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ABSTRACT

Computational Analysis of Fluid Flow

in Pebble Bed Modular Reactor. (August 2011)

Akshay Gandhir, B.S., Texas A&M University

Chair of Advisory Committee: Dr. Yassin Hassan

High Temperature Gas-cooled Reactor (HTGR) is a Generation IV reactor under

consideration by Department of Energy and in the nuclear industry. There are two

categories of HTGRs, namely, Pebble Bed Modular Reactor (PBMR) and Prismatic

reactor. Pebble Bed Modular Reactor is a HTGR with enriched uranium dioxide

fuel inside graphite shells (moderator). The uranium fuel in PBMR is enclosed in

spherical shells that are approximately the size of a tennis ball, referred to as “fuel

spheres”. The reactor core consists of approximately 360,000 fuel pebbles distributed

randomly. From a reactor design perspective it is important to be able to understand

the fluid flow properties inside the reactor. However, for the case of PBMR the sphere

packing inside the core is random. Unknown flow characteristics defined the objective

of this study, to understand the flow properties in spherically packed geometries and

the effect of turbulence models in the numerical solution.

In attempt to do so, a steady state computational study was done to obtain

the pressure drop estimation in different packed bed geometries, and describe the

fluid flow characteristics for such complex structures. Two out of the three Bravais

lattices were analyzed, namely, simple cubic (symmetric) and body centered cubic

(staggered). STARCCM+ commercial CFD software from CD- ADAPCO was used

to simulate the flow. To account for turbulence effects several turbulence models

such as standard k-epsilon, realizable k-epsilon, and Reynolds stress transport model

were used. Various cases were analyzed with Modified Reynolds number ranging from
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10,000 to 50,000. For the simple cubic geometry the realizable k-epsilon model was

used and it produced results that were in good agreement with existing experimental

data. All the turbulence models were used for the body centered cubic geometry. Each

model produced different results what were quite different from the existing data. All

the turbulence models were analyzed, errors and drawbacks with each model were

discussed. Finally, a resolution was suggested in regards to use of turbulence model

for problems like the ones studied in this particular work.
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CHAPTER I

INTRODUCTION

Majority of fluid flows that exist in our surrounding are inherently turbulent in na-

ture. Understanding such common type of flows is extremely crucial and would result

in great benefit and breakthrough in the field of science and technology. Proper un-

derstanding of such flows is important because turbulence affects many other existing

phenomena and can be used to make many challenging processes easy and efficient.

For example, turbulence enhances the heat transfer from a solid to a liquid, turbulence

enhances fluid mixing that is useful in many applications such as reacting flows, etc.

However, computational and experimental investigations of such flows with proper

data validation and verification is extremely difficult. Currently, majority of turbu-

lent flows that we encounter in our society are at a Reynolds number that can not be

fully resolved. Nonetheless, experimental and computational efforts to analyze high

Reynolds number flows are made in current research activities.

Experimental analysis of only a few types of flows is possible because of experi-

mental cost and feasibility issues. Computational analysis of turbulence is much more

feasible and cheap. Therefore, correct or mostly accurate computational analysis of

turbulence is important and will be beneficial for great advancement in research and

technology. This can be done by computational analysis of various existing turbulence

models and comparison with experimental results for similar cases for data valida-

tion. This process of data verification along with data validation would help analyze

various turbulence models and assist in determining the optimum model that can be

used for future design purposes of a particular technology.

The journal model is IEEE Transactions on Automatic Control.
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Pebble Bed Modular Reactor (PBMR) is one such design that requires fluid

flow analysis in the nuclear energy industry. Several research attempts have been

made previously to analyze the fluid flow inside the core of pebble bed reactors. The

core of PBMR consists of spherical objects that are oriented in a random fashion.

Flow around a single sphere is a complex and inherently unsteady phenomenon and

many attempts to computationally analyze such flows have been made. [1][2][3] From

observation, fluid flow behind a spherical objects results in a wake formation and

existence of a flow structure referred to as “Von-Karman” vortex streak has been

made from decades. However, a combination of multiple spheres, like in the core of

PBMR core, and that too in a random orientation makes modeling the fluid flow

extremely difficult and the choice of turbulence model extremely crucial.

It is important to analyze the fluid flow characteristics and expected flow struc-

ture in PBMR core for reactor safety and reactor design concerns. Previous, research

has shown hot spots being generated by the formation of vortices downstream due to

complex flow separation in such geometries. [4] Hot spots can also affect the mate-

rial integrity of th fuel which again is a critical issue in the nuclear industry. Along

with the fluid flow, a pressure drop analysis is crucial as well from a reactor design

standpoint. Significant amount of research is being conducted for the PBMR design.

Research which includes applying various turbulence models to predict the flow struc-

ture inside the PBMR core. One methodology is to use Reynolds Averaged Navier

Stokes (RANS) turbulence model to obtain the flow structure inside the core geome-

try. This poses a question of which RANS model would be better for such a study?

Extensive research is being conducted for the PBMR due to its increasing interest in

the nuclear industry which is motivated by the view that new nuclear power reactors

will be needed to provide low carbon generation of electricity and possibly hydrogen

production to support the future growth in demand for both of these commodities.
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[5] Identifying a turbulence scheme that would model the flow in such geometries with

acceptable errors would be extremely beneficial. It would foremost result in better

understanding of the turbulence physics and its effects in the PBMR core, along with

improvements in the PBMR core design analysis, also it is extremely important to

conduct such a study for flow in the PBMR core from a safety perspective. [6]

The main objectives of this study from the points mentioned above are the need

to study the fluid flow in geometries comprised of spheres, the effect of the various

turbulence models on the numerical result and expected pressure drop estimation if

the PBMR core.
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CHAPTER II

HIGH TEMPERATURE GAS COOLED REACTOR

A High Temperature Gas-cooled Reactor (HTGR) is one of the renewed reactor de-

signs to play a role in nuclear power generation.[7] HTGR is the Generation IV reactor

concept in the nuclear industry. HTGR technology has two main added benifits when

compared with existing nuclear reactors. Firstly, HTGR offers inherent safety fea-

tures that eliminate the need for active safety systems. Secondly, HTGR would enable

hydrogen production with an addition of a thermo chemical cycle in the design and

that generated hydrogen can be used as extra fuel. Fig. 1 shows a general schematic

of HTGR concept that was introduced by Department of Energy in its Generation

IV nuclear reactor concept road map.

Fig. 1. Department of Energy’s High Temperature Gas-Cooled Reactor schematic [8]
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The HTGR reactor design, during normal operating conditions, can have reactor

coolant outlet temperature to a value of 1000 degrees C or higher with a net thermal

efficiency of 50% or higher. However, DOE specified certain key studies that need

to be conducted that would demonstrate viability of such reactors. Novel fuels and

materials must be developed that: [8]

1. Permit increasing the core-outlet temperatures from 850 degrees C to 1000

degrees C and preferably even higher

2. Permit the maximum fuel temperature reached following accidents to reach 1800

degrees C

3. Permit maximum fuel burnup of 150200 GWD MTHM

4. Avoid power peaking and temperature gradients in the core, as well as hot

streaks in the coolant gas.

The HTGR, also reffered to as Very High Temperature Reactor (VHTR), can

be divided into two main categories, namely, prismatic block reactor and pebble bed

reactor. The difference between the two types being the design of the reactor core,

which is a prismatic block for prismatic block reactor and consisting of fuel pebbles for

pebble bed reactor. In this study, fluid flow analysis in the reactor core of only pebble

bed reactor is conducted and this particular type of reactor is discussed further.

A. Pebble Bed Modular Reactor

PBMR falls under the category of VHTR, it is one the six designs that fall in DOE’s

Generation IV nuclear initiative.[8] The pebble bed reactor design was first introduced

in 1985 by Sefidvash. His initial design was a modular light water reactor fluidized

bed. [9] However, Sefidesh’s initial design was modified from a light water reactor
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to a gas cooled reactor. This was done to avoid the complications of multi-phase

phenomenon at high operating temperatures. The new PBMR concept is designed to

used Helium gas as the operating coolant that will help convert the thermal energy

from nuclear reaction in the reactor core into electrical energy. There are two Pebble

Bed designs that are being developed in the world. A 10 megawatt prototype reactor

in China and a modular pebble bed reactor in South Africa with a rated capacity of

165 MWe. In this report, only the features of PBMR design in South Africa will be

discussed.

1. Thermodynamic Design

The PBMR uses a thermodynamic Brayton cycle to convert thermal energy into

electrical energy. [7] A schematic of the PBMR design is shown in Fig. 2

Fig. 2. Pebble Bed Modular Reactor’s plant design

The coolant, Helium gas, enters the reactor core from top of the core at an inlet
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temperature of about 500 degrees C. Inside the reactor core the coolant is heated

from the heat produced through the fission reaction of the nuclear fuel inside the

reactor core. The Helium gas exits the reactor at an temperature of about 1000

degrees C. During normal operating conditions, the reactor core is maintained at a

pressure of 8.5 MPa. Helium at high temperature flows out of the reactor core to

the turbine that is used to drive the generator that produces electricity. The Helium

gas, after flowing through the turbine enters the recuperator where it loses energy

by pre-heating the Helium gas that is about to enter the reactor core through the

cold leg. From the recuperators, the Helium gas goes through the inter-cooler and

pre-cooler system. Afterwards, the coolant (He gas) gors through the compressor and

re-enters the reactor core at the inlet temperature of about 500 degrees C.

Helium as the active coolant as opposed to light water, suggested by Sefidesh in

his original design, has many benefits. Some of these are listed below:

1. Helium is an inert gas and thus will not chemically react with other materials

in the system. [10]

2. Helium does not become radioactive upon exposure to neutron radiation.[11]

3. Helium has been used for other processes at high temperature and therefore

there is plenty of experience and understanding about its behavior at high

temperatures.

The pressure vessel, referred to as “REACTOR”, in Fig. 2 is made from steel

on the outside. It is about 6 meters in diameter and about 20 meters tall. The steel

vessel encloses a graphite shell that surrounds the fuel spheres. The graphite shell

has two main benefits, firstly, it acts as a outer reflector for the neutron flux that

helps keep the reactor at a critical state. Secondly, it acts as heat sink by acting as

a passive heat transfer medium during reactor emergency conditions.
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2. PBMR Fuel

The active fuel in the PBMR, in fact in both the VHTR designs, is Uranium dioxide.

PBMR fuel is a special type of fuel design that is referred to as TRISO (Tristructural-

isotropic) fuel. Fig. 3 shows a schematic of the fuel spheres that are placed inside

the reactor core. The fuel spheres are 60 millimeters in diameter (about the size of

a tennis ball). The fuel sphere itself is made up of 5 millimeter thick graphite that

encapsulates many coated fuel particles.

Fig. 3. Pebble Bed Modular Reactor’s fuel pellet

Each fuel particle has an outer layer of pyrolytic carbon, which is a dense form

or heat-treated carbon. Inside the outer carbon coating there exists a silicon carbide

coating that acts as a neutron reflector. Under the silicon carbide coating there is

another pyrolytic coating. Under that, there is a Porous carbon buffer that helps

contain all the fission products released from the kernel without over-pressurizing the
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coated particle. Under the carbon buffer layer, in the middle of the fuel particle resides

the active fuel in the PBMR, Uranium oxide kernel, which is about 0.5 millimeter in

diameter.

Overall the core of PBMR consists of approximately 360,000 spherical fuel peb-

bles distributed randomly. Each of the fuel spheres inside the reactor core contains

about 15,000 fuel particles. About 3,000 pebbles handled by Fuel Handling Ser-

vice (FHS) each 7 day. About 350 discarded daily. One pebble discharged every

30 seconds. Average pebble cycles through core 15 times. Fuel handling is most

maintenance- intensive part of plant. [12]
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CHAPTER III

COMPUTATIONAL ANALYSIS APPROACH

For the computational analysis in this study, CD ADAPCO’s StarCCM+ version

3.006 was used. The CAD design of the geometry was developed using a commercial

software called Solidworks. Thereafter, the CAD design was transferred to StarCCM+

where the meshing and simulation was run.

A. Designs

One of the objective of this analysis was to analyze the fluid flow inside th PBMR core.

As mentioned earlier, the core of PBMR is comprised of fuel spheres that are randomly

distributed. Therefore, obtaining the exact geometric description of the reactor core

is basically impossible. This posed a big problem as far as the computational analysis

of the PBMR core was concerned. However, since this was a design analysis, the main

objective became determining the extremes inside the core and common flow features

that would be expected in the geometry made of spheres. From fluid mechanics, we

know that in a geometry that is comprised of spheres, the flow properties depend on a

geometric variable, and that is the geometric porosity. Mathematical representation

of porosity is shown in Eq. 3.1, basically, it is a ratio of the void volume to the total

volume of the geometry.

η = Porosity =
VF
VT

(3.1)

The flow properties are dependent on this porosity variable, for example, a higher

porosity would result in a lower pressure drop or velocity and vica-versa.

This dependence of flow properties on a geometric variable made enabled us

to limit the analysis to two types of geometries, one with highest porosity and the
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other with lowest porosity. At this point, three Bravais lattices were compared,

namely, simple cubic, body centered cubic and face centered cubic. Out of the three

geometries, only simple cubic and body centered cubic were analyzed. This is because

the simple cubic geometry has the highest porosity whereas the body centered cubic

geometry has the lowest.

1. Simple Cubic Design

Fig. 4 shows the cubic lattice structure of the simple cubic design. This particular

geometry has the highest porosity.

Fig. 4. Cubic lattice of simple cubic design

The computational geometry used for this geometric design was a 5 X 5 X 5
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structure as shown in Fig. 5.

Fig. 5 represents the fluid region of a 5 X 5 X 5 design and a geometric design that

Fig. 5. Computational geometry of simple cubic design

represents the fluid region of the geometry. The computational geometry used for

the simple cubic design has a porosity of 0.45. In Fig. 5 the blue plane represents

velocity inlet plane, the red plane represents a symmetry plane, which is on all four

sides and one the opposite side of the inlet plane is the pressure outlet plane. Geo-
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Table I. Simple Cubic Geometry Specifications

Pebble Size Number of Elements Corresponding Spheres

Ocatant 8 1

Quater 36 9

Half 54 27

Full 27 27

Total 125 64

metric distribution in this form is used further for meshing and Computational Fluid

Dynamics (CFD) analysis.

Table I describes the geometric details of the 5 X 5 X 5 geometry. It contains a

total of 64 full spheres that are made up from 125 individual spheres.
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2. Body Centered Cubic Design

The body centered cubic geometry has the lowest porosity out of all the three Bravais

lattices. Fig. 6 shows the cubic lattice structure for this particular lattice. The

Fig. 6. Cubic lattice of body centered cubic design

computational geometry used for this geometric design was a 2 X 2 X 3 structure as

shown in Fig. 7. This particular geometry has a porosity of 0.303.
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Fig. 7 represents the solid region and the fluid region that is used for the CFD

analysis is shown in Fig. 8.

Fig. 7. Computational geometry for body centered cubic case (solid region)
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The green faces in Fig. 8 represent the symmetry plane, the top plane represents

the velocity inlet plane and the plane opposite to inlet plane (which can not be seen

in the image) is pressure outlet plane.

Fig. 8. Computational geometry for body centered cubic case (fluid region)
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Table II describes the geometric details of the 2 X 2 X 3 geometry. It contains a

total of 24 full spheres that are made up from 48 individual spheres.

Table II. Body Centered Cubic Geometry Specifications

Pebble Size Number of Elements Corresponding Spheres

Ocatant 8 1

Quater 16 4

Half 10 5

Full 14 14

Total 48 24
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B. Mesh Continuum

For the simple cubic design six different polyhedral meshes were created that ranged

from five hundred thousand to ten million. Table III shows the cell information for

the six meshes created for the simple cubic design.

Table III. Simple Cubic Meshes

Mesh Number Number of Prism Layers Total Number of Cells

1 2 563,283

2 2 737,735

3 2 1,068,483

4 2 2,583,764

5 5 4,536,619

6 2 10,272,720

Mesh creation for both the designs had complications at the sphere contacts.

This is because, two spheres connect at a point and dividing a point into discretized

area is not possible. To avoid this problem we made the two neighboring spheres

intersect and using the cross-sectional area as the plane of contact. This of course

adds some error in our calculation. However, our assumption is that this error is

relatively small for pressure drop calculation. Fig. 9 shows the sphere contact point

and the modification that was implemented to avoid the contact point issue.

For the simple cubic design, the mesh with the 10 million cells was used for data

analysis. Although, more refinement would have been helpful, however, due to limited

computational resources 10 million was the maximum mesh size computable. Fig. 10
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shows a schematic of the front plane of the mesh for the 5 X 5 X 5 geometry.

Fig. 9. Sphere contact modification

Fig. 10. Front plane mesh scene for simple cubic geometry

For the body centered cubic geometry, same approach was taken for the sphere

contact point issue. However, a much more strict and numerically intensive sensitivity

analysis was implemented. This is because the body centered geometry is much
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more complex than the simple cubic geometry. For the body centered case another

modification was used on top of the sphere contact point modification. From Fig. 7

we can see the existence of a sphere right above the outlet plane. Now, from fluid

mechanics we know about the existence of a wake and the vortex streak in case of

flow past a sphere. This phenomenon resulted in reversed flow at the outlet boundary

condition for the body centered cubic geometry. To avoid any numerical error in the

pressure drop calculation of the computational test section, an extrusion region was

added after the outlet. An extrusion is a technique of using the outlet plane mesh

and creating a vertical elongation of that outlet mesh face. Fig. 11 shows the initial

mesh and the modified mesh with the added extrusion region.

Only three polyhedral meshes was made for the body centered cubic geometry,

because the mesh size for body centered case the mesh size increase rapidly with a

small decrease in base size. Table IV shows the specification for all the three meshes

used for body centered cubic sensitivity analysis.

Table IV. Body Centered Cubic Meshes

Mesh Number Pebble Region Total Region

1 4,829,682 5,629,662

2 7,862,464 10,487,464

3 14,483,694 18,366,414
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Fig. 11. Front plane mesh scene for body centered cubic geometry

Table 4 has the two columns referred to as “Pebble Region” and “Total Region”.

Pebble region represents the initial mesh shown in Fig. 11 where as the total region

represents the modified mesh in Fig. 11.

All the three meshes for the body centered cubic geometry have five prism layers

for close the the wall treatment. See Appendix for the images of a plane of the

volume mesh for the three meshes for body centered case. It shows a difference in



22

the polyhedral cell size for all the three meshes. Fig. 12 shows the prism layers from

the third mesh that has the largest number of cells.

Fig. 12. Prism layers in the body centered cubic geometry

For the mesh sensitivity for the body centered cubic geometry Richardson ex-

trapolation method specified by Celik was used. [13]

Two fluid flow parameters that were used for sensitivity analysis of the three

meshes. These parameters were analyzed over a plane at multiple heights of the test

section. The parameters used for sensitivity study were:

1. Area averaged Pressure

2. Total vorticity

Table V shows some of the reporting parameters that are specified by Celik. [13]
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Table V. Grid Refinement Ratio

Mesh Mesh Size Grid Size Cell Ratio

1 5,629,662 0.62
1.18

2 10,487,464 0.53
1.23

3 18,366,414 0.43

The last column in the table above represents the average mesh size ratio. This

ratio is recommended to have a value greater than or equal to 1.3. [13] However, that

number is for structured meshes, whereas in this study, all the meshes were unstruc-

tured. In fact, obtaining a structured mesh for the body centered cubic geometry

would have been extremely difficult.

As mentioned above, two sensitivity parameters were considered in this study.

Area averaged pressure for the body centered cubic geometry showed oscillatory con-

vergence. Fig. 13 shows the area averaged pressure data at different vertical positions

for all the three polyhedral meshes.

From Fig. 13, it can be seen that for the highest mesh the pressure curve has a

decreasing oscillatory trend which is best captured by the finest mesh. This oscillatory

behavior for flow properties is expected in a geometry comprised of spheres.

Table VI shows some important numerical uncertainty values for area averaged

pressure parameter. Apparent order represents the numerical order of convergence

of the numerical solution for a particular parameter. Grid Convergence Index (GCI)

represents the numerical uncertainty associated with the fine grid in comparison to

the lower resolution grid. It is important to note that this uncertainty analysis does

not have anything to do with the physical meaning of the solution. [13] It is strictly

a numerical scheme to analyze the effect of grid refinement on the final solution of
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any particular equation.

Fig. 13. Area averaged pressure sensitivity

Table VI. Area Averaged Pressure Sensitivity

Property Value

Apparent order 8.69

GCI-21 0.76 %

GCI-32 2.25 %

On the other hand, the total vorticity parameter showed normal convergence.

The plot for the total vorticity data is shown in Fig. 14
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Fig. 14. Total vorticity sensitivity

Table VII contains the reporting parameters for the total vorticity parameter

that quantify numerical uncertainty for total vorticity. According to Richardson

extrapolation method the most refined mesh has a numerical uncertainty of 4.5 % in

the total vorticity parameter.

Table VII. Total Vorticity Sensitivity

Property Value

Apparent order 6.79

GCI-21 54.0 %

GCI-32 4.54 %
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C. Physics Continuum

For both, the simple cubic case and the body centered cubic case, five different

modified Reynolds numbers were modeled. Mathematical representation of modified

Reynolds number is shown in the Eq. 3.2.

Rem =
Re

1− η
(3.2)

Using this modified Reynolds Number, fluid’s superficial velocity was determined.

Superficial velocity refers to fluid velocity with no spheres. From there using conser-

vation of mass the computational inlet velocity of the fluid was determined. These

model inlet velocities for both the cases are shown in Tables VIII and IX.

Table VIII. Simple Cubic Inlet Velocities

Modified Reynolds Number
Simple Cubic

Superficial Velocity [m/s] Inlet Velocity [m/s]

10,000 0.082 0.43

20,000 0.163 0.86

30,000 0.245 1.29

40,000 0.327 1.71

50,000 0.409 2.14

For all the test cases, water was used as the working fluid. In this study we

computationally analyzed the pressure drop at high Reynolds number, that is why

water was used as a working fluid as opposed to Helium. With the density of fluid we

would have supersonic flow velocities and which we wanted to avoid. This is different

from the actual reactor, however, the main purpose of this study was to conduct



27

fluid flow analysis and thus for convenience water was chosen. All the test cases were

isothermal and constant properties were used for water.

Table IX. Simple Cubic Inlet Velocities

Modified Reynolds Number
Body Centered Cubic

Superficial Velocity [m/s] Inlet Velocity [m/s]

10,000 0.010 0.258

20,000 0.210 0.516

30,000 0.310 0.774

40,000 0.410 1.03

50,000 0.520 1.29

For the outlet boundary condition, a pressure outlet boundary condition was

used with pressure at the outlet face being 0 Pascals(gage pressure). All the sides of

the test section, shown in Fig. 8 and 5, had symmetry plane boundary conditions.

All the walls had no-slip and no penetration boundary condition. Finally, all the

modeled test cases were steady state.
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CHAPTER IV

TURBULENCE THEORY

In this study we used RANS based models, namely Realizable k-epsilon model and

Reynolds Stress transport model for the fluid flow analysis. In this section various

models in this categories are discussed. By the end of this section it will be clear as

to why the two models were studied as opposed to other RANS and RST models.

Turbulence in itself is an extremely complicated coupled process. So in order to

understand turbulence analytically, major assumptions must be made to simplify the

actual phenomenon. We start with the Navier Stokes Equation shown in Eq.4.1 that

represents a complete description of the forces that act on a fluid control volume.

DUj
Dt

=
∂Uj
∂t

+ Ui
∂Uj
∂xi

= −1

ρ

∂P

∂xj
+ µ

∂2Uj
∂xi∂xi

(4.1)

Eq. 4.1 represents the total velocity which described the fluid flow physics in

both, laminar and turbulent flows. The complete equation contains a lot of informa-

tion making it extremely difficult to analyze the effect of a particular phenomenon,

especially in turbulent flows. Unfortunately, majority of flow flied that are encoun-

tered in the real world are turbulent in nature. Therefore, a lot of research work cur-

rently is focused towards turbulence modeling. There are two ways to solve/estimate

turbulence characteristics in a flow field, namely, modeling and simulating. Model-

ing, refers to solving simplified version of equations that make computation easier.

Simulation on the other hand, solves the complete equations and generates a lot of

information. Modeling and simulating turbulence both have their advantages and

disadvantages. The biggest advantage of turbulence modeling is that its computa-

tional cost is negligible when compared with that of simulation. On the other side,

the biggest disadvantage of modeling is that it does not solve the complete fluid flow
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physics and thus does not produce accurate results, as opposed to simulation. There

are many existing turbulence models that are based of Reynolds Averaged Navier

Stokes (RANS) equation, shown below:

1. Turbulent viscosity models

(a) Algebraic Models

(b) One Equation Models

(c) Two Equation Models

2. Reynolds Stress Transport (RST) Model

On the other hand, there are three other types of simulations that are used quite

often for research activities, namely:

1. Large Eddy Simulation (LES)

2. Detached Eddy Simulation (DES)

3. Direct Numerical Simulation (DNS)

For the modeling approach, Eq. 4.1 is simplified using a mathematical technique

called Reynolds decomposition. Using this technique, the total velocity in turbulent

flows can be divided into two different components,namely, a mean and a fluctuating

component as shown in Eq.4.2.

U(x, y, z, t) = U(x, y, z, t) + u′(x, y, z, t) (4.2)

In Eq. 4.2 the first term on the right hand side represents the mean velocity which

can be mathematically written as shown below:

U = lim
4t→∞

1

4t

∫ t+4t

t
U dt (4.3)
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Applying Reynolds decomposition to Eq. 4.1 we can re-write the resulting equa-

tion as shown in Eq.4.4.

D(Uj + uj)

Dt
= −1

ρ

∂(P + p)

∂xj
+ µ

∂2(Uj + uj)

∂xi∂xi
(4.4)

In Eq. 4.4 the left hand side represents the material or total derivative of the total

velocity. Eq. 4.5 shows the two terms that make up the total derivative. The first

term in the right hand side of Eq. 4.5 represents the local part of their derivative and

the second term represents the convective part.

D(Uj + uj)

Dt
=
∂(Uj + uj)

∂t
+ (Ui + ui)

∂(Uj + uj)

∂xi
(4.5)

Eq. 4.4, the form that it is in, completely describes all the physics in a turbulent

flow where U represents the mean velocity and u represents the fluctuating part. In

order to obtain RANS equation we need to take a time integral of Eq. 4.4.

Simplifying Eq. 4.4 and taking the time integral we obtain the RANS equation

as shown in Eq.4.6.

∂Uj
∂t

+ Ui
∂Uj
∂xi

+
∂uiuj
∂xi

= −1

ρ

∂P

∂xj
+ µ

∂2Uj
∂xi∂xi

(4.6)

In the RANS models the mean velocity effects are completely resolved, however

the effect of the fluctuating velocity are modeled. On the other hand, LES and DES

resolves most of the flow and requires modeling for a small portion. Finally, DNS

solves Eq. 4.1 without any changes and resolves the entire energy spectrum of the

flow field. It is most expensive out of all the models and other simulations. The

lower the amount of modeling, higher the accuracy and the computational cost of the

method. However, for the present study we analyzed only RANS based turbulence

models and these will be explained in detail.
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A. Reynolds Averaged Navier Stokes

RANS models are constructed from Eq. 4.6, which solves for the mean velocity of

the fluid. However, Eq. 4.6 requires closure modeling because of the term that is

generated from convective acceleration on the left hand side of the equation. For a

three dimensional flow, we have four equations that govern the mean velocity field;

namely the three velocity equations, and the Poisson Equation. The Poisson equation

used here is for the mean pressure.

To obtain Poisson equation, we take the derivative of the Navier Stokes equation

shown in Eq. 4.1, as shown in Eq. 4.7. Applying, the continuity equation for

incompressible flows shown in Eq. 4.8 to Eq. 4.7 we get the Position equation, Eq.

4.9.

∂

∂xj

(
∂Uj
∂t

+ Ui
∂Uj
∂xi

= −1

ρ

∂P

∂xj
+ µ

∂2Uj
∂xi∂xi

)
(4.7)

∂Uj
∂xj

= 5 · U = 0 (4.8)

−1

ρ
52 P =

∂Ui
∂xj

∂Uj
∂xi

(4.9)

The equations Eq. 4.7 to Eq. 4.9 represent the total pressure and total velocity.

Applying Reynolds Decomposition to Eq. 4.9 and integrating over time we obtain

the Poisson equation for the average pressure, shown in Eq. 4.10.

−1

ρ
52 P =

∂Ui
∂xj

∂Uj
∂xi

+
∂2uiuj
∂xi∂xj

(4.10)

The role of pressure is to enforce continuity (∂Ui/∂xi) over the entire flow field.

At this point, we have the four equations as mentioned above, however, there are



32

more then four unknowns. The three average velocities, the average pressure and

the Reynolds stresses (uiuj) that are generated from taking the time averaging of the

Navier Stokes equations. More unknowns than equations presents a closure problem.

In the current condition, when there are more unknowns than equations, the set of

equations are refereed to as unclosed. The existence of Reynolds stresses (uiuj) in

the RANS equation, Eq. 4.6, need to be resolved or somehow determined in order to

solve the posed closure problem.

B. Reynolds Stresses

As mentioned above, the Reynolds stresses(uiuj) that appear in the RANS equation

need to be determined in order to obtain a closed set of equations. A critical review

of Reynolds stresses is required in order to resolve the closure problem. From math-

ematics we know, that Reynolds stresses are components of a second order tensor

that is symmetric in nature, which means uiuj = ujui). Half of the trace of Reynolds

stresses is defined as “turbulent kinetic energy”, as shown in Eq. 4.11.

k ≡ 1

2
u · u =

1

2
uiui (4.11)

Turbulent kinetic energy is the mean specific kinetic energy contained in the

fluctuating velocity field. The Reynolds stresses can be separated into two different

types of stresses, namely, isotropic part and anisotropic part. The isotropic stresses

can be represented by turbulent kinetic energy (2
3
kδij). The deviatoric anisotropic

part can be represented as shown below:

aij ≡ uiuj −
2

3
kδij (4.12)

So far, the Reynolds stresses have been analyzed mathematically and separated
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into two parts, isotropic and anisotropic part. However, from a physics perspective

the evolution of Reynolds stresses is required and has been studied below. To take a

look at the Reynolds stress evolution we start with the fluctuating velocity equation.

Fluctuating velocity equation (4.13) is obtained by subtracting the mean velocity

equation (Eq. 4.6) from the total velocity equation (Eq. 4.4).

∂uj
∂t

+ Ui
∂uj
∂xi

= −ui
∂Uj
∂xi
− ∂(uiuj − uiuj)

∂xi
− 1

ρ

∂p

∂xj
+ µ52 uj (4.13)

At this point making an assumption of homogeneous turbulence we can get rid

of uiuj term in Eq. 4.13 to obtain Eq. 4.14.

∂uj
∂t

+ Ui
∂uj
∂xi

= −ui
∂Uj
∂xi
− ui

∂uj
∂xi
− 1

ρ

∂p

∂xj
+ µ52 uj (4.14)

Using convenience of index notation, we can multiply Eq. 4.14 with another

fluctuating velocity and using product rule we can obtain Reynolds Stress Evolution

Equation (RSEE).

The obtained Reynolds stress evolution equation is shown in Eq. 4.15:

∂uiuj
∂t

+ Uk
uiuj
∂xk

= Pij + Πij + Tij − εij (4.15)

where, the four components on the RHS of Eq. 4.15 are Production (shown in

Eq. 4.16), Pressure-Strain redistribution(shown in Eq. 4.17), Transport (shown in

Eq. 4.18) and dissipation (shown in Eq. 4.19) as shown below.

Pij = −ukui
∂Uj
∂xk
− ukuj

∂Ui
∂xk

(4.16)

Πij = 〈p
(
∂ui
∂xj

+
∂uj
∂xi

)
〉 (4.17)
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Tij =
∂

∂xk

[
−〈pui〉δjk − 〈puj〉δik + µ

∂〈uiuj〉
∂xk

− 〈uiujuk〉
]

(4.18)

εij = 2ν〈 ∂ui
∂xk

∂uj
∂xk
〉 (4.19)

It can be said that turbulence is made of the phenomenons mentioned in Eq.

4.15, shown above. One of the important properties of turbulent flows is the energy

cascade effect. Although cascade can not be seen in the RSEE, it implicitly affects

the pressure-strain redistribution and the dissipation term. Turbulence on the whole

is a combination of linear and non-linear processes acting together. Starting from Eq.

4.15 we can label each parameter as a linear or non-linear process. Physically a linear

process would represent interaction between the mean and the fluctuating fields and

a non linear process would represent interaction among the fluctuating fields.

There are two inertial processes that take place in turbulence flows, production

as shown in Eq. 4.16 is a linear process representing the production of Reynolds

Stresses from the mean flow gradients. Cascade on the other hand is a non linear

inertial effect that affects the fluctuating fields. The Pressure Strain redistribution

term also has two parts, this come from the derivation of the fluctuating pressure.

We need the equation for the fluctuating pressure for Eq. 4.17, to get that we can

subtract the mean pressure from total pressure,which yields:

−1

ρ
52 p = 2

∂Ui
∂xj

∂uj
∂xi

+
∂2(uiuj − uiuj)

∂xi∂xj
(4.20)

In homogeneous turbulence, the uiuj term disappears form Eq. 4.20 as it is
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expected to be the same everywhere. Therefore, we get:

−1

ρ
52 p = 2

∂Ui
∂xj

∂uj
∂xi

+
∂2uiuj
∂xi∂xj

(4.21)

From Eq. 4.21, we can divide pressure into two different components, namely,

rapid component and slow component. The rapid part deals with the interaction

between the mean flow and the fluctuating flow making it a linear process whereas

the slow part deals with the interaction among fluctuating fields making it a non-

linear process.

Same way as the pressure and the inertial effects, dissipation also has two components.

One is linear that represents the viscous action in the smallest scales and the other

is the non linear process that is indirectly affected my cascade. At this point, with

a fairly detailed analysis of Reynolds stress evolution, we can move from turbulence

theory to turbulence modeling.



36

CHAPTER V

TURBULENCE MODELING

In this study only RANS based modeling was conducted, consequently, we will only

focus on RANS based models. As mentioned in the turbulence theory section, RANS

based turbulence models have two main categories. These are the turbulent viscosity

models and then the Reynolds Stress Transport Model. Both of these categories are

discussed further in this section. For both these models we will use certain assump-

tions, ones that apply to all the cases are:

1. Gravitational forces are neglected

2. Buoyancy forces are neglected

3. Isothermal conditions

A. Turbulent Viscosity Models

Turbulent viscosity models solve Eq. 4.6, and uses various models to solve for the

unknown Reynolds Stresses (uiuj). All the turbulent viscosity models use turbulent

viscosity hypothesis. Starting from the realization that both the mean velocity strain

rate shown in Eq. 5.1 and anisotropy tensor, shown in Eq. 4.12, have five independent

components. According to the turbulent viscosity hypothesis, these five components

are related to each other through the scalar coefficient νT .[16]

Sij =
1

2

(
∂Ui
∂xj

+
∂Uj
∂xi

)
(5.1)

Thus, using turbulent viscosity hypothesis we obtain Eq. 5.2 which relates the

anisotropy tensor and the mean velocity strain rate.
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aij = −νT
(
∂Ui
∂xj

+
∂Uj
∂xi

)
(5.2)

Using Eq. 4.12 and Eq. 5.2 we can obtain an equation for the unknown Reynolds

Stresses seen in Eq. 5.3, shown below.

uiuj =
2

3
kδij − νT

(
∂Ui
∂xj

+
∂Uj
∂xi

)
(5.3)

In the class of turbulent viscosity models there are three main turbulence models

that are discussed below.

1. Algebraic Models

Algebraic models are the easiest and have been developed from a macroscopic or

thermodynamic standpoint. These models are extremely limited as far as turbulence

application is considered. Overall, all the models that fall under this category equate

the turbulent viscosity to a characteristic velocity scale and characteristic length scale

of the mean flow, as shown in Eq. 5.4.

νT = Constant ∗ (l∗u∗) (5.4)

One of the most popular algebraic models is the Prandtl mixing-length model. For

the Prandtl mixing-length model the characteristic length scale, l∗, is referred to as

mixing length ,lm, and the characteristic velocity as shown below.

u∗ = lm

∣∣∣∣∣∂U∂y
∣∣∣∣∣ (5.5)

In this representation of the turbulent viscosity, there is a major drawback other

than the limited application of such an approach, and that is, the mixing length is

unknown and must be specified.
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2. One Equation Models

One equation models are improvement of the algebraic models. This class of models

introduces a new representation of the characteristic velocity. This is because, the

representation used for algebraic models shown in Eq. 5.5 is not correct at all times

everywhere in the flow domain. The error in the Eq. 5.5 originates from the fact that

that turbulent velocity scale is not necessarily zero when the mean velocity gradient

is zero.

In 1940’s, Kolmogorov and Prandtl suggested use of turbulent kinetic energy

rather than the mean flow gradient for a better turbulence physics representation.

They suggested that characteristic velocity be represented as shown in Eq. 5.6,

u∗ = C ∗ k1/2 (5.6)

where, C is a constant. Using the new representation of characteristic velocity

we get a new turbulent viscosity equation, shown in Eq. 5.7

νT = C ∗ k1/2lm (5.7)

The turbulent kinetic energy shown in the equations above is not completely

unknown and its evolution equation can be obtained from the fluctuating velocity

equation (Eq. 4.14. However, the one equation model has the same issue as the

algebraic model, that is the unknown mixing length which needs to be specified by

user for modeling purposes.

3. Two Equation Models

Within the category of turbulent viscosity models, two equation models are the most

superior and perhaps can be called “complete” because for these models specification
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of characteristic length is not required. There are multiple two equation models,

however, for this study only k-epsilon models were used and they will be discussed in

this section. For the k-epsilon model along with Eq. 4.6 two other model transport

equations are solved that make up turbulent viscosity. These two quantities are

turbulent kinetic energy (κ) and turbulence dissipation rate (ε).

The turbulent viscosity for the k-epsilon models is calculated using Eq. 5.8.

νT = Cµ
k2

ε
(5.8)

There are multiple types of k-epsilon models that are shown below:

1. Standard k-epsilon model

2. Realizable k-epsilon model

3. Re-Normalization Group (RNG) k-epsilon model

4. Low Reynolds Number k-epsilon model

To obtain the model equation for turbulent kinetic energy we multiply Eq. 4.14

with uj and take the time average of the resulting equation.

∂κ

∂t
+ Ui

∂κ

∂xi
+
∂ 1

2
uiujuj
∂xi

= −uiuj
∂Uj
∂xi

+ ν(uj 52 uj)−
1

ρ

∂(puj)

∂xj
(5.9)

The viscosity term in the equation above can be simplified as shown below.

ν(uj 52 uj) = 2ν
∂

∂xi
(ujsij)− ε (5.10)

Using the simplification above we obtain the model turbulent kinetic energy

equation (Eq. 5.11),
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∂κ

∂t
+ Ui

∂κ

∂xi
+5 · T ′ = P− ε (5.11)

where

T ′ ≡ 1

2
(uiujuj) +

pui
ρ
− 2ν(ujsij) (5.12)

P = −uiuj(Sij) (5.13)

ε ≡ 2ν(sijsij) (5.14)

Physically in Eq. 5.11, T’ represents the transport of turbulent kinetic energy, P

represents turbulent kinetic energy production and ε represents the turbulent kinetic

energy dissipation or turbulence dissipation. The turbulent kinetic energy equation

in its form shown in Eq. 5.11 has two unknowns, namely, the transport term and

the dissipation term. In order to obtain a complete set of differential equations these

terms need to be determined.

The transport term is modeled using gradient-diffusion hypothesis as shown be-

low,

T ′ = −νT
σκ
5 κ (5.15)

where the ’turbulent Prandtl number’ (σk) is generally taken to be 1.0. The

turbulent kinetic energy (k) is calculated using the model equation shown above for

each of the models in the k-epsilon category. However, the equation has another term

that is not known, dissipation which is calculated differently for the multiple k-epsilon

models.

Out of the all the k-epsilon models mentioned above, only standard and realizable

k-epsilon models were used in this study and these are discussed further.
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a. Standard k-epsilon Model

Standard K-epsilon model is a semi-empirical model that uses Eq. 5.8 to calculate

turbulent viscosity with Cµ having a constant value of 0.09. The dissipation term (ε)

for this model is calculated using a model equation shown in Eq. 5.16. [16]

∂ε

∂t
+ Ui

∂ε

∂xi
= 5 ·

(
νT
σε
5 ε

)
+ Cε1

Pε

κ
− Cε2

ε2

κ
(5.16)

The dissipation equation shown above is however not the exact dissipation equa-

tion. The effect of dissipation can be viewed as the energy cascade process in turbu-

lence. Or in other words, dissipation represents the energy flow rate from the large

flow structures to the small flow structures in a turbulent flow field. Moreover, this

dissipation process was determined to be independent of viscosity at high Reynolds

number by Kolmogorov. However, the exact equation of dissipation pertains to the

process in the dissipative range in a turbulent flow, which represents the effect of vis-

cosity. Therefore, a model equation of dissipation (Eq.5.16) that is entirely empirical

is used to determine dissipation rather than the actual equation.

The standard k-epsilon model that solves Eq. 5.11, Eq. 5.16 along with Eq.4.6

and Eq. 5.8 is in a closed form with five unknowns that appear in the model turbulent

kinetic energy equation and the dissipation equation.

The standard values of all the model constants due to Launder and Sharma

(1974) are Cµ = 0.09, Cε1 = 1.44, Cε2 = 1.92, σκ = 1.0, and σε = 1.3. [16]

b. Realizable k-epsilon Model

The realizable K-Epsilon model is substantially better than the standard K-Epsilon

model for many applications, and can generally be relied upon to give answers that

are at least as accurate. [17] The previous statement is made from theoretical point
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of view because realizable k-epsilon model addresses certain key issues that standard

k-epsilon does not. Lets us consider the first component of the Reynolds stresses, Eq.

5.3, shown below.

u21 =
2

3
k − νT

(
∂U1

∂y

)
(5.17)

Using the definition of turbulent viscosity used in standard k-epsilon we can re-write

the equation above as shown below.

u21 =
2

3
k − Cµ

k2

ε

(
∂U1

∂y

)
(5.18)

The normal Reynolds stress shown in the equation above, by definition, is a posi-

tive term. However for standard k-epsilon it becomes negative for a large mean veloc-

ity strain making standard k-epsilon “non-realizable”. Realizable k-epsilon accounts

for this characteristic of turbulent flows thereby satisfying the “lumley triangle” cri-

teria for all turbulent flows.

One other major issue with standard k-epsilon is the model equation of turbulent

dissipation rate, which is re-written for realizable k-epsilon shown in Eq.5.19. Eq.

5.19 is based on dynamic equation of the mean square vorticity fluctuation at large

turbulent Reynolds number. [14]

∂ε

∂t
+ Ui

∂ε

∂xi
= 5 ·

(
νT
σε
5 ε

)
+ C1Sε− Cε2

ε2

κ+
√
νε

(5.19)

Comparing Eq. 5.19 with Eq. 5.16, two differences can be observed. First, is

the replacement of Cε1
Pε
κ

term with the C1Sε term. This change is crucial from a

numerical as well as physical standpoint. Numerically, this dissipation model will be

more robust when used with second-order schemes, since S normally behaves better

than Reynolds stresses, especially for cases the case with poor initialization. [14]
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Physically, the new term C1Sε in Eq. 5.19, that represents “production” is similar

to method proposed by Lumley [15] which is based on the concept of spectral energy

transfer. This is more accurate because it represents the process of energy transfer

from large scales to small scales, which is what happens from turbulence energy

cascade theory. Another change in the dissipation equation is the “destruction” term

does not have a singularity problem when the turbulent kinetic energy is zero.

Apart from the dissipation equation, another major difference between the real-

izable k-epsilon and standard k-epsilon comes in calculation of Cµ in the turbulent

viscosity equation, Eq. 5.8. Unlike, standard k-epsilon case, Cµ is not a constant

value in the realizable k-epsilon model. It is calculated from the mean flow character-

istics and thus is more accurate because it takes the flow characteristics into account.

The constant is calculated by taking the mean velocity shear rate, rotation rate into

account along the the flow’s angular velocity, turbulent kinetic energy and dissipation

rate. The exact function for this constant is shown in the equations below: [16]

Cµ =
1

A0 + As
κU∗

ε

(5.20)

where,

A0 = 4.04 (5.21)

As =
√

(6)cos

1

3
cos−1

√6
SijSjkSki√
SijSji

 (5.22)

U∗ ≡
√
SijSij + (Ωij − 2εijkωk) (Ωij − 2εijkωk) (5.23)

With these parameter the constant Cµ can be shown to have the value of 0.09

(used for standard k-epsilon case) for inertial sub-layer in boundary layer flows. The

realizable k-epsilon is also in closed form with a few constants, namely, Cε2 = 1.9,

σκ = 1.0, σε = 1.2, and C1 = max
[
0.43, η

η+5

]
; (η = Sκ

ε
).
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B. Reynolds Stress Transport Models

Reynolds Stress Transport model, also known as second-moment closure models, are

the most complex turbulence models in the Star-CCM+. [17] Reynolds stress trans-

port models solve the transport equation of the Reynolds stresses, also known as

Reynolds Stress Evolution Equation (RSEE), shown in Eq. 4.15. The Reynolds

stress transport models inherently account for the effects such as anisotropy due to

strong swirling motion, streamline curvature, and rapid changes in strain rate. [17].

In Eq. 4.15 the terms that need to be modeled in order to obtain a closed set

of differential equations are, a part of transport term, dissipation term, and perhaps

the most difficult, the pressure- strain term.

StarCCM+ has three different Reynolds stress transport models:

1. Linear Pressure Strain

2. Quadratic Pressure Strain

3. Linear Pressure Strain Two-Layer

Out of the three models mentioned above, only the linear pressure strain model

will be discussed since only that is used in this analysis. The linear pressure strain

model was introduced by Launder, Reece and Rodi. [18].

Out of the three unknowns that need modeling, we look at the transport term

first. The transport term as before is modeled using simple gradient diffusion hypoth-

esis, proposed by Daly and Harlow (1970). The simple gradient diffusion as in the

case of two equation models assumes isotropic diffusion coefficient, which is a source

of errors in both the viscosity model and the Reynolds stress transport model.

The dissipation term is another unknown term in Eq. 4.15 that requires closure

modeling. To model the dissipation term an assumption of isotropic dissipation is
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made. The resulting form is shown in the equation below.

2ν〈 ∂ui
∂xk

∂uj
∂xk
〉 =

2

3
δijεij (5.24)

Although, several experimental studies have shown that turbulence does not re-

main locally isotropic in the presence of strong strain fields (e.g. Townsend 1954;Uberoi

1957). [18] The turbulence energy dissipation rate is still an unknown and for the the

Reynolds stress transport model it is modeled as shown in Eq. 5.25.

Dε

Dt
= Cε

∂

∂xk

(
κ

ε
ukul

∂ul
∂xl

)
− Cε1

ε

κ
uiuk

∂Ui
∂xk
− Cε2

ε2

κ
(5.25)

Eq. 5.25 was introduced by Hanjalic and Launder, the first term on the right

hand side of the equation represents the diffusive part of turbulent dissipation rate.

The second and third terms on the right side of Eq. 5.25 collectively represent the

net effect of the generation of ε due to vortex stretching of turbulent filaments and

its destruction by viscous action. However, it was pointed by Rotta, Lumley, and

Khajeh-Nouri in the 1970’s that Hanjalic and Launder’s use of the mean strain rate

in Eq. 5.25 was faulty.

At this point, we have discussed modeling of the dissipation term and the trans-

port. One more term required modeling to satisfy the closure problem, and that term

is pressure-strain term shown in Eq. 4.17. Launder, Reece, and Rodi, collectively,

came up with the idea of splitting the pressure-strain term into three terms, namely,

a slow term that represents return to isotropy, a rapid term originating from the

rapid distortion theory and a close to the wall (wall reflection) term that was devel-

oped from works of Bradshaw (1972), Dr. H.P.A Irwin, Launder, Hanjalic, Reece,

and Rodi. The rapid part deals with the interaction between the mean flow and

the fluctuating flow making it a linear process whereas the slow part deals with the
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interaction among fluctuating fields making it a non-linear process.This technique of

modeling the three unknowns together is referred to as the “Linear Pressure Strain

Model.”
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CHAPTER VI

DATA ANALYSIS

A. Simple Cubic Geometry

For the simple cubic geometry, only one realizable k-epsilon turbulence model was

analyzed. The overall geometry of the simple cubic design is relatively simple as

compared to the body centered cubic geometry.

1. Pressure Drop

From a nuclear reactor design perspective, the pressure drop inside the core of the

reactor is an important parameter that requires proper analysis. The computational

pressure drop obtained from the computational analysis is compared with two existing

famous semi-empirical correlations, namely KTA correlation and Choi correlation.

For actual PBMR design KTA correlation was being used for the reactor design. Thus,

in this analysis KTA correlation is assumed to be a fairly accurate representation of

the pressure drop inside the core. Table X compares the computational pressure drop

with the KTA correlation using the porosity of the test section.

Table X. Pressure Drop for Simple Cubic Geometry

Modified Reynolds Number CFD ∆P KTA correlation ∆P % difference

10,000 95.7 55.3 42.2

20,000 355.1 239 32.7

30,000 765.5 554.9 27.5

40,000 1320.8 995.1 24.7

50,000 2016.9 1635.4 18.9
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It should be noted that the percent discrepancy between the KTA and and

computational pressure drop decreases with an increase in the modified Reynolds

number. This decreasing disagreement between the two results occurs due to the

applicability of the realizable k-epsilon turbulence model. In other words, according

to the pressure drop comparison, for lower modified Reynolds number the realizable

K-epsilon two layer turbulence model is not appropriate. Perhaps, the realizable

k-epsilon low Reynolds number model should be applied.

This applicability issue of the realizable k-epsilon two layer model for low Reynolds

number can be stated with good amount of confidence due to the fact that for low

Reynolds number the y+ value for the simulation was determined to be in the range

of the log law of the wall region. The log-law of the wall region represents the buffer

region in the turbulent boundary layer representation. This implies for further mesh

refinement to account for close to the wall effects in the simple cubic geometry. Pre-

vious pressure drop results show similar trend for the pressure drop curve. [19] It

is also shown that the pressure drop values are close to each other for low Reynolds

number and at high Reynolds number the difference increases. This is observed in

the computational pressure drop result as well. However, if we take a look at the

percent difference, we can see that the low Reynolds number values in fact have more

discrepancy. Fig. 15 shows the y+ for the case of 10,000 modified Reynolds number,

one can see that the maximum wall y+ for the low Reynolds number is in the range

of the buffer region which from turbulence theory, ranges from a y+ value of 5 to 30.
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Fig. 15. Simple cubic wall Y+

Fig. 16 shows the pressure drop data for the two correlations and the compu-

tational result using the realizable k-epsilon turbulence model. The computational

pressure drop for the simple cubic geometry seems to be decent agreement with KTA

correlation. However, Choi correlation predicts a higher pressure drop. Regardless,

the pressure drop growth with increasing modified Reynolds number seems to have a

similar trend, from both the KTA and the computational result.
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Fig. 16. Simple cubic pressure drop comparison

2. Fluid Flow Analysis

In the PBMR the fluid flow inside the reactor core is strongly dependent on the

packing of the spheres, which is random. This makes it hard to predict the flow

structure in the PBMR core because of the unknown sphere distribution and the

area of contact among the spheres due to complex flow separation. [5] Using the test

cases from this study we can determine certain flow features or structure that are

expected to exist inside the PBMR core. This is extremely important for the PBMR

core from a reactor safety perspective. [4] Each modified Reynolds number showed a

different outlet profile as far as the velocity magnitude is concerned. However, the flow

structure in each case showed similar features such as vortex formation downstream

and between the pebbles due to complex flow separation. Fig. 17 represents the

streamlines for one of the simple cubic simulations that shows multiple vortices being

formed downstream of the spheres and at sphere contact points.
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Fig. 17. Fluid flow streamlines in the simple cubic geometry
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As far as the fluid flow profile is concerned, for the simple cubic cases the obtained

velocity profile was similar to what was expected. Fig. 18 shows the outlet profile for

the modified Reynolds number of 10,000.

Fig. 18. Outlet flow profile for the simple cubic geometry (Re= 10,000)

It should be noted that the snapshot shown above is for the lowest Reynolds

number case. There is a distinct pattern in the flow profile for each of the “outlet

channels”. However, with increasing Reynolds number this pattern disappears and

all the channels look the same as shown in Fig. 19
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Fig. 19. Outlet flow profile for the simple cubic geometry (Re= 50,000)
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B. Body Centered Cubic Geometry

For the body centered cubic geometry, three turbulence models were used, namely,

standard k-epsilon, realizable k-epsilon, and Reynolds stress transport model. The

body centered cubic geometry is much more complex as compared to the simple cubic

geometry. It will be seen further in this section that the choice of turbulence model

is extremely crucial for a geometry like the body centered cubic.

1. Pressure Drop

For the pressure drop calculation, the standard and the realizable k-epsilon were

modeled for all the Reynolds number. However, the Reynolds stress transport model

was was only used for the highest Reynolds number case. This is due to the fact that

Reynolds Stress transport model is extremely expensive and has a big computational

time cost associated with it. Table XI compares the standard k-epsilon and the

realizable k-epsilon pressure drop result with the KTA correlation. In the table below,

SKE represents standard k-epsilon and RKE represents realizable k-epsilon turbulence

model.

Table XI. Pressure Drop for Body Centered Cubic Geometry

Modified Reynolds Number SKE ∆P RKE ∆P KTA ∆P

10,000 274.51 165.39 651.24

20,000 718.60 1248.00 2415.58

30,000 2156.69 1396.49 5207.72

40,000 2582.52 2288.4 8985.45

50,000 5756.29 7340.37 13720.4
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The pressure drop obtained from the Reynolds stress transport model for the

modified Reynolds number of 50,000 was in between the realizable k-epsilon and the

standard k-epsilon with a value of 5878.50 Pascals. Unlike the simple cubic geometry,

the pressure drop comparison with the KTA correlation is not in good agreement

with the KTA result. In fact, the body centered cubic result is very different from

that of KTA’s. The percent difference from the KTA pressure drop also does not

have any order like in the case of simple cubic. This is because the geometry is

much more complex than the simple cubic geometry. In fact, the body centered cubic

geometry has a lot of contractions and expansions creating a lot of mean flow strain

and realizable k-epsilon has proved to be not good for such flows. [16]

Fig. 20. Pressure drop for body centered cubic geometry

Fig. 20 graphically compares the computational result with KTA and Choi

correlations. From Fig. 20 it is clear that the computational result for the body

centered cubic geometry has some significant sources of error or assumptions that are
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not appropriate for this case. Numerical error is one source which was analyzed in

the mesh sensitivity section of this report and error due to choice of turbulence model

is another major error that is discussed later in this section.

As mentioned previously, the flow parameters inside the PBMR core is highly

dependent on the porosity of the core. This is confirmed from Fig. 21, that shows

the realizable k-epsilon result for both the cases. Before the analysis a hypothesis

was made regarding the relation of porosity with the flow parameter. Basically, it

was stated that higher the porosity the lower the flow parameter value and vice-versa.

This statement is confirmed by the result shown in Fig. 21 that compares the pressure

drop for two geometries with different porosity. The number in the legend in Fig. 21

represents the porosity of that specific geometry.

Fig. 21. Porosity effect
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2. Fluid Flow Analysis

The fluid flow in the case of body centered cubic geometry demonstrated similar fea-

tures as the simple cubic geometry and what as been seen before, that is the formation

of multiple vortices. This is very important flow feature that needs thorough analysis,

ince it can lead to formation of hot spots in a in the actual core.

Fig. 22. Streamlines for body centered cubic geometry

Moreover, with increasing operating time it can also lead to phenomena such as
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particle deposition. This is a big issue from a reactor safety perspective, especially,

since it can hinder the material integrity of the fuel spheres inside the core. Fig.

22 shows the streamlines in the body centered cubic geometry that shows favorable

vortex formation locations in the body centered cubic geometry.

Although, all the turbulence models showed similar flow structure, such as for-

mation of vortices downstream of the spheres and high vorticity, they all have very

different flow profile.

a. Turbulence Model Comparison

The choice of turbulence model for the body centered geometry seems to be extremely

crucial especially from the velocity profile that is obtained from each of the models

used in the study. Figs. 23, 24 and 25 shows that outlet velocity profile for the

standard k-epsilon, realizable k-epsilon, Reynolds stress transport model.

Comparing the three images one can see that there is a big difference in the

fluid flow profile at the outlet for the same geometry for the three turbulence models.

Determining the fluid flow in the reactor core is important not only from a safety

standpoint, but also from a thermal efficiency perspective. A correct fluid flow profile

would enable proper heat transfer calculations and finally in design modifications that

would increase the overall efficiency of the reactor.

Now without commenting on which model is the most appropriate of such a

analysis, and considering the body centered geometry, certain key comments regarding

the expected flow profile can be made. First of all, the body centered cubic geometry

has four symmetry boundary conditions, secondly, along the center axis there exists a

symmetry in the geometry. From the given information it is a conservative statement

to make that the fluid flow on a plane at any vertical height in the test section should

have an antisymmetric fluid flow profile. With this hypothesis about the expected
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Fig. 23. Outlet velocity profile for body centered cubic geometry - Standard K-epsilon

fluid flow profile as the background information the analysis of the three turbulence

models was conducted.

Fig. 23 shows the outlet profile for standard k-epsilon case and it does produce

an outlet profile which is axisymmetric in nature. However, from the turbulence

theory section we know that standard k-epsilon model is the most basic model that

is considered in this analysis. In fact, it ignores most of the turbulence physics and

uses equations for dissipation that has many significant drawbacks.

Fig. 26 shows the vector field at the outlet, here it can be noted that the flow

is basically coming out of the test section in a straight pattern. In other words, the

phenomenon of existence of vortices or wake formation in the case of flow around a

sphere is missing for the standard k-epsilon turbulence model. This indicates a major

flaw in standard k-epsilon model for the body centered cubic geometry or any similar
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Fig. 24. Outlet velocity profile for body centered cubic geometry - Realizable K-epsilon

geometry.

On the other hand the realizable k-epsilon turbulence model, seems to have an

extremely distorted outlet velocity profile. In fact, it does not seem symmetric at all,

according to Fig. 24. Fig. 27 shows the vector scene of the outlet velocity profile.

In this representation of the velocity profile we can see the existence of multiple

vortices that are expected in flow around spheres. However, the velocity profile itself

suggests that the realizable k-epsilon model is not fit for such a geometry because it fail

to produce the expected velocity profile. Perhaps, it over exaggerates the vorticity in

the fluid domain. This is perhaps due to the use of the modified dissipation equation

that is used in realizable k-epsilon model that is based from the dynamic vorticity

equation.
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Fig. 25. Outlet velocity profile for body centered cubic geometry - Reynolds Stress

Finally, the outlet velocity profile for the Reynolds stress transport model is

shown in Fig. 25. This velocity profile seems to have axisymmetry around the center

axis line. Fig. 28 shows the vector scene of the velocity profile at the outlet of the

geometry.

The Reynolds stress transport model is the most expensive model. In fact, it

accounts for the maximum amount to turbulence physics out of all the models that

were used in this study. Fig. 28 shows the swirling in the flow that we have mentioned

earlier in this report. At this point, the Reynolds stress transport model seems to

model the fluid flow in the geometry fairly well. However, the pressure drop data

for the Reynolds stress transport model is very similar to the other computational
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Fig. 26. Velocity vector for the standard k-epsilon model

models used in this study and they are all far from KTA correlation. This is because

the Reynolds stress transport model has some errors due the the linear pressure strain

redistribution method that is used in this analysis. More specifically, it it the slow

pressure term in the pressure-strain redistribution in the Reynolds stress evolution

equation, shown in the theory section of this report. This error is because the slow

pressure term is developed from the return to isotropy theory and use of this is not

appropriate in our analysis due to existence of all the sphere walls in the fluid domain.

According to Pope, the redistribution term actually plays a big role, in fact about

60 % in flow energy redistribution. [16] Thus, error due to this particular term can

be seen in the pressure drop data that is shown in the Fig. 20. Moreover, it is fair
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Fig. 27. Velocity vector for the realizable k-epsilon model

to assume that the pressure-strain redistribution term has a good effect on the fluid

flow profile shown above as well.
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Fig. 28. Velocity vector for the Reynolds stress transport model
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CHAPTER VII

CONCLUSION

Fluid flow analysis inside the PBMR core is extremely important from safety, as well

as efficient designing standpoint. Two Bravais lattice structures were used in this

analysis, simple cubic, and body centered cubic. Realizable k-epsilon model proved

to be adequate for the simple cubic geometry. The computational pressure drop

obtained for the simple cubic geometry complimented previous existing correlation

well. The computed fluid flow profile for the simple cubic geometry was similar to

the expected profile. Perhaps, this agreement is due to the fact that simple cubic

structure is a relatively simple geometry.

On the other hand, the body centered cubic case resulted in different results

from the three turbulence models that were used. The pressure drop results that were

obtained form each of the turbulence models were far from the existing correlations.

The standard k-epsilon model ignores most of the turbulence physics and phenomenon

that should occur in a geometry like the body centered cubic. Realizable k-epsilon

model is a significant improvement from the standard k-epsilon model. It uses the

flow parameters to obtain certain unknowns that are just used as constants in the

standard k-epsilon case. However, the realizable k-epsilon it still not good enough for

a geometry like the body centered cubic. This is probably due to the high vorticity

nature of the flow, where realizable k-epsilon has proved to be inadequate.

Reynolds stress transport model is perhaps the most advanced and accurate out

of all the models considered in this analysis. It attempts to solve the Reynolds stress

evolution equation rather than modeling it, like in the case of standard and realizable

k-epsilon models. However, in the case of Reynolds stress transport model there

are certain issues that need to be addressed. The linear pressure-strain model in the
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Reynolds stress transport model, that was used in this analysis, has some assumptions

that lead to big errors. The linear pressure strain model has three components, a

rapid component, slow component and a transport component. Out of the three,

the slow component is modeled using the return to isotropy hypothesis. However,

the assumptions that are used in return to isotropy hypothesis are not correct in the

case of body centered cubic geometry. To avoid this problem, it is suggested to use

the quadratic pressure strain relation, but it is harder to reach convergence with the

quadratic model.

Given the computational cost and the convergence issues associated with the

Reynolds stress transport model. It is recommended to use large eddy simulation

(LES) for problems with geometries like the body centered cubic. LES has an added

benefit of temporal resolution over the Reynolds stress transport model with a similar

computational time cost. Finally, a finer mesh is required to conduct LES or Reynolds

stress transport(quadratic pressure strain) model. A finer mesh would increase the

computational cost and the need for computer resources, on the other side, it will help

analyze the fluid flow inside geometries like body centered cubic with lower errors and

finer resolution.
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APPENDIX A

FIGURES
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Fig. 29. Mesh 1 for body centered cubic geometry
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Fig. 30. Mesh 2 for body centered cubic geometry
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Fig. 31. Mesh 3 for body centered cubic geometry
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