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ABSTRACT 

 

Testing Measurement Invariance Using MIMIC: Likelihood Ratio Test and Modification 

Indices with a Critical Value Adjustment. (August 2011) 

Eun Sook Kim, B.S., Pusan National University; 

M.S., Texas A&M University 

Co-Chairs of Advisory Committee: Dr. Victor L. Willson 

                                                          Dr. Myeongsun Yoon 

 

 Multiple-indicators multiple-causes (MIMIC) modeling is often employed for 

measurement invariance testing under the structural equation modeling framework.  This 

Monte Carlo study explored the behaviors of MIMIC as a measurement invariance 

testing method in different research situations. First, the performance of MIMIC under 

the factor loading noninvariance conditions was investigated through model fit 

evaluations and likelihood ratio tests. This study demonstrated that the violation of factor 

loading invariance was not detected by any of the typically reported model fit indices. 

Consistently, the likelihood ratio tests for MIMIC models exhibited poor performance in 

identifying noninvariance in factor loadings. That is, MIMIC was insensitive to the 

presence of factor loading noninvariance, which implies that factor loading invariance 

should be examined through other measurement invariance testing techniques. 

To control Type I error inflation in detecting the noninvariance of intercepts or 

thresholds, this simulation study with both continuous and categorical variables 

employed the likelihood ratio test with two critical value adjustment strategies, Oort 
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adjustment and Bonferroni correction. The simulation results showed that the likelihood 

ratio test with Oort adjustment not only controlled Type I error rates below the basal 

Type I error rates but also maintained high power across study conditions. However, it 

was observed that power to detect the noninvariant variables slightly attenuated with 

multiple (i.e., two) noninvariant variables in a model. 

Given that the modification index is the chi-square difference after relaxing one 

parameter for estimation, this study investigated modification indices under four 

research scenarios based on a combination of the cutoffs of modification indices and the 

procedures of model modification: (a) the noniterative method (i.e., modification indices 

at the initial stage of model modification) using the conventional critical value, (b) the 

noniterative method using the Oort adjusted critical value, (c) the iterative procedure of 

model modification using the conventional critical value, and (d) the iterative procedure 

using the Oort adjustment. The iterative model search procedure using modification 

indices showed high performance in detecting noninvariant variables even without 

critical value adjustment, which indicates that iterative model search specification does 

not require critical value adjustment in identifying the noninvariance correctly. On the 

other hand, when the noniterative procedure was used, the Oort adjustment yielded 

adequate results.    
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CHAPTER I 

INTRODUCTION: THE IMPORTANCE OF RESEARCH 

 

With increasing attention to the measurement invariance across groups, testing 

measurement invariance has become a common practice before utilizing a measure in 

social science (Schmitt & Kuljanin, 2008). By definition, measurement invariance holds 

when people with identical ability in different groups have an identical probability to 

endorse a certain variable regardless of group membership (Mellenbergh, 1989). 

Although multiple group confirmatory factor analysis (CFA) is the preferred method for 

testing measurement invariance, multiple-indicators multiple-causes (MIMIC, Jöreskog 

& Goldberger, 1975) modeling is also often employed (Fleishman, Spector, & Altman, 

2002; McCarthy, Pedersen, & D’Amico, 2009; Muthén, Kao, & Burstein, 1991; Rubio, 

Berg-Weger, Tebb, & Rauch, 2003).  

MIMIC modeling allows the assessment of measurement invariance and latent 

mean difference across groups by incorporating grouping variables as covariates instead 

of testing separate models for each group as in multiple group CFA. Thus, MIMIC 

modeling can easily facilitate measurement invariance tests on multiple background 

variables and their interactions (e.g., gender, race, and gender by race) as well as on 

more than two groups per grouping variable of interest (e.g., four different race groups; 

Fleishman et al., 2002; Ainsworth, 2008). MIMIC modeling utilizes the total sample size 

____________ 
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without splitting the data into groups (i.e., a single variance covariance matrix rather 

than a separate variance covariance matrix for each group), and may give more stable 

estimation when sample size is of concern. With the model flexibility and the sample 

size advantage, MIMIC modeling is prevalent in social science, especially for testing the 

equivalence of latent means across groups.  

However, there are a couple of unsolved issues in MIMIC modeling which are 

the focal interests of this study. First, MIMIC modeling has an inherent limitation in 

testing partial invariance. That is to say, when measurement invariance is violated at 

some levels, MIMIC will not be able to locate the violations of measurement invariance 

(e.g., lack of invariance at factor loadings or intercepts) unlike multiple group CFA. 

Otherwise stated, a sequential procedure of measurement invariance testing from 

configural invariance (equivalence of factor structure across groups) to strict invariance 

(equivalence of factor structure, factor loading, intercept, and unique variance) cannot be 

conducted with MIMIC modeling. In addition, previous simulation studies on MIMIC as 

a measurement invariance test consistently reported high Type I error rates over the 

nominal level (e.g., Finch, 2005). Considering the prevalence of MIMIC in substantial 

fields of research for measurement invariance testing, this paper focused on the 

statistical approach to control the Type I error inflation, specifically when researchers 

employ the likelihood ratio test to detect noninvariant variables with MIMIC modeling.  

When examining measurement invariance, researchers often rely on the 

likelihood ratio (LR) test. In the LR test, a model in which a variable or a set of 

parameters (e.g., factor loadings of all variables) are freely estimated is compared to a 
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baseline model with invariance constraints. The statistical significance between two rival 

models indicates the lack of invariance on the tested variable or the tested set of 

parameters (e.g., the violation of metric invariance or weak invariance). However, there 

are a couple of difficulties researchers may encounter in utilizing the likelihood ratio 

test. As a type of statistical significance testing, the likelihood ratio test highly depends 

on sample size. In large samples, a trivial chi-square difference can be detected as 

statistical significance. Another problem with a likelihood ratio test in invariance studies 

is that the chi-square difference between two models might not follow the chi-square 

distribution when the baseline model is misspecified. (Kim & Yoon, 2011; Oort, 1992, 

1998; Stark, Chernyshenko, & Drasgow, 2006; Yuan & Bentler, 2004). The violation of 

distributional assumption, in turn, tends to lead to the inflation of Type I error in the 

likelihood ratio test.  

In measurement invariance literature, Type I error and false positive are 

interchangeably used generally indicating the false detection of invariant variables as 

differential item function (DIF, or measurement noninvariance). The proportion of false 

positive cases across simulation replications is often defined as a Type I error rate or 

false positive rate. The Type I error inflation of the LR test with a misspecified baseline 

model can be a critical issue in MIMIC modeling because MIMIC modeling entails the 

LR test for measurement invariance testing. MIMIC with a grouping variable as a 

covariate assumes strict invariance, namely the equivalence of factor loadings, 

intercepts, and unique variances over groups (Thompson & Green, 2006). When the 

MIMIC model is utilized as a baseline model for measurement invariance testing and it 
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contains any noninvariant variable, Type I error inflation is expected because of the 

model misspecification (i.e., the violation of the strict invariance assumption). The 

details of the MIMIC model in measurement invariance testing will be discussed later. 

A number of simulation studies on measurement invariance testing reported high 

Type I error rates when MIMIC modeling was used to detect noninvariant variables. 

Oort (1998) studied MIMIC with categorical indicators, and reported Type I error rates 

between .15 and .20. In Finch’s (2005) study using MIMIC modeling, Type I error rates 

ranged from .08 to .22 (mean of .12) depending on the simulation conditions. Navas-Ara 

and Gomez-Benito (2002) reported Type I error rate of .36. In the study of Wang and 

colleagues (Wang, Shih, & Yang, 2009), MIMIC modeling showed the false positive 

rates as high as .48.  

With the report of Type I error inflation, a body of literature contributed to 

explain and control for the Type I error inflation. Navas-Ara and Gomez-Benito (2002) 

utilized a scale purification method with categorical items and reported the improvement 

of Type I error rates (.07).  The scale purification method is an iterative process in which 

biased items detected in the initial analysis are eliminated, and the bias detection 

procedure is repeated with unbiased items to identify remaining bias until no item is 

detected as noninvariance. Wang, Shih, and Yang (2009) applied scale purification 

procedures to MIMIC modeling and controlled for the Type I error below .10 for most 

study conditions although the Type I error rate still reached .24 with the 40% DIF 

contamination. In case of the LR test, Stark et al. (2006) suggested the Bonferroni 

correction of critical values calling attention to the chi-square statistic inflation in a 
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misspecified baseline model and subsequently Type I error rate elevation. On the other 

hand, Oort developed a formula to adjust the critical value to control the chi-square 

inflation of a misspecified baseline model. When the adjustment was applied to the 

iterative procedures using modification indices, the Type I error rates were reported 

under the nominal level.  

Based on the previous findings, this study investigated the LR test in identifying 

noninvariant variables with two critical-value adjustment methods (i.e., Bonferroni 

correction and Oort adjustment) to control for the Type I error inflation. Following the 

reasoning that the chi-square difference in the LR test is not likely to follow the chi-

square distribution when the baseline model is incorrect, this simulation study 

reevaluated the Oort adjustment in a variety of study conditions including both 

continuous and categorical data.  

In addition, modification indices were utilized as an indicator of noninvariant 

variables in MIMIC modeling. A modification index (also called Lagrange multiplier) is 

the degree of expected chi-square change if a fixed or a constrained parameter is freely 

estimated (Brown, 2006) while constraining all other parameter estimates at the values 

obtained in the same analysis. When a model shows a poor fit, researchers often refer to 

modification indices to improve the model fit. In measurement invariance testing with a 

MIMIC model, modification indices may provide information about the noninvariant 

variables because the noninvariant variables under the assumption of invariance of the 

MIMIC model are likely to be the sources of model misfit.  
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For modification indices, prior Monte Carlo studies (Oort, 1998; Yoon & 

Millsap, 2007) demonstrated the superior performance of an iterative search procedure 

over the noniterative counterpart. In the noniterative procedure, all the parameters in the 

modification indices are relaxed for free estimation simultaneously. On the other hand, 

in the iterative search procedure, only a single parameter with the largest modification 

index is freely estimated. After the free estimation of the designated parameter, another 

parameter with the largest modification index is allowed to be estimated. This search 

process is repeated until there is no more modification index. This study, thus, compared 

iterative and noniterative search procedures of modification indices in combinations with 

different critical value adjustment methods (Bonferroni correction and Oort adjustment) 

to determine noninvariant variables in MIMIC modeling.  

Incorporating the prior research, this study is expected to make unique 

contributions to the literature of measurement invariance and MIMIC modeling. First, 

the previous studies on MIMIC modeling as a method to detect measurement 

noninvariance did not include the source of noninvariance (i.e., factor loading 

noninvariance or intercept noninvariance) as a study condition. One plausible reason 

why the source of noninvariance is not of concern in MIMIC studies is that MIMIC 

modeling is typically used in testing the equivalence of intercepts in continuous data (or 

thresholds in categorical data) or in testing the latent factor mean difference across 

groups under the assumption of factor loading invariance. However, the performance of 

MIMIC modeling in the presence of factor loading noninvariance has not yet been 

explicitly investigated.  
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Second, this simulation study considered both categorical and continuous 

variables in identifying noninvariance using MIMIC. It appears that the research on 

measurement invariance testing for categorical and continuous data has developed and 

advanced in its own way. For categorical data, the research on measurement invariance 

has evolved typically in relation to IRT and focuses on the detection of biased items or 

DIF. On the other hand, the major interest in measurement invariance testing with 

continuous measures is on the establishment of the level of measurement invariance such 

as metric, scalar, and strict invariance. The two data types (i.e., continuous and 

categorical) were rarely studied together under the same interests of study.  

Third, Oort (1998) studied the performance of MIMIC under the term restricted 

factor analysis (RFA) in the detection of DIF with categorical variables (either 2 or 7 

response categories). However, due to the technical limitation that study failed to 

incorporate the weighted least squares (WLS) estimation which is appropriate for 

categorical measures. Because WLS is available as a default for categorical data in 

Mplus (Muthén & Muthén, 2008b), a study of the performance of MIMIC modeling with 

categorical variables can be done properly. This simulation study reevaluated the Oort 

adjustment with an appropriate data analytic method for categorical items (i.e., 

implementing threshold structures and using weighted least squares with robust mean 

and variance) in MIMIC modeling.  

Fourth, the current study examined modification indices as indicators of 

measurement noninvariance and investigated the performance of modification indices of 

MIMIC modeling under various research situations such as different data type 
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(continuous, dichotomous, or polytomous) and different search procedures (iterative or 

noniterative) with different critical value adjustment methods (no adjustment, Bonferroni 

correction, or Oort adjustment). 

In summary, this study proposed the following research questions: 

1. How sensitive is MIMIC modeling to the violation of factor loading invariance? 

The MIMIC model assumes strict invariance or the invariance of factor loadings, 

intercepts, and residual variance when used with grouping variables as 

covariates. Given that the MIMIC model is typically employed for the latent 

mean comparison across groups and for the intercept invariance testing, the 

sensitivity of the MIMIC model to the violation of factor loading invariance is of 

question. This study examined the model fits, specifically chi-square goodness of 

fit, CFI, RMSEA, and SRMR (or WRMR for categorical data) when factor 

loading noninvariance existed in the MIMIC model. In addition, whether 

measurement invariance testing can detect the lack of invariance in factor 

loadings was examined.   

2. How does MIMIC modeling behave when the invariance of intercepts over 

groups is violated? Which critical value adjustment method performs better with 

MIMIC modeling, Bonferroni correction or Oort adjustment? In the LR test 

using MIMIC, the chi-square inflation of a baseline model is expected when 

there is any noninvariant item in the model because the MIMIC assumes strict 

invariance over groups. This study investigated proper strategies to control for 
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high Type I error rates: Bonferroni correction and Oort adjustment on chi-square 

critical values. 

3. Regarding modification indices, what is an optimal strategy in the detection of 

noninvariance: iterative or noniterative specification search? What is an optimal 

cutoff of modification indices? A modification index is, simply speaking, the chi-

square difference when a parameter is relaxed for estimation (Brown, 2006). In 

detecting the violation of measurement invariance, the use of modification 

indices exceeding a certain chi-square values could replace the LR test. From this 

reasoning, modification indices were inspected as an alternative to the LR test. 

The critical value of modification indices was adjusted with the Oort correction 

and the model modification procedure with Oort-adjusted critical value was 

compared with the conventional model modification procedure. Along with the 

critical value adjustment, the iterative and noniterative model search procedures 

were compared as well. 
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CHAPTER II 

LITERATURE REVIEW 

 

The current review of literature in measurement invariance consists of four 

subsections: definition of measurement invariance and factorial invariance, measurement 

invariance with ordinal measures, levels of measurement invariance, and issues in 

measurement invariance studies. The last section includes the impacts of measurement 

noninvariance, partial measurement invariance, and the criteria of measurement 

invariance testing which all call for further studies. Followed by measurement 

invariance, the framework of MIMIC modeling as a measurement invariance testing 

method and modification indices were discussed. 

Measurement Invariance 

Measurement invariance has drawn attentions of researchers in social science 

since early studies (e.g., Meredith, 1993) and a systematic review (Vandenberg & Lance, 

2000) on this topic. In a recent review of measurement invariance, Schmitt and Kuljanin 

(2008) reported increased interests and common practices of testing measurement 

invariance, which implies that social scientists has been cognizant of the importance of 

measurement invariance in the use of a measure.  

  Measurement invariance holds when a measure utilized under different 

conditions yields the same observed scores for people who have identical attributes 

being measured (Drasgow, 1987; Meade & Bauer, 2007; Schmitt and Kuljanin, 2008). 

Measurement invariance testing is commonly practiced in several measurement 
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conditions (Meade & Bauer, 2007; Vandenberg & Lance, 2000): measurement 

invariance (a) across subgroups of a population, (b) over longitudinal changes, and (c) 

over different mediums of measurement. Typical subgroups of a population include 

ethnicity, gender, and age. With the increase in cross-cultural studies, measurement 

invariance over different ethnic and cultural groups is often of interest (e.g., Blake, Kim, 

& Lease, 2011; Riordan & Vandenberg, 1994). For studies conducted over time with 

repeated measures, the invariance of a measure across different time points can be 

questioned. There are also some study conditions in which the methods of measurement 

are not consistent. For example, a test developed in a language is translated and utilized 

in a different language. In other cases, the scores of a test presented in different formats 

(e.g., pencil-and-paper or online; Meade, Michels, & Lautenschlager, 2007) are 

compared. In all these study conditions, measurement invariance is of great concern. 

 Although measurement invariance is an issue under diverse study conditions, in 

this study the scope of measurement invariance is limited to group comparisons. 

However, all defined equations in the following can be also applied to other research 

settings such as measurement invariance in longitudinal models.  

Measurement invariance is mathematically equivalent to the fact that the 

conditional probability to attain an observed score given ability is independent of group 

membership (Mellenbergh, 1989; Meredith & Millsap, 1992; Yoon & Millsap, 2007).  

 

)|(),|(  XPGXP  , 

 

(2.1) 
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where X is the observed score, ξ is the latent construct, and G denotes group 

membership. That is, measurement invariance holds when persons of identical ability (or 

attributes) on a construct have the same probability distribution of observed scores 

regardless of group membership.  

Factorial Invariance 

 A measurement invariance study is commonly conducted with linear 

confirmatory factor analysis (CFA). Measurement invariance in a factor model is called 

factorial invariance (Meredith, 1993; Widaman & Reise, 1997; Yoon, 2008). 

Measurement invariance is a broad term encompassing linear and nonlinear relationship 

between observed variables and latent factors taking into account the whole score 

distribution (Yoon, 2008). On the other hand, factorial invariance, a special case of 

measurement invariance, is expressed within a linear factor model with mean and 

covariance structures. Under the CFA framework, factorial invariance is defined as the 

equivalence of parameters specified in the model across groups. Therefore, depending on 

the parameters in testing of invariance, different levels of factorial invariance can be 

determined. The levels of factorial invariance will be discussed later. 

Assuming a single unidimensional factor, we can specify the relationship 

between the common factor scores (ξi) and the continuous observed scores (Xij) in 

ordinary CFA as follows:  

 

ijjjjijX   , (2.2) 
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where Xij  is an observed score of an individual i on a variable j; τj and λj are an intercept 

and a factor loading of a variable j, respectively; ξi  is a common factor score of an 

individual i, and δij is a unique factor score. A measurement model of a single factor 

with six observed variables is illustrated in Figure 1. Equation 2.2 expands to specify the 

relationships between multiple common factors and multiple observed variables in a 

matrix format as follows: 

 

  x , 

 

where X is a vector of observed variables, τ is a vector of intercepts, Λx is matrix of 

factor loadings, ξ is a vector of common factors, and δ is a vector of unique variables 

(Kaplan, 2009). Under the assumption that the common factors and unique factors are 

uncorrelated, that is, cov(ξ,δ) = 0, the covariance structure is defined as: 

 

 'XX , 

 

where Σ is a population covariance matrix, Φ is a variance covariance matrix for factors, 

and Θδ is a variance covariance matrix for the unique factors. Further assuming that the 

expected value of a unique variable is zero, E(δ) = 0, and the expected value of a 

common factor is defined as E(ξ) = κ, the mean structure of a general factor model is 

derived from Equation 2.3 as follows: 

(2.3) 

(2.4) 



 14 

 

Figure 1. Multiple-group CFA. k denotes group membership.  
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 XXE )( , 

 

where κ is a vector of factor means.  

The general structural equation models defined in Equation 2.3 through Equation 

2.5 are expanded to multiple group CFA model by incorporating a group indicator.  

 

ggxggg   , 

gXggXgg  ' , 

gXgggXE  )( , 

 

where a subscript g is a group indicator (g = 1, 2, …, G) and others are as defined above. 

Under the assumption of normal distribution of observed scores (Xij), factorial invariance 

holds if the conditional mean and variance covariance of observed scores given factor 

scores are independent of group membership (g). To put it another way, the equivalence 

of a set of parameters in the former equations across groups indicates factorial 

invariance. Thus, factorial invariance can be tested with a series of null hypotheses 

which denote identical parameters over groups. 

 

....: 210 GH   

....: 210 GH   

....: 210 GH    

(2.5) 

(2.6) 

(2.7) 
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Precisely speaking, factorial invariance testing includes the first four null hypotheses 

which test the invariance of variance covariance matrices of observed variables, factor 

loadings, intercepts, and unique variance of observed variables, respectively. The last 

two null hypotheses test the equalities of factor variance covariance and factor means 

over groups, respectively.  

Measurement Invariance with Ordinal Measures 

 So far, the discussions on the factorial invariance are limited to continuous 

observed variables which assume multivariate normal distributions. However, the items 

of a measure are often discrete such as dichotomous or polytomous. Although ordered 

categorical variables with more than five categories are often treated as continuous 

variables in practice, the ordinary linear factor model is not appropriate for ordered 

categorical variables because the normality assumption and the linear relationship 

between the observed variables and the latent factors of the ordinary factor model do not 

hold for ordinal measures unless the distribution has been validated through methods 

such as those developed by Thurstone (1928) and Likert (1932).  

To incorporate ordered categorical variables in the factor model, latent response 

variates are employed. The latent response variates are assumed to be continuous and 

multivariate normally distributed although the corresponding manifested variables are 
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discrete and non-normal. Then, the factor model specifies the linear relationship between 

the latent response variates and the factor scores. A one-factor model with continuous 

latent response variates, *

ijX  that underlie the observed scores, Xij is  

 

ijijjjijX  * , 

 

where all terms are as defined earlier. The variance covariance matrix of the latent 

response variates is termed tetrachoric variance-covariance for dichotomous variables 

and polychoric variance-covariance for polytomous variables. These latent correlation 

matrices are derived from the variance covariance matrices of observed variables and 

utilized in the factor analysis of ordered categorical variables. 

 The relationship between the latent response variates and the observed variables 

is modeled with a threshold structure.  

 

Xij = 0, if 1

*

0 jijj X   , 

Xij = 1, if 2

*

1 jijj X   , 

… 

Xij = c, if )1(

*

 cjijjc X  , 

 

where c indicates the C ordered-categorical responses of the jth item (c = 0, 1, …, C – 

1), jc  is a threshold of the c category response ( 0j ;  )1(cj ), and other terms 

(2.8) 

(2.9) 
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are as defined above (Wirth & Edwards, 2007). That is, the observed categorical 

responses are determined by a set of thresholds in relation to the latent response variates. 

The number of thresholds of a variable equals the number of categories of the variable 

minus one. For example, binary variables have a single threshold. If the threshold of a 

dichotomous variable is -1.0, then any latent variate score below -1.0 is manifested as 0. 

On the other hand, the latent variate score of -1.0 or above corresponds to the observed 

response score of 1. By embedding a threshold structure in a model, multiple group CFA 

for categorical variables includes the invariance of a threshold structure. Thus, the null 

hypothesis of equal thresholds over groups (
Gcccc

H   ...:
210 ) is tested for 

ordinal measures instead of the equivalence of intercepts which is tested for continuous 

variables. The relationship between the latent response variates and the manifested 

variables is illustrated in Figure 2. 

Identification. In the estimation of unknown parameters, the number of available 

pieces of information is critical since the model is not determined or identified when the 

available information is short of the number of parameters to be estimated. Simply 

speaking, we cannot derive more than what we have. For example, when a mean 

structure is entered in a model, the number of pieces of information we can utilize is the 

number of observed means. For example, with six observed variables, six observed 

means are used for model estimation. However, the number of parameters to estimate 

exceeds the number of available pieces of information because the number of parameters 
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Figure 2. Multiple-group categorical CFA. k denotes group membership; c is the number 

of categories in each item. 
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to estimate includes factor means in addition to intercepts (or means of observed 

variables). That is, some constraints on the parameter estimates are necessary for 

identification. For multiple group analysis with continuous observed variables, all factor 

means of one group (reference group, hereafter) are typically fixed at zero, and the 

corresponding parameters of other groups (focal groups, hereafter) are freely estimated 

(Brown, 2006). Intercepts of one variable are set to be equal for all groups. 

The same identification issues emerge when a threshold structure is entailed in 

the model. Because the distribution of latent response variates is analyzed in relation to a 

threshold structure for ordinal measures, the mean (μ*) and covariance (Σ*) structure of 

latent response variates along with the threshold structure (ν) should be identified. 

Millsap and Yun-Tein (2004) extensively discussed the identification of multiple group 

CFA model with ordinal measures in use of either Mplus (Muthén & Muthén, 2008a) or 

LISREL (Jöreskog & Sörbom, 2006). In summary, for general factor models allowing 

the loadings on more than one factor with polytomous variables, the following 

constraints should be imposed to identify the threshold structure (Millsap & Yun-Tein, 

2004; Yoon, 2008): (a) mean and variance of latent variates are constrained at 0 and 1 

for reference group and (b) two of thresholds of each variable are restricted equal across 

groups. To further identify the factor structure, (a) the factor means of reference group is 

fixed at zero, (b) the intercepts of all groups are constrained at zero, and (c) constraints 

on factor loadings are imposed to render uniqueness of ΛG.  

Parameterization. Because latent factors and latent response variates do not 

consist of any real scores, scaling these latent variables (i.e., parameterization) is another 
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issue in a factor model with ordinal measures. Before the discussion of parameterizations 

in multiple group CFA with ordinal measures, it should be noted that the 

parameterization of latent variables are undertaken in the process of identification 

simultaneously (e.g., fixing factor means of a group to zero renders the scales to the 

factors). Kamata and Bauer (2008) classified the parameterization of multiple group 

categorical CFA models into four categories. They considered two types of scaling 

choices for latent response variates and latent factors, respectively. In scaling of latent 

response variates, (a) the variances of latent response variates are fixed to unity (termed 

marginal parameterization or delta parameterization), or (b) the unique variances are 

constrained to unity (termed conditional or theta parameterization). In scaling of 

common factors, (a) the scale of a reference indicator is chosen, or (b) the variance of a 

common factor is fixed at 1. It should be noted that the choice of parameterization is up 

to research questions, and the choice of different parameterizations does not influence 

model structure and model fit, but the interpretation of parameters will be different. For 

factorial invariance testing, the equivalence of unique factors across groups is often of 

interest. In this case, the choice of theta parameterization (fixing the unique factors of 

reference group at unity and freely estimating those parameters of other groups) is 

optimal (Millsap & Yun-Tein, 2004).   

Sequence of Measurement Invariance Testing 

 As introduced earlier, depending on which set of parameters are tested for group 

equality, different levels of factorial invariance are established. Concerning the sequence 

of measurement invariance testing, two suggestions are commonly made. First, the full 
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invariance of all levels is not easily attainable in reality, but also it is not necessary in 

practice. Second, the order and the choice of different levels of invariance testing mostly 

depend on research questions and interest (Schmitt & Kuljanin, 2008; Vandenberg & 

Lance, 2000; Widaman & Reise, 1997). These points will be discussed in detail.  

1. The invariance of variance covariance matrices of observed variables (ΣG = Σ) 

The elements of variance covariance matrices of observed variables are 

compared over groups. This level of invariance indicates the full invariance of a 

factor model over groups and no further invariance testing is required. However, 

the invariance of variance covariance matrices is hardly achieved in reality 

(Schmitt & Kuljanin, 2008). In the systematic review of measurement invariance, 

Schmitt and Kuljanin (2008) reported that virtually no study conducted the 

invariance testing of variance covariance matrices since Vandenberg and Lance 

(2000). Thus, in some literature of measurement invariance this level of 

invariance is not even included in discussions. 

2. The configural invariance 

Widaman and Reise (1997) distinguished this type of invariance from others in 

that the configural invariance is nonmetric. The configuration of a model over 

groups is of interest. Thus, the pattern of a factor model is tested for invariance 

with values of parameters varying over groups. The parameters are allowed to 

vary except the minimal constraints for identification. The configural invariance 

model is served as a baseline for subsequent measurement invariance tests. If the 

configural invariance is violated, the subsequent factorial invariance testing 
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cannot be done. The violation of configural invariance indicates either that the 

proposed model may not be correct, showing a poor fit although factor structures 

are equivalent across groups, or that there is lack of configural invariance across 

groups. With poor fit of a configural invariance model, it is recommended to fit 

the model in different ways (e.g., with a total sample or with a different factor 

structure over groups) to find the source of poor fit.  

3. The metric invariance (ΛG = Λ)  

The metric invariance is also called weak invariance (Meredith, 1993). Before 

Meredith emphasized the testing of scalar invariance, the metric invariance was 

mostly tested in factorial invariance testing. The establishment of metric 

invariance is important because the nonequality of factor loadings suggests that 

the relationship between the observed variables and the common factors are 

different across groups. In other words, one unit change in a common factor 

results in different unit changes in an outcome depending on group membership. 

The metric invariance is also a prerequisite to identify factor variance 

covariances over groups (Widaman & Reise, 1997). Once the metric invariance 

is established, rescaling of latent variables does not affect the relationship among 

latent variables (i.e., variance covariances of common factors).  To compare 

latent group means, the metric invariance should be attained along with the scalar 

invariance. 

4. The scalar invariance (τG = τ)  
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The scalar invariance is also called strong invariance (Meredith, 1993). The 

scalar invariance refers to the equivalence of intercepts across groups. As pointed 

out earlier, for latent mean comparisons over groups, metric and scalar invariance 

are necessary. Since Meredith called for the inclusion of mean structure in 

measurement invariance testing and the establishment of scalar invariance in 

group mean comparisons, scalar invariance testing becomes a common practice 

of invariance testing whereas scalar invariance testing was the least conducted in 

the report by Vandenberg and Lance (2000). The scalar invariance was discussed 

least because location parameters or intercepts were considered arbitrary and 

sample specific. 

5. The strict invariance (ΘδG = Θδ) 

The strict invariance is defined as the homogeneous unique variances over 

groups. The necessity to establish strict invariance is controversial. It is said that 

with metric and scalar invariance, the difference in latent means can be 

appraised. The invariant unique variance over groups is not necessary (Widaman 

& Reise, 1997). In addition, it is difficult to achieve strict invariance in reality. 

However, others argued that the unique variances are related to factor loadings 

and the unique variance should be achieved as well. One misconception related 

to the strict invariance is that the equivalence of unique variances over groups is 

considered as identical reliability over groups. However, the strict invariance can 

be analogous to the reliability equivalence only when the factor variances are 

invariant over groups (Vandenberg & Lance, 2000).  
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6. The equivalence of factor variances (ΦG = Φ) 

The structural part of a model which includes factor variances and means can be 

tested for equivalence across groups. Other than the first two steps (the 

equivalence of variance covariance matrices and the configural invariance), 

researchers agreed that the equivalence of measurement model (configuration, 

factor loadings, intercepts) should be established before the invariance of 

structural part (factor variance covariance, factor mean). 

7. The equivalence of factor means (κG = κ) 

The equivalence of factor means is viable only when metric and scalar invariance 

hold. The increasing interest in the invariance of factor means was observed in 

the review of measurement invariance literature (Schmitt & Kuljanin, 2008). 

Comparing latent means between groups has merits over comparing observed 

group means because measurement errors are taken into account in latent factor 

means. On the other hand, the comparison of observed group means such as 

ANOVA assumes perfect reliability of measurement which is not likely to be 

achieved in reality. Although the equality of factor variances and means is 

discussed in the literature of measurement invariance, the purpose of testing the 

equivalence of factor variances and means is to examine group differences rather 

than to establish measurement invariance 

Evaluations of Measurement Invariance Testing  

Measurement invariance under the SEM framework is typically tested through 

the likelihood ratio test between a baseline model and sequentially constrained models. 
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The likelihood ratio test is also called chi-square difference test. The chi-square 

difference (Δχ
2
) follows the chi-square distribution with the degrees of freedom 

difference (Δdf) if the original models meet the assumptions to apply the chi-square 

goodness-of-fit tests (e.g., multivariate normality). The literature of measurement 

invariance has led to the conclusion that the chi-square difference test can be too 

sensitive because it is heavily dependent on the size of a sample. Alternatively, the 

changes in overall model fit indices were investigated to assess measurement invariance 

in the likelihood ratio test. Since Cheung and Rensvold (2002) initiated the evaluation of 

model fit indices as alternatives to chi-square difference testing, a number of simulation 

studies (Chen, 2007; Fan & Sivo, 2009; Meade, Johnson, & Braddy, 2008) were 

conducted to derive the cutoffs of the Δ alternative fit indices (ΔAFI) and to examine 

their performance in detecting the lack of measurement invariance (e.g., power, 

sensitivity, and generalizability).  

However, the findings of simulation studies were not consistent and the 

suitability of ΔAFI as criteria of measurement invariance testing seemed not promising 

although ΔAFI was less sensitive to sample size than chi-square difference testing. For 

example, the cutoff values derived from the percentile of the invariant distributions were 

not consistent across studies. Cheung and Rensvold recommended that researchers 

assess CFI changes with the cutoff of .02. However, Meade et al. found the cutoff of 

.002 for ΔCFI. Meade et al pointed out that many ΔAFIs provided redundant information 

on measurement invariance. For example, ΔTLI(Tucker-Lewis index), ΔIFI (incremental 

fit index), and Δ  did not produce additional information over ΔCFI. Because the cutoffs 
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of ΔCFI and ΔMc (McDonald’s Noncentrality Index, 1989) were uniformly applicable 

across different research conditions, it was recommended to report ΔCFI and ΔMc over 

other relative fit indices. According to Fan and Sivo (2009), ΔMc showed better 

performance than other ΔAFIs in detecting the factor mean difference over groups. 

However, because the performance of ΔAFI in latent group mean difference testing 

relies highly on model size (e.g., number of factors, number of indicators per factor, etc.) 

as well as sample size, ΔAFI appears not to be a valid choice to test latent group means. 

Partial Invariance 

The most salient change in measurement invariance studies since Vandenberg 

and Lance (2000) was the increasing utilization of partial invariance (Schmitt and 

Kuljanin, 2008). Partial invariance is one of the current controversial issues in 

measurement invariance studies because it is argued that only full invariance should be 

considered for the utilization of a measure. Schmitt and Kuljanin reported that 

approximately 50% of the reviewed studies conducted partial invariance. Since full 

invariance is difficult to attain in practice, researchers alternatively consult partial 

invariance.  

In the practice of evaluating partial invariance, it was reported that not many 

researchers relied upon theoretical considerations and even did not practice post hoc 

interpretations when they allowed the difference across groups in a set of parameters. 

Instead, their decision of partial invariance heavily relied upon modification indices and 

other statistical results. Despite the increasing practice of partial invariance, there has not 

been much study of the suitability of partial invariance. Millsap and Kwok (2004) 
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studied the impact of partial measurement invariance on the selection of members and 

demonstrated that the sensitivity in the selection of focal group members decreased as 

the degree of partial invariance increased. However, there is a call for further studies on 

selection bias under partial invariance in different simulation settings such as with 

categorical variables (Chen, 2008; Millsap & Kwok, 2004). Because the suitability of a 

partial invariance model over full invariance is not well established yet, the researchers 

who utilize partial invariance should be cautious in the resulting interpretation and 

should incorporate theoretical explanations on their decisions of partial invariance.    

Importance of Measurement Invariance 

Measurement invariance is understood as the negation of bias or as the lack of 

bias (Borsboom, 2006). Hence, the importance of measurement invariance has been 

discussed with respect to test bias. According to Borsboom, measurement invariance 

seems always important in a selection context. For example, suppose a depression 

measure is biased against males, specifically, males’ factor loading is lower than 

females’. Then, with one unit change in the true depression trait we expect smaller unit 

change in observed scores for males than for females. In this case, the measure of 

depression is more sensitive to females’ depression but less to males’ depression. This 

measure is not likely to identify males with depression as well as females with 

depression. If this measure is used to select a patient for appropriate treatment of 

depression, males in the same depression level is less likely to be selected for treatment.  

However, when the measure is utilized for research purposes, measurement 

invariance is important, but the degree of bias matters (Borsboom, 2006; Meredith & 
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Teresi, 2006). Borsboom suggested the shift of question from ‘is a test biased’ to ‘does 

the amount of bias matter?’ Measurement invariance testing allows the statistical 

assessment on test bias. However, measurement invariance testing is also heavily 

dependent on statistical significance testing. With a substantive sample size, even very 

trivial differences can be detected as bias in a measure. Borsboom suggested that 

measurement invariance should be interpreted in context. For example, the same amount 

of bias can be very critical in a medical test related to human life, but can be acceptable 

if the effect size of  group mean difference is huge. Beyond statistical significance, 

therefore, practical significance which focuses on the actual magnitude of group 

difference (e.g., effect sizes) or clinical significance which evaluates the degree to meet 

diagnostic criteria after intervention (Thompson, 2006) is important in making decisions 

of measurement noninvariance. 

Multiple Indicators Multiple Causes Modeling 

 Multiple indicators multiple causes (MIMIC) modeling, in general, allows causal 

indicators of factors as well as effect indicators. For measurement invariance testing, the 

MIMIC model includes grouping variables (Xi) in the model as causal indicators 

(Kaplan, 2009; Kline, 2005; Thompson & Green, 2006). For the grouping variables, 

different coding schemes (e.g., dummy coding or contrast coding) can be chosen with 

respect to research purposes. Because group membership is indicated as a predictor in 

the model, MIMIC modeling does not need a subscript of a group indicator (g) in the 

equations as multiple group CFA does (see Equation 2.6). The observed score of 

individual, i on variable, j is related to the latent factor score, εi as follows: 
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ijijijY   . 

 

Since a covariate (in this study, a dummy-coded grouping variable) explains the latent 

factor, ε we can further model the latent factor in relation to the covariate:  

 

iii X   , 

 

where Xi denotes a dummy variable indicating group membership, γ is the path 

coefficient of the grouping variable on the latent factor, and δi is the disturbance of the 

latent factor (see Figure 3 without a dotted line). Because the expected value of the 

disturbance of the latent factor equals zero, the expected value of the latent factor is 

expressed as  

 

.)( ii XE    

 

Therefore, for the reference group (Xi = 0) the expected value of the factor scores is zero 

whereas the focal group (Xi = 1) has the expected value of γ. In other words, with a 

dummy-coded grouping variable (Xi) γ represents the group difference in latent factor 

means (Hancock, 2001; Hancock, Lawrence, & Nevitt, 2000; Thompson & Green, 

2006). That is, the latent factor mean of the focal group (Xi = 1) is γ unit higher (or 

lower) than that of the reference group (Xi = 0). 

(2.10) 

(2.12) 

(2.11) 
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Figure 3. .MIMIC modeling with a grouping variable as a covariate for continuous data. 

g denotes a grouping variable. 
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Thus, statistical significance testing on γ (H0: γ = 0) directly tests the statistical 

significance of latent group mean difference. 

When the variable of concern (Yij) is ordered-categorical (e.g., dichotomous or 

polytomous),  Yij is construed as the manifestation of the underlying latent variable (Yij
*
) 

which is inherently continuous and multivariate normally distributed. The latent 

response variate Yij
*
 is related to the latent factor (ε) in the same way as continuous 

variables are: 

 

ijijijY  
*

, 

.iii X    

 

The relationship between the observed categorical responses and the latent response 

variates was explained earlier with the threshold structure and will not be repeated here. 

To test measurement invariance and the latent group mean difference, a grouping 

variable Xi is introduced as a causal indicator of the latent factor ε as in the continuous 

model (see Equation 2.11). The MIMIC model which incorporates the threshold 

structure with latent response variates is illustrated in Figure 4. 

Measurement Invariance Testing with MIMIC Modeling 

To identify noninvariant variables, the direct path from the grouping variable to 

the observed variable is created in the model (see Figures 3 and 4 with a dotted line for 

continuous and categorical variables, respectively). The model with the direct path from 

the grouping variable to the measured variable can be rewritten as: 

(2.13) 
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Figure 4. MIMIC modeling with a grouping variable as a covariate for categorical data. 

g denotes a grouping variable; c is the number of response categories of an item. 
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ijijijij XY   , 

iii X   , 

 

where βj is a path coefficient of the grouping variable in relation to the jth observed 

variable (or the jth latent variate for ordinal measures) (Finch, 2005; Kaplan, 2009). The 

β coefficient represents the group effect on an observed variable controlling for the 

effect of the latent factor. Thus, this model allows the statistical significance test on the 

group difference of the measured variable (βj) as well as on the group difference of the 

latent means (γ). Otherwise stated, the statistically significant β coefficient indicates the 

violation of measurement invariance across groups (noninvariance of the intercept) of 

jth variable. Of note is the fact that the path coefficient, β tests group invariance 

controlling for the latent factor effects ( ij ) assuming the factor loading is invariant 

across groups (i.e., estimating only one set of factor loadings across groups, not for each 

group) (Woods, 2009). Considering that this assumption of factor loading invariance is 

often violated in practice, the equivalence of factor loadings should be tested and not 

simply be assumed. Hence, when there is lack of invariance in factor loadings, the 

behaviors of MIMIC modeling was inspected in this study. Furthermore, whether  β can 

reflect the lack of invariance in factor loadings was examined.   

Type I Error Inflation in MIMIC Modeling 

MIMIC modeling which incorporates grouping variables as covariates of latent 

factors assumes strict invariance (i.e., the equivalence of factor loadings, intercepts, and 

unique variances across groups) because a single model is constructed regardless of the 

(2.14) 
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number of groups in the model. The construction of a single model over groups reduces 

model complexity, but at the same time decreases model flexibility by imposing a single 

model to all groups in comparison. Therefore, when the groups of interest do not share 

an identical model, the over-restriction of MIMIC modeling possibly leads to 

statistically invalid results. For example, when the assumption of strict invariance is 

violated, Type I error inflation is likely to occur in measurement invariance testing. As 

explained earlier, measurement invariance is tested in MIMIC modeling through the LR 

test between a baseline model (a MIMIC model without a direct path from a grouping 

variable to an observed variable, a MIMIC model without the dotted line in Figures 3 

and 4) and a model with the group effect on an observed variable freely estimated (a 

MIMIC model with a direct path from a grouping variable to an observed variable, a 

MIMIC model with the dotted line in Figures 3 and 4). When the baseline model is 

contaminated with noninvariant variables, the chi-square statistic of the baseline model 

is expected to inflate, showing a poor fit due to model misspecification. Subsequently, 

the chi-square difference between the misspecified baseline model and the tested model 

is likely to elevate, which may lead to Type I error inflation. Thus, Type I error inflation 

has been an issue in the research on the measurement invariance testing with MIMIC 

modeling.   

Yuan and Bentler (2004) conducted an extensive study on the chi-square 

difference test when the baseline model was misspecified. Suggesting that the 

misspecified baseline model likely misleads the conclusions of chi-square difference 
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tests, they illustrated the Type I error inflation in the factor loading invariance testing 

with a heuristic example.  

To control Type I error inflation in measurement invariance testing, researchers 

introduced several different statistical methods which will be explained one by one in the 

following.    

Scale purification. Navas-Ara and Gomez-Benito (2002) utilized scale 

purification with categorical items to compare six different DIF detection techniques 

(e.g., Mantel-Haenszel, logistic regression, restricted factor analysis, IRT-based indices). 

In the scale purification procedure, noninvariant items detected in the initial DIF analysis 

are excluded in a new DIF analysis. That is to say, a new DIF analysis is sequentially 

conducted with only invariant variables of the previous analysis to identify any 

remaining noninvariant variables. In Navas-Ara and Gomez-Benito’s study, scale 

purification improved false positive rates (or Type I error rates) as well as false negative 

rates (failing to detect noninvariant items) and power (detecting biased items) for all six 

DIF detection techniques. Applied to IRT-based indices, scale purification made the 

greatest improvement in terms of power, false positive and false negative rates. Wang, 

Shih, and Yang (2009) employed the scale purification to MIMIC modeling of 

measurement invariance testing and reported improved Type I error rates.  

  Forward procedure in the LR test. In the LR test, Stark et al. (2006) 

recommended researcher use the forward testing procedure rather than the backward 

procedure. In the forward procedure, the least constrained model in which all parameters 

except minimal constraints for identification are allowed to vary across groups serves as 
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a baseline model. Then, a more restricted model with the equality constraints of one or 

more parameters across groups is compared with the freely estimated baseline model. On 

the contrary, the backward procedure takes the fully-constrained model as a baseline 

model, and conducts the LR test with a less constrained (i.e., one or more parameter 

relaxed) model. When the model includes one or more noninvariant variables, the fully-

constrained baseline model in the backward procedure violates the assumption of 

invariance across groups, which leads to the misfit of chi-square difference to chi-square 

distribution given degrees of freedom and possibly increases Type I error.  Thus, Stark et 

al. recommended the forward procedure which does not impose any equality constraints 

in the baseline model.  

Bonferroni correction. Stark et al. (2006) also suggested the use of the 

Bonferroni correction of critical values as a solution of Type I error inflation. Bonferroni 

correction is commonly used in consideration of the experimentwise (or familywise) 

Type I error (Thompson, 2006). Experimentwise Type I error is the probability to reject 

one of the true null hypotheses when two or more null hypotheses are tested in a study. 

Bonferroni correction divides the significance level (i.e., α) by the number of null 

hypotheses analyzed in a study. Stark and colleagues adjusted the conventional critical p 

value divided by the number of items in the model. The Type I error rates were still high 

when the Bonferroni correction was applied in the backward LR tests. However, in the 

free-baseline forward procedure, the Type I error rates were near zero throughout their 

simulation conditions. French & Finch (2008) also applied the Bonferroni correction in 
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their simulation study on measurement invariance testing, specifically, locating invariant 

reference variables in multiple group CFA. 

Oort adjustment. On the other hand, Oort (1992, 1998) suggested a formula to 

adjust the critical value to control the chi-square inflation of a misspecified baseline 

model. The Oort adjustment takes into consideration the chi-square value and degrees of 

freedom of the baseline model in the likelihood ratio test: 
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where K' is the adjusted critical value,  K is the original critical value chosen from the 

chi-square distribution given the degree-of-freedom difference between models, χ
2

0 is 

the chi-square value of a baseline model, and df0 is the corresponding degree of freedom. 

Given degree of freedom (df0), the critical value (K') becomes larger as the degree to 

which the baseline chi-square (χ
2

0) is inflated. When the degree of freedom is one, the 

adjusted critical value equals the baseline chi-square. This equation can be utilized when 

the tested chi-square difference in the LR test is not assumed to follow the chi-square 

distribution. Oort (1998) applied this correction formula in the measurement invariance 

testing with restricted factor analysis. When the adjustment was applied to the iterative 

procedures using modification indices, the Type I error rates were reported under the 

nominal level.  

(2.15) 
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Benjamini-Hochberg procedure. Woods (2009) utilized the Benjamini-

Hochberg (1995) procedure to control Type I error and compared the MIMIC model to 

two-group IRT in the detection of noninvariance. Benjamini and Hochberg developed a 

Type I error control procedure to prevent over rejection of true null hypothesis in 

multiple tests and to maintain reasonable power because Bonferroni correction is often 

adverse to power and criticized to be too conservative. In the Benjamin-Hochberg 

procedure, the p values of all hypotheses are sorted in an ascending order and the 

hypotheses meeting the following requirement are all rejected.  

 

i
m

p i


)(  

 

where p(i) is the p value of the ith hypothesis, α is the unadjusted critical p value, m is the 

number of hypotheses tested, and i is the largest index which satisfies the above 

requirement (i = 1, 2, … , m). For example, suppose the observed p values of five null 

hypotheses are .0010, .0131, .0200, .0420, and .0650. Because the third p value is the 

largest p value which meets the aforementioned requirement when α is set at .05 and m 

equals 5 (that is, .0200 is smaller than .05 × 3 ÷ 5 = .03 whereas .0420 is larger than .05 

× 4 ÷ 5 = .04), the first three null hypotheses will be rejected for statistical significance. 

On the other hand, with the Bonferroni-corrected critical p value (i.e., .05/5 = .01), only 

the first hypothesis achieves statistical significance. In measurement invariance testing, 

Woods showed that the Benjamini-Hochberg procedure adequately controlled the Type I 

error rates. 

(2.16) 
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Modification Indices 

The modification index (Sörbom, 1989) is also referred to the Lagrange 

multiplier (LM) test (Brown, 2006). The LM test is utilized to test the validity of the 

constraints placed on the model (Kaplan, 2009). The LM test follows the chi-square 

distribution with the degrees of freedom of difference between more constrained and less 

constrained models. Researchers frequently resort to the modification indices to improve 

the fit of a given model by removing a restriction placed in the model.  

Because a misspecified equality constraint of a parameter over groups plausibly 

causes model misfit, modification indices are expected to provide information about the 

measurement noninvariance across groups. In other words, the parameter of a variable 

with the modification index over a certain cutoff can be considered noninvariant across 

groups, and the variable can be identified as a noninvariant variable. Moreover, 

modification indices are given by request in many SEM software programs. Researchers 

can painlessly obtain modification indices with a simple command or by clicking a 

checkbox of modification indices. For these reasons, modification indices are employed 

to locate the sources of noninvariance (specifically, which parameter of which variable).  

However, a couple of questions arise in the utilization of the modification 

indices. Woods (2009) articulated two problems of modification indices in measurement 

invariance testing. The modification indices could lead to erroneous conclusions because 

(a) the cutoff of the modification index is not established (e.g., how large is large; 

Muthén, 1988) and (b) the information of modification index is pertinent only when a 

parameter is relaxed one at a time. In addition, because each variable is tested for 
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invariance assuming the invariance of all other variables, the Type I error inflation can 

be of issue when noninvariant variables are in the model. MacCallum (1986) 

demonstrated that model revisions through specification searches with modification 

indices did not find the true model in a simulation study. On the other hand, a reasonable 

performance of modification indices was reported, especially when the iterative model 

search strategy was applied in model modification (Oort, 1998; Yoon & Millsap, 2007).  

Atheoretical decisions implied by modification indices to improve a model fit 

requires a caution (Brown, 2006; Kaplan, 2009; Kline, 2005). The problems of 

atheoretical model modification include overfitting and capitalization of chance in a 

sample (Brown, 2006; Kline, 2005). The respecified model may include unnecessary 

parameters due to sampling error. Data-driven model specification may hinder the 

generalization of the model to the population of the study. Therefore, it is recommended 

that the decision on model respecification be based on prior research or theory.  
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CHAPTER III 

METHODOLOGY 

 

 This study is intended to explore the behaviors of MIMIC modeling in detecting 

noninvariant variables with continuous and categorical measures. First, MIMIC 

modeling allows researchers to test the equivalence of intercepts over groups assuming 

the invariance of factor loadings over groups. Given that the weak invariance or the 

invariance of factor loadings is not always met, the sensitivity of MIMIC modeling to 

the violation of the weak invariance is worthy of investigation. Second, the overall 

performance of MIMIC modeling as a measurement invariance testing technique (testing 

the equivalence of intercepts over groups) is the primary interest of this study. 

Considering that the previous studies on MIMIC modeling for measurement invariance 

testing reported high Type I error rates, this study employed and compared two critical 

value adjustment strategies to control Type I error inflation. Finally, modification indices 

were considered as an indication of measurement noninvariance in measurement 

invariance testing. Instead of likelihood ratio tests, modification indices were employed 

to detect the noninvariant variables and the subsequent performance was investigated. 

For these research questions, Monte Carlo study was conducted under various simulation 

conditions. 

Simulation Conditions and Data Generation 

Simulation conditions includes data type (continuous or categorical), for 

categorical data, number of categories (dichotomous or polytomous), source of 
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noninvariance (factor loading or intercept for continuous data and threshold for 

categorical data), degree of noninvariance or effect size (small or large), number of 

noninvariant variables (zero, one or two of six), and sample size (200, 400, 1000, or 

2000).  

Type of data. Three types of data were generated through Mplus 5.2 (Muthén & 

Muthén, 2008a): continuous, dichotomous and polytomous variables. Six variables (X1 – 

X6) were created under a single factor following unidimensionality. The polytomous 

variables have five responses which are assumed to take ordered-categorical values.  

Sample size. Two balanced groups with sample size 100, 200, 500, and 1000 

each were examined in this study. Although in many research settings two groups may 

be disproportionate (e.g., 90% Caucasian and 10% African American), studies in which 

two group sizes are roughly equal are not uncommon (e.g., boys and girls, primary 

school students and secondary school students, etc.). Woods (2009) studied an optimal 

sample size for MIMIC modeling in the detection of DIF and found that the focal group 

sample size smaller than 100 (e.g., 25, 50, or 100) yielded very low power to detect the 

DIF items. Thus, this study included the minimum sample size as low as 100 per group.  

Number of noninvariant variables. Concerning the number of noninvariant 

items, two conditions of noninvariance contamination were simulated: only one 

noninvariant variable (about 17% contamination) and two noninvariant variables (about 

33% contamination). The noninvariance contamination is less than 50% because it is 

more likely that the majority of variables are invariant across groups, and a small portion 

of variables may exhibit noninvariance. X5 was simulated as a noninvariant variable, and 
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X2 was added as a noninvariant item for the two noninvariant-variable conditions. This 

study also included the condition in which all six variables were invariant across groups 

to establish basal Type I error rates.  

Source of noninvariance. The location of noninvariance varied at either factor 

loadings or intercepts/thresholds. In the previous studies on MIMIC modeling in 

measurement invariance testing, the source of noninvariance was not considered as a 

simulation condition. This study focused on examining the behaviors of MIMIC with 

different sources of noninvariance in the model. Different research questions were 

addressed depending on the source of noninvariance. For the noninvariance in the factor 

loadings over groups, the sensitivity of MIMIC modeling to the factor loading 

noninvariance was questioned because MIMIC modeling does not test the factor loading 

equivalence over groups explicitly but assumes the invariance of factor loadings. For the 

noninvariance in the intercepts over groups, the performance of MIMIC modeling to 

detect the noninvariant variables was investigated with different critical value 

adjustments in the likelihood ratio tests. 

Magnitude of noninvariance. The magnitude of noninvariance was manipulated 

with small and large difference. For the factor loadings of the focal group, .2 and .4 were 

subtracted from the factor loadings of the reference group for small and large effect size, 

respectively. In terms of intercept or threshold noninvariance, approximately .3 for small 

difference and .6 for large difference were added to the intercepts or thresholds of the 

reference group. Accordingly, in case of the two noninvariant-variable conditions, the 

noninvariance was uniform in favor of the reference group.  
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The factor mean and variance of the reference group were 0 and 1, respectively. 

The corresponding parameters of the focal group were assigned as 0.5 and 1.3, 

respectively. The simulated factor mean difference between groups is not presumably 

related to the behaviors of MIMIC in detecting noninvariant variables (Stark et al., 

2006). The residual variances were homogeneous across groups as 0.3. The parameters 

of intercepts were specified for continuous variables whereas a set of thresholds were 

specified for dichotomous and polytomous variables. Dichotomous variables have a 

single threshold with two response categories whereas polytomous variables in this study 

take five response categories yielding four thresholds. The parameter values used for the 

generation of both continuous and categorical data are presented in Table 1. Under each 

condition 500 replications were generated. 

The parameter values, the magnitude of DIF, sample size, and number of 

replications were selected with the reference to the previous simulation studies on the 

similar research conditions (e.g., Meade & Lautenschlager, 2004; Muthén & 

Asparouhov, 2002; Stark et al., 2006; Yoon, 2008). The simulation conditions of prior 

studies on measurement invariance and MIMIC modeling were reviewed and 

summarized in Appendices A-D.  

Data Analysis 

Model identification and estimation. For the identification of the MIMIC 

model with a grouping variable as a covariate, factor variance was fixed at 1 instead of 

constraining one of the factor loadings at 1. This identification strategy allows freely 

estimating the factor loadings of all observed variables and testing all variables for 
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Table 1 

Design of Monte Carlo Study 

Data type Group Item Small DIF Large DIF 

λ     λ     

Dichotomous/ 

Continuous 

 

Reference 

group 

X1 .9 -0.15    .9 -0.15    

X2 .7 0.25    .7 0.25    

X3 .6 0.15    .6 0.15    

X4 .8 -0.25    .8 -0.25    

X5 .7 -0.10    .7 -0.10    

X6 .6 0.10    .6 0.10    

Focal  

group 

X1 .9 -0.15    .9 -0.15    

X2 .5 0.58    .3 0.82    

X3 .6 0.15    .6 0.15    

X4 .8 -0.25    .8 -0.25    

X5 .5 0.20    .3 0.50    

X6 .6 0.10    .6 0.10    

Polytomous 

Reference 

group 

X1 .9 -0.05 0.35 0.75 1.05 .9 -0.05 0.35 0.75 1.05 

X2 .7 -0.80 -0.40 0.00 0.40 .7 -0.80 -0.40 0.00 0.40 

X3 .6 -0.55 -0.05 0.45 0.85 .6 -0.55 -0.05 0.45 0.85 

X4 .8 0.05 0.50 0.85 1.15 .8 0.05 0.50 0.85 1.15 

X5 .7 -0.50 -0.10 0.25 0.65 .7 -0.50 -0.10 0.25 0.65 

X6 .6 0.15 0.40 0.70 1.25 .6 0.15 0.40 0.70 1.25 

Focal 

group 

X1 .9 -0.05 0.35 0.75 1.05 .9 -0.05 0.35 0.75 1.05 

X2 .5 -0.55 -0.10 0.30 0.75 .3 -0.24 0.25 0.60 0.98 

X3 .6 -0.55 -0.05 0.45 0.85 .6 -0.55 -0.05 0.45 0.85 

X4 .8 0.05 0.50 0.85 1.15 .8 0.05 0.50 0.85 1.15 

X5 .5 -0.20 0.20 0.55 0.95 .3 0.10 0.50 0.85 1.25 

X6 .6 0.15 0.40 0.70 1.25 .6 0.15 0.40 0.70 1.25 

Note.   The parameters of DIF items are written in bold. 
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invariance. For estimation, ML (maximum likelihood) for continuous data and WLSMV 

(weighted least square with robust mean and variance) with theta parameterization for 

categorical data were utilized. Both estimations are the defaults of the Mplus program 

for continuous and categorical data, respectively.  

Model evaluation. When the equivalence of factor loadings over groups is 

violated, the MIMIC model is expected to exhibit a poor fit due to model 

misspecification. To evaluate a model fit under the violation of the factor loading 

invariance assumption, a set of model fit statistics were examined. In the current study, 

model fit indices including a chi-square fit statistic and alternative fit indices (AFI) were 

inspected when a proportion of factor loadings were simulated to be noninvariant. The 

following alternative fit indices were analyzed: (a) the weighted root mean square 

residual (WRMR) for categorical items or the standardized root mean square residual 

(SRMR) for continuous items; (b) comparative fit index (CFI); and (c) the root mean 

square error of approximation (RMSEA). Recommended cutoff values of these AFI 

measures for a good model fit are CFI ≥ .95, RMSEA ≤ .05, and SRMR ≤ .08, and 

WRMR ≤ 1.0 (Hu & Bentler, 1999; Yu, 2002) in addition to statistically non-significant 

chi-square (p ≥ .05). For each fit statistic, the value out of the given range can be 

considered as a flag of model misspecification due to noninvariant factor loadings. The 

proportion of cases in which the model was correctly flagged as a poor fit was computed 

in addition to the mean of each fit index across 500 replications.  

Likelihood ratio test in MIMIC modeling. Instead of statistical significance 

testing on β coefficients in Equation 2.14, this study employed the likelihood ratio test to 
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detect the noninvariant variables. A likelihood ratio test is conducted with two nested 

models in the attempt to obtain a better fit model with more parsimony. In this study, the 

MIMIC model with a direct path from the grouping indicator to each variable 

(augmented model with β, that is, with the dotted path in Figures 3 and 4) is compared to 

the model constraining the corresponding path parameter (β) at zero assuming invariance 

(baseline model, a model without the dotted path in Figures 3 and 4). The statistical 

significance of the chi-square difference given degree of freedom between two models 

(in this study, df = 1) indicates the direct effect of group membership on the tested 

variable in favor of the augmented model. In other words, the tested variable is 

considered noninvariant over groups. The statistical significance testing on the β 

coefficient yields identical results as the likelihood ratio test. However, in this study, the 

LR test was intentionally selected for two reasons: (a) to apply the Oort adjustment to 

the critical values which requires the baseline model chi-square and degrees of freedom, 

and (b) to make a connection to modification indices which is tantamount to the LR test 

with one degree of freedom. 

As speculated earlier, when a baseline model is misspecified, the chi-square fit 

statistic of the baseline model is expected to inflate reflecting the misspecification (Oort, 

1998; Stark et al, 2006; Yuan & Benter, 2004). Subsequently, the chi-square difference 

between baseline and augmented models is likely to increase, which may lead to the 

rejection of the null hypothesis when there is no difference between competing models. 

The MIMIC model is inherently a full invariance model assuming measurement 

invariance of all parameters of all observed variables across groups because the groups 
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share a single model. This full-invariance-assumed MIMIC model serves as a baseline 

model in the likelihood ratio test. However, when the model contains noninvariant 

variables (i.e., the model is misspecified) as simulated in this study, the chi-square 

inflation and consecutive Type I error increase possibly occur. To correct the inflated 

Type I error rates, two critical value adjustment methods, Oort adjustment and 

Bonferroni correction, were employed in this simulation study.   

Oort adjustment to control Type I error. In this study, the chi-square 

difference between baseline and augmented models is likely not to conform to the chi-

square distribution because of the baseline model misspecification. Thus, the likelihood 

ratio tests were conducted with the Oort adjusted chi-square critical values. The Oort 

adjustment was compared to the Bonferroni correction. Stark et al. (2006) suggested 

Bonferroni correction to lower the inflated Type I error rates in the LR tests. For the 

Bonferroni correction, critical p value .008 (= .05 / 6) was adopted because six 

likelihood ratio tests were performed for each replication. 

Modification indices. The final concern of this study is modification indices 

which are similar to the chi-square difference values with one degree of freedom in the 

likelihood ratio test. In the utilization of modification indices, one critical decision 

researchers should make is to set the cutoff values of modification indices. For example, 

in Mplus the default cutoff of modification index is 10. Instead, the conventional chi-

square value at the .05 level for one degree of freedom (χ
2
[1] = 3.84) can be utilized as a 

cutoff. In this study, taking into account the Type I error rate inflation, Oort-adjusted 

chi-square critical values were selected and compared to the conventional cutoff of 
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modification index (3.84). In case of Oort correction each replication adopts a different 

cutoff value depending on the degree of adjustment. The variable with a modification 

index greater than the Oort-adjusted critical value was considered as noninvariance.  

This study examined two different strategies of modification indices: (a) 

noniterative method in which modification indices in the baseline model are examined 

for noninvariance without subsequent model modification, and (b) iterative method in 

which models are sequentially modified according to the modification indices. The first 

method corresponds to the initial stage of iterative modification procedures. The baseline 

model assumes full invariance of all variables. Because one or two variables were 

simulated noninvariant, it is expected that the noninvariant variables will have 

modification indices over a given cutoff indicating lack of invariance. In the iterative 

procedure, model modification was sequentially conducted by relaxing one noninvariant 

variable with the largest modification index at a time until all modification indices were 

below a certain criterion or the model turns into a good fit (p ≥ .05 for a chi-square 

goodness-of-fit statistic). In the first stage, all variables were constrained equal across 

groups and the modification indices were examined. Then, only one variable with the 

maximum modification index was selected as a noninvariant variable and relaxed for 

free estimation in the subsequent model. This process was repeated as long as any 

noninvariance was detected with the modification index over the cutoff under a poor 

model fit.  

It is recommended to use the iterative model modification procedure because the 

existence of any noninvariant variable in the model is likely to distort the correct model 
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fit (Oort, 1998; Wang et al., 2009; Yoon & Millsap, 2007). In Yoon and Millsap’s 

simulation study on the multiple group CFA using continuous variables, the sequential 

model modification procedure yielded better results than the noniterative method. Oort 

(1998) showed the outperformance of the iterative procedure in the ordinal measures 

using ordinary linear MIMIC. This study embraced data types (continuous or 

categorical) as a design variable, and examined the modification indices of the MIMIC 

model with either continuous or ordered-categorical variables. To sum up, this study 

included four different strategies of modification indices in combination of the cutoffs of 

modification indices and the procedures of model modification: (a) the noniterative 

method (i.e., modification indices at the initial stage of model modification) using the 

conventional critical value, (b) the noniterative method using the Oort adjusted critical 

value, (c) the iterative procedure of model modification using the conventional critical 

value, and (d) the iterative procedure using the Oort adjustment.  
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CHAPTER IV 

RESULTS 

 

Simulation Baseline Check  

The basal Type I error rate was established and the adequacy of simulation was 

checked under the conditions of measurement invariance over groups. In this study, 

Type I error refers to the false detection of an invariant variable as noninvariance. When 

all six variables were invariant across groups, the Type I error rate was measured at the 

critical p value of .05 (Table 2). Because the model was specified correctly without 

noninvariance, Type I error rates should not considerably exceed the sampling error rate, 

which was set at .05. Therefore, Type I error rates were expected around .05 regardless 

of simulation conditions.  

In most study conditions, Type I error rate was about .05. According to Bradley 

(1978), the acceptable range of Type I error rates is computed with a formula, α ± 1/2α. 

When α is .05, the Type I error rates between .025 and .075 are considered reasonable.  

 

Table 2 

Basal Type I Error Rates 

Sample size Continuous  Categorical 

   Dichotomous  Polytomous 

200 .050  .058  .048 

400 .044  .057  .059 

1000 .049  .057  .061 

2000 .053  .081  .081 

Note.   α = .05 
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The Type I error rates of most study conditions fell within the Bradley’s range. In 

general, the Type I error rates of categorical variables were slightly higher than those of 

continuous variables. In the condition of large sample size (2000) of categorical 

variables the Type I error rate was over the predetermined critical p value (α = .05). 

However, previous simulation studies on measurement invariance showed similar basal 

Type I error ranges. In Finch’s (2005) simulation with MIMIC modeling, Type I error 

rates were .050 and .064 for sample size 100 and 500 per group, respectively. Stark and 

colleagues reported basal Type I error rates of .05 and .09 for sample size 500 and 1000, 

respectively in case of dichotomous data and .04 and .08 in case of polytomous data with 

multiple group CFA. The Type I error rates in Wang and colleagues’ (2009) study on 

MIMIC modeling ranged between .01 and .14. Overall, the baseline check in the present 

study showed that the false detection occurred merely due to sampling error or by 

chance and data were adequately simulated. 

Factor Loading Noninvariance 

 Model fit evaluation. When MIMIC model is used to test factorial invariance, 

strict invariance is assumed as a baseline. A violation of this assumption, specifically, 

the noninvariance in factor loadings across groups, should lead to misfit of the MIMIC 

model. With the expectation of a poor fit of MIMIC models due to the violation of 

invariant factor loadings across groups, the model fit indices were examined. 

Overall, the simulation study showed good model fits across all simulation 

conditions (namely, data type, sample size, and degree of noninvariance). With the chi-

square fit statistic, statistical significance tests were conducted at the significance level 



 

 

54 

.05 (α = .05) to evaluate model fit. That is, if p ≥ .05, the model fit was considered 

adequate. On average, chi-square p values were considerably higher than the 

significance level failing to reject the null hypothesis of a good model fit. The mean of 

chi-square p values of 500 replications ranged from .11 to .50 across all simulation 

conditions. Only 3 of 24 simulation conditions (12%) yielded the average chi-square p 

value less than .30.  

When one or more factor loadings were noninvariant in MIMIC, the proportions 

of cases correctly flagged as a poor fit were near .05 with the range of .04 and .09 

regardless of sample size and magnitude of DIF for dichotomous variables (see Table 3). 

The proportions of correct detections of measurement noninvariance in factor loadings 

through chi-square did not diverge from the significance level (α = .05), which indicates 

that MIMIC modeling did not detect the violation of factor loading invariance over the 

chance rate for dichotomous variables.  

For both polytomous and continuous variables, the proportions of the cases 

showing a poor model fit increased as sample size and degree of noninvariance increased 

(Table 3). For example, with a large DIF of polytomous cases, the proportion to detect 

the model misspecification correctly was .14, .25, and .59 for sample size 400, 1000, and 

2000, respectively. However, for all other scenarios of polytomous variables, the 

misspecified MIMIC model assuming factor loading invariance were more likely to 

exhibit good fits: the proportions of poor fit cases ranged .04 through .19 depending on 

the simulation conditions. The continuous variable conditions exhibited similar results to 

the polytomous variables as presented in Table 3.  
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Table 3  

The Power of Model Fit Indices: Factor Loading Noninvariance  

DIF Sample size χ
2
 (p) CFI RMSEA SRMR 

  Dichotomous variables 

Small 

 

200 0.06 0.00 0.11 0.00 

400 0.05 0.00 0.01 0.00 

1000 0.05 0.00 0.00 0.00 

2000 0.08 0.00 0.00 0.00 

Large 

 

200 0.05 0.00 0.11 0.00 

400 0.04 0.00 0.01 0.00 

1000 0.05 0.00 0.00 0.00 

2000 0.09 0.00 0.00 0.00 

  Polytomous variables 

Small 200 0.04 0.00 0.10 0.00 

 400 0.08 0.00 0.03 0.00 

 1000 0.08 0.00 0.00 0.00 

 2000 0.19 0.00 0.00 0.00 

Large 200 0.06 0.00 0.14 0.00 

 400 0.14 0.00 0.07 0.00 

 1000 0.25 0.00 0.00 0.00 

 2000 0.59 0.00 0.00 0.00 

  Continuous variables 

Small 100 0.07 0.00 0.12 0.00 

 200 0.06 0.00 0.01 0.00 

 500 0.07 0.00 0.00 0.00 

 1000 0.11 0.00 0.00 0.00 

Large 100 0.08 0.00 0.15 0.00 

 200 0.11 0.00 0.03 0.00 

 500 0.20 0.00 0.00 0.00 

 1000 0.47 0.00 0.00 0.00 

Note.    Power is defined as the proportion of the cases in which the model with 

noninvariant variables showed a poor fit. CFI = comparative fit index, RMSEA = root 

mean squared error of approximation, SRMR = standardized root mean squared residual. 

The cutoff values of a poor model fit are chi-square p-values < .05, CFI < .95, RMSEA 

< .05, and SRMR < .08. 
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Table 4 

The Mean of Model Fit Indices: Factor Loading Noninvariance  

DIF Sample size χ
2
 (p) CFI RMSEA WRMR 

  Dichotomous variables 

Small 200 0.49 1.00 0.02 0.54 

400 0.48 1.00 0.01 0.53 

1000 0.48 1.00 0.01 0.54 

2000 0.44 1.00 0.01 0.55 

Large 200 0.49 1.00 0.02 0.54 

400 0.48 1.00 0.01 0.54 

1000 0.47 1.00 0.01 0.54 

2000 0.42 1.00 0.01 0.56 

  Polytomous variables 

Small 200 0.50 1.00 0.02 0.37 

 400 0.46 1.00 0.01 0.38 

 1000 0.41 1.00 0.01 0.39 

 2000 0.31 1.00 0.01 0.42 

Large 200 0.46 1.00 0.02 0.38 

 400 0.39 1.00 0.02 0.40 

 1000 0.26 1.00 0.02 0.44 

 2000 0.11 1.00 0.02 0.51 

  Continuous variables 

Small 100 0.47 1.00 0.02 0.02 

 200 0.46 1.00 0.01 0.01 

 500 0.46 1.00 0.01 0.01 

 1000 0.37 1.00 0.01 0.01 

Large 100 0.44 1.00 0.02 0.02 

 200 0.39 1.00 0.02 0.02 

 500 0.31 1.00 0.01 0.01 

 1000 0.16 1.00 0.02 0.01 
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In addition to the statistical significance of chi-square fit statistic, alternative fit 

indices (i.e., CFI, RMSEA, and SRMR for continuous data and WRMR for categorical 

data) were evaluated. The mean of the alternative fit indices are presented in Table 4 

(see the last three columns). Consistent to chi-square fit statistics, all AFIs, in general, 

supported good model fits of MIMIC with noninvariant factor loadings. For continuous 

variables, (a) the mean of CFI was 1.00 irrespective of sample size and DIF magnitude;  

(b) the mean of RMSEA was below .02; (c) the mean of SRMR was below .02 across 

simulation conditions. The average WRMR of dichotomous variables was about .55 for 

all simulation conditions. To sum up, MIMIC modeling, in general, failed to detect the 

violations of factor loading invariance through model evaluations.  

Measurement invariance testing. Concerning factor loading noninvariance, this 

study questioned whether the factorial invariance test using MIMIC (i.e., estimating the 

direct effect of group membership on each observed variable) can detect the violation of 

equivalent factor loading assumption. To address this question, likelihood ratio tests 

were conducted as explained in the method section, and power and Type I error were 

examined. Two methods of critical value adjustment (Bonferroni and Oort) were applied 

in the LR tests.  

For dichotomous data, power was below .10 regardless of sample size, 

magnitude of noninvariance, and critical value adjustment strategies (see Table 5). That 

is, power was not different from the basal Type I error rates. When Bonferroni 

correction was utilized, the power rates were almost zero (.01 ~ .02). For polytomous 

and continuous data, sample size and degree of noninvariance made a positive impact on 
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Table 5 

The Power and Type I Error Rates of the LR Tests: Factor Loading Noninvariance  

  No adjustment  Bonferroni  Oort 

DIF Sample 

size 

Power  Type I 

error 

 Power  Type I 

error 

 Power  Type I 

error 

  Dichotomous variables 

Small 200 .06 .06  .02 .01  .07 .08 

 400 .03 .06  .01 .01  .05 .07 

 1000 .05 .06  .01 .01  .07 .08 

 2000 .08 .08  .01 .01  .08 .09 

Large 200 .05 .05  .01 .01  .07 .08 

 400 .06 .06  .01 .01  .07 .08 

 1000 .06 .06  .01 .00  .08 .08 

 2000 .10 .08  .02 .01  .09 .09 

  Polytomous variables 

Small 200 .07 .05  .02 .01  .09 .08 

 400 .11 .06  .03 .01  .12 .07 

 1000 .17 .07  .05 .01  .18 .08 

 2000 .37 .09  .15 .02  .33 .08 

Large 200 .15 .05  .04 .01  .15 .07 

 400 .26 .07  .09 .01  .25 .07 

 1000 .52 .09  .26 .01  .48 .06 

 2000 .82 .12  .61 .03  .78 .05 

  Continuous variables 

Small 200 .08 .05  .02 .01  .10 .06 

 400 .11 .05  .03 .01  .14 .07 

 1000 .20 .05  .05 .01  .23 .06 

 2000 .36 .06  .15 .01  .35 .06 

Large 200 .16 .05  .05 .01  .19 .06 

 400 .27 .05  .10 .01  .30 .06 

 1000 .58 .06  .33 .01  .60 .04 

 2000 .87 .07  .67 .02  .88 .02 

Note.   Bonferroni means Bonferroni correction on the critical values; Oort means Oort 

correction on the critical values. The Type I error rates were italicized.
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power. Thus, power reached over .80 in the conditions of large DIF and large sample 

size (n = 2000 in Table 5). However, in most conditions, power was considerably lower 

although Type I error was reasonably controlled below .10 across conditions (Table 5). 

Compared with the conventional critical p value (α = .05), neither Bonferroni nor Oort 

correction improved the performance of MIMIC in detecting the factor loading 

noninvariance. Bonferroni correction slightly degraded Type I error rates while dropping 

power considerably. In general, Oort correction worsened Type I error rates in most 

conditions of dichotomous variables. Interestingly, when Oort adjustment was applied 

for continuous variables, the power rates exceeded the counterparts of no adjustment 

conditions (e.g., for no adjustment, the power rate in the condition of large DIF with 

sample size 1000 was .58; for Oort adjustment, .60). Because the critical value is tailored 

according to the baseline chi-square in Oort adjustment, the power rate could improve 

over the no adjustment conditions whereas Bonferroni correction uniformly lessens the 

power, taking more conservative critical p values. Although Oort adjustment improved 

the power rates under certain simulation conditions, it should be noted that in factor 

loading noninvariance scenarios critical value adjustment appeared not to be required 

because Type I error was reasonable under no adjustment across all conditions. 

Intercept/Threshold Noninvariance  

No critical value adjustment. The statistical behaviors of the MIMIC model in 

detecting intercept (or threshold) noninvariance were assessed with two types of 

summary statistics: power and Type I error rates as defined earlier. Before we applied 

certain types of critical value adjustment to control Type I error, no adjustment  
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conditions were investigated first. Table 6 presented power and Type I error of 

continuous and categorical data, respectively when the conventional alpha (.05) was 

employed without correction. When a single noninvariant variable existed for continuous 

variables, the power rate was simply 1.00 regardless of sample size and degree of 

noninvariance. Even a small size difference in intercept between groups was detected 

almost all the time. In case of categorical variables except small DIF and small sample 

size (n ≤ 200 for polytomous and n ≤ 400 for dichotomous), the noninvariant variable 

was detected with nearly 100% power. 

When two of six variables were noninvariant over groups, two types of 

proportions under power were reported. When each noninvariant variable was tested for 

invariance and detected as DIF, the proportion of detected cases over 500 replications 

was defined as the power rate. The average power rate of two noninvariant variables is 

presented at the top of each cell (Tables 7 and 8). The value at the bottom of each cell 

represents the proportion of replications in which both variables were detected as 

noninvariance. Similar to one-DIF conditions presented above, power was substantial 

(near 1.00 or above) in almost all simulation scenarios. Higher power was observed in 

continuous data than polytomous data; polytomous data displayed higher power than 

dichotomous data. 

As reported in previous studies, substantial Type I error elevations were observed 

throughout conditions. The Type I error rate inflated as sample size and degree of 

noninvariance increased. In combination of large sample size and large degree of 

noninvariance, the inflation of Type I error rate was the most serious (see Tables 6, 7, 
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Table 6  

The Power and Type I Error Rates of the LR Tests: Intercept/Threshold Noninvariance 

in One Noninvariant Variable 

  No Adjustment Bonferroni Oort 

DIF Sample 

size 

Power Type I 

Error 

Power Type I 

Error 

Power Type I 

Error 

  Dichotomous variables 

Small 200 .63 .08 .35 .01 .62 .06 

 400 .87 .10 .65 .02 .85 .04 

 1000 1.00 .17 .99 .05 .99 .02 

 2000 1.00 .30 1.00 .12 1.00 .00 

large 200 1.00 .14 .95 .04 .99 .03 

 400 1.00 .22 1.00 .08 1.00 .01 

 1000 1.00 .48 1.00 .23 1.00 .00 

 2000 1.00 .75 1.00 .52 1.00 .00 

  Polytomous variables 

Small 200 .82 .09 .63 .02 .84 .05 

 400 .99 .14 .94 .04 .98 .03 

 1000 1.00 .29 1.00 .11 1.00 .01 

 2000 1.00 .48 1.00 .26 1.00 .00 

large 200 1.00 .20 1.00 .06 1.00 .02 

 400 1.00 .37 1.00 .16 1.00 .00 

 1000 1.00 .70 1.00 .47 1.00 .00 

 2000 1.00 .92 1.00 .79 1.00 .00 

  Continuous variables 

Small 200 .93 .10 .80 .03 .91 .04 

 400 1.00 .16 .99 .05 1.00 .02 

 1000 1.00 .33 1.00 .14 1.00 .00 

 2000 1.00 .56 1.00 .32 1.00 .00 

large 200 1.00 .24 1.00 .08 1.00 .01 

 400 1.00 .42 1.00 .21 1.00 .00 

 1000 1.00 .77 1.00 .56 1.00 .00 

 2000 1.00 .94 1.00 .83 1.00 .00 

Note.   Bonferroni means Bonferroni correction on the critical values; Oort means Oort 

correction on the critical values. The Type I error rates were italicized.  
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Table 7  

The Power and Type I Error Rates of the LR Tests: Threshold Noninvariance in Two 

Noninvariant Variables of Categorical Data 

  No Adjustment Bonferroni Oort 

DIF Sample 

size 

Power Type I 

Error 

Power Type I 

Error 

Power Type I 

Error 

  Dichotomous variables 

Small 200 .48 

.19 

.15 

 

.22 

.04 

.05 .37 

.05 

.09 

 400 .73 

.52 

.27 

 

.47 

.19 

.08 .50 

.15 

.07 

 1000 .98 

.97 

.54 .93 

.86 

.29 .74 

.48 

.06 

 2000 1.00 

1.00 

.83 1.00 

1.00 

.62 .90 

.81 

.02 

Large 200 .94 

.88 

.40 .79 

.61 

.17 .67 

.35 

.07 

 400 1.00 

.99 

.68 .98 

.97 

.41 .81 

.62 

.03 

 1000 1.00 

1.00 

.97 1.00 

1.00 

.87 .93 

.86 

.01 

 2000 1.00 

1.00 

1.00 1.00 

1.00 

1.00 .99 

.98 

.00 

  Polytomous variables 

Small 200 .67 

.41 

.22 .40 

.13 

.07 .48 

.11 

.09 

 400 .92 

.85 

.39 .73 

.50 

.18 .65 

.32 

.07 

 1000 1.00 

1.00 

.74 1.00 

.99 

.51 .85 

.71 

.05 

 2000 1.00 

1.00 

.96 1.00 

1.00 

.85 .96 

.93 

.02 

Large 200 1.00 

.99 

.65 .98 

.96 

.39 .83 

.66 

.05 

 400 1.00 

1.00 

.91 1.00 

1.00 

.75 .95 

.89 

.03 

 1000 1.00 

1.00 

1.00 1.00 

1.00 

1.00 1.00 

1.00 

.01 

 2000 1.00 

1.00 

1.00 1.00 

1.00 

1.00 1.00 

1.00 

.00 

Note.   The Type I error rates were italicized. The second value of power denotes the 

proportion of the cases across 500 replications in which both noninvariant variables were 

detected simultaneously. 
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and 8). It appeared that the Type I error elevation became worse as the number of 

noninvariant variables increased from one to two. Although MIMIC showed reasonable 

power to detect noninvariance, high Type I error rates deteriorated the performance of 

MIMIC as a valid tool for measurement invariance testing. As articulated earlier, a 

statistical consideration to control for high Type I error rates appears to be necessary. 

 

Table 8 

The Power and Type I Error Rates of the LR Tests: Intercept Noninvariance in Two 

Noninvariant Variables of Continuous Data 

  No adjustment  Bonferroni  Oort 

DIF Sample 

size 

Power  Type I 

error 

 Power  Type I 

error 

 Power  Type I 

error 

Small 200 .81 

.64 

.30  .58 

.29 

.13  .58 

.23 

.08 

 400 .98 

.96 

.54  .92 

.84 

.31  .76 

.53 

.08 

 1000 1.00 

1.00 

.87  1.00 

1.00 

.71  .91 

.82 

.04 

 2000 1.00 

1.00 

.98  1.00 

1.00 

.92  .98 

.95 

.03 

large 200 1.00 

1.00 

.74  .99 

.98 

.52  .86 

.72 

.08 

 400 1.00 

1.00 

.93  1.00 

1.00 

.81  .98 

.95 

.05 

 1000 1.00 

1.00 

1.00  1.00 

1.00 

1.00  1.00 

1.00 

.02 

 2000 1.00 

1.00 

1.00  1.00 

1.00 

1.00  1.00 

1.00 

.01 

Note.   Bonferroni means Bonferroni correction on the critical values; Oort means Oort 

correction on the critical values. The Type I error rates were italicized. The second value 

of power denotes the proportion of the cases across 500 replications in which both 

noninvariant variables were detected simultaneously. 
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Bonferroni correction. When the critical p value were adjusted with Bonferroni 

correction (that is, α = .008), the Type I error rates showed slight improvement (e.g., see 

Tables 6, 7, and 8). However, the Type I error rates remained substantial across most 

large noninvariance, large sample, and large contamination conditions regardless of data 

type (e.g., in the condition of large DIF and sample size 1000 with 2 noninvariant 

variables, Type I error was 1.00). More seriously, Bonferroni correction diminished the 

power rates as it improved the Type I error rates. For example, for the small DIF, sample 

size 400, small contamination condition with dichotomous variables, the power rate to 

detect a noninvariant variable decreased to .65 from .87 while the Type I error rate 

became smaller than expected or desired (from .10 to .02, see Table 6). Adopting more 

conservative critical p value resulted in the loss of power to identify the noninvariance 

properly. Overall, the findings of Bonferroni correction indicated that simply taking 

more conservative critical p value was not an optimal solution to correct the inflated 

Type I error rates. 

Oort adjustment. When Oort-adjusted critical chi-square values were applied, 

Type I error rates were controlled around the basal rates (between .00 and .09). Most 

conditions of small contamination (namely, a single noninvariant variable) showed near 

zero Type I error rates (Tables 6, 7, and 8). That is, MIMIC appeared to classify the 

invariant variables as invariant almost all the time when utilized with Oort adjustment. 

At the same time, the power rates remained almost same as before-adjustment when the 

model had a single noninvariant variable (Table 6). Whereas Bonferroni correction 
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reduced the power rates, Oort adjustment maintained the power to detect the 

noninvariance, simultaneously controlling for the Type I error rates.  

On the other hand, the MIMIC model with more than one noninvariant variable 

displayed loss of power with Oort correction. Across small DIF conditions, power was 

considerably lower with the Oort adjustment than no adjustment (Tables 7 and 8). As 

observed in Bonferroni correction, the decrease of power was substantial in detecting 

both noninvariant variables simultaneously (the second type of the reported power rates 

at the bottom). When the variables were dichotomous in sample size 1000, the power to 

detect both small DIF variables was .97 without adjustment but .48 with Oort adjustment 

(Table 7). However, for polytomous and continuous variables the power loss was less 

obvious or did not occur with a large sample size. With a sufficient sample size such as 

400 or more the large intercept/threshold difference between groups was reasonably 

detected. In case of continuous variables the power was over 95% with large DIF and 

sample size over 400. Overall, unless sample size and DIF were small, the Oort 

correction maintained acceptable power. Considering the high power rates across 

simulation conditions and the Type I error rates below the basal rates, MIMIC with the 

Oort adjustment can be a choice of measurement invariance testing. The power 

degradation of Oort correction with two noninvariant variables will be explained in the 

discussion section. 

Modification Indices  

 The performance of modification indices in detecting noninvariance in intercepts 

was explored using the data with two-noninvariant variables. Tables 9 and 10 show 
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power and Type I error for four different search strategies of modification indices to 

identify the lack of invariance in intercepts/thresholds across group: noniterative model 

modification method with the unadjusted chi-square critical value, noniterative method 

with the Oort-adjusted critical value, iterative method with the unadjusted critical value, 

and iterative method with Oort adjustment. First, for the noniterative method (i.e., the 

modification indices of the baseline model assuming strict invariance), the overall 

behaviors of the modification indices were very similar to those of the LR test (Table 9). 

Without adjustment in the cutoff of modification indices, Type I error was substantial 

across simulation conditions. Overall, due to the extremely high Type I error, the 

modification indices over the unadjusted cutoff (χ
2
[1] = 3.84) did not provide any useful 

information on the noninvariant variables in the model although power was considerably 

high. However, when the Oort adjustment was applied to the cutoff of modification 

indices, Type I error rates were controlled below the basal rates with reasonable power if 

one of the conditions was met: (a) sample size over 400, (b) large size of DIF, or (c) low 

contamination (one DIF variable). As observed in the LR tests, the power to detect both 

noninvariant variables was noticeably lower when sample size was small. However, 

modification indices with Oort-adjusted cutoff values, in general, performed adequately 

to detect large DIF even at the initial stage of model modification when sample size was 

substantial (i.e., 1000 or more).  

When the iterative procedure was implemented, the performance of modification 

indices improved substantially, especially with the conventional cutoff (Table 10). Type 

I error rates were near or below the basal error rates throughout simulation conditions. 
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Table 9 

The Power and Type I Error Rates of Modification Indices: Noniterative Procedure  

  Dichotomous Polytomous Continuous 

  No adjustment Oort No adjustment Oort No adjustment Oort 

DIF n Power  Type I 

error 

Power  Type I 

error 

Power  Type I 

error 

Power  Type I 

error 

Power  Type I 

error 

Power  Type I 

error 

Small 200 .36 

.11 

.28 .24 

.01 

.10 .63 

.32 

.51 .52 

.05 

.16 .97 

.64 

.82 .92 

.20 

.28 

 400 .74 

.45 

.64 .65 

.12 

.18 .94 

.81 

.87 .91 

.26 

.21 1.00 

.96 

.98 1.00 

.52 

.24 

 1000 .99 

.96 

.98 1.00 

.49 

.23 1.00 

1.00 

1.00 1.00 

.70 

.13 1.00 

1.00 

1.00 1.00 

.81 

.13 

 2000 1.00 

1.00 

1.00 1.00 

.82 

.11 1.00 

1.00 

1.00 1.00 

.94 

.06 1.00 

1.00 

1.00 1.00 

.95 

.08 

Large 200 .96 

.85 

.87 .93 

.25 

.18 1.00 

.99 

.99 1.00 

.50 

.10 1.00 

1.00 

1.00 1.00 

.66 

.16 

 400 1.00 

1.00 

1.00 1.00 

.61 

.08 1.00 

1.00 

1.00 1.00 

.85 

.05 1.00 

1.00 

1.00 1.00 

.92 

.09 

 1000 1.00 

1.00 

1.00 1.00 

.91 

.04 1.00 

1.00 

1.00 1.00 

1.00 

.00 1.00 

1.00 

1.00 1.00 

1.00 

.02 

 2000 1.00 

1.00 

1.00 1.00 

1.00 

.00 1.00 

1.00 

1.00 1.00 

1.00 

.00 1.00 

1.00 

1.00 1.00 

1.00 

.00 
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Table 10 

The Power and Type I Error Rates of Modification Indices: Iterative Procedure  

  Dichotomous Polytomous Continuous 

  No adjustment Oort No adjustment Oort No adjustment Oort 

DIF n Power  Type I 

error 

Power  Type I 

error 

Power  Type I 

error 

Power  Type I 

error 

Power  Type I 

error 

Power  Type I 

error 

Small 200 .29 

.06 

.11 .22 

.03 

.07 .55 

.15 

.10 .49 

.11 

.08 .77 

.36 

.11 .73 

.32 

.10 

 400 .68 

.25 

.11 .62 

.22 

.09 .90 

.59 

.09 .87 

.56 

.07 .99 

.83 

.05 .98 

.83 

.05 

 1000 .98 

.87 

.05 .98 

.87 

.04 1.00 

1.00 

.03 1.00 

1.00 

.02 1.00 

1.00 

.02 1.00 

1.00 

.01 

 2000 1.00 

1.00 

.03 1.00 

1.00 

.02 1.00 

1.00 

.03 1.00 

1.00 

.02 1.00 

1.00 

.02 1.00 

1.00 

.01 

Large 200 .93 

.59 

.10 .90 

.56 

.08 1.00 

.96 

.03 1.00 

.96 

.03 .99 

.97 

.03 .99 

.97 

.02 

 400 .99 

.95 

.04 .99 

.95 

.04 1.00 

1.00 

.04 1.00 

1.00 

.01 1.00 

1.00 

.02 1.00 

1.00 

.01 

 1000 1.00 

1.00 

.02 1.00 

1.00 

.02 1.00 

1.00 

.03 1.00 

1.00 

.02 1.00 

1.00 

.02 1.00 

1.00 

.01 

 2000 1.00 

1.00 

.03 1.00 

1.00 

.02 1.00 

1.00 

.02 1.00 

1.00 

.01 1.00 

1.00 

.02 

 

1.00 

1.00 

.01 
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The choice of critical value adjustments did not make any difference in the power and 

Type I error of modification indices. Interestingly, the behaviors of unadjusted and 

adjusted modification indices were almost identical within a few hundredth differences. 

Hence, when researchers utilize the sequential process of model modification, Type I 

error appears to be no concern irrespective of whether they apply critical value 

adjustment to modification indices or not. However, the power to properly detect the 

small DIF required large sample size, especially for dichotomous variables (e.g., sample 

size of 1000 for small noninvariance with dichotomous data). When the magnitude of 

noninvariance was large, modification indices detected the noninvariant variables almost 

all the time even with a small sample such as 200. When sample size and DIF were 

small, the noninvariance in the continuous data was better detected followed by 

polytomous data and dichotomous data.  

In comparing the Oort-adjusted likelihood ratio test and the iterative method of 

modification indices, the likelihood ratio tests yielded slightly lower power due to the 

Oort adjustment effect than the iterative modification indices whereas the Oort-adjusted 

likelihood ratio test outperformed the iterative procedure of modification indices in 

terms of Type I error although the difference was very small. The more striking 

difference was observed in the power to detect both noninvariant items. The iterative 

model search procedure using the modification indices exhibited better results in 

detecting noninvariance in two variables. The relatively lower power in the likelihood 

ratio tests with Oort adjustment in detecting multiple DIF variables will be discussed 

later. 
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Simulation Design Factors 

With respect to intercept/threshold noninvariance of MIMIC modeling, the major 

simulation factors explaining the variation of the power rates were determined through 

ANOVA (Analysis of Variance). The variance of the power rates was partitioned 

according to the simulation design factors of the study when the likelihood ratio tests 

were employed for measurement invariance testing (Table 11). For this analysis only the 

simulation condition which yielded desirable results in terms of power and Type I error 

was selected: one DIF condition with Oort adjustment.  

When the likelihood ratio tests were conducted to detect the intercept 

noninvariance in MIMIC modeling, sample size and the magnitude of DIF appeared to 

play a role in determining the power for noninvariance. Sample size, magnitude of 

noninvariance, and their interaction explained about 66% of the variance of power, 

which indicates (a) that the large magnitude of noninvariance with a large sample is well 

detected, (b) that sample size does not matter to a large extent when the DIF size is large,  

 

Table 11 

The Proportion of Variance Explained by the Simulation Design Factors: Likelihood 

Ratio Tests of the Intercept Noninvariance (One DIF with Oort Adjustment) 

Simulation design factors ε
2
  

Data type 8.58 

Magnitude of noninvariance (DIF) 15.40 

Sample size  26.03 

Data type*DIF 7.80 

Data type*Sample size 9.49 

DIF*Sample size 24.39 

Data type*DIF*Sample size 8.31 

Note. ε
2
 = the proportion of variance explained by each variable (%).
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and (c) that a large sample size is required to detect a small size of noninvariance. 

Making interpretations more complicated, the types of data and the interactions with 

other design factors were also related to power. For example, the contributions of sample 

size and DIF size appeared less compelling for continuous data than for dichotomous 

data because the power of continuous data was simply 100% regardless of sample size 

and DIF size.  

 For the iterative procedure of modification indices with no critical value 

adjustment, the proportion of variance explained by each design factor is presented in 

Table 12. The power rates were highly attributable to sample size, magnitude of 

noninvariance, and their interaction as observed in the likelihood ratio tests. The effects 

of sample size and DIF were predominant in detecting both noninvariant variables with 

modification indices explaining approximately 85% of the variance. On the other hand, 

the same interaction effects of data type and other design factors were detected as in the 

likelihood ratio tests but the effects were less salient with two noninvariant variables.  

 

Table 12 

The Proportion of Variance Explained by the Simulation Design Factors: Modification 

Indices of the Intercept Noninvariance with the Iterative Procedure (Two DIFs with No 

Adjustment) 

Simulation design factors ε
2
  

Data type 6.29 

Magnitude of noninvariance (DIF) 21.87 

Sample size  42.65 

Data type*DIF 1.06 

Data type*Sample size 4.27 

DIF*Sample size 20.42 

Data type*DIF*Sample size 3.44 

Note. ε
2
 = variance explained by each variable (%). 
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 The effects of data type in terms of power were further investigated through the 

inspection of power rate changes across different data types.  The same conditions 

selected for ANOVA were used for this analysis. Because the continuous data showed 

the highest power, the power reduction was computed by subtracting the power rates of 

either dichotomous or polytomous data from the corresponding power rates of 

continuous data. Then, the difference was divided by the power rates of continuous data. 

As presented in Tables 13 and 14, when the magnitude of noninvariance was large, the 

types of data (dichotomous, polytomous, or continuous) did not make a difference with 

respect to power. The power reduction rates between continuous data and polytomous 

data or between continuous data and dichotomous data were .00 in most sample size 

conditions. That is, irrespective of data type, the noninvariance was detected almost all 

the time. However, when DIF and sample size were small, the power rates of 

dichotomous data were noticeably lower than those of continuous data, especially with  

 

Table 13 

 

Likelihood Ratio Test Power Reduction Rates across Data Types for Intercept 

Noninvariance in One Noninvariant Variable 

DIF Sample size Con – Poly   Con – Dich  

Small 200 .08 .32 

 400 .02 .15 

 1000 .00 .01 

 2000 .00 .00 

Large 200 .00 .01 

 400 .00 .00 

 1000 .00 .00 

 2000 .00 .00 

Note.   Con – Poly = (powercontinuous – powerpolytomous)/ powercontinuous, Con – Dich = 

(powercontinuous – powerdichotomous)/ powercontinuous.    

 



 

 

73 

two noninvariant variables. For example, when the magnitude of noninvariance was 

small with sample size of 400, the power of dichotomous data was 70% lower than that 

of continuous data. In comparison of dichotomous and polytomous data, the degree of 

power reduction rates were greater in the dichotomous data with small DIF and small 

sample size (Table 14).    

 

 

Table 14 

 

Modification Index Power Reduction Rates across Data Types for Intercept 

Noninvariance in Two Noninvariant Variables 

DIF Sample size Con – Poly   Con – Dich  

Small 200 .58 .83 

 400 .29 .70 

 1000 .00 .13 

 2000 .00 .00 

Large 200 .01 .39 

 400 .00 .05 

 1000 .00 .00 

 2000 .00 .00 

Note.   Con – Poly = (powercontinuous – powerpolytomous)/ powercontinuous, Con – Dich = 

(powercontinuous – powerdichotomous)/ powercontinuous.    
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CHAPTER V 

CONCLUSIONS 

 

Discussions 

Likelihood ratio tests. This study explored the behaviors of MIMIC modeling in 

testing measurement invariance under a variety of research conditions. When factor 

loading was noninvariant over groups, the primary interest of this study was the 

sensitivity of MIMIC modeling to the presence of factor loading noninvariance through 

the model fit evaluations and measurement invariance testing. For the noninvariance in 

the intercepts of continuous variables or in the thresholds of categorical variables, the 

present study focused on the power and Type I error rates of MIMIC modeling with 

different critical value adjustment strategies using either likelihood ratio tests or 

modification indices.  

This study observed the insensitivity of model fit indices to the violation of factor 

loading invariance assumption of the MIMIC model. This finding implies that good 

model fit of a MIMIC model may not guarantee the equivalence of factor loadings over 

groups. All examined model fit indices including chi-square p, CFI, RMSEA, and 

SRMR/WRMR consistently showed that MIMIC models generally failed to identify the 

factor loading noninvariance exhibiting good fits almost all the time. None of the fit 

indices evaluated in this study properly detected the factor loading noninvariance of 

MIMIC modeling. The proportions detected as a poor fit were not different from the 

predetermined significance level (that is, .05) when dichotomous data were analyzed. 
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With the good fit of a MIMIC model, factor loadings may not be invariant across groups 

as illustrated in this simulation study. To use a MIMIC model for measurement 

invariance testing or for the comparison of the latent means across groups, the violation 

of factor loading invariance should be tested with other measurement invariance testing 

techniques (e.g., multiple group CFA). 

One of limitations of MIMIC is that it does not allow a partial invariance model. 

That is, researchers cannot establish the levels of measurement invariance such as 

configural, metric, and scalar invariance using MIMIC. Of note is the fact that the 

proposed measurement invariance testing method of MIMIC in this study purports to 

assess the intercept or threshold noninvariance. The direct effect of group membership 

on the observed variables (βj in Figures 3 and 4 or Equation 2.14) tests the noninvariance 

of intercept /threshold holding the latent factor effects (λjεi in Equation 2.14) constant. 

However, if the controlled latent factor effects (λjεi) are not invariant over groups due to 

the noninvariance of factor loadings, this violation of the invariant factor loading 

assumption may be reflected in the process of testing the intercept/threshold invariance. 

From this reasoning, this paper included the noninvariant factor loadings in the 

simulation conditions of the LR tests. Only when both sample size and degree of 

noninvariance were large, the noninvariance of a factor loading was adequately detected. 

However, in most conditions power was not high with a minimum of .03 (small DIF of 

dichotomous variables with sample size 400) and maximum of .87 (large DIF of 

polytomous variables with sample size 2000). Especially for dichotomous data, the 

observed power remained the basal Type I error rates. Therefore, MIMIC, in general, 
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appears not to be an optimal model to test factor loading equivalence. Again, other 

measurement invariance testing techniques are recommended to detect factor loading 

noninvariance.   

With respect to intercept/threshold noninvariance, the major factors influencing 

power included sample size and degree of noninvariance. Sample size and degree of 

noninvariance were positively related to power. However, the degree of noninvariance 

exhibited interaction with sample size. That is to say, sample size matters if the degree of 

noninvariance is small. For example, when noninvariance was large, power reached 

100% throughout different sample size conditions. However, small difference across 

groups was less detectable if sample size was small. When both effect size and sample 

size were small for dichotomous variables, the detection rate of a single noninvariant 

variable was about .60; power was below .05 with two noninvariant variables. On the 

other hand, for polytomous and continuous variables with small effect size and small 

sample size, MIMIC modeling was still tenable as a detection method. The LR tests 

identified the noninvariance of polytomous or continuous data with great precision 

across all conditions irrespective of the degree of noninvariance and sample size.  

In addition, the power to detect the violation of measurement invariance 

depended on number of noninvariant variables (or degree of contamination) and type of 

data (dichotomous, polytomous, or continuous). As the number of noninvariant variables 

increased from 1 to 2 (for contamination rate, from 17% to 33%), power was slightly 

attenuated. As to data type, continuous data on average displayed the highest power, 

followed by polytomous data and dichotomous data. The overall behaviors of 
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polytomous variables are worthy of further comments. The polytomous variables 

behaved more like continuous variables than dichotomous variables across all scenarios. 

Given that the number of categories of polytomous variables in this simulation was five, 

polytomous variables may be more similar to continuous than dichotomous conditions. 

This finding implies that the common practice in measurement and psychometric 

research (that is, polytomous data with more than five response categories are often 

treated as continuous) appears to be reasonable, at least in measurement invariance 

research.  

Previous simulation studies consistently reported high Type I error rates in 

detecting noninvariant variables either with multiple group CFA or with MIMIC 

modeling (Finch, 2005; Navas-Ara & Gomez-Benito, 2002; Oort, 1998; Wang et al., 

2009). So did this simulation study before the Oort adjustment was applied to the critical 

chi-square values. The Type I error inflation in MIMIC (also in multiple group CFA) is 

explained by the misspecification of the baseline model in the likelihood ratio test. When 

the model includes any noninvariant variable and is analyzed with the assumption of 

invariance across groups, which is inherently done in MIMIC, the model fit of this 

model is poor due to the misspecification. The chi-square fit statistic reflects this poor 

model fit. As sample size and the degree of noninvariance increase, the chi-square 

statistic to capture the misspecification becomes more sensitive and tends to yield high 

values. Due to this heightened chi-square baseline statistic, the likelihood ratio test 

between an augmented (or relaxed) model and this misspecified baseline model with 

inflated chi-square fit statistic would produce an inflated chi-square difference value that 
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leads to the rejection of the null hypothesis more frequently than it should. This was 

demonstrated in the no-adjustment conditions of this study.  

Bonferroni correction is one option of critical value adjustment. In this study, 

each replication went through six likelihood ratio tests, which might inflate Type I error. 

However, the major cause of Type I error inflation appeared beyond the experimentwise 

Type I error inflation. As explained in the previous section, the inflation more likely 

originated from the baseline model misspecification with the oversensitivity of chi-

square distribution on the model misfit when sample size is substantial. Therefore, 

Bonferroni correction will not be an appropriate remedy in this case although it could 

lower Type I error. As the results showed, after the Bonferroni adjustment, the Type I 

error rates were still considerably higher than acceptable throughout all conditions. 

Another concern of Bonferroni correction is in the power reduction. Adopting more 

conservative critical p value reduced the power to identify the noninvariance. However, 

this power shrinkage was less obvious when sample size and the degree of noninvariance 

were large. To sum up, it can be concluded that Bonferroni correction is not an 

appropriate method to suppress the inflated Type I error rates when Type I error is 

expected due to the baseline model misspecification. 

Oort correction does not merely lower the critical value but takes into account the 

magnitude of baseline chi-square value given degree of freedom (see Equation 2.15). 

Therefore, instead of evaluating the model fit with one fixed critical value such as 3.84 

(  with one degree of freedom at α = .05), the critical chi-square value was tailored for 

each model depending on the degree of inflation of chi-square. The results of simulation 
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showed that the Oort adjustment worked remarkably well when the inflation was severe. 

Because Oort adjustment tailored the critical chi-square value for each baseline model, it 

did not lessen the power to detect the noninvariance much. When there was only one 

noninvariant variable, MIMIC modeling with Oort adjustment performed decently even 

with small sample size. The LR test detected the large degree of noninvariance all the 

time even with sample size as small as 200 while the Type I error rate remained near 

zero.  

However, two adverse situations to Oort adjustment were observed in this study: 

(a) Oort correction did not make an improvement in controlling Type I error when power 

was low, and (b) Oort correction attenuated power when more than one DIF variables 

existed. Because Oort correction was developed to adjust the inflated chi-square of the 

baseline model, when the inflation of chi-square was severe, the Oort correction showed 

high performance: the Type I error rate of the large sample and large DIF condition 

dropped from 1.00 to .01 after the Oort correction was applied for continuous variables. 

However, when power was low (approximately below .50; e.g., most of factor loading 

noninvariance conditions), and accordingly the chi-square inflation was not likely to 

occur, Oort correction did not improve Type I error much. That is, it is not necessary to 

correct the critical values in these situations.  

Although the overall performance of Oort-adjusted LR tests in the two-

noninvariant-variable conditions was reasonable, the deterioration of power was notable 

compared to the one-noninvariant-variable cases. Given that the LR test relaxed only one 

variable at a time, even when the less restricted model correctly specified one of the DIF 
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items, another noninvariant variable existed in the model. That is, when the baseline 

model had two noninvariant variables, the less restricted model in which one of DIF was 

relaxed for inequality over groups still had another noninvariant variable. Subsequently, 

both models (baseline model with two DIF variables and augmented model with one DIF 

variable) in the LR test are incorrectly specified. As explained by Yuan and Bentler 

(2004), the LR tests between a misspecified baseline model and a misspecified 

unconstrained model did not yield the same power in detecting DIF items as the LR tests 

did with only one DIF item.  

This understanding about the power degradation with more than one 

noninvariance calls for the iterative procedure of the LR test. Because the Type I error 

rates were considerably low throughout conditions with Oort adjustment, the detected 

variable in the first LR test was more likely to be one of the DIF variables. Hence, if this 

detected item is free to be estimated across groups and if this unconstrained model is 

utilized as a baseline for the following LR test, the same high performance of MIMIC is 

expected as observed in the one-noninvariance conditions. It should be noted that 

adequate performance of the iterative LR tests is expected when the detected variables 

are likely to be noninvariant variables (i.e., when the Type I error rate is low). Therefore, 

the statistical approach to control for the Type I error rates (e.g., Oort adjustment) to 

identify a noninvariant variable with accuracy will play a critical role in the LR tests 

using MIMIC modeling. 

Modification indices. The simulation results of this study showed adequate 

performance of MIMIC when used for likelihood ratio tests with Oort adjustment to 
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detect the intercept/threshold noninvariance. One important application of the findings is 

in the utilization of modification indices with the Oort-adjusted cutoff values. 

Modification indices are easily obtainable with one command in most SEM statistical 

packages. Modification index is the chi-square difference computed by relaxing one 

fixed parameter to make an improvement of the model fit. One approach to utilize 

modification indices for measurement invariance testing is to find the noninvariant 

variables by requesting modification indices over a certain cutoff such as chi-square 

value of one degree of freedom at the full invariance model. Another usage of 

modification indices is to modify the model by relaxing the parameter with the highest 

modification index sequentially until the model shows a good fit or until modification 

index meets a certain criterion. I applied the findings of the LR test to modification 

indices by setting the Oort-adjusted chi-square critical value as the cutoff of 

modification indices. It should be of note that the cutoff should be adjusted at each step 

of modification because Oort adjustment depends on the chi-square statistic and degrees 

of freedom of a baseline model.    

In terms of modification indices, the iterative procedures either with or without 

cutoff adjustment outperformed the noniterative procedures. In case of the iterative 

procedure to search noninvariance through a series of model modification, critical value 

adjustment did not make a noticeable difference. In fact, the results were almost identical 

between adjusted and unadjusted iterative methods. Therefore, if the iterative procedure 

is employed, the critical value adjustment appeared not to be necessary. The iterative 

procedures showed high performance in controlling the Type I error rates. Consistent 



 

 

82 

with the previous studies, Type I error appeared to be of no concern in the iterative 

procedures. The power rates remained near 100% with a sufficient size of sample (1000 

for small effect size; 400 for large effect size). Moreover, the iterative procedure 

detected the small-size noninvariance better than the noniterative method. Considering 

both power and Type I error, a modification index in the iterative model search 

procedures can be an accurate indicator of a noninvariant variable. This finding implies 

that the utilization of modification indices may replace the likelihood ratio tests for the 

purpose of the identification of noninvariance. 

When the noniterative method is utilized, the critical value adjustment using Oort 

formula seemed necessary. As observed in the LR tests, the noniterative procedure 

without critical value adjustment was not viable due to extremely high Type I error rates. 

On the other hand, for the noniterative method with Oort adjusted cutoffs even the initial 

information of modification indices showed great precision in detecting the noninvariant 

variables with large sample size, over 1000 (e.g., power = 1.00, Type I error = .00). If 

sample size is substantial, then all existing noninvariant variables, especially with large 

DIF can be detected simultaneously even in the first stage of model modification if the 

cutoff values are adjusted in consideration of baseline model misfit. However, I caution 

the use of modification indices at the initial stage of model modification because under 

the situations of higher contamination (more noninvariant variables) the performance of 

modification indices at the initial stage has not been determined yet. Considering that the 

Oort-adjusted critical value needs to be reestimated depending on the baseline model, 

whether a single Oort adjustment based on the full invariance model will work for a 
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large number of noninvariant variables is still in question. This indicates a call for 

further research on the noniterative method with more noninvariant variables: whether 

the performance of the noniterative method with the cutoff adjustment is consistently 

comparable with the iterative method when more than two noninvariant variables are 

present. 

 In this simulation study, MIMIC modeling utilized for measurement invariance 

testing showed the highest performance with continuous variables followed by 

polytomous and dichotomous variables, respectively. Moreover, the behavior of 

polytomous variables in terms of power and Type I error in detecting noninvariant 

variables is closer to that of continuous data rather than dichotomous data. Given that the 

polytomous variables in this study have five response categories, the behavior of 

polytomous variables with less than five categories needs further investigation to explore 

the relations between categorical and continuous data in measurement invariance testing. 

Conclusions 

 Measurement invariance testing is important to establish the validity of a 

measure across subpopulations of interest. The detection of noninvariant variables is 

necessary to improve test quality and, furthermore, to understand the meaning of 

noninvariance over groups.  

The findings of this study were three fold. First, when noninvariance existed in 

factor loading only, the MIMIC model did not detect the noninvariance. The model fit 

indices of MIMIC were insensitive to the unequal factor loadings over groups showing 

good fits. Thus, the MIMIC model should be used only when the metric invariance is 
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achieved. Second, for the LR tests using MIMIC with a direct path from a grouping 

variable to an observed variable, if the baseline model was contaminated with 

noninvariant variables, the Type I error rates were inclined to inflate. In this case, Oort 

adjustment on critical values controlled the high Type I error rates reasonably while 

keeping the power rates high. Third, the process of LR tests to detect the noninvariant 

items implied the utilization of modification indices. When utilizing modification 

indices, an iterative procedure is recommended, especially when the adjustment of the 

cutoff is not applied. With large sample size, even at the initial stage of model 

modification, the large degree of noninvariance was well detected when the cutoff of 

modification index was properly adjusted. However, without knowledge of the 

magnitude of noninvariance in reality, iterative procedure should be the choice of 

method.  
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APPENDIX A 

Summary of Simulation Conditions in the Literature about Measurement Invariance 

Authors Year Sample size (Group size) Items Factors Rep Program used 

Fan & Sivo 2009 20* number of items = 80~240 4/8/12 2  1000 LISREL 8.51 

  

40* number of items = 240~720 6/12/18 3  

  

  

60* number of items = 480~1440 8/16/24 4      

Cheung 2008 400 (200) 32 4 
a
 200 

 

  

    4 
b
     

French & Finch 2008 500/1000(250/500) 6 1 1000 LISREL 

   

6 2 

 

PRELIS  

  

  12       

Meade et al. 2008 100/200/400/800/1600/6400 16 4  500 LISREL 

   

32 4  

 

PRELIS 

   

8 2  

  

  

  16 2      

Yang
c
 2008 500 (250) 6 1 1800 Mplus  

  

  12       

Yoon
c
 2008 200/400/1000/2000 6 

 

500 Mplus 4.21 

  

(100/200/500/1000) 12       

Chen 2007
1
 300/500/1000(150/250/500) 8 1 500 Mplus 3.01 

   

12 2 

  

 

2007
2
 300(150:150/200:100/240:60) 8 1 500 

 

  

500(250:250/333:167/400:100) 12 2 

  

  

1000(500:500/666:334/800:200)         
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Summary of Simulation Conditions in the Literature about Measurement Invariance (Continued) 

Authors Year Sample size (Group size) Item Factor Rep Program used 

Meade & Bauer 2007 200/400/800 (100/200/400) 20 6 500 LISREL 

    20 3   PRELIS  

Yoon & Millsap 2007 400 (200) 6 

 

100 LISREL 

  

1000 (500) 12       

Meade & Kroustalis 2006
1
 500 ~ 10000 by 500 increment 32 2 300 

 

 

2006
2
 100/200/300/400/500 32 2 300 

 

 

2006
3
 100/200/300/400/500/1000/10000 32 2 100 

 

 

2006
4
 100/200/300/400/500 32 2 100 

 

 

2006
5
 100/200/300/400/500 32 2 

  Millsap & Kwok 2004
1
 

 

4 1 

  

 

2004
2
 

 

4/8/12/16       

Cheung & Rensvold 2002 300/600 (150/300) 3/factor 2 1000 AMOS 3.6 

   

4/factor 3 

  

  

  5/factor       

Wanichtanom
c
 2001 2000 (1000) 50 1 25 SAS 

      

MULTILOG  

  

        SAS Proc Calis  

Note.   Item = Number of items, Factor = Number of factors, Rep = Number of replications. 
a
 4 factors with 2 second-order factors in direct effect, 

b
 4 factors with 2 second-order factors in correlation, 

c
 dissertation, 

1
 

study 1, 
2
 study 2, 

3
 study 3, 

4
 study 4, 

5
 study 5,  
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APPENDIX B 

Summary of DIF Conditions in the Literature about Measurement Invariance 

Authors Year DIF 

location 

DIF size  % contamination 

(Number of DIF) 

Fan & Sivo 2009 mean 0/.1/.2/.3/.4/.5/.8   

Cheung 2008 a 0.6 (2 of 32) 

 

  b 2   

French & Finch 2008 a 0.25 0/17/34 

Meade et al. 2008 a 0~0.4 by .02 25 

  

b 0~0.3 by .02 (4 of 16/ 8 of 32) 

Yang 2008 a 0.1/0.2 33/66 

  

b 0.1/0.5 

 Yoon 2008 a 0.08/0.16/0.24
a
 33 

  

b 10/20/30
b
 

 

 

  both     

Chen 2007 

  

25/50/75/100 

Meade & Bauer 2007 a 0.2   

     Yoon & Millsap 2007 a 0.1/0.2/0.3  33/67 

Meade & Kroustalis 2006
1
 a 0.654 4 items per factor  

 

2006
2
  a 0.02 ~ 0.40 by .02 4 items per factor

 c
 

 

2006
3
 b 0.4 4 items per factor 

 

2006
4
 b 0.05 ~0 .40 by .05 4 items per factor

 c
 

Millsap & Kwok 2004 a 0.2 0/25/50/75/100 

  

b 

  Wanichtanom 2001 a 0.5
d
 18 (9 of 50) 

  

b 0.2
d
 

 

 

  both     

Note.   a = factor loading or discriminant parameter, b = intercept or difficulty parameter, 

mean = latent factor mean 
a
 size of SRMR (standardized root mean squared residual); 

b
 % reduction in probability 

for each response variate; 
c
 4 items per factor, 1 item per parcel, 2 items in 4 parcels, or 

all items, 
d
 size of Raju area difference, 

1
 study 1, 

2
 study 2, 

3
 study 3, 

4
 study 4. 
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APPENDIX C 

Summary of Simulation Conditions in the Literature about MIMIC Modeling 

Authors Year Sample size (group size) Item Factor Rep Res Program 

used 

Shih & Wang 2009 1000/2000/3000 (500/1000/1500) 20/30/40 

 

100 

 

MATLAB 

       

Mplus  

Wang et al. 2009 

 

50 

 

100 

 

MATLAB  

       

Mplus  

Woods 2009
1
 (500:25/100/200/400) 6/12/24 

 

100 2 Mplus 

  

(1000:25/50/100/200/400) 

   

5 IRTLRDIF 

 

2009
2
 (500:50/100/200/400) 6/12/24 

   

MULTILOG 

  

(1000:50/100/200/400) 

     Ainsworth
a
 2008 900 (500/400) 20 4

b
 100 2 TESTFACT 

Wilse &  2008 2000 (1000:1000) 

  

100 

 

R  

Goodman 

 

2000(1800:200) 

    

PARSCALE 

            

 

Mplus 

Finch 2005 600/1000 (500:100/500:500) 20/50 

 

500 

 

Mplus 

            

 

  

Gelin
a
 2005 400/1000/2000 (200/500/1000) 10/20 

 

1000 4 LISREL 

  

(100:900/200:800/300:700/400:600) 

    

PRELIS  

Navas-Ara & 2002 1000 25 1 3 2 BMDP 

Gomez-Benito 

      

PASCAL 

            

 

LISREL 

Hancock et al. 2000 200/400/800/1600 (100/200/400/800) 6 2 1000 

 

EQS 5.7 

  

(80:120/160:240/320:480/640:960) 

    

GAUSS 

    (50:150/100:300/200:600/400:1200)       

 

  



 

 

9
8
 

Summary of Simulation conditions in the Literature about MIMIC Modeling (Continued) 

Authors Year Sample size (group size) Item Factor Rep Res Program 

used 

Oort 1998 200/2000 (100/1000) 40 1 10 2 LISREL 

  

400 (200:200/300:100) 40 1 3 7 PASCAL 

Note.   Item = Number of items, Factor = Number of factors, Rep = Number of replications, Res = Number of response 

categories. 
a
 dissertation, 

b
 4 factors with 1 general factor, 

c
 dissertation, 

1
 study 1, 

2
 study 2, 

3
 study 3, 

4
 study 4, 

5
 study 5. 
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APPENDIX D 

Summary of DIF Conditions in the Literature about MIMIC Modeling 

Authors Year DIF 

location 

DIF size  % contamination 

(Number of DIF) 

Estimation 

Shih & Wang 2009     0/10/20/30/40   

Wang et al. 2009 b 0.6 8/20/28/40 WLS 

Woods 2009
1
 both  0.3~0.7 

 

MLR 

  

b 

     2009
2
 b 0.9

a
     

Wilse &  2008 

   

WLSMV 

 Goodman         ML 

Finch 2005   0/0.6 0/15 WLS  

Gelin 2005 

 

0 0 ML/WLS 

Navas-Ara &  2002 b  0.75 40 (10) WLS 

Gomez-Benito 

     Hancock et al. 2000 a 0.2/0.4 (4 of 6) ML 

Oort 1998
1
 b 0.5

b
 25 (10 of 40) ML 

   

0.8
b
 

  

 

1998
2
 b 0.2 

  

  

a 0.5 

      both 0.8     

Note.   a = factor loading or discriminant parameter, b = intercept or difficulty parameter, 

WLS = weighted least squares, WLSMV = WLS with robust mean and variance, ML = 

maximum likelihood. 
a
 normal distribution of mean 0.9 and SD 0.4, 

b
 SD of item scores, 

1
 study 1, 

2
 study 2. 
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