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ABSTRACT 

 

Structural Analysis of Human and Bovine Bone for Development of Synthetic Materials. 

(August 2011) 

Eunhwa Jang, B.E., Korea Military Academy 

Chair of Advisory Committee: Dr. Hong Liang 

 

With increasing demands in bone repair and replacement, this research investigates 

the microstructure, properties and performance of bovine bone, human bone, and synthetic 

materials. Doing so, experimental approaches were used to examine and compare bones, as 

well as mimicking nature by developing a synthetic material to repair bones. Experimentally, 

bovine bone, tumor-free human bone, and cancerous human bone were studied via the small 

scale mechanical loading test. Failure analysis was conducted via optical and electronic 

microscopic techniques. Characterization results were used to develop a synthetic material 

that possesses strength and strain needed as a bone material. Characterizing techniques 

include a small punch test, scanning electron microscope (SEM), optical microscope and x-

ray diffraction (XRD) were used for experimental approach.  

The results showed that small punch tests in longitudinal and tangential directions 

showed different mechanical properties and failure mechanisms. Cancer cells in human bone 

caused the bone softening and lowered the density. Synthesized epoxy-silicone-geopolymer 

material had higher deformability than bone. Understanding obtained in this research helps 

us to develop better synthetic bone materials in future. 
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This thesis is composed of six chapters. The first chapter covers as an introduction to 

understand the purpose and motivation of present studies, and this section followed by the 

details of the motivation and objectives of this research. The third chapter explains 

experimental approaches that were conducted to meet the objectives. The fourth chapter 

describes the results and the major discovery of the experiments, and the results will be 

discussed in the Chapter IV. Finally, the last chapter provides the conclusions and 

recommendations for future work.  
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CHAPTER I 

INTRODUCTION 

This chapter serves as an introduction to the basics behind the thesis research. It 

presents bone damages caused by disease and accident and mechanical evaluations of bone. 

Methods include tested via mechanical testing and ultrasound. Finally, this chapter discusses 

biomaterials for bone replacement, which includes an introduction to biomaterials, their 

classifications and importance. 

 

1.1.  Bone damage 

For several decades, the use of automatized machines, vehicles and people who enjoy 

sports are increasing due to increasing population and change in life styles. In addition, a 

number of people doing military activities is increasing [1]. Several reasons for bone damage 

exist, including age, repetitive wear, accidents, excessive exercise and diseases. Some bone 

damage heals, but some damage is too severe to heal without bone fixation or replacement. 

Severely damaged bone needs external cures such as bone graft, bone cement and joints 

replacement. This section will discuss reasons for unrecoverable bone damage. 

 

1.1.1. Accidents 

Human bone is commonly damaged by car accidents, athletic accidents and activities 

in the military field. As economy, industry and culture develop, more people are able to 

enjoy free time. Thus, the number of people who enjoy dangerous hobbies such as extreme 

sports, car racing and hunting is increasing. These dangerous hobbies have a high probability 
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of bone fracture accidents. Moreover, in childhood young people can succumb to more bone 

fracture accidents than adults because of immaturity or curiosity. When falling from a high 

place to the ground, bones hitting the ground absorb shock, force and impact. Often, the 

bones deform when they absorb the forces and, when the application of the force is complete, 

the bones return to the original shape. However, when the forces are greater than the bones’ 

capacity to absorb, the bones fracture [2]. In addition, 33% of people who are older than 65 

years fall yearly, and around 10~15% of people who fall suffer a bone fractures [3]. In the 

military field, soldiers obtain various training, such as parachuting training, marksmanship 

training, throwing grenades, river-crossing, planting a mine and so forth; thus they have 

higher probabilities of facing danger. Also, local wars and civil wars exist in the world. 

These wars cause accidents in which civilians strike mines or are shot. 

 

1.1.2. Impact of metastatic cancer and metabolic bone disease 

Human bone can be affected by cancer, osteoporosis, osteopetrosis, osteomalacia and 

so forth [4]. These diseases cause bone loss and/or loss of the mechanical properties of the 

bone. Osteoporosis is the most common bone disease, and it offers results in hip and spine 

fractures. Hip fracture from osteoporosis causes people to require pin or plate fixation on 

their bones [5]. It was considered a disease by aging, but nowadays, the osteoporosis can be 

rarely observed in young adults and children because of immoderate losing weight [6]. Bone 

cancer also lowers the bone density because it grows abnormally. A bone tumor that is 

malignant is classified as bone cancer. Moreover, bone cancers are classified as osteosarcoma, 

Ewing’s sarcoma and chondrosarcoma. The osteosarcoma forms on the osteons, and 

chondrosarcoma forms on the cartilage or surface of the bone. In addition, the Ewing’s 
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sarcoma forms in the long bones, and this occurs during childhood and adolescence when the 

bone grows rapidly [7, 8]. Osteopetrosis is a rare disease characterized by bones that harden 

and become more brittle. This disease causes extremely high risk of bone fracture [9]. 

Osteomalacia is a bone softening disease characterized by a lack of bone mineral. This 

disease also induces the risk of bone fracture [10]. 

 

1.1.3. Other damages to bones 

Immoderate activities, drugs, aging, and insufficient nutrients can contribute to bone 

fracture. Excessive loading on bone such as too much jumping and/or running can cause 

stress-induced fracture. The stress fracture starts on a micro-scale, but if bone undergoes use 

continuously or carries excessive loads or faces an impact, the bone will be fractured. 

Approximately half a million long distance runners, considerable numbers of military 

recruits, dancers have stress fractured bones [11, 12]. Aging causes lower bone density and 

tissue quality [12]. Smoking, consuming large quantities of alcohol for a long time and 

frequent corticosteroid use can increase risk of bone fracture [13-15]. Smoking lowers the 

bone density and raises the probability of fracture [13]. When corticosteroids are used for a 

long time, osteoporosis and bone fracture are much more likely [15]. Furthermore, the 

corticosteroid causes necrosis of the bone because blood flow to the bone is compromised 

[16]. 

 

1.2.  Mechanical evaluations of bone 

Studies of the mechanical properties of bones have been done for more than 180 

years. In the middle and late 1900s, a number of papers about the mechanical properties of 
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bone were published [17]. To evaluate elastic modulus, the two major methods used are the 

direct mechanical loading tests and the acoustic methods [18]. Details of the mechanical 

loading tests are described in the subsection (See 1.2.1). According to the scale of samples, 

mechanical tests on bone tissues and whole bone were performed [18]. Acoustic methods 

have several advantages, which are non-destructive process, versatility, small specimen size 

and repeatability of the measurements. The three primary methods are ultrasonic velocity 

measurement, acoustic microscopy and critical angle analysis [19]. For the ultrasonic 

velocity measurement, the velocity of sound can be calculated by measuring the conveyed 

wave. The ultrasonic velocity measurement is a feasible method to study the mechanical 

properties of trabecular bone [20]. Acoustic microscopy measures the time retardation of 

reflected wave by the top and bottom surface of the bone by using a focused beam of 

acoustic energy [19]. Figure 1 shows the acoustic microscopy. For critical angle analysis, the 

specific angle at which all transmitted energy was reflected and no energy refracted, 

determines the acoustic velocity [21]. 
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Figure 1. The acoustic microscopy 

 

 

1.2.1. Mechanical loading tests 

Mechanical tests for include tension, compression, bending, torsion, indentation, 

shear and fatigue tests [19]. The direct mechanical loading tests are appropriate to apply 

cortical bone and cancellous bone. The tensile test is the most precise mechanical test 

because it does not involve bending moments [19]. The compression test requires smaller 

samples. For example, the tensile test uses 15~40mm long [22] and 2~6mm diameter [23] 

samples, but the compression test uses 7~10mm cubes. However, because of its end effect 

and possibility of buckling, this test is less precise than the tensile test [19]. Misaligned 

specimens to the loading plate can undergo stress concentration, and buckled one can face 

bending moment. This two unexpected phenomena cause underestimated Elastic modulus 

and strength [19]. Figure 2 shows (a) the end effect of misaligned specimen and (b) the 

buckled specimen (b) during compression test. The bending test is a feasible method to 



6 

 

measure the mechanical properties of long bones, especially of small animals[19]. This 

experimental method is suitable to observe fractures induced by bending motions. 

Indentation tests are appropriate to measure the mechanical properties of cartilage and 

trabecular bone. These tests are conducted with a 2.5~6mm diameter rounded indenter and 

0.2~0.5mm depth into the samples [19]. 

 

 

 

(a)                                    (b) 

Figure 2.  (a) The end effect of specimen  (b) the buckled specimen during compression test 

 

 

1.2.2. Small scale test 

The number of micro-scale and the nano-scale mechanical tests is growing. Generally 

used materials are individual trabeculae, single osteons and individual lamellae. Many 
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mechanical loading tests mentioned in the previous section were conducted on this small 

scale [19]. Ascenzi and his co-researchers used single osteons for the mechanical tests. The 

sample size was 180~300 μm wide [24, 25] and  300~500 μm long [26, 27]. Effort and care 

are required to prepare these micro-size samples. Moreover, the Young’s moduli of cortical 

human bone measured via bending test depended on the sample size, because smaller 

samples have more stress concentration factors [28]. Micro- and nano-hardness tests were 

conducted to measure micron or sub-micron size of the mechanical properties of bone and 

the quantity and quality of mineralization of the bone were reflected in the hardness tests [19]. 

The nano-indentation method has been considered as feasible method to measure the 

mechanical properties of single lamellae, and this demonstrates that the stiffness of the single 

lamellae depended on the direction of the fibers [29]. Well-polished surfaces of samples were 

required to conduct these micro and nano scale hardness tests [30, 31]. 

 

1.3.  Orthopedic biomaterials 

1.3.1. Introduction to biomaterials 

Biomaterials are synthetic materials used to make implants in order to replace and 

repair the function of damaged or diseased tissues or organs, to aid healing, to improve or 

augment organ operation, and to correct unnatural functions or deformities in contact with 

living tissues [1, 32, 33]. Since the 1860s, when Lister developed the complete antiseptic 

surgery technique, the use of synthetic biomaterials has increased immensely [34, 35]. In the 

1890s, the first implant, a bone plate made of vanadium steel, was introduced. However, it 

was unsuccessful because the vanadium steel corroded swiftly in the body. The next 

biomaterial used was stainless steel and cobalt chromium alloys in the 1930s. After World 
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War Ⅱ, PMMA was added to the biomaterials [33]. Approximately four to five million 

implants are used each year [34], and approximately one million bone grafting surgeries are 

performed each year in the world [36]. Global market for orthopedic technology and products 

will reach roughly $32.4 billion by 2015 and is expected to grow with an annual average rate 

of 2.7% from 2009 [37].  

 

1.3.2. Classification of biomaterials 

Biomaterials are classified as materials or tissue reactions. Materials include metallics, 

ceramics, polymerics, and composites [1, 32, 33]. Tissue reactions include bioinerts (Metals, 

Alumina, Zirconia, PMMA), bioactives (bioactive glass, Hydroxyapatite) and biodegradables 

(Tricalcium phosphate, Hydroxyapatite, PLA, PGA) [32, 38, 39].  

Metallic biomaterials are widely used and have played an important part in replacing 

or repairing damaged bone [1, 40]. Stainless steel, Titanium and Ti alloys, cobalt chromium 

alloys and magnesium alloys are used as metallic biomaterials [40, 41]. Metal has high 

strength, high toughness, high ductility, and resistance to wear [1, 32]. However, the metallic 

biomaterials have limitations which are high density, mismatch of elastic modulus with bone 

and liberation of the ions and/or particles in the body [1, 32, 40]. High density metallic 

biomaterials can cause heavy implants, and this would likely lead to an unbalance between 

the right and left sides of the body. The metallic biomaterials have 10~20 times higher elastic 

modulus than bone, and this can cause stress shielding. Stress shielding can cause bone 

weakening and loosening of implants by reducing stimulation of bone growth because bone 

carries less load than the implants [32, 40]. Since metals can liberate the ions and/or particles, 

allergic reaction and loss of tissues may result [32, 40]. The usual uses of metallic 
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biomaterials are for stems of artificial joints, heads of artificial joints, and fracture fixations 

(pin, screw, plate) [1, 40, 41]. 

The most commonly used ceramic biomaterials are alumina, zirconia, hydroxyapatite, 

calcium phosphate and bioactive glass. These ceramic materials are well-known for their 

corrosion resistance, wear resistance, biocompatibility, high compressive strength and creep 

resistance [32, 33, 39]. Moreover, bioactive ceramic materials chemically bond with bone 

tissues, and biodegradable ceramic materials were resorbed and cause the surrounding tissues 

to replace them [42]. However, ceramic materials are brittle and have low tensile strength, 

low impact strength, and low fracture toughness. In addition they are difficult to manufacture 

[1, 43]. Their uses are for bone fracture fixations (plates and screws), heads of artificial joints, 

coatings on the metallic stem of artificial joints, bone replacement and bone cement [43]. 

As polymeric biomaterials, polyethylene (PE), polypropylene (PP), polymethyl 

methacrylate (PMMA) and polylactide (PLA) are used for bone replacement and artificial 

joints [43]. The polymeric biomaterials are flexible, easy to fabricate, cheap and have low 

density when compared to metallic and ceramic biomaterials [39, 43]. However, they have 

low strength, low fracture toughness, more rapid degradation in human body, low thermal 

resistance and susceptibility to UV [43-45]. Released particles, monomers and oxygen from 

cross-linking polymers can cause irritating tissue and decreasing strength [1, 32]. The uses 

are for cups of artificial joints, bone fracture fixation and bone cement [33, 43]. In particular, 

polypropylene is used for finger joint implants because of its remarkable flexibility [34, 43]. 

Table 1 shows the applications of each classification of biomaterials and their references. 
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Table 1. The applications of biomaterials 

Classification Materials Applications References 

Metal 

316L Stainless steel Bone fracture fixation 
Artificial joints [1, 32, 41, 46] 

Titanium and Ti alloys Bone fracture fixation 
Artificial joints [1, 32, 41, 46] 

Cobalt chromium alloys Bone fracture fixation 
Artificial joints [1, 32, 46, 47] 

Magnesium alloys Bone fracture fixation [40] 

Nickel titanium 
(shape memory alloy) 

Bone fracture fixation 
Spinal implant [46] 

Ceramic 

Alumina Artificial joints [1, 43] 

Zirconia Artificial joints [1, 43] 

Hydroxyl apatite 
Bone defect repair 

Implant coating 
Artificial bone graft 

[1, 48, 49] 

Calcium phosphate 
Bone defect repair 

Implant coating 
Bone filler 

[1, 38, 48] 

Bioactive glass Implant coating 
Bone filler [1, 5] 

Polymer 

Polyethylene Cups of artificial joints [32, 33] 

Polypropylene, PET Finger joints implant [32, 34, 43] 

PMMA Bone cement 
Bone filler [33, 43, 50] 

PLA, PGA Bone deficiency repair 
Bone fracture fixation [38, 51] 
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1.3.2.1. Composite biomaterials 

Composite materials are created by combining two or more different materials to 

improve mechanical properties of the materials [34]. The most commonly used composite 

biomaterials include polyethylene/hydroxyl apatite, silicone/silica, epoxy/carbon fiber, 

alumina/hydroxyl apatite and PEEK/carbon fiber [5, 32]. The composite materials have high 

strength, proper elastic modulus, and some have bioactive and biodegradable properties [32, 

34]. Moreover, desirable properties can be achieved by changing the volume fractions of 

reinforcement and the structure [32, 43]. However, composite materials are difficult to mold. 

In addition, the polymeric matrix of composite materials releases debris and absorbs water [1, 

43]. When the polymer matrix absorbs water within the body, the strength and stiffness of 

composites decreases [43]. The uses of bio-composites are bone fracture fixation, artificial 

joints and bone cement [1, 34, 43]. Although composite materials have a smaller elastic 

modulus than metals and ceramics, the value is still higher than bone. Also, the loss modulus 

of composite materials is much lower than bone [52, 53]. Recently, degradable glass fiber 

reinforced polymer composite materials have been considered for biological applications 

because the materials degrade in the human body; however, the fibers and matrix of the 

degradable composite material separate in vivo. Therefore, the material’s mechanical 

properties suffer as a result. [54]. The composite material’s elastic modulus must either be 

equal to or slightly less than bone. The reinforcement and the matrix must not separate in 

vivo in order to function properly. 
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CHAPTER II 

MOTIVATION AND OBJECTIVES 

 

As discussed in the first chapter, the need for replacement bone and/or bone fracture 

devices has been increasing because the numbers of people, who enjoy extreme sports, 

participate in military activities and use automatically operated machines and vehicles are 

increasing. Also, bone has unique properties so that it is not easy to develop perfectly 

replaceable material. Thus, a large quantity of effort has been dedicated to this area. 

The aims of this research are understanding failure mechanisms of bones and 

development the new synthetic material. To develop proper synthetic materials, investigation 

of the physical, mechanical properties of the origin material must precede. The mechanical 

properties of the biological material can be determined by the small punch test, and the 

mechanically and structurally mimicked materials can be formed. 

This research was conducted to get two objectives: 

1. Acquire understanding of the material behavior of the different directional bovine 

bones and tumor-free and cancerous human bones by the small punch test and 

microscopic images. 

2. Synthesize new material for artificial bone and bone fracture devices motivated 

by the bone structure. 

These objectives are important to understand the fracturing behavior of the structure 

of the bone and the application of new materials for bone replacing and cure. From the 

achievement of this research, the structure of biomaterials for artificial bone can be improved. 
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The following chapters contain experimental methods and analysis. First, 

decontamination process will precede bone sampling. To evaluate the mechanical properties 

and to obtain failure of the bone samples, small punch test will conduct. Via optical 

microscope and scanning electron microscope, failure mechanism will analyze by observing 

the fractured surfaces. Based on this structure analysis, the synthetic material will be formed. 
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CHAPTER III 

EXPERIMENTAL PROCEDURE 

This chapter describes materials to be studied, the preparation procedure, and 

characterization methods. Human bone samples obtained from collaborators were used for 

this study. Techniques used to prepare them for small punch tests are discussed in this 

chapter. Various characterization techniques used to study properties of bone samples are 

introduced. This chapter contains three sections, materials, sample preparation, and their 

properties along with methods to obtain them. Finally, materials mimicking human bones 

were developed. Synthesis procedures are discussed here. 

 

3.1.  Materials 

3.1.1. Bovine bone samples 

The cow shank pack was purchased from a local commercial supplier. Typically, 30 

month-old steers and heifers were used for daily consumption [55]. The shank part was 

femur of bovine and compact bone part of femur was used for the test. Figure 3 shows the 

locations of bovine femur and humerus. 
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Figure 3. The location of bovine humerus and femur 

 

 

3.1.2. Human bone samples 

Two kinds of human bones were used for this study. One was a tumor-free human 

bone, and the other was a cancerous bone. The tumor-free human bone was from a patient 

who was 51years old male and amputated because of ischemic necrosis from vascular 

obstructive disease[56]. The bone was stored in freezer which was preserved at the 

temperature of -17℃. The part of the bone was tibia and the center of tibia compact bone was 

tested. The cancerous bone was obtained by collaborating lab in Turkey (Bogazici University, 

Institute of Biomedical Engineering) [56]. It was sterilized with 70% denatured ethanol for 

60 minutes according to the standard procedure of Depaula et al. [57] and wrapped around by 

paraffin. The bone was tibia, and proximal part of the cancellous and cortical bone was 

infected by cancer cell. Regarding the age bone, this is expected to have lower strength and 
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mineral density than tumor-free bone of 12-year-old human [58-60]. Table 2 shows the 

information of the bones. 

 

 

Table 2. Background information of tested bones 

Information Bovine 
Human 

Tumor-free cancerous 

Originality Commercial supplier Collaborating lab Collaborating lab 

Age 30 month 51 years 12 years 

Gender Unknown Male Female 

Part Humerus, Femur Tibia Tibia 

Comments None Vascular obstructive 
disease 

Contracted cancer 
(Ewing sarcoma) 

 

 

3.1.3. Synthetic materials 

 Epoxy, silicone and geopolymer powder were used to make new composite material. 

These two materials were chosen based on their loss modulus and compression strength. 

Figure 4 is the bubble chart of biomaterials, and it shows the compressive strength and loss 

modulus of each material. Blue lozenges and bubble represents those two mechanical 

properties of bone, green triangles and bubble represents that of silicone, and green circles 

and bubble represents that of polyepoxide. As shown in the figure 4, silicone has a high loss 

modulus, and polyepoxide has high compression strength. New material made of these two 
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materials is expected to have those two high values. The epoxy was composed of 150 thick 

epoxy resin and epoxy hardener manufactured by US Composite (West Palm Beach, Florida). 

The silicone was manufactured by General Electric Company (Huntersvile, North Carolina, 

USA) and purchased at local commercial supplier. The geopolymer was made of Metakaolin 

(MetaMax®, BASF catalysts LLC, NJ), which has 53%wt SiO 2  , 43.8%wt Al 2 O 3  and 

3.2%wt of other impurities, and sodium silicate solution by the High Temperature Materials 

Lab in the Texas A&M University. It was ground with a pestle and a mortar by hand and for 

two hours. To create the layered structure, epoxy and silicone was applied alternately with an 

art brush on the glass plate. Firstly, the silicone was spread thin on the glass plate with brush 

and the geopolymer powder was sprinkled on the wet silicone layer. The silicone layer held 

the geopolymer powder well. Then the epoxy was spread on the geopolymer sprinkled 

silicone with brush. The thickness of each layer was approximately 40µm, particle size of 

geopolymer powder was 10µm, and the each layer was dried at room temperature for 5 hours. 
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3.2.  Specimen preparation 

3.2.1. Bovine bone  

The marrow in the center of the shank bone was removed as well as soft tissues. 

Bones were cut into slices of 2~3mm of thickness using a hacksaw and were ground 2mm of 

thickness with a 120 grit sand paper. The bone sheet was then cut into 35 small sample slices 

of 2~3cm width by using a Dremel tool. These were left for 24 hours to be dried after being 

rinsed with flowing water followed by bacterial culture was conducted. Then, the 35 small 

sample slices were cut into cylinder of 3mm diameter with milling machine in machine shop 

of the mechanical engineering department. The diamond coated drill bit of which inner 

diameter was 3mm, was used with milling machine. Figure 5 shows the drill bit and figure 6 

shows the final shape of bone sample for the small punch test. Overall, 96 cylindrical 

samples were gotten. These samples will be used for the small punch test. 

 

 

 

Figure 5. Diamond coated drill bit 
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Figure 6. Cylindrical bone sample shape for small punch test 

 

 

For small punch test on three different directions, the bovine bone had to be cut in 

corresponding methods. The center empty cylindrical bovine bone lumps were cut in three 

different directions. Figure 7 illustrates the sample direction in correlation with the main axis 

direction. For testing on longitudinal direction, the 1 inch long bovine shank bone was cut in 

the direction parallel to x-y plane. Another bone mass was cut in the direction parallel to x-z 

plane and y-z plane to radial test, and the other bone mass was cut along the radial direction 

for test in the circumferential direction. The bone masses were cut in thickness of 3mm and 

the bone slices were polished until that the thickness became 2mm. Then the bone slices of 

2mm thickness were attached on wood piece and milled with milling machine and the drill 

bit to be cylindrical samples of 3mm diameter.  
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(a)       (b) 

 

 

(c)                               (d) 

Figure 7.  (a)Whole bone  (b) cutting to test longitudinal direction 

  (c) cutting test radial direction  (d) cutting to test circumferential direction 
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3.2.2. Human bone  

For preparations of sample with human bone without tumor cell, the center of tibia 

was used. The one inch long bone mass of human tibia was too small to be held by a vise. 

More precise equipment was needed. Therefore, slice of the bone was cut with the IsoMet® 

1000 Precision saw (Buehler, Lake Bluff, Illinois, USA) and attached on the wood block. 

The cutting direction was perpendicular to the axial direction. Figure 8 shows the precision 

saw, and figure 9 shows the slices of tumor-free human bone. The attached bone had 

remained 24 hours at the temperature of 4℃ for sure to be attached on the wood. Then a 

milling machine in the machine shop of the mechanical engineering department was used to 

make 3mm diameter cylindrical samples. The cancerous bone was cut with hacksaw in 

thickness of 3mm because it was relatively weak than tumor-free human bone. The slices 

were cut with thin blade to make 3mm diameter of cylindrical samples. 
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Figure 8. IsoMet® 1000 precision saw 

 

 

 

Figure 9. Slices of tumor-free human tibia 

 

 

 



24 

 

3.2.3. Synthetic materials 

The dried synthetic materials were cut as 3mm diameter of cylindrical samples with 

milling machine in the machine shop of the mechanical engineering department. The 

homogeneous samples were ground with sandpaper to make 2mm of thickness. The layered 

samples were adjusted the thickness to be 2mm when they created. Eight cylindrical 

synthetic material samples were attached on the bovine bone machined perpendicular to the 

axial direction. Six cylindrical synthetic material samples were attached on the bovine bone 

samples machined for radial test. The adhesive was epoxy resin which was the same material 

to be used for making the synthetic material. 

 

3.2.4. Chemical treatment 

Two cleansing solutions were used: isopropyl alcohol ((CH 3 ) 2 CHOH) and hydrogen 

peroxide (H 2 O 2

 

). The reasons to treat bovine bone were to avoid infection and to study the 

effect of the chemical solutions on the bovine bone. Sixteen conditions of each solution were 

used to treat the bovine bone samples. The sixteen conditions of hydrogen peroxide were 

3%wt, 5%wt, 10%wt, and 20%wt concentrations and each concentration treated sample for 

10, 30, 45, and 60 minutes respectively. The sixteen conditions of isopropyl alcohol were 10% 

wt, 30% wt, 50% wt, and 70% wt concentration and each concentration treated sample for 3, 

5, 10, and 20 minutes, respectively. The samples in the control group were treated with 

distilled water for ten minutes. Table 3 shows the sixteen conditions of chemical solutions 

and control group treatment. 
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Table 3. Treatment conditions of chemical solution and control group 

Group Concentration Soaking time 
Control - 10 min. 

Hydrogen peroxide 

3% wt 10 min. 
5% wt 30 min. 
10% wt 45 min. 
20% wt 60 min. 

Isopropyl alcohol 

10% wt 3 min. 
30% wt 5 min. 
50% wt 10 min. 
70% wt 20 min. 

 

 

3.2.5. Bacteria culture 

First of all, 23g agar powder and 1ℓ distilled water were uniformly mixed by hands to 

make agar followed by being sterilized using an autoclave machine model 57CR (American 

sterilizer company, Erie, Pennsylvania, USA) for 25 minutes. The hot agar colloidal fluid 

was poured into the 10cm diameter of petri dishes and left for 24 hours to be cooled and 

hardened. Without any instant contamination, the 35 small bovine cortical bone sample slices 

were swiped with cotton swabs and the cooled agar plates were swiped with the cotton swabs. 

This process was performed on the disinfected desk with 70% wt of ethanol. The swiped agar 

plates were incubated in the incubator for 120 hours [61]. While incubating, the 35 small 

bone sample slices were treated with sixteen conditions of hydrogen peroxide and isopropyl 

alcohol. The treated samples were surrounded by 40℃ air in the oven for 24 hours to be 

dried. On the dried bone surfaces, the same procedure was used, swabbing using cotton 

swabs. Other cooled agar plates were swiped with the cotton swabs and incubated for 120 
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hours in the same incubator.  After forming bacteria colonies, the optical microscope was 

used to count the colonies. All of countable one was counted by 20x~200x magnifications.  

 

3.3. Characterization 

3.3.1. X-ray diffraction  

X-ray diffraction (XRD) was done to study the microstructure with Bruker-AXS D8 

Vario X-ray Powder Diffractometer (Bruker, Billerica, Massachusetts, USA). Bovine bones 

before and after chemical solution treating were analyzed. One condition of each solution 

was selected which is the highest concentration and longest soaking time. These strongest 

chemical solutions have more possibility to alter the crystalline property of the bovine bone. 

When the x-ray beam impinges upon the material, a part of the beam is diffracted in random 

directions, and two opposite scattering events happen. One is destructive interference, and 

the other constructive. In most cases, the amplitude of diffracted beam ranged between zero 

and twice the wave length of the incident beam. The angles between incident beam and the 

crystal plane equals the angle between the diffracted beam and the crystal plane. Thus, the 

detector is positioned at twice the angle between the sample and the incident beam. From this 

method diffracted angle versus intensity plot will be obtained. The width of the peak 

represents the crystallinity of materials. The XRD was run with 0.04 stepsize, 38 seconds of 

steptime, and the wavelength was 1.54nm. 

 

3.3.2. Density measurement 

The densities of tumor-free human bone and cancerous human bone were measured. 

The unfractured tested human bones were exposed to flowing air for 48 hours to dehydrate. 
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The volume of these samples was measured by the program named Image J. The 20x 

magnification of optical microscopic images of human bone samples were taken, and the 

thickness and the base area were measured by Image J. The Pioneer Balance scale was 

employed to measure the weight of the tumor-free and cancerous human tibia samples. 

(Ohaus Co., Parsippany, New Jersey, USA) 

 

3.3.3. Small punch test 

Small punch test was carried out for investigation. The setup is shown in figure 10, 

and the cross section is shown in figure 11. As shown, it contains an upper jig, lower jig, 

push rod, and ball. The load on the ball bearing was applied by Instron machine model 

number 4411 shown in figure 12 and interfaced with a computer showed displacement and 

load. The velocity of cross head was set at 0.002mm/sec for 6~15minutes. The instron 

machine was stopped when the upper jig contacted with bone samples. This moment can be 

noticed by the labview in the computer. The behavior of bone during the small punch test 

was observed by the labview in the computer, thus the fractured surface under different load 

was obtained. The test was repeated 1~5 times for chemical effect on separate samples, 5~9 

times for different directions, and 6~9 time for human bone specimens. The small punch test 

was introduce in 1981 by Manahan [62]. This test allowed small volume of specimens, thus 

more tests could conduct [63]. The ball bearing penetrated the samples to 1mm of depth and 

more because the diameter of the ball bearing is 1mm [64], thus mechanical evaluation of 

surfaces as well as inside of samples. Besides, various specimen behaviors can be observed 

during the small punch test, such as, indentation, buckling, and fracture. 
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Figure 10. Overview of the small punch test jig 

 

 

 

Figure 11.  Cross-sectional view of the small punch test jig 
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Figure 12. Instron machine model 4411 

 

            
 

To obtain elastic modulus of three directional bovine bones, the Hertzian contact 

theory was used [65]. The bones were assumed to be isotropic. The equations (1.1) and (1.2) 

were from the Hertzian contact theory. “F” is load, “R” is the radius of ball bearing, “d” is 

indentation, “v 1 ” is the Poisson’s ratio of the bone, “E 1 ” is elastic modulus of bone, “v 2 ” is 

the Poisson’s ratio of the steel ball bearing, and “E 2

64

” is elastic modulus of steel ball bearing. 

The radius of the ball was 0.5mm [ ], the elastic modulus of the stainless steel ball bearing 

was 206GPa, and the Poisson’s ratio of the ball was 0.3 [66]. The Poisson’s ratios of the 

bovine bone were 0.35 for longitudinal test and 0.41 for tangential test taken from Meunier et 

al. (1989) [67]. The linearly increasing part was selected from the small punch test plot by 

using the linear trend line in the excel program. Figure 13 shows the selected linear part of 
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the small punch test plot. The values of displacement and load at the beginning and end of 

the selected part were obtained. The differences between the two values were calculated. The 

calculated load value was inserted in the Hertzian contact equation as F (load), and the 

calculated displacement value was placed in the Hertzian contact equation as d (indentation). 

 

 

 

Figure 13. Selected linear part of SPT plot 

 

 

3.3.4. Microscopic analysis 

Microscope images were taken to observe the fractured surfaced obtained after the 

small punch test. The VHX-600 digital microscope (Keyence, Woodcliff Lake, New jersey, 

USA) at 100x and 200x magnifications were used for imaging. Transmission mode of light 
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was used to highlight inner structures due to the translucent structures of bones. Top view 

which was indented by ball bearing and fractured side view was observed. Figure 14 shows 

the digital optical microscope. 

To more closely observe the surface, scanning electron microscope was used. The 

Vega Ⅱ LSU (Tescan, Cranberry Township, Pennsylvania, USA) microscope at 70~80x 

magnifications for overview of the samples and 200x~500x magnifications were used to 

observe details. For the bovine bone the energy of beam was 10kV, and working distance 

was 25.504mm. For the human bone samples, 20kV of energy beam and 18.417mm of 

working distance were applied. 

 

 

 

Figure 14. Digital optical microscope  
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CHAPTER IV 

EXPERIMENTAL RESULTS 

This chapter describes experimental results of tests which were previously explained. 

In the first section, the effect of chemical cleansing solutions on the microstructure and 

mechanical properties of bone materials is explained. In second, the difference of mechanical 

properties among three different directional bovine compact femur samples by the small 

punch is illustrated.  Lastly, the negative effect of tumor cells on the human tibia via the 

small punch test is depicted. 

 

4.2.1. Effects of cleansing solutions on the bovine bone 

4.1.1. Effects on the microstructure 

Figure 15 shows the X-ray diffraction (XRD) results of bovine bones machined for 

longitudinal test before and after water treatment. The lower blue line shows the untreated 

sample XRD data, and the upper red line shows the XRD data of the sample treated for 10 

minutes in distilled water. The peaks labeled by squares represent the calcium phosphate, and 

labeled by circles as the hydroxyl apatite. These peaks were distinguished by using the 

program Jade version 5.0. (Materials Data, Inc., Livermore, California, USA) The two 

similarly high peaks located at 24.6°, 26° (2θ) in the untreated plot changed to one high peak 

and one low. Moreover, the highest peak in the plot of the untreated sample at approximately 

32.3° (2θ) became narrower after treating with water. 
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Figure 15. X-ray diffraction result of water-treated bovine bone 

 

 

Figure 16 shows the XRD results of bovine bones machined for longitudinal test 

before and after 70%wt of isopropyl alcohol treatment for 20 minutes. The lower blue line is 

the result of the untreated sample XRD, and the upper red one is the isopropyl alcohol treated 

sample XRD data. All of the peaks in the untreated sample remained after treating except one 

peak located at 28.8° (2θ). The peaks located at 12.2°, 26.5°, 32.8°, 50.1° and 53.8° (2θ) 

were narrower and higher than the plot of untreated sample. 
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Figure 16. X-ray diffraction result of isopropyl alcohol-treated bone 

 

 

Figure 17 shows the X-ray diffraction (XRD) results of before and after treated 

bovine bone machined for longitudinal test with the 20% wt hydrogen peroxide for 60 

minutes. The lower blue plot is the results of the untreated sample XRD, and the upper red 

one is the hydrogen peroxide treated sample XRD data. The total shapes of two plots are 

approximately the same. The calcium phosphate peaks near 15°, 30° and 65° (2θ) 

disappeared after treatment. 
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Figure 17. X-ray diffraction result of hydrogen peroxide-treated bone 

 

 

4.1.2. Bacterial colony forming units 

Quantifying bacteria colony forming units provides a measure of how successfully 

the solution cleansed the bone samples. When a bacterium can grow successfully, it forms a 

colony. The digital microscope VHX-600 (Keyence, Woodcliff Lake, New jersey, USA) was 

used to count the number of the bacterial forming colonies with a magnification of 20x. 

Overall, 33 nutrient agar plates with swipes from the non-treated bone samples were 

incubated. Results are shown in Figure 18. After 120 hours of incubation, bacterial forming 

colony units were observed in most of the nutrient agar plates. Seven plates out of 33 did not 

contain any forming colony units, but the other 26 plates contained at least one to at most 

more than one hundred forming colony units. 
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After treating bovine bone samples with the sixteen conditions of isopropyl alcohol, 

all bacteria colonies were eradiated except one plate. Twelve out of the sixteen agar plates 

were swiped with untreated bone samples, and they contained bacteria colonies. Fifteen out 

of sixteen plates were swiped with treated bone samples had no bacteria except one. That 

plate was swiped with the bone sample treated with 50%wt of isopropyl alcohol for 5 

minutes. Moreover, the agar swiped with the untreated bone sample formed one bacteria 

colony and one fungal colony. However, the agar swiped with the 50%wt isopropyl alcohol 

treated bone sample, formed two fungal colonies. Figure 19 shows the bacterial colony 

counts for untreated and treated bone. A representative agar plate swiped with untreated bone 

samples is shown in (a), and the agar plate swiped with treated bone sample is shown in (b). 

All bacterial and fungal colonies on the agar plate were shown in the top and bottom inserted 

picture. 

 

 

           

(a)                                                              (b) 

Figure 19. The agar swiped with the untreated bone in (a) and the bone treated with the 50%wt 

isopropyl alcohol for 5 minutes in (b). (Every colony was captured in the inserted picture.) 
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Overall, fewer forming colony units were obtained from the bovine bone treated with 

hydrogen peroxide. Thirteen out of sixteen plates showed bacteria colonies in the non-treated 

conditions. After treatment with hydrogen peroxide, only seven out of sixteen plates 

contained bacteria colonies. In four out of seven plates, the number of bacteria colonies 

decreased after hydrogen peroxide treatment. In three plates swiped with the bone samples 

treated with 5%wt-10 minutes, 10%wt-60 minutes and 20%wt-45 minutes, the number of 

bacteria colonies increased. In the plate that was swiped with soaking in 20%wt hydrogen 

peroxide for 45 minutes, there were a number of bacteria along the nutrient agar edge. Figure 

20 shows a number of grown bacteria colony forming units along the edge of the agar plate 

out of the swiped route by the cotton swabs. 

 

 

 

Figure 20. Grown bacteria colonies along the edge of the agar plate. 
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4.1.3. Small punch test results 

Figure 21 shows results of the small punch test of bovine bone treated in 5%wt 

hydrogen peroxide for 10~60 minutes. Each plot represents the average value of 3~5 tests of 

each condition on separate bones. The tests stepped when the upper jig started to contact the 

bone samples. As the soaking time increased, the maximum endurable load decreased. 

 

 

 

Figure 21. Representative small punch test graph of the bovine bone soaked in 5%wt H 2 O

 

2 

 

Figures 22 and 23 show the overall small punch test data for the hydrogen peroxide 

and the isopropyl alcohol treated group, and tables 4 and 5 show the values. The average 
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maximum endurable load for the control sample, which was untreated, is illustrated by the 

blue star at zero minute. Weak tendency of decreasing maximum endurable load is shown in 

the graph below as increasing time soaked in hydrogen peroxide. For the isopropyl alcohol 

treatment result, increasing and/or decreasing tendency were not observed. 

 

Table 4. The maximum load of H 2 O 2

Condition 

 treated bone 

Average 
maximum load (N) 

Standard 
deviation 

Number of 
samples Concentration Soaking time 

3% 10 min. 358.7 24.1 4 
3% 30 min. 320.8 11.2 3 
3% 45 min. 292.2 8.3 3 
3% 60 min. 334.4 8.7 5 
5% 10 min. 358.2 27.5 3 
5% 30 min. 338.2 57.1 4 
5% 45 min. 266.2 34.1 5 
5% 60 min. 256.3 1.2 3 
10% 10 min. 317.3 32.1 2 
10% 30 min. 264.7 2.8 3 
10% 60 min. 232.5 - 1 
20% 10 min. 359.3 30.7 4 
20% 30 min. 297.3 36.1 4 
20% 45 min. 307.8 49.9 3 
20% 60 min. 269.4 36.1 3 
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Figure 22.  Small punch test results of H2O2 treated bovine bone treated varying concentrations of 

H2O2 

 

for increasing time duration 

Table 5. The maximum load of isopropyl alcohol treated bone 

Condition Average 
maximum load (N) 

Standard 
deviation 

Number of 
samples Concentration Soaking time 

10% 3 min. 362.3 3.5 4 
10% 5 min. 331.7 26.5 4 
10% 10 min. 260.7 76.6 4 
10% 20 min. 353.8 30.6 3 
30% 3 min. 367.3 3.8 3 
30% 10 min. 282.0 25.2 5 
30% 20 min. 387.9 11.8 3 
50% 3 min. 299.3 - 1 
50% 5 min. 332.3 65.5 3 
50% 10 min. 343.3 35.0 3 
70% 3 min. 331.7 34.4 4 
70% 5 min. 336.0 9.5 4 
70% 10 min. 316.4 13.8 3 
70% 20 min. 315.9 42.0 4 
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Figure 23. Small punch test results of the isopropanol treated bovine bone treated varying 

concentrations of H2O2 

 

for increasing time duration 

 

4.2.  Mechanical properties of bovine and human bone 

4.2.1. Bovine bone 

The small punch test was used for studying mechanical properties of the bovine bone. 

Along the longitudinal direction, the elastic modulus was the highest, while it was lowest in 

the radial direction. Table 6 shows the elastic modulus of each directional test on the bovine 

femur, and figure 24 shows that in the bar graph. 
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Table 6. The mechanical properties of the three directional bovine femurs 

Direction Elastic modulus Standard deviation Number of samples 
Longitudinal 22.3 GPa 2.3 9 

Radial 13.9 GPa 1.6 6 
Circumferential 17.2 GPa 2.0 5 

 

 

 

Figure 24. The elastic moduli of the bovine bones machined in three different direction 

 

 

4.2.2. Failure analysis of bovine bones 

When the small punch test was applied to a workpiece material, the 1mm diameter 

ball bearing indented through the sample. The fractography of the bovine bone by the ball 

bearing was then observed. Figure 25 shows the optical microscopic images of the fractured 

surface of bovine bone samples machine for longitudinal test. The fractured surface obtained 
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under the increasing load is shown in (a). The fractured surface under the stable load is 

shown in (b). The fractured surface obtained under a decreasing load is shown in (c). That 

obtained when the upper jig being contacted is shown in (d). A portion of the sample under 

the ball bearing was pushed out by the ball bearing. Figure 26 shows the result of small 

punch test in the condition similar to (d). When the small punch test ran for a long time, the 

rod is in contact with the upper jig, and the upper jig started to press the sample. This is the 

reason why on the plot there is a sudden increase. 

 

 

       

(a)                                                           (b) 

      

(c)                                                         (d) 

Figure 25.  Side-views of small punch tested bovine bone machined perpendicular to longitudinal 

direction 
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Figure 26.  Small punch test result of Figure 25-(d) 

 

 

Figure 27 shows the optical microscopic images of the radially pushed and fractured 

bovine bone samples. When the small punch test was conducted on the bovine bone samples 

machined for radial test, the region under the ball bearing was cracked instead of being 

pushed out. The fractured surface obtained during an increasing load is shown in (a). The 

fractured surface obtained after second fracture is shown in (b). The fractured surface 

obtained during stable load is shown in (c). The fractured surface obtained during the upper 

jig contacted the sample is shown in (d). Figure 28 shows the small punch test of the bone 

samples in the figure 27-(d). 
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(a)                                                         (b) 

 

(c)                                                          (d) 

Figure 27. Side-views of the small punch tested bovine bone machine on the x-z and y-z plane 

direction 
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Figure 28. The small punch test result of the bone sample in the figure 27-(d) 

 

 

Figure 29 shows the optical microscopic images of the fractured surfaces of the 

bovine bone samples machine along radial direction. The fractured surfaces of the 

circumferentially tested bone samples were similar to the radially tested bone samples. The 

optical microscopic (OM) image of fractured surface obtained right after the highest 

sustainable load is shown in (a). The OM image of fractured surface obtained under 

increasing load is shown in (b). The OM image of fractured surface obtained under stable 

load is shown in (c). The OM image of fractured surface obtained during decreasing load is 

shown in (d). The SEM images of the same fracture surface to the figure 29-(d) in 

magnification of 68x and 300x are shown in (e) and (f). 
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(a)                                                             (b) 

 

(c)                                                           (d) 

 

(e)                                                           (f) 

Figure 29. Side-views of the small punch tested bovine bone machined for circumferential test 
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4.3. Effects of infiltrated tumor on the human bone 

4.3.1. Properties of the human bone 

To study the effect of cancer cells, the density of bones was measured. Subsequently, 

the small punch test was conducted, and microscopic observation was performed. Table 7 

shows the volume densities and the elastic modulus of the tumor-free human bone and the 

cancerous human bone. The density of cancerous bone was 25% less than the tumor-free 

bone. The elastic modulus of the cancerous bone was 99% less than that of a tumor-free bone. 

Figure 30 shows the microscopic images of the fractured surfaces of the tumor-free human 

bone. As shown in Figure 30, the portion under the ball bearing was pushed out in the 

longitudinally tested human bone sample, and the fractured surfaces were similar to the 

longitudinally tested bovine bone samples. The fractured surface obtained under increasing 

load is shown in (a). The fractured surface obtained under decreasing load is shown in (b). 

The fractured surface obtained under stable load is shown in (c). The fractured surface 

obtained during the upper jig contacted the sample is shown in (d). The SEM images of the 

same fractured surface to the figure 30-(d) in magnification of 78x and 250x are shown in 

Figures 30-(e) and (f).  

 

 

Table 7. The density and elastic modulus of human bones 

Classification Density Standard 
deviation 

Elastic 
modulus 

Standard 
deviation 

Number of 
samples 

Tumor-free 1.6x10-3g/mm 0.1 3 20.0GPa 1.8 9 

Cancerous 1.2x10-3g/mm 0.1 3 0.3GPa 0.06 6 
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(a)                                                            (b) 

 

(c)                                                            (d) 

 

(e)                                                        (f) 

Figure 30. Fractured surfaces of the small punch tested tumor-free human tibia 
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The cancerous bones were severely damaged after SPT and there was no visible built 

up of the compressed bones. This means that the diseased bone was highly porous and the 

resistance to penetration was minimal.  Figure 31 shows the optical microscope (OM) and the 

scanning electron microscopic (SEM) images of cancerous bone. The side-view of OM 

image of the tested cancerous bone is shown in (a). The bottom-view of the OM image on 

tested cancerous bone is shown in (b). The SEM image of tested cancerous bone is shown in 

(c). 

 

 

           

(a)                                                             (b) 

 

(c) 

Figure 31. Optical microscope images and SEM image of tested cancerous bone 



52 

4.3.2. Comparing with a synthetic material 

In order to develop synthetic materials to replace bones, comparison of their 

properties with those of human bones were done using small punch test. Table 8 shows the 

measured displacement of the synthetic material and the bovine femur when the load was the 

greatest during elastic behavior. Figure 32 shows the displacement of the materials measured 

by the small punch test as a bar chart. Table 9 shows the calculated slope of the small punch 

test on the synthetic material, the tumor-free human bone and the cancerous human bone. 

Figure 33 shows the measure slope of the cancerous bone and the synthetic material in bar 

chart. The displacement of the cancerous bone at the maximum load had the largest value, 

and the synthetic material had the second. However, the two values are quite similar, so that 

the ranges of the standard deviations were overlapped. The slope of the small punch test on 

the synthetic materials was two times higher than that of the cancerous human bone.  

 

 

 Table 8. The measured displacement at the maximum load 

Material Displacement 
Standard 
deviation 

Number of 
samples 

Synthetic material 0.66mm 0.08 11 

Bovine 
femur 

Longitudinally tested 0.28mm 0.03 10 

Radially tested 0.44mm 0.15 7 

Circumferentially tested 0.38mm 0.16 9 

Human 
bone 

Tumor-free bone 0.36mm 0.05 9 

Cancerous bone 0.80mm 0.11 6 
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Figure 32. Measured displacement under the maximum load of the materials 

 

 

Table 9. The calculated plot slope of the small punch test 

Material Slope 
Standard 
deviation 

Number of 
samples 

Synthetic material 28.0N/mm 5.4 11 

Tumor-free human bone  684.4N/mm 169.5 9 

Cancerous human bone 14.1N/mm 4.2 6 

 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

synthetic 
material

bovine 
longitudinal

bovine radial bovine 
circumferential

normal human cancerous 
human

M
ax

. d
is

pl
ac

em
en

t (
m

m
)



54 

 

Figure 33. Measured slope during the small punch test of the synthetic material and cancerous 

bone 

 

 

Figure 34 shows the microscopic images of the small punch tested synthetic material. 

The synthetic material was not fractured after the small punch test. The side view obtained at 

the displacement of 0.64 mm is shown in (a). The side view obtained at the displacement of 

0.73 mm is shown in (b). The side view obtained during the upper jig contacted the sample is 

shown in (c). The side view obtained at the displacement of 0.04 mm after upper jig 

contacted the sample is shown in (d). The white arrow indicates the pressed portion by the 

upper jig. 
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(a)                                                                 (b) 

      

(c)                                                             (d) 

Figure 34. Side-views of the small punch tested synthetic material 

 

 

When the small punch test was conducted on the synthetic material that was attached 

on the bovine bone, the maximum load and displacement were 16~36% higher than the 

bovine bone. Table 10 shows the maximum endurable load values with the number of 

samples. Figure 35 shows the microscopic images of the fractured surfaces of the synthetic 

material attached on the bovine bone. The top view of the small punch tested samples is 

shown in (a). The bottom view of the tested sample is shown in (b). The fractured surface 

obtained right after second fracture is shown in (c). The fractured surface obtained during the 

upper jig contacted the sample is shown in (d). 
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Table 10. Maximum endurable load of bovine bone and synthetic material on the 

bovine bone 

Material Maximum 
load 

Standard 
deviation 

Number of 
samples 

Bovine bone 
Longitudinal 313.5N  38.4 10 

Radial 346.4N  56.5 7 

Synthetic material 
on the bovine bone 

Longitudinal 363.3N 74.3 8 

Radial 472.1N  95.6 6 
 

 

       

(a)                                                                        (b) 

       

(c)                                                                 (d) 

Figure 35. Top, bottom and side-views of small punch tested synthetic material  
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CHAPTER V 

STRUCTURE-PROPERTY RELATIONSHIP OF BIOLOGICAL AND SYNTHETIC 

BIOMATERIALS 

 

This chapter discusses the relationships between microstructure and mechanical 

properties of the bovine and the human bone based on results described in the previous 

chapter. The following subsections will provide a discussion of the effects of chemical 

solutions on the mechanical properties and the microstructures of the bovine bone. 

Discussion of the structures of directionally tested bovine bone, differences between human 

tumor-free and cancerous bone, and the comparative properties of synthetic material will be 

also presented. 

 

5.1.  Effects of chemical solution on biological materials 

5.1.1. Microstructure and cleaning methods  

As shown in the figure 15, 16 and 17, no major difference existed in the XRD results 

between the untreated bone and the isopropyl alcohol and the hydrogen peroxide treated 

bones. This suggests the isopropyl alcohol and the hydrogen peroxide did not affect the 

microstructure of the bovine bones. For the water treated bone, the untreated bone showed, as 

the lower curve in Figure 15 indicates, that calcium phosphate exists (filled square). After 

water treatment, that amount of the calcium phosphate was reduced, and instead, the amount 

of hydroxyl apatite (Ca 5 (PO 4 ) 3 68(OH)) dominated. According to Termine and Posner, [ ] 

calcium phosphate converted into crystalline hydroxyl apatite when the bone was soaked in 

water so that the bone sample treated with water had a more crystalline structure [68]. The 
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hydroxyl apatite crystal in bone is finely divided because this mineral is formed from 

solution. At room temperature and under atmospheric pressure, forming a large single 

hydroxyl apatite crystal is impossible [69]. The width of peaks decreased as the size of 

hydroxyl apatite crystal increased, making the peaks narrow [69]. 

Concerning the cleansing effect of the chemical solutions, hydrogen peroxide and 

isopropyl alcohol were quite effective. On the nutrient agar plate that was swiped with the 

bone samples soaked in the 3%wt of hydrogen peroxide for 10 minutes, only 20% of 

bacterial colony units were reduced compared to the agar plate swiped with the untreated 

sample. Thus, the treatment with the 3%wt hydrogen peroxide for 10 minutes was not strong 

enough to decontaminate the bone sample. Only three out of sixteen samples treated with 

hydrogen peroxide demonstrated an increased number of bacteria colony forming units. 

However, the bacteria grew along the outer edge of the nutrient agar plate rather than along 

the swiped route. Thus, the increasing bacteria colony forming units were most likely formed 

by the bacteria from the air contamination when the lid of the petri-dish was opened. In the 

isopropyl alcohol group, only 50% isopropyl alcohol-5minutes treated sample had the same 

number of bacteria as the untreated sample. However, the sort of colony unit was different. 

The untreated sample had two bacterial colonies, but the treated sample had one bacterial 

colony and one fungal colony. Thus, the fungal colony was assumed to come from the air 

contamination. 

 
5.1.2.  Mechanical properties  

As shown in the figure 21, the value of the load increased until a maximum loading 

value was reached and subsequently descended. This means that the ball bearing needed 

increasing load to proceed through the bone sample, and the bone subsequently fractured. 
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Even though the bone sample was fractured, the bone sample was held by the jig, thus the 

ball bearing needed a load to penetrate the gap between the fractured bone pieces. The gap 

between the fractured bone samples was smaller than the diameter of the ball bearing.  

The maximum loading value of the highest peak before bone failure was chosen 

because it is a measured value of how much load a bone sample can endure before failure. 

Between 1) the control bone sample and the hydrogen peroxide treated samples, 2) the 

control bone sample and the isopropyl alcohol treated samples, it is important to determine 

how the maximum endurable load changed. When the standard deviations of each value from 

different conditions of chemical solutions were compared, the average maximum load of 

most samples was close to that of the control sample. Because the majority of the average 

values of the treated samples remained similar to the standard deviation range of the control 

group, this suggests that the measured average maximum endurable load values of the 

hydrogen peroxide and the isopropyl alcohol treated samples are not drastically different than 

the control sample. Therefore, it appears that the hydrogen peroxide and the isopropyl 

alcohol at the tested concentrations and soaking times may not be greatly altering the 

maximum load before the bone fractures. 

 

5.2. Failure mechanisms of biological and synthetic biomaterials  

5.2.1.  Longitudinal direction 

The fibrous components in the bone were arranged along the longitudinal direction. 

When the small punch test was finished, one dislodged grouping of fibrous components was 

observed. Moreover, the samples were separated into two or three pieces because of the 

penetration by the ball bearing. Figure 36 shows the longitudinally machined bone behavior 
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of the small punch test. At first, the ball bearing was adjusted on the sample surface. Then 

the elastic penetration occurred and the portion of the sample contacting with the ball bearing 

was squashed [63]. After the elastic penetration, the sample obtained cracks, and the portion 

of the sample in contact with the ball bearing was pushed out. Figure 30-(e) and (f) showed 

the torn portion of human bone machined for longitudinal test. When the portion was pushed 

out, the side face of the fibrous components was torn from the whole sample. This 

mechanism allows the bone to be stronger and tougher in the axial direction. 

 

 

           

Figure 36. Top view and side view of tangentially machined bone behavior during the small punch 

test 

 

 

5.2.2. Tangential direction 

The small punch test was then conducted tumor-free to the fibrous components. Thus, 

the behavior of the structure of the sample was different from the longitudinal test. In this test 

on tangentially machined bone, the fibrous components were broken rather than pushed out. 
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Figure 29-(e) and (f) showed the broken bovine bone. Figure 37 shows the stages of the bone 

sample behavior of the small punch test. The figure 37-(a) shows the adjusted ball bearing on 

the bone sample surface. Inducing a crack in the sample is shown in (b). Breaking of the 

horizontal fibrous components is shown in (c). Failure on the bottom of the sample is shown 

in (d). During these stages, squashing by the ball bearing on the sample occurred. This 

mechanism is considered more brittle than longitudinal failure mechanism. 

 

 

       

(a)                                     (b) 

       

(c)                                        (d) 

Figure 37. Top view and side view of the bovine bone axially machined behavior during the small 

punch test 
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5.2.3. Human bone 

The result of the small punch test on the tumor-free human bone was similar to the 

longitudinally tested bovine bone because the small punch test conducted along the axial 

direction in the tumor-free human bone. As shown in the figure 30-(e) and (f), a torn portion 

of bone was observed. Combined fibers tore while undergoing a longitudinal load. The 

higher elastic modulus via the axial direction is obtained by this method. 

The negative effect that cancer cells have on the bone was observed in the density 

measurement and the small punch test. The percentage of bone’s crystallinity depends on age, 

disease and diet [69]. According to Kate et al., the bone infected by Ewing’s sarcoma had 62% 

less bone mineral density [70]. Moreover, less dense bone has lower elastic modulus; J.D. 

Currey discovered that porosity and elastic modulus have a reciprocal relationship [71]. 

Schaffler and Burr discovered that the volume fraction versus elastic modulus have a 10.92 

power of the linear logarithmic relationship, and apparent density versus elastic modulus 

have a 7.4 power of the linear logarithmic relationship [72]. The relationship of these human 

bone specimens is shown in equation (2). The apparent density of the human bone samples 

were represented as ρa

 

. According to this relationship, the elastic modulus of cancerous bone 

is 1.2 GPa, six times higher than measured modulus. Thus, the cancerous bone was affected 

in more factors than the density. 
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5.2.4. Synthetic materials 

The small punch test was conducted on the layer-by-layer synthetic material. During 

the small punch test on the synthetic material attached to the bone, the synthetic material 

wrapped around the ball bearing. Thus, the tip of the ball bearing became blunt, the cross 

section area became larger, and the maximum sustainable load became larger as well. Figure 

38 shows the stages of the small punch test on the synthetic material attached to the bone. 

Complete contacting between the ball bearing and sample is shown in the figure 38-(a). 

Squashing and wrapping mechanism of the synthetic material is shown in the figure 38-(b). 

Figure 38-(c) shows that the wrapped and blunt ball bearing starts to push the bone. Figure 

38-(d) and (e) shows the fractured bone part in the top-view and that the region of the 

synthetic material under the ball bearing is completely separated and the portion of the bone 

under the ball bearing was separated and pushed out. 

 

5.3. Mechanical properties 

5.3.1. Elastic modulus 

The elastic moduli of human bone and bovine bone have been calculated by many 

methods [23, 71, 73-78]. As compared with the elastic moduli from other methods, the 

calculated elastic modulus by the small punch test measurement was fairly rational. The 

measured elastic modulus by the small punch test was 22.34 GPa on the longitudinal 

direction, 13.91 GPa on the radial direction and 17.19 GPa on the circumferential direction. 

The elastic moduli from other methods are 18.2~24.4 GPa on the longitudinal direction and 

11.7 GPa on the tangential direction. For the elastic modulus of human bone, the small punch 

test obtained the value of 21.1 GPa, and other methods obtained 17.4~25.1 GPa. Tables 11 
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and 12 show the elastic moduli from other methods. Tables 11 and 12 shows the elastic 

moduli of bovine femur and human tibia, and the numbers in brackets are standard deviations. 

 

 

(a)                                (b)                                (c) 

        

(d)                                              (e) 

Figure 38. Top and side view of behavior of the synthetic material and bone during the small punch 

test 
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Table 11. Elastic compression moduli of bovine femur 

References Methods 
Elastic modulus (GPa) 

Longitudinal Tangential 

Reilly and Burstein [73] 
Tension 23.1 (3.2) 10.4 (1.6)  

Compression 22.3 (4.6) 10.1 (1.8) 

Reilly et al. [23] 
Tension 21.2 (4.15) - 

Compression 20.9 (3.26) - 

Currey [71] Bending 18.49 (2.84)  - 

Rho and Pharr [74] Nano indentation 24.4 (2.2) - 

 

  

Table 12. Elastic compression moduli of human tibia 

References Methods Elastic modulus (GPa) 

Cowin [75] - 17.4 

Rho et al. [76, 77] 

Tensile test 18.6 (3.5) 

Ultra sonic test 20.7 (1.9) 

Nano indentation 22.5 (1.3) 

Z. Fan et al. [78] Nano indentation 25.1 (2.1) 

 

 

5.3.2. Displacement at maximum load and slope 

The displacement of the layer-by-layer synthetic material at the maximum load was 

improved compared to the tumor-free human bone. The synthetic material is more 

deformable than tumor-free bone. This means that the synthetic material can sustain more 
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load. This synthetic material can protect the bone without deformation when the bone is 

deformed by an external force or impact. For the slope of the plots obtained via the small 

punch test, the slope of the synthetic material is two times higher than that of the cancerous 

bone. The synthetic material is stiffer than the cancerous bone. This means that the synthetic 

material has potential to sustain a force more than the cancerous bone at the same 

displacement. It is apparently promising for the synthetic material to improve the mechanical 

properties of bone overall. 
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CHAPTER VI 

CONCLUSIONS AND FUTURE RECOMMENDATIONS 

 

6.1.  Conclusions 

This research studied the failure mechanisms and the mechanical properties of bovine 

femur and human tibias and developed a synthetic material. The bovine bone samples 

machined in three different directions underwent the small punch test to measure the 

mechanical properties and to obtain fractured surfaces of the bones. Tumor-free human bone 

and cancerous human bone were small punch tested to investigate the effect of the cancer. 

The fractured surfaces of bones were observed by an optical microscope and a scanning 

electron microscope. Findings are summarized in the following: 

1. Higher than 50%wt of concentration and longer than 5minutes of treatment 

time of isopropyl alcohol is an appropriate condition of the chemical solution 

to decontaminate bone samples. 

2. The elastic moduli of bovine bone and human bone via the small punch test 

were in the range of 18.2~24.4 and 17.4~25.1 GPa, respectively, which were 

the values similar to published values. 

3. Failure mechanism during small punch test in the longitudinal direction is 

tearing, separating and pushing out and that of radial directions is more likely 

breaking mechanism. 

4. Cancer cells lowers density by 25% and elastic modulus by 99% in tumor-

free human bone. 
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5. The layer-by-layer synthetic material has an 83% higher deformability than 

tumor-free human bone, a 136% higher deformability than bovine bone and a 

99% higher stiffness than cancerous human bone. 

The observation of the failure mechanism of bones in the small scale mechanical test 

is significant in this research. The longitudinal failure mechanism is tearing, and the 

tangential failure mechanism is breaking. Also, the fibrous behavior of human bone was 

introduced via a SEM image. The small punch test was introduced as a new feasible method 

to determine the mechanical properties of bones. The sample size required by the small 

punch test was easy to manage and small enough to repeat tests. 

 

6.2.  Limitations 

First of all, because of their rarity, only two varying human bone could be tested. It 

was quite unfair to compare those two human bone samples because their age and gender 

were different; 51-year old male and 12-year old female. Also, the tumor-free bone had 

necrosis, thus this bone was not assumed to be healthy or normal. Another limitation in this 

research occurred during bacteria culturing experiment. The agar plates were swiped with the 

bovine bones under scrupulous care, but perfect protection from invisible microbes existing 

in the air was impossible. 

 

6.3. Future work 

The small punch test was introduced and applied to bovine femur and human tibia 

cortical bones as a new method, and optical microscope and SEM were used to observe the 
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failure mechanism. The future work concerns synthetic material and the observation of the 

structural behavior: 

1. Improvements are needed for the synthetic material to have more 

biocompatible properties and enhanced mechanical properties. 

2. Specimens will be tested at body temperature and in saline fluid to simulate a 

proximal in vivo environment. 

3. Computed tomography images should be taken to observe the precise 

structural behavior of fractured bone and the structural alteration of 

unfractured bone. 
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