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ABSTRACT 

 

Isothermal Gas-liquid Flow Using the Lattice Boltzmann Method. (August 2011) 

Donghoon Kim, B.S., Republic of Korea Naval Academy 

Chair of Advisory Committee: Dr. Yassin A. Hassan 

 

As the operating conditions of the pressurized water reactor (PWR) have been 

increased towards the thermal limits of the core for economics, the subcooled boiling 

heat transfer performance of the rod bundles under normal operating conditions has 

become an increasingly important design focus. Effective field models such as two-fluid 

model, on which most previous numerical studies in the nuclear fields have focused, 

cannot predict detailed phenomenon of subcooled boiling because it involves complex 

multiphase dynamics, such as nucleation, growth, detachment bubbles from a wall, 

deformation, break-up, coalescence, and condensation. It also requires numerous, 

additional closure relations. On the other hand, direct numerical simulations with 

interfacial tracking enable us to capture specific two-phase flow and do not require 

additional empirical closure relations.  

This thesis simulates isothermal two-dimensional bubble dynamics as a starting point 

toward direct simulation of the subcooled boiling by adopting a lattice Boltzmann 

method with the phase-field model. The lattice Boltzmann method is a mesoscopic 

approach well-adapted to the simulation of complex fluids and is simple to implement. 

   The phase field model can capture complex topological deformation, such as 
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coalescence and break-up, with better numerical stability than other interfacial tracking 

methods like Volume of Fluid (VOF) and level set methods. 

We validate the present method for stationary and moving two-phase interfaces by 

comparing with theoretical solutions for a single static bubble in a stationary liquid and a 

capillary wave, respectively. In addition, the capability of the current method to simulate 

the coalescence of two bubbles and droplets is validated by comparing with 

experimental data. 

To see the applicability of the method to problems involving complex bubble 

behaviors and interactions with a high-density ratio as in subcooled boiling water, we 

simulate rising single and double bubbles in a viscous fluid. For a single bubble problem, 

the bubble shapes and terminal velocity agreed well with the experimental results for 

different fluid dynamic conditions. For a double bubble case, the current method can 

capture the interaction and dynamics of the bubbles. Thus, it is expected that this study 

can serve as a stepping-stone extension to convective subcooled boiling heat transfer in 

the nuclear reactor core. 
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CHAPTER I 

INTRODUCTION 

 

Background 

In recent years, due to pressures to improve the economics of power generation and 

plant performance, plant up-ratings, higher fuel burn-up, longer fuel cycles, and higher 

enrichment have been conducted in pressurized water reactor (PWR), thus increasing 

local subcooled boiling in the core region under normal operating conditions. Hence, the 

accurate prediction and understanding of the subcooled boiling has become a significant 

issue in the nuclear field. 

However, subcooled boiling is difficult to predict because it involves complex 

physics, such as nucleation, growth, detachment of individual bubbles from a wall, 

bubble deformation, bubble break-up, coalescence, and condensation. In most previous 

studies in nuclear engineering, effective field methods, such as the two-fluid model in 

which statistically, temporally, or spatially averaged equations are used for two-phase 

flow simulation, have been practically used. But the two-fluid model basically requires 

closure relations for the phase-to-phase momentum and heat transfers and bubble 

population. The closure relations have traditionally been determined through a 

combination of dimensional arguments and correlation of experimental data. In 

particular, simple semi-empirical models for bubble drag, condensation, breakup, and 

coalescence are used under the assumption of idealized geometries for the vapor-liquid  

____________ 
This thesis follows the style of International Journal for Numerical Methods in Fluids. 
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interface, that is, spherical, elliptical, or symmetric bubbles. However, the geometry of 

the liquid-vapor interface is very irregular and shows dynamic behaviors. 

In contrast, direct numerical simulations (DNS) with interfacial tracking do not 

require the empirical closure correlations. Instead, the unsteady Navier–Stokes equations 

are solved on fine grids to resolve all flow scales fully. Several DNS interface-capturing 

methods, such as the volume of fluid (VOF) method [1], the front-tracking technique [2], 

and level set method [3], have been developed. These conventional approaches may 

have numerical difficulties in the treatment of topological deformation of interfacial 

break and coalescence. This is because in most multiphase fluid systems of interest, 

discontinuity occurs in the system due to the abrupt change of physical properties such 

as density and viscosity across the interface.  

In the phase field model (PFM), an interface is described as a finite volumetric zone 

across which the physical properties (mass density, concentration, and viscosity) vary 

steeply and continuously. The shape of the interface is determined to minimize the free 

energy of the system [4-5]. Therefore, in PFM-based numerical simulations, the 

boundary condition of phase is not required for the interface. Unlike conventional 

interface-tracking methods, surface tension in the PFM is given as surface free energy 

per unit area caused by a local density gradient. The PFM reconstructs the interface 

autonomously by considering a chemical potential gradient. Therefore, the effect of the 

surface tension force on the flow fields can be treated without complex topological 

calculation of the interfacial profile. As a result, the PFM-based method can easily 
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reproduce interfacial displacement due to phase changes or dissolution [6]. It also can 

simulate complex two-phase flows more efficiently than other methods can.  

On the other hand, due to its simplicity and efficiency, the lattice Boltzmann method 

(LBM) has been broadly used to simulate incompressible viscous flows as an alternative 

to the Navier–Stokes methods [7-8]. The lattice Boltzmann equation (LBE) is a kinetic 

equation of particle density distribution functions (PDDF) discretized on the Cartesian 

grid. The LBM is especially well-adapted to the simulation of complex fluids because 

the method very naturally takes charge of the relevant physical ingredients.  

Multiphase LBMs commonly adopted can be categorized into four different types: 

color-gradient model, Shan-Chen model, He et al.’s model, and the free energy model.  

The color-gradient model [9] proposed by Gunstensen et al. is based on the 

Rothman-Keller (R-K) lattice gas model [10] in which the surface tension, the ratios of 

densities, and viscosities can be independently adjusted [11].  

The Shan-Chen (S-C) model [12] was developed to simulate multiphase fluids with 

high-density ratios [13]. However, this model cannot independently adjust the surface 

tension and the ratios of densities and viscosities. Besides, some parameters need to be 

determined through additional numerical experiments [11]. Pan et al. [14] and Li et al. 

[15] applied the S-C model to investigate the two-component flow in porous media. 

However, due to the numerical instability, the maximum viscosity ratio was about 3 [15]. 

In He et al.’s model [16], two sets of PDDFs and the concept of the index function 

were adopted to reduce the numerical instability caused by large intermolecular forces 

along the interface. However, the mobility related to the density could not be chosen 
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flexibly. Lee and Lin [17] developed an LBM for multiphase-flows with large density 

ratio based on He et al.’s model [16]. However, since the discretization forms are 

changed at different steps in Lee and Lin’s model, the implementation was quite 

complex. The color-gradient, S-C, and He et al.’s models did not explicitly describe the 

evolution of the interface and the physics of the interface capturing equation was not 

clear. 

On the other hand, based on a free energy functional, Swift et al. [18] proposed the 

free energy (FE) LBM. The FE LBM can be regarded as the PFM because it constructed 

the discrete kinetic equation equivalent to the evolution equation of order parameter 

using s free energy approach. In contrast with the S-C model, local momentum 

conservation was preserved. However, this model could not satisfy the Galilean 

invariance except for the binary ideal fluids [18-19]. Inamuro et al. [20] simulated a 

high-density ratio through improving Swift et al.'s free energy model. However, this 

model has to solve a Poisson equation, which demands more computational time until 

convergence. In this model, the pressure correction is applied to enforce the continuity 

condition after every collision-streaming step, which is similar to the VOF method and 

level set method. The projection step would reduce the efficiency of the method greatly. 

A small drawback is that the cut-off value of the order parameter and the surface tension 

coefficient are not given analytically. It is also found that the model may not be accurate 

for some incompressible flows although the projection procedure is employed to secure 

the incompressible condition. Recently, Zheng et al. proposed a Galilean invariant FE 

LBM [21]. This model can recover the Cahn-Hilliard equation without any additional 



 5 

terms, thus keeping the Galilean invariance property. In addition, this model could 

simulate two-phase fluids with high-density ratios without adopting any additional 

numerical treatment as in Inamuro et al.  

 

Objective 

The objective of this study is to simulate isothermal, two-phase flows with a large 

density ratio directly using the phase-field model under the LBM frame as a starting 

point for simulating convective subcooled boiling heat transfer in PWRs. We focus on 

the bubble topologies, including the coalescence and its dynamics under different non-

dimensional numbers, such as the Eötvös number (Eo), and the Morton number (M). 
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CHAPTER II 

NUMERICAL METHODOLOGY 

 

This chapter explains the numerical methodology of LBM with phase field modeling. 

In the phase field modeling, the Navier-Stokes equations (NSE) and the Cahn-Hilliard 

equation (CHE) can describe the fluid and interface [22-24]: 

  0
n

n
t


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
u ,        (1) 
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b

n
n

t



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  
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
u ,        (3) 

where t is the time; u is the macroscopic velocity; P is the pressure tensor;
 
μ is the 

dynamic viscosity;
 
Fb is the body force; θM is the mobility; μФ is the chemical potential; 

n is the average number density defined by 

2

A Bn
 

 ,         (4) 

and ϕ is the expected order parameter or phase field that tracks the interface defined by 

2

A B 



          (5) 

in which ρA and ρB are the density of fluids A and B. In order to describe the 

thermodynamic behavior from the mean-field theory, we adopt a free energy functional 

of the form [21-22] defined by 
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where V is a control volume; ψ is the bulk free energy density per unit mass for the 

homogenous system; κ is a coefficient associated with the surface tension and the 

thickness of the interface region by 

*2

3

8

W



          (7) 

in which W is the interface width; R is the gas constant; and T is the temperature. In this 

study, the bulk free energy density is chosen as a double-well form [21-22] defined by 

   
2

2 *2a     ,        (8) 

in which ϕ* is a constant from the bulk free energy equilibrium state, *   , defined 

by 

*

2

A B 



          (9) 

a is an amplitude parameter to control the two-phase interaction and is related to 

*4

3

4
a

W




 ,         (10) 

and the chemical potential is computed by 
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 2 *2 2
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.   (11) 

In Equation (2), the term P is related to the surface tension force. This force can 

be rewritten as a potential term [23, 25]: 
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0s p      F P ,       (12) 

where p0 = ncs
2. 

 

The hydrodynamic equations 

In terms of the two-phase LBM, Equations (1), and (2) without a forcing term can be 

expressed as [26-27]: 

        (eq)1
, , , ,

n

f t t t f t f t f t    
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where fα is the distribution function for the hydrodynamic field at position x and time t 

for the discrete velocity; eα is the αth direction; and τn is the dimensionless single 

relaxation parameter related to the fluid viscosity due to fluid-particle collisions. The 

equilibrium particle density distribution function,  fα(eq) is given by [28] 
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2 2
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with the coefficient Aα given by 
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where cs is the sound speed related to the unit lattice cell speed as  

3 sc c ,          (16) 

in which the lattice speed c = Δx / Δt, and Δx and Δt are the lattice size and the time step 

size, respectively. The weighting coefficient, wα, depends on the discrete velocity set, 
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{eα}. The nine-velocity LBE model on a square lattice, called the D2Q9 model, has been 

widely used for two-dimensional flow simulations [29-30]. In the D2Q9 model, discrete 

velocity vectors (Figure 1) are defined by 

 

   
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2 4
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and the corresponding weighting coefficients, wα, are 

4
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9
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9
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Figure 1. The discrete velocity vectors directions in the D2Q9 model. 
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Density and velocity can be computed by taking the zeroth and first moments of the 

particle density distribution functions, respectively, 

(eq)n f f 

 

   ,        (19) 

(eq)n f f   

 

  u e e ,       (20) 

When an external force exists, the lumped-forcing LBE can be described in the 

following explicit form [26-27], 

         (eq)1
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The split-forcing LBE is adopted, which enables it to recover the NSE (continuity and 

momentum equations) with second-order accuracy even for an unsteady, non-uniform 

force [31]. They inserted the external force effect to the momentum by redefining the 

velocity as 

2

t
n f 




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Hence, the discrete force distribution function can be defined as 
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which satisfies the following relations of the zeroth and the first moments 
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e x F x .      (25) 
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The interface-capturing equation 

In terms of the two-phase LBM, Equation (3) for the interface-capturing can be 

written as [26-27] 

       (eq)1
, , , ,g t t t g t g t g t    


       x e x x x ,   (26) 

where gα is the distribution function for the concentration field (ϕ); and τϕ is the 

dimensionless single relaxation parameter related to the mobility. The chemical potential 

can be included in the LBE through the equilibrium distribution function given by [28] 

 (eq)

2

s

g w B
c



  

  
  

 

e u
,       (27) 

with the coefficient Bα given by 

 

2

1

, 1,2,3,4,5,6,7,8,

1 , 0,

s

B
cB

w n w B





 







 

 
     

    (28) 

where Γ is used to control the mobility. 

The order parameter can be computed after the streaming step by 

(eq)g g 

 

    .        (29) 

For validation of the present method, we start with static bubble and then consider a 

capillary wave with a moving interface between two phases. In addition, we test the 

capability of the current method to simulate coalescence of two bubbles. Next, we apply 

the method to the problem of an up-rising bubble with a large density ratio. 
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CHAPTER III 

RESULTS AND DISCUSSION 

 

A bubble in the stationary liquid 

For the LBM with phase-field modeling, it is necessary to verify the effect of the 

static and moving interface layer in the phase field. To study the static case, the 

fundamental test is a two-dimensional single circular bubble surrounded by stationary 

liquid in the domain with no gravity force. 

The pressure difference between the inside and outside of the bubble is calculated by 

the LBM with phase-field modeling. The calculation results are compared with the 

theoretical solution to verify the suitability of the LBM. A circular bubble is located at 

the center of the two-dimensional domain. The density ratio is set to be 1000 to simulate 

a high-density ratio.  

According to Laplace law, the pressure difference between the inside and outside of 

a two-dimensional bubble at equilibrium is related to the surface tension by 

in outp p p
R


    ,        (30) 

where Δp is the pressure difference across the interface; and R is the bubble radius. The 

pressure p in the free-energy model is related to the pressure tensor defined by [7, 18, 

32] 

 
2

ij ij ij i jp          
 

P .      (31) 

The numerical result for the pressure can be calculated by 
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   
24 *2 2 *4 23 2

2
p a nRT


              .    (32) 

To eliminate errors induced by the interfacial layer width, the pressure difference is 

calculated by averaging the pressures inside and outside the bubble at a lattice point 

away from R ± W. 

To evaluate the bubble radius (R) during the calculation, we adopt the effective 

bubble diameter (for a two-dimensional bubble in simulations), which is defined by 

4
e

A
D


 ,         (33) 

where A is the area of the bubble (ϕ < 0). 

In this calculation, we adopt the following convergence criterion 

 2 2 2 2 12

1 1max 10n n n nu v u v 

     ,      (34) 

in which u and v are the velocity components in the x and y directions, respectively. 

A circular bubble with radius (R) is located at the center of the domain. The mesh 

size is taken as 5R × 5R. The periodic boundary condition is adopted at all boundaries. 

The densities are set to be ρH = 1000, and ρL = 1. The mobility coefficient (Γ) is chosen 

as 100. The single relaxation time is set as τn = 0.875 and τϕ = 0.7. The parameter W, 

which can govern the numerical interfacial thickness, is set to 5. We adopt the order 

parameter profile along the direction normal to a bubble interface z by [22] 

* 2
tanh

z

W
 

 
   

 
,        (35) 

where z is the position of the interfacial layer. The initial order parameter ±ϕ* is set to be 

±499.5, which corresponds to the density difference.  
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To investigate the pressure variations with different radii and the surface tensions, 

we take the surface tension coefficients (σ) as 0.1, 0.2, and 0.3, respectively. The radii 

(R) are set to 10, 20, 30, 40, 50, and 60. 

 

 

Figure 2. The density profile between the two-phase fluids at steady-state. 

 

Figure 2 describes the density difference between the two-phase fluids at steady-state. 

The density of the bubble inside and outside are generated in the same way as the initial 

condition (ρH = 1000, ρL = 1), respectively. In the interfacial region, the density is 

smoothly changed to prevent an abrupt shift by the interfacial layer thickness parameter 

(W). 
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Figure 3. The order parameter (ϕ) profile along the interface of the bubble. 

 

Figure 3 displays the order parameter at all the lattice points as a function of the 

distance from the center of the bubble. All data points from the simulation agree well 

with the analytical curve as calculated from Equation (35).  

Due to finite lattice directions and the isotropic derivatives in the LBM, spurious 

currents can be generated in the simulation of two-phase system and the eight symmetric 

eddies with very small magnitude velocity (10-8) are formed, as shown in Figure 4.  
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Figure 4. Streamline of spurious currents around the single bubble. 

 

Figure 5 shows the time variation of the maximum spurious velocity in the domain. 

It is seen that the maximum velocity decreases by an order of 10-8, and that the 

magnitude of currents are smaller than the Lee-Fischer LB model (10-5).  
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Figure 5. The time evolution of the maximum velocity for a single bubble. 

 

Figure 6 presents the pressure variations with a function of radius for three different 

surface tensions in the stable state. Stationary bubbles with different radii are generated 

in the domain. It is seen that the LBM results are in good agreement with the theoretical 

solutions plotted by the solid lines. 
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Figure 6. Variation of pressure with different radii for three different surface tension 

values. 

 

To study the effect of the interface layer thickness parameter (W), several 

simulations have been performed with W as 1, 2, 3, 4, 4.5, 5, 5.5, and 6. Figure 7 shows 

the bubble with initial state.  
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 (a) W = 1                 (b) W = 2           (c) W = 3            

 

(d) W = 4                 (e) W = 5             (f) W = 6         

Figure 7. Interfacial thickness for a single bubble at the initial state. 

 

As can be seen in Figure 8, it can be seen clearly that the numerical result approaches 

the analytical solution as the thickness of the interface layer increases. When the 

interface layer width is bigger than 5, the numerical result changes very little and 

matches the analytical value. This is because the discretization error decreases with the 

interface layer [17]. 
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Figure 8. The influence of the varied interfacial layer width. 

 

Figure 9 depicts the order parameter profile as a function of the radial distance from 

the center of the steady-state bubble with different interfacial layer thickness. As can be 

seen, the numerical results agree well with the analytical solution given by Equation (35) 

as the interfacial layer width increases. When the interface layer thickness is larger than 

5, the numerical curve shapes match the analytical results very well.  

A proper initial value of W for the stable and correct numerical simulation has to be 

chosen from the results of the numerical experiments. Of course, the method of 
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initialization may depend on the simulation problem. However, the initial condition 

closer to the equilibrium solution is recommended. 
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Figure 9. The order parameter profile along the interface of the stationary fluid. 

 

In the LBM with phase-field modeling, the distribution of the initial order parameter 

(ϕ*) from the phase densities plays an important role in the calculation. Figure 10 shows 

the initial bubble shape comparison of the initial bubble shape with or without the 

analytical order parameter distribution. 
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(a) With analytical solution 

 

(b) Without analytical solution 

Figure 10. The comparison of the initial order parameter distribution with or without 

the analytical solution for a two phase circular interface layer. 
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An improper initialization may increase the numerical fluctuation and instability 

across the interface layer and it can induce the error of pressure difference between the 

inside and outside of the bubble as Table 1 shows.  

 

Table 1. The pressure difference between the inside and outside of the bubble.  

Order parameter initialization Numerical Δp Theoretical Δp Error in LBM (%) 

Without analytical solution 5.82e-03 5.00e-3 +16.42 

With analytical solution 4.97e-03 5.00e-3 -0.67 

 

Due to the order parameter (ϕ), distribution is imperfect compared with the analytical 

solution; the radius of the bubble fluctuates during the initial period because of curvature 

effects needing accommodated. 

The time variation of the bubble radius at the different initial interface conditions are 

shown in Figures 11 and 12, respectively. From these figures, it is obvious that the 

bubble radius with analytical order parameter initialization recovers its initial value at 

the steady-state, and that the fluctuation of the radius is smaller than without analytical 

order parameter initialization. 

Conversely, the bubble radius without analytical order parameter initialization is 

reduced to 0.9984 from the initial radius ratio of 1. 
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Figure 11. Time evolution of the bubble radius ratio with analytical order parameter. 
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Figure 12. Time evolution of the bubble radius ratio with non-analytical order parameter. 
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Moreover, the order parameter distribution without analytical solution can generate 

larger spurious velocities than the distribution by analytical solution can, as shown in 

Figures 13 to 14. With the non-analytical solution order parameter distribution, the 

maximum velocity is increased from 10-8 to 10-7 by. 

According to the verification of the order parameter distribution with or without 

analytical solution, the order parameter should be initialized with the analytical result not 

to produce any large fluctuations, which can lead to numerical instability.  

 

 

Figure 13. The velocity field for a single bubble without analytical solution order 

parameter initialization at the steady state. 
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Figure 14. The velocity field for a single bubble with analytical solution order parameter  

       initialization at the steady state. 

 

 

 

 

 

 

 



 27 

Capillary wave 

While the test of a single bubble in the stationary liquid bubble allows us to verify 

the equilibrium state, the simulation of the capillary wave can provide another effective 

way to test the interfacial dynamics. In this test, we can validate the capability of the 

LBM with phase-field modeling with a moving interfacial layer. 

In this simulation, a sinusoidal interface in the middle separates a rectangular domain. 

Two different fluids with high-density ratios (1000) are located vertically across the 

interface. 

If a plane interface is deformed in a wave-like manner, the order parameter will be 

distributed along the interfacial layer. The order parameter difference can induce 

positive and negative pressures, which will arise on the interface different sides. Under 

the influence of the surface tension and viscous forces, the interface undergoes a damped 

oscillation in the viscous fluid.  

Here, the order parameters are initialized as a sinusoidal curve around y = NY/2 of 

one wave length NX, 

* 2
tanh sin

2
w

NY
y a x

W
  

  
    

  
,     (36) 

where a is the initial amplitude. 

constant
a

NY
 ,        (37) 

and κw is the wave number 
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w
NX

 




 
  .        (38) 

Here, NX and NY are the width and height of the domain, respectively. 

At each time step, the height of the interface layer is measured. Since the position of 

the interface may not lie on the grid point, the interpolation method is chosen 

 

   1

iy
y iy

iy iy



 
 

 
,       (39) 

where  

   1 0iy iy    .        (40) 

From the position of the interface layer, we can measure the time difference between 

the neighboring peak points, and calculate the oscillation period. Then, the numerical 

angular frequency can be calculated by 

2

T


  ,         (41) 

where ω and T are the angular frequency and the oscillation period, respectively. 

Chandrasekhar gave an analytic solution for the case of two separated fluids with the 

same kinematic viscosity. In the long-wavelength limit, the decay rate and the oscillating 

frequency of an initially disturbed interface in the form of a sinusoidal perturbation 

could be calculated by taking the real and imaginary parts of the following relation, 

respectively 

 2 2 1wn y   .        (42) 

where y is the physically meaningful roots of the following equation, 
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   4 3 24 2 1 6 4 1 3 1 4 0y y y y s            ,   (43) 

in which  

   2 2
,H L

w H LH L

s
  


    

 


.     (44) 

Different fluids are located the upper and lower side from the middle of domain. The 

mesh size is taken as 64 × 256. The bounce-back boundary condition is employed on the 

upper and lower walls, and the x-direction boundary condition is periodic. The same 

viscosity is used in the two phases to satisfy the prerequisite of the analytical solution. 

The densities are set to be ρH = 1000, and ρL = 1. The mobility coefficient (Γ) is chosen 

as 0.1. The single relaxation time is set as τn = 0.6 and τϕ = 0.8, respectively. The 

parameter W is set to 5; and the a/NY is 0.02. The surface tension coefficient (σ) is taken 

as 0.521. We adopt the order parameter profile along interfacial layer given by the 

Equation (36).  

The two-phase fluids can be divided by the order parameter distribution as shown in 

Figure 15.  Due to the sinusoidal perturbation along the interface layer, the pressure 

difference can be generated as shown in Figure 16. As the time step progresses, the 

surface tension and viscous forces dampen the interfacial layer to the equilibrium state 

by as shown in Figure 17. 
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Figure 15. The order parameter distribution along the interfacial layer. 
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Figure 16. The pressure difference on the plane interface layer. 
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(a) t = 1000          (b) t = 2000          (c) t = 3000          (d) t = 4000        (e) t = 5000 

 

  (f) t = 6000          (g) t = 7000          (h) t = 8000         (i) t = 9000          (j) t = 10000 

Figure 17. The process to the equilibrium state of the capillary wave. 
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From the given parameters, we can calculate the angular frequency of the capillary 

wave as shown in Table 2. As can be seen, the simulation values agree well with the 

theoretic results. 

 

Table 2. The angular frequency of capillary wave. 

ω (LBM) ω (Theory) Error in LBM (%) 

4.9307E-04 4.9389E-04 -0.1655 

 

To investigate the effect of mobility coefficient Γ, we adopt various Γ as 0.02, 0.1, 1, 

50, 100, and 200. Figure 18 depicts that as Γ is decreased the numerical values of the 

angular frequencies agree with the analytic results. However, very small Γ will cause 

numerical instability. 
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Figure 18. The LBM error with varied Γ of the capillary wave. 
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The coalescence of two droplets (or bubbles) 

The coalescence of droplets (or bubbles) arises in many physical situations, 

including boiling, rain, emulsions, ink-jets, and many two-phase fluids. In this 

subsection, we will show that the LBM can be used to simulate the fundamental 

phenomena of the coalescence. 

We consider two stationary liquid droplets (or bubbles) without collision in the two-

dimensional domain. The density ratios of droplet to vapor and liquid to bubble are set to 

1000. 

When two droplets (or bubbles) come in contact, a connecting bridge is formed 

between them. Figure 19 shows the experimental image for the coalescence of two water 

droplets [33].  

 

 

 

Figure 19. Experimental image of the coalescence of two water droplets. 
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Due to surface tension forces, the connecting bridge thickens rapidly. The speed of 

the bridge increment originates from the mutual competition between the inertial forces 

driving coalescence and the viscous forces slowing it down [34]. 

The relationship between viscous and inertial force can govern the coalescence 

process. It can be characterized as the Reynolds number defined by 

Re

br







 
 
 

,        (45) 

where ρ is the density of droplet; rb is the radius of the connecting bridge; σ is the 

surface tension coefficient; and μ is the dynamic viscosity.  

For Re < 1, the viscous force (viscous coalescence) dominates the coalescence, while 

for Re > 1, the inertial force (inertial coalescence) governs it. The crossover between 

viscous and inertial coalescence will occur at Re = 1.  

For merging low viscosity droplets (or bubbles), the inertial coalescence is the 

dominant process. To evaluate the temporal evolution, bridge radius rb and time t can be 

non-dimensionalized as 

*

0

brr
R

 ,         (46) 

*

i

t
t


 ,         (47) 

where R0 is the initial droplet (or bubble) radius, which is assumed to be same for both 

droplets (or bubbles); and τi is the inertial time given by 

3

0
i

R



 .         (48) 
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Two circular water droplets (or bubbles) with radius R0 are located vertically with a 

gap of d. The computational domain is adopted as 5R0 × 10R0. The periodic boundary 

condition is taken at all boundaries. The density ratio is set as 1000 (ρH = 1000, ρL = 1). 

The parameters are chosen as R0 = 20; σ = 0.1; τn = 0.6; τϕ = 0.7; and Γ = 40. The gap of 

the two bubbles (d) and the width of the interface (W) are set to 4.  

Figures 20 and 21 show the coalescences of two droplets and bubbles. Due to the 

intermolecular attraction, the two droplets (or bubbles) generate a bridge. Then, the 

surface tension force widens the bridge. At the steady-state, the shape of the two droplets 

(or bubbles) turns into the circle. 

Figure 22 depicts the comparison of the variation of the non-dimensional bridge 

radius r* as a function of the square-root of the non-dimensional inertial time t* between 

the present LBM result and the experiment for low viscosity fluids [35]. The non-

dimensional bridge of droplets is proportional to non-dimensional inertial time as shown 

in Figure 22 for the simulation and experimental results. The simulation result agrees 

well with the experimental data.  
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(a) t = 10000               (b) t = 50000             (c) t = 100000             (d) t = 150000 

 

(e) t = 180000            (f) t = 200000            (g) t = 220000             (h) t = 300000 

Figure 20. The coalescence of two stationary droplets.  
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(a) t = 10000               (b) t = 50000             (c) t = 100000             (d) t = 110000 

 

(e) t = 120000            (f) t = 150000            (g) t = 200000             (h) t = 300000 

Figure 21. The coalescence of two stationary bubbles.  
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Figure 22. The variation of the non-dimensional bridge radius r* as a function of the 

square-root of the non-dimensional inertial time t* for low viscosity fluid. 

 

Next, to study the effect of the mobility coefficient on the initial contacting time step, 

Γ is set to 10, 20, 40, 80, 160, and 320 for the droplets and bubbles, respectively. The 

other parameters remain unchanged.  
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Figure 23. The initial contacting time step with various Γ. 

 

The simulation results of the droplets and bubbles show exactly the same value. As 

the mobility coefficient (Γ) is increased, the initial contacting time step between bubbles 

is reduced because the large Γ (Figure 23) can effect the diffusivity of the bubbles 

interfacial layer.  
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A single bubble rising under buoyancy 

As a fundamental subject of bubble dynamics, many researchers have simulated the 

two dimensional single bubble under buoyancy [24, 36-44].  However, there are still 

unresolved questions about the flow field surrounding the bubble.  

We simulate two-dimensional, two-phase fluid motions under gravity. The 

experimental results for a single rising bubble are usually communicated by some non-

dimensional parameters, which characterize the rising bubble dynamics. The important 

dimensionless parameters are Eötvös number, Morton number, and Reynolds number 

[24] 

  2

H Lg D
Eo

 




 ,        (49) 

  4

3

H L Hg
M

  




 ,        (50) 

Re T

L

u D


 ,         (51) 

where g is the gravitational acceleration; D is the bubble diameter; νL is the kinematic 

viscosity of the high density phase; and uT is the terminal velocity of the rising bubble 

Hereafter, the effect of body force to bubble regime is defined by, 

 b g n  F , where ϕ < 0,       (52) 

in which Δn is the number density difference and the gravitational acceleration in 

pointing downward. The bubble will rise at a nearly constant velocity as the balance 

between the buoyancy and drag force. In fact, the velocity of the bubble is not constant 
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because there are some oscillations during the rising process. The bubble velocity is 

calculated by 

bubble








u
u ,where ϕ < 0.       (53) 

To study the properties of the bubble with various density ratios, two types of 

simulation are conducted with a low and high-density ratio, respectively. In the first test, 

stationary walls surround the bubble. The bubble radius (R) and the domain size are set 

as 10 and 8R × 30R, respectively. The bubble is located at the lower region (quarter of 

the height) of the computational domain. The Bounce-Back boundary condition is 

specified on the bottom and top walls of domain and the horizontal side boundaries are 

assumed to be periodic. The density of each phase and the surface tension coefficient are 

the same as those used by Takada et al. [24], ρH = 1.42; ρL = 0.58; and σ = 0.00521. The 

parameters of the interfacial layer width (W) and the mobility parameter (Γ) are taken as 

5 and 0.05, respectively. The initial order parameter is distributed by Equation (35) 

along the interfacial layer. The relaxation time parameters are set as τn = τϕ = 0.0875. 

Next, we simulate a bubble rising case with a large density ratio. A bubble (R = 30) 

is located in the domain 30R × 30R. The initial center position of bubble is (450, 225). 

The boundary condition is same as the first test. The densities are set as ρH = 1000, and 

ρL = 1.The surface tension coefficient is taken as 2. The relaxation time and mobility 

parameter are chosen as τn = τϕ = 0.959, and 100, respectively. 
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To investigate the terminal velocity and the shape of the bubble in the first test (low 

density ratio), the several simulations are performed under different parameters as shown 

in Table 3. 

 

Table 3. The parameters for the simulation of a bubble rising under buoyancy. 

Cases Eo M Gravity magnitude 

1 5 0.2267 7.7529E-05 

2 10 0.4535 1.5506E-04 

3 20 0.9070 3.1011E-04 

4 40 1.8134 6.2023E-04 

 

In the second test, the varied Eötvös number and Morton number are taken to 

observe the properties of the bubble with a high-density ratio as shown in Table 4. 

Due to the buoyancy force, the bubble will move upward. Meanwhile, the friction of 

surrounding fluid will deform the central part of the bubble. When Eo = 5, the shape of 

the bubble does not change too much. However, as Eo increases from 5 to 40, the bubble 

will deform more as shown in Figure 24. This is because the gravity magnitude 

(buoyancy force) will be proportional to the Eo. 
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Table 4. The parameters for the bubble rising simulation with large density ratio. 

Cases Eo M Gravity magnitude 

5 15.984 0.6097 8.8889e-06 

6 39.96 1.52425 2.2222e-05 

7 79.92 3.0485 4.4444e-05 

8 239.76 9.146 1.3333E-04 

 

t = 10000 t = 6000 t = 3500 t = 2200

 

(a) Case 1                   (b) Case 2                    (c) Case 3                   (d) Case 4       

 Figure 24. The bubble shapes under different conditions. 
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Table 5. The terminal velocity of a rising bubble with buoyancy. 

Cases uT (present) uT (Takada) uT (VOF) 

1 7.81e-3 7.82e-3 8.28e-3 

2 1.35e-2 1.38e-2 1.43e-2 

3 2.11e-2 2.17e-2 2.15e-2 

4 3.28e-2 3.11e-2 3.08e-2 
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Table 5 shows the comparisons of the bubble terminal velocity with other numerical 

results. It can be easily observed that they agree well with the VOF method and Takada 

et al [24]. 

Figure 25 shows the terminal bubble shapes of four cases. The present results of 

shape agree well with the experimental findings of Crift et al. From this figure, it can be 

clearly observed that the bubble shapes gradually change from ellipsoidal to skirted. 

Equation (48) indicates the increase of Eo is equivalent to the increment of the gravity 

magnitude. Due to the buoyancy force associated with the gravity magnitude, the degree 

of deformity and the terminal velocity are increased.  

For all the cases, a pair of vortices is formed inside bubble the first time. Then, the 

bubble refloats by the buoyancy force. Meanwhile on the bubble rising, the middle part 

of the bubble starts deforming due to the surrounding water. By the Eo increment, the 

flow patterns become more complex as shown in Figures 26 to 45. For all cases, the 

bubble is always kept symmetric and a wake flow is developed behind the bubble.  
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Figure 25. The comparison of bubble shape between the LBM and experimental results. 
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Figure 26. The flow pattern and shape of a bubble rising (case 5, t = 1000). 

 

 

Figure 27. The flow pattern and shape of a bubble rising (case 5, t = 5000). 
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Figure 28. The flow pattern and shape of a bubble rising (case 5, t = 10000). 

 

 

Figure 29. The flow pattern and shape of a bubble rising (case 5, t = 15000). 
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Figure 30. The flow pattern and shape of a bubble rising (case 5, t = 20000). 

 

 

Figure 31. The flow pattern and shape of a bubble rising (case 6, t = 1000). 
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Figure 32. The flow pattern and shape of a bubble rising (case 6, t = 5000). 

 

 

Figure 33. The flow pattern and shape of a bubble rising (case 6, t = 10000). 
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Figure 34. The flow pattern and shape of a bubble rising (case 6, t = 15000).  

 

 

Figure 35. The flow pattern and shape of a bubble rising (case 6, t = 20000).  
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Figure 36. The flow pattern and shape of a bubble rising (case 7, t = 1000). 

 

 

Figure 37. The flow pattern and shape of a bubble rising (case 7, t = 3000).  



 55 

 

Figure 38. The flow pattern and shape of a bubble rising (case 7, t = 6000).  

 

 

Figure 39. The flow pattern and shape of a bubble rising (case 7, t = 9000).  
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Figure 40. The flow pattern and shape of a bubble rising (case 7, t = 12000).  

 

 

Figure 41. The flow pattern and shape of a bubble rising (case 8, t = 500).  
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Figure 42. The flow pattern and shape of a bubble rising (case 8, t = 1000).  

 

 

Figure 43. The flow pattern and shape of a bubble rising (case 8, t = 1500).
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Figure 44. The flow pattern and shape of a bubble rising (case 8, t = 2000).  

 

 

Figure 45. The flow pattern and shape of a bubble rising (case 8, t = 2500).  
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Two bubble rising under buoyancy  

To understand the multiple bubble dynamics – the bubble shape deformation and the 

bubble coalescence –, we apply the LBM with phase-field modeling to two bubbles in a 

liquid with buoyancy force.  

Two bubbles with radius (R = 20) are located in the domain 5R × 30R vertically. The 

initial distance between the centers of bubbles is set as 4R. The no-slip boundary 

condition is specified on the top and bottom walls of domain, and the side boundaries are 

assumed to be periodic. The density ratio is set to be 1000 (ρH = 1000, ρL = 1). The 

surface tension coefficient and Γ are chosen as 0.5 and 100, respectively. The interfacial 

layer thickness (W) is taken as 5. The Morton number is set to be 1. 

To investigate the influence of the Eötvös number is varied as shown in Table 6.  

 

Table 6. The parameters for the multi bubble rising simulation with large density ratio. 

Cases Eo Gravity magnitude 

1 3 9.3843e-07 

2 30 9.3843e-06 

 

The simulated bubble movements in the cases 1 and 2 are shown in Figures 46 to 51 

and Figures 52 to 59, respectively. From the terminal velocity, the Reynolds numbers of 

each case are 0.788, and 8.40, respectively. 
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During the rise of bubble, two signed vortices are created in the wake of the upper 

bubble. This produces a lower pressure region behind the upper bubble. Therefore, the 

front portion of the lower bubble becomes narrower and sharper. The head of the lower 

bubble almost catches up with the bottom of the upper one. In the next moment, the two 

bubbles merge into a single one. At this time, viscosity and surface tension rapidly 

smooth out the bridge radius of the bubbles. 

Bubble coalescence in case 1 is shown in Figures 46 to 51. Due to the considerable 

rigidity of the bubbles, the liquid rather quickly becomes squeezed out of the space 

between the bubbles, and the bubbles merge. 

Bubble coalescence in case 2 (Figures 52 to 59) apparently differs from the previous 

case because of the strong influence of the upper bubble's wake, and the weak secondary 

vortices appear right under the bubble bottom (Figure 54). When the lower bubble 

catches up with the upper bubble's wake, it starts to rise much faster and its top becomes 

narrower. The lower bubble tends to merge with the upper one, but the secondary 

recirculation under the bottom of the upper bubble precludes an immediate merger. The 

front of the lower bubble stretches along the bottom of the upper bubble, and, in the next 

moment, the lower bubble's top merges with the center of the upper bubble's bottom. The 

recirculating liquid between the bubbles is rapidly squeezed out, and the bubbles form a 

single, dimpled ellipsoidal bubble.  
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Figure 46. The flow pattern and shape of two rising bubbles (case 1, t = 2000).  

 

 

Figure 47. The flow pattern and shape of two rising bubbles (case 1, t = 350000).  
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Figure 48. The flow pattern and shape of two rising bubbles (case 1, t = 370000).  

 

  

Figure 49. The flow pattern and shape of two rising bubbles (case 1, t = 380000).  
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Figure 50. The flow pattern and shape of two rising bubbles (case 1, t = 400000).  

 

 

Figure 51. The flow pattern and shape of two rising bubbles (case 1, t = 600000).  



 64 

  

Figure 52. The flow pattern and shape of two rising bubbles (case 2, t = 1000).  

 

  

Figure 53. The flow pattern and shape of two rising bubbles (case 2, t = 5000).  
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Figure 54. The flow pattern and shape of two rising bubbles (case 2, t = 10000).  

  

Figure 55. The flow pattern and shape of two rising bubbles (case 2, t = 15000).  
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Figure 56. The flow pattern and shape of two rising bubbles (case 2, t = 20000).  

  

Figure 57. The flow pattern and shape of two rising bubbles (case 2, t = 25000).  
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Figure 58. The flow pattern and shape of two rising bubbles (case 2, t = 30000).  

  

Figure 59. The flow pattern and shape of two rising bubbles (case 2, t = 40000). 
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CHAPTER IV 

CONCLUSIONS 

 

In this thesis, we used a LBM with phase-field modeling to simulate various two-

phase problems. 

First, the present two-phase modeling method was validated for stationary and 

moving two-phase interfaces by comparing with theoretical solutions for a single static 

bubble in a stationary liquid and a capillary wave, respectively. In addition, the 

capability of the current method to simulate the coalescence of two bubbles and droplets 

was validated by comparing it with experimental data. 

The method was applied to a single and double bubble rising problems. For a single 

bubble problem, bubble shapes and terminal Reynolds number agreed well with 

experimental results for different fluid dynamic conditions (Eötvös, and Morton 

numbers). For the double bubble case, the current method could capture the interaction 

between bubbles, as well as each bubble dynamics. As a result, the present method can 

simulate multiphase fluids with large density ratios and the coalescence in the two-

dimensional isothermal case. 

This method is expected to extend to three-dimension multiphase flow problems by 

simply adopting the three-dimensional LBM (D3Q19) instead of the D2Q9 LBM. It is 

also predicted that the adoption of the multiple relaxation time model in the collision 

step can improve the numerical stability even with small relaxation time; thus, 
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simulating high Reynolds number multiphase flows. In addition, to simulate convective 

subcooled boiling, we need to couple thermal models with the present method.  

It is hoped that these improvements will lead to a better understanding of various 

multi-phase interactions and flow patterns. The development of capability to predict 

convective subcooled boiling heat transfer in the nuclear reactor core will be further 

pursued.  
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