the US. Unfortunately, these surveys
have only been recently adopted leading to too short of a sample period.

16The survey data is available at http://www.bankofcanada.ca/en/slos/. We thank Greg Bauer for
making us aware of the Canadian survey.
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Table 2.8
Robustness: Canadian Stock Return Predictability

The table reports estimates of OLS regressions of Canadian stock market returns on a one-quarter lagged Canadian

Standards variable: rt = α+ β ·Standardst−1 + εt, where rt is the log excess return on the S&P/TSX Composite

index. To calculate excess stock returns, we use the continuously compounded 30 day Canadian T-bill rate as the risk-

free rate. We use the overall business-lending conditions of the Canadian Senior Loan Officer Survey as the measure

of Standards. Newey-West corrected t-statistics appear in parentheses below the coefficient estimates. Adjusted

R2 statistics are given in the square brackets. The values 95% (90%) CI (Bootstrap) are confidence intervals from

a bootstrap procedure and the values 95% (90%) CI (MC) are confidence intervals from a Monte Carlo simulation.

The sample period is Q2:1999 to Q4:2008.

Excess returns on S&P/TSX Composite Index

Standards -0.07

t-statistics (-2.63)

95% CI (Bootstrap) (-2.57 2.60) 95% CI (MC) (-2.59 2.59)

Constant 0.00

t-statistics (0.15)

R̄2 [0.12]

95% CI (Bootstrap) (-0.03 0.11) 95% CI (MC) (-0.03 0.11)
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2.5 Discussion

In the previous subsection, we show that the excess stock returns are strongly

predictable with negative coefficients on Standards and the predictive power declines

across time horizon. After 2 years, the size of the coefficient declines and the predic-

tive power also decreases at a horizon greater than 4 quarters. In multivariate cases

with traditional predictors for stock returns, the results are very similar as those

in the univariate case. The negative coefficients suggest that tightening Standards

predicts the subsequent drop in stock returns and it seems to be somewhat inconsis-

tent with an asset pricing model with time-varying risk, which implies that investors

usually require high expected returns in bad time. We now explore the predictability

of Standards in depth.

2.5.1 Channel of Predictability

The first empirical approach to study the predictability is the estimation of vector

autoregression (VAR). We use two lags in the VAR specification following optimal

lag length selection criteria. To examine the formation of stock return expectations,

we order the excess stock returns last. Figure 2.2 shows the response of the excess

stock returns to Standards. To both the excess stock return and the log stock price,

Standards shock moves very slowly.17 It implies that the information content of

Standards slowly gets incorporated into the stock price and is consistent with our

findings in the long-horizon regression analysis.

17We check whether the Standards shock is a persistent predictor for excess stock returns. We
decompose the Standards shock into the trend component and the cyclical component using a
band pass filter of Christiano and Fitzgerald (2003) and the Hodrick and Prescott (1997) filter
and find that the most predictability for excess stock returns results from the trend component of
Standards.
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From the columns (3) and (4) of Figure 2.2, we show the impulse-response rela-

tionship between Standards and the decomposition components of the unexpected

excess stock returns, cash flow news and discount rate news, from Campbell and

Vuolteenaho (2004).18 The decomposition can be written as,

ey,t+1 = ẽCF,t+1 − ẽDR,t+1 (2.13)

where

ẽCF,t+1 = (Et+1 − Et)
∞∑
j=0

ρj∆dt+1+j,

ẽDR,t+1 = (Et+1 − Et)
∞∑
j=1

ρjyt+1+j. (2.14)

The empirical implementation assumes that a vector of state variables evolves ac-

cording to a first order VAR. The VAR includes a six variable one-lag system that

has the excess equity return, the real interest rate, the relative bill rate (defined as

the 1 month bill rate minus its 12 month lagged moving average), the change in the

1 month bill rate, the smoothed dividend price ratio, and the spread between 10 year

and 1 month treasury bills. Then DR news and CF news follows,

ẽDR,t+1 = e1′ρA(I − ρA)−1wt+1,

ẽCF,t+1 = (e1′ + e1′ρA(I − ρA)−1)wt+1. (2.15)

This approach enables us to analyze the sources of the predictability of Standards.

The negative cash flow news and the positive discount rate news of the unexpected

excess stock returns can result in the drop in stock returns and have negative coeffi-

cients of our predictive regression. The columns (3) and (4) of Figure 2.2 show the re-

sponses of the decompositions of the cash flow and discount rate news to Standards.

18We also conduct the Campbell and Ammer (1993) decomposition. The results are similar as those
in Campbell and Vuolteenaho (2004). For the simplicity, we report the Campbell and Vuolteenaho
(2004) decomposition.
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The initial response of the cash flow news appears negative and moves slowly, while

the discount rate news has the positive shocks of Standards. To compare the sizes

of the shocks, Standards has more impact on the cash flow news than the discount

rate news. Table 2.9 reports in-sample forecasting regressions with Standards for the

cash flow news and the discount rate news of the unexpected excess stock returns.

The cash flow news is strongly predictable with negative coefficients on Standards,

while the forecasting power for the discount rate news is statistically insignificant.

The results of this in-sample regression correspond with the magnitude of the initial

shocks in the impulse-response function.

Table 2.9
Forecasting Decomposition Components for Quarterly Unexpected
Excess Stock Returns

The table reports estimates of OLS regressions of decomposition components for unexpected excess stock returns

on one-quarter lagged predictive variables: rt = α + β ·Standardst−1 + γ ·Zt−1 + εt, where rt is the unexpected

components of the log excess return on the CRSP-VW index. To decompose the unexpected excess stock returns, we

follow the Campbell and Vuolteenaho (2004) approach using a first order VAR. The VAR includes a six variable one-

lag system that include the excess equity return, the real interest rate, the relative bill rate (defined as the 1 month

bill rate minus its 12 month lagged moving average), the change in the 1 month bill rate, the smoothed dividend price

ratio, and the spread between 10 year and 1 month treasury bills. eCF is the cash flow components and eDR is the

discount rate components. Newey-West corrected t-statistics appear in parentheses below the coefficient estimates

and adjusted R2 statistics in square brackets. The sample period is Q2:1990 to Q4:2008.

eCF eCF eDR eDR

Standards -0.05 -0.05 0.04 0.02

(-2.44) (-2.26) (1.22) (0.66)

eCF -0.10

(-0.91)

eDR 0.03

(0.27)

constant 0.00 0.00 -0.00 -0.00

(0.82) (0.85) (-0.42) (-0.48)

R̄2 [0.06] [0.04] [0.01] [-0.02]
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However, the VAR approach to estimate the cash flow and discount rate news can

have a potential problem in case of the model misspecification, since it is based on the

comparison between the specified model (the discount rate news) and the residual

(the cash flow news). Chen and Zhao (2009) argue that the VAR approach has a

potential limitation because of the small predictive power in the model specification.

Therefore, we now examine the robustness of the relationship between Standards

and the decomposition components of the unexpected excess stock returns, the cash

flow and discount rate news.

As a robustness test, we examine the predictability of Standards controlling

for other expectation variables. From the Survey of Professional Forecasters, we

use the average expected growth rate of GDP over the next four quarters and the

average expected CPI inflation rate over the next four quarters. Also, we employ

the quarterly growth rate of analysts earnings forecasts over the next year for the

S&P500 index from I/B/E/S. Table 2.10 reports the in-sample predictive regressions

for the excess stock returns. The expectation variables are statistically insignificant

in all specifications, while the significance of Standards still remains. Moreover, the

addition of Standards rapidly increases the adjusted R2 in the forecasting regression.

It implies that the predictability of Standards shows time variations in discount rate

news to control for the expectations of the future macroeconomic activity and the

future earnings growth.

Table 2.11 shows the predictability of Standards for the proxies of the future cash

flows. We use the quarterly growth rate of real earnings for the S&P500 index and the

quarterly growth rate of real dividends as the proxies. The earnings and dividends

data is obtained for Robert Shiller’s website. For the predictive regression, we also

add the lagged proxies as the explanatory variables. Except for the specification with

the lagged real dividend growth, Standards has the significantly negative coefficients.

It implies that tightening Standards affects the subsequent decrease in the real

dividend growth and the real earnings growth, which accords with the findings of the
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Table 2.10
Forecasting Quarterly Excess Stock Returns with Cash Flow Expectation Variables

The table reports estimates of OLS regressions of excess stock returns on one-quarter lagged predictive variables:

rt = α + β ·Standardst−1 + γ ·Zt−1 + εt, where rt is the log excess return on the CRSP-VW index.GDP4Qavg is

the average expected growth rate of GDP over the next four quarters from the Survey of Professional Forecasters.

CPI4Qavg is the average expected CPI inflation rate over the next four quarters from the Survey of Professional

Forecasters. expearn1qg is the quarterly growth rate of analysts earnings forecasts over the next year for the S&P500

index from I/B/E/S. Newey-West corrected t-statistics appear in parentheses below the coefficient estimates and

adjusted R2 statistics in square brackets. The sample period is Q2:1990 to Q4:2008.

MKT 0.28 0.30 0.10 0.37 0.35 -0.02 0.02

(0.93) (0.91) (0.37) (1.12) (1.08) (-0.05) (0.04)

GDP4Qavg 0.01 0.00 -0.00 -0.00 0.01 -0.02 -0.00

(0.15) (0.06) (-0.07) (-0.08) (0.45) (-0.99) (-0.03)

CPI4Qavg 0.01 0.02 0.01 -0.00 -0.02 0.03 -0.05

(0.41) (1.03) (0.55) (-0.06) (-0.60) (1.33) (-0.61)

expearn1qg 0.07 0.08 0.03 0.08 0.08 -0.03 -0.02

(0.67) (0.69) (0.30) (0.78) (0.83) (-0.27) (-0.19)

RF 2.26 31.73

(0.14) (1.54)

TERM 0.14 1.97

(0.11) (0.78)

DEF -8.79 6.87

(-1.46) (0.65)

dp 0.05 0.00

(0.59) (0.01)

cay 1.09 0.99

(1.51) (0.92)

Standards -0.17 -0.22

(-3.33) (-2.38)

Constant -0.06 -0.05 0.06 0.23 0.00 0.05 -0.02

(-0.42) (-0.42) (0.61) (0.42) (0.03) (0.56) (-0.03)

R̄2 [-0.03] [-0.03] [0.02] [-0.02] [0.00] [0.12] [0.09]
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Table 2.11
Forecasting Future Cash Flows

The table reports estimates of OLS regressions of the quarterly growth rates of real earnings and the quarterly growth

rates of real dividends on the S&P500 index on one-quarter lagged predictive variables: rt = α+β ·Standardst−1 +

γ ·Zt−1 + εt. Newey-West corrected t-statistics appear in parentheses below the coefficient estimates and adjusted

R2 statistics in square brackets. The sample period is Q2:1990 to Q4:2008.

realearnings realearnings realdividends realdividends

realearnings 0.62

(6.63)

realdividends 0.22

(1.91)

Standards -0.25 -0.13 -0.03 -0.02

(-2.78) (-1.67) (-2.88) (-2.37)

Constant 0.02 0.00 0.01 0.01

(1.48) (0.53) (3.33) (2.72)

R̄2 [0.24] [0.37] [0.15] [0.18]



46

previous VAR approach. These results confirm that the predictability of Standards

for the excess stock returns result from both the cash flow and discount rate news.

2.5.2 Source of Risk

In this subsection, we examine whether the predictability of Standards for the

excess stock returns is related to the time-varying risk model. Patelis (1997) exam-

ines whether tightening monetary policy predicts the excess stock returns and finds

that following the initial negative response of stock prices to monetary policy shocks,

the size of the coefficient of the monetary policy variables declines across time. He

interprets the decreasing coefficient as the evidence of the time-varying risk premia

and argues that the expected stock returns increase to compensate for the deteri-

oration in the financial health of the firms caused by the monetary policy shocks.

To reconcile the predictability of Standards with the time-varying risk model,we

apply this argument to our empirical findings that the predictability of Standards

declines across time horizon and examine whether Standards affects the variations

of expected stock returns across the financial constraints of the firms.

Following the previous literature19, we use four measures of financial constraints,

payout ratio, asset size, debt rating, and paper rating.20 Firms with low payout

ratio, small asset size, unrated debt, or unrated commercial papers are financially

more constrained than firms with high payout ratios, big asset size, rated debt, or

rated commercial papers.

19See Almeida, Campello, and Weisbach (2004), Faulkender and Wang (2006), Almeida and
Campello (2007), Denis and Sibilkov (2010), and Li and Zhang (2010).

20We perform our analysis using several alternative approaches for sorting firms into financially
constrained and financially unconstrained groups like the Kaplan and Zingales (1997) index, the
Whited and Wu (2006) index, and the Hadlock and Pierce (2010) index. They show the similar
conclusions as the four measures.
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Payout ratio: We assign firms in the bottom (top) three deciles of the annual

cash payout ratio distribution to the financially constrained (unconstrained) group.

Payout ratio is defined as the ratio of dividends and common stock repurchases to

operating income. Observations with a positive payout and zero or negative cash

flow are assigned the highest payout ratio.

Asset size21: We measure asset size as book value of total assets. We rank firms

based on the asset size and assign those firms in the bottom (top) three deciles of

the firm size distribution to the financially constrained (unconstrained) group.

Debt rating22: We classify firms as financially unconstrained if they have had

their long term debt rated by Standard & Poor’s and their debt is not in default.

We also classify firms as constrained if they have debt outstanding that year, but

have never had their public debt rated before. Firms with no debt outstanding are

classified as unconstrained.

Paper rating: We assign firms that never had their commercial paper rated to

the financially constrained group when they report positive commercial paper. The

financially unconstrained group contains firms whose commercial paper has been

rated and firms without commercial paper outstanding.

21Asset size can be used as the measure of the size effect. We also find Standards strongly predicts
SMB in the long horizon regression.

22The existence of debt rating is related to the degree of bank dependence. Chava and Purnanandam
(2011) use the absence of public debt rating as the proxy for the bank-dependence. Following their
measure, we check the predictability of Standards for the excess stock returns of the bank dependent
firms and Standards for the bank dependent firms shows the similar predictability as Standards
for the financially constrained firms
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Table 2.12
Long Horizon Regression: Excess Stock Returns by Financially Con-
strained Groups

The table reports results from long-horizon regressions of quarterly log excess stock returns by financially constrained

groups on lagged Standards. H denotes the return horizon in quarters. The dependent variable is the sum of H log

excess stock returns by the financially constrained groups, rt+1 + ...+ rt+H . We employ four measures of financial

constraints, (1) payout ratio, (2) asset size, (3) debt rating, and (4) paper rating and sort firms into financially

constrained and financially unconstrained groups. Newey-West corrected t-statistics appear in parentheses below the

coefficient estimate and adjusted R2 statistics in square brackets. The sample period is Q2:1990 to Q4:2008.

Forecast Horizon H

Regressors 1 2 4 8 12

Unconstrained 1: Payout

Standards -0.13 -0.22 -0.31 -0.50 -0.53

(-3.16) (-2.85) (-2.37) (-2.57) (-2.64)

R̄2 [0.14] [0.21] [0.16] [0.20] [0.12]

Unconstrained 2: Size

Standards -0.15 -0.25 -0.32 -0.50 -0.49

(-3.05) (-2.84) (-2.32) (-2.40) (-2.38)

R̄2 [0.15] [0.21] [0.14] [0.17] [0.09]

Unconstrained 3: Bond ratings

Standards -0.15 -0.25 -0.32 -0.49 -0.47

(-3.02) (-2.80) (-2.26) (-2.33) (-2.27)

R̄2 [0.14] [0.20] [0.14] [0.16] [0.08]

Unconstrained 4: Paper ratings

Standards -0.14 -0.23 -0.31 -0.49 -0.49

(-3.05) (-2.76) (-2.23) (-2.37) (-2.37)

R̄2 [0.14] [0.20] [0.14] [0.17] [0.09]

Constrained 1: Payout

Standards -0.24 -0.38 -0.39 -0.56 -0.38

(-2.47) (-2.30) (-1.53) (-1.58) (-1.17)

R̄2 [0.10] [0.12] [0.05] [0.07] [0.01]

Constrained 2: Size

Standards -0.15 -0.22 -0.15 -0.10 0.29

(-2.09) (-1.75) (-0.69) (-0.31) (1.37)

R̄2 [0.04] [0.04] [-0.00] [-0.01] [0.01]
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Table 2.12 continued

Constrained 3: Bond ratings

Standards -0.17 -0.27 -0.27 -0.36 -0.15

(-2.56) (-2.34) (-1.49) (-1.37) (-0.75)

R̄2 [0.09] [0.12] [0.05] [0.06] [-0.01]

Constrained 4: Paper ratings

Standards -0.19 -0.31 -0.33 -0.45 -0.29

(-2.74) (-2.65) (-1.91) (-1.74) (-1.32)

R̄2 [0.11] [0.16] [0.08] [0.09] [0.02]

Table 2.12 and Figure 2.3 show the long-horizon predictability of Standards

for the excess stock returns across the financial health of firms.23 Using four mea-

sures of the financial constraints, we assign firms to the financially constrained and

unconstrained groups and compare the pattern of the predictability of Standards.

The long-horizon predictability pattern of two groups is distinct from each other,

while both of them have the significantly negative coefficients for predictability of

Standards in the initial horizon. The financially unconstrained group shows stronger

initial negative response of excess stock returns to Standards than the financially

constrained group, since the magnitude of the Standards impulse on the excess

stock returns are much high in the financially constrained group. Figure 2.3 shows

the magnitude of the impulse in the financially constrained group are twice as much

as those in the unconstrained groups. For the financially constrained group, the

coefficients of Standards and the significance level peak around 2 quarters. On the

other hand, in the financially unconstrained group, the predictability of Standards

decreases at a horizon greater than 2 years. The pattern to decline the size of the co-

23We conduct the multivariate long-horizon regressions with traditional predictors and the results
are very similar as those in the univariate case.
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efficients across time implies that the expected stock returns increase to compensate

for the deterioration in the financial constraint resulted from tightening Standards.

We find that following the tightening Standards shock, the financially constrained

group has the higher expected long-horizon returns than the unconstrained group,

which is consistent with the financial constraint risk literature.24 The results of four

measures confirm that Standards predicts the high long-horizon excess stock returns

in the financially constrained group compared to the unconstrained group.

2.6 Conclusion

We provide evidence that a measure of aggregate supply-based credit conditions

Standards as derived from the Federal Reserve Board’s Senior Loan Office Opinion

Survey on Banking Lending Practices is a strong predictor of U.S. stock returns.

Given that Standards has been shown to predict aggregate macroeconomic variables,

our results provide a direct link between a macroeconomic supply variable and the

predictability of asset returns. Additionally, Standards is not derived from financial

market prices making it is less likely that the source of its predictive power is from

capturing mispricing in financial markets. Standards captures predictability at a

business cycle frequency, indicating that its predictive power is more consistent with

either capturing time-varying risk aversion or time-varying risk.

24Lamont, Polk, and Saa-Requejo (2001) and Whited and Wu (2006) show the different results of
the financial constraint risk. Lamont, Polk, and Saa-Requejo (2001) report that more constrained
firms earn lower average returns than less constrained firms, while Whited and Wu (2006) find that
more constrained firms earn higher average returns than less constrained firms. Our results with
conditioning on Standards support the financial constraint risk.
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3. CREDIT CONDITIONS AND STOCK RETURN VOLATILITY

Empirically, stock market volatility is strongly counter-cyclical across the business

cycle as shown in a number of studies. For example, Schwert (1989) and Brandt and

Kang (2004) empirically find that the volatility of stock returns is higher during

recessions than at other times. In theoretical work, Campbell and Cochrane (1999)

show that counter-cyclical risk aversion from external habit formation leads to a

counter-cyclical equity volatility. Mele (2007) shows that equity return volatility is

counter-cyclical because risk premia change asymmetrically in response to variations

in economic conditions.

This counter-cyclical volatility led to several studies that examine the predictabil-

ity of aggregate stock market return volatility with measures of macroeconomic ac-

tivity meant to capture the business cycle. Schwert (1989) examines the link of

stock return volatility with real and nominal macroeconomic volatility and economic

activity using monthly data from 1857 to 1987. He finds weak evidence that macroe-

conomic volatility can help predict stock return volatility. Beltratti and Morana

(2006) also study the relationship between macroeconomic and stock market volatil-

ity with a common long memory factor model. They find that the break process

in stock returns is associated with the break process in the volatility of the Federal

funds rate and M1 growth, while two common long memory factors are associated

with output and inflation volatilities. Paye (2009) tests the forecasting ability of the

level of macroeconomic and financial variables on aggregate stock return volatility.

He finds that the predictive ability of most macroeconomic and financial variables is

weak. This weak evidence of the predictability of stock return volatility shows that

the macroeconomic variables fail to capture the asymmetric time-varying pattern of

stock return volatility. Also, the evidence supports the arguments of Christoffersen

and Diebold (2000) and Campbell (2003) that stock return volatility is not strongly

predictable at frequencies as low as a quarter.
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Recently, several papers have argued that aggregate credit conditions could co-

vary with time-varying risk in the equity market. Longstaff and Wang (2008) show

that variation in the size of the credit market is connected with variation in expected

stock returns. Gomes and Schmid (2009) show that movements in credit spreads

forecast recessions by predicting movements in corporate investment. They argue

that corporate investment is the common link between credit markets, equity mar-

kets, and macroeconomic aggregates. Gilchrist, Yankov, and Zakrajsek (2009), using

a broad array of credit spread measures, find that credit market shocks have con-

tributed significantly to US economic fluctuations. Adrian, Moench, and Shin (2010)

investigate whether financial intermediary balance sheets contain strong predictive

power for future excess returns on equity, corporate, and Treasury bond portfolios.

They find that the intermediary variables predict real economic activity as well as ex-

cess returns. Chava, Gallmeyer, and Park (2011a) examine the impact of a measure

of credit conditions, credit standards (Standards), on expected aggregate stock re-

turns. They find that Standards has a counter-cyclical and asymmetric time-varying

pattern and strong predicts aggregate stock market returns.

These previous studies however have only focused on the return itself. Little

attention has been paid to the prediction of stock return volatility using credit con-

dition variables. We analyze the predictability of US aggregate stock market return

volatility using a measure of credit conditions, credit standards (Standards), from

the Federal Reserve Board’s Senior Loan Officer Opinion Survey on Bank Lend-

ing Practices. Since Chava, Gallmeyer, and Park (2011a) find that Standards has

the strongest forecasting power in tightening periods, Standards might shed light

on the economic channel that drives the counter-cyclical and asymmetric pattern

of aggregate stock market return volatility given its micro foundations are not well

understood.

Our work is also motivated by how financial intermediaries could impact economic

volatility. Larrain (2006) examines the contemporaneous relationship between bank
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loan supply and output volatility finding that on average bank loan supply increases

reduce industrial output volatility. The reduction in volatility comes mainly from a

reduction in idiosyncratic volatility. Correa and Suarez (2009) find that firm-level

employment, production, sales and cash flows are less volatile after wider access to

bank loans. However, past work has not considered the effect of bank loan supply

changes on the stock market volatility. In this paper, we examine whether shocks to

the aggregate bank loan supply affect aggregate stock market return volatility.

Overall, we find that credit standards (Standards) is a strong predictor of US stock

return volatility at frequencies up to and including a year. This is not surprising, since

Standards has strong forecasting power of for both stock returns (Chava, Gallmeyer,

and Park (2011a)) and macroeconomic variables (Lown and Morgan (2006)). The

ability of Standards to track time-varying expected returns could help forecast future

volatility. The relation between stock volatility and Standards is positive, which

implies that tighter credit conditions predict higher future stock volatility. We also

perform out-of-sample forecasting tests and find that the forecasts of volatility with

Standards are more accurate than those with the historical mean and an AR(1)

model of volatility. The ability of Standards to predict stock return volatility is also

robust to a host of consistency checks including a bootstrap procedure, other model

specifications of volatility, and extended the sample period.

The rest of the paper is organized as follows. Subsection 3.1 describes the data.

Subsection 3.2 presents results from forecasting stock volatility using Standards. Sub-

section 3.3 addresses results from an extensive set of robustness checks. Subsection

3.4 concludes.
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3.1 Data

3.1.1 Senior Loan Officer Survey Data

We use a measure of credit conditions, bank lending standards (Standards), from

the Federal Reserve Board’s Senior Loan Officer Opinion Survey on Bank Lend-

ing Practices.32 Recently, Standards has been employed as a measure of aggregate

supply-side credit conditions. Lown and Morgan (2006) find that changes in Stan-

dards are strongly correlated with real output and bank loan changes. In particular,

they show that Standards strongly dominates loan interest rates in explaining vari-

ation in the supply of business loans and aggregate output. They also show that

Standards remains significant when proxies for loan demand are included which sug-

gests Standards can be used as a proxy for loan supply as we do in our work. Chava,

Gallmeyer, and Park (2011a) examines the impact of Standards on expected ag-

gregate stock returns. They find that Standards strongly forecasts aggregate stock

market returns. Our work differs from this earlier work as we examine the link

between stock return volatility and bank loan supply.

To analyze the predictive power of Standards on aggregate stock return volatility,

we use the Standards series from Q2:1990 to Q4:2008. Panel (a) of Figure 3.1 plots

the Standards measure across time with the shaded regions representing NBER

recession periods. In our main analysis period, Q2:1990-Q4:2008, there are three

NBER dated recessions. In all cases, it appears that Standards has tightened enter-

ing a recession. Equally important, banks appear to relax lending standards exiting a

recession. From the figure, it appears that Standards is a leading indicator of a busi-

ness cycle. As a robustness check, we do construct a Standards series from Q1:1967

32See Chava, Gallmeyer, and Park (2011a) for more details of Standards.
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Fig. 3.1. Time Series of Standards, Realized Volatility, and Log Realized Volatility
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to Q4:2008 by filling in the missing the Standards series from Q1:1984 to Q4:1983

and examine the predictability of the stock return volatility with Standards.33

3.1.2 Stock Return Volatility

To study stock return volatility predictability, we focus on realized volatility as

our measure of the volatility of stock returns. Following the approach of French,

Schwert, and Stambaugh (1987), Schwert (1989), Ludvigson and Ng (2007), Lettau

and Ludvigson (2009), and Paye (2009), we sum the squared daily returns on the

CRSP-VW index to obtain quarterly realized volatility,34

volt =
√∑
k∈t

(rsk − r̄s)
2, (3.1)

where volt is the realized volatility of the CRSP-VW return in period t, rsk is the

daily return, r̄s is the mean of rsk over the whole sample, k represents a day, and t is

a quarter. Barndorf-Nielsen and Shephard (2002) and Andersen, Bollerslev, Diebold,

and Labys (2003) show that the realized volatility is a consistent and theoretically

error-free estimator of the integrated volatility of a frictionless, arbitrage-free asset

price process and performs better than parametric GARCH or stochastic volatility

models at capturing volatility. Moreover, the realized volatility allows us to employ

traditional time-series procedures for forecasting based on predetermined condition-

ing variables.35

33Our sample period choice of Q2:1990-Q4:2008 stems from biases, lack of reporting, and survey
question inconsistencies in the earlier data. See Chava, Gallmeyer, and Park (2011a) for a discussion.

34As a robustness check, we use excess returns computed from the daily 1 month T-bill rate. Also,
we use daily returns and daily excess returns on the S&P500 index. These results are nearly identical
to those of the CRSP-VW daily returns.

35Engle and Rangel (2008) propose a spline-GARCH model to isolate low-frequency volatility to ex-
plore the links between macroeconomic fundamentals and low-frequency volatility. Engle, Ghysels,
and Sohn (2008) develops a GARCH-MIDAS modeling framework where macroeconomic variables
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Following Lettau and Ludvigson (2009) and Paye (2009), we use the logarithm

of realized volatility instead of the level of realized volatility. One reason for the

logarithmic transformation is that realized volatility cannot be negative. Another

reason is that the distribution of log realized volatility is approximately Gaussian,

while realized volatility gives weight to high volatility periods (Engle and Patton

(2000) and Andersen, Bollerslev, Diebold, and Labys (2003)).

Panel (b) and (c) of Figure 3.1 show time series plots of quarterly realized volatil-

ity and the logarithm of quarterly realized volatility for the CRSP-VW index over the

period Q2:1990-Q4:2008. Stock return volatility is high at the begin of a recession

and decreases at the end of a recession. The pattern is similar as that of Standards

and at least at a univariate level, it seems plausible that Standards is a contender

for predicting stock return volatility. As compared to the realized volatility, the log

realized volatility lessens the effect of high volatility observations.

3.1.3 Other Stock Return Volatility Predictor Variables Used

To compare the forecasting power of Standards, we consider some of the standard

predictor variables used in the literature. Following Lettau and Ludvigson (2009),

we use the dividend-price ratio (dp), the default spread (DEF ), the commercial

paper spread (CP ), the one-year treasury bill yield (TB1Y ), and the consumption

to aggregate wealth ratio (cay). The quantity dp is the difference between the log

of dividends and the log of the CRSP-VW index price. The dividends are 12 month

moving sums of dividends paid on the CRSP-VW index. DEF is computed as

the difference between the BAA-rated and AAA-rated corporate bond yield. CP

is the difference between the yield on six-month commercial paper and the three-

are incorporated with a MIDAS polynomial. However, we focus primarily on the information con-
tent of the conditioning variables rather than more sophisticated modeling frameworks.
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month treasury bill yield. DEF , CP , and TB1Y are those used by Whitelaw (1994)

to forecast volatility at monthly and quarterly horizons. The variable cay from

Lettau and Ludvigson (2009) is the residual obtained from estimating a cointegrating

relation between aggregate consumption, wealth, and labor income.

We also compare the predictive power of Standards to the investment to capital

ratio (ik). The quantity ik proposed by Cochrane (1991) is the ratio of aggregate

investment to aggregate capital for the whole economy. Paye (2009) shows that ik

is the most successful predictor of stock return volatility.

3.1.4 Descriptive Statistics

Descriptive statistics (number of observations, mean, standard deviation, skew-

ness, kurtosis, and autocorrelation) of the various predictor variables and stock return

volatility are presented in Panel A of Table 3.1. Consistent with features of the time

series plot, the log realized volatility reduces the heavily skewed and leptokurtotic

features of realized volatility. As Panel A of Table 3.1 and Figure 3.2 show, both real-

ized volatility and log realized volatility are persistent, so we include lagged realized

volatility in the predictive regressions.

Panel B in Table 3.1 presents the correlations across the various predictor vari-

ables. Standards is highly positively correlated with the default spread DEF (65%),

because Standards and DEF represent credit market condition.36 The correlations

across the other predictor variables are consistent with the earlier literature.

36The high correlation can affect the regression results, so we orthogonalize DEF by regressing
DEF on Standards and regress the stock volatility with Standards and the orthogonalized com-
ponent of DEF . Standards still shows strong predictive powers in the regression.
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Table 3.1
Descriptive Statistics

The table reports descriptive statistics and correlations for realized volatility, excess stock returns, and predictive

variables used in the realized volatility predictability regressions. Th variable rvol is the realized volatility for the

CRSP-VW index, while lrvol is the log realized volatility for the CRSP-VW index. The variable exret is the log

excess return on the CRSP-VW index and rsharpe is the realized Sharpe ratio. The tightening credit condition

measure is standards. The log dividend-price ratio is denoted dp. DEF is the BAA bond yield minus the AAA bond

yield. CP is the difference between the yield on six-month commercial paper and the three-month Treasury yield.

TB1Y is the one-year Treasury yield. The variable cay is the Lettau and Ludvigson (2001) consumption-wealth

ratio variable. The variable ik is the investment-capital ratio. The table presents the mean, the standard deviation,

the skewness, the kurtosis, and the first order autocorrelation (ρ1) for each series as well as the correlations of

the predictive variables used in the realized volatility predictability regressions. The sample period is Q2:1990 to

Q4:2008.

Panel A: Descriptive Statistics of Predictive Variables

V ariable Obs Mean StdDev Skew Kurt ρ1

rvol 75 0.076 0.044 3.075 17.296 0.500

lrvol 75 -2.696 0.454 0.750 3.758 0.685

exret 75 0.013 0.085 -0.519 3.674 -0.010

rsharpe 75 0.416 1.042 0.145 2.383 -0.019

standards 75 0.089 0.242 0.930 3.152 0.815

dp 75 -3.966 0.308 0.280 2.349 0.922

DEF 75 0.009 0.004 4.043 26.308 0.508

CP 75 0.004 0.005 2.998 15.124 0.664

TB1Y 75 0.043 0.018 -0.296 2.328 0.881

cay 75 0.004 0.024 -0.021 1.627 0.928

ik 75 0.036 0.004 0.577 2.215 0.973

Panel B: Correlations of Stock Return Predictive Variables

standards dp DEF CP TB1Y cay ik

standards 1.000

dp 0.031 1.000

DEF 0.655 0.227 1.000

CP 0.247 0.185 0.471 1.000

TB1Y -0.094 0.150 -0.468 -0.127 1.000

cay 0.065 0.646 -0.145 -0.078 0.397 1.000

ik 0.088 -0.733 -0.293 0.011 0.379 -0.203 1.000
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3.1.5 Univariate Model Selection for Stock Return Volatility

To investigate the dynamic structure of stock return volatility, we compare the

fit of several standard univariate ARMA time series models over the sample period,

(1 − φ1L− φ2L
2 − φ3L

3)(volt − µvol) = (1 − θL)εt, (3.2)

where volt is realized volatility (rvol) or log realized volatility (lrvol) and εt is an

error term. Table 3.2 presents results of a univariate model selection for the realized

volatility and the log realized volatility. In each case, the results are reported for an

intercept-only model, AR models of order one through three, and an ARMA (1,1)

model.

Panel A of Table 3.2 shows that the dynamics of the realized volatility follow

an AR(1) process the best as additional lags are insignificant and the Akaike infor-

mation criterion (AIC) and Bayesian information criterion (BIC) prefer the AR(1)

process among other model specifications. Additionally, Panel (a) and (b) of Figure

3.2 show that the patterns of the autocorrelation function (ACF) and the partial

autocorrelation function (PACF) suggest AR processes for the realized volatility.

In Panel B of Table 3.2, the dynamics of the log realized volatility follow an

AR(1) or an ARMA(1,1) process as the AIC prefers the ARMA(1,1) process and the

BIC prefers the AR(1) process among other model specification. Panel (c) and (d) of

Figure 3.2 show that the patterns of the ACF and the PACF suggest an AR process

for the log realized volatility. Thus, we use the AR(1) model for the log realized

volatility in our main test and the AR(2) and ARMA(1,1) models in our robustness

checks.
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Table 3.2
Univariate Model Selection

The table reports estimation results for univariate ARMA time series models of the realized volatility (rvol) and the

log realized volatility (lrvol) for the CRSP-VW index:

(1− φ1L− φ2L2 − φ3L3)(Yt − µY ) = (1− θL)εt. (3.3)

The t-statistics of the coefficient estimates appear in parentheses below the coefficient estimates and AIC is Akaike

information criterion and BIC is Bayesian information criterion. The sample period is Q2:1990 to Q4:2008.

Panel A: ARMA time series of rvol

µY 0.08 0.10 0.10 0.10 0.10

(9.66) (2.11) (2.14) (1.85) (2.16)

φ1 -0.89 0.90 0.84 0.88

(8.62) (8.32) (7.23) (5.15)

φ2 -0.01 -0.13

(-0.07) (-0.69)

φ3 0.20

(0.94)

θ 0.02

(0.12)

σ 0.04 0.03 0.03 0.03 0.03

(22.65) (16.94) (15.95) (14.20) (15.90)

AIC -251.7 -296.5 -294.5 -294.0 -294.5

BIC -247.1 -289.6 -285.3 -282.4 -285.3

Panel B: ARMA time series of lrvol

µY -2.70 -2.63 -2.57 -2.55 -2.55

(-46.22) (-12.83) (-8.74) (-7.55) (-7.30)

φ1 0.81 0.64 0.59 0.93

(9.46) (6.06) (5.23) (11.63)

φ2 0.23 0.16

(1.90) (1.14)

φ3 0.14

(1.04)

θ -0.33

(-2.28)

σ 0.45 0.30 0.29 0.29 0.29

(12.83) (11.25) (11.46) (10.51) (11.28)

AIC 97.27 37.42 35.90 36.82 35.12

BIC 101.9 44.37 45.17 48.41 44.39
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3.2 Empirical Results

3.2.1 In-Sample Evidence

Following much of the existing stock volatility predictability literature, we first

assess the in-sample predictive ability of Standards for the realized volatility and

the log realized volatility. We estimate the following regression:

volt = α + φ volt−1 + β Standardst−1 + γ Xt−1 + εt, (3.4)

where volt is the realized volatility (rvol) or the log realized volatility (lrvol), Xt−1

corresponds to a particular forecasting variable, and εt is an error term. The in-

sample predictive ability of Standards is assessed via the t-statistic of the β estimate

and the adjusted R2 from the volatility regression. Under the null hypothesis that

Standards does not predict stock return volatility, β=0. We report Newey and West

(1987) standard errors that correct for serial correlation and heteroscedasticity.

Table 3.3 presents in-sample results for predictive regressions of the realized

volatility (rvol) and the log realized volatility (lrvol). In the univariate analysis

in the table, both rvol and lrvol are strongly predictable with positive coefficients

on Standards where lrvol has a stronger effect than rvol. The positive sign implies

that a tightening loan supply results in a subsequent rise in stock return volatility.

Also, the adjusted R2 of rvol (lrvol) is 34% (42%) and is much higher than those of

cay or ik.

The results of the multivariate regressions support those of the univariate regres-

sions. Standards has significant positive coefficients in all regressions. Additionally,

the Standards coefficients are relatively stable across specifications. For rvol (lrvol),

the estimates range from 0.08 to 0.12 (0.94 to 1.36). Also, the addition of Standards

largely increases the adjusted R2 of all specifications. In the last regression that

includes all variables, Standards and CP are significant at traditional significant

levels for both rvol and lrvol.
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Table 3.3
Forecasting Quarterly Stock Return Volatility

The table reports estimation results of forecasting the realized volatility (rvol) and the log realized volatility (lrvol) for

the CRSP-VW index with one-quarter lagged predictive variables: volt = α+φvolt−1+βStandardst−1+γXt−1+εt,

where volt are rvol and lrvol. The predictive variables are all defined in Table 2.1. Newey-West corrected t-statistics

appear in parentheses below the coefficient estimates and adjusted R2 statistics in square brackets. The sample

period is Q2:1990 to Q4:2008.

Panel A: rvol with no dynamics

standards 0.12 0.09 0.12 0.11 0.08

(3.13) (4.80) (3.49) (2.82) (2.98)

dp -0.06 -0.05 -0.05 -0.04

(-5.83) (-6.14) (-1.14) (-0.91)

DEF 8.89 1.16 10.17 2.57

(5.01) (0.51) (5.63) (0.74)

CP 4.15 4.71 3.76 4.43

(2.26) (2.89) (2.12) (2.46)

TB1Y 0.40 -0.13 -0.10 -0.26

(1.88) (-0.77) (-0.25) (-0.76)

cay -0.44 -0.51 0.41 0.10

(-1.76) (-3.73) (1.63) (0.36)

ik 3.48 2.62 3.30 1.43

(3.54) (2.66) (1.07) (0.45)

Constant 0.07 -0.29 -0.14 0.08 0.07 -0.05 -0.03 -0.34 -0.17

(15.83) (-5.61) (-3.70) (9.94) (18.32) (-1.30) (-0.77) (-3.44) (-1.61)

R̄2 [0.34] [0.55] [0.64] [0.04] [0.41] [0.08] [0.38] [0.59] [0.64]
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Table 3.3 continued

Panel B: rvol with AR(1)

rvolt−1 0.73 0.56 0.36 0.92 0.64 0.93 0.68 0.46 0.36

(3.71) (4.56) (2.33) (3.62) (3.03) (3.14) (2.71) (3.28) (2.18)

standards 0.05 0.07 0.06 0.05 0.06

(2.26) (2.66) (2.96) (2.52) (2.30)

dp -0.03 -0.03 -0.04 -0.04

(-2.93) (-3.25) (-1.31) (-1.06)

DEF 4.72 0.69 6.09 0.85

(3.13) (0.35) (3.22) (0.31)

CP 3.63 4.21 3.69 4.24

(2.47) (2.82) (2.38) (2.62)

TB1Y 0.24 -0.08 0.11 -0.07

(1.48) (-0.44) (0.32) (-0.20)

cay -0.16 -0.29 0.25 0.03

(-1.59) (-2.85) (1.37) (0.16)

ik 0.59 0.94 0.84 -0.13

(0.48) (0.81) (0.32) (-0.05)

Constant 0.02 -0.16 -0.10 0.01 0.03 -0.01 -0.01 -0.23 -0.11

(1.52) (-3.40) (-2.62) (0.61) (1.90) (-0.41) (-0.36) (-2.91) (-1.32)

R̄2 [0.51] [0.63] [0.67] [0.47] [0.52] [0.47] [0.51] [0.63] [0.66]
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Table 3.3 continued

Panel C: lrvol with no dynamics

standards 1.31 0.99 1.36 1.22 0.94

(5.03) (4.98) (6.42) (4.54) (3.34)

dp -0.89 -0.72 -0.53 -0.42

(-8.37) (-8.10) (-1.40) (-1.15)

DEF 112.66 29.29 124.22 34.78

(6.05) (1.23) (6.94) (0.98)

CP 22.43 28.45 15.57 23.43

(1.93) (3.14) (1.38) (2.13)

TB1Y 7.02 1.30 0.91 -0.97

(3.20) (0.72) (0.24) (-0.31)

cay -6.17 -7.02 2.76 -0.96

(-1.91) (-4.36) (1.12) (-0.38)

ik 48.98 39.38 45.86 23.83

(4.06) (3.94) (1.62) (0.85)

Constant -2.80 -7.60 -6.06 -2.67 -2.77 -4.48 -4.22 -7.67 -5.66

(-44.99) (-16.22) (-13.32) (-30.55) (-54.44) (-9.36) (-11.21) (-9.12) (-5.84)

R̄2 [0.42] [0.57] [0.68] [0.09] [0.55] [0.16] [0.52] [0.61] [0.67]
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Table 3.3 continued

Panel D: lrvol with AR(1)

lrvolt−1 0.63 0.48 0.30 0.79 0.49 0.77 0.52 0.40 0.30

(9.02) (5.66) (2.26) (8.64) (6.57) (6.52) (5.26) (4.26) (2.39)

standards 0.58 0.73 0.76 0.65 0.77

(2.98) (2.70) (3.86) (3.45) (2.46)

dp -0.52 -0.53 -0.39 -0.34

(-4.91) (-5.03) (-1.41) (-1.19)

DEF 61.94 19.62 75.29 14.71

(3.73) (1.03) (4.04) (0.53)

CP 18.87 24.66 16.02 22.35

(2.07) (2.80) (1.70) (2.32)

TB1Y 4.76 1.40 2.19 0.32

(2.85) (0.82) (0.69) (0.11)

cay -2.44 -4.31 1.17 -1.46

(-1.93) (-3.68) (0.65) (-0.70)

ik 16.40 21.74 22.32 10.39

(2.05) (2.53) (0.94) (0.49)

Constant -1.04 -4.27 -4.40 -0.54 -1.40 -1.21 -2.12 -4.80 -3.90

(-5.40) (-6.04) (-6.07) (-2.11) (-6.38) (-2.05) (-3.94) (-5.40) (-4.21)

R̄2 [0.61] [0.66] [0.70] [0.57] [0.65] [0.57] [0.63] [0.65] [0.69]
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Panel B and D of Table 3.3 report results from a regression of (log) realized

volatility on lagged (log) realized volatility plus other variables. In the regressions

with Standards plus lagged volatility, rvol and lrvol are strongly predictable with

positive coefficients on Standards. The adjusted R2 of rvol (lrvol) is 51% (61%).

The multivariate regressions with additional predictors show that Standards has

significant positive coefficients throughout. The addition of Standards increases the

adjusted R2 of all specifications.

3.2.2 Out-of-Sample Evidence

To generate out-of-sample predictions, we compute four test statistics designed

to determine whether the Standards forecasting model has superior forecasting per-

formance relative to the historical mean model of realized volatility and the AR(1)

dynamics of realized volatility.37 We conduct out-of-sample R2, ∆RMSE, MSE−F ,

and ENC −NEW as commonly computed:

R2
oos = 1 − MSEA

MSEN
, (3.5)

∆RMSE =
√
MSEN −

√
MSEA, (3.6)

MSE − F = (T − h+ 1) ·MSEN −MSEA
MSEA

, (3.7)

ENC −NEW =
T − h+ 1

T
·
∑T
t=1(ε2t − εt · et)
MSEA

, (3.8)

where MSEA is the mean squared error from the forecasting model with a predictor

and MSEN is the mean-squared error from the historical mean model (AR(1) dy-

namics) of realized volatility. The number of observations is T and h is the degree

of overlap (h=1 for no overlap). The error εt is the vector of out-of-sample errors

from the historical mean model (AR(1) dynamics) of realized volatility and et is

37The results for log realized volatility are nearly identical to those for realized volatility.



71

T
a
b
le

3
.4

F
or

ec
as

ti
n
g

Q
u
ar

te
rl

y
S
to

ck
R

et
u
rn

V
ol

at
il
it

y
O

u
t-

O
f-

S
am

p
le

T
h

e
ta

b
le

re
p

o
rt

s
re

su
lt

s
o
f

a
n

o
u

t-
o
f-

sa
m

p
le

fo
re

ca
st

co
m

p
a
ri

so
n

o
f

re
a
li
ze

d
v
o
la

ti
li
ty

.
P

a
n

el
A

d
o
cu

m
en

ts
a

co
m

p
a
ri

so
n

o
f

fo
re

ca
st

s
b

a
se

d
o
n

a
co

n
st

a
n
t

(u
n

co
n

d
it

io
n

a
l

fo
re

ca
st

)
a
n

d
fo

re
ca

st
s

b
a
se

d
o
n

a
co

n
st

a
n
t

p
lu

s
a

1
-q

u
a
rt

er
la

g
g
ed

p
re

d
ic

ti
v
e

v
a
ri

a
b

le
(c

o
n

d
it

io
n

a
l

fo
re

ca
st

).
P

a
n

el
B

in
cl

u
d

es
A

R
(1

)
d

y
n

a
m

ic
s

a
n

d
co

m
p

a
re

s
fo

re
ca

st
s

o
f

re
a
li
ze

d
v
o
la

ti
li
ty

b
a
se

d
o
n

a
n

A
R

(1
)

p
ro

ce
ss

w
it

h
fo

re
ca

st
s

o
f

re
a
li
ze

d
v
o
la

ti
li
ty

b
a
se

d
o
n

a
n

A
R

(1
)

p
ro

ce
ss

p
lu

s
a

1
-q

u
a
rt

er
la

g
g
ed

p
re

d
ic

ti
v
e

v
a
ri

a
b

le
.

T
h

e
p

re
d

ic
ti

v
e

v
a
ri

a
b

le
s

a
re

a
ll

d
efi

n
ed

in
T

a
b

le
2
.1

.
W

e
co

n
d

u
ct

th
e

o
u

t-
o
f-

sa
m

p
le

te
st

in
tw

o
w

a
y
s.

T
h

e
re

cu
rs

iv
e

a
p

p
ro

a
ch

a
ss

u
m

es
th

e
m

o
d

el
is

es
ti

m
a
te

d
w

it
h

m
o
re

d
a
ta

a
s

th
e

fo
re

ca
st

in
g

d
a
te

m
o
v
es

fo
rw

a
rd

in
ti

m
e.

T
h

e
ro

ll
in

g
a
p

p
ro

a
ch

a
ss

u
m

es
th

e
m

o
d

el
is

es
ti

m
a
te

d
w

it
h

a
m

o
v
in

g
w

in
d

o
w

o
f

th
e

m
o
st

re
ce

n
t

4
0

o
b

se
rv

a
ti

o
n

s.
T

h
e

co
lu

m
n
R̄

2 o
o
s

is
th

e
o
u

t-
o
f-

sa
m

p
le
R

2
.

∆
R
M
S
E

is
th

e
R

M
S

E
d

iff
er

en
ce

b
et

w
ee

n
th

e
u

n
co

n
d

it
io

n
a
l

fo
re

ca
st

a
n

d
th

e
co

n
d

it
io

n
a
l

fo
re

ca
st

.
M
S
E
−
F

g
iv

es
th

e
F

-t
es

t
o
f

M
cC

ra
ck

en
(2

0
0
7
),

w
h

ic
h

te
st

s
fo

r
a
n

eq
u

a
l

M
S

E
o
f

th
e

u
n

co
n

d
it

io
n

a
l

fo
re

ca
st

a
n

d
th

e
co

n
d

it
io

n
a
l

fo
re

ca
st

.
E
N
C
−
N
E
W

p
ro

v
id

es
th

e
C

la
rk

a
n

d
M

cC
ra

ck
en

(2
0
0
5
)

en
co

m
p

a
ss

in
g

te
st

st
a
ti

st
ic

.
S

ig
n

ifi
ca

n
ce

le
v
el

s
o
f
M
S
E
−
F

a
n

d
E
N
C
−
N
E
W

a
t

th
e

9
0
%

,
th

e
9
5
%

,
a
n

d
th

e
9
9
%

le
v
el

a
re

d
en

o
te

d
b
y

o
n

e,
tw

o
,

a
n

d
th

re
e

st
a
rs

,

re
sp

ec
ti

v
el

y.
T

h
e

sa
m

p
le

p
er

io
d

is
Q

2
:1

9
9
0

to
Q

4
:2

0
0
8
.

R
ec

u
rs

iv
e

a
p

p
ro

a
ch

R
o
ll

in
g

a
p

p
ro

a
ch

R̄
2 o
o
s

∆
R
M
S
E

M
S
E
−
F

E
N
C
−
N
E
W

R̄
2 o
o
s

∆
R
M
S
E

M
S
E
−
F

E
N
C
−
N
E
W

P
a
n

el
A

:
r
v
o
l

w
it

h
n

o
d

y
n

a
m

ic
s

S
ta
n
d
a
r
d
s

0
.3

6
0
4

0
.0

1
1
8

1
9
.7

1
8
8
*
*
*

6
.1

8
6
2
*
*
*

0
.3

9
1
5

0
.0

1
2
8

2
2
.5

2
1
7
*
*
*

8
.1

5
1
4
*
*
*

d
p

0
.0

2
8
3

0
.0

0
0
8

1
.0

1
7
7

0
.7

0
8
6

-0
.0

0
1
3

-0
.0

0
0
0

-0
.0

4
5
9

0
.9

1
9
7

D
E
F

0
.2

3
6
0

0
.0

0
7
4

1
0
.8

1
2
5
*
*
*

2
.9

6
3
5
*
*
*

0
.1

8
2
4

0
.0

0
5
6

7
.8

0
6
8
*
*
*

2
.5

2
3
6
*
*

C
P

0
.0

8
5
8

0
.0

0
2
6

3
.2

8
4
2
*
*

0
.9

5
8
9
*

0
.0

4
4
3

0
.0

0
1
3

1
.6

2
2
8
*

0
.6

5
0
9

T
B

1
Y

-0
.0

1
5
1

-0
.0

0
0
4

-0
.5

1
9
3

-0
.0

2
3
1

-0
.0

9
9
1

-0
.0

0
2
8

-3
.1

5
5
1

-0
.4

7
9
4

ik
0
.0

2
7
7

0
.0

0
0
8

0
.9

9
5
3
*

0
.6

3
5
9

-0
.0

0
5
0

-0
.0

0
0
1

-0
.1

7
2
6

0
.6

1
2
7

P
a
n

el
B

:
r
v
o
l

w
it

h
A

R
(1

)

st
a
n
d
a
r
d
s

0
.0

7
6
4

0
.0

0
1
7

2
.8

9
3
5
*
*

0
.8

3
2
5

0
.0

6
7
5

0
.0

0
1
5

2
.5

3
4
3
*
*

0
.9

0
4
9

d
p

-0
.1

0
0
0

-0
.0

0
2
1

-3
.1

8
1
3

-0
.4

7
0
9

-0
.1

4
8
1

-0
.0

0
3
1

-4
.5

1
4
7

-0
.1

2
9
5

D
E
F

0
.0

4
0
7

0
.0

0
0
9

1
.4

8
5
5
*

0
.3

7
9
5

0
.0

4
0
9

0
.0

0
0
9

1
.4

9
1
7

0
.4

6
3
2

C
P

0
.1

2
3
0

0
.0

0
2
8

4
.9

1
0
8
*
*
*

1
.2

6
7
2
*

0
.1

1
3
7

0
.0

0
2
6

4
.4

8
9
3
*
*
*

1
.2

0
1
5
*

T
B

1
Y

-0
.0

3
1
4

-0
.0

0
0
7

-1
.0

6
5
9

-0
.1

7
3
8

-0
.0

6
1
7

-0
.0

0
1
3

-2
.0

3
2
7

-0
.3

7
4
1

ik
-0

.0
7
5
1

-0
.0

0
1
6

-2
.4

4
3
8

-0
.3

4
8
3

-0
.0

9
5
8

-0
.0

0
2
1

-3
.0

5
9
3

-0
.2

8
2
8



72

the vector of out-of-sample errors from the forecasting model with a predictor. For

both the MSE-F and the ENC-NEW tests, we follow the methodology of Clark and

McCracken (2005), which provides bootstrapped critical values for these tests.

For the out-of-sample tests, we use 10 years (40 quarters) of data as an initial

estimation window. We conduct the out-of-sample tests in two ways, as a recursive

regression and a rolling regression. The recursive approach assumes the model is

estimated with more data as the forecasting date moves forward in time. The rolling

approach assumes the model is estimated with a moving window of the most recent

40 observations as the forecast moves forward in time.

Panel A of Table 3.4 reports results of out-of-sample forecasts of realized volatil-

ity and compares forecasts based on the historical mean model to those based on

each predictor variable. The forecasting model with Standards has superior fore-

casting performance relative to the historical mean model of the realized volatility

in both the recursive and the rolling regression. Additionally, the variables DEF

and CP show better forecasting ability than the historical average of the realized

volatility. Panel B in Table 3.4 presents results of out-of-sample forecasts of real-

ized volatility with lagged realized volatility and it compares forecasts based on the

AR(1) model to those based on each predictor variable plus lagged realized volatil-

ity. Standards has good forecasting performance for the R2, the ∆RMSE and the

MSE −F measures, although the predictive power of Standards is insignificant for

the ENC−NEW measure. CP has better forecasting performance than Standards

in both the recursive and the rolling regression.

3.2.3 Long-Horizon Forecasts

In this subsection, we investigate whether Standards has long-horizon predictive

power for realized volatility. Table 3.5 reports long-horizon forecasting regressions
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of quarterly realized volatility on the CRSP-VW index.38 The dependent variable is

the H-quarter realized volatility on the CRSP-VW index,

volt+1,t+H =
√ ∑
s∈t+1,...,t+H

(rs − r̄)2, (3.9)

where the horizon is H = 1, 2, 4, 8, and 12 quarters.

Panel A of Table 3.5 reports results of the long horizon forecast of realized volatil-

ity without the lagged realized volatility and the dependent variable is the H-step

ahead volatility. In the univariate regressions, the coefficient and adjusted R2 of

Standards shows a humped pattern with the horizon. The significance of the co-

efficient is highest for the 4 quarter horizon, while the adjusted R2 is highest for

the 2 quarter horizon. In the multivariate regressions, the significance of Standards

decreases with the horizon. The significance of the coefficients for dp, DEF , and ik

increase with the horizon, while the significance of the coefficients for CP , TB1Y ,

and cay decrease with the horizon like Standards.

Panel B in Table 3.5 shows results of long horizon forecasts of realized volatility

when lagged realized volatility is also included. Both the univariate and multivariate

regressions show the forecasting power of Standards decreases with horizon. In the

multivariate regressions, the significance of the coefficients for dp and DEF increases

with the horizon, while the significance of the coefficient for CP , TB1Y , ik, and cay

decrease with the horizon like Standards.

38The results for log realized volatility are almost similar as those for the realized volatility.
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Table 3.5
Forecasting Long Horizon Quarterly Stock Return Volatility

The table reports results from long-horizon forecasting regressions of quarterly realized volatility (rvol) for the CRSP-

VW index on lagged variables. H denotes the realized volatility horizon in quarters. The dependent variable is the

H-step ahead volatility, equal to vt+1,t+H =

√∑
s∈t+1,...,t+H

(rs − r̄)2. The regressors are all defined in Table 2.1.

Newey-West corrected t-statistics appear in parentheses below the coefficient estimate and adjusted R2 statistics in

square brackets. The sample period is Q2:1990 to Q4:2008.

Forecast Horizon H

Regressors 1 2 4 8 12

Panel A: rvol with no dynamics

standards 0.12 0.14 0.15 0.15 0.09

(3.13) (3.41) (3.64) (2.46) (1.26)

R̄2 [0.34] [0.35] [0.23] [0.15] [0.03]

standards 0.09 0.13 0.13 0.03 -0.05

(4.80) (3.16) (3.46) (0.59) (-1.07)

dp -0.05 -0.08 -0.13 -0.22 -0.27

(-6.14) (-6.39) (-10.20) (-11.90) (-13.81)

DEF 1.16 2.49 3.86 7.71 8.72

(0.51) (0.81) (1.07) (1.75) (1.74)

CP 4.71 5.13 8.05 -5.63 -3.38

(2.89) (2.71) (2.04) (-1.81) (-1.88)

TB1Y -0.13 -0.07 0.29 2.47 3.20

(-0.77) (-0.20) (0.68) (4.15) (6.19)

R̄2 [0.64] [0.62] [0.73] [0.81] [0.86]

standards 0.08 0.12 0.12 0.03 -0.05

(2.98) (2.67) (2.97) (0.97) (-1.35)

dp -0.04 0.02 -0.07 -0.15 -0.13

(-0.91) (0.27) (-1.20) (-3.22) (-3.24)

DEF 2.57 2.79 4.95 8.03 9.96

(0.74) (0.59) (1.14) (2.52) (2.73)

CP 4.43 3.52 7.59 -5.70 -3.22

(2.46) (2.73) (2.06) (-1.92) (-2.50)

TB1Y -0.26 -0.72 -0.21 1.83 1.88

(-0.76) (-1.17) (-0.32) (2.00) (2.45)

cay 0.10 -0.46 -0.17 -0.31 -0.42

(0.36) (-0.98) (-0.35) (-0.61) (-0.82)

ik 1.43 6.76 4.55 5.27 10.35

(0.45) (1.60) (1.06) (1.43) (3.07)

R̄2 [0.64] [0.64] [0.73] [0.81] [0.87]
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Table 3.5 continued

Forecast Horizon H

Regressors 1 2 4 8 12

Panel B: rvol with AR(1)

rvolt−1 0.73 0.54 0.49 0.06 -0.19

(3.71) (2.71) (1.59) (0.26) (-0.99)

standards 0.05 0.08 0.08 0.21 0.21

(2.26) (1.32) (1.10) (4.05) (4.53)

R̄2 [0.51] [0.45] [0.37] [0.30] [0.18]

rvolt−1 0.36 0.02 -0.07 -0.26 -0.29

(2.33) (0.09) (-0.40) (-1.17) (-1.77)

standards 0.07 0.12 0.14 0.07 -0.02

(2.66) (2.03) (2.61) (2.28) (-0.31)

dp -0.03 -0.08 -0.14 -0.25 -0.29

(-3.25) (-5.75) (-6.31) (-7.47) (-7.38)

DEF 0.69 2.45 4.55 9.62 12.82

(0.35) (0.81) (1.09) (1.98) (1.97)

CP 4.21 5.12 7.97 -5.38 -2.80

(2.82) (2.60) (2.02) (-1.80) (-1.12)

TB1Y -0.08 -0.06 0.29 2.06 2.57

(-0.44) (-0.17) (0.66) (3.84) (2.87)

R̄2 [0.67] [0.62] [0.73] [0.81] [0.83]

rvolt−1 0.36 -0.06 -0.14 -0.24 -0.48

(2.18) (-0.30) (-0.73) (-1.18) (-1.71)

standards 0.06 0.13 0.14 0.08 0.08

(2.30) (1.97) (2.27) (1.62) (1.05)

dp -0.04 0.02 -0.06 -0.16 -0.10

(-1.06) (0.27) (-0.77) (-3.09) (-1.76)

DEF 0.85 2.98 7.20 9.88 10.52

(0.31) (0.62) (1.36) (3.15) (2.54)

CP 4.24 3.50 7.33 -5.19 -1.85

(2.62) (2.70) (2.13) (-1.86) (-0.82)

TB1Y -0.07 -0.75 -0.39 1.52 1.05

(-0.20) (-1.10) (-0.48) (1.75) (1.07)

cay 0.03 -0.46 -0.19 -0.37 -1.59

(0.16) (-0.94) (-0.36) (-0.62) (-1.65)

ik -0.13 6.99 6.46 5.02 9.95

(-0.05) (1.48) (1.08) (1.22) (2.26)

R̄2 [0.66] [0.63] [0.73] [0.81] [0.86]
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3.3 Robustness

3.3.1 Bootstrap Procedure of Forecasting Stock Return Volatility

Many predictability studies find that the coefficients and the standard errors

obtained from predictive regressions with a highly persistent predictor exhibit small

sample biases (Mankiw and Shapiro (1986), Nelson and Kim (1993), Elliott and Stock

(1994), and Stambaugh (1999)). Regarding the volatility prediction, Paye (2009)

shows that the high persistence in both realized volatility and macroeconomic and

financial predictors creates the potential of a spurious regression bias. As Standards

is a persistent variable, we explore whether the in-sample results of Standards could

be driven by small sample biases.

Following the approach of Lettau and Ludvigson (2009), we use a bootstrap

procedure to address these small sample bias problems. In the bootstrap procedure,

Standardst is generated from an AR(1) specification:

Standardst = µ+ γStandardst−1 + νt, (3.10)

where the values of µ and γ are those estimated from the actual data for Standards.

Dependent variables (rvolt) are generated in two ways — an unrestricted model and

a restricted model under the null hypothesis of no predictability. In the unrestricted

model, the realized volatility follows

volt = α + βStandardst−1 + εt, (3.11)

where the values of α and β are those estimated from the realized volatility regression

with Standards. In the restricted model under the null hypothesis (β = 0), the

realized volatility follows

volt = λ+ et (3.12)

where λ is a constant. Then, we generate artificial sequences of realized volatility

and Standards by drawing randomly from the sample residuals for the bootstrap
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Table 3.6
Robustness: Bootstrap Procedure of Forecasting Quarterly Stock Return Volatility

This table reports confidence intervals of forecasting realized volatility for CRSP-VW index from bootstrap pro-

cedures. We generate 100,000 artificial time series using quarterly data from Q2:1990 to Q4:2008. Standards are

generated form first-order autocorrelation model: Xt = µ + γXt−1 + νt. Bootstrap sample of rvol are obtained in

two ways by imposing the null hypothesis of no predictability: rvolt = λ + et and without imposing the null by

resampling the residual of rvolt = α+ βXt−1 + εt. We then compute OLS regressions with a Newey-West standard

error correction to compute the empirical distributions of the coefficient of Standards and the R̄2 coefficient.

Unrestricted model Under the null

β̂ 95% CI 90% CI 95% CI 90% CI

Panel A: rvol with no dynamics

Standards 0.12 (0.08 0.16) (0.08 0.15) (-0.05 0.05) (-0.04 0.04)

R̄2 0.34 (0.08 0.70) (0.11 0.65) (-0.01 0.05) (-0.01 0.04)

Panel B: rvol with AR(1)

rvolt−1 0.73 (0.61 0.84) (0.64 0.82) (-0.17 0.17) (-0.13 0.13)

Standards 0.05 (0.02 0.09) (0.02 0.08) (-0.05 0.05) (-0.04 0.04)

R̄2 0.51 (0.43 0.95) (0.49 0.93) (-0.03 0.07) (-0.03 0.05)

procedure. We generate 100, 000 samples equal to the length of the Standards data

series. Using these samples created under the bootstrap procedure, we then estimate

the predictive regressions which yields a distribution of our test statistics.

Table 3.6 reports confidence intervals of forecasting realized volatility from the

bootstrap procedure.39 In generating the process for volt, we have two specifications

— no dynamics and AR(1) specification. In the restricted model under the null hy-

pothesis of no predictability, the coefficient on Standards and the adjusted R2 are

statistically different from zero at the 95% level and are outside the 95% confidence

interval. The unrestricted model shows that the coefficient on Standards and the ad-

justed R2 are inside the 95% confidence interval, which implies that lagged Standards

39The results for log realized volatility are nearly identical to those for realized volatility.



78

affects the generated volt series. In sum, the statistical relation of Standards to

stock return volatility is strong, even accounting for the small-sample distribution of

t statistics.

3.3.2 Other Model Specification for the Log Realized Volatility

Paye (2009) shows that the spurious predictability bias can be reduced by the in-

clusion of a sufficiently rich dynamic structure in the prediction model. Our quarterly

volatility sample appears to have AR(1) dynamics in the univariate model, so we use

AR(1) model for realized volatility and log realized volatility. However, according

to the score of the Akaike information criterion (AIC) for log realized volatility, the

volatility appears to have ARMA(1,1) dynamics. In this subsection, we investigate

whether Standards shows predictive power for the log realized volatility in other

model specification than the AR(1) model.

Table 3.7 reports estimation results for an AR(2) and an ARMA(1,1) time series

models of log realized volatility with lagged predictive variables:

AR(2)Dynamics : volt = c+ φ1volt−1 + φ2volt−2 + βXt−1 + εt (3.13)

ARMA(1, 1)Dynamics : volt = c+ φ1volt−1 + βXt−1 + (1 − θL)εt, (3.14)

where volt is log realized volatility and Xt−1 corresponds to a particular forecasting

variable. For the AR(2) dynamics, Standards has significant positive coefficients

in the multivariate regressions, while it has slightly insignificant coefficients at the

5% significance level. The AR(2) coefficient (φ2) is insignificant in all specifications,

which implies that the AR(2) model does not fit log realized volatility well. The

control variables of the multivariate analysis have the same sign of the coefficients as

those of no dynamics and the AR(1) dynamics in Table 3.3. In the regression with

all predictive variables, Standards and CP are significant at traditional significant

levels.
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Table 3.7
Robustness: Other model specifications

The table reports estimation results for ARMA time series models of log realized volatility (lrvol) with one-quarter

lagged predictive variables:

AR(2)Dynamics : vol = c+ φ1volt−1 + φ2volt−2 + βXt−1 + εt

ARMA(1, 1)Dynamics : vol = c+ φ1volt−1 + βXt−1 + (1− θL)εt,

where volt is the log realized volatility and Xt−1 corresponds to a particular forecasting variable. The estimation

applies maximum likelihood estimation. The sample period is Q2:1990 to Q4:2008.

Panel A: lrvol with AR(2)

standards 0.68 0.99 1.13 0.95 0.91

(1.91) (4.04) (4.71) (2.92) (2.65)

dp -0.80 -0.74 -0.54 -0.45

(-4.35) (-5.94) (-1.44) (-1.23)

DEF 83.91 31.49 129.38 40.62

(3.11) (1.06) (6.78) (0.93)

CP 22.95 27.55 13.43 22.15

(3.00) (3.93) (1.28) (2.04)

TB1Y 5.47 1.39 0.89 -0.92

(1.36) (0.39) (0.25) (-0.24)

cay -1.48 -6.07 2.88 -0.67

(-0.29) (-1.89) (1.34) (-0.27)

ik 21.27 36.58 46.97 24.58

(0.58) (1.99) (1.66) (0.85)

φ1 0.56 0.38 0.16 0.65 0.43 0.64 0.47 0.14 0.14

(4.30) (2.65) (1.45) (4.53) (2.58) (6.17) (3.34) (1.03) (1.18)

φ2 0.20 0.01 -0.19 0.22 0.06 0.22 0.09 -0.20 -0.20

(1.31) (0.06) (-1.47) (1.45) (0.39) (1.76) (0.49) (-1.58) (-1.56)

R̄2 [0.60] [0.60] [0.69] [0.60] [0.61] [0.59] [0.60] [0.62] [0.68]
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Table 3.7 continued

Panel B: lrvol with ARMA(1,1)

standards 0.79 1.04 0.98 0.84 1.06

(2.72) (4.02) (3.32) (2.84) (2.99)

dp -0.42 -0.70 -0.51 -0.29

(-1.32) (-5.18) (-1.35) (-0.77)

DEF 42.15 19.73 117.12 14.64

(1.26) (0.68) (5.57) (0.36)

CP 24.34 28.05 15.10 23.04

(2.69) (3.74) (1.42) (2.15)

TB1Y 2.74 0.57 0.80 -2.51

(0.53) (0.16) (0.22) (-0.63)

cay -0.55 -4.54 2.36 -1.98

(-0.10) (-1.08) (0.90) (-0.61)

ik 21.29 25.05 45.20 27.22

(0.58) (1.17) (1.61) (1.03)

φ1 0.91 0.86 -0.67 0.92 0.81 0.92 0.88 -0.38 -0.72

(9.08) (6.65) (-3.40) (10.85) (4.52) (9.59) (5.66) (-0.77) (-4.15)

θ -0.50 -0.46 0.85 -0.30 -0.43 -0.31 -0.50 0.58 0.91

(-2.74) (-2.24) (6.33) (-1.56) (-1.60) (-2.06) (-2.30) (1.31) (7.77)

R̄2 [0.61] [0.60] [0.69] [0.59] [0.61] [0.59] [0.61] [0.61] [0.69]

Panel B of Table 3.7 shows that Standards has significantly positive coefficients

in ARMA(1,1) models for log realized volatility. The coefficient of the MA(1) compo-

nent (θ) is significant in some specifications. The control variables of the multivariate

setups have the same sign as the coefficients as those of no dynamics and the AR(1)

dynamics in Table 3.3. In the regression with all predictors, Standards, CP , the

AR(1) component (φ2), and the MA(1) component (θ) are all significant at tradi-

tional significant levels.
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3.3.3 Extended Sample Period

Our main results use the Standards series from Q2:1990 to Q4:2008. This is the

longest time-series available after the C&I loan supply question was re-established in

the Senior Loan Officer Opinion Survey. For robustness, we build a Standards mea-

sure from Q1:1967 to Q4:2008 by constructing an estimate of the missing Standards

data. We accomplish this by using the Standards series before the question’s sus-

pension (Q1:1967-Q4:1983) to build an estimate of the missing Standards data from

Q1:1984 to Q1:1990. This is possible by using the Consumer series, a measure of the

supply of consumer loans, which is available over the entire history of the Senior Loan

Officer Opinion Survey. Given Standards captures net tightening, while Consumer

captures the net willingness to lend, they should naturally be negatively correlated.

Indeed, this is the case as the correlation between Standards and Consumer is

−71%.

Given Standards and Consumer are highly correlated and both provide loan

supply-side information, we regress Standards on lagged Standards and current

Consumer over Q1:1967 to Q4:1983:

Standards t = α + β Standards t−1 + γ Consumer t + εt (3.15)

Estimating this regression gives an adjusted R2 of 53% with significant coefficients.

This regression model is then used to extrapolate an estimate of the Standards

variable from Q1:1984 to Q1:1990. Splicing this estimated data into the earlier

and later Standards data computed from the survey gives an unbroken Standards

variable from Q1:1967 to Q4:2008. This new series has a mean of 0.09 and a standard

deviation of 0.19.
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Table 3.8
Robustness: Extension of the Sample Period

The table reports estimation results of forecasting realized volatility (rvol) and log realized volatility (lrvol) with

one-quarter lagged predictive variables: volt = α+ φvolt−1 + βStandardst−1 + γXt−1 + εt, where volt are rvol and

lrvol. The regressors are all defined in Table 2.1. Newey-West corrected t-statistics appear in parentheses below the

coefficient estimate and adjusted R2 statistics in square brackets. The sample period is Q1:1967 to Q4:2008.

Panel A: rvol with no dynamics

standards 0.09 0.09 0.08 0.08 0.08

(3.49) (4.13) (3.48) (3.12) (4.40)

dp -0.04 -0.04 -0.03 -0.04

(-4.02) (-6.51) (-1.77) (-4.03)

DEF 3.12 2.79 4.17 3.05

(2.23) (2.71) (2.34) (2.25)

TB1Y 0.09 0.18 -0.25 0.10

(0.37) (1.11) (-0.69) (0.37)

cay -0.19 -0.14 0.15 0.06

(-1.32) (-1.12) (0.86) (0.45)

ik 2.06 1.08 3.58 0.76

(1.99) (0.98) (1.84) (0.54)

Constant 0.06 -0.12 -0.14 0.07 0.06 -0.01 0.02 -0.18 -0.16

(19.04) (-2.64) (-4.88) (16.59) (19.29) (-0.20) (0.52) (-4.07) (-4.34)

R̄2 [0.20] [0.14] [0.34] [0.00] [0.20] [0.03] [0.20] [0.18] [0.34]

Panel B: rvol with AR(1)

rvolt−1 0.55 0.58 0.40 0.68 0.55 0.66 0.54 0.55 0.39

(3.43) (3.08) (2.96) (3.51) (3.45) (3.32) (3.35) (3.31) (3.10)

standards 0.05 0.06 0.05 0.05 0.06

(3.00) (3.92) (3.00) (2.73) (3.91)

dp -0.02 -0.03 -0.02 -0.03

(-2.21) (-3.67) (-1.22) (-2.53)

DEF 1.47 1.77 2.01 1.84

(1.70) (2.42) (1.76) (1.90)

TB1Y 0.06 0.13 -0.10 0.11

(0.35) (0.87) (-0.36) (0.45)

cay -0.15 -0.13 0.01 -0.01

(-2.23) (-1.81) (0.12) (-0.13)

ik 1.11 0.73 1.73 0.27

(1.77) (0.98) (1.41) (0.24)

Constant 0.03 -0.07 -0.10 0.02 0.03 -0.02 0.00 -0.10 -0.11

(2.68) (-2.00) (-3.33) (1.93) (2.69) (-0.95) (0.05) (-3.13) (-3.58)

R̄2 [0.36] [0.34] [0.41] [0.31] [0.36] [0.32] [0.36] [0.34] [0.41]
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Table 3.8 continued

Panel C: lrvol with no dynamics

standards 1.01 1.04 1.00 0.95 1.03

(5.12) (6.21) (5.25) (4.58) (6.15)

dp -0.60 -0.64 -0.42 -0.63

(-4.72) (-7.88) (-2.71) (-5.77)

DEF 38.04 34.06 48.07 34.05

(2.93) (3.94) (3.29) (3.31)

TB1Y 3.00 4.10 -0.41 4.01

(1.47) (3.38) (-0.14) (2.04)

cay -2.90 -2.27 0.83 -0.32

(-1.40) (-1.42) (0.42) (-0.23)

ik 30.16 18.82 36.27 0.99

(2.27) (1.43) (2.14) (0.08)

Constant -2.87 -5.53 -5.80 -2.78 -2.87 -3.89 -3.56 -6.12 -5.80

(-64.43) (-9.69) (-16.28) (-55.93) (-66.01) (-7.90) (-7.55) (-11.86) (-13.67)

R̄2 [0.23] [0.21] [0.46] [0.01] [0.24] [0.05] [0.25] [0.24] [0.45]

Panel D: lrvol with AR(1)

lrvolt−1 0.58 0.60 0.40 0.69 0.58 0.67 0.57 0.58 0.40

(9.89) (7.49) (7.59) (9.84) (9.73) (8.87) (9.48) (8.19) (7.68)

standards 0.49 0.68 0.48 0.45 0.67

(3.72) (4.94) (3.70) (3.37) (5.01)

dp -0.31 -0.43 -0.24 -0.43

(-3.53) (-6.25) (-2.21) (-4.69)

DEF 13.06 18.70 17.08 17.17

(1.71) (2.93) (1.90) (2.22)

TB1Y 2.04 3.07 0.71 3.26

(1.49) (2.96) (0.35) (1.93)

cay -2.06 -1.89 -0.62 -0.94

(-2.27) (-2.17) (-0.57) (-0.94)

ik 16.90 13.49 14.79 -1.86

(2.91) (2.01) (1.38) (-0.18)

Constant -1.20 -2.50 -3.68 -0.86 -1.21 -1.52 -1.72 -2.79 -3.57

(-7.03) (-4.25) (-9.46) (-4.25) (-7.10) (-4.08) (-5.00) (-5.58) (-8.77)

R̄2 [0.47] [0.47] [0.54] [0.44] [0.48] [0.45] [0.48] [0.47] [0.54]

Table 3.8 shows results from regressions of realized volatility and log realized

volatility. In Panel A and C of Table 3.8, both level and log realized volatility
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are strongly predictable with positive coefficients on Standards as with our main

results. In the univariate analysis of Standards, the adjusted R2 of (log) realized

volatility is 20% (23%) and is much higher than those of cay or ik. The multivariate

regressions show Standards still has significant positive coefficients. The addition of

Standards largely increases the adjusted R2 of all specifications. In the regression

with all predictor variables, Standards, DEF , and dp are significant in the realized

volatility prediction and Standards, DEF , dp, and TB1Y are significant in the log

realized volatility prediction.

Panels B and D of Table 3.8 include the first lag of realized volatility. Like

the case without lagged realized volatility, both level and log realized volatility are

strongly predictable with positive coefficients on Standards. The significance levels

are smaller than those of the specifications without the lagged realized volatility.

Univariate regressions show that the adjusted R2 of the (log) realized volatility is

36% (47%) and is much higher than those of cay or ik. In the multivariate regres-

sions, Standards still has significant positive coefficients. The addition of Standards

increases the adjusted R2 of all specifications. As before, Standards, dp, and DEF

are significant at traditional significant levels in the regressions with all predictive

variables.

3.4 Conclusion

We analyze the predictability of aggregate stock return volatility using a measure

of credit standards (Standards) from the Federal Reserve Board’s Senior Loan Officer

Opinion Survey on Bank Lending Practices. Using level and log realized volatility as

the estimator of stock return volatility, we find that Standards is a strong predictor

of stock return volatility in both in-sample and out-of-sample tests. In particular,

a tightening Standards predicts higher future stock volatility. The positive rela-

tionship between Standards and future stock return volatility suggests a negative

correlation between the conditional mean and conditional volatility of stock returns
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using aggregate credit conditions, because our previous research (Chava, Gallmeyer,

and Park (2011a)) shows that Standards is negatively related to future expected

stock returns in the same sample period as this study. It is consistent with Brandt

and Kang (2004) and Lettau and Ludvigson (2009) who show a negative conditional

correlation between risk and return.
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4. CONCLUSIONS

My dissertation focuses on stock return predictability with aggregate credit condi-

tions. The aggregate credit conditions are empirically measured by credit standards

(Standards) derived from the Federal Reserve Board’s Senior Loan Officer Opinion

Survey on Bank Lending Practices. Using the information advantages of Standards,

we examine whether the aggregate credit conditions predict the expected returns and

volatility of the stock market.

From the findings presented in the first essay, “Credit Conditions and Expected

Stock Returns,” we provide evidence that Standards is a strong predictor of U.S.

aggregate stock returns. Given that Standards has been shown to predict aggregate

macroeconomic variables, our results provide a direct link between a macroeconomic

supply variable and the predictability of asset returns. Additionally, Standards is

not derived from financial market prices making it is less likely that the source of

its predictive power is from capturing mispricing in financial markets. Standards

captures predictability at a business cycle frequency, indicating that its predictive

power is more consistent with either capturing time-varying risk aversion or time-

varying risk.

From the second essay, “Credit Conditions and Stock Return Volatility,” we an-

alyze the predictability of Standards for aggregate stock return volatility. Using

level and log realized volatility as the estimator of stock return volatility, we find

that Standards is a strong predictor of stock return volatility in both in-sample

and out-of-sample tests. In particular, a tightening Standards predicts higher fu-

ture stock volatility. The positive relationship between Standards and future stock

return volatility suggests a negative correlation between the conditional mean and

conditional volatility of stock returns using aggregate credit conditions, because our

previous research (Chava, Gallmeyer, and Park (2011a)) shows that Standards is

negatively related to future expected stock returns in the same sample period as
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this study. It is consistent with Brandt and Kang (2004) and Lettau and Ludvigson

(2009) who show a negative conditional correlation between risk and return.

Our empirical findings contribute to stock return and volatility predictability

literature by providing evidence that an economically-motivated predictive variable

to measure the aggregate credit conditions has robust in-sample and out-of-sample

predictive power in forecasting future stock returns and volatility. Goyal and Welch

(2008) argue that many predictive variables used in the literature have performed

poorly both in-sample and out-of-sample, especially over the last 30 years. Paye

(2009) tests the forecasting ability of the level of macroeconomic and financial vari-

ables on the aggregate stock return volatility and finds that the predictive ability of

most macroeconomic and financial variables is weak. Though our sample is limited

to the period after the 1990s, the predictability of Standards is noteworthy in light

of the findings in Goyal and Welch (2008) and Paye (2009).
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