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ABSTRACT

Geometric Design of Spherical Serial Chains

with Curvature Constraints in the Environment. (August 2011)

Anurag Bharadwaj Tolety, B. Tech., Indian Institute of Technology, Kharagpur

Co–Chairs of Advisory Committee: Dr. Mehrdad Ehsani
Dr. Nina P. Robson

This research builds up on recent results in planar kinematic synthesis with

contact direction and curvature constraints on the workpiece. The synthesis of spher-

ical serial chains is considered to guide a rigid body, such that it does not violate

normal direction and curvature constraints imposed by contact with objects in the

environment. These constraints are transformed into conditions on the velocity and

acceleration of points in the moving body to obtain synthesis equations which can

be solved by algebraic elimination. Trajectory interpolation formulas yield the move-

ment of the chain with the desired contact properties in each of the task positions.

Example shows the application of the developed theory to the failure recovery of a

robot manipulator.
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CHAPTER I

INTRODUCTION

Recent results on planar kinematic synthesis with contact directions and curvature

constraints on the work piece [1] are expanded upon in this paper. The design of

spherical linkages based on the contact and curvature constraints imposed on a work

piece is considered. The specifications on the end points of the end effector which

are in contact with objects in the environment are transformed into specifications on

the end effector origin and frame orientation. These specifications are then used to

synthesize serial TS chains. A Robotic Arm fixed on a Surface Mobility Platform

(SMP) is used to show the application of serial chain synthesis to failure recovery of

the Robotic Arm.

A. Mechanical Design Principles

Engineers build systems. System can be defined as an assemblage of sub-systems,

hardware and software components, and people, designed to perform a set of tasks

to satisfy specified functional requirements and constraints. Each of these systems

performs many functions. The design of effective systems is the goal of many fields as

engineering, business and government. System design has lacked a formal theoretical

framework and thus, has been done heuristically/empirically. Heuristic approaches

emphasize qualitative guidelines. After systems are designed they are sometimes

modeled and simulated. In many cases they have to be constructed and tested. All

these processes are done to improve the design after heuristic design solutions are

implemented in hardware and software. Such an approach to system design includes

The journal model is IEEE Transactions on Automatic Control.
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both technical and business risks because of the uncertainties associated with the

performance and quality of a system that is created by means of empirical decisions.

Other approaches to check or optimize the system that have been already de-

signed are dimensional analysis, decision theory and others. There are three issues

with these approaches. First, they do not provide tools for coming up with rational

system design, beginning from the definition of the design goals. Secondly, some of

these methods simply confirm the result, if systems are correctly designed. Thirdly,

they are not general principles for system design since they can not be applied to

non-phisical systems such as software.

Systems with many functional Requirements (FRs), physical components and

lines of computer codes can be complex in the sense that the probability of satisfying

the highest FRs decreases with increase in the number of FRs and design parameters

(DPs). One of the goals of axiomatic approach [2] is to reduce this complexity by being

able to make right design decisions at all levels. From axiomatic design point of view,

systems , machines and software must satisfy functional requirements, constraints,

the Independence Axiom and the Information Axiom.

The first step in designing a system is to determine the customer needs (CNs) in

the customer domain that the system must satisfy. Then, the FRs and the constraints

(Cs) of the system in the functional domain are determined to satisfy the customer

needs. The FRs must be determined without thinking about the solution, so as to

come up with creative ideas. The FRs are defined as the minimum set of independent

requirements that the design must satisfy.

The next step in axiomatic design is to map these FRs of the functional domain

into the physical domain, conceiving the design embodiment and identifying the DPs.

The DPs must be chosen so that there is no conflict with the constraints.

During the mapping process, the design must satisfy the Independence Axiom,
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which requires that the functional independence be satisfied through the development

of an uncoupled/decoupled design. In an ideal design the number of FRs and DPs

is equal, a consequence of the Independence Axiom and Information Axiom. The

Information Axiom states that the design that has the least information content

is the best design. This axiom provides a guide in selecting DPs, in addition to

providing the selection criteria for best design among those designs that satisfy the

Independence Axiom. Through the use of both axioms, one can easily optimize a

multi-FR design solution.
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CHAPTER II

LITERATURE SURVEY: GEOMETRIC DESIGN OF MECHANICAL

LINKAGES WITH TASK CONSTRAINTS

Research in the synthesis of serial chains to achieve acceleration requirements related

to curvature is limited. It is primarily found in the synthesis theory for planar RR

chains, and the work by Chen and Roth [3] for spatial chains.

A. Geometric Design of Mechanical Linkages

The term kinematics defines the branch of mechanics which deals with the motion

without considering the forces associated to it. It includes positions, velocities, accel-

erations and higher derivatives. A mechanical system consists of a series of rigid links

connected by joints. The joints allow relative movement of different type between

elements. Although any type of joint mechanism can be used to connect the links of

a robot, traditionally the joints are chosen from a set of six mechanisms called lower

pairs. These special type of mechanisms are revolute, prismatic, helical, cylindrical,

spherical and planar joints. Most modern manipulators consist of a set of rigid links

connected together by a set of joints. Motors are attached to the joints so that the

overall motion of the mechanism can be controlled to perform a given task. A tool,

typically a gripper of some sort is attached to the end of the robot to interact with

the environment.

In the geometric design problem, also known as Rigid Body Guidance Problem,

the designer specifies a certain task to be performed by a mechanical system. There-

fore, major part of the design of a mechanism is the choice of type of the mechanical

system, capable of realizing the task.The design process involves finding the most ap-

propriate solution to satisfy a set of functional requirements (FRs). Among the FRs
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are those, related to the movement of the manipulator, while others may be related

to different factors such as repeatability, cost, etc. It is the designers goal to calculate

the design parameters (DPs) and to create a mechanical system that fits the best to

the given task and at the same time agrees with a set of FRs. This problem is also

called in literature as Geometric Design Problem. The precision points are usually

described by three parameters (two for position and one for orientation) in plane and

six parameters - three for position and three for orientation for spatial problems.

Traditionally, the robots are designed in such a way that the desired task needs

only to lie inside the higher dimensional workspace of the robot by adjusting its

link dimensions. Then, path-planning and control algorithms are used to solve the

problem of reaching the task. However, such a general scheme is not needed in many

cases and the actual way of designing a robot is using a trial and error approach, i.e.

the only FRs are the needed degrees of freedom and a sketch of the desired work-

space. The design is analyzed and its movement is compared to the desired task. If

it is not satisfactory, the designer modifies some of the characteristics of the robot

and analyzes it again. It is obvious that improvements are needed to be done in the

design of robotic systems.

The geometric design of a mechanical system includes the following four main

steps: task specification, choice of kinematic structure or topology selection, dimen-

sional synthesis of the chosen mechanism and detailed design. Essentially, the de-

signer’s goal is to find a mechanism whose workspace contains the desired task. Of

course, there are requirements for the workspace to be with the smallest possible

dimensions, simple control scheme and path planning.
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1. Task Specification

The Task is specified in several ways - either as a set of distinct points, an approximate

path or as a region in which the robot can move. An assessment of the relation

between positions and final design is made by the designer.

2. Topology Selection

The selection of a mechanism depends on matching the degrees of freedom with

the type. The mechanical system is considered at it’s most basic level. Several

solutions for structuring the problem have presented in the past. Fang and Tsai [4]

developed a systematic approach for structural synthesis for a class of 4-DOF and

5-DOF over-constrained parallel manipulators, based on the theory of screws and

reciprocal screws. Different types of parallel structures [5], [6], [7], [8], [9] were based

on Fang’s and Tsai’s approach.

3. Dimensional Synthesis

This part consists of making modifications to the workspace of the kinematic struc-

ture to approximate the task specification. Two categories of solutions exist here:

approximate and exact synthesis [10].

Optimization algorithms are used by approximate synthesis such that even though

the rigid body does not pass through the desired poses [11], [12], [13], [14], [15], [16],

[17], [18].

Many researchers studied the dimensional/geometric synthesis of planar mecha-

nism. Prominent among them are Roth’s analytic design of two revolute open chains

[19] in 1986, Innocenti’s solution of the spatial Burmester problem in 1994 [20], and

McCarthy’s work on mechanism theory and robot design [21], [22] in 2000.
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Perez and Mccarthy made contributions to the dimensional synthesis of mecha-

nisms based on dual qauternion methodology for the synthesis of constrained robotic

systems [23], [24], [25], [26], [27], [28]. In [29], Perez and McCarthy showed that

the relative kinematics equations of a serial chain appear in the matrix exponential

formulation of the kinematics equations for a robot manipulator. Also, see related

work of Walbrecht, Su, Perez and McCarthy [30], Su, McCarthy, Wampler [31], Soh,

Perez and McCarthy [32] and Perez, McCarthy at al [33].

A new set of design equations for the geometric design problem involving three

link manipulator was put forward by Lee and Mavroidis [34], [35], [36], [10], [37],

[38]. They use compuational methods to solve the open problems in design. Su and

McCarthy [39], [40], [41] presented the design of a number of spatial constraint serial

chains and formulated their solutions. General cases of CS and RPS polynomial

systems were presented for the first time. The design equations for spatial SS chains

for finitely and infinitesimally separated positions is found in Chen and Roth [3]. The

case of seven finitely specified task positions is solved in Innocenti [20] and further

studied by Liao and McCarthy [42].

This research is inspired by the work of Rimon and Burdick [43] who, in the

mid nineties, introduced a novel configuration space method for analyzing the rel-

ative mobility of a body in frictionless contact with rigid stationary bodies. The

authors studied the 1-st order properties of body’s free motions, and relate them to

Screw Theory. They introduce a mobility index that measures the effective 1-st order

mobility of body in an equilibrium grasp. This index is shown to be a function of

the number and location of the contact points. Examples show that the 1-st order

mobility theory can not adequately differentiate between different equilibrium grasps

involving the same number of fingers. This motivates the development of a 2-nd or-

der theory in the companion paper [44]. The analysis leads to a 2-nd order mobility
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index, that captures the inherent body mobility in an equilibrium grasp. The index

differentiates between grasps, which are considered equivalent by the first order, or

instantaneous theories, but are physically different. The authors show that 2-nd or-

der effects can be used to lower the mobility of an equilibrium grasp and can be used

to prove lower bound on the number of contacting bodies needed to immobilize an

object.

Our goal is to consider how this viewpoint can be used to synthesize a linkage

that guides body such that it satisfies obstacle constraints. In the next chapter, the

planar case is explained. We then move on to the spherical case.

B. Summary of Literature Survey

There are two fundamental approaches to current research in geometric design of

robotic systems to achieve workspace specifications: (i) approximate synthesis of

platform systems which generally begins with a platform topology and optimizes

its dimensions to obtain a desired distribution of manipulability, a velocity based

metric; and (ii) exact synthesis which generally focusses on single serial chains and

computes the dimensions of the chain to achieve a specific set of task positions.

Explicit computation of the dimensions of a chain to satisfy the task requirements is

involved in Exact Synthesis. This results in an increase in the complexity once the

number of design parameters increase. On the the other side, approximate synthesis

can handle large no. of design parameters at the cost of finding an approximate

solution.

The focus of this dissertation is on exact synthesis for workspace constraints

that include acceleration, with the goal of obtaining all the solutions to a given

task specification. Rimon and Burdick in [43], [44] show that acceleration properties
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of movement can be used to effectively constrain a rigid body for part-fixturing and

grasping applications. Research in the synthesis of serial chains to achieve acceleration

requirements related to curvature is limited. It is primarily found in the synthesis

theory for planar RR chains, and the work by Chen and Roth [3] for spatial chains.

The research proposed here develops a methodology for the exact synthesis of

serial chains to achieve a specified relative contact curvature requirement between

the end-effector and a workspace obstacle. It is shown in the planar synthesis work

that the curvature requirements yield geometric constraints on position, velocity and

acceleration. These constraints yield design equations that can be solved to determine

the dimensions of the serial chain. In extending this work to spatial serial chains, a

new method based on sparse matrix resultants was developed, which solves exact

synthesis problems with acceleration constraints.

C. Contributions

The theoretical contributions of this research are:

1. Contact relationships for spherical movement [45]. Here the normal direc-

tion and curvature constraints imposed by contact with three objects in the

workspace is used to define velocity and acceleration constraints on the end-

effector of a spherical TS chain.

2. Theoretical foundation for the transition from contact geometry to kinematic

synthesis for spherical movement.

3. Development of a Rover using a Surface Mobility Platform, Robotic Arm for

current and future experimental validation of the obtained results.
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The applications of this research have focussed on the design of spatial TS chain

to maintain a specified contact geometry with objects in the environment.
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CHAPTER III

PLANAR VELOCITY AND ACCELERATION CONSTRAINTS DEFINED BY

CONTACT AND CURVATURE CONSTRAINTS

This chapter briefly revises recently developed work by Robson and McCarthy in [1].

It covers the geometric design of planar RR chain that guides an end-effector such

that it maintains contact with objects in the workspace. This contact imposes contact

and curvature constraints on the movement of the end-effector that must be provided

by the RR chain. The problem is solved by transforming the contact and curvature

constraints into conditions on the velocity and acceleration of the moving body, and

by obtaining a set of synthesis equations that allow the computation of the design

parameters of the RR chain.

The ability to design RR chains that achieve specific contact curvature can be

used to design four-, six- and eight-bar linkages that achieve specific curvature re-

quirements for applications in fixturing and grasping.

A. Task Specification

Planar RR chains, shown in Figure 1 are fundamental component for the construction

of a variety of mechanical linkages.

Let the movement of a rigid body be defined by the parameterized set of 3 × 3

homogeneous transforms [T (t)] = [R(t),d(t)] constructed from a rotation matrix,

A(t), and translation vector d(t). A point p fixed in the moving body traces a
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F

M

Fig. 1. A serial RR chain.

trajectory P(t) in a fixed coordinate frame F , given by
Px(t)

Py(t)

1

 =


cosφ(t) − sinφ(t) dx(t)

sinφ(t) cosφ(t) dy(t)

0 0 1



px

py

1

 , (3.1)

or

P(t) = [K(t)]p. (3.2)

The goal is to determine the movement [K(t)] that has the property that two points

in the moving body have the trajectories A(t) and B(t) consistent with contact with

two circular objects, as shown Figure 2.

By positioning the coordinate frame M such that its origin coincides with A(t),

its x-axis is directed along the line B−A. This defines [K(t)] with translation vector

d(t) and rotation angle, φ(t) given by

d(t) = A(t), φ(t) = arctan
~k × (B−A) · (B−A)

(B−A) · (B−A)
, (3.3)

where ~k is a vector perpendicular to the plane of movement. The vector ~k combines

with the cross product operation to perform a 90◦ rotation in the plane, so for a
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Fig. 2. The body M moves in contact with two objects such that the trajectories of

A and B have the radii of curvature, RA and RB, respectively.

vector y, it can be written that

~k × y = [J ]y, where [J ] =

0 −1

1 0

 . (3.4)

In what follows, the position, velocity and acceleration of the body at an instant

denoted t = 0 are determined, from properties of the trajectories A(t) and B(t)

imposed by contact with two objects.

1. The Position Specification

A moving body M is assumed to be in contact with two fixed objects whose point

trajectories A(t) and B(t) are constrained to follow circles in the vicinity of a reference

position denoted by t = 0. Using Taylor’s Series expansion, the movement of M in

the vicinity of t = 0 can be expressed as,
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[K(t)] = [Kj
0 ] + [Kj

1 ]t+
1

2
[Kj

2 ]t2 + ..., where [Kj
i ] =

di[Kj]

dti
. (3.5)

Evaluating the derivatives of [K(t)], we obtain

[Kj
0 ] =


cosφ0 − sinφ0 dx,0

sinφ0 cosφ0 dy,0

0 0 1

 ,

[K1] =


−φ1 sinφ0 −φ1 cosφ0 dx,1

φ1 cosφ0 −φ1 sinφ0 dy,1

0 0 0

 ,

and [K2] =


−φ2 sinφ0 − φ2

1 cosφ0 −φ2 cosφ0 + φ2
1 sinφ0 dx,2

φ2 cosφ0 − φ2
1 sinφ0 −φ2 sinφ0 − φ2

1 cosφ0 dy,2

0 0 0

 . (3.6)

Here, the notation diφ/dti(0) = φi and did/dti(0) = (dx,i, dy,i)
T = di was introduced.

2. The Velocity Specification

In order to satisfy the force constraints at the prescribed positions, the directions of

the velocity vectors Ȧ and Ḃ are determined, which are perpendicular to the forces

FA = A − O and FB = B − C, respectively (see Figure 2). This is achieved by

defining the point of intersection V of the lines of actions of these two forces, and

ensuring that it is the velocity pole of the movement of M in this position.

Let us define the angular velocity of M as w = φ̇~k, then A and B follow circles

around O and C, respectively. In this configuration, it is known that the point of

intersection of the lines of action LiA and LiB of the constraint forces Fi
A and Fi

B, is

the velocity pole, V of the body and has zero velocity. The point V is obtained by
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solving the two linear equations

LiA : x−Ai) · [J ]Fi
A = 0,

LiB : (x−Bi) · [J ]Fi
B = 0, i = 1, 2, (3.7)

where x = (x, y) are variable point coordinates.

Thus, the velocities of A and B are determined as

˙(A = w × (A−V), and Ḃ = w × (B−V). (3.8)

The angular velocities wOA = θ̇~k and wCB = ψ̇~k can be obtained from the relations

Ȧ = wOA × (A−O), and Ḃ = wCB × (B−C). (3.9)

Collecting these results into the velocity loop equations of the quadrilateral OABC,

to compute the velocity Ḃ = Ȧ + w × (B−A) to be

wOA × (A−O) + w × (B−A) = wCB × (B−C). (3.10)

The define The elements of the velocity matrix [T1] are defined by the angular

velocity φ1 = φ̇(0), and the velocity d1 = Ȧ(0).

3. The Acceleration Specification

When the rigid body M moves in contact with two objects, points A and B are

guided along trajectories with radii of curvature RA and RB. This is the same as

specifying points O and C which are the centers of curvature of the trajectories A(t)

and B(t) at the instant t = 0.

By the usage of the acceleration loop equations of the quadrilateral OABC,

the angular accelerations aOA = θ̈~k and aCB = ψ̈~k for a given value of the angular

acceleration a = φ̈~k are determined. This in turn allows us to determine d̈ = Ä.
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The acceleration loop equations are obtained by computing the time derivative

of the velocity loop equations (3.10) to yield

aOA × (A−O)+wOA × (wOA × (A−O))

+a×(B−A) + w × (w × (B−A))

= aCB × (B−C) + wCB × (wCB × (B−C)). (3.11)

The angular acceleration of the moving body M is specified to be φ̈ = 0, so a = 0.

The acceleration loop equations are obtained in the form

θ̈~k × (A−O)− θ̇2(A−O)− φ̇2(B−A)) = ψ̈~k × (B−C)− ψ̇2(B−C)), (3.12)

which have been simplified using the identity ~k × (~k × y) = −y.

The angular acceleration θ̈ is obtained by taking the dot product of (3.12) with

B−C to cancel the term containing ψ̈, that is

θ̈ =

(
θ̇2(A−O) + φ̇2(B−A)− ψ̇2(B−C)

)
· (B−C)

~k × (A−O) · (B−C)
(3.13)

In a similar way, we obtain ψ̈ by computing the dot product of (3.12) with A−O,

ψ̈ =
−
(
θ̇2(A−O) + φ̇2(B−A)− ψ̇2(B−C)

)
· (A−O)

~k × (B−C) · (A−O)
(3.14)

The result is a specification of the acceleration Ä, given by

Ä = θ̈~k × (A−O)− θ̇2(A−O). (3.15)

Thus, the values φ2 = 0 and d2 = Ä(0) determine the elements of the acceleration

matrix [T2].
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4. The Synthesis Equations

In this section, for a task that includes contact with the environment, the design

equations of a planar RR chain are formulated. The chain has five design parameters,

the coordinates of the fixed pivot G = (u, v, 1) in the fixed frame F , the coordinates

of the moving pivot w in the moving frame M , and the length of the crank R.

The geometry of the RR chain satisfies the constraint equation

(W −G) · (W −G) = R2, (3.16)

where W defines the fixed frame coordinates of the moving pivot w. Two derivatives

of this equation yield the additional constraint equations

Ẇ · (W −G) =0,

Ẅ · (W −G) + Ẇ · Ẇ =0. (3.17)

To use these equations for designing the RR chain, the movement of M is specified,

such that W(t) = [K(t)]w. The resulting equations can be solved to determine the

design parameters (see Robson and McCarthy [46]).

5. The Design Equations

Five design equations for the RR chain are obtained by determining the movement

of M such that its position, velocity and acceleration are known in one location, and

its position and velocity are known in a second location. From our previous results,

this implies that contact curvatures are specified in the first location and constraint

forces in the second location. Thus, the matrix functions

[K1(t)] = [K1
0 ] + [K1

1 ]t+
1

2
[K1

2 ]t2, [K2(t)] = [K2
0 ] + [K2

1 ]t, (3.18)
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where [Kj
0 ], [Kj

1 ], j = 1, 2 and [K1
2 ], are known.

In what follows, it is convenient to use the coordinate of the moving pivot in

the first location W1 = (x, y, 1) as design parameters for the RR chain, rather than

the moving pivot coordinates w in M , where W1 = [K1
0 ]w. This allows us to define

the trajectories W1(t) and W2(t) using the relative displacement matrices defined in

(4.11), so we have

W1(t) = [D1(t)]W1 =[I + Ω1t+
1

2
Λ1t2]W1,

W2(t) = [D2(t)]W2 =[I + Ω2t][D12]W
1, (3.19)

where [D12] = [K2
0 ][K1

0 ]−1 yields W2 = [D12]W
1.

Substituting the trajectories (3.19) into the constraint equations (3.16) and (3.17)

to obtain,

P1 : 0 = (W1 −G) · (W1 −G)−R2,

V1 : 0 = [Ω1]W1 · (W1 −G),

A1 : 0 = [Λ1]W1 · (W1 −G) + [Ω1]W1 · [Ω1]W1,

P2 : 0 = ([D12]W
1 −G) · ([D12]W

1 −G)−R2,

V2 : 0 = [Ω2][D12]W
1 · ([D12]W

1 −G). (3.20)

These are the design equations for the RR chain.

6. Trajectory Planning

The inverse kinematics of the RR chain yields the joint parameter vector q = (θ1, θ2)

at each of the task positions, i = 1, 2. In order to obtain the joint velocity vector q̇
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at the ith position, we solve the equation

Vi = [Ji]q̇i, i = 1, 2, (3.21)

where Vi = (ω,v) is the velocity prescribed at position i, and Ji is the Jacobian of

the RR chain. Notice that because the Jacobian is a 3 × 2 matrix, the solution is

obtained by pre-multiplying by the inverse of the Jacobian

q̇ii = [JTi Ji]
−1[JTi ]Vi, i = 1, 2. (3.22)

This is the well-known pseudo-inverse which provides an exact solution because the

linkage was designed to satisfy this velocity requirement.

Now to determine the joint acceleration vector q̈, the following equation is solved

Ai = J̇iq̇i + Jiq̈i, i = 1, (3.23)

where Ai = (α, a) is the acceleration prescribed at the first position and J̇i is the time

derivative of the 3× 2 Jacobian matrix. The vector J̇iq̇i is known, thus the solution

is again obtained using the pseudo-inverse,

q̈i = [JTi Ji]
−1[JTi ](Ai − J̇iq̇i). (3.24)

The trajectory between the joint parameters (θ0, θ̇0, θ̈0) and (θf , θ̇f , θ̈f ) over the

range 0 ≤ t ≤ tf , shown in Figure 3, is generated by the fifth degree polynomial

θ(t) = a0 + a1t+ a2t
2 + a3t

3 + a4t
4 + a5t

5, (3.25)
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G

Fig. 3. The two task positions, velocities (v1, v2) and acceleration (a1), as well as the

velocity poles location (V1, V2) for each position. The RR chain holding a

work-piece maintains contact with two bodies in the first position.

where

a0 =θ0, a1 = θ̇0, a2 =
θ̈0
2
,

a3 =
20θf − 20θ0 − (8θ̇f + 12θ̇0)tf − (3θ̈0 − θ̈f )t2f

2t3f
,

a4 =
30θ0 − 30θf + (14θ̇f + 16θ̇0)tf + (3θ̈0 − 2θ̈f )t

2
f

2t4f
,

a5 =
12θf − 12θ0 − (6θ̇f + 6θ̇0)tf − (θ̈0 − θ̈f )t2f

2t5f
. (3.26)

Equation (3.25) is obtained by solving the equations defining the joint position, ve-

locity and acceleration evaluated at t = 0 and t = tf to compute the coefficients

ai, i = 0, . . . , 5, see [47].

Standard joint trajectory interpolation formulas yield the movement of an RR

chain with the desired contact properties in each task position, Figure 3.
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B. Summary of Planar Research for Contact Specifications

The synthesis of planar RR chains that guide a rigid body, such that it does not

violate normal direction and curvature constraints imposed by contact with two ob-

jects in the environment, developed in [1], was revised in this chapter. The contact

direction and curvature constraints were transformed into conditions on the velocity

and acceleration of certain points in the moving body. Joint trajectory interpolation

formulas yield the movement of an RR chain with the desired contact properties in

each task position.
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CHAPTER IV

SPHERICAL VELOCITY AND ACCELERATION CONSTRAINTS DEFINED

BY CONTACT AND CURVATURE CONSTRAINTS

A. Task Specification

Let the the movement of a rigid body be defined by the parameterized set of 4 × 4

homogeneous transforms [K(t)] = [R(t),d(t)] constructed from a rotation matrix,

R(t), and translation vector d(t). A point p fixed in the moving body traces a a

trajectory P(t) in a fixed coordinate frame F , given by

P(t) =

cφ(t)cθ(t) −sφ(t)cψ(t) + cφ(t)sθ(t)sψ(t) sφ(t)sψ(t) + cφ(t)sθ(t)cψ(t) dx
sφ(t)cθ(t) cφ(t)cψ(t) + sφ(t)sθ(t)sψ(t) −cφ(t)sψ(t) + sφ(t)sθ(t)sψ(t) dy
−sθ(t) cθ(t)sψ(t) cθ(t)cψ(t) dz

0 0 0 1



px
py
pz
1

 ,

(4.1)

or

P(t) = [K(t)]p. (4.2)

Our goal is to determine the movement [K(t)] that has the property that three points

in the moving body have the trajectories A(t), B(t) and C(t) consistent with contact

with three spherical objects, as shown in Figure 4.

Now position the coordinate frame M such that its origin coincides with A(t)

and its x-axis is directed along the line B − A. The z-axis of M is defined to be

perpendicular to the plane containing B − A and C − A. The y-axis is defined

according to the right hand rule. This defines [K(t)] with translation vector d(t) and

the roll, pitch and yaw angles φ(t), θ(t), ψ(t) are given by

d(t) = A(t), θ(t) = − arcsin
~k · (B−A)

|B−A|
,

φ(t) = Atan2(
~j · (B−A)

|B−A|
,
~i · (B−A)

|B−A|
),
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Fig. 4. Contact specifications in a specified position. The triangular shaped end effec-

tor is in contact with three objects. The objects are represented by spheres,

whose radii are same as the radii of curvature RA, RB, RC of the objects at A,

B and C.

ψ(t) = Atan2(
~k · ((B−A)× (C−A))× (B−A)

|((B−A)× (C−A))× (B−A)|
,
~k · ((B−A)× (C−A))

|((B−A)× (C−A))|
)

(4.3)

where ~i, ~j and ~k are vectors along the axis of the fixed frame.

In what follows, we determine on the position, velocity and acceleration of the

body at an instant denoted t = 0, from properties of the trajectories A(t), B(t) and

C(t) imposed by contact with two objects.

B. The Position Specification

We assume that the contact of our moving body M with three fixed objects constrain

the point trajectories A(t), B(t) and C(t) to follow circles in the vicinity of a reference

position denoted by t = 0. The movement of M in the vicinity of t = 0 can be
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expressed as the Taylor series expansion,

[K(t)] = [K0] + [K1]t+
1

2
[K2]t

2 + ..., where [Ki] =
di[K]

dti
. (4.4)

Evaluating the derivatives of [K(t)], we obtain

[K0] =



cφ0cθ0 −sφ0cψ0 + cφ0sθ0sψ0 sφ0sψ0 + cφ0sθ0cψ0 dx

sφ0cθ0 cφ0cψ0 + sφ0sθ0sψ0) −cφ0sψ0 + sφ0sθ0sψ0 dy

−sθ0 cθ0sψ0 cθ0cψ0 dz

0 0 0 1


, (4.5)

We have introduced the notation diφ/dti(0) = φi and did/dti(0) = (dx,i, dy,i)
T = di.

The data provided for the position of the moving frame M identifies the coordi-

nates of the contact points A0 = A(0), B0 = B(0) and C0 = C(0). Using (4.3), we

have φ0, θ0, ψ0.

This defines the coordinate transformation [K0].

C. The Velocity Specification

In order to satisfy the force constraints at the prescribed positions, we determine

directions of the velocity vectors Ȧ, Ḃ and Ċ that are perpendicular to the forces

FA, FB and FC that are along the direction of the radii of the spheres(Figure 4). The

equations defining these constraints are as follows, where w defines the screw axis.

ḋ = Ȧ.

Ȧ = w × (A− d) + ḋ = wO1A × (A−O1).

Ḃ = w × (B− d) + ḋ = wO2B × (B−O2).

Ċ = w × (C− d) + ḋ = wO3C × (C−O3). (4.6)
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To find the values of Ȧ, θ̇, φ̇, ψ̇, we use (4.6) where w = R0(R1)
−1 is a function of

θ̇, φ̇, ψ̇.

This completes the velocity specification [K1] from (4.4).

D. The Acceleration Specification

As the body M moves in contact with three objects, the points A, B and C are

guided along trajectories with radii of curvature RA, RB and RC . This is equivalent

to the specification of points O1, O2 and O3 which are the centers of curvature of

the trajectories A(t), B(t) and C(t) at the instant t = 0.

Differentiating the velocity equations (4.6), we find the acceleration specifica-

tions.

aO1A×(A−O1)+wO1A×(wO1A×(A−O1)) = a×(A−d)+w×(w×(A−d)+ḋ) (4.7)

aO2B×(B−O2)+wO2B×(wO2B×(B−O2)) = a×(B−d)+w×(w×(B−d)+ḋ) (4.8)

aO3C×(C−O3)+wO3C×(wO3C×(C−O3)) = a×(C−d)+w×(w×(C−d)+ḋ) (4.9)

where a is the derivative of w, and is a function of θ̈, φ̈, ψ̈ after substituting the values

of θ, φ, ψ, θ̇, φ̇, ψ̇. d̈ is directly obtained from Ä. Similar equations are written for B

and C, and solved to get θ̈, φ̈, ψ̈. This completes the acceleration matrix [K2] from

(4.4).

E. Relative Movement

For convenience in what follows, we introduce the relative transformation [D(t)] =

[K(t)][K0]
−1 that operates on point coordinates measured in the fixed frame at the

instant t = 0. Recall that a point p in M has the trajectory P(t) defined by the
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equation

P(t) = [K(t)]p = [K0 +K1t+
1

2
K2t

2 + ...]p. (4.10)

Now let P = [K0]p, then we have

P(t) =[K0 +K1t+
1

2
K2t

2 + · · · ][K0]
−1P,

=[I + Ωt+
1

2
Λt2 + · · · ]P = [D(t)]P, (4.11)

where

Ω = K1K
−1
0 , Λ = K2K

−1
0 (4.12)

In the following section, we use this formulation of the movement of M to describe

the trajectory of a general point P(t).

F. Differential Kinematics

Given the relative movement of the moving frame M , we can examine the trajectories

of all points in the workpiece. In particular, we ask if there is a point in the body

that has zero curvature.

G. Spherical Motion

Let A define the rotation matrix of a moving frame M . If p is a point in the moving

frame, the coordinates of p in the fixed frame F is given by α

α(t, ~p = A(t)~p (4.13)

H. Taylor Series Expansion

The Taylor expansion of an orthogonal matrix is
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A(t) = A0 + A1t+
1

2!
A2t

2 +
1

3!
A3t

3 + ...
1

k!
Akt

k...

where Ak =
dkA(t)

dtk
|t=0 is a constant matrix. (4.14)

Simplify A0 to I by aligning M with F . Recall A(t) is orthogonal, hence for all values

of t,

AAT = I or (I +A1t+
1

2!
A2t

2 +
1

3!
A3t

3 + ...)(I + (A1)
T t+

1

2!
A2t

2 +
1

3!
A3t

3 + ...) = I (4.15)

The coefficients of tk should vanish for i=1,2,...

t1 : A1 + (A1)
T = 0 (4.16)

implies A1 is skew symmetric. Let A1 = B1 (skew symmetric) and let (B1)
2 = C2

which is symmetric

A1(A1)
T = −(A1)

T (A1)
T = −(B1)

2 = −C2 (4.17)

Working along in a similar way, we can rewrite A(t) as

A(t) = I +B1t+
1

2!
(C2 +B2)t

2 +
1

3!
(C3 +B3)t

3

where C2 = (B1)
2, C3 =

3

2
(B2B1 +B1B2) (4.18)

I. Angular Velocity

In order to reduce the number of independent parameters, we will be parameterizing

φ to normalize the equations so that |Ω| = 1. To do this, we need to derive the Taylor

expansion for the angular velocity matrix.

We know the rotational matrix is given by α = A(t)p. It follows that the velocity

vector of a point P of the moving space is α̇ = Ȧ(t)p. Elimination p we have α̇ =
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ȦA−1α. Now if we denote ȦA−1 as Ω, we get the angular velocity matrix

Ω(t) = Ȧ(t)A−1(t)

where Ȧ = B1 + (C2 +B2)t+
1

2
(C2 +B2)t

2 + ...

A−1 = AT = I −B1t+
1

2!
(C2 −B2)t

2 + ... (4.19)

Expanding Ω(t) using Taylor expansion yields

Ω(t) = Ω0 + Ω1t+
1

2!
Ω2t

2 + ... (4.20)

Plugging [4.19],[4.20] into the above and equation coefficients upto the second

order, we find

Ω0 = B1

Ω1 = B2

Ω2 = −(B1)
3 +

1

2
(B1B2 −B2B1) +B3

J. Canonical Reference Frame

We shall introduce a special coordinate system in order to simplify the equation. Let

bi be the vector associated with the skew symmetric matrix Bi and define

b1 = ω, b2 = ε b3 = γ

or

B1 = [ω], B2 = [ε] B3 = [γ] (4.21)

Recall the fixed and moving frames coincide at the center of the sphere. Let us

align the z-axis along ω and the x-axis along −ω × ε = ε × ω (i.e put ε in the y-z
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plane). This reduces ω and ε to

ω =


0

0

ωz

 ε =


0

εy

εz

 (4.22)

To further simplify things, let us introduce a parameter φ such that Ω(t) is

normalized so that |Ω| = 1. This requires ω2 = 1 and all higher orders to be zero. It

follows that

|ω| = 1, ω · ε = 0, ω · γ = −(1 + ε2) (4.23)

which implies

εz = 0, εy = ε, γz = −(1 + ε2) (4.24)

hence

ω =


0

0

1

 ε =


0

ε

0

 γ =


γx

γy

−(1 + ε2)

 (4.25)

Plugging [4.25] into [4.14], we have the series expansion for A(t) in the canonical

system for the unit angular velocity parameterization t = g(φ)

A(φ) = I + [ω]φ+
1

2!
([ω]2 + [ε])φ2 +

1

3!
(
3

2
([ω][ε] + [ε][ω] + [ω])φ3 + ... (4.26)

where ω, ε, γ are given in [4.25]. Notice that A(φ) relies only on three instantaneous

invariants ε, γx, γy.

The trajectory of any point on a body that can move about a spherical motion

can be written as

α(φ, p) = A(φ)p
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Expanding α, its first three derivatives at φ = 0 are

α0 =


x

y

z

 , α1 =


−y

x

0

 , α2 =


−x+ εz

−y

−εx



α3 =


(1 + ε2)y + γyz

−(1 + ε2)x+ (3
2
ε− γx)z

−γyx+ (3
2
ε+ γx)y

 (4.27)

We are interested in the geodesic curvature since it contains information of the

curve’s behaviour. A general expression for the curvature is

R =
α0 · (α1 × α2)

(α1 · α1)
3
2

(4.28)

Using [4.27], we get

R =
z(x2 + y2)− xε(x2 + y2 + z2)

(x2 + y2)
3
2

(4.29)

We are interested in the points whose trajectories have zero curvature i.e points

that move along a great circle. The locus is defined by the equation

0 = z(x2 + y2)− xε(x2 + y2 + z2) (4.30)

defines a cubic cone in the moving body. This is known as the inflection circle. For

ε = 0.5, the inflection cone looks like Figure 5.
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Fig. 5. Inflection cone.

K. Geometric Design of a TS Chain for Task Constraints Imposed by Objects in

the Environment

Similar to the RR chain, which plays major role in the planar linkage synthesis, the

TS chain is central to the structure of open and closed loop spatial robot manipu-

lators. There are number of linkage systems that can be constructed from RR and

TS kinematic chains, such as RRRR, RRTS and 5TS platform mechanisms. The

TS chain is a special case of the five degree of freedom RRRRR, in which the first

two revolute joints intersect and are perpendicular to each other and the last three

revolute joints intersect in a point to define a spherical wrist.

This section considers the algebraic synthesis of a spatial TS serial chain such that

it guides a floating link through a set of positions with specified accelerations. The TS

chain has seven design parameters, the coordinates of the center of the intersection

of the perpendicular revolute joints (R joints) in the base frame, the coordinates of

the intersection of the last three R joints in the moving frame and the length of the

distance between these points. The synthesis procedure presented here, computes

these design parameters by solving seven constraint equations that must be met for
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the chain to achieve a prescribed task.

A TS chain is formed when a body is connected to the ground by a gimbal

joint and to a floating link by a spherical joint, Figure 6. Let the coordinates of

the center of the fixed T joint be B = (Bx, By, Bz, 1) measured in the fixed frame

F , and the point at the center of the moving spherical joint have the coordinates

p = (px, py, pz, 1) measured in the moving frame M . The movement of the floating

link M is constrained by the TS chain such that the trajectory of p in F lies on a

sphere about B. This provides the conditions for formulating the design equations.

pB

S1

S2
S5

S4

S3
R

Fig. 6. Structure of the TS chain.

Let the orientation of the moving body M with the angles (θ, φ, ψ) is defined,

which describe the longitude and latitude of the z-axis of the moving frame, and roll

angles about that axis. This convention yields the rotation matrix

[Aj] = [Y (θ)][X(−φ)][Z(ψ)], (4.31)

where [X(·)], [Y (·)], and [Z(·)] are rotations about the X, Y and Z axes respectively.

The translation of the moving frame is defined by the vector d = (dx,j, dy,j, dz,j).
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Thus, the matrix function [T (t)] = [Aj(t),dj(t)] is given by

[K(t)] =



cφcψ − sφsθsψ −cψsφsθ − cφsψ cθsφ dx,j

cψsθ cθcψ sθ dy,j

cψsφ − cφsθsψ −cφcψsθ + sφsψ cφcθ dz,j

0 0 0 1


, (4.32)

where sin(·) and cos(·) are noted with s(·) and c(·), respectively.

The movement of the frame M relative to the fixed frame F in the vicinity of a

reference position defined by t = 0 is defined by the Taylor series expansion,

[Kj(t)] = [Kj
0 ] + [Kj

1 ]t+
1

2
[Kj

2 ]t2 + ..., where [Kj
i ] =

di[Kj]

dti
, (4.33)

and [K(0)] = [K0] is the reference position. A point p in the moving frame has the

trajectory P(t) in the fixed frame given by the equation

Pj(t) = [Kj(t)]p = [Kj
0 +Kj

1t+
1

2
Kj

2t
2 + ...]p. (4.34)

It is convenient to substitute pj = [Kj
0 ]−1Pj into (4.34) so that we obtain

Pj(t) =[Kj
0 +Kj

1t+
1

2
Kj

2t
2 + · · · ][Kj

0 ]−1P,

=[I + Ωt+
1

2
Λt2 + · · · ]P = [Dij(t)]P

j, (4.35)

The matrices [K0], [K1] and [K2] are defined by the position, velocity and acceleration

task requirements. This data is transformed into the matrices [Ω] and [Λ] and the

relative displacements between the task positions in order to formulate the design

equations. CraigCraigCraig
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L. The Synthesis and Design Equations

We follow Suh and Radcliffe [48] and introduce relative transformations to obtain a

standard set of design equations. Let B = (bx, by, bz, 1) be the homogeneous coordi-

nates of the center of the T joint of the TS chain (Figure 7). And let P1 = (px, py, pz, 1)

be the homogeneous coordinates of the center of its spherical wrist measured in the

fixed frame when the moving body is in the first task position, that is P1 = T1p, where

p is the vector measured in the frame of moving body. We can find the coordinates

of p in the other ask positions using the relative transformation [D1i] = [Ti][T
−1
1 ],

which yields Pi = [D1i]P
1. We use the coordinate vectors B and P1 as our design

parameters for the TS chain.

Fig. 7. A general TS chain. B and P define the coordinates of the T and S joints.

In order to lie on a sphere about the fixed pivot B, the moving pivot Pi must

satisfy the constraint equations

(Pi −B) · (Pi −B) = R2 (4.36)
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in each of n specified positions, where R is the distance between the centers of T

and S joints. We now substitute Pi = [D1i]P
1 to obtain the position design equations.

([D1i]P
1 −B) · ([D1i]P

1 −B) = R2, i = 1, ..., n. (4.37)

These are the position constraint equations.

The constraint equatioins on the velocities of the points in the moving body are

obtained by computing the derivative of (4.37),

d

dt
Pi · (Pi −B) = 0, i = 1, ...n (4.38)

Recall that the velocity of a point in the ith task frame is defined by d
dt
Pi =

[Wi]P
i. Therefore, we have

d

dt
Pi = [Wi]D1iP

1 (4.39)

Notice that [D11] is the 4 × 4 identity matrix, so this equation also applies to

velocities specified for position one. Substitute this equation into (4.38) and obtain

the velocity design equations

([Wi]D1iP
1) · (D1iP

1 −B) = 0, i = 1, ...n (4.40)

Now, compute the second derivative of the position constraint (4.36) to determine

the acceleration constraint equations.

d2

dt2
Pi · (Pi −B) + (

d

dt
Pi) · ( d

dt
Pi) = 0, i = 1, ...n (4.41)

where i denotes the task position in which we define the acceleration. From our

definition of the 4× 4 acceleration matrix, we have d2

dt2
Pi = [Λi]P

i, which yields

([Λi][D1i]P
1) · ([D1i]P

1 −B) + ([Wi]D1iP
1) · ([Wi]D1iP

1) = 0, i = 1, ...n. (4.42)
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These are the acceleration design equations.

M. Trajectory Planning

Standard trajectory planning techniques are adapted to the constrained movement of

a spatial open chain with less than six degrees of freedom. The synthesis equations

ensure that the end-effector can achieve the specified positions, velocities and accel-

erations, therefore the goal is to calculate the associated joint angles, joint velocities

and joint accelerations. This is done using modifications of the fifth degree polyno-

mial trajectory used to fit position, velocity and acceleration data that is described

in Craig (1989)[47].

The inverse kinematics of a spatial open chain yields the joint parameter vector

q = (θ1, . . . , θl) at each of the task positions, j = 1, . . . , n. In order to obtain the

joint velocity vector q̇ at the jth position, the following equation is solved:

V j = [Jj]q̇j, j = 1, . . . , n, (4.43)

where V j = (Wj,vj) is the velocity prescribed at position j, and Jj is the Jacobian

of the spatial chain. Notice, that because this Jacobian is an m × n matrix, a pre-

multiplication of both sides by it’s pseudo-inverse is needed to obtain

q̇j = [JTj Jj]
−1[JTj ]Vj, i = 1, . . . , n. (4.44)

The pseudo-inverse of the Jacobian provides an exact solution, because the linkage is

designed to satisfy this velocity requirement.

Now to determine the joint acceleration vector q̈j, the following equation is

solved:

Ω̇j = J̇jq̇j + Jjq̈j, (4.45)
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where Ω̇j = (αj, aj) is the acceleration prescribed at the j − th position and J̇j is the

time derivative of the m × n Jacobian matrix. The vector J̇jq̇j is known, thus the

solution is again obtained using the pseudo-inverse of the Jacobian,

q̈j = [JTj Jj]
−1[JTj ](Aj − J̇jq̇j). (4.46)

The n−th degree interpolation of the joint parameters qj, q̇j, q̈j yields the spatial

open chain trajectory.

N. Summary of Spherical Research for Contact Specifications

The synthesis of spatial TS chains that guide a rigid body, such that it does not

violate normal direction and curvature constraints imposed by contact with two ob-

jects in the environment was presented for the first time in this chapter. The contact

direction and curvature constraints were transformed into conditions on the velocity

and acceleration of certain points in the moving body. Joint trajectory interpolation

formulas yield the movement of the TS chain with the desired contact properties in

each task position. There are two main contributions. The first one is that theoretical

methods for the transition from contact geometry to kinematic synthesis for spheri-

cal movement has been developed. The second contribution lays in the development

of contact relationships for spherical movement, imposed by contact with three ob-

jects in the workspace, is used to define velocity and acceleration constraints on the

end-effector of the spherical TS chain.
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CHAPTER V

DEVELOPMENT OF A ROVER PLATFORM AND ROBOTIC ARM SYSTEM

FOR EXPERIMENTAL TESTING OF THE OBTAINED RESULTS

A. Control Architecture

In order to apply the described theoretical results to real world situations, a platform

with a robotic arm mounted on it, similar to the NASA Mars Rover System was

developed. A Surface Mobility Platform (SMP) with a TRT robotic arm mounted on

it, is used to perform mission critical tasks (see Figure 8).

Fig. 8. Surface mobility platform (SMP) with the robotic arm.

The control architecture employed is a three level architecture. The top level con-

sists of manual inputs or positions calculated using mathematica code. This level runs

on a laptop. The inputs are transmitted by LabView, through a wireless connection

to the controller on the Platform.

The controller is a National Instruments sbRIO 9632. This device controls the

SMP motors directly. The Robotic Arm (Lynxmotion AL5D) is controlled by the

sbRIO 9632 through an SSC-32 controller (Figure 9). Figure 10 shows the actual

setup.
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Fig. 9. Control architecture of the setup.
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Fig. 10. Different parts of the control setup.
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CHAPTER VI

APPLICATIONS

A. Failure Recovery

The spherical synthesis example is a part of our efforts to explore new efficient meth-

ods for the design of fault-tolerant robot manipulators. Particularly, we examine if

a non-redundant general 5 DOF (TRT) robot manipulator mounted on a movable

platform can go through the originally specified task after it’s elbow joint fails and is

locked in place (Figure 11).

θ

β

γ

L1

L2

R

P

B

d Ptask

Fig. 11. The 5DOF serial TRT arm with a failed elbow joint defines a 4 DOF serial

chain.

The recovery strategy is based on the ability to reposition the arm base, so that

the base point B = (bx, by, 14) of the Robotic Arm can be repositioned in a horizontal

plane. Since the base of the Robotic Arm can not be moved in the z direction, the z

component of B is taken as 14 cm. We assume that the TRT arm can grasp the tool

frame where necessary so that the wrist center P = (px, py, pz) can be located where

needed in the tool frame.

The task consists of three positions, two velocities and one acceleration defined

from contact and curvature specifications. The task data is given in Table I. The



42

task specifications for the arm trajectory are obtained by placing markers on the tool

and the robotic arm, and using a VICON Infrared Motion Capture System available

(see Figure 12) at our Human Interactive Robotics Lab. The arm was to follow a

trajectory specified on an object.

Fig. 12. VICON motion capture system consisting of infrared cameras.

Table I. Task Description.

Position Spec.(cm;rad) (dx, dy, dz; θ, φ, ψ)

Location 1 (25.31, 3.56, 15.23; -0.17, 0.897, 2.48)
Location 2 (12.53, 11.28, 5.63; -0.59, 0.55, 3.73)
Location 3 (18.11, 5.63, 10.2; 0.14, -0.44, 0.85)

Velocity Spec.(cm/s;rad/s) (ḋx, ḋy, ḋz; θ̇, φ̇, ψ̇)

Location 1 (3.84, 0.65, 2.71; -0.03, 0.12, 0.16)
Location 2 (-8.59, -8.13, -5.69; 0.39, -0.5, 0.31)

Acceleration Spec.(cm/s2;rad/s2) (d̈x, d̈y, d̈z, θ̈, φ̈, ψ̈)

Location 2 (0.3, -0.26, 2.36, -0.43, 0.49, 0.55)

The joint limits of the robotic arm were also measured by the VICON motion

capture system. These are given in Table II.

If the elbow actuator of the third joint of the TRT arm fails, then we assume its

brakes can be set so that θ3(elbow joint angle) has a constant value. The remaining
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Table II. Joint Limits of the Robotic Arm for Each Axis.

Joint Min(degrees) Max(degrees)

Base -126.9 81.4

Shoulder -18.8 177.4

Elbow -193 13

Wrist 1 -20 182.4

Wrist 2 -90 93.6

joints of the arm form a TT chain that can position the wrist center P on a sphere

with a radius R about the base point B(see Figure 4). The radius R is defined by the

link lengths l1 and l2, the angle θ3, and the cosine law to be

R2 = l1
2 + l2

2 − 2l1l2cos(θ3) (6.1)

The value of θ3 can be obtained from the joint sensors of the actuator failure.

We seek the reconfiguration parameters r = (bx, by, px, py, pz) that allow the arm

to perform the original task despite the failure. The polynomial system formed by

the TS design equations consists of five quadratic equations in the unknowns r and

has a total degree of 25 = 32. The synthesis equations presented in the previous

section are applied. The velocity and acceleration specifications given in the table

above are used to derive the [W ], [D] and [Λ] matrices. The solutions obtained are

shown in Table III. The joint limits ensure that the solutions obtained above can be

implemented.

Both the solutions can be chosen for finishing the task. Using Solution No.1,

Figure 13 shows the healthy TRT arm going through the task, while Figure 14 shows

the reconfigured platform system after the elbow failure.
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Table III. Real Solutions Obtained after Solving the Synthesis Equations.

S.No bx(cm), by(cm) px(cm), py(cm), pz(cm) R(cm) θ3(degree)

1 20.0579, 10.2074 34.8522, -2.83062, 3.631 22.27 85.68

2 9.62958, 7.81412 28.1166, 7.07669, 2.13764 21.97 84.2

Fig. 13. SMP with healthy arm. The platform performs the task when the elbow joint

is healthy.

Fig. 14. SMP with crippled arm. The Rover performs the task after moving its base

and the tool point to a new location.
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CHAPTER VII

SUMMARY

This paper considers the synthesis of spherical TS chains that guide a rigid body

such that it does not violate normal direction and curvature constraints imposed by

contact with three objects in the environment. We transform the contact direction

and curvature constraints into conditions on the velocity and acceleration of certain

points in the moving body. These velocities and accelerations provide design degrees

of freedom that allow for the arm to obtain the originally specified task, despite

the joint failure. The synthesis equations are then solved by algebraic elimination.

The application of this technique for joint failure recovery of robot manipulators was

discussed.
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CHAPTER VIII

FUTURE WORK

The current thesis looks at the satisfying curvature constraints by synthesizing spheri-

cal chains. Future work consists of extending the theory to synthesizing spatial chains.

Synthesizing spatial chains is even more complicated as it involves a larger set of equa-

tions to be solved. For example, in order to synthesize a TRS arm, there would be a

total of 9 different variables which are the (x, y, z) co-ordinates of T, R and S joints.

This requires a high degree of computational power.
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