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ABSTRACT 
 
 
 
 

Effects of Fatty Acids on Gene Expression and Lipid Metabolism in Bovine Intramuscular 

and Subcutaneous Adipose Tissues. (August 2011) 

David Tyrone Silvey, B.S., Stephen F Austin State University; 

M.S., Stephen F Austin State University 

Chair of Advisory Committee: Dr. Stephen B. Smith 

 

 

Pasture feeding depresses adipose tissue development in beef cattle whereas grain feeding, 

enhances adipogenesis.  Therefore, we hypothesized that specific fatty acids would 

differentially affect lipogenesis in explants of bovine subcutaneous (SC) and intramuscular 

(IM) adipose tissues.  Angus steers were harvested at 12, 14, and 16 mo of age, and IM and 

SC adipose tissue explants from the 8-11th thoracic rib region were dissected and cultured in 

media.  Media contained no supplemental fatty acids or 40 µM of five fatty acids, stearic acid 

(18:0), oleic acid (18:1 n-9), trans-11 vaccenic acid (18:1 trans-11), conjugated linoleic acid 

(CLA, 18:2 trans-10, cis-12), or α-linolenic acid (18:3 n-3).  After 48 h of culture, lipogenesis 

using [U-14C]glucose and [1-14C]acetate was measured.  Lipogenesis from glucose decreased 

between 12 and 16 mo of age in SC adipose tissue (from 8.9 to 4.0 nmol per 2 h per 100 mg; 

P = 0.001) and IM adipose tissue (from 4.4 to 2.7 nmol per 2 h 100 mg ; P = 0.08).  

Lipogenesis from acetate did not change over time in SC adipose (approximately 56 nmol per  
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2 h per 100 mg; P = 0.23), but increased over time in IM adipose tissue (from from 11.3 to 

17.1 nmol per 2 h 100 mg; P = 0.02).   Oleic acid increased lipid synthesis from glucose 

125% (P = 0.04) in IM adipose tissue, whereas stearic acid and trans-vaccenic acid increased 

lipogenesis from glucose in SC adipose tissue by approximately 50% (P = 0.04).  In SC 

adipose tissue only, trans-vaccenic and increased, lipogenesis from glucose (P < 0.02).  

Lipogenesis from acetate was depressed by CLA nearly 50% in SC adipose tissue.  PPARγ 

gene expression increased between 14 and 16 mo of age in control IM and SC adipocytes.  

The increase in activity was also observed in AMPK gene expression.  C/EBPβ and SCD 

gene expression did not increase in control samples until 16 mo of age.  SC adipose tissue 

responded to stearic acid by increased GPR43 and AMPK gene expression at 12 mo of age.  

We conclude that fatty acids differentially affect lipid synthesis in IM and SC adipose tissues, 

which may account for the effects of pasture and grain feeding on adiposity.   

 



v 
 
 

 

DEDICATION 

 
 
I dedicate this dissertation and all the work that went into it to my loving family; Bruce 

Silvey, Lark Silvey, Amy Silvey, Katelyn Silvey, David Silvey II, Ashley Silvey, Savannah 

Silvey-Holik, David Holik, Brooklyn Holik, Landon Holik, and Holden Holik.  It is their 

encouragement, support, commitment, love, and faith in me that has kept me going every 

day.



vi 
 
 

 

ACKNOWLEDGEMENTS 

 

I would like to thank Dr. Stephen B. Smith for giving me the amazing opportunity to be a 

part of his productive lab and his graduate student and for showing his students what it is to 

be a true researcher, mentor, and family man.  I also want to extend my gratitude to my 

committee members Dr. Wickersham, Dr. Sawyer, and Dr. Duong, for their guidance and 

support throughout my journey.  Thanks also to all the faculties and staffs for making my 

time at Texas A&M University a great experience.   

      I would like to extend my gratitude to lab mates: Seong Ho Choi, for his friendship and 

guidance as our labs post doctorate.  Anne Ford, for her friendship and for training me when 

I first arrived in our laboratory.  Ghazal Ghahramany, for her kindness and friendship.  

Finally, I want to extend my dearest gratitude to Gwang-woong Go who not only was my 

dearest friend, but also gave me unconditional support and was available for me whenever I 

needed anything associated with research and family.   

Most importantly, I would like to thank my family: my wife, Amy Silvey, who has been 

there for me for 14 wonderful years.  Amy, has supported me for years both professionally 

and personally.  I also want to acknowledge my three children, Katelyn, David, and Ashley 

Silvey, who gave me happiness, joy, and the a reason to better myself academically.  Finally, 

I would like to thank my parents, Bruce and Lark Silvey, who have lived a life of devotion 

and sacrifice that has made my doctorate possible.  Thank you, all. 

 



vii 
 
 

 

NOMENCLATURE 

 
 

 

ACC              Acetyl CoA carboxylase  
 
AMPK            AMP-activated protein kinase  
 
ATP   Adenosine Triphosphate 
 
C/EBP-β  CCAAT-enhancer-binding protein-β  
 
CLA  (cis 9, trans 12) Conjugated linoleic acid 

CPT1   Carnitine palmitoyltransferase 1 

FAME   Fatty acid methyl ester 
 
FFA               Free fatty acids 
 
GPR43          G-protein receptor 43 
 
HDL   High density lipoprotein 
 
IM    Intramuscular  
 
MUFA   Monounsaturated fatty acid 
 
MUFA:SFA  Monounsaturated:saturated fatty acid ratio 
 
LDL   Low density lipoprotein 
 
PPARγ   Peroxisome proliferator-activated receptor gamma 
 
PUFA    Polyunsaturated fatty acids 
 
SC    Subcutaneous  
 
SCD   Stearoyl-CoA desaturase 
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SFA              Saturated fatty acids 

SV                    Stromal vascular cells 

TVA    Trans-11 vaccenic acid 

VFA   Volatile fatty acids  

VLDL        Very low density lipoprotein 
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INTRODUCTION 
 
 
 
 

The ultimate goal of beef producers is to produce a high-quality product that maximizes their 

profits.  The United States Department of Agriculture (USDA) classifies the quality of beef 

into four basic categories: Prime, Choice, Select, and Standard (the lowest quality).  The two 

criteria for quality grade are marbling (intramuscular adipose tissue) and degree of maturity 

(physiological age of the animal).  Ultimately, the single most important factor to the 

consumer is taste (1).  The savory taste of a high-quality beef comes from the intramuscular 

adipose tissue depots (1).  American’s consume 39.3 kg and annually spend an average of 

$235 on beef per capita (2).  Ultimately, beef producers want to preserve the intramuscular 

adipose depot (to maintain high-quality beef) while reducing the amount of subcutaneous 

adipose tissue because of its effect on profitability.  Insufficient intramuscular adipose tissue 

and excessive subcutaneous adipose tissue are among the top beef quality challenges (1).  In 

2009, 26.5 million steers were slaughtered in the United States.  Lower quality beef could 

potentially cost the producers between $21 and $27 per head resulting in a $1.3 billion dollar 

loss.   

Fat deposition in finishing animals is the result of both hyperplasia and hypertrophy (3).  

Fatty acids deposited in the adipocyte tissues have two origins: from the diet or from de novo 

fatty acid synthesis.  Finishing system can dramatically alter fat deposition and composition, 

indicating that enzymes involved in lipogenesis are responsive to both dietary energy level  
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     and source. 

Altering a diet can dramatically alter fat deposition and fatty acid composition in, 

indicating that enzymes involved in lipogenesis are reactive to the diet.  Studies have 

compared (4) the effects of calf and yearling feeding on adiposity, gene expression, and fatty 

acid composition in Angus steers.  Research has found that at the 12th rib, fat thickness and 

marbling scores were not statistically different (4).  However, there were profound 

differences in the monounsaturated:saturated fatty acid (MUFA:SFA) ratio and SCD gene 

expression.  Keeping cattle on a basal diet of forage the reduced oleic acid (18:1 n-9) content.  

Greater amounts of oleic acid had a stimulatory effect on IM and SC adipocytes 

differentiation.  Finishing cattle on high-grain such as corn based diets increases lipid 

deposition rates and alters the fatty acid composition of adipose tissues (5).  

Monounsaturated fatty acid (MUFA) concentrations increase in a linear manner with 

increasing time on a corn-based diet.  High-concentrate diets and diets supplemented with 

corn oil have been found to increase carcass fatness (6) in finished steers.  High-concentrate 

diets can also alter the composition of the fatty acids in the adipose tissues (7) compared to 

cattle that were pasture fed to finishing weight.  Studies have (8) found that feeding cattle α-

linolenic acid (18:3 n-3) (ALA) or CLA depressed marbling scores.  High-concentrate diets 

especially diets that contain seed oils are abundant in polyunsaturated fatty acids (PUFA).  

The two most abundant PUFA found in high- concentrate diets are ALA and linoleic acid.  

Studies (9) found that increasing concentrations of corn oil and forage resulted in increased  
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biohydrogenation concentrations of ALA in cattle fed feedlot diets to trans-11 vaccenic acid 

(TVA).  A portion of these PUFA bypasses the rumen and are deposited directly in 

adipocytes.  Pasture fed cattle usually have lower marbling scores which could be attributed 

to increased lipolytic gene (i.e. SCD) activity.   

The majority (70%) of fat that accumulates during postnatal growth is due to adipocyte 

hypertrophy (10).  Research (3) has suggested that SC adipose tissue is an earlier developing 

depot and that hyperplasia is nearly complete by approximately 8 mo of life.  Research (3) 

has found that the processes of developing adipose tissue occurs early on cattle development.  

The greater amount of total fatty acids (per gram of subcutaneous adipose tissue) suggests 

that adipocytes hypertrophy occurs during the finishing diet and increased dietary energy 

stimulated SC adipocyte filling (11).   

The exact mechanisms and stimulatory factors that support lipid filling are not fully 

understood but current work on lipogenic genes is increasing our knowledge.  Within the last 

decade, fatty acids have gained significant attention in the arenas of energy intake and 

glucose disposal with obvious implications for the treatment of insulin resistant diabetes 

mellitus and obesity.  For example, grain-fed cattle have been shown to increase the 

expression of SCD gene expression (8) which increases the amount of MUFA (i.e., oleic 

acid) in bovine adipose tissue.  Increased oleic acid will increase the healthiness of the final 

consumer product and have increased marbling score of the steer.  Steers with higher 

marbling scores will grade higher and the fat deposited will contain a healthier profile of 

fatty acids.  
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REVIEW OF LITERATURE 
 
 
 
 
IM vs SC depots 

Multiple scientific studies indicate that SC and IM adipose tissue are different in metabolic 

function and processes.  Subcutaneous adipose tissue synthesizes fatty acids de novo at a 

higher rate than IM adipose tissue (12,13), even at a constant volume (13).  Glucose is 

utilized at a higher rate for fatty acid biosynthesis in IM adipose tissue than in SC adipose 

tissue (12,13).  Subcutaneous adipose tissue contains larger adipocytes and a higher rate of 

fatty acid esterification, except for palmitate, than IM adipose tissue (14).  The rate of 

exogenous fatty acid incorporation into adipose tissue is dependent on the fatty acid 

concentration in medium (14).  We wanted to investigate the effect individual fatty acids had 

on IM and SC adipose tissue.  For example, as cattle consume a diet higher in PUFA, the 

amount of PUFA deposited into the tissue is increased.  Increasing SCD gene expression in 

the steers diet such as grain feeding increased the amount of oleic acid in the IM adipose 

tissue (8).  Increasing the amount of MUFA deposited in the adipose tissue decreases the 

amount of saturated fatty acid (SFA) deposited in the adipose tissue.  Producing a lower 

amount of palmitate, IM tissue may have to rely on exogenous sources of palmitate to make 

various cellular products.   To date, there is no mechanistic information about the effect of 

specific fatty acids on lipogenesis and gene expression of IM and SC adipose tissue from 

growing steers.   
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Carnitine palmitoyltransferase-1 

Carnitine palmitoyltransferase-1 (CPT1) is a rate-limiting enzyme in fatty acid β- 

oxidation.  The primary function of CPT1 is regulating the entrance of long-chain fatty acids 

into the mitochondria for ATP production (15).  Beta oxidation occurs primary in the 

mitochondria where long-chain fatty acids have to cross the mitochondrial membranes 

through the carnitine palmitoyltransferase system (16).  The location of CPT1 is on the outer 

membrane of the mitochondria, where it catalyzes the transfer of the acyl group from 

acylcoenzyme A complexes to carnitine, producing acylcarnitine.  Controlling the activity of 

CPT1 could provide one mechanism for regulating fatty acid β-oxidation.  Being able to alter 

fatty acid β-oxidation shows the important role CPT1 plays in a feedback loop associated 

with the energy status of the animal (17).  Inhibiting CPT1 with compounds such as etomoxir 

caused intracellular lipid accumulation and insulin resistance in rats (18) demonstrating 

another mechanism for controlling the metabolism of fatty acids.  Studies (19) have reported 

increased CPT1 activity leads to improved insulin sensitivity in high-fat overfed rats.  

Increasing or decreasing the activity of CPT1 in young steers is another potential means for 

altering energy homeostatsis. 

CCAAT-enhancer binding proteins  

CCAAT-enhancer binding protein (C/EBP) are involved in adipocyte proliferation, 

metabolism, and differentiation.  C/EBP-β binds to DNA-sequences (known as CCAAT 

boxes) that are promoters of genes involved in adipogenesis (19).  In rats, C/EBP-β is known  

 



6 

 

 

to regulate acetyl-CoA carboxylase (ACC) activity (20).  ACC is the rate-limiting enzyme in 

fatty acid synthesis (21).  Other studies have shown that following differentiation, expression 

and activation of C/EBP-β is upregulated (22).   

AMP-activated protein kinase  

AMP-activated protein kinase (AMPK) is a critical regulator of mitochondrial biogenesis and 

once activated oxidative metabolism is amplified (23).  AMPK is regulator of energy 

homeostasis that is activated in response to energy deprivation.  Reducing ATP production 

could be a side effect of metabolic syndrome (24).  AMPK allows cells to increase ATP 

production (25).  Therefore, AMPK functions as a cellular energy sensor, and inactivates 

energy-consuming processes such as lipogenesis and cholesterol biosynthesis, while 

activating energy producing processes such as fatty acid oxidation (26).  AMPK is 

specifically activated by increases in ATP utilization or decreases in ATP production caused 

by metabolic stress (27).  In addition to increases in the AMP to ATP ratio, AMPK is 

activated by rises in intracellular Ca2+ (28).  AMPK regulates the synthesis and utilization of 

fatty acids by phosphorylating ACC and modifying gene transcription.  The decrease in 

malonyl-CoA that occurs in muscle during exercise or in response to electrical stimulation is 

accompanied by a decrease in activity of ACC, the enzyme that synthesizes malonyl-CoA 

(29).  The re-esterification of long chain fatty acids that occurs during lipolysis leads to a 

reduction of ATP and an increase in the AMP:ATP ratio, which activates AMPK (30).   

Further studies have demonstrated that fatty acids themselves can lead to an increased  

- 
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activation of AMPK (31).  An activation of AMPK was demonstrated in cultured rat 

cardiomyocytes that were treated with palmitate and oleate (32). Studies in rodents show that 

dietary PUFA (sterol-free fish oil) attenuate the decrease in hepatic AMPK activity observed 

with fat-free feeding (33).  Indicating a direct role PUFA plays in AMPK activity. 

G protein-coupled receptor 43  

G protein-coupled receptor 43 (GPR43) a receptor for short-chain fatty acids.  Shortchain 

fatty acids also know as volatile fatty acids (VFA) are produced by microbial fermentation in 

the gastrointestinal tract (34).  Acetic, propionic, and butyric acids constitute approximately 

95% of total VFA produced in the rumen by microbial fermentation (34).  VFA are the major 

source of energy and substrate for fatty acid synthesis in ruminants.  Approximately 60 to 

70% of the energy requirement of cattle and sheep is provided by rumen VFA (35).  GPR43 

is expressed in a number of tissues including adipocytes, and the activity of GPR43 can be 

enhanced in adipocytes during adipocyte differentiation and high fat feed in rats (36).  

Research has found (36) found GPR43 activity to be highly expressed in isolated adipocytes 

but minimally expressed in stromal vascular (SV) cells.  Once activated by compounds such 

as acetate, GPR43 stimulates adipogenesis and inhibits lipolysis (36,37).  Using adipocytes 

from GPR43 acetate and propionate are mediated through the activation of GPR43.  GPR43 

couples to the Gi pathway in adipocytes, and activation of GPR43 in adipocytes leads to 

inhibition of lipolysis and suppression of plasma FFA levels.  Reducing lipolysis in IM 

adipose tissue would likely increase marbling.  Therefore, activation of GPR43 is not only a  



                                                                                                                                                   8 

 

 

 

 

potential controlling point of marbling but also has the potential to change plasma lipid 

profiles, which could have positive effects on other lipogenic genes.  Increasing or 

decreasing activity of lipogenic genes will ultimately have an effect on lipid accumulation in 

tissues such as IM.  The complete role of GPR43 on lipid accumulation and disposal has not 

been fully elucidated. 

Peroxisome proliferator-activated receptor γ  

Activation of PPARγ results in increased whole body insulin sensitivity although the precise 

mechanisms involved are not completely understood (38).  PPARγ is expressed abundantly 

in bovine adipose tissue (39) and is required for proper adipose tissue development.  

Differentiation of preadipocytes is transcriptionally initiated by glucocorticoids (40) and a 

ligand-activated nuclear receptor PPARγ (39).  The primary purpose of glucocortoids in the 

differentiation of the preadipocytes is up-regulating or activating PPARγ (40).  Glucocortoids 

(such as dexamethasone) increase differentiation of bovine stromal-vascular (SV) cells 

(preadipocytes) (41), and increase arachidonic acid metabolism in preadipocytes (42).  

During adipocytes differentiation, which develops from PPARγ’s activation, expression of 

numerous genes specific for fatty acid metabolismis induced.  A good example of PPARγ 

relationship to adipogenesis comes from recent observations in PPARγ knock-out mice.  

PPARγ -/- mice are completely absent of adipose tissue and PPARγ +/- mice have decreased 

adipose tissue (43,44).  Accumulation of adipose tissue leads to obesity, whereas its absence 

is associated with lipodystrophic syndromes.  Increasing adipose tissue in humans is not  
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favored, however, in cattle adipogenesis is encouraged. 

       Fatty acids have been shown to activate PPARγ (45), including oleic acid and α-linolenic 

acid (46).  Research (47) has found a difference between the differentiation of preadipocytes 

from SC and omental fat when treated with a triacylglycerol mixture (intralipid).  This 

difference in adipocyte depot response to fatty acids demonstrates how distinctly different fat 

depots behave.  Once activated, PPARγ increases transcription of adipogenic genes (48).  In 

the case of a bound ligand, PPARγ dimerizes with a retinoid X receptor.  The PPARγ –

retinoid X receptor dimer stimulates differentiation of adipocytes by binding to the 

promoters of adipogenic genes (45).  PPARγ ligand-activated transcription factors are 

implicated in such diverse pathways as lipid and glucose homeostasis, control of cellular 

proliferation, and differentiation.  An example of one of these ligands that has a high affinity 

to PPARγ is troglitazone (a PPARγ agonist) (49).  Research Grant (41) has found inherent 

differences between the differentiation of preadipocytes from SC and IM adipocytes treated 

with dexamethosone and troglitazone.  Once bound to the PPARγ ligand, troglitazone was 

found to enhance differentiation of bovine SV cells (41).  PPARγ also has been shown to 

increase differentiation of IM SV cells from Japanese Black cattle (50).   

Stearoyl-CoA desaturase  

SCD plays a major role in adipocyte hypertrophy (51-53).  SCD is a delta-9 fatty acid 

desaturase that converts SFA into MUFA.  This oxidative reaction is catalyzed by the iron 

containing SCD and involves cytochrome b5, NADH (P)-cytochrome b5reductase, and  
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molecular oxygen.  The preferred substrates are palmitoyl-CoA and stearoyl-CoA, which are 

desaturated to palmitoleoyl-CoA and oleoyl-CoA, respectfully.   Palmitic and oleic acid are 

the most abundant fatty acids  in phospholipids, cholesterol esters, and wax esters (54).   

Steers fed identical high-roughage diets, Wagyu SC lipids had a greater MUFA:SFA 

ratio than Angus adipose tissue lipids (55).  Even with the increased MUFA:SFA ratio, SCD 

enzyme activity and gene expression were similar in the SC adipose tissues of the Wagyu 

and Angus steers (56).  Increased SCD activity and changes in the balance between SFA and 

MUFA have been implicated in various diseases including cancer, 

diabetes, atherosclerosis, and obesity (57).  Increases in cellular SCD activity have been 

found to influence fatty acid partitioning by promoting fatty acid synthesis while decreasing 

oxidation (58).  Research (58) has reported that the SCD gene is also highly expressed in 

skeletal muscle from extremely obese humans and from obese insulin- resistant Zucker 

diabetic fatty rats (59).  In the human study, (58) observed elevated SCD expression 

associated with decreased fatty acid oxidation, increased triacylglycerol synthesis and 

increased monounsaturation of muscle saturated fatty acids.  In fact, studies have shown that 

the reduced MUFA synthesis occurs in SCD -deficient mice and these mice attain protection 

from obesity, cellular lipid accumulation and insulin resistance (60).  SCD gene expression 

can be used as a marker for terminal differentiation (i.e., when preadipocytes leave the 

proliferative phase, express lipogenic enzymes, and begin lipid filling (61, 62).   

In bovine adipose tissue, lipogenic enzyme activities and lipogenesis from acetate are  
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almost undetectable at weaning, despite extensive lipid filling of adipocytes (11).  SCD 

levels are elevated by both dietary and hormonal factors, such as glucose, fructose, SFA and 

insulin, but repressed by PUFA (60).  Research (63) demonstrated that the MUFA:SFA ratio 

increased from approximately 0.9 to 1.3 in bovine SC adipose tissue during the first 8 mo 

post-weaning.  The increase in bovine SC adipose tissue suggests that desaturase enzyme 

activity increased with age during this period.  Research (64) found SC adipocytes 

experience hyperplasia between 4 and 7 mo of age and between 13 and 16 mo of age. Pasture 

versus corn diets both has yielded much different SCD gene expression (8).  For example, 

SCD activity was found to be strongly depressed in SC andIM of cattle finished on pasture 

diets.  Grain diets increased SCD expression and the increased expression of SCD gives the 

adipose a higher amount of MUFA (8).  Stearic acid is one of the main substrates for SCD 

activity.  The 18-carbon fatty acids (i.e. α-linolenic acid) present in pasture and the high-

concentrate cattle diets would have been hydrogenated largely to stearic acid in the rumen 

(65).  Research (51) has found elevated SCD mRNA in SC adipose tissue from post-weaning 

calves was caused by up-regulation of SCD gene expression in response to dietary 18-carbon 

fatty acids.  In preadipocytes, SCD mRNA is virtually undetectable during the proliferative 

phase; upon differentiation, SCD mRNA levels increase 30-fold as the result of increased 

SCD gene transcription (66, 67).  Inhibiting SCD gene activity in adipose tissue causes 

trans-11 vaccenic acid (TVA) to accumulate.  The accumulation of TVA may be the 

compound that inhibits adipocytes differentiation via interacting with PPARγ resulting in 

less marbling. 

 



12 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Hypothesis and objectives 

We hypothesized that fatty acids would differentially affect gene expression, cellularity and 

lipid metabolism in bovine IM and SC adipose tissues.  The exact mechanisms and genetic 

differences between IM adipose depot and SC adipose depots are unknown.  However, there 

is a significant amount of evidence that both depots respond differently to various treatments.  

Based upon our results we have observed different responses to treatments between IM and 

SC adipose tissues.  The main goal of this study was to gain a better understanding of how 

fatty acids can influence IM and SC adipose depots.  One of the greatest strengths of our 

research model system is that we can test the effects of individual fatty acids on tissues that 

contain a mixture of differentiated adipocytes.  Being able to look at individual fatty acids is 

a useful tool allowing us to see what effects individual can have on explants adipose tissue.  

From this knowledge, effective feed programs can be implemented that increase IM adipose 

depot for a high quality grade while decreasing the wasteful SC adipose depot.  For example, 

increasing SCD gene expression is consistent with the elevation in total MUFA and the SCD 

index observed in both IM and SC adipose tissue with age (4).  More MUFA means the 

product will be healthier for consumers and more marketable.  And increasing the IM 

adipose tissue in finished steers will cause the steers to grade higher, therefore, the producer 

will make more money per head of cattle.  In conclusion, increasing the amount of IM 

adipose adipose tissue in steers and reducing SC adipose tissue will ultimately help 

producers make a better product for consumers and earn higher profits.
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MATERIALS AND METHODS 
 
 
 
 
Animals and diets   

Procedures for this research were approved by the Texas A&M University Institutional 

Animal Care and Use Committee, Office of Research Compliance.  Experimental 

procedures were approved by the Texas A&M University Animal Care and Use Committee, 

Office of Research Compliance.  Twelve Angus steers were purchased as calves at weaning 

(approximately 8 mo of age; 210 kg) and then transported to Texas A&M University 

Research Center at McGregor.  Steers were fed a corn-based diet (Table 1) until the 

appropriate age was achieved (12, 14, and 16 mo of age).  Steers were harvested at Texas 

A&M University Rosenthal Meat Science and Technology Center. 

Sample collection  

At 12, 14, and 16 mo of age, IM and SC adipose tissues were collected the 8th to 11th rib 

section immediately after the hide was removed and placed in 37°C, oxygenated Kreb-

Henseleit buffer (KHB) containing 5 mM glucose and transported to the laboratory. 

Isolation and culturing of adipose tissues   

Intramuscular and SC adipose explants were isolated under sterile conditions and placed 

immediately into six 35-mm welled culture dishes pre-filled with 3 mL of 37°C 

differentiation medium (41).  The differentiation medium consisted of base medium [DMEM 

(Invitrogen 31600-034), antibiotic-antimycotic [100 units of penicillin, 0.1 mg streptomycin,  
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and 0.25 μg amphotericn B per mL, 50 μg/mL gentamicin sulfate, 33 μM biotin, 17 μM 

pantothenate, 100 μM ascorbate], and 1% bovine serum albumin (fatty acid free), 280 nM 

bovine insulin, 0.25 μM ciglitizone, 5 mM glucose.  Treatment medium was without 

(control) or with addition of fatty acids.  Stearic acid (18:0), oleic acid (18:1 n-9), α-linolenic 

acid (18:3 n-3), trans-11 vaccenic acid (18:1 trans-11), and 18:2 trans-10, cis-12 (CLA) 

were purchased from Matreya, Inc. (Pleasant Gap, PA).  Fatty acids were solubilized in 

100% ethanol and then dissolved in differentiation medium containing 5% fatty acid-free 

bovine serum albumin by stirring for at least 2 h.  Dissolved fatty acids were diluted to 40 

μM with differentiation medium.  Adipose tissues were incubated (NuAire Water-Jacketed 

Incubator, Model NU-4750) for 48 h at 39⁰C and 5% CO2.  The differentiation media was 

changed after the first 24 h to ensure the tissue had fresh reagents and fatty acids.  

Treatments were applied to IM and SC adipose tissue in each of six, 35-mm diameter wells. 

Effects of fatty acids on bovine adipose tissue lipid accumulation  

 At sample collection and after 48 h explants culture, 2 h in vitro incubations were 

conducted with SC and IM adipose tissue (~100 mg) as described previously (68).  Flasks 

contained 5 mM glucose, 5 mM acetate, 10 mM HEPES buffer and 1 μCi [U-14C]glucose or 

1 µCi [1-14C]sodium acetate (American Radiolabeled Chemicals, Inc) in KHB buffer.  Vials 

were gassed for 1 min with 95% O2:5% CO2 and incubated for 2 h in a shaking water bath at 

37°C.  At the end of the incubation period, reactions were terminated by addition of 1 M of  
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trichloroacetic acid.  Flasks were shaken for an additional 2 h.  Neutral lipids in tissues were 

extracted using the (69) procedure, evaporated to dryness, resuspended in 10 mL of 

scintillation cocktail, and radioactivity was counted with the scintillation counter (Beckman 

Instruments, Palo Alto, CA).   

Fatty acid composition 

Adipose tissue lipid was extracted by the modification of the Folch (69) method.  

Approximately 100 mg of tissue was homogenized with 5.0 mL of chloroform:methanol 

(2:1, v/v) in a homogenizer (Brinkmann Instruments, Westbury, NY) was stoppered with 5.0 

mL of chloroform:methanol.  Total volume of homogenate was adjusted to 15 mL by adding 

chloroform:methanol solution.  After sitting at room temperature for 30-60 min, the 

homogenate was vacuum-filtered through a sintered glass filter funnel fitted with a Whatman 

filter (Whatman Ltd., Maidstone, England) into a glass test tube containing 8 mL of 0.74% 

KCl (w/v).  The filtered sample was vortexed for 30 sec and then centrifuged at 2,000 x g 

for 15 min for separation.  After discarding upper aqueous phase, lower phase was 

evaporated at 60°C with a nitrogen flushing evaporator.  The total extracted lipid was used 

for analysis of fatty acid composition. 

      Fatty acids were methylated by the modification of (70) method.  Approximately 100 mg 

of total lipid extract was mixed with 1 mL of 0.5 N of KOH in MeOH and heated in water 

bath at 70°C for 10 min.  After cooling to room temperature, 1 mL of 14% BF3 in MeOH 

(w/v) was added to sample and then heated in water bath at 70°C for 30 min.   
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Samples were cooled to room temperature, and 2 mL of HPLC grade hexane and saturated 

NaCl solution were added and vortexed for 30 sec.  Samples were then centrifuged at 2,000 

× g for 10 min for separation, transferred to 15 mL glass tube containing anhydrous 

Na2SO4 to remove aqueous molecule.  Fatty acid methyl ester (FAME) analyzed by GC-

FID (model CP-3800 equipped with a CP-8200 auto-sampler, Varian Inc., Walnut Creek, 

CA).  Separation of FAME was accomplished on a fused silica capillary column CP-Sil88 

(100 m x 0.25 mm ID) (Chrompack Inc., Middleberg, The Netherlands) with helium as 

carrier gas (flow rate = 1.2 mL/min).  One microliter of sample was injected with the split 

ratio of 100:1 at 270°C.  Oven temperature was set at 165°C for 65 min and increased to 

235°C (2°C/min) and held for 15 min.  Flame ionization detector detected the signal at 

270°C.  Standard (GLC 68-D, Nu-chek Prep, MN) was used to identify each peak.  For 

calculation of the SCD ratio, trans-vaccenic acid was included in total SFA because it is a 

substrate for the Δ9 desaturase reaction.  Similary, 18:2 cis-9, trans-11 CLA was used to 

calculate MUFA because it is a product of Δ9 desaturase. 

Cellularity 

SC and IM adipose tissue were collected from the steers and frozen at 4⁰C for 

determination of cellularity by osmium fixation, counting, and sizing (71).  Tissue was 

sliced into sections 1 mm thick and placed in 20-mL scintillation vials.  Frozen samples 

were rinsed three times with 37°C 0.154 M NaCl at 1 h intervals to remove free lipid.  After 

the last rinse, 0.6 mL of 50 mM collidine-HCl buffer (pH 7.4) was added to each sample,  
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resuspended with 0.01% Triton in 0.154 M NaCl, were used for determination of cell size, 

volume, and cells/100mg tissue, using bright-field microscopy followed by 1.0 mL of 3% 

osmium tetroxide in collidine. After incubation for 96 h at 37°C, the osmium solution was 

removed and the tissue rinsed three times with 0.154 M NaCl until clear.  Samples were 

incubated in 10 mL of 8 M urea at 25°C for 96 h.  After degradation of connective tissue 

with urea, cells were rinsed three times with 0.154 M NaCl.  Cells were (Olympus Vanox 

ABHS3, Olympus, Tokyo, Japan), CCD Color Video Camera (DXC-960MD, Sony, Japan).   

RNA isolation 

Total RNA was isolated from tissue as described previously (72) using Tri-reagent (Sigma 

Chemical Co., St. Louis, MO). Approximate 200 mg of tissue was homogenized with 2 mL 

Tri-reagent.  After sitting at room temperature for 5 min, 200 µL chloroform was added and 

vortexed.  Samples were centrifuged (12,000 × g for 15 min).  The upper clear layer was 

transferred into new tube and inverted gently with 500 µL isopropanol.  After sitting at 4°C 

for 5 min, samples were centrifuged (12,000 × g for 10 min) and dried.  Samples were 

washed with 70% EtOH and dried.  The pellet was dissolved with 20 µL of nuclease-free 

H2O and stored at - 80°C until further analysis.  The concentrations and abundance of total 

RNA were measured with Nanodrop (NanoDrop Technologies Inc., Wilmington, DE) and 

the quality of total RNA was determined by 1% agarose gel electrophoresis.  One 

microgram of RNA was used for reverse transcription to produce the first-strand 

complementary DNA (cDNA) using TaqMan Transcription Reagent and MultiScribe  
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reverse transcription (Applied Biosystem, Foster City, CA) with the following temperature 

ramp: 25°C for 10 min, 37°C for 60 min, and 95.5°C for 5 min. 

Real-time PCR  

Real-time PCR on the cDNA produced from AMPK, C/EBPβ, PPAR, SCD, CPT1, and 

GPR43 was performed by collaboration at Texas Tech University with the GeneAmp 

7900H Sequence Detection System (Applied Biosystems).  The GeneAmp 7900H system 

used thermal cycling parameters recommended by the manufacture (40 cycles of 15 s at 95⁰C 

and 1 min at 60⁰C). 

Statistics 

Data will be analyzed using the Mixed Model procedure (PROC MIXED) of SAS (SAS 

Institute, Cary, NC) as appropriate for completely randomized designs.  Main effects were 

age and concentration of fatty acid, and the age x fatty acid interaction was tested.  Means 

were separated and statistically measured to see what interactions were P < 0.05.
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RESULTS 
 
 
 
 

 

Growth performance and carcass traits   

Quality grade increased from low Choice to medium Choice by 16 mo of age (Table 2).  SC 

fat thickness over the 12th thoracic rib increased between 12 and 16 mo of age.  Carcass 

weight increased with age of the steers, although ribeye area was unchanged.  USDA yield 

grade increased with animal age.   

Cellularity of IM and SC adipose tissue  

The 12 and 14 mo of age SC adipocyte volumes were increased by all media fatty acids 

(Table 3).  By 16 mo of age, SC adipocyte volume was decreased by all media fatty acids.  

SC control adipocyte volume more than doubled from 12 to 16 mo of age.  By 16 mo of age, 

media fatty acids decreased SC adipocytes volume.  IM adipocyte volume increased with age.  

Overall, fatty acids increased IM adipocyte volume.  The largest increase in IM adipocytes 

volume was seen in adipocytes incubated with ALA.  In the 12-mo-old steers control, IM 

adipocyte volume was much larger than the volume of the control SC adipocytes.  The 16 mo 

SC adipocyte volume for the control was three-fold larger than the volume of the IM 

adipocytes.   

Fatty acid composition  

Subcutaneous adipose SFA (14:0, 16:0, and 18:0) ranged from 41-44% from 12 mo of age to 

16 mo of age (Table 4).  The concentration of MUFA and individual fatty acids ranged from  

  



            20 

 
 
 
 
 
 

41-45%.  A greater amount of stearic acid was the primary reason for the 12 mo steers having 

a higher concentration of SFA than the older steers.  For IM and SC adipose depots, MUFA 

represented a higher percentage than any other fatty acid group.  The SCD index was not 

different between IM and SC and did not change with age.  In general, SFA decreased and 

MUFA increased in IM adipose tissue, but SFA and MUFA were unchanged in SC adipose 

tissue. 

Incorporation of glucose and acetate into lipids 

Rates of incorporation of glucose and acetate into lipids were higher in SC adipose tissue 

than in IM adipose tissue (Table 5).  The depot x age interaction was highly significant (P = 

0.005) for glucose incorporation indicating that the decline in incorporation over time was 

great in SC than IM adipose tissue. 

Fatty acids synthesis from acetate increased between 12 and 16 mo of age in IM adipose 

tissue (Table 5).  Conversely, fatty acid synthesis in control IM adipose tissue from glucose 

decreased from 12 to 16 mo of age.  Incorporation of glucose into IM lipids was stimulated by 

oleic acid in IM adipose tissue of 12 and 16 mo of age.  Stearic acid and ALA stimulated 

lipogenesis from acetate in IM adipose tissue at 14 mo of age in SC adipose tissue.  At 16 mo 

of age, both ALA and oleic acid stimulated lipid synthesis from acetate in IM adipose tissue. 

Lipogenesis from glucose decreased from 12 to 16 mo of age in control IM adipose 

tissue (Table 5).  Trans-11 vaccenic acid increased lipogenesis from glucose at 12 mo of age 

in SC adipose tissue.  Lipogenesis from acetate did not change with age.  There were no  
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significant effects (P > 0.28) of fatty acids on glucose or acetate incorporation into fatty acids. 

Expression of genes related to substrate oxidation and lipid synthesis  

IM adipose tissue expression of PPARγ did not change (Table 6).  ALA increased PPARγ 

gene expression in IM adipose tissue at 12 mo of age.  SC adipose tissue expression of 

PPARγ significantly decreased over time, and stearic acid increased PPARγ gene expression 

in SC adipose tissue at 12 mo of age.  SC adipose tissue had peak expression of AMPK and 

GPR43 at 14 mo of age, and stearic acid increased GPR43 and AMPK gene expression at 12 

mo of age.  In IM adipose tissue, ALA increased GPR43 gene expression at 12 of age.   

Oleic acid decreased C/EBP-β gene expression at 16 mo of age in IM adipose tissue.  

CPT1β gene expression did not change with age in either depot.   In the 12 mo steers, ALA 

doubled CPT1β gene expression in both IM and SC adipose tissues.  The highest expression 

of all genes tested was SCD at 16 mo of age in SC adipose tissues.  Overall, media fatty acids 

depressed SCD gene expression.  SCD gene expression was five-fold higher in IM adipose 

tissue than in SC adipose tissue at 12 and 14 mo of age, but SCD gene expression increased 

more rapidly over time in IM adipose tissue than in SC adipose tissue.  



       22 

   

DISCUSSION 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

An important goal of the beef industry is producing beef that is healthy for consumers, which 

will increase the reputation of beef products and provide opportunities for niche markets.  The 

current practice is to feed steers to get the highest marbling scores possible at reasonable yield 

grades.  Producers want to implement feed programs that would achieve better feed efficiency 

with cattle and still achieve high marbling scores.   

The goal of this research project was to utilize an adipose tissue explant culture system to 

investigate the effects of specific fatty acids on markers of adipose tissue differentiation.  One 

of the strengths of this experimental model system was the ability to test the effects of 

individual fatty acids on tissues that contained a mixture of differentiated adipocytes and SV 

cells.  Converting SV cells to adipocytes in IM adipose tissue would give growing steers more 

IM adipose tissue for lipid filling, hence, higher marbling scores at time of slaughter.   

The cattle used in this study demonstrated a doubling in the amount of SC adipose tissue over 

the longissimus muscle from age 12 mo to 16 mo, indicating active adipogenesis in SC 

adipose tissue.  We chose to measure AMPK, C/EBPβ, PPAR, SCD, CPT1, and GPR43, 

which represent lipogenic and lipolytic genes involved in adipose tissue metabolism.   PPARγ 

gene expression exhibited a large increase between 14 and 16 mo of age in control IM and SC 

adipose tissues, indicating that some portion of the SV cells were differentiating into 

adipocytes in both adipose tissue depots. 
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One gene crucial to the regulation of glucose metabolism in adipose cells is AMPK. In 

this study we observed a peak at 14 mo of age for AMPK gene expression; this would suggest 

elevated glucose metabolism at that age.  In both IM and SC adipose tissues, glucose 

utilization and lipogenesis were maximal at 14 mo of age.  Glucose is more important carbon 

source for lipogenesis in IM adipose tissue than in SC adipose tissue (12).   

C/EBP-ß and SCD are additional markers of differentiation that regulate fatty acid 

composition of adipose tissues (4).  The increase in SCD gene expression in IM is consistent 

with the elevation in total MUFA IM adipose tissues with age.  Ultimately, an increase in 

SCD activity in IM adipose tissue helps increase oleic acid in the final product. 

The most consistent effect of individual media fatty acids was to depress gene expression, 

although this varied with age of animal, basal level of expression, and specific fatty acid.  

There were a few observed instances of stimulation of gene expression by media fatty acids.  

In SC adipose tissue, stearic acid increased GPR43 and AMPK gene expression at 12 mo of 

age.  Our results are consistent with previous research that has also found at 12 mo of age, 

cattle absorb and deposit a great deal of stearic acid (8), and our data suggest that this could 

have profound effects on glucose metabolism.  The VFA produced in the rumen bind to the 

GPR receptors, hence, activating not only GPR43 but other genes involved in energy 

homeostasis.  GPR membrane receptors transmit extracellular signals across the plasma 

membrane, activating cellular responses through a variety of second messenger cascades such 

as AMPK.  AMPK activation enhances fatty acid beta oxidation for the main purpose of  
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providing ATP.   
 

One unexpected result was the increase in lipogenesis and lipid filling caused by ALA.  

ALA is enriched in beef from pasture-fed cattle.  The volume of the IM adipocytes treated 

with ALA was over two-fold larger than for the control adipocytes.  Trans-11 vaccenic acid, 

stearic acid, oleic acid, and trans-10, cis-12 (CLA) also increased adipoctye volume in IM 

adipose tissue.  IM adipose tissue treated with oleic acid increased in acetate and glucose 

incorporation into total lipids.  TVA, ALA, and trans-10, cis-12 CLA also stimulated 

lipogenesis from acetate.   

Cattle strictly on pasture feed are leaner indicating that pasture feeding depresses carcass 

adiposity, but ALA does not appear to be the reason for this suppression adiposity.  In SC 

adipose tissue, all five media fatty acids reduced adipocyte cell volume.  In cattle 14 mo of 

age, stearic acid, oleic acid, and trans-10, cis-12 CLA caused a profound increase in 

adipocyte cell volume.  The observation that CLA increased the size of adipocyte size 

contradicts the findings from (8) who demonstrated that trans-10, cis-12 CLA depressed 

differention of bovine preadipocytes. 

In our study, the size differences between IM and SC adipocyte volume were profound 

and both IM and SC tissues responded differently in lipid production, cell size, and gene 

activity.  The young steers lipid filled IM adipocytes months before they started filling SC 

adipocytes.  The difference between IM and SC adipose depot development could be because 

of an underlying genetic trigger that acts upon IM adipocytes before it acts on SC adipocytes.   
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An important finding of this research was the demonstration of tissue-specific effects of age 

and media fatty acids.  The differences may allow for differential regulation of the deposition 

of IM and SC adipose tissue at different stages of growth.  Our research indicated that the 

fatty acids derived from pasture forage or ruminal metabolism did not inhibit the 

differentiation of IM adipocytes.  In fact, these data indicate that fatty acids may have 

promoted an enrichment of the beef with CLA or n-3 fatty acids without specifically 

inhibiting the deposition of marbling 
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CONCLUSIONS 
 
 

 

 

 

Developing strategies to alter the deposition of fat in cattle is the ultimate goal of the beef 

cattle industry.  An estimated $1.3 billion is lost annually due to insufficient marbling scores.  

Any strategies to increase IM adipose tissue will help reduce this billion dollar loss to 

producers.  Increasing the amount of MUFA in the IM adipose tissue will help consumers 

consume a healthier product and increase the reputation of beef products.  To date, there is no 

published mechanistic information about the effects of specific fatty acids on the 

differentiation of IM and SC adipose tissue in cattle.  Therefore, the goal of animal science 

research is elucidating the mechanisms that regulate the deposition of fat in various 

anatomical locations.  In particular, the beef industry is mainly concerned with feeding 

programs that enhance the IM adipose tissue in steers that would increase the profitability of 

beef products.   

In our experiment, we investigated the effects specific fatty acids (stearic acid, oleic acid, 

α-linolenic acid, trans-11 vaccenic acid, and trans-10, cis-12 (CLA)) would have on 

cellularity, lipogenesis, and lipogenic and lipolytic gene (AMPK, C/EBPβ, PPAR, SCD, 

CPT1, and GPR43) expression.  We hypothesized that feeding cattle high-concentrate diets 

would stimulate marbling (increasing IM adipose tissue) via the effects of oleic acid.  The 

increased oleic acid will increase the healthfulness of the beef.  The increase in IM adipose 

tissue would increase the marbling score of the steer.  Both results would have a positive  
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 impact on the profit margin for producers and enhance the reputation of grain fed cattle.   

Diets containing PUFA (i.e., pasture diets) are hydrogenated to a number of CLA 

isomers and TVA.  A portion of the PUFA will bypass the rumen and are deposited directly  

to the IM and SC adipocytes.  The model we used for our experiment allowed us to test the 

effects of fatty acids on tissues that contain a mixture of differentiated and undifferentiated 

adipocytes.  We also investigate if SC adipose tissue was in fact less sensitive than IM 

adipose tissue to the inhibitory effects of specific fatty acids.   

The most consistent effect of the fatty acids used was to depress gene expression, 

although the expression varied with age, basal level of expression, and specific fatty acid.    

All fatty acids increased the adipocyte cell volume in both SC and IM depots as the age of the 

steers increased.  In both control IM and SC adipose tissues, maximum glucose utilization for 

metabolism, including lipid synthesis, was measured at 14 mo of age.  The largest increase in 

cell volume occurred in both IM and SC between 14 and 16 mo of age.  The largest increase 

in SC adipocyte volume by a single fatty acid was seen in the 14 mo samples treated with 

CLA.  This again contradicts previous research showing that CLA depresses differentiation.  

The largest increase in IM adipocytes volume by a single fatty acid was caused by ALA.  

There were few instances of stimulated gene expression from the media fatty acids.  SC 

adipose tissue responded to stearic acid by increased GPR43 and AMPK gene expression at 

12 mo of age.  Steers 12 mo of age absorb a large about of stearic acid (8) and based upon our 

findings we can conclude that the absorption of stearic acid could influence glucose  
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metabolism.  Increased AMPK activity would affect cellular energy homeostasis due to the 

important role AMPK plays in regulating glucose and lipid metabolism in adipose tissue.   

Pasture-fed cattle have lower levels of adiposity and the cause of the depressed 

lipogenesis is not due to the presence of ALA, based upon our research.  We demonstrated  

the tissue-specific effects of time and feed on media fatty acids.  The different effects allow 

for differential regulation of the production of IM and SC adipose tissue in growing steers.  

With further research, producers can implement feeding programs that promote differential 

regulation of the IM and SC adipose tissue in growing and finishing steers.  Feeding 

programs that promote an increase in IM adipose tissue will have a positive impact on 

profitability for the cattle producers.  
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                                                                   APPENDIX 
 
 
 

TABLE 1     Ingredients and chemical composition of the high-energy, corn-based diet 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a Trace mineralized salt: NaCl, 98%; Zn, 0.35%; Mn 0.28%; Fe, 0.175%; Cu, 0.035%; I, 
0.007%; Co, 0.0007%. 
b Vitamin Premix: vitamin A, 2,200,000 IU/kg; vitamin D, 1,100,000 IU/kg; vitamin E, 2, 200 
IU/kg. 
c R-1500: 1.65g monensin sodium (Rumensin) per kg. 
d Percentage of dry matter. Calculated values based on NRC (1996). 

 

           

Item g/100 g corn-based 
diet 

Ground sorghum 20.00 
Ground corn 48.05 
Cottonseed meal 6.00 
Cottonseed hulls 15.00 
Molasses 7.50 
Limestone 0.96 
Trace mineralized salta 0.56 
Dicalcium phosphate 0.23 
Potassium chloride 0.16 
Zinc oxide 0.01 
Ammonium sulfate 0.25 
Vitamin premixb 0.08 
R-1500c     1.20 

Total  100.0 
Nutrient compositiond  

Dry matter, % 89.13 
Crude Protein, % 11.16 
NEm (Mcal/kg) 1.81 
NEg (Mcal/kg) 1.19 
Acid detergent fiber, % 14.12 
Calcium, % 0.52 
Phosphorus, % 0.36 
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     TABLE 2     Carcass characteristics of Angus steers at different times on a high-energy,  
     corn-based diet 

 

 Item 
Age, mo  

SEM P-values 
12 14 16  

Marbling scores SM48 SM13 MT48  13.1 0.571 
Quality grade CH16 CH10 CH49  11.1 0.147 
Actual fat thickness, in 0.50b 0.91a 1.10a  0.10 0.006 
Adjusted fat thickness, in 0.56b 0.99a 1.13a  0.09 0.007 
Ribeye area, in2 11.2 11.1 11.5  0.62 0.846 
KPH, % 2.38 3.25 3.00  0.23 0.064 
Carcass weight, lb 571b 622b 718a  18.1 0.009 
Yield grade 2.96b 4.44a 4.94a  0.42 0.023 
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TABLE 3     Cellularity of intramuscular and subcutaneous depots                                                                                                                      

Tissues Age, mo Fatty acid Area Radius Diameter Volume Cell 
(x107) 

Intramuscular 
 adipose 

tissue 

12 

Control 10,474 57  115  6,455,881 173.20 
C18:0 8,708  52  105  4,971,140 193.13 
cis 9-C18:1 7,852  50  99  4,258,504 203.45 
trans 11-C18:1 9,363  54  108  5,638,512 188.56 
α-C18:3 9,708  55  111  5,851,559 183.34 
trans 10, cis 12 - CLA 9,015  53  107  5,175,875 187.52 

14 

Control 7,793  49  99  4,151,201 201.25 
C18:0 9,203  54  108  5,402,430 187.81 
cis 9-C18:1 10,997  59  118  7,071,498 171.80 
trans 11-C18:1 9,861  55  111  6,058,625 184.39 
α-C18:3 11,176  60  119  7,131,780 168.06 
trans 10, cis 12 - CLA 9,121  54  108  5,256,216 186.02 

16 

Control 7,177 47  95  3,675,351 209.98 
C18:0 12,060  62  124  8,009,489 162.12 
cis 9-C18:1 10,464  58  115  6,459,166 173.65 
trans 11-C18:1 12,877  64  128  8,807,030 156.36 
α-C18:3 13,500  65  130  9,638,197 155.68 
trans 10, cis 12 - CLA 11,605  61  121  7,557,940 165.24 

SEM 1,014 2.82 5.65 950,970 9.29 

Effects 
Age 0.027  0.003 0.003 0.026 0.007 
Fatty acid 0.057  0.046 0.046 0.039 0.075 
Age x Fatty acid 0.102  0.809 0.809 0.133 0.059 

Subcutaneous  
adipose 
tissue 

12 

Control 8,570 52  104  4,791,035 191.97 
C18:0 13,262  65  129  9,306,561 156.03 
cis 9-C18:1 12,936  64  128  8,976,063 158.01 
trans 11-C18:1 12,327  63  125  8,284,255 160.51 
α-C18:3 12,479  62  125  8,648,417 165.28 
trans 10, cis 12 - CLA 12,890  64  128  8,840,310 156.66 

14 

Control 10,350  57  114  6,339,354 174.20 
C18:0 16,395  72  144  12,676,936 138.84 
cis 9-C18:1 15,839  71  142  12,058,671 141.45 
trans 11-C18:1 14,378  68  135  10,424,058 148.40 
α-C18:3 13,763  66  132  9,728,699 151.18 
trans 10, cis 12 - CLA 16,680  73  146  12,977,701 137.31 

16 

Control 19,810 79  158  16,800,312 126.00 
C18:0 15,328  70  139  11,579,193 145.05 
cis 9-C18:1 15,147  69  138  11,425,568 146.91 
trans 11-C18:1 16,374  72  144  12,705,426 139.58 
α-C18:3 16,251  72  143  12,576,282 140.25 
trans 10, cis 12 - CLA 15,758  71  141  11,982,158 142.03 

SEM 1.182 2.82  5.73 1.267.323 7.63  

P-value Age < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 
Fatty acid 0.325 0.394 0.182 0.516 0.055 
Age x Fatty acid 0.003 0.004 0.004 0.002 0.011 

P-value 

Age  < 0.001  < 0.001  < 0.001  < 0.001 < 0.001 
Fatty acid 0.043 0.018 0.017 0.113 0.007 
Location  < 0.001  < 0.001  < 0.001  < 0.001 < 0.001 
Age x Fatty acid 0.261 0.417 0.417 0.148 0.640 
Age x Location 0.331 0.080 0.080 0.012 0.277 
Fatty acid x Location 0.346 0.349 0.349 0.358 0.399 
Age x Fatty acid x Location 0.001 0.001 0.001 0.001 0.002 



42 

Table 4     Fatty acid profiles of intramuscular and subcutaneous adipose tissues of Angus steers (g/100g) 
 

 
SCD index = 

Fatty acids Intramuscular adipose tissue (age, mo)  Subcutaneous adipose tissue (age, mo)  
P-values 

  
Tissue 

(T) 
Month 

(M) TxM     9     12     14     16 SEM P-value 
 

     9      12     14     16 SEM P-value 
 

C12:0 0.07  0.05  0.05  0.07  0.01  0.45 
 

0.07  0.07  0.07  0.08  0.01  0.76  
 

0.24  0.53  0.63  
C14:0 4.10  3.35  3.40  3.34  0.26  0.26  

 
2.97  4.06  3.41  3.59  0.29  0.07  

 
0.83  0.72  0.02  

C14:1 1.01  0.82  1.10  1.24  0.15  0.37  
 

0.57  1.15  0.90  0.66  0.17  0.06  
 

0.07  0.57  0.04  
C16:0 28.1  26.5  26.2  26.3  0.71  0.30  

 
25.7  27.0  26.5  27.0  0.77  0.59  

 
0.77  0.88  0.17  

C16:1 3.74  3.47  4.09  4.22  0.40  0.27  
 

3.08  3.80  4.05  3.02  0.44  0.50  
 

0.20  0.48  0.30  
C18:0 15.0  13.3  11.7  10.1  1.09  0.02  

 
14.0  12.6  13.0  14.7  1.18  0.65  

 
0.19  0.22 0.07  

cis-9 C18:1 34.8  37.3  39.2  41.6  1.40  0.04  
 

40.1  37.4  38.2 37.6  1.53  0.51  
 

0.91  0.38  0.03  
cis-11 C18:1 1.46  1.64  1.73  1.83  0.17 0.19  

 
1.60  1.52  1.85  1.42  0.18  0.63  

 
0.59  0.50  0.38  

trans-11 C18:1 3.29  5.44  3.51  3.11  0.57  0.10  
 

3.42  2.61  3.29  3.97  0.62  0.12 
 

0.23  0.67  0.02  
C18:2 1.73  1.89  1.90  1.67  0.14  0.58  

 
1.97  1.97  1.85  1.88  0.15 0.91  

 
0.25  0.77  0.74  

cis-9, trans-11 C18:2 0.47 0.34 0.41 0.31 0.04  0.20  
 

0.29 0.39 0.32 0.25 0.05  0.09  
 

0.04  0.17  0.14  
trans-10, cis-12 
C18:2 0.01  0.02  0.01  0.00  0.01  0.30  

 
0.03  0.02  0.03  0.02  0.01  0.77  

 
0.01  0.48  0.45  

C18:3 0.13  0.09  0.09  0.05  0.01  0.01  
 

0.07  0.10  0.08  0.07  0.01  0.26  
 

0.28  0.01  0.07  
C20:0 0.09  0.06  0.07  0.03  0.01  0.02  

 
0.09  0.08  0.08  0.09  0.01  0.71  

 
0.09  0.05  0.05  

C20:1 0.16  0.19  0.25  0.28  0.04  0.22  
 

0.20  0.23  0.25  0.18  0.04  0.53  
 

0.84  0.38  0.25  
C20:2 0.01  0.00  0.01  0.00  0.01  0.77 

 
0.00  0.02  0.02  0.01  0.01  0.13  

 
0.05  0.29  0.12  

C20:4 0.05  0.05  0.04  0.05  0.01  0.27  
 

0.07  0.05  0.05  0.06  0.01  0.15  
 

0.04  0.17  0.10  
C24:0 0.02  0.04  0.04  0.05  0.01  0.01  

 
0.06  0.03  0.05  0.05  0.01  0.02  

 
0.03  0.01  0.01  

SCD index1) 0.84  0.91  1.04  1.16  0.09  0.03  
 

1.00  0.97  1.03  0.88  0.09  0.79  
 

0.73  0.49  0.11  
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                                                                                                                                                                                                                                                                              TABLE 5     Effects of age and media fatty acids on acetate or glucose conversion to total 

lipid of adipose tissues of Angus steers 
Tissue Age, mo Fatty acids Glucose 

 Acetate 

Intramuscular 
adipose tissue 

12 

Control 3.44  ± 0.89   10.65  ± 4.41  
C18:0 5.42  ± 0.63  

 5.16  ± 2.43  
cis-9 C18:1 4.89  ± 2.81  

 14.01  ± 10.47  
trans-11, C18:1 4.06  ± 0.98  

 19.56  ± 5.28  
C18:3 3.76  ± 1.07  

 8.19  ± 2.33  
Conjugated linoleic acid 3.32  ± 0.69  

 8.53  ± 6.18  

14 

Control 2.20  ± 0.43  
 8.65  ± 2.05  

C18:0 2.94  ± 0.26   28.64  ± 10.10  
cis-9 C18:1 3.34  ± 0.69  

 7.10  ± 0.80  
trans-11, C18:1 1.95  ± 0.03  

 8.73  ± 7.33  
C18:3 2.77  ± 0.65  

 13.70  ± 10.46  
Conjugated linoleic acid 1.71  ± 0.52   8.81  ± 6.55  

16 

Control 2.38  ± 0.22  
 16.96  ± 1.76  

C18:0 1.95  ± 0.48  
 13.15  ± 1.60  

cis-9 C18:1 1.59  ± 0.16  
 26.58  ± 13.06  

trans-11, C18:1 1.95  ± 0.48  
 18.75  ± 1.06  

C18:3 3.03  ± 1.21  
 31.40  ± 14.76  

Conjugated linoleic acid 1.38  ± 0.33  
 19.66  ± 1.80  

Effects 

Age 0.071 
 

< 0.0001 
Fatty acid 0.037    0.107 

Age x Fatty acid 0.059  
 

 0.002  

Subcutaneous 
adipose tissue 

12 

Control 7.77  ± 2.44  
 52.69  ± 26.01  

C18:0 7.55  ± 1.12  
 50.44  ± 63.89  

cis-9 C18:1 7.79  ± 2.00   70.86  ± 10.90  
trans-11, C18:1 14.05  ± 0.62  

 51.49  ± 32.56  
C18:3 13.61  ± 2.87  

 47.68  ± 31.50  
Conjugated linoleic acid 5.71  ± 0.97  

 18.29  ± 20.71  

14 

Control 6.97  ± 0.57  
 60.09  ± 15.22  

C18:0 7.53  ± 1.80  
 61.86  ± 4.35  

cis-9 C18:1 6.15  ± 0.13  
 57.16  ± 3.42  

trans-11, C18:1 5.90  ± 0.05   50.51  ± 10.15  
C18:3 7.41  ± 0.32  

 55.33  ± 0.57  
Conjugated linoleic acid 7.13  ± 0.26  

 59.03  ± 12.64  

16 

Control 3.17  ± 0.53  
 47.46  ± 3.75  

C18:0 3.63  ± 0.47   48.42  ± 0.44  
cis-9 C18:1 3.35  ± 0.37  

 44.30  ± 2.45  
trans-11, C18:1 3.04  ± 0.40  

 42.18  ± 10.90  
C18:3 1.65  ± 0.11  

 51.82  ± 5.98  
Conjugated linoleic acid 2.99  ± 0.00  

 42.85  ± 3.76  

Effects 

Age 0.003 
 0.662  

Fatty acid 0.898  
 0.284  

Age x Fatty acid 0.917  
 0.825  

Effects 
(P-values) 

Fatty acid    0.100     0.549  
Tissues <0.001  <0.001 
Age   0.004     0.368  
Fatty acid x tissue   0.977     0.643  

Fatty acid x age   0.953     0.401  

Location x age   0.005  
 

  0.036  

Fatty acid x location x age   0.604  
 

  0.764  
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TABLE 6     Effects of fatty acids and age on adipogenic gene expression in intramuscular 
or subcutaneous adipose tissue of Angus steers  

 

Tissues Age, mo Fatty acid AMPKα 
Mean  SE 

C/EBPβ 
Mean  SE 

CPT1β 
Mean  SE 

GPR43 
Mean  SE 

PPARγ 
Mean  SE 

SCD 
Mean  SE 

Intramuscular 
adipose 
tissue 

12 

Control 0.65  0.50  1.41  0.70  2.39  0.70  0.45  0.47  0.87  0.53  0.68  0.74  

C18:0 0.79  0.82  0.76  1.17  1.98  1.16  0.65  0.78  1.05  0.89  0.63  1.22  
cis 9-C18:1 0.53  0.82  0.98  1.17  1.28  1.16  0.35  0.78  0.84  0.89  0.91  1.22  
trans 11-C18:1 0.47  0.82  1.33  1.17  2.82  1.16  0.39  0.78  0.70  0.89  0.65  1.22  
α-C18:3 2.20  0.82  1.69  1.17  5.24  1.16  3.04  0.78  3.07  0.89  0.46  1.22  

trans 10, cis 12 - CLA 0.23  1.16  0.48  1.65  4.41  1.64  0.10  1.10  0.26  1.25  0.38  1.73  

14 

Control 5.45  0.82  0.73  1.17  2.23  1.16  3.82  0.78  3.61  0.89  0.91  1.22  
C18:0 0.57  0.82  0.50  1.17  2.18  1.16  0.22  0.78  0.59  0.89  1.64  1.22  
cis 9-C18:1 0.62  0.82  0.51  1.17  0.63  1.16  0.34  0.78  0.76  0.89  1.90  1.22  
trans 11-C18:1 0.31  0.82  1.32  1.17  1.40  1.16  0.05  0.78  0.51  0.89  1.21  1.22  
α-C18:3 0.23  0.95  0.53  1.35  0.34  1.34  0.04  0.90  0.33  1.02  1.29  1.41  
trans 10, cis 12 - CLA 1.55  0.82  0.99  1.17  2.47  1.16  0.36  0.78  0.47  0.89  1.29  1.22  

16 

Control 0.36  1.16  4.79  1.65  6.17  1.64  0.10  1.10  2.24  1.25  7.70  1.73  
C18:0 0.33  0.95  4.45  1.35  4.42  1.34  0.10  0.90  1.41  1.02  3.62  1.41  
cis 9-C18:1 0.37  0.95  2.08  1.35  2.16  1.34  0.19  0.90  1.03  1.02  2.51  1.41  
trans 11-C18:1 0.92  0.95  3.49  1.35  2.99  1.34  0.40  0.90  1.54  1.02  2.24  1.41  
α-C18:3 0.28  1.16  7.24  1.65  5.19  1.64  0.05  1.10  1.90  1.25  3.81  1.73  

trans 10, cis 12 - CLA 0.69  0.95  2.17  1.35  2.51  1.34  0.47  0.90  1.85  1.02  2.33  1.41  

Effects 
Age 0.359      0.080  0.338  0.282  0.131     0.011  
Fatty acid 0.291   < 0.001 0.018  0.367  0.374  < 0.001 
Age x Fatty acid 0.065      0.201  0.531  0.011  0.058     0.002  

Subcutaneous 
adipose 
tissue 

12 

Control 0.71  0.48  3.19  0.67  1.87  0.67  0.65  0.45  1.94  0.51  4.15  0.71  

C18:0 5.70  1.16  6.80  1.65  0.65  1.64  7.78  1.10  13.07  1.25  2.15  1.73  
cis 9-C18:1 2.49  0.95  2.71  1.35  3.17  1.34  2.79  0.90  3.97  1.02  2.99  1.41  
trans 11-C18:1 0.84  0.82  2.27  1.17  2.71  1.16  0.53  0.78  2.17  0.89  3.90  1.22  

α-C18:3 0.41  0.95  4.04  1.35  4.94  1.34  0.70  0.90  2.43  1.02  3.05  1.41  

trans 10, cis 12 - CLA 1.07  0.95  4.37  1.35  2.38  1.34  0.98  0.90  3.07  1.02  4.40  1.41  

14 

Control 6.45  1.16  0.64  1.65  3.21  1.64  8.21  1.10  7.50  1.25  4.00  1.73  
C18:0 0.65  0.82  1.48  1.17  1.73  1.16  0.30  0.78  1.70  0.89  7.61  1.22  
cis 9-C18:1 0.34  0.82  1.91  1.17  2.10  1.16  0.06  0.78  1.61  0.89  7.29  1.22  

trans 11-C18:1 0.35  0.82  2.75  1.17  1.95  1.16  0.07  0.78  1.80  0.89  5.97  1.22  
α-C18:3 0.63  0.82  2.47  1.17  1.81  1.16  0.24  0.78  1.63  0.89  6.85  1.22  
trans 10, cis 12 - CLA 0.39  0.82  2.50  1.17  1.56  1.16  0.11  0.78  1.81  0.89  5.15  1.22  

16 

Control 0.33  0.95  6.14  1.35  7.76  1.34  0.03  0.90  2.12  1.02  6.44  1.41  
C18:0 0.18  0.95  9.96  1.35  5.72  1.34  0.02  0.90  1.92  1.02  3.73  1.41  
cis 9-C18:1 0.31  0.82  3.85  1.17  4.72  1.16  0.23  0.78  1.94  0.89  6.57  1.22  
trans 11-C18:1 0.59  0.95  1.38  1.35  2.39  1.34  0.28  0.90  0.76  1.02  1.38  1.41  
α-C18:3 0.41  0.95  6.91  1.35  4.09  1.34  0.47  0.90  2.91  1.02  7.71  1.41  
trans 10, cis 12 - CLA 0.44  0.82  5.58  1.17  4.85  1.16  0.59  0.78  2.40  0.89  6.12  1.22  

Effects 
Age    0.002     0.076    0.375      0.001     0.002     0.007  
Fatty acid    0.002     0.001  < 0.0001      0.002     0.002     0.034  
Age x Fatty acid < 0.001    0.337    0.108   <0.001  <0.001    0.515  

Effects 

Location    0.297   < 0.001     0.378      0.014   < 0.001 < 0.001 

Fatty acid    0.007      0.033      0.163      0.001      0.001     0.446  

Age    0.016   < 0.001  < 0.001     0.002      0.025  < 0.001 

Location x Fatty acid    0.481      0.095      0.628      0.055      0.011     0.573  
Location x Age    0.216      0.272      0.396      0.170      0.002     0.019  
Fatty acid x Age < 0.001     0.081      0.035   < 0.001  < 0.001    0.118  
Location x Fatty acid  x Age    0.301      0.684      0.927      0.001      0.001     0.540  
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