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ABSTRACT

Frequentist-Bayes Goodness-of-fit Tests. (August 2011)

Qi Wang, B.S., Zhejiang University;

M.S., Texas A&M University

Chair of Advisory Committee: Dr. Jeffrey D. Hart

In this dissertation, the classical problems of testing goodness-of-fit of uniformity

and parametric families are reconsidered. A new omnibus test for these problems is

proposed and investigated. The new test statistics are a combination of Bayesian

and score test ideas. More precisely, singletons that contain only one more parameter

than the null describing departures from the null model are introduced.

A Laplace approximation to the posterior probability of the null hypothesis

is used, leading to test statistics that are weighted sums of exponentiated squared

Fourier coefficients. The weights depend on prior probabilities and the Fourier co-

efficients are estimated based on score tests. Exponentiation of Fourier components

leads to tests that can be exceptionally powerful against high frequency alternatives.

Comprehensive simulations show that the new tests have good power against high

frequency alternatives and perform comparably to some other well-known omnibus

tests at low frequency alternatives.

Asymptotic distributions of the proposed test are derived under null and alter-

native hypotheses. An application of the proposed test to an interesting real problem

is also presented.
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CHAPTER I

INTRODUCTION

This dissertation is composed of five chapters. Each is separate with its own goal, but

the parts are related by the theme of frequentist-Bayes goodness-of-fit tests based on

Laplace approximations. We propose goodness-of-fit tests motivated by a combination

of Bayesian and score test ideas and apply them for testing simple hypotheses (no

unspecified parameters). We then extend this idea to testing goodness-of-fit when

the null hypothesis is composite (e.g.,for testing normality or exponentiality), these

cases being of more practical interest.

When testing for goodness-of-fit, alternative hypotheses are often vague and an

omnibus test is welcome. By an omnibus test, we mean a test that is consistent

against essentially all alternatives. In this dissertation, we propose and investigate

a new omnibus goodness-of-fit test. To motivate our choice, we start with some

background.

We first consider the simple hypothesis. Let X1, ..., Xn be i.i.d observations with

density f . We wish to test the null hypothesis H0 : f ≡ f0, where f0 is some

completely specified density. There are many consistent tests for testing H0. The

most popular ones are the Kolmogorov-Smirnov (KS) test proposed in 1933 and the

Cramér-von Mises (CvM) test proposed by Cramér in 1928 and corrected by Smirnov

in 1936. These tests are described in many textbooks and a lot of work has been

done on their empirical and asymptotic powers, efficiencies and other properties.

Thus, there is now strong evidence that, for moderate sample sizes, only a few types

of deviations can be detected by these two tests with substantial power. This feature

The journal model is Journal of the American Statistical Association.
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can be seen in simulations [cf. Quesenberry and Miller (1977), Miller and Quesenberry

(1979) and Kim (1992)].

As reviewed by Inglot, Kallenberg and Ledwina (1997), there are some theoretical

results due to Neuhaus (1976) and Milbrodt and Strasser (1990) that explain the defi-

ciencies of KS and CvM tests. See also Janssen (1995) for some developments. These

results show how the above-mentioned and some other tests distribute their power in

the space of all alternatives when the sample size is large. In particular, they show

that there are only a few directions of deviations from the null hypothesis for which

the tests have reasonable asymptotic power. These directions correspond to some

very smooth departures from the null distribution (low-frequency alternatives). More-

over, following from the “principal component representation” of the local asymptotic

power, there is only one direction with highest asymptotic power that is possible. In

each other direction the power is small. For a “bad” direction, the power is close

to the significance level. As a result, Milbrodt and Strasser (1990) concluded that

these tests behave very much like a parametric test for a one-dimensional alternative

and not like a well-balanced test for higher-dimensional alternatives. Therefore, at

least from a local point of view, the tests do not have the omnibus property usually

attributed to them.

We also would like to mention the investigation of the relative efficiency of a given

test with respect to the Neyman-Pearson test for an alternative of interest. Such

an approach for the KS, CvM and other goodness-of-fit tests has been developed by

Nikitin (1984, 1995). He used the notion of Bahadur efficiency and has shown that the

tests mentioned before are usually less powerful than the Neyman-Pearson test when

the alternatives differ from the null only with respect to location or scale. Inglot and

Ledwina (1990) arrive at the same conclusion by exploiting the notion of intermediate

efficiency. Some related results with regard to Bahadur slopes of goodness-of-fit tests
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and the local intermediate equivalence can be found in Koning (1992, 1993).

The above mentioned deficiency of the KS and CvM tests caused renewed in-

terest in Neyman’s smooth tests for goodness of fit, especially for higher-frequency

alternatives. To be specific, we hypothesize that we have a random sample X1, ..., Xn

with probability density function f and cumulative distribution function F . Both

of these are completely specified. We could apply, as did Neyman, the probability

integral transformation. Therefore, it is sufficient to consider tests for uniformity.

The “smooth” alternatives to uniformity are defined by

gk(x; θ) = C(θ) exp{
k∑

i=1

θiui(x)}, 0 < x < 1, (1.1)

where u1, u2, ... are an orthonormal system in L2([0, 1]) with bounded functions, θ =

(θ1, ..., θk) ∈ Rk and C(θ) is a constant depending on θ, introduced to ensure that

the probability density function integrates to one. Of course, testing for uniformity

is equivalent to testing H0 : θ = 0 against Ha : θ 6= 0. The so-called smooth test

statistics are given by

Nk =
k∑

j=1

(
n−1/2

n∑
i=1

uj(Xi)

)2

, k = 1, 2, .... (1.2)

See also Rayner and Best (1989, 2009), Milbrodt and Strasser (1990), Eubank and

LaRiccia (1992) and Kaigh (1992) for details.

To enlarge the applicability of the original Neyman’s smooth test and to make

the test consistent against essentially any alternative, some data-driven versions of

Neyman’s smooth test have been proposed by Bickel and Ritov (1992), Eubank and

LaRiccia (1992), Eubank, Hart and LaRiccia (1993), Ledwina (1994), Kallenberg and

Ledwina (1995a) and Fan (1996). Worth special mention due to their fundamental

nature are adaptive versions of the Neyman smooth test, which were introduced by
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Ledwina (1994). In this work Ledwina proposed that the Schwarz criterion, i.e., BIC,

be used to choose the number of components in a Neyman smooth statistic. The

selection rule is seen as the first step, followed by the finishing touch of applying the

smooth test in the selected dimension. Extensive simulations presented in Ledwina

(1994), Kallenberg and Ledwina (1995a, 1995b), Bogdan (1995) and Bogdan and

Ledwina (1996) show that the data-driven smooth test proposed by Ledwina (1994)

and extended by Kallenberg and Ledwina (1995a) compares very well to classical

tests and other competitors.

We are also interested in the composite hypothesis H0 : f(x) ∈ {f(x; β), β ∈ B},

where B ⊂ Rq and {f(x; β), β ∈ B} is a given family of densities (for instance, the

family of normal or exponential densities) with unknown parameter β.

Again a lot of work has been done to investigate KS and CvM test statistics in the

case of a composite null hypothesis. As is well known, when a nuisance parameter β is

present, the situation is more complicated. The reason is that a natural counterpart

of the empirical process, on which these statistics are based, is no longer distribution

free or even asymptotically distribution free. Refer to Durbin (1973), Neuhaus (1979),

Khmaladze (1981) and D’Agostino and Stephens (1986) for more thorough discussions

of the composite null case.

Two general solutions have been proposed to deal with the nuisance parameter β.

One is proposed by Khmaladze (1981), depending on modifying the natural empirical

process with estimated parameters to get a martingale converging weakly to a Wiener

process under the null hypothesis. This method makes it possible to construct some

counterparts of the classical KS and CvM test statistics based on the new process. The

other is given by Burke and Gombay (1988), consisting in taking a single bootstrap

sample to estimate the nuisance parameter β, which makes the KS and CvM statistics

asymptotically distribution free, based on the related empirical process.
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These two solutions, elegant mathematically, were proposed to enable the use of

classical solutions in a more complicated situation when the nuisance parameter is

present. However, one anticipates that these tests will have the same deficiency in the

composite null case as in the simple null case. In fact, simulation studies by Angus

(1982), Ascher (1990) and Gan and Koehler (1990) show that more specialized tests,

such as Gini’s test for exponentiality and Shapiro-Wilk’s test for normality, dominate

the composite null versions of the KS and CvM tests in most situations. Thus, as in

the case of testing the simple hypothesis, it seems to be promising to consider smooth

tests.

To be more specific, let F (x; β) be the distribution function of Xi when β is

the true parameter value, and define exponential families (with respect to θ) by their

densities

gk(x; β, θ) = C(β, θ) exp{
k∑

i=1

θiui[F (x; β)]}f(x; β), k = 1, 2, ..., (1.3)

where u1, u2, ... are a bounded orthonormal system in L2([0, 1]), θ = (θ1, ..., θk) ∈ Rk

and C(β, θ) is a constant depending on β and θ. The latter constant ensures that

the probability density function integrates to one. Testing H0 within the exponential

family (1.3) means testing H0 : θ = 0 against θ 6= 0. An obvious test statistic for

this testing problem is the score statistic (see details in Javitz (1975), Kopecky and

Pierce (1979), Thomas and Pierce (1979), Neyman (1980) and Rayner and Best (1989,

2009)). Denoting by Ik the k × k identity matrix, the score statistic is given by

Wk = nY T
n (β̂){Ik + R(β̂)}Yn(β̂), (1.4)
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where, writing Eβ for the expected value under f(x; β),

Yn(β) = (ū1(β), ..., ūk(β))T

= n−1

n∑
i=1

(u1[F (Xi; β)], ..., uk[F (Xi; β)])T,

Iβ =

{
− Eβ

∂

∂βt

uj[F (X; β)]

}
t=1,...,q; j=1,...,k

, (1.5)

Iββ =

{
− Eβ

∂2

∂βt∂βu

logf(X; β)

}
t=1,...,q; u=1,...,q

, (1.6)

R(β) = IT
β (Iββ − IβIT

β )−1Iβ, (1.7)

and β̂ is the maximum likelihood estimator (MLE) of β under H0. However, Iββ

often cannot be computed, in which case one could use the observed information

matrices Jββ and Jβ:

Jββ =

{
− 1

n

n∑
i=1

∂2

∂βt∂βu

logf(Xi; β)

}
t=1,...,q; u=1,...,q

,

Jβ =

{
− 1

n

n∑
i=1

∂

∂βt

uj[F (Xi; β)]

}
t=1,...,q; j=1,...,k

.

There are many smooth tests derived from this score statistic that have been rec-

ommended for testing goodness of fit (see,.e.g.,Milbrodt and Strasser (1990); Rayner

and Best (1990)), but a poor choice for the number k of components in the test

statistic can result in a considerable loss of power. Therefore, a good procedure is

needed for choosing a value for k that can be used in practice. Research in this

area shows that a deterministic procedure gives no simple answer (see Inglot, Kallen-

berg,and Ledwina (1994)). As we have mentioned before, Ledwina (1994) introduced
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a data-driven version of Neyman’s test for testing uniformity. To apply this proce-

dure for testing composite hypotheses (e.g., for testing normality or exponentiality),

Kallenberg and Ledwina (1997a, b) extend Schwarz’s selection rule by inserting an

estimator of the parameters involved in the composite null hypothesis. They also

show that the extended data-driven smooth test is consistent against essentially any

alternative and competitive with well-known “special” tests, such as the Shapiro-Wilk

test for normality and Gini’s test for exponentiality. Moreover, Inglot and Ledwina

(2006) proposed a method of extending the sensitivity of data driven smooth tests

defined using a (simplified) Schwarz selection rule to determine the number of com-

ponents, in which the type of penalty (AIC or BIC) is chosen on the basis of the data.

They claim that the test is powerful in detecting both lowly and highly oscillating

alternatives.

Since we will compare the performance of our proposed tests with Ledwina’s data

driven Neyman smooth tests in the simulations of Chapter IV, we would now like to

introduce more details about their selection rules.

When testing a simple null hypothesis, let

Ls(θ) = log
n∏

i=1

gs(Xi; θ), (1.8)

where the model gs is defined by (1.1), and

Ls = supθ∈Ωs
Ls(θ), Ls = Ls −

1

2
slogn. (1.9)

Schwarz’s technique selects the model with index S defined by

S = min{j, 1 ≤ j ≤ K : Lj = max
1≤s≤K

Ls}. (1.10)

So the family gk(x; θ) is selected to choose a relatively (with respect to the sample size

n) simple density that has high likelihood. Criterion (1.10) is an approximation of the
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Bayes procedure for model choice under a special class of priors (Haughton (1988),

Schwarz (1978)). On the other hand, (1.10) can be interpreted as an approximation

of the selection rule based on a minimum description-length criterion (Barron and

Cover 1991; Rissanen 1983) or as an approximation for the stochastic complexity

(Rissanen 1987). Having chosen the model of dimension S, Ledwina (1994) proposed

to use NS, with S in place of k in (1.2) as a new version of Neyman’s test.

Kallenberg and Ledwina (1997a, b) made some modifications to selection rules

for testing composite hypotheses. As nuisance parameters β need to be estimated in

composite cases, their selection rule is defined in terms of Wk, given by (1.4). The

modified criterion of Kallenberg and Ledwina (1997a, b) is

S1 = S1(β̂) = min{k : 1 ≤ k ≤ K, Wk − klogn > Wj − jlogn, j = 1, ..., K}, (1.11)

and the corresponding test statistic is

WS1 = WS1(β̂). (1.12)

A more simple modification, which is easier to calculate, is

S2 = S2(β̂) = min{k : 1 ≤ k ≤ K, n‖Yn(β̂)‖2
(k) (1.13)

−klogn > n‖Yn(β̂)‖2
(j) − jlogn, j = 1, ..., K},

where the index of the norm denotes the dimension. The corresponding test statistic

is

WS2 = WS2(β̂). (1.14)

For testing simple null hypotheses, Inglot and Ledwina (2006) proposed a new

selection criterion designed to work better than (1.10) for high frequency alternatives.
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The penalty of this criterion is defined by

π(j, n) = {jlogn}{In(c0)}+ {2j}{1− In(c0)}, (1.15)

and the new selection rule is

T = min{k : 1 ≤ k ≤ K, Nk − π(k, n) > Nj − π(j, n), j = 1, ..., K}, (1.16)

where

In(c) = 1

(
max

1≤j≤K
|
√

nb̂j| ≤
√

clogn

)
,

b̂j = 1
n

∑n
i=1 uj(Xi) and c0=2.4. The new data driven statistic is NT .

Until now, all of the approaches mentioned are frequentist in nature. Verdinelli

and Wasserman (1998) proposed a purely Bayesian nonparametric goodness-of-fit

test. However, we would like to focus interest on what some have termed “hybrid

Bayes-frequentist” methods, i.e., methods that combine Bayesian and frequentist

thinking; for details see Bayarri and Berger (2004), Conrad, Botner, Hallgren and

Perez de los Heros (2003), Aerts, Claeskens and Hart (2004) and Chang and Chow

(2005). Our proposed tests are examples of such hybrids, as they are derived from

Bayesian principles but used in frequentist fashion. We shall refer to such tests as

frequentist-Bayes. Good (1957) proposed a frequentist-Bayes test based on a Bayes

factor. Aerts, Claeskens and Hart (2004) appear to be the first to propose frequentist-

Bayes lack-of-fit tests based on posterior probabilities. Hart (2009) proposed another

frequentist-Bayes motivated test. He used the method of Laplace to approximate

posterior probabilities, which is precisely the subject of the current dissertation. But

we apply this method to test for probability density functions, whereas he tested for

regression functions.

This dissertation proposes a frequentist-Bayes omnibus test that has good power
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at high frequencies and also performs comparably to some popular omnibus tests

at low frequencies. The next chapter describes methodology and its motivation.

Theoretical properties of the new tests are presented in Chapter III, and Chapter IV

describes the performance of tests, including simulations and a real data example.

The dissertation ends with some concluding remarks in Chapter V.
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CHAPTER II

METHODOLOGY AND ITS MOTIVATION

It is assumed that X1, ..., Xn are a random sample from an unknown density f , and

we wish to test the following null hypothesis:

H0 : f ∈ {f(·; β) : β ∈ B} = F0,

where f(·; β) is a density for each β ∈ B and B ⊂ Rq. The proposed tests of H0

are motivated by a combination of Bayesian and score test ideas. We will derive the

statistics and in the process provide motivation for them.

2.1. Derivation of Test Statistics

Let u1, u2, ... be basis functions that are orthonormal on the interval [0,1] in the sense

that ∫ 1

0

uj(x)uk(x)dx = δjk (2.1)

and ∫ 1

0

uj(x)dx = 0, (2.2)

where δjk is the Kronecker delta. Now define, for each x,

φj(x; β) = uj(F (x; β)), β ∈ B, j = 1, 2, ...,

where F (·; β) is the cumulative distribution function corresponding to f(·; β).

Define, for j = 1, 2, ..., the class of densities Fj by

Fj = {fj(·; β, θj) : β ∈ B,−∞ < θj < ∞},
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where

fj(x; β, θj) = C(β, θj) exp(θjφj(x; β))f(x; β), (2.3)

and C(β, θj) is a positive constant ensuring that fj integrates to 1. Our test statistics

are approximations to the posterior probability of H0 assuming that the true density

is in one of the classes F0,F1, .... Using Bayes’ theorem:

P (H0|x) =
P (x|H0)P (H0)

P (x)

=
P (x|H0)P (H0)∑∞
j=0 P (x|Hj)P (Hj)

=

(
1 +

∞∑
j=1

P (x|Hj)P (Hj)

P (x|H0)P (H0)

)−1

,

where P (x|Hj) is the marginal likelihood for model Fj, j = 1, 2, ... .

Let πj denote the prior probability that f is in Fj, j = 0, 1, .... The prior

distribution for β given that f ∈ F0 is denoted π0. For any j = 1, 2, ..., given that

f ∈ Fj it is assumed that θj and β have joint prior π(θj)π
0(β). Given observations

x = (x1, ..., xn), define

m0(x) = P (x|H0)

=

∫
P (x|β)P (β|H0)dβ

=

∫
B

π0(β)
n∏

i=1

f(xi; β)dβ,

and

mj(x) = P (x|Hj)

=

∫
P (x|β, θj, Hj)P (β, θj|Hj)d(β, θj)

=

∫
B

∫ ∞

−∞
π(θj)π

0(β)
n∏

i=1

fj(xi; β, θj)dθjdβ, j = 1, 2, ....
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The posterior probability of H0 is

P (H0|x) =

(
1 +

∞∑
j=1

πj

π0

· mj(x)

m0(x)

)−1

. (2.4)

The null hypothesis is rejected if P (H0|x) is sufficiently small. The cutoff point

for rejection of P (H0) is defined in the usual frequentist way, i.e., it is the α100th

percentile of the distribution of P (H0|x) assuming H0 to be true.

The last expression sheds light on the difference between the way Bayesians and

frequentists would assess the evidence against H0 given a value of P (H0|x). For a

Bayesian, the prior probability of H0 is crucial since P (H0|x) varies between 0 and

1 as π0 varies in the same way. On the other hand, a frequentist would reject H0

if and only if P (H0|x) is less than its α quantile under H0, in which case the test

is independent of the value of π0. This can be seen by noting that a frequentist

test based on P (H0|x) is equivalent to one based on
∑∞

j=1 πjmj(x)/m0(x). So, to

a frequentist, as long as 0 < π0 < 1, the choice of π0 in P (H0|x) is arbitrary. A

frequentist test based on P (H0|x) depends on π0, π1, ..., only through the relative

sizes of π1, π2, ....

Only in very special circumstances can m0(x), m1(x), ... be determined exactly.

In the Bayesian world, the currently most popular means of approximating such

quantities is to use MCMC. For a frequentist, computing P (H0|x) only solves a small

part of the problem since the null sampling distribution of P (H0|x) is unknown. If

the bootstrap were used to approximate the distribution of P (H0|x), then MCMC

would have to be used on every bootstrap sample to approximate the test statistic.

For this reason, we will propose various means of approximating P (H0|x) that can

either be computed exactly or approximated quickly.



14

2.2. Approximations

As we discussed above, marginal likelihoods are generally difficult to compute. Ex-

act solutions are known for a small class of distributions. In general, some kind of

numerical integration method is needed, either a general method such as Gaussian

integration or a Monte Carlo method, or a method specialized to statistical problems,

such as the Laplace approximation, Gibbs sampling or the EM algorithm.

Our basic approximation of P (H0|x) is based on approximating each of the

integrals mj(x) by the method of Laplace. Laplace approximation provides a general

way to approach marginalization problems. The basic setting is to approximate an

integral of the form:

In =

∫
b(x)ehn(x)dx,

where n is typically the number of data points. Let x denote a d-dimensional vector,

b(x) a function of x alone, and hn(x) is a function of both x and n. After performing

a Taylor series expansion of both hn(x) and the exponential function and evaluating

some elementary integrals, we obtain:

In ≈ (2π)d/2 det(H)−1/2b(x̂)ehn(x̂), (2.5)

where H = −D2h(x̂) is the Hessian matrix of h evaluated at x̂ and x̂ = argmaxxh(x).

Let β̂j and θ̂j be the maximum likelihood estimates of β and θj, respectively,

when it is assumed that f ∈ Fj, j = 0, 1, .... We may write mj(x) as∫
B

∫ ∞

−∞
π(θj)π

0(β) exp

{
log

(
n∏

i=1

fj(xi; β, θj)

)}
dθjdβ,

where b(β, θj) = π(θj)π
0(β) and hn(β, θj) = log(

∏n
i=1 fj(xi; β, θj)). Using the Laplace
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approximation up to the first order as in (2.5), we get,

m̂j(x) ≈ (2π)(q+1)/2|Hj(β̂j, θ̂j)|−1/2π(θ̂j)π
0(β̂j)e

log(
Qn

i=1 fj(xi;β̂j ,θ̂j))

≈ (2π)(q+1)/2|Hj|−1/2π(θ̂j)π
0(β̂j)

n∏
i=1

fj(xi; β̂j, θ̂j), j = 1, 2, .... (2.6)

A similar approximation holds for m0(x):

m̂0(x) =

∫
B

π0(β) exp

{
log

n∏
i=1

f(xi; β)

}
dβ

≈ (2π)q/2|H0(β̂0)|−1/2π0(β̂0)
n∏

i=1

f(xi; β̂0) (2.7)

Substitution of m̂j(x) for mj(x), using the fact that P (H0|x) is equivalent to the

statistic
∑∞

j=1 πjmj(x)/m0(x), as discussed at the end of subsection 2.1, and trunca-

tion of the series at, say, k leads to a computationally feasible test statistic:

√
2π

k∑
j=1

πjπ(θ̂j) ·
π0(β̂j)

π0(β̂0)
· |Hj(β̂j, θ̂j))|−

1
2

|H0(β̂0))|−
1
2

·
∏n

i=1 fj(xi; β̂j, θ̂j)∏n
i=1 f(xi; β̂0)

. (2.8)

Rejecting H0 for small values of P (H0|x) is equivalent to rejecting H0 for large values

of (2.8).

To compute (2.8), we need to find the maximum likelihood estimates β̂ and

θ̂j, which can be done using a standard method such as gradient search. It also

requires computing the second derivative matrix to obtain H. This is usually the

harder quantity to calculate. Therefore, further simplifications are desirable from

both computational and motivational standpoints.

2.3. Utilizing Score Statistics

Score tests (see, e.g., Rayner and Best 1989, pp. 77-81) achieve computational sim-

plicity relative to likelihood ratio tests by
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(i) computing the information matrix on the assumption that H0 is true,

(ii) evaluating the information matrix and log-likelihood derivatives at null maxi-

mum likelihood estimates.

We will apply a similar approach to (2.8) and thereby obtain a simplified statistic

that has motivational appeal.

Before further simplifications, we first make some clarifications. Define

lj = log

(
n∏

i=1

fj(xi; β, θj)

)

= nlog(C(β, θj)) + θj

n∑
i=1

φj(xi; β) +
n∑

i=1

logf(xi; β).

Then,

lj
′ =

∂lj
∂θj

= n
∂log(C(β, θj))

∂θj

+
n∑

i=1

φj(xi; β),

and

lj
′′ =

∂2lj

∂θj
2 = n

∂2log(C(β, θj))

∂θj
2 .

We make note of some good properties of C(β; θ) that will be used later. Since∫
fj(x; β, θj)dx = 1,

(2.3) implies

C(β, θj)

∫
exp(θjφj)f(x; β)dx = 1. (2.9)

Plugging in θj = 0, it follows that

C(β, 0)

∫
f(x; β)dx = 1.
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As
∫

f(x; β)dx ≡ 1, we have C(β, 0) ≡ 1. From (2.9), we observe that

C(β, θj) =
1∫

exp(θjφj)f(x; β)dx
,

and so

logC(β, θj) = −log

(∫
exp(θjφj)f(x; β)dx

)
,

∂logC(β, θj)

∂θj

= −
∫

exp(θjφj)φjf(x; β)dx∫
exp(θjφj)f(x; β)dx

,

and

∂logC(β, θj)

∂βt

= −
∂

∂βt

∫
exp(θjφj)f(x; β)dx∫

exp(θjφj)f(x; β)dx
.

Plugging in θj = 0, it follows that

∂logC(β, θj)

∂θj

∣∣∣∣
θj=0

= −
∫

φjf(x; β)dx∫
f(x; β)dx

= 0.

Similarly,

∂2logC(β, θj)

∂θ2
j

∣∣∣∣
θj=0

= −
∫

exp(θjφj)φj
2f(x; β)dx ·

∫
exp(θjφj)f(x; β)dx(∫

exp(θjφj)f(x; β)dx

)2

∣∣∣∣∣∣∣∣∣
θj=0

+

(∫
exp(θjφj)φjf(x; β)dx

)2

(∫
exp(θjφj)f(x; β)dx

)2

∣∣∣∣∣∣∣∣∣
θj=0

= −
∫

φ2
jf(x; β)dx

= −1,
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∂2logC(β, θj)

∂θj∂βt

∣∣∣∣
θj=0

= −

(
∂

∂βt

∫
exp(θjφj)φjf(x; β)dx

)
·
∫

exp(θjφj)f(x; β)dx(∫
exp(θjφj)f(x; β)dx

)2

∣∣∣∣∣∣∣∣∣
θj=0

+

∫
exp(θjφj)φjf(x; β)dx ·

(
∂

∂βt

∫
exp(θjφj)f(x; β)dx

)
(∫

exp(θjφj)f(x; β)dx

)2

∣∣∣∣∣∣∣∣∣
θj=0

= 0,

and

∂2logC(β, θj)

∂βt∂βu

∣∣∣∣
θj=0

= −

(
∂2

∂βt∂βu

∫
exp(θjφj)f(x; β)dx

)
·
∫

exp(θjφj)f(x; β)dx(∫
exp(θjφj)f(x; β)dx

)2

∣∣∣∣∣∣∣∣∣
θj=0

+

(
∂

∂βt

∫
exp(θjφj)f(x; β)dx

)
·
(

∂
∂βu

∫
exp(θjφj)f(x; β)dx

)
(∫

exp(θjφj)f(x; β)dx

)2

∣∣∣∣∣∣∣∣∣
θj=0

= 0.

2.3.1. Basic Ideas

Now, we start the simplification steps by applying score test ideas. Firstly, using β̂0

and 0 as initial estimates of β and θj, respectively, a one-step Newton’s approximation

of θ̂j is
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θ̃j = 0−
lj
′|β=β̂0,θj=0

lj
′′|β=β̂0,θj=0

= 0−
n

∂log(C(β̂0,θj))

∂θj

∣∣∣
θj=0

+
∑n

i=1 φj(xi; β̂0)

n
∂2log(C(β̂0,θj))

∂θj
2

∣∣∣
θj=0

=
1

n

n∑
i=1

φj(xi; β̂0). (2.10)

Now consider the ratio |Hj(β̂j, θ̂j)|−1/2
/
|H0(β̂0)|−1/2. As defined in subsection

2.2, we have

Hj(β, θj) = −

(
n∑

i=1

∂2logfj(xi; β, θj)

∂(β, θj)∂(β, θj)T

)
(q+1)×(q+1)

,

where

∂2logfj(x; β, θj)

∂βt∂βu

=
∂2logC(β, θj)

∂βt∂βu

+ θj
∂2φj(x; β)

∂βt∂βu

+
∂2logf(x; β)

∂βt∂βu

,

∂2logfj(x; β, θj)

∂βt∂θj

=
∂2logC(β, θj)

∂βt∂θj

+
∂φj(x; β)

∂βt

,

∂2logfj(x; β, θj)

∂θ2
j

=
∂2logC(β, θj)

∂θ2
j

,

and

H0(β) = −

(
n∑

i=1

∂2logf(xi; β)

∂β∂βT

)
q×q

.

Assuming H0 is true and using the results at the beginning of subsection 2.3, we
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obtain that

Hj(β, 0) =

 H0(β) −
∑n

i=1
∂φj(xi;β)

∂β(
−
∑n

i=1
∂φj(xi;β)

∂β

)T

n

 .

A property of determinants gives

|Hj(β, 0)| = |H0(β)| ×

∣∣∣∣∣∣n−
[
−

n∑
i=1

∂φj(xi; β)

∂β

]T

H0(β)−1

[
−

n∑
i=1

∂φj(xi; β)

∂β

]∣∣∣∣∣∣
= n|H0(β)|

1− 1

n

[
−

n∑
i=1

∂φj(xi; β)

∂β

]T

H0(β)−1

[
−

n∑
i=1

∂φj(xi; β)

∂β

]
= n|H0(β)|

(
1− 1

n
Mj

)
(say).

Therefore,

|Hj(β̂0, 0)|−1/2

|H0(β̂0)|−1/2
=

1√
n

(
1− M̂j

n

)−1/2

,

where M̂j is Mj evaluated at β̂0. Under both null and alternative hypotheses, M̂j/n

converges in probability to a constant as n → ∞. Hence, we may as well absorb

(1− M̂j/n)−1/2 into the term πj to simplify matters.

Substitution of θ̃j for θ̂j and n−
1
2 for |Hj(β̂j, θ̂j)|−1/2

/
|H0(β̂0)|−1/2 in (2.8) leads

to the following statistic that is computationally straightforward,√
2π

n

k∑
j=1

πjπ(θ̂j) exp

[
θ̃j

n∑
i=1

φj(xi; β̂0) + nlogC(β̂0, θ̃j)

]
, (2.11)

except perhaps for the quantities C(β̂0, θ̃j). Concerning these, the following remarks

are relevant.

R1. By (2.2) and Jensen’s inequality, it follows that C(β, θ) ≤ 1 for all β and θ.
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R2. Since

C(β, 0) ≡ 1,
∂logC(β, θ)

∂θ

∣∣∣∣
θ=0

≡ 0, and
∂2logC(β, θ)

∂θ2

∣∣∣∣
θ=0

≡ −1,

it follows that under H0, logC(β̂0, θ̃j) = −θ̃2
j/2 + op(n

−1).

Remark R2 implies that nθ̃2
j + nlogC(β̂0, θ̃j) has the same asymptotic null distri-

bution as nθ̃2
j/2. Furthermore, remark R1 implies that using nθ̃2

j/2 instead of nθ̃2
j +

nlogC(β̂0, θ̃j) is not necessarily a power liability, and could even be beneficial in terms

of power. We thus propose the following statistic:

Sk =
k∑

j=1

πjπ(θ̃j) exp

(
nθ̃2

j

2

)
, (2.12)

where θ̃j is defined by (2.10), and H0 is rejected for large values of Sk. However, for

the sake of normalization, θ̃j still needs further investigation.

2.3.2. Further Discussion About θ̃j

In simple null hypotheses cases, the parameter β is known, and a one-step Newton’s

approximation leads to a score statistic. Note that nθ̃2
j is just a component of the

score statistic Nk given by (1.2), and then
√

nθ̃j
D−→ N(0, 1) by the central limit

theorem. But, in the composite case, plugging the MLE β̂0 into φj(xi; β) means that

√
nθ̃j is no longer asymptotically distributed as standard normal. As a result, the

limiting distribution will not be free of unknowns. In order to avoid this problem, we

will add the proper normalizing factor to θ̃j. Simulations have shown that scaling θ̃j

so that it is asymptotically distribution-free can also yield a more powerful test.

Since Wk, the score statistic given by (1.4) for a composite null, has asymptot-

ically a chi-square distribution with degrees of freedom k, we will take advantage of
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this property and use the statistic

1

n

n∑
i=1

φj(xi; β̂0){1 + Rj(β̂0)}
1
2 , j = 1, 2, ... ,

where, writing Eβ for the expected value under the null hypothesis,

Iβj =

{
− Eβ

∂

∂βt

uj[F (X; β)]

}
t=1,...,q

, (2.13)

Iββ =

{
− Eβ

∂2

∂βt∂βu

logf(X; β)

}
t=1,...,q; u=1,...,q

, (2.14)

Rj(β) = IT
βj(Iββ − IβjI

T
βj)

−1Iβj, (2.15)

and β̂0 is the maximum likelihood estimate of β assuming that H0 is true.

In the case of a location-scale family, Rj(β) defined above does not depend on

β. To simplify the presentation some additional notation is now introduced. Since

f(x; β) =
1

β2

f0

(
x− β1

β2

)
and F (x; β) = F0

(
x− β1

β2

)
with known f0 and F0, Rj(β) depends on X1, ..., Xn only through

Xi − β̂1

β̂2

, i = 1, ..., n,

where (β̂1, β̂2) = β̂0. Because (β̂1, β̂2) is location-scale equivariant, the distribution of(
X1 − β̂1

β̂2

, ...,
Xn − β̂1

β̂2

)

does not depend on the location-scale parameter if Xi comes from a location-scale

family. The same remark applies to location families and to scale families. Statistic
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(2.13) can be written in the form

1

n

n∑
i=1

uj

[
F0

(
xi − β̂1

β̂2

)]
{1 + R0j}

1
2 , j = 1, 2, ... , (2.16)

where R0j is free of unknowns. The proof that Rj(β) does not depend on the location-

scale parameter is presented in Appendix A.

In preparation for the later simulations, we summarize the forms of θ̃j for the

simple and composite null cases.

A1. θ̃j,simple = 1
n

∑n
i=1 φj(xi) = 1

n

∑n
i=1 uj[F0(xi)], j = 1, 2, ...,

A2. θ̃j,composite = 1
n

∑n
i=1 φj(xi; β̂0){1 + R0j}

1
2 = 1

n

∑n
i=1 uj

[
F0

(
xi−β̂1

β̂2

)]
{1 + R0j}

1
2 ,

j = 1, 2, ... ,

where in the simple case F0 denotes the hypothesized distribution function. More

details about the asymptotic properties of θ̃j will be presented in Chapter III.

2.4. Choice of Priors

In a Bayesian analysis, the prior probabilities πj, j = 0, 1, ..., k and the prior distri-

bution π(θj), j = 0, 1, ..., k, are chosen to represent the investigator’s degree of belief

in the various alternatives and the parameters therein. A Bayesian who wishes to

do an analysis independent of his own prior beliefs may wish to use noninformative

priors. In our setting, very little is known about the underlying density. In such a

case it would make sense to use vague prior probabilities over various densities and

also noninformative priors for the parameters in these models.

Two possibilities for π(θ) are:

(1) the constant improper prior,

(2) the proper prior: π(θj) = C exp(−1
2
θj

2).
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The second prior may be regarded as a reference prior with information equivalent

to that in a single observation. The difference between using (1) and (2) is negligible

for all but very small sample sizes. There have been many arguments about what is

the most appropriate noninformative prior in a given situation, and about whether

or not any prior can truly express ignorance about the underlying parameters. Kass

and Wasserman (1996) give a review of the problem and many relevant references.

We now turn to the problem of assigning vague prior probabilities to the density

models. One possibility is to simply give each model the same probability of 1/(k+1).

The problem with this choice is that it fails to reflect our knowledge that relatively

few of a function’s Fourier coefficients will substantially different from 0.

The sequence π = (π1, π2, ...) can be chosen to represent the experimenter’s

degree of belief about the relative sizes of E(θ̃2
j ), j = 1, 2, ... . Clearly, a test based

on Sk will benefit in terms of power if the largest probabilities are placed on those

components θ̃j with the largest values of E(θ̃2
j ). The noninformative choice of π

should at least reflect the facts that, in general, E(θ̃j) will tend to 0 as j → ∞ and

that “smooth” densities occur more frequently in practice than do wiggly ones. To

this end, it seems reasonable to arrange basis functions φ1, φ2, ... in order from lowest

to highest frequency, and to choose π so that πj decreases monotonically to 0.

Taking πj = 1/jc for any c > 1 satisfies the above criteria, and letting c be fairly

close to 1 will ensure vagueness of the prior probabilities. A choice for π that has

proven useful in a regression context is such that πj ∝ j−2 (Hart 2009). We will

present more details about optimal πj in Chapter IV.
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CHAPTER III

ASYMPTOTIC DISTRIBUTION THEORY

In this chapter, we consider the limiting distribution of Sk under both the null hy-

pothesis and local alternatives that converge to the null at rate 1/
√

n. The local

alternatives are obtained by putting δj = θj

√
n, which gives

fl(x) = C(β, δ) exp

{ ∞∑
r=1

δr√
n

φr(x; β)

}
f(x; β), (3.1)

where C(β, δ) is the appropriate normalizing constant, β ∈ B and δ = (δ1, δ2, ...).

3.1. Limiting Distribution for Simple Null Hypotheses

Theorem 1. Let u1, u2, ... be orthonormal basis functions defined as in subsection 2.1

and assume that
∑∞

r=1 δrur(x) is uniformly bounded, i.e.,

sup
x∈[0,1]

∣∣∣∣∣
∞∑

r=1

δrur(x)

∣∣∣∣∣ < ∞.

Let Z1, Z2, ... be i.i.d. standard normal random variables. Then under the local alter-

native fl defined by (3.1), the statistic Sk =
∑k

j=1 πj exp(nθ̃2
j/2) converges in distri-

bution to

S1 =
k∑

j=1

πj exp[(Zj + δj)
2/2],

where k is an arbitrarily large but fixed number.

Proof. For a simple null hypothesis, the parameter β is completely specified, and

we deal with the limiting distribution of
{

θ̃j

}
j=1,...,k

in the form of
{

θ̃j,simple

}
j=1,...,k

,
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defined in subsection 2.3.2. By definition we write

E(θ̃j) = E

[
1

n

n∑
i=1

uj(F0(Xi))

]
=

∫
R

uj(F0(x))fl(x)dx

= C(β, δ)

∫
R

uj(F0(x)) exp

{
∞∑

r=1

δr√
n

ur(F0(x))

}
f0(x)dx.

As in a simple null, there are no nuisance parameters. Making the change of variable

y = F0(x), we get

E(θ̃j) = C(β, δ)

∫ 1

0

uj(y) exp

{
∞∑

r=1

δr√
n

ur(y)

}
dy.

By a Taylor expansion we obtain

E(θ̃j) = C(β, δ)

∫ 1

0

uj(y)

1 +
1√
n

∞∑
r=1

δrur(y) +
1

2n

[
∞∑

r=1

δrur(y)

]2

exp (ξn(y))

 dy

= C(β, δ)

 δj√
n

+
1

2n

∫ 1

0

uj(y)

[
∞∑

r=1

δrur(y)

]2

exp (ξn(y)) dy

 ,

where ξn(y) is between 0 and
∑∞

r=1 δrur(y)/
√

n. So by the boundedness of
∑∞

r=1 δrur(y),

we have

E(θ̃j) =
δj√
n

+ O(n−1),

and therefore

E(
√

nθ̃j) = δj + O(n−1/2).
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For j = 1, ..., k,

Var(θ̃j) = Var

[
1

n

n∑
i=1

uj(F0(Xi))

]
=

1

n
Var [uj(F0(X1))]

=
1

n

[
Eu2

j(F0(X1))− Euj(F0(X1))
2
]
.

As in calculation of E(θ̃j),

Eu2
j(F0(X1)) =

∫
R

u2
j(F0(x))fl(x)dx

= C(β, δ)

∫
R

u2
j(F0(x)) exp

{
∞∑

r=1

δr√
n

ur(F0(x))

}
f0(x)dx

= C(β, δ)

∫ 1

0

u2
j(y) exp

{
∞∑

r=1

δr√
n

ur(y)

}
dy

= C(β, δ)

∫ 1

0

u2
j(y)

(
1 +

∞∑
i=1

δr√
n

ur(y)

+
1

2n

[
∞∑

r=1

δrur(y)

]2

exp (ξn(y))

 dy

= C(β, δ)

(
1 +

1√
n

∫ 1

0

u2
j(y)

∞∑
r=1

δrur(y)

+
1

2n

∫ 1

0

u2
j(y)

[
∞∑

r=1

δrur(y)

]2

exp (ξn(y)) dy

 ,

and so

Var(
√

nθ̃j) = 1 + O(n−1/2)−O(n−1)

= 1 + O(n−1/2).

Similarly, it is straightforward to show that Cov(
√

nθ̃j,
√

nθ̃l) = O(n−1/2) for any

j 6= l.
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It now follows immediately from the Multivariate Central Limit Theorem [cf.

Theorem B, Page 30 of Serfling (1980)] that

(
√

nθ̃1, ...,
√

nθ̃k)
D−→ N(δ, Ik) with δ = (δ1, ...δk).

Using the fact that exp(·) is a continuous function, the continuous mapping theorem

implies that Sk converges in distribution to S1 =
∑k

j=1 πj exp[(Zj + δj)
2/2].

Note that the limiting distribution under the null hypothesis is a special case

of Theorem 1 with δj = 0 for all j. Therefore, Sk converges in distribution to∑k
j=1 πj exp[Z2

j /2] under H0.

3.2. Limiting Distribution for Composite Null Hypothesis

We now consider the asymptotic properties of Sk for a composite null hypothesis. We

begin with the limiting distribution under H0.

For the family {f(x; β) : β ∈ B} we need the following regularity conditions [cf.

Inglot, Kallenberg and Ledwina (1997)]. These conditions are assumed to hold on

any open subset B0 of B. The true value of β is supposed to lie in B0.

C1. For t, u = 1, ..., q, ∂
∂βt

f(x; β) and ∂2

∂βt∂βu
f(x; β) exist almost everywhere and are

such that for each β0 ∈ B0, uniformly in a neighborhood of β0,∣∣∣∣ ∂

∂βt

f(x; β)

∣∣∣∣ ≤ Gt(x)

and ∣∣∣∣ ∂2

∂βt∂βu

f(x; β)

∣∣∣∣ ≤ Ktu(x),
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where ∫
R

Gt(x)dx < ∞ and

∫
R

Ktu(x)dx < ∞.

C2. For t, u = 1, ..., q, ∂
∂βt

logf(x; β) and ∂2

∂βt∂βu
logf(x; β) exist almost everywhere

and are such that the Fisher information matrix,

Iββ = Eβ

{[
∂

∂β
logf(X; β)

] [
∂

∂β
logf(X; β)

]T
}

,

is finite, positive definite and continuous, and as γ → 0, we have

Eβ

{
sup

{h:‖h‖≤γ}

∥∥∥∥ ∂2

∂β∂βT
logf(X; β + h)− ∂2

∂β∂βT
logf(X; β)

∥∥∥∥
}
→ 0.

C3. For each β0 ∈ B0 there exists η = η(β0) > 0 with

sup
‖β−β0‖<η

sup
x∈R

∣∣∣∣ ∂2

∂βt∂βu

F (x; β)

∣∣∣∣ < ∞, t, u = 1, ..., q

and

sup
x∈R

∣∣∣∣ ∂

∂βt

F (x; β)

∣∣∣∣
β=β0

< ∞, t, u = 1, ..., q.

The next conditions concern the orthonormal basis functions {φj}∞j=0 [cf. Inglot,

Kallenberg and Ledwina (1997)].

S1. supx∈[0,1] |φ′j(x; β)| ≤ c1j
m1 for any j = 1, 2, ...k and some c1 > 0, m1 > 0.

S2. supx∈[0,1] |φ′′j (x; β)| ≤ c2j
m2 for any j = 1, 2, ...k and some c2 > 0, m2 > 0.

Theorem 2. Let φ1, φ2, ... be orthonormal basis functions defined as in subsection

2.1. Assume R1-R3 and S1,S2. Suppose Y = (Y1, ..., Yk) ∼ N (0, W (β0)(Ik −

Tβ0)W (β0)), where W (β0) = diag([1+R1(β0)]
1/2, ..., [1+Rk(β0)]

1/2), R1(β0), ..., Rk(β0)

are defined by (2.15), Tβ0 = IT
β0

I−1
β0β0

Iβ0 and Iβ0 and Iβ0β0 are defined by (1.5) and
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(1.6), respectively. Then under H0 the statistic Sk =
∑k

j=1 πj exp(nθ̃2
j/2) converges

in distribution to

S2 =
k∑

j=1

πj exp[Y 2
j /2],

where k is an arbitrarily large but fixed number.

Proof. For a composite null hypothesis, the parameter β is unknown, and we thus

deal with the limiting distribution of
{

θ̃j

}
j=1,...,k

in the form of
{

θ̃j,composite

}
j=1,...,k

,

defined as A2 in subsection 2.3.2.

Let W (β̂0) = diag([1 + R1(β̂0)]
1/2, ..., [1 + Rk(β̂0)]

1/2) and θ̃ = (θ̃1, ...θ̃k)
T. Then

Θ̃ =
(
[1 + R1(β̂0)]

1
2 θ̃1, ..., [1 + Rk(β̂0)]

1
2 θ̃k

)T

= W (β̂0)θ̃. (3.2)

Referring to the score statistic given by Cox and Hinkley (1974), P. 324 and Thomas

and Pierce (1979), P. 443, we have

√
nθ̃

D−→ N (0, Ik − IT
β0

I−1
β0β0

Iβ0). (3.3)

By the continuity of Iβ0j, Iβ0β0 and the convergence in probability of β̂0 to β0, we

have

Rj(β̂0)
P−→ Rj(β0), j = 1, ..., k,

and so

W (β̂0)
P−→ W (β0). (3.4)

Using (3.2), (3.3), (3.4) and Slutsky’s theorem, it follows that

√
nΘ̃

D−→ N (0, W (β0)(Ik − Tβ0)W (β0)).
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Since exp(·) is a continuous function, the continuous mapping theorem implies

that Sk converges in distribution to S2 =
∑k

j=1 πj exp[Y 2
j /2], where Y = (Y1, ..., Yk) ∼

N (0, W (β0)(Ik − Tβ0)W (β0)) with Tβ0 = IT
β0

I−1
β0β0

Iβ0 .

Some remarks are in order concerning Theorem 2.

1. Since

Tβ = IT
β Iββ

−1(Iββ − IβIT
β )(Iββ − IβIT

β )−1Iβ = R(β)− TβR(β),

it follows that

(Ik − Tβ)(Ik + R(β)) = Ik + R(β)− Tβ − TβR(β) = Ik.

The special case with k = 1 yields

(1− IT
βjIββ

−1Iβj)(1 + Rj(β)) = 1, j = 1, ..., k.

For any diagonal element Σjj in covariance matrix Σ = W (β)(Ik − Tβ)W (β),

Σjj =
[
Ik − IT

β Iββ
−1Iβ

]
jj

(1 + Rj(β)), where
[
Ik − IT

β Iββ
−1Iβ

]
jj

is the jth

diagonal element of Ik − IT
β Iββ

−1Iβ.

A further investigation gives that
[
Ik − IT

β Iββ
−1Iβ

]
jj

= 1 − IT
βjIββ

−1Iβj, and

so Σjj=1 for j = 1, ..., k, and
√

n[1 + Rj(β̂0)]
1/2θ̃j indeed leads to a normalized

statistic.

2. Let u1, u2, ... be orthonormal basis functions defined as in subsection 2.1.

– For testing exponentiality, each off diagonal element Σij of the covariance

matrix Σ = W (β)(Ik − Tβ)W (β) is

−
(∫∞

0
yf0

′(y)ui[F0(y)]dy
) (∫∞

0
yf0

′(y)uj[F0(y)]dy
)(

1−
[∫∞

0
yf0

′(y)ui[F0(y)]dy
]2) 1

2
(
1−

[∫∞
0

yf0
′(y)uj[F0(y)]dy

]2) 1
2

.



32

– For testing normality, each off diagonal element Σij of the covariance ma-

trix Σ = W (β)(Ik − Tβ)W (β) is

− 2IµiIµj + IσiIσj(
2− 2I2

µi − I2
σi

) 1
2
(
2− 2I2

µj − I2
σj

) 1
2

,

where

Iµi =

∫ ∞

−∞
f0
′(y)ui[F0(y)]dy, j = 1, ..., k,

and

Iσi =

∫ ∞

−∞
yf0

′(y)ui[F0(y)]dy, j = 1, ..., k.

3. Using an approach similar to that in the proof of Theorem 2, we find that the

limiting distribution under local alternative fj, defined by (3.1), is
∑k

j=1 πj exp[(Yj+

(1−
∑q

t=1 ijtIβtj)δj)
2/2], where Yj is defined the same as in Theorem 2, q is the

dimension of β, ijt is the element in the jth row and tth column of IT
β Iββ

−1,

and Iβtj is the element in the tth row and jth column of Iβ.

The limiting distributions demonstrate that Sk can detect 1/
√

n alternatives whenever

at least one of the Fourier coefficients δ1, ..., δk is nonzero.
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CHAPTER IV

THE PERFORMANCE OF TESTS

In this chapter we present the results of an extensive Monte Carlo study to see how well

the tests perform, including evaluating the choice of the number of Fourier coefficients,

optimal weights, empirical critical values and power of the considered tests for testing

simple and composite null hypotheses.

We first clarify the test statistic and related parameters that will be used in the

simulations. The proposed test statistic is

Sk =
k∑

j=1

πj exp

(
nθ̃2

j

2

)
, (4.1)

and H0 will be rejected for large values of Sk. The statistic θ̃j will take the forms

of A1 and A2 in the case of simple and composite null hypotheses, respectively. Let

uj, j = 1, 2, ..., be orthonormal on the interval [0,1], defined as in subsection 2.1.

Examples of basis functions u1, u2, ... that could be used are Legendre polynomials,

trigonometric functions and wavelets. In this chapter, we use orthonormal Legendre

polynomials with respect to Lebesgue measure defined on [0,1] as ujs. Then the basis

functions φj(·; β) = uj(F (x; β)), j = 1, 2, ..., defined as in subsection 2.1.

For simulations concerning the proposed test statistic Sk defined as in (4.1) we

have to choose the number of Fourier components k and the weights πj. We start each

subsection with comments on the choice of k and πj. We then present the resulting

power of the proposed tests and compare them with some other commonly used tests.
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4.1. Testing for Simple Hypotheses

In the simulation study of simple hypotheses, we consider the following two types of

alternatives:

pj(x; ρ) = 1 + ρcos(πjx), ρ ∈ (0, 1], j = 1, 2, ..., (4.2)

gk(x; θ) = Ck(θ) exp

{ k∑
j=1

θjuj(x)

}
, k = 1, 2, ..., (4.3)

where Ck(θ) is the normalizing factor and u1, ..., uk are orthonormal Legendre poly-

nomials on [0,1]. In simulations, we use rejection sampling to generate data from

these alternates. Fourier coefficients are defined as:

E(θ̃j,simple) =

∫ 1

0

uj(x)fa(x)dx, (4.4)

where fa(x) is the considered alternative. The alternative here is the density of

F0(x; β) and F0(x; β) is the cumulative distribution function under H0.

4.1.1. Number of Fourier Components k

In this subsection we investigate how k (in Sk) affects critical values and power of the

test when we take πj = 1/j2, j = 1, ..., k. We do simulations under the null hypothesis

based on 10,000 replications to determine 0.05 level critical values for different k and

different sample size n. The power as k ranges from 5 to 45 by 5 is obtained by 10,000

replications at sample size n = 100 and significant level α = 0.05.

There is empirical evidence that Sk changes smoothly as k increases. For illus-

tration, see Figure 1, which shows the critical values of proposed test statistic Sk as

a function of k with sample sizes n = 50 and n = ∞. We have shown in subsection

3.1 that the limiting distribution of Sk under H0 is that of
∑k

j=1 πj exp(Z2
j /2), where
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Z1, ..., Zk are i.i.d. standard normal random variables. Critical values for n = ∞

were obtained by simulating values of
∑k

j=1 πj exp(Z2
j /2). Figure 1 shows that when

sample size n goes to ∞, critical values increase at a slower rate than at n = 50.
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Figure 1.

The behavior of simulated critical values of proposed test statistic Sk as a function

of k. α = 0.05, 10,000 Monte Carlo runs.

A good choice of k is related to the j in basis function φj that has the largest

corresponding Fourier coefficient. Roughly speaking, if the only nonzero coefficient

is at j = 10 or the largest Fourier coefficient appears at j = 10, then any choice of k

that is at least 10 should “work.”
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Figure 2.

The behavior of simulated powers of proposed test statistic Sk as a function of k

under the alternative pj(x; ρ). n = 100, α = 0.05, 10,000 Monte Carlo runs.

Figures 2 and 3 show the change of power as k increases under the alternative

densities (4.2) and (4.3) respectively. In each figure, the graphs are arranged in order

of increasing frequency. It is shown that small k = 5 works just a little bit better

than larger k when the alternative densities are low frequency, e.g. p1, p2, p3, g1, g2

and g3. But for highly oscillating alternatives, e.g. p4 − p8, g6 and g8, k = 5 is not

enough, and we need a larger k like 10 to 20 to guarantee better power. This result is
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not surprising in light of our discussion in the previous paragraph. More details will

be presented at the end of this subsection.
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Figure 3.

The behavior of simulated powers of proposed test statistic Sk as a function of k

under the alternative gk(x; θ). n = 100, α = 0.05, 10,000 Monte Carlo runs.

However, the powers do not vary much for different values of k in the range of

15 to 45. As shown by the last graphs of both Figures 2 and 3, the powers when

testing low frequency (i.e. p1 and g1) change little with k in comparison with power

when testing high frequency (i.e. p8 and g8), even if k = 5 works slightly better than
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larger k for low frequency alternatives. These observations, along with the fact that

alternatives of higher frequency than p8 or g8 are very uncommon in practice, suggest

that a choice of k around 20 would generally work well.
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Figure 4.

The behavior of Fourier coefficients, E(θ̃j,simple), as a function of j under the alterna-

tives p1, p8, g1 and g8.

Figure 4 shows Fourier coefficients, E(θ̃j,simple), for alternatives p1, p8, g1, g8. The
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results coincide with our discussion above. We also find that

• Under the alternative pk given by (4.2), infinitely many of E(θ̃j) will be nonzero

unless the test statistic uses cosine basis functions.

• Under the alternative gk given by (4.3), infinitely many of E(θ̃j) will be nonzero

even if the φjs in gk are the same as the basis functions in the test statistic.

We will use k = 20 in our non-adaptive tests since the preliminary results of this

subsection suggest that k = 20 has reasonably good power against both low and high

frequency alternatives. As mentioned before, densities having largest
∣∣∣E(θ̃j,simple)

∣∣∣ for

j > 20 are extremely unusual in practice.

4.1.2. Prior Probabilities πj

The last subsection suggests that the number of Fourier components k does not play

a crucial role, since the power of proposed test statistic Sk is almost stable for k

between 15 and 45. On the other hand, the choice of prior probabilities π1, π2, ... may

be more important.

Assume that the alternative is represented by linear combinations of polynomi-

als, and φ1, φ2, ... corresponds to the basis functions arranged in order of increasing

frequency. One could argue that it is natural to place larger prior probabilities on the

Fourier coefficient with lower index. Doing so will tend to increase the power of the

resulting test if one’s assumptions are justified. As argued in Chapter II, we consider

πj = 1/jc for c > 1. Our task turns now to a good choice of c. We use k = 20 as

suggested by subsection 4.1.1.



40

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

0.
1

0.
4

0.
7

1.
0

c

po
w

er
p1(x;0.45)

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

0.
1

0.
4

0.
7

1.
0

c

po
w

er p2(x;0.4)

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

0.
1

0.
4

0.
7

1.
0

c

po
w

er p3(x;0.5)

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

0.
1

0.
4

0.
7

1.
0

c

po
w

er p4(x;0.6)

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

0.
1

0.
4

0.
7

1.
0

c

po
w

er

g5(x;(0,0,0,0,0.5))

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

0.
1

0.
4

0.
7

1.
0

c

po
w

er

g6(x;(0,0,0,0,0.2,−0.7))

Figure 5.

The behavior of simulated powers of proposed test statistic Sk as a function of c under

the alternatives p1, p2, p3, p4, g5 and g6, where πj = 1/jc. n = 100, α = 0.05, 10,000

Monte Carlo runs.

Figures 5 and 6 show the performance of Sk as c ranges from 1 to 5 by 0.1.

The graphs are placed in order of increasing frequency, as measured by E(θ̃j). We

notice that the best power is at large c when the alternative is low frequency, i.e.

c = 5 for p1 and c = 1.6 for p2. For highly oscillating alternatives, the smaller the c
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is, the higher the power. In p3, p4, g5, g6, g7, g8, g9, power decreases with increasing c.

These results coincide with our expectation, since large c down-weights high frequency

alternatives and small c emphasizes higher frequency alternatives. However, the last

graph in Figure 6 shows that average power over the various alternatives peaks at

around c = 2. Subsequently, we will consider πj = 1/j2 as a good choice of prior

probabilities.
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Figure 6.

The behavior of simulated powers of proposed test statistic Sk as a function of c under

the alternatives g7, g8, g9, and the average, where πj = 1/jc. n = 100, α = 0.05,

10,000 Monte Carlo runs.
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One point attracting our attention in our extensive power comparison is that the

proposed test does not perform well against alternatives with φ2 having the largest

Fourier coefficient. Further investigation discloses that the problem may be caused by

the fact that the prior probabilities put on φj decay too quickly from j = 1 to j = 2 in

comparison to the remaining weights. Thus, we would like to consider πj = 1/(1+j)2.

In addition to being reasonably noninformative, these probabilities lead to a good

compromise so that power will be improved at higher frequency alternatives without

hurting too much at lower frequency alternatives.
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Figure 7.

The behavior of simulated average powers of proposed test statistic Sk according to

the different weights when testing for simple hypotheses. n = 100, α = 0.05, 10,000

Monte Carlo runs.
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Figure 7 presents the differences in power between πj = 1/j2 and πj = 1/(1+j)2,

where the frequency is measured by the number j corresponding to j in basis function

φj with the largest Fourier coefficient, each power is the average over the various

alternatives, gk and pj, with relative frequencies. As expected, the power with πj =

1/(1 + j)2 increases somewhat at higher frequencies, including j = 2, but does not

decrease too much at frequency j = 1. We will thus take πj = 1/(1 + j)2 as the

prior probabilities used in the next subsection to compare with other omnibus tests.

4.1.3. Power Comparisons in the Simulation Study

Based on the results in subsections 4.1.1 and 4.1.2, we will take k = 20 and πj =

1/(1+ j)2 to do power comparisons in this subsection. From the enormous number of

test statistics for testing uniformity available in the literature, we focus our attention

on three that have proven to be powerful. One of these is ZA, introduced by Zhang

(2002) as an improved construction compared to traditional tests and defined as

ZA = −
n∑

i=1

[
log(F (X(i)))

n− i + 1
2

+
log(1− F (X(i)))

i− 1
2

]
,

where F (x) is a hypothesized distribution function and the X(i)s are the order statis-

tics from a random sample. The other two statistics are NS and NT , adaptive statistics

proposed by Ledwina (1994) and Inglot and Ledwina (2006) with different selection

rules. The rules used by NS and NT are BIC and one designed for highly oscillating

alternatives. Details about the selection rules have been introduced in Chapter I.

We do simulations under the null hypothesis based on 10,000 replications to

determine the 0.05 level critical value for each test. Each replication has sample size

n = 100. The critical values so determined for the simple hypothesis are 3.421 for

ZA, 5.636 for NS, 5.987 for NT and 4.348 for S20.
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Table 1.

Powers of Zhang’s test, Ledwina’s tests based on NS and NT and one based on S20

under alternative gk(x; θ).

Parameters The five largest (in absolute value) Powers(%)

k θ Fourier coefficients × 1000 ZA NS NT S20

1 0.3 [1]295 [2]39 [3]3 [4]1 [5]1 70 74 71 77

2 (-0.2,-0.3) [2]255 [1]151 [3]40 [4]30 [5]5 70 75 73 64

3 (0,0,0.4) [3]393 [6]66 [2]47 [4]44 [5]13 53 87 87 89

4 (0.1,0.15,-0.25, [4]335 [3]235 [1]150 [2]137 [7]66 47 85 86 88

-0.35)

5 (0,0,0,0,0.4) [5]397 [10]66 [2]46 [8]40 [4]38 31 56 76 82

6 (0.1,0,0,0.1, [5]277 [6]270 [4]176 [1]167 [7]77 62 61 66 75

0.2,0.2)

8 (0,0,0,0,0,0,0, [8]451 [2]56 [4]35 [12]26 [6]23 7 30 90 92

-0.5)

n = 100, α=0.05, 10,000 Monte Carlo runs.

In the simulation study we consider the alternatives given by (4.2) and (4.3).

To have some insight into the structure and magnitude of the alternatives, in each

case we calculate twenty Fourier coefficients (in Legendre basis) of the underlying

distributions. The five largest (from these 20) Fourier coefficients are presented in

Tables 1 and 2. Each bold face number j corresponds to j in basis function φj. We

also display the powers of the four tests considered.

The results are encouraging. The new test statistic based on S20 has a stable and

relatively high power for the whole range of alternatives considered here. It dominates
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ZA in both smooth and highly oscillating cases. S20 is much more powerful than NS

for high frequency alternatives and is comparable to it for smooth alternatives. The

performance of S20 is even slightly better than NT . These results are impressive since

S20 is not adaptive and does not choose the number of Fourier components through

data driven means.

Table 2.

Powers of Zhang’s test, Ledwina’s tests based on NS and NT and one based on S20

under alternative pj(x; ρ).

Parameters The five largest (in absolute value) Powers(%)

k ρ Fourier coefficients × 1000 ZA NS NT S20

1 0.45 [1]316 [3]38 [5]2 [7]1 [9]1 76 81 78 83

2 0.40 [2]272 [4]78 [6]7 [8]1 [10]1 18 70 68 61

3 0.50 [3]317 [5]149 [1]39 [7]25 [9]2 34 65 66 71

4 0.60 [4]335 [6]233 [2]102 [8]58 [10]8 17 64 72 82

5 0.70 [7]319 [5]317 [3]173 [9]109 [1]20 41 60 78 86

6 0.70 [8]346 [6]231 [4]208 [10]155 [2]53 14 46 77 84

7 0.75 [9]377 [5]238 [11]216 [7]147 [3]96 33 33 82 86

8 0.80 [10]383 [12]279 [6]245 [4]142 [8]51 13 34 90 92

n = 100, α=0.05, 10,000 Monte Carlo runs.

4.2. Testing for Composite Hypotheses

Our simulations for composite hypotheses will focus on location-scale families (i.e.

testing exponentiality and normality), but are fairly comprehensive in that setting.

We consider the broad class of alternatives given in Table 3 and alternatives based on
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pj and gk, given by (4.2) and (4.3). In Table 3, U denotes a N(0, 1) random variable

and R denotes a uniform random variable on (0,1). Note that the Weibull alternative

is a scale family with respect to b, the Lognormal LN is a scale family with respect to

exp(g/d), the Shifted exponential is a location-scale family with respect to l and b.

Table 3.

Alternatives used for testing composite hypotheses.

alternative density/definition

Weibull(b;k) bk(bx)k−1 exp{−(bx)k}, x > 0

χ2
k {2 1

2
kΓ(k/2)}−1x

1
2
k−1 exp(−1

2
x), x > 0

LN(g; d) d(x
√

2π)−1 exp−1
2
(dlogx + g)2, x > 0

Beta(p; q) xp−1(1− x)q−1{B(p, q)}−1, 0 ≤ x ≤ 1

Uniform(a; b) (b− a)−1, a ≤ x ≤ b

Shifted exp.(l; b) b exp{−(x− l)b}, x ≥ l

Pareto(a; k) akax−a−1, x ≥ k

Shifted Pareto 2(1 + x)−3, x > 0

Logistic ex(1 + ex)−2, −∞ < x < ∞

SU(g; d) U = g + d sinh−1(X), −∞ < X < ∞

TU(l) X = Rl − (1−R)l, −1 ≤ X ≤ 1

SC(p; d) (2π)−
1
2 [(p/d) exp(−1

2
x2/d2) + (1− p) exp(−1

2
x2)], −∞ < x < ∞

LC(p; m) (2π)−
1
2 [p exp{−1

2
(x−m)2)}+ (1− p) exp(−1

2
x2)], −∞ < x < ∞

SB(g; d) U = g + dlogX/(1−X), 0 < X < 1

The Fourier coefficients for testing exponentiality are defined as:∫
uj [F (x/µ)] fa(x)dx, j = 1, 2, ..., (4.5)
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and for testing normality they are:∫
uj [Φ((x− µ)/σ)] fa(x)dx, j = 1, 2, ... (4.6)

where F (x) = 1− exp(−x), Φ(x) is the cumulative distribution function of standard

normal, µ and σ are the mean and standard deviation of the considered alternative

fa(x), respectively.

4.2.1. Number of Fourier Components k
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Figure 8.

The behavior of simulated critical values of proposed test statistic Sk as a function

of k when testing for exponentiality. α = 0.05, 10,000 Monte Carlo runs.
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We now consider the effect of the number, k, of Fourier components when testing for

composite null hypotheses. We use πj = 1/j2, j = 1, ..., k as the prior probabilities in

this subsection. We will see that under both the null and alternative hypotheses, the

number of Fourier components k affects the performance of proposed test statistic

Sk. Similar to the simple null hypothesis, we also do simulations based on 10,000

replications to determine critical values and power as k ranges from 5 to 35 by 5.

Figures 8 and 9 show empirical evidence that percentiles of Sk change smoothly

as k increases when testing exponentiality and normality, respectively. In both

cases, the trend of critical values with sample sizes n = 50 and n = ∞ are pre-

sented. We showed in subsection 3.2 that the limiting distribution of Sk under H0

is
∑k

j=1 πj exp(Y 2
j /2) and (Y1, ..., Yk) ∼ N(0, W (β)(Ik − Tβ)W (β)), where the co-

variance matrix W (β)(Ik − Tβ)W (β), is defined in remark 2 of subsection 3.2. We

simulate values of
∑k

j=1 πj exp(Y 2
j /2) to get critical values for n = ∞. When sample

size n increases from 50 to ∞, critical values do not change a great deal.

We intend to find a value of k so that the proposed tests will have good power

under both low frequency alternatives (the largest Fourier coefficient corresponds

to smaller j, i.e. j = 1, 2, 3) and high frequency alternatives (the largest Fourier

coefficient corresponds to larger j, i.e. j = 5, 6, 7, ...).

As observed in the case of a simple null, the j in the basis function φj with the

largest corresponding Fourier coefficient has an effect on the choice of k. Roughly

speaking, if the largest Fourier coefficient appears at j = 10 or the only nonzero

coefficient is at j = 10, then any choice of k that is at least 10 should result in a

powerful test.
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Figure 9.

The behavior of simulated critical values of proposed test statistic Sk as a function

of k when testing for normality. α = 0.05, 10,000 Monte Carlo runs.
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Figure 10.

The behavior of simulated powers of proposed test statistic Sk as a function of k when

testing for exponentiality. n = 50, α = 0.05, 10,000 Monte Carlo runs.

Figures 10 and 11 show the change in power as k increases under the alternative

densities given at the beginning of subsection 4.2. In each figure, the graphs are

ordered by increasing frequency. For testing exponentiality, we notice that small

k = 5 works the best among the ranges 5 to 45 when the alternative densities are

low frequency, e.g. Shifted Pareto, χ2
3, Beta(1;2). However, k = 5 does not work well
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enough for highly oscillating alternatives, e.g. g8, g9, g10. We need a larger k like 10

to 20 to achieve better power. Similar arguments hold for testing normality.
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Figure 11.

The behavior of simulated powers of proposed test statistics Sk as a function of k

when testing for normality. n = 50, α = 0.05, 10,000 Monte Carlo runs.

With a further investigation of Figures 10 and 11, we find the powers do not

change much for different k in the range 10 to 35. Figure 12 shows that the powers

for testing low frequency (i.e. χ2
3, LC(0.05;5)) just change slightly with increasing
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k compared with power when testing high frequency (i.e. g8), even if k = 5 works

slightly better than larger k for low frequency alternatives.

0 5 10 20 30

0.
0

0.
2

0.
4

0.
6

0.
8

k

po
w

er
 fo

r t
es

tin
g 

ex
po

ne
nt

ia
lit

y

χ3
2

g8

0 5 10 20 30

0.
0

0.
2

0.
4

0.
6

0.
8

k

po
w

er
 fo

r t
es

tin
g 

no
rm

al
ity

LC(0.05;5)
g8

Figure 12.

Comparison of simulated power under low frequency alternatives with that under

high frequency alternatives as a function of k. n = 50, α = 0.05, 10,000 Monte Carlo

runs.

Based on the previous results in this subsection, we still recommend k = 20 in

the composite hypothesis case to guarantee that the proposed test will be powerful

against high frequency alternatives and perform comparably to some other popular
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omnibus tests at low frequency alternatives.

4.2.2. Prior Probabilities πj
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Figure 13.

The behavior of simulated power of proposed test statistic Sk as a function of c when

testing exponentiality under the alternatives Shifted Pareto, Chi-square, Weibull and

Beta. n = 50, α = 0.05, 10,000 Monte Carlo runs.
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The results in subsection 4.2.1 indicate that the number of Fourier components k does

not play a crucial role in the proposed test, since the power does not vary too much

in a certain range of k (i.e. 10-35). But the choice of prior probabilities πjs may be

significant. We now discuss this choice for composite cases. As argued in subsection

4.1.2, πj = 1/jc for c > 1 is considered first and our goal turns to a good choice of c

at this step. We take k = 20 as recommended in last subsection.

Figures 13 and 14 show the performance of Sk when testing exponentiality. The

graphs are arranged from the lowest to highest frequency, as measured by Fourier

coefficients, (see (4.5)). We notice that the power increases to a certain level and then

stays almost flat as c increases for low frequency alternatives, e.g. Shifted Pareto,

χ2
3, χ2

4, Weibull(1;1.5), Beta(1;2) and LN(0;0.8). For the Weibull(1;0.8), c around 2.2

yields the highest power. Thus, we may conclude c = 2 and above works well for

low frequency alternatives. However, at highly oscillating alternatives, the smaller

the c is, the higher the power achieved. For alternatives g6, g7, g8 and g9, the powers

decrease as c increases when testing exponentiality. As a result, we may say smaller

c (below 2) performs well at high frequency alternatives.

The last paragraph agrees with our discussion in the simple null hypothesis.

That small c emphasizes higher frequency alternatives and large c down-weights high

frequency alternatives is also valid when the hypothesis is composite. The last graph

in Figure 14 illustrates average power against the various alternatives, which still

peaks at around c = 2. Therefore, πj = 1/j2 will be considered as a good choice of

prior probabilities from now on.
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Figure 14.

The behavior of simulated power of proposed test statistic Sk as a function of c

when testing exponentiality under the alternatives Lognormal, g6, g7, g8, g9, and the

average. n = 50, α = 0.05, 10,000 Monte Carlo runs.
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Figure 15.

The behavior of simulated power of proposed test statistic Sk as a function of c

when testing normality under the alternatives LC, Logistic, SC, SB and SU. n = 50,

α = 0.05, 10,000 Monte Carlo runs.

Similar conclusions hold for testing normality. For illustration see Figures 15 and
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16, where the graphs are also placed in order of increasing frequency.
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Figure 16.

The behavior of simulated power of proposed test statistic Sk as a function of c when

testing normality under the alternatives g7, g8, g9, and the average. n = 50, α = 0.05,

10,000 Monte Carlo runs.
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The behavior of simulated average power of proposed test Sk according to the different

weights when testing a composite null hypothesis. n = 50, α = 0.05, 10,000 Monte

Carlo runs.

When testing a simple null hypothesis, we proposed πj = 1/(1 + j)2 as an “op-

timal” prior. Here we compare the performances of πj = 1/(1 + j)2 and πj = 1/j2

in testing for composite hypotheses. Figure 17 presents the differences in power be-
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tween these two versions and the power presented is the average against the various

alternatives. Similar to the simple hypotheses cases, the power under high frequency

alternatives is improved by taking πj = 1/(1+ j)2, but does not hurt too much under

lower frequency alternatives.

Since the goal of this dissertation is to propose tests that are powerful against

both low and high frequency alternatives, we recommend πj = 1/(1 + j)2 as prior

probabilities for the Fourier coefficients and will use them in the next subsection to

compare with other omnibus tests.

4.2.3. Power Comparisons in the Simulation Study

In the last two subsections, we determined good choices for k and the prior probabil-

ities π1, π2, .... Now we will start power comparisons with other omnibus tests. We

use k = 20 and πj = 1/(1 + j)2 as recommended. The simulated critical values for

composite hypotheses are presented in Table 4.

Table 4.

Approximate critical values of proposed test based on 10,000 Monte Carlo runs.

Null n α Critical Value of S20

Exponentiality
50

0.05 4.240

0.10 2.599

100 0.10 2.671

Normality
50 0.05 3.794

100 0.05 4.187

To see how well the proposed tests perform we show the result of an extensive

Monte Carlo study of the power. The null hypothesis of exponentiality corresponds
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to H0: f ∈ {f(x; β) : β > 0}, where f(x; β) is defined as

f(x; β) = β−1 exp(−β−1x), x ≥ 0,

and the null MLE of β is β̂ =
1

n

∑n
i=1 Xi. For power comparison when testing

exponentiality we consider the Gini statistic G introduced by Gail and Gastwirth

(1978) and WS1 and WS2 proposed by Kallenberg and Ledwina (1997) for composite

hypotheses. Gini’s test is “powerful against a variety of alternatives” [cf. Gail and

Gastwirth (1978)] and turned out to perform well in the study of Ascher (1990). It

was also used for comparative purposes by Rayner and Best (1989) and LaRiccia

(1991). WS1 and WS2 have been introduced in Chapter I. The alternatives considered

for simulations are shown at the beginning of subsection 4.2.

The following tables present the power for testing exponentiality. Note that

several alternatives are used in more than one paper. In the cited papers one may find

simulated power for other tests for these alternatives. Many authors show simulation

results for n = 20. In our opinion this is an extreme situation when testing goodness-

of-fit, so we present the more realistic choices n = 50 and n = 100 in Table 5.

Although motivated by general ideas, the proposed test based on S20 can compare

even with ‘special’ tests for exponentiality, like Gini’s test, under the above alterna-

tives. As a non-adaptive test, S20 also performs comparably to the popular adaptive

tests WS1 and WS2 on average when alternatives are these classical densities. As is

seen in Table 5, for n = 50 the proposed test based on S20, WS1 and WS2 often have

higher power than Gini’s test G with great differences in LN(0;1), Shifted exp.(0.2;1),

Shifted exp.(0.2;0.7) and Pareto(1;0.2). The proposed test improves considerably

from n = 50 to n = 100.
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Table 5.

Power of Gini’s test, Ledwina’s tests based on WS1 and WS2 and one based on S20

when testing exponentiality under the alternatives given in Agnus (1982).

Alternatives Power(%)

G WS1 WS2 S20

n = 50 n = 50 n = 100 n = 50 n = 100 n = 50 n = 100

χ2
1 93 96 100 97 100 97 100

χ2
3 58 51 88 60 84 58 87

χ2
4 95 93 100 96 100 96 100

LN(0;0.8) 74 76 95 74 94 75 94

LN(0;1) 22 62 86 46 71 42 75

LN(0;1.2) 46 81 99 83 99 79 99

Weibull(1;0.8) 59 56 82 60 85 60 85

Weibull(1;1.2) 43 34 64 42 69 41 66

Weibull(1;1.5) 97 93 100 96 100 96 100

Beta(1;2) 81 71 97 76 98 77 98

Uniform(0;2) 100 99 100 99 100 100 100

Shifted

exp.(0.2;1)

68 83 100 90 100 90 100

Shifted

exp.(0.2;0.7)

45 58 89 65 93 61 95

Pareto(1;0.2) 74 100 100 100 100 100 100

Pareto(0.8;0.01) 94 100 100 100 100 100 100

Shifted Pareto 86 84 98 84 98 84 98

Average 71 77 94 79 93 79 94

α=0.1, 10,000 MC runs.
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Since our goal in this dissertation is to develop a test which can be comparable

to other popular omnibus tests at low frequencies and perform exceptionally well at

high frequencies, we will compare the behavior of the considered tests under low fre-

quency alternatives and high frequency alternatives in Tables 6 and 7 separately. For

the sake of comparison, a modified data driven smooth test statistic WT developed

from NT is introduced. This statistic uses the penalty for high frequency alternatives

when testing a composite null, where the penalty was defined in Chapter I. In fact,

Inglot and Ledwina (2006) restricted attention to testing uniformity. We combine the

new selection rule with the data driven smooth test for composite hypotheses, WS2,

as the test statistic WT .

Table 6.

Power of Ledwina’s tests based on WS2 and WT and proposed test statistic based on

S20 when testing exponentiality under low frequency alternatives.

Alternatives The five largest (in absolute value) Power(%)

Fourier coefficients × 1000 WS2 WT S20

LN(0;0.8) [1]244 [3]228 [5]192 [7]133 [9]102 63 61 67

Shifted Pareto [1]334 [2]210 [4]99 [5]93 [6]92 76 73 79

χ2
3 [2]235 [1]122 [4]52 [3]24 [6]21 43 34 44

χ2
4 [2]373 [1]192 [3]88 [4]33 [5]16 90 83 90

Weibull(1;0.8) [2]224 [1]148 [3]115 [4]77 [5]56 50 47 51

Weibull(1;1.5) [2]340 [1]199 [3]151 [4]73 [5]13 87 81 91

Beta(1;2) [3]210 [4]174 [1]154 [2]147 [5]106 53 46 62

Uniform(0;2) [3]398 [2]272 [4]262 [1]234 [7]214 97 95 99

n = 50, α=0.1, 10,000 MC runs.
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For each case twenty Fourier coefficients (in Legendre basis) of the underlying

distributions are calculated in order to illustrate some insight into the structure and

magnitude of the alternatives. The five largest (from these 20) Fourier coefficients are

presented. Each bold face number j corresponds to j in basis function φj. The power

of proposed test based on S20 is comparable to WS2 but higher than that of WT at

low frequencies in Table 6. At high frequency alternatives in Table 7, S20 outperforms

WS2 and works comparably to WT .

Table 7.

Power of Ledwina’s tests based on WS2 and WT and proposed test statistic based one

S20 when testing exponentiality under high frequency alternatives gk(F0(x); θ) ·f0(x).

Parameters The five largest (in absolute value) Power(%)

k θ Fourier coefficients × 1000 WS2 WT S20

5 (0,0,0,0,0.5) [5]435 [6]118 [4]115 [1]85 [10]55 37 52 55

6 (0,0,0,0,0.2, [6]529 [5]273 [2]123 [11]108 [7]107 62 80 83

-0.7)

7 (0,0,0,0,-0.1, [7]525 [6]198 [5]91 [2]57 [8]56 38 74 72

-0.2,0.6)

8 (0,0,0,0,0,0,0, [8]596 [2]93 [4]54 [9]48 [12]46 31 78 72

-0.7)

9 (0,0,0,0,0,0,0, [9]417 [10]279 [8]225 [7]114 [6]102 15 56 51

0,0.6)

10 (0,0,0,0,0,0,0, [10]454 [2]53 [4]36 [11]31 [6]23 8 26 31

0,0,-0.5)

n = 50, α=0.05, 10,000 MC runs.
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Next we consider the null hypothesis of normality, corresponding to H0: f ∈

{f(x; µ, σ) : µ ∈ R, σ ∈ R}, where f(x; µ, σ) is defined as

f(x; µ, σ) =
1√
2πσ

exp

{
− 1

2
(x− µ)2/σ2

}

and the null MLE is (µ̂, σ̂) =

(
X̄,

{
1
n

∑n
i=1(Xi − X̄)2

} 1
2
)

with X̄ =
1

n

∑n
i=1 Xi.

Here we consider the data driven smooth tests WS1 and WS2 mentioned before and

the often recommended Shaprio-Wilk test, SW . According to Bowman (1992) SW

sets a high standard as an omnibus test of normality. The details about alternatives

used for testing normality are presented at the beginning of subsection 4.2.

Table 8 presents the results for a variety of symmetric and skew alternatives for

n = 50 and 100. As in Pearson et al. (1977) and Kallenberg and Ledwina (1997b)

both symmetric and skew alternatives in Table 8 are ordered according to increasing

kurtosis.

It turns out that except for the first 3 symmetric cases, which are close to the

null hypothesis, the proposed test statistic based on S20 performs comparably to SW ,

the ‘special’ test for normality. Comparing with WS1 and WS2, S20 dominates the

former in skewed cases and the latter in symmetric cases. But WS1 and WS2 work

slightly better than S20 in symmetric alternatives and skew alternatives respectively.

On average, S20 is more powerful than WS1 and WS2 and close to SW . We could

conclude that the proposed test statistic based on S20 outperforms WS1 and WS2 and

is comparable to SW , the high standard omnibus test of normality.



65

Table 8.

Power of Shapiro-Wilk test, Ledwina’s tests based on WS1 and WS2 and one based

on S20 when testing normality under the alternatives given in Pearson et al. (1977).

Alternatives Power(%)

SW WS1 WS2 S20

n = 50 n = 50 n = 100 n = 50 n = 100 n = 50 n = 100

Symmetric alternatives

SB(0;0.5) 99 93 100 55 92 88 100

TU(1.5) 92 74 99 26 61 65 98

TU(0.7) 62 45 88 9 19 33 78

Logistic(1) 13 21 35 12 13 18 26

TU(10) 99 100 100 99 100 100 100

SC(0.05;3) 31 38 57 24 32 32 47

SC(0.2;5) 95 98 100 92 99 98 100

SC(0.05;5) 62 66 87 55 74 62 83

SC(0.05;7) 74 77 94 70 88 74 92

SU(0;1) 68 81 96 61 83 77 96

Skew alternatives

SB(0.533;0.5) 100 95 100 92 100 97 100

SB(1;1) 81 57 95 71 96 71 97

LC(0.2;3) 60 52 90 69 95 69 95

Weibull(2) 41 29 64 41 74 40 71

LC(0.1;3) 50 51 83 58 86 59 86

χ2
10 57 48 85 62 91 61 89

LC(0.05;3) 32 37 58 34 54 37 57

LC(0.1;5) 98 98 100 97 100 98 100

SU(-1;2) 37 40 67 42 68 44 69

χ2
4 95 86 100 93 100 93 100

LC(0.05;5) 85 87 97 78 95 84 97

LC(0.05;7) 92 92 99 90 98 92 99

SU(1;1) 96 97 100 98 100 98 100

LN(0;1) 100 100 100 100 100 100 100

Average 72 69 87 64 78 71 87

α=0.05, 10,000 Monte Carlo runs.
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Table 9.

Power of Ledwina’s tests based on WS2 and WT and proposed test statistic based on

S20 when testing normality under low frequency alternatives.

Alternatives The five largest (in absolute value) Power(%)

Fourier coefficients × 1000 WS2 WT S20

LC(0.05;5) [2]277 [3]221 [12]178 [11]177 [10]174 78 78 84

Logistic(1) [2]83 [4]66 [6]51 [8]47 [10]43 12 12 18

SC(0.05;3) [2]135 [12]58 [10]55 [8]50 [6]39 24 23 32

SU(0;1) [2]363 [4]272 [8]116 [12]93 [10]79 61 62 77

SB(0.533;0.5) [3]458 [4]309 [12]283 [7]273 [9]272 92 93 97

SU(-1;2) [3]178 [2]102 [5]70 [6]60 [7]57 42 40 44

n = 50, α=0.05, 10,000 MC runs.

As done for testing exponentiality, we would also like to compare the power of the

considered tests under low frequencies and high frequencies in Tables 9 and 10. The

considered tests WS2 and WT are defined as before. Twenty Fourier coefficients (in

Legendre basis) of the underlying distributions are calculated for each case in order

to present some insight into the structure and magnitude of the alternatives. The

five largest (from these 20) Fourier coefficients are shown. Each bold face number j

is corresponding to j in basis function φj. The power of proposed test based on S20

dominates WS2 and WT at both low frequencies in Table 9 and high frequencies in

Table 10 for testing normality.
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Table 10.

Power of Ledwina’s tests based on WS2 and WT and proposed test statistic based on

S20 when testing normality under high frequency alternatives gk(x; θ).

Parameters The five largest (in absolute value) Power(%)

k θ Fourier coefficients × 1000 WS2 WT S20

4 (0,-0.5,0,-0.2) [4]191 [6]179 [2]140 [8]102 [10]38 8 11 27

5 (0,0,0,0,0.5) [6]333 [5]304 [4]243 [9]233 [8]195 51 64 80

6 (0.1,0,0,0.1, [6]269 [8]233 [4]180 [12]178 [2]157 19 33 54

0.2,0.2)

7 (0,0,0,0,-0.1, [6]523 [7]268 [10]235 [11]191 [5]177 67 82 90

-0.2,0.6)

8 (0,0,0,0,0,0,0, [12]501 [8]490 [4]313 [2]194 [6]118 48 82 92

-0.7)

9 (0,0,0,0,0,0,0, [6]346 [9]273 [4]261 [7]205 [2]190 32 55 78

0,0.6)

10 (0,0,0,0,0,0,0, [6]354 [4]240 [2]181 [12]91 [10]83 23 39 65

0,0,-0.3)

SB(0;0.5) [6]393 [4]362 [12]245 [2]225 [10]198 55 65 88

n = 50, α=0.05, 10,000 MC runs.

4.3. Further Discussion about Frequency

We have repeatedly used the terms low and high frequency, and so now we would like

to clarify what we mean by these terms. The definition of high frequency is a little

subjective. For any given alternative, if the first m Fourier coefficients corresponding

to basis functions φ1,...,φm are quite small, and the Fourier coefficients corresponding
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to φm+1, φm+2,... are larger and m ≥ 3, we say that the density is a high frequency

alternative. One thing we wish to point out is that not all oscillatory densities are

high frequency and vice versa.

0.0 0.2 0.4 0.6 0.8 1.0

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

x

S
B

0_
0.

5 
(x

)

Figure 18.

The density of SB(0;0.5).

Figure 18 presents the density of SB(0:0.5), which is U-shaped. However, the

largest Fourier coefficient of SB(0;0.5) corresponds to basis function φ6. In other

words, SB(0;0.5) is a high frequency density even though it has only two peaks.



69

−4 −2 0 2 4

0.
0

0.
4

0.
8

The alternative with k=5

x

de
ns

ity

−4 −2 0 2 4

0.
0

0.
5

1.
0

1.
5

The alternative with k=6

x

de
ns

ity

−4 −2 0 2 4

0.
0

0.
5

1.
0

1.
5

The alternative with k=7

x

de
ns

ity

−4 −2 0 2 4

0.
0

0.
4

0.
8

1.
2

The alternative with k=8

x

de
ns

ity

−4 −2 0 2 4

0.
0

0.
4

0.
8

1.
2

The alternative with k=9

x

de
ns

ity

−4 −2 0 2 4

0.
0

0.
4

0.
8

1.
2

The alternative with k=10

x

de
ns

ity

Figure 19.

The densities of alternatives used in Table 11.

The six graphs shown in Figure 19 are all highly oscillatory. However, a further

investigation about them shown in Table 11 indicates that they are “low frequency”

densities. The performances of Sk, WS2 and WT are close to each other and quite

good.
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Table 11.

Power of Ledwina’s tests based on WS2 and WT and one based on S20 when testing

normality under the alternatives gk(x; θ) · f0(x).

Parameters The five largest (in absolute value) Power(%)

k θ Fourier coefficients × 1000 WS2 WT S20

5 (0,0,0,0,0.5) [2]658 [5]647 [7]291 [3]224 [1]183 100 100 100

6 (0,0,0,0,0.2, [2]960 [6]668 [8]379 [4]375 [7]208 95 97 99

-0.7)

7 (0,0,0,0,-0.1, [2]1115 [7]1007 [5]684 [9]492 [6]256 88 89 91

-0.2,0.6)

8 (0,0,0,0,0,0,0, [2]940 [8]741 [10]427 [6]422 [4]186 99 99 100

-0.7)

9 (0,0,0,0,0,0,0, [2]789 [9]742 [11]378 [7]377 [1]157 100 100 100

0,0.6)

10 (0,0,0,0,0,0,0, [2]772 [10]711 [12]326 [8]325 [4]38 74 76 81

0,0,-0.5)

n = 50, α=0.05, 10,000 Monte Carlo runs.

4.4. Real Data Analysis

We end with an application of our methodology to a real problem. The data are

dust concentrations taken from a manufacturing plant in Munich, Germany. We will

analyze the natural log of the variable of interest. The sample size is n = 1246.

As shown in Figure 20, a kernel density estimate based on the S-J plug-in band-

width=0.03438 [cf. Sheather and Jones (1991)] shows several modes, whereas a ker-

nel density estimate with a “normal reference” bandwidth=0.1636 [cf. Silverman
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(1986)] yields three modes. Therefore, we consider testing the null hypothesis that

the log(data) come from a mixture of three normal distributions. This is an interesting

example of testing a smooth density against a possibly high frequency alternative.
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Figure 20.

The density estimates for log(dust concentration), computed by three methods.

The mixture of normals null hypothesis is given as:

H0 : f(x) =
p1

σ1

φ

(
x− µ1

σ1

)
+

p2

σ2

φ

(
x− µ2

σ2

)
+

1− p1 − p2

σ3

φ

(
x− µ3

σ3

)
, (4.7)

where φ(x) is the probability density function of the standard normal distribution,

unknown parameters pi, µi and σi, i = 1, 2, 3, are weights, means and standard
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deviations of three normal distributions, respectively. This model is estimated by

the expectation-maximization (EM) algorithm, an iterative method which alternates

between performing an expectation (E) step that computes the expectation of the log-

likelihood evaluated using the current estimate for the latent variables, and a maxi-

mization (M) step that computes parameters maximizing the expected log-likelihood

found on the E step. We then obtain: p̂1 = 0.4693173, p̂2 = 0.1391294, p̂3 =

0.3915533, µ̂1 = −0.93759518, µ̂2 = −0.08797447, µ̂3 = 0.65096132, σ̂1 = 0.23167941,

σ̂2 = 0.09651196 and σ̂3 = 0.10743332. This density is presented in Figure 20.
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The behavior of estimated Fourier coefficients, θ̃j, as a function of j.

Since the null hypothesis is composite, we will use (2.13) as the form for θ̃j, based
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on the arguments in Chapter II. In order to calculate the proposed test statistic Sk,

we need Iβj and Iββ. Unfortunately, these matrices do not have a closed form in

this case, and so we use the observed information matrices Jβj and Jββ instead, as

discussed in Chapter I.

Figure 21 presents values of θ̃j. Obviously, the largest θ̃j among 30 Fourier

coefficients corresponds to j = 16. Based on the arguments about definition of high

frequency in subsection 4.3, it appears that the true density is high frequency in this

case. Thus, it is a good choice to use k = 20 and πj = 1/(1 + j)2 in our later work.

For the Ledwina data driven smooth test, WS2 and WT defined in Chapter I, the S2

and T that optimize their selection criteria are both 20 with upper bound 20.

0.5825 0.5835 0.5845 0.5855

0
50

0
10

00
20

00

N = 10000   Bandwidth = 3.879e−05

D
en

si
ty

Empirical distribution of KS

0 2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

N = 9941   Bandwidth = 0.1343

D
en

si
ty

Empirical distribution of WS2

0 2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

N = 9935   Bandwidth = 0.1344

D
en

si
ty

Empirical distribution of WT

0 2 4 6 8

0.
0

0.
4

0.
8

1.
2

N = 10000   Bandwidth = 0.06374

D
en

si
ty

Empirical distribution of log(Sk)

Figure 22.

The empirical distributions of the considered test statistics: KS, WS2, WT and Sk.
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Approximations to P-values are determined by assuming that the true distribu-

tion is a mixture of three normals. A random sample of size n is generated from the

fitted mixture of normals, where n is 1246. The Kolmogorov-Smirnov test KS, Led-

wina data-driven smooth test WS2 and WT , and proposed test Sk are calculated from

the data so generated. This process is repeated 10,000 times independently, and P-

values for the considered tests are approximated by comparison of each statistic with

the appropriate empirical distribution of 10,000 values. The empirical distributions of

the four considered test statistics are presented in Figure 22. The corresponding 95th

percentiles of KS, WS2, WT and log(Sk) are 0.583, 4.067, 4.085 and 1.471 respectively.

In this process, the number of times S2 = 1 is 9911. This result agrees with the

conclusions in Kallenberg and Ledwina (1997b) that the selection rule S2 concentrates

on dimension 1 under H0. The number of times T = S2 is 9992, which means

Ledwina’s test WT uses the BIC selection rule in most replications. The P-values

of KS, WS2, WT and Sk obtained from the above process are 0.2067, 0, 0 and 0,

respectively. The last three tests give the same results for these data. Apparently

then the structure found by the S-J bandwidth=0.03438 is significant. Also we are

not surprised that the KS test fails to reject the null hypothesis due to its well known

lack of power for high frequency alternatives.
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CHAPTER V

CONCLUSIONS

5.1. Summary

In this dissertation, frequentist-Bayes goodness-of-fit tests are proposed. The key

idea of the new test statistics is the combination of Bayesian and score test ideas.

More precisely, the null hypothesis is rejected if the value of the proposed statistic,

which corresponds to substituting score tests for log-likelihood ratios in a posterior

probability, is large. The test is subsequently carried out in a frequentist way. Alter-

natives to the null hypothesis are modeled by a sequence of classical models, which

need not be nested. A similar approach based on score tests is applied to achieve

computational simplicity.

A Laplace approximation to the marginal likelihoods in the posterior probabil-

ity of the null hypothesis is used, since only in very special circumstances can the

marginal likelihoods be determined exactly. In the Bayesian world, the currently

most popular means of approximating such quantities is to use MCMC, which is

rather time consuming. Laplace approximation provides a general way to approach

marginalization problems.

The proposed test statistics are weighted sums of exponentiated squared Fourier

coefficients, where the weights depend on prior probabilities. A version of such a sum

with the selected optimal weights has excellent power properties in simulation studies.

These results suggest that it is not necessary to use adaptive test statistics dependent

on data-driven smoothing parameters in order to obtain an omnibus goodness-of-

fit test with good overall power. A simple weighted sum of independent Fourier

components, as suggested in this dissertation, does the trick. An application of the
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proposed test to an interesting real data problem shows that the proposed test is

powerful for high frequency alternatives.

In addition, theoretical work has been done to investigate properties of the pro-

posed frequentist-Bayes tests. The asymptotic distribution of the test statistic is

found, and it is shown that the test can detect 1/
√

n local alternatives.

5.2. Future Research

Our study shows that the proposed omnibus goodness-of-fit tests are powerful. Future

research includes application of the proposed tests to various real-world problems. For

example, goodness-of-fit tests are widely used in risk management. We would like to

discuss the application of our frequentist-Bayes tests to this area below.

5.2.1. Validation of Default Probabilities

“In conclusion, at present no really powerful tests of adequate calibration

are currently available. Due to the correlation effects that have to be

respected there even seems to be no way to develop such tests. Existing

tests are rather conservative - such as the binomial test and the chi-square

test - or will only detect the most obvious cases of miscalibration as in

the case of the normal test.”

Basel Committee on Banking Supervision (2005)

The above quote from a study by the Basel Committee on Banking Supervision (BIS)

relates to the current test statistics for validating probabilities of default (PD), which

are used by banks to forecast credit default events. Banks are required by regula-

tory authorities, such as the BIS, to report the accuracy of their default probability



77

estimates. They must demonstrate to their supervisor that the internal validation

process allows assessing the performance of internal rating and risk estimation sys-

tems consistently and meaningfully. In particular, “banks must regularly compare

realized default rates with estimated PDs for each grade and be able to demonstrate

that the realized default rates are within the expected range for that grade.” [cf.

Basel Committee on Banking Supervision (2004).] Such a comparison asks for an

adequate statistical test procedure. It is of interest to apply the ideas proposed in

my dissertation to develop such test statistics that overcome the absence of sufficient

historical default data and dependence of credit default events.

5.2.2. Goodness-of-fit Tests for Copulas

The multivariate normality of the latent variables is a core assumption of the KMV

and CreditMetrics models in risk management, but there is no compelling reason

to choose a multivariate normal (Gaussian) distribution for asset values. Moreover,

even if individual default probabilities of obligors and the matrix of latent variable

correlations are fixed, it is still possible to develop alternative models leading to

much heavier-tailed loss distributions. In recent years, copulas have proved to be

useful in understanding how a multivariate latent variable distribution determines

the distribution of the number of defaults in a portfolio and with it, the need for a

simple and reliable method to choose the right copula family.

Existing methods present numerous difficulties and none is completely satisfac-

tory. Most of those rely on previous estimation of an optimal parameter set. As a

result, comparisons are made between copulas with given parameters, and not be-

tween copula families. It would be of interest to investigate a model selection method

independent of the parameter choice by utilizing our Bayesian formulation.
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5.2.3. Extreme Value Distribution Selection

Extreme event risk is present in almost every area of risk management. No matter

which type of risk we are concerned with, implementing risk management models

which allow for rare but damaging events, and permitting the measurement of their

consequences is one of the greatest challenges to the risk manager. The challenge of

analyzing and modeling extreme values is that there are only a few observations for

which to build a model, and there are ranges of extreme values that have yet to occur.

To meet the challenge, researchers must assume a certain distribution. The extreme

value distributions (EVD) are frequently used to develop appropriate probabilistic

models and assess the risks caused by these events.

The selection among distributional forms is an important task. We can use

goodness of fit tests to compare the fit of the extreme value distributions. There are

a few tests for the extreme value distribution, notably the Sherman (1957) and an

adaptation of Kolmogorov-Smirnov. However, most existing tests are frequentist and

tend to overfit (i.e. be too lenient) or be conservative. It would also be of interest

to investigate how to best select the fitting distribution by utilizing the combina-

tion of Bayesian and frequentist statistics to overcome the intricacies associated with

sparseness.
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APPENDIX A

LOCATION-SCALE INVARIANCE OF RJ(β)

The proof that Rj(β) does not depend on the location-scale parameter is provided

here.

In a location-scale family β = (β1, β2), let I1j and I2j denote elements of Iβj =

(I1j, I2j)
T for j = 1, 2, .... Since

∂

∂β1

f(x; β) = − 1

β2
2

∂f0

(
x−β1

β2

)
∂
(

x−β1

β2

) ,

and
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,

by the definition of Iβj, I1j and I2j take the form

I1j = −
∫

∂

∂β1

uj[F (x; β)]f(x; β)dx

=

∫
uj[F (x; β)]

∂

∂β1

f(x; β),

since
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(uj[F (x; β)]f(x; β)) =
∂
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and ∫ ∞
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Therefore,

I1j =

∫
uj

[
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x− β1
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Similarly,
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It follows that
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The definition of Rj(β), (A.1), (A.2) and (A.3) implies that Rj(β) does not depend

on the parameter β.
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