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ABSTRACT

Time-domain Simulation of Multibody Floating Systems Based onState-space Modeling

Technology. (August 2011)

Xiaochuan Yu, B.S.; B.S., Shanghai Jiao Tong University;

M.S., Shanghai Jiao Tong University;

M.S., University of Hawaii at Manoa

Chair of Advisory Committee: Dr. Jeffrey M. Falzarano

A numerical scheme to simulate time-domain motion responses of multibody

floating systems has been successfully proposed. This scheme is integrated into a time-

domain simulation tool, with fully coupled hydrodynamic coefficients obtained from the

hydrodynamic software - WAMIT which solves the Boundary Value Problem. The

equations of motion are transformed into standard state-space format, using the constant

coefficient approximation and the impulse response function method. Thus the Ordinary

Differential Equation solvers in MATLAB can be directly employed. The time-domain

responses of a single spar at sea are initially obtained. The optimal Linear Quadratic

Regulator controller is further applied to this single spar, by assuming that the Dynamic

Positioning (DP) system can provide the optimized thruster forces. Various factors that

affect the controlling efficiency, e.g., the time steps ∆߬ and ,ݐ∆ the weighting

factors(ܳ,ܴ), are further investigated in detail. Next, a two-body floating system is

studied. The response amplitude operators of each body are calculated and compared
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with the single body case. Then the effects of the body-to-body interaction coefficients

on the time-domain responses are further investigated. Moreover, the mean drift force is

incorporated in the DP system to further mitigate the motion responses of each body.

Finally, this tool is extended to a three-body floating system, with the relative motions

between them derived.
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CHAPTER I

INTRODUCTION

1.1 Literature Review

The coupled hydrodynamics and dynamics of multibody systems in the oil and

gas industry has been an important topic for years. Significant hydrodynamic

interactions occur when floating bodies on the ocean surface are located in close

proximity. Newman (2001) presented a brief historical review of wave effects on

multiple bodies, with special attention given to the seminal works of Professor Makoto

Ohkusu (1969). He further summarized the extensive analytical and numerical

accomplishments in this field. New computations were included to illustrate first and

second-order interaction effects. Two examples of drift forces on multiple bodies were

given: one is the slow oscillations of two independent bodies and the other is the drift

force on individual elements of a large array. Chakrabarti (2000) reviewed the

developments of the multiple scattering technique since the 1970/s and described an

analytical/numerical approach that determines the wave forces on multiple structures

located in the vicinity of one another. The proposed method involved the consideration

of multiple body interaction and scattering in waves. The analysis was an extension of

the semi-analytical multiple vertical cylinder analysis and similar to the one proposed by

____________
This dissertation follows the style of Ocean Engineering.
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Kagemoto and Yue (1986) for the axisymmetric bodies. This analysis was accomplished

by combining the direct method with a semi-closed analytical method of multiple

scattering developed for an array composed of vertical cylindrical structures. This

analytical method had a limitation owing to the geometry of many offshore structures

including, e.g., the Mobile Offshore Base (MOB). The limitation of the geometry of the

vertical cylinder group in the multiple-module scattering of waves may be remedied by

combining the technique of multiple-cylinder scattering with the linear diffraction

analysis already described for a general structure shape. Thus it was successfully

extended to an arbitrary geometry. In this method, the direct matrix method of the

diffraction problem was applied to an isolated module and then extended to structures

with the multiple-scattering technique to account for the interaction of multiple

structures. Finally, comparisons were made within the results from the analytical and

conventional numerical diffraction theory with those of the semi-analytical tool using the

above-mentioned analysis. Kashiwagi, et al. (2005) computed the second-order wave

drift forces on each ship using the near-field method based on the direct pressure

integration, and the results were validated by the far-field method. Further, experiments

were also conducted in beam waves for the side-by-side arrangement of a Wigley model

and a rectangular barge model. Both measured results and computed results showed

good agreement not only for the first-order hydrodynamic forces, but also for the

second-order mean forces in sway and heave. Some other overviews of the

hydrodynamics of two floating bodies can be found in Chakrabarti (1987) and Kim

(2008).
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The significant hydrodynamic interaction between multiple bodies in close

proximity exists in many applications of practical importance, which require rational

engineering analyses. Koo and Kim (2005) studied hydrodynamic interactions and

relative motions of two floating platforms with mooring lines in a side-by-side

offloading operation. Hong, et al. (2005) applied the Higher-Order Boundary Element

Method (HOBEM) to analyze the motions and drift force of side-by-side moored

multiple vessels, such as Floating Production Storage and Offloading (FPSO) unit for

Liquid Natural Gas (LNG) and the shuttle tankers. Jacobsen and Clauss (2006) studied

the lifting operation of a semisubmersible crane and a transport barge by transforming

the frequency-domain results into the time-domain. Lewandowski (2008) studied the

motions of two vessels in close proximity using traditional 2D and 3D boundary element

methods. Naciri, et al. (2007) performed a benchmark study with three programs:

AQWA, LIFSIM and aNySIM for side-by-side offloading from an LNG Carrier to a

turret-moored Floating Storage and Regasification Unit (FSRU). This study resulted in

an improved understanding of the complex dynamic behavior of two side-by-side

vessels. Xiang, et al. (2007) presented the numerical results of coupled motion RAOs of

two side-by-side ships in waves by using the China Ship Scientific Research Center

(CSSRC) in-house program CSR-INT and the results showed good agreement with those

from HydroSTAR, the state-of-the-art hydrodynamic software developed by Bureau

Veritas.

Extensive model tests were carried out to study the hydrodynamic interaction and

dynamic behavior of multibody floating systems. The Offshore Technology Research
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Center (OTRC) at Texas A & M University (TAMU) conducted model tests to

investigate hydrodynamic effects associated with the small gap between two barges,

which is fundamental for understanding FPSO-shuttle tanker interactions during side-by-

side offloading. The test results and comparisons with numerical model predictions were

used to optimize future test plans involving side-by-side FPSO-shuttle tanker

configurations. The Maritime Research Institute Netherlands (MARIN) has also

accumulated a great deal of experience in the testing and numerical modeling of side-by-

side loading operations for oil and LNG. The staff has developed tools that take into

account the observed interactions, and these tools have been validated based on in-house

research and can be used to optimize the side-by-side operations in close proximity

(MARIN, 2010). McTaggart, et al. (2003) numerically and experimentally explored the

hydrodynamic interactions when two ships travel in close proximity at moderate forward

speed.

The numerical simulation of the free surface waves in the gap between multiple

bodies is very important. Newman (2001) used generalized modes to represent this

phenomenon, and this method was later applied in the commercial hydrodynamic

software WAMIT. Buncher, et al. (2001) proposed an assumed free surface with a lid to

suppress the numerical anomalies observed using standard linear hydrodynamic

calculations of the pressure distribution for two bodies in close proximity. Chen (2004)

applied the authentic equations of the fairly perfect fluid involving the energy dissipation

by introducing a damping parameter between the two bodies to deal with the resonance.

Pauw, et al. (2007) concluded that tuning the damping value of the lid should be done
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only on the second order wave drift force and not the first order quantities, like the wave

height and the motion RAO.

Different time-domain programs have been developed to simulate motion

responses of Dynamically Positioned (DP) vessel or multibody floating systems.

Nienhuis (1986) validated a time-domain simulation program - DPSIM by comparing

the measured and simulated results. This program was capable of adequately predicting

the low-frequency motions of a dynamically positioned vessel. Srinvasan and Sen (2002)

discussed a truly dynamic time-domain simulation method for a fully DP assisted

semisubmersible. The computational algorithm for the simulation was based on the

concept of a numerical wave tank. Ryu and Kim (2003) investigated the performance of

a thruster-assisted turret-moored FPSO in terms of surge, sway, yaw motions and

mooring tension time series by using a fully coupled time domain program. Tannuri and

Morishita (2006) developed a computational dynamic simulator to analyze the

performance of DPS in a typical offshore oil industry scenario, and scale model tests of

the system were also carried out in a laboratory tank. Yu, et al. (2009, 2010a) developed

a time-domain simulation tool to perform the dynamic analysis of multiple bodies in

close proximity based on the state-space modeling technology. SIMO is a time domain

simulation program for study of motions and station keeping of multibody systems,

owned, developed and maintained by MARINTEK. Flexible modeling of station keeping

forces and connecting force mechanisms (anchor lines, ropes, thrusters, fenders,

bumpers, docking guide piles) are included. The results from the coupled program are

presented as time traces, statistics and spectral analysis of all forces and motions of all
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bodies in the analyzed system. Currently, SIMO is a modular and interactive computer

program with batch processing options, and is also available as part of SESAM’s DeepC

package for the coupled analysis of floating vessels including station keeping systems.

Traditionally the study of ship dynamics has been separated into two main areas:

(1) maneuvering or controllability in calm water; and (2) seakeeping or vessel motion in

a seaway (Perez et al., 2004). Manoeuvring is associated with course keeping, course

changes, turning, stopping, etc. These operations are often performed in open or

restricted calm waters (i.e., in calm open seas, in sheltered waters or in harbors).

Seakeeping, on the other hand, is associated with motion in a seaway while the vessel

keeps its course and its speed constant. Perez (2005) further comprehensively discussed

the shortcomings of the traditional seakeeping model and maneuvering model, as shown

in Figure 1.1. The first shortcoming is that the model may not be used for multibody

system interactions. The second one is that the maneuvering part does not incorporate

fluid memory effects associated with the wave-frequency induced motion.
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Figure 1.1 Motion superposition model of a marine vessel (Perez, 2005)

The model shown in Figure 1.2 is well known in marine technology and it is part

of state-of-the-art time-domain ship motion simulators. However, its use for control

system design has not yet been widely adopted. Kristansen and Egeland (2003)

proposed a new method that generates a low-order state-space model from frequency-

dependent added mass and potential damping as obtained from identification

experiments or numerical computations. The resulting model gave an accurate and

computationally efficient representation of the convolution term.
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Figure 1.2 Force superposition model of a marine vessel (Perez, 2005)

A Dynamic Positioning (DP) system can be defined as a system which

automatically controls a vessel's position and heading exclusively by means of active

thrust. Usually a DP system mainly includes a power system, a thruster system and a

control system. DP systems should be designed to have high reliability and a certain

amount of built-in redundancy. Failure Modes and Effect Analysis (FMEA) should be

conducted for floating vessels with a DP system. The American Petroleum Institute

(API) recommended practice 2SK (2005) systematically summarizes the guidelines for

design, testing and maintenance of a DP system.
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The first vessel to fulfill the accepted definition of DP was the "Eureka” which

was designed and engineered by Howard Shatto. During the 1990s there was a rapid

increase in the number of vessels with dynamic positioning systems. Nowadays, many of

these vessels have been designed for the DP and integrated control of engines and

thrusters, but there are also a large number of conversions and upgrades. Faÿ (1990)

extensively presented almost all the aspects related to the DP system, including the

reasons for which the DP technique was developed, the marine environment, the

principle of DP systems, the established specifications of a dynamic positioning project,

leading applications, safety, costs, fuel consumption, the advantages of conventional

mooring and DP systems, etc. Strand, et al. (2001 ) presented the state-of-art of DP

system, including marine positioning systems, mathematical modeling of dynamically

positioned and thruster-assisted anchored marine vessels, position and velocity observer

design, design of controllers for positioning of marine vessels, weather optimal

positioning control, methods for thrust control, etc.

Various control methods have been applied in the applications of DP systems in

offshore engineering. Kalman Filtering techniques were applied to dynamic positioning

systems by Balchen, et al. (1980), Grimble and Patton (1980), Grimble, et al. (1980), and

Saelid, et al. (1983). S∅rensen, et al. (1996) proposed a model-based control scheme

which provides both station-keeping and tracking of ships. A Kalman-Filter-based state

estimator and a Luenberger observer were used to compute the feedback and feed-

forward control signals. Yamamoto and Morooka (2005) applied fuzzy control to a

dynamic positioning system of a semi-submersible. The performance of the fuzzy
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controller was compared with that of a classical Proportional-Integral-Derivative (PID)

controller. Aamo and Fossen (1999) suggested controlling the line tensions dynamically

as an additional means of station keeping. A model consisting of a rigid-body sub-model

for the vessel and a finite element sub-model for the mooring system were presented and

used for the simulations. Liang and Cheng (2004) studied the optimum control of a

2280-ton DP coring vessel with five rotary azimuth thruster marine positioning in detail.

This method can quickly estimate the thrusts and angles of direction of all the thrusters.

1.2 Project Background

Cargo-transfer and underway replenishment are essentially important in long-term

naval operations. The Office of Naval Research (ONR) initiated a technology

development program in 2007 called STLVAST (Small to Large Vessel At-Sea

Transfer). The goal of this program is to develop ‘enabling capabilities’ in the realm of

logistic transfer (i.e. stores, equipment, vehicles) between a large transport vessel (e.g.,

the USNS Bob Hope) and a smaller T-craft ship, using a Deep Water Stable Crane

(DWSC) spar between them. The DWSC spar consists of two entities, a catamaran

craneship and a detachable spar. This spar can be rotated through 90 degrees, from the

horizontal to the vertical, using seawater ballast. The de-ballasting can help to lift the

catamaran clear of the water surface, allowing the system to operate as a spar and take

advantage of the superior seakeeping afforded by the small waterplane area. Selfridge

(2005) presented the development of the concept, its performance in the areas of
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powering, stability, seakeeping, worldwide operability and alternative uses. This DWSC

concept was further developed to the Rapidly Deployable Stable Platform (RDSP).

Moreover, a 1/10th scale physical model test was performed at Florida Atlantic

University (FAU). In their research, a DP and motion mitigation system for the RDSP

was developed, including the validation of the mathematical simulation, development of

a novel propulsion system, and implementation of a PID controller (Marikle, 2009).

Driscoll, et al. (2006) introduced state-of-the-art of at-sea cargo transfer. The

concept of RDSP was developed to provide at-sea container transfer that enables

sustainment logistics in sea states up to and including sea state 5 (SS5). The RDSP

concept was very similar to DWSC, consisting of two elements: 1) a small catamaran

crane ship and 2) a long SPAR that provides excellent seakeeping properties. Marikle

(2009) further proposed a 6 Degree-Of-Freedom (DOF) numeric model and computer

simulation along with the 1/10th scale physical model test fulfilled by the Ocean

Engineering Undergraduate Program at FAU. This project focused on the development

of a DP and motion mitigation system for the RDSP, including the validation of the

mathematical simulation, development of a novel propulsion system, and

implementation of a PID controller. The result was an assessment of the response

characteristics of the RDSP that quantifies the performance of the propulsion system

coupled with active control providing a solid basis for further controller development

and operational testing.

Recently, Hughes, et al. (2009) improved the positioning of a single vessel in a

seaway, based on the estimation of wave drift forces using wave height sensing and the
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application of a Wave Feed Forward (WFF) control loop. This technique was also

applied to the challenge of controlling two large vessels, but the performance was only

improved at some headings. Hughes, et al. (2010) presented an overview of the

STLVAST program and described the full scale offshore trials conducted by the US

Navy that show-cased some of the potential of the Close-in Precision DP work carried

out by STLVAST.

1.3 Problem Statement

The purpose of this research is to develop a time-domain simulation tool for the

multiple vessels in close proximity at seas. The whole cargo transfer system is shown in

Figure 1.3 and comprises the T-craft, the DWSC spar (or called ‘spar’ for short) and the

USNS Bob Hope (or called ‘ship’ for short), from the left to the right. In order to

develop such a tool, a new numerical scheme to simulate the time-domain motion

responses of multibody floating systems has been successfully proposed. The scheme is

initially applied to simulate the motion responses of this single spar and the ship. Then

this simulation tool is further extended to a two-body floating system and the whole

cargo transfer system, respectively.
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Figure 1.3 Schematic view of ship-to-ship cargo transfer using the spar

The multiple bodies in close proximity shown in Figure 1.3 can be regarded as a

dynamical system as a whole, with the feedback force provided by the DP system. It is

assumed that the designed DP system can maintain the relative motions between them to

meet the regulated operation criteria. Herein, a single-degree-of-freedom (SDOF) system

is initially analyzed.

For example, the structural control of a one-story building can be described as

ܯ +ݔ̈ +ݔ̇ܥ =ݔܭ ௚ݔ̈߁ܯ− + ݂߉ (1.1)

where ௚ݔ̈ is 1D ground acceleration or excitation; ݂ is the vector of control forces; Γ is

the vector of unit; Λ is the matrix defining how the control forces are exerted on the
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structure (Yu, et al., 2010b; Yu, et al., 2011). Equation (1.1) can be written in the state-

space form as

=ݖ̇ +ݖܣ ௚ݔ̈ܧ + ݂ܤ+ (1.2)

, and the output

=ݕ +ݖܥ ݂ܦ (1.3)

where z = ,்ݔ] ,்[்ݔ̇ the state vector; =ݕ ,்[்ݔ,ݔ̈] the vector of measured outputs; and

A = ቂ
0 ܫ

ܯ− ିଵܭ ܯ− ିଵܥ
ቃ (1.4)

ܤ = ቂ
0

ܯ ିଵ߉
ቃ (1.5)

ܧ = −ቂ
0
߁
ቃ (1.6)

ܥ = ቂ−ܯ
ିଵܭ ܯ− ିଵܥ
ܫ 0

ቃ (1.7)

ܦ = ቂܯ
ିଵ߉
0

ቃ (1.8)

where the matrix ܣ is called the system or plant matrix. This matrix models the

dynamical behavior of the system, because it contains the inertial, damping and restoring

terms, i.e., ܯ ܥ, and ܭ . Matrix ܤ is called the input matrix and it represents how the

control force ݂ is applied to the system. By analog, this state-space modeling technology

can also be applied to more complicated dynamical systems with multiple DOFs.

Similar to the structural control in civil engineering, described by equations (1.1) -

(1.8), the motion responses of multiple bodies in close proximity in waves can also be

considered and solved this way. However, the equations of motions of the floating

system considered in ocean waves are more complicated, due to the added mass and the
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radiated wave damping. Two levels of approximation of hydrodynamic coefficients are

considered in this study. One is the Constant Coefficient Method (CCM), including

constant added mass and constant radiation damping evaluated at a specific frequency

߱଴.We will discuss how to determine this frequency.

The equations of motion using the CCM can be expressed as

ܯ] + (ܽ߱଴)]̈(ݐ)ݔ + (ܾ߱଴)̇(ݐ)ݔ + (ݐ)ݔܿ = ݂௘௫௧(ݐ) (1.9)

where (ݐ)ݔ denotes 6-DOF motions of a single rigid body and is a 6 × 1 vector;

(ܽ߱ ଴) is a 6 × 6 added mass matrix at the wave frequency ߱଴ ; (ܾ߱଴) is a 6 × 6

radiation damping matrix at the wave frequency ߱଴; ܿ is a 6 × 6 hydrostatic restoring

coefficient matrix; ݂௘௫௧(ݐ) is the external force vector, and it can be the sum of 1st order

wave force, 2nd order wave force, the thruster force provided by the DP system, the force

due to viscous damping, wind and current, or their combination, etc. Herein, ݂௘௫௧(ݐ) is a

6 × 1 vector for a single body.

The alternative level of approximation is the Impulse Response Function (IRF)

method, with fluid memory effects considered. The corresponding equations of motion

are

ܯ] + (ݐ)ݔ̈[(∞ܽ) + ∫ −ݐ)ܭ )߬
௧

଴
)ݔ̇ )߬݀߬+ (ݐ)ݔܿ = ݂௘௫௧(ݐ) (1.10)

(ݐ)ܭ =
ଶ

గ
∫ (ܾ߱)
ஶ

଴
cos(߱ݐ)݀߱ (1.11)

where (ܽ∞) is the added mass at the infinite frequency and (ݐ)ܭ is the IRF. The

relationship between (ݐ)ܭ and the radiation damping (ܾ߱) can be correlated by equation

(1.11), the so-called Ogilvie relations (Ogilvie, 1964).
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employed to compute the hydrodynamic coefficients, e.g., added mass, radiation

damping, RAOs, IRFs and the mean drift Quadratic Transfer Function (QTF).

2. Dynamics: the dynamic responses of floating bodies can be solved by using ODE

solvers in MATLAB after the equations of motion have been transformed into

standard state-space format.

3. Control engineering: the classical PID controller is briefly introduced. However,

an alternative robust controller, i.e., the Linear Quadratic Regulator (LQR)

method, is introduced in detail and applied in this study.

In Chapter III, the hydrodynamic coefficients of a single spar and its Response

Amplitude Operators (RAOs) are calculated by solving the BVP problem using

WAMIT. Moreover, the time-domain responses of the single spar in both regular and

irregular waves are analyzed based on state-space models. Herein, the ideal simulation

of DP systems is also performed by assuming that the DP system can produce the

optimized feedback forces. The time step ∆߬used to evaluate the IRFs determines the

physical properties of the state-space model. The time-step ݐ∆ of the time-domian

simulation is equal to ∆߬ for the simplicity. Thus, the effects of ∆߬ and onݐ∆ the

controlling efficiency of the LQR controller are further discussed in detail. The effects of

the weighting factors (ܳ,ܴ) are finally studied.

In Chapter IV, a two-body floating system is studied. The RAOs for multiple

bodies are compared with those of a single body. The effects of the body-to-body

hydrodynamic coefficients are also discussed. In addition, the DP system is simulated by



18

assuming that the thrusters can provide the optimal horizontal forces derived from the

LQR controller only in -ݔ and -ݕ direction. Motion spectra of both cases, with control

and without control, are finally obtained and discussed.

In Chapter V, the time-domain simulation code is successfully extended to a three-

body case. The RAOs of the third-body, the T-craft, are obtained initially and compared

with the RAOs of the single vessel. The relative vertical motions between them can be

obtained after all the motion responses of the three bodies are obtained.

Finally, the conclusions and the future work are summarized in Chapter VI.
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CHAPTER II

THEORETICAL FORMULATIONS

2.1 Hydrodynamics of Floating Systems

In this chapter, the linear and second-order wave theories are briefly reviewed

firstly. Next, the equations of motion are discretized in state-space format based on CCM

and IRF. Meanwhile, the derivation of impulse response function from the added mass

and the radiation damping is also introduced. Finally, the classical PID controller and the

modern LQR controller are described in detail, respectively.

2.1.1 Description of the Problem

Most contents in this section are from the WAMIT theory manual written by Lee

(1995), Chakrabarti (1987) and Kim (2008). Assume that the sea water is incompressible

and inviscid and the fluid motion is irrotational. The fluid velocity is given by the

gradient of the velocity potential Φ(ݐ,ݖ,ݕ,ݔ)

(ݐ,ݖ,ݕ,ݔ)ܸ = ∇Φ =
பΦ

డ௫
ଓ̂+

பΦ

డ௬
ଔ̂+

பΦ

డ௭
෠݇ (2.1)

where ଓ̂, ଔ̂and ෠݇are unit vectors along the ,axesݖ,ݕ,ݔ respectively; denotesݐ the time

and =ොݔ (ݖ,ݕ,ݔ) denotes the Cartesian coordinates of a point. In addition, the velocity

potential satisfies Laplace’s equation in the fluid domain:
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∇ଶΦ = 0 (2.2)

The pressure follows the Bernoulli’s equation:

(ݐ,ݔ)݌ = ቀߩ−
பΦ

డ௧
+

ଵ

ଶ
∇Φ ∙ ∇Φ + gzቁ (2.3)

where ߩ is the density of the fluid and ݃ is the gravitational acceleration.

The velocity potential satisfies the nonlinear free-surface condition:

பమΦ

డ௧మ
+ ݃

பΦ

ப୸
+ 2∇Φ ∙ ∇

பΦ

ப୲
+

ଵ

ଶ
∇Φ ∙ ∇(∇Φ ∙ ∇Φ) = 0 (2.4)

It is applied on the exact free surface

(ݕ,ݔ)ߞ = −�
ଵ

௚
(
பΦ

డ௧
+

ଵ

ଶ
∇Φ ∙ ∇Φ)ቚ

௭ୀ఍
(2.5)

With the assumption of a perturbation solution in terms of a small wave slope of

the incident waves, the velocity potential is expanded in a form

Φ(ݐ,ݖ,ݕ,ݔ) = Φ(ଵ)(ݐ,ݖ,ݕ,ݔ) + Φ(ଶ)((ݐ,ݖ,ݕ,ݔ) + ⋯ (2.6)

When the body is not fixed, the motion amplitude of the body is also expanded in

a perturbation series

(ݖ,ݕ,ݔ)ߞ = (ݖ,ݕ,ݔ)(ଵ)ߞ + (ݖ,ݕ,ݔ)(ଶ)ߞ + ⋯ (2.7)

with

(ݖ,ݕ,ݔ)(ଵ)ߞ = −
ଵ

௚

பΦ(భ)

డ௧
(2.8)

(ݖ,ݕ,ݔ)(ଶ)ߞ = −
ଵ

௚
(
பΦ(మ)

డ௧
+

ଵ

ଶ
∇Φ(ଵ) ∙ ∇Φ(ଵ) −

ଵ

௚

பΦ(భ)

డ௧

பమΦ(భ)

డ௭డ௧
) (2.9)

In equations (2.8) and (2.9), the right-hand sides are evaluated at the mean water

level =ݖ 0. Given a wave spectrum, it is customary to assume that the spectrum is
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expressed as a linear superposition of the first-order incident waves of different

frequencies. Thus the total first order potential for the wave-body interaction can be

expressed by a sum of components with the circular frequency ߱௝ > 0:

Φ(ଵ)(ݐ,ݖ,ݕ,ݔ) = ܴ݁∑ ߶௝(ݖ,ݕ,ݔ)݁ି௜ఠೕ௧
௝ (2.10)

Here we introduce the complex velocity potential ߶௝(ݖ,ݕ,ݔ) , which is

independent of the time. In equation (2.10), ߶௝(ݖ,ݕ,ݔ) denotes the first-order solution

in the presence of the incident wave of frequency ߱௝ and the wave heading ௝ߚ .

2.1.2 First-order Boundary Value Problem (1st-order BVP)

The total first-order velocity potential can be separated as follows

Φ(ଵ) = ቀ߳Φூ
(ଵ)

+ Φ஽
(ଵ)

+ Φோ
(ଵ)
ቁ= ܴ [݁ቄ߶ூ

(ଵ)
+ ߶஽

(ଵ)
+ ߶ோ

(ଵ)
ቅ∙ ݁ି௜ఠ௧] (2.11)

The incident wave velocity potential is

߶ூ
(ଵ)

= ܴ [݁
ି௜௚஺

ఠ

ୡ୭ୱ୦௞(௭ାௗ)

ୡ୭ୱ୦௞ௗ
] (2.12)

where ݇ is the real root of the dispersion relation

݇tanh ݇݀ =
ఠ మ

௚
(2.13)

The boundary conditions for the first-order potential of diffraction and radiation

are

∇ଶ߶(ଵ)(ݖ,ݕ,ݔ) = 0 (2.14)

−߱ଶ߶(ଵ) + ݃
డథ (భ)

డ௭
= 0 , =ݖ 0 (2.15)
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డథ (భ)

డ௡
= ௡ܸ, on the body surface (2.16)

డథ (భ)

డ௭
= 0, =ݖ −݀ (2.17)

limோ→ஶ √ܴቀ
డ

డோ
± ݅݇ ቁ߶(ଵ) = 0 (2.18)

where ݀ is the water depth and ܴ is the radial distance from the center of the structure.

2.1.3 Second-order Boundary Value Problem (2nd-order BVP)

Separate the time dependency explicitly, and write the second-order potential as

Φ(ଶ) = ϵଶቀΦ୍
(ଶ)

+ Φୈ
(ଶ)

+ Φୖ
(ଶ)
ቁ (2.19)

The second-order components ߶௜௝ can be represented as

Φ(ଶ)(ݐ,ݖ,ݕ,ݔ) = ܴ݁∑ ∑ [߶௜௝
ା +௜൫ఠ೔ାఠೕ൯௧݁(ݖ,ݕ,ݔ) ߶௜௝

ି ௜൫ఠ݁(ݖ,ݕ,ݔ) ೔ି ఠೕ൯௧]௝௜ (2.20)

The second-order potentials ߶௜௝
± can be defined to satisfy the symmetry relations

߶௜௝
ା = ߶௝௜

ା (2.21a)

߶௜௝
ି = ߶௝௜

ି (2.21b)

The free-surface boundary conditions satisfied by these potentials are

பమΦ(మ)

డ௧మ
+ ݃

பΦ(మ)

డ௭
= ܳி(ݐ;ݕ,ݔ) (2.22)

on =ݖ 0 . Here the inhomogeneous right-hand-side of the second-order free-surface

condition defines the quadratic forcing function

ܳி =
ଵ

୥

பΦ
(భ)

ப୲

ப

ப୸
൬
பమΦ(భ)

ப୲మ
+ g

பΦ
(భ)

ப୸
൰−

ப

ப୲
(∇Φ(ଵ) ∙ ∇Φ(ଵ)) (2.23)
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where the right-hand-side is to be evaluated on =ݖ 0. In the following evaluations of the

second-order products of first-order oscillatory quantities use is made of the relation

ܴ ൫݁݁ܣ௜ఠ೔௧൯ܴ ൫݁݁ܤ௜ఠೕ௧൯=
ଵ

ଶ
ܴ ൫݁݁ܣ௜ఠ೔௧൯(݁ܤ௜ఠೕ௧+ (௜ఠೕ௧ି݁∗ܤ (2.24)

where (∗) denotes the complex conjugate. Adopting a form for ܳ analogous to (2.20),

(ݐ,ݖ,ݕ,ݔ)ܳ = ܴ݁∑ ∑ [ܳ௜௝
ା(ݖ,ݕ,ݔ)݁௜൫ఠ೔ାఠೕ൯௧+ ܳ௜௝

௜൫ఠ݁(ݖ,ݕ,ݔ)ି ೔ି ఠೕ൯௧]௝௜ (2.25)

Consider the symmetry condition

ܳ௜௝
ା = ܳ௝௜

ା (2.26a)

ܳ௜௝
ି = ܳ௝௜

ି∗ (2.26b)

where

ܳ௜௝
ା =

௜

ସ௚
߱௜߶௜ቀ−߱௝

ଶ డథೕ

డ௭
+ ݃

డమథೕ

డ௭మ
ቁ+

௜

ସ௚
߱௝߶௝ቀ−߱௜

ଶ డథ೔

డ௭
+ ݃

డమథ೔

డ௭మ
ቁ−

ଵ

ଶ
(݅߱௜+ ߱௝)ߘ߶௜∙

௝߶ߘ (2.27)

ܳ௜௝
ି =

௜

ସ௚
߱௜߶௜൬−߱௝

ଶ డథೕ
∗

డ௭
+ ݃

డమథೕ
∗

డ௭మ
൰+

௜

ସ௚
߱௝߶௝

∗ ቀ−߱௜
ଶ డథ೔

డ௭
+ ݃

డమథ೔

డ௭మ
ቁ−

ଵ

ଶ
(݅߱௜+ ߱௝)ߘ߶௜∙

௝߶ߘ
∗ (2.28)

The definition of the free-surface boundary condition for the second-order potential

is given by

−(߱௜± ߱௝)ଶ߶௜௝
± + ݃

డథ೔ೕ
±

డ௭
= ܳ௜௝

± (2.29)
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2.1.4 The First-order and Second- order Forces

The expressions for the first- and second-order forces are derived from direct

integration of the fluid pressure over a body boundary. From the WAMIT theory

manual, the first- and second-order forces are calculated as follows

(ଵ)ܨ = ∬ߩ− ݊Φ௧
(ଵ)
݀ܵ

ௌ஻
− ∬݃ߩ ൫ߙ(ଵ) × ݊൯(ݖ+ ଴ܼ)݀ܵ

ௌ஻
− ∬݃ߩ ଷߦ݊)

(ଵ)
+ ଵߙ

(ଵ)
−ݕ

ௌ஻

ଶߙ
(ଵ)
ܵ݀(ݔ (2.30)

ܯ (ଵ) = ∬ߩ− ×ݔ) )݊Φ௧
(ଵ)
݀ܵ

ௌ஻
− ∬݃ߩ ×ݔ) )݊ቀߦଷ

(ଵ)
+ −ݕ(ଵ)ߙ ଶߙ

(ଵ)
ቁ݀ݔ ܵ

ௌ஻
−

∬݃ߩ ൫ߦ(ଵ) × ݊൯(ݖ+ ଴ܼ)݀ܵ−
ௌ஻

∬݃ߩ (ଵ)ߙ] × ×ݔ) +ݖ)[݊( ଴ܼ)݀ܵ
ௌ஻

(2.31)

The second-order force is obtained from

(ଶ)ܨ = ∬݃ߩ− +ݖ) ଴ܼ)ܵ݀݊ܪ
ௌ஻

− ∬ߩ ൫ߙ(ଵ) × ݊൯[Φ௧
(ଵ)

+ ଷߦ)݃
(ଵ)

+ ଵߙ
(ଵ)
−ݕ

ௌ஻

ଶߙ
(ଵ)
−ܵ݀[(ݔ ∬ߩ [

ଵ

ଶ
∇Φ(ଵ) ∙ ∇Φ(ଵ) + (ଵ)ߦ) + (ଵ)ߙ × (ݔ ∙ ∇Φ୲

(ଵ)
]݊݀ܵ

ௌ஻
− ∬݃ߩ ݔܪ) ∙

ௌ஻

)݇݊݀ܵ+
ଵ

ଶ
∫݃ߩ (ଵ)ߟ] − ଷߦ)

(ଵ)
+ ଵߙ

(ଵ)
−ݕ ଶߙ

(ଵ)
ଶ[(ݔ

ௐ ௅
ඥ1 − ௭݊

ଶ݈݀− ଷߦ௪௣ቀܣ݃ߩ
(ଶ)

+

ଵߙ
(ଶ)
௙ݕ − ଶߙ

(ଶ)
௙൯݇ݔ − ∬ߩ Φ௧

(ଶ)
݊݀ܵ

ௌ஻
(2.32)

The second-order force or moment due to Φ(ଶ) is decomposed into a part due to

Φ୍
(ଶ)

+ Φୗ
(ଶ) and the other part due to Φୖ

(ଶ). Then the force and moment take forms

(ଶ)ܨ = ௤ܨ + ௣ܨ − ଷߦ௪௣ቀܣ݃ߩ
(ଶ)

+ ଵߙ
(ଶ)
௙ݕ − ଶߙ

(ଶ)
௙ቁ݇ݔ − ∬ߩ ݊

ப஍ ೃ
(మ)

డ௧
݀ܵ

ௌ஻
(2.33)

where
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௤ܨ =
ଵ

ଶ
∫݃ߩ (ଵ)ߟ] − ଷߦ)

(ଵ)
+ ଵߙ

(ଵ)
−ݕ ଶߙ

(ଵ)
ଶ[(ݔ

ௐ ௅
ඥ1 − ௭݊

ଶ݈݀− ∬ߩ [
ଵ

ଶ
∇Φ(ଵ) ∙ ∇Φ(ଵ) +

ௌ஻

(ଵ)ߦ) + (ଵ)ߙ × (ݔ ∙ ∇Φ୲
(ଵ)

]݊݀ܵ+ (ଵ)ߙ × (ଵ)ܨ − ଵߙ]௪௣ܣ݃ߩ
(ଵ)
ଷߙ

(ଵ)
௙ݔ + ଶߙ

(ଵ)
ଷߙ

(ଵ)
௙ݕ +

ଵ

ଶ
(ቀߙଵ

(ଵ)
ቁ
ଶ

+ ቀߙଶ
(ଵ)
ቁ
ଶ

) ଴ܼ]݇ (2.34)

௣ܨ = ∬ߩ−
ப(஍ ౅

(మ)
ା஍ ౏

(మ)
)

ப୲
݊݀ܵ

ௌ஻
(2.35)

It should be noted that the last term in the right hand side of equation (2.33) is not

evaluated in the WAMIT. Only the mean drift forces will be considered in this study,

and see Chapter II, 2.6 for more details.

The second-order moment is given by

ܯ (ଶ) =
ଵ

ଶ
∫݃ߩ ቂߟ(ଵ) − ቀߦଷ

(ଵ)
+ ଵߙ

(ଵ)
−ݕ ଶߙ

(ଵ)
ቁቃݔ

ଶ

ௐ ௅
ඥ1 − ௭݊

ଶ(ݔ× )݈݊݀− ∬ߩ ቂ
ଵ

ଶ
∇Φ(ଵ) ∙

ௌ஻

∇Φ(ଵ) + ൫ߦ(ଵ) + (ଵ)ߙ × ∙൯ݔ ∇Φ୲
(ଵ)
ቃ(ݔ× )݊݀ܵ− ∫ߩ ൫ߦ(ଵ) × ݊൯[Φ୲

(ଵ)
+ ݃ቀߦଷ

(ଵ)
+

ௌ஻

ଵߙ
(ଵ)
−ݕ ଶߙ

(ଵ)
[൯ݔ ݀ܵ− ∬݃ߩ (ଵ)ߦ × (ଵ)ߙ) × +ݖ)݊( ଴ܼ)݀ܵ

ௌ஻
− ∬ߩ (ଵ)ߙ × ×ݔ)

ௌ஻

)݊ቂΦ୲
(ଵ)

+ ݃ቀߦଷ
(ଵ)

+ ଵߙ
(ଵ)
−ݕ ଶߙ

(ଵ)
ቁቃ݀ݔ ܵ− ∬݃ߩ +ݖ) ଴ܼ)ݔ)ܪ× )݊݀ܵ− ∬݃ߩ ݔܪ) ∙

ௌ஻ௌ஻

×ݔ)݇( )݊݀ܵ− ݃ߩ ଶߦܸ−݅]
(ଶ)

+ ଷߦ௙ݕ௪௣ܣ
(ଶ)

+ ௕ݖܸ) + ଵߙ(ଶଶܮ
(ଶ)

− ଶߙଵଶܮ
(ଶ)

− ଷߙ௕ݔܸ
(ଶ)

] −

݃ߩ ଵߦܸ݆]
(ଶ)

− ଷߦ௙ݕ௪௣ܣ
(ଶ)

− ଵߙଵଶܮ
(ଶ)

+ ௕ݖܸ) + ଶߙ(ଵଵܮ
(ଶ)

− ଷߙ௕ݕܸ
(ଶ)

] − ∬ߩ ×ݔ)
ௌ஻

)݊Φ୲
(ଶ)

dS (2.36)

ܯ (ଶ) in equation (2.36) can also be written as
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ܯ (ଶ) = ௤ܯ + ௣ܯ − ݃ߩ ଶߦܸ−݅]
(ଶ)

+ ଷߦ௙ݕ௪௣ܣ
(ଶ)

+ ௕ݖܸ) + ଵߙ(ଶଶܮ
(ଶ)

− ଶߙଵଶܮ
(ଶ)

−

ଷߙ௕ݔܸ
(ଶ)

] − ݃ߩ ቂ݆ܸ ଵߦ
(ଶ)

− ଷߦ௙ݕ௪௣ܣ
(ଶ)

− ଵߙଵଶܮ
(ଶ)

+ ௕ݖܸ) + ଶߙ(ଵଵܮ
(ଶ)

− ଷߙ௕ݕܸ
(ଶ)
ቃ−

∬ߩ ×ݔ) )݊
డఃೃ

(మ)

డ௧
݀ܵ

ௌ஻
(2.37)

where,

௤ܯ =
ଵ

ଶ
∫݃ߩ ቂߟ(ଵ) − ቀߦଷ

(ଵ)
+ ଵߙ

(ଵ)
−ݕ ଶߙ

(ଵ)
ቁቃݔ

ଶ

ௐ ௅
ඥ1 − ௭݊

ଶ(ݔ× )݈݊݀− ∬ߩ ቂ
ଵ

ଶ
∇Φ(ଵ) ∙

௦஻

∇Φ(ଵ) + ൫ߦ(ଵ) + (ଵ)ߙ × ∙൯ݔ ∇Φ୲
(ଵ)
ቃ(ݔ× )݊݀ܵ+ (ଵ)ߦ × (ଵ)ܨ + (ଵ)ߙ × ܯ (ଵ) +

݃ߩ ଵߦܸ−݅]
(ଵ)
ଷߙ

(ଵ)
+ ଵߙܸ

(ଵ)
ଶߙ

(ଵ)
௕ݔ − ଵߙܸ

(ଵ)
ଷߙ

(ଵ)
௕ݖ −

ଵ

ଶ
ܸ൬ቀߙଵ

(ଵ)
ቁ
ଶ

− ቀߙଷ
(ଵ)
ቁ
ଶ

൰ݕ௕ −

ଵߙ
(ଵ)
ଷߙ

(ଵ)
−ଵଶܮ ଶߙ

(ଵ)
ଷߙ

(ଵ)
ଶଶܮ +

ଵ

ଶ
(ቀߙଵ

(ଵ)
ቁ
ଶ

+ ቀߙଶ
(ଵ)
ቁ
ଶ

) ଴ܼܣ௪௣ݕ௙] + ݃ߩ ൤݆−ܸߦଶ
(ଵ)
ଷߙ

(ଵ)
+

ଵߙܸ
(ଵ)
ଷߙ

(ଵ)
௕ݖ +

ଵ

ଶ
ܸ൬ቀߙଶ

(ଵ)
ቁ
ଶ

− ቀߙଷ
(ଵ)
ቁ
ଶ

൰ݔ+ ଵߙ
(ଵ)
ଷߙ

(ଵ)
ଵଵܮ + ଶߙ

(ଵ)
ଷߙ

(ଵ)
ଵଶܮ +

ଵ

ଶ
൬ቀߙଵ

(ଵ)
ቁ
ଶ

+

ቀߙଶ
(ଵ)
ቁ
ଶ
ቁ ଴ܼܣ௪௣ݔ௙൨+ ቂܸ݇݃ߩ ଵߦ

(ଵ)
ଵߙ

(ଵ)
+ ଶߦܸ

(ଵ)
ଶߙ

(ଵ)
+ ଶߙܸ

(ଵ)
ଷߙ

(ଵ)
௕ݔ − ଵߙܸ

(ଵ)
ଷߙ

(ଵ)
௕ቃݕ

(2.38)

௣ܯ = ∬ߩ− ×ݔ) )݊
ப(ః౅

(మ)
ାః౏

(మ)
)

డ௧
݊݀ܵ

ௌ஻
(2.39)

2.1.5 Multiple Body Interaction

The linear and second-order theory described in Chapter II, 2.1.1 - Chapter II,

2.1.4 applies to a single rigid structure. Let us consider two floating bodies in close

proximity.
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Similar to the equations for the single body, the radiation potential for the

isolated body is expressed as

߶ோ
ூ = ݅߱ ∑ ௝ߞ

ூ߶௝
ூ଺

௝ୀଵ (2.40a)

߶ோ
ூூ= ݅߱ ∑ ௝ߞ

ூூ߶௝
ூூ଺

௝ୀଵ (2.40b)

where andܫ denotesܫܫ the first and second body, respectively.

The boundary condition on each independent surface can be expressed as

డథೕ
಺

డ௡
= ௝݊

ூ (2.41a)

డథೕ
಺಺

డ௡
= ௝݊

ூூ (2.41b)

where

( ଵ݊, ଶ݊, ଷ݊)ூ= ,ூܖ ( ସ݊, ହ݊, ଺݊)ூ= ۷ܠ × ூܖ (2.42a)

( ଵ݊, ଶ݊, ଷ݊)ூூ= ,ூூܖ ( ସ݊, ହ݊, ଺݊)ூூ= ۷۷ܠ × ூூܖ (2.42b)

The diffraction potential for each body should satisfy

డథವ
಺

డ௡
= −

డథ಺
಺

డ௡
, on the first body’s surface S୍ (2.43a)

డథವ
಺಺

డ௡
= −

డథ಺
಺಺

డ௡
, on the second body’s surface S୍୍ (2.43b)

The above equations are for the independent body only. The boundary conditions

due to the interaction between the two bodies are

డథೕ
಺,಺಺

డ௡
= ௝݊

ூ, on the first body (2.44a)

డథೕ
಺಺

డ௡
= 0, on the second body (fixed) (2.44b)

where ߶௝
ூ,ூூ is the velocity potential of the first body due to the fixed second body.
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Similarly, we can also write the boundary conditions for the second body if the

first body is fixed.

డథೕ
಺಺,಺

డ௡
= ௝݊

ூூ, on the second body (2.45a)

డథೕ
಺

డ௡
= 0, on the first body (fixed) (2.45b)

For more detailed discussion, see Newman (2001), Charkrabarti (1987), Kim

(2008) and Kim (2003).

2.2 Equations of Motion (EOM)

As mentioned in Chapter I, two levels of approximation of hydrodynamic

coefficients are considered, i.e., the CCM method and IRF method. Usually the CCM

method is applicable to the regular wave case. However, the IRF used in the latter one

can represent the fluids memory effects, and it is a more accurate way to approximate

the impulse response of the floating body at random sea.

With the origin of the coordinate system located at the center of the waterplane

area, the mass matrix ܯ and the hydrostatic restoring coefficient matrix ܿin equations

(1.9) and (1.10) are written as follows (Mercier, 2009)

ܯ =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡

݉ 0 0

0 ݉ 0

0 0 ݉

0 ݉ ௚ݖ ௚ݕ݉−

௚ݖ݉− 0 ݉ ௚ݔ

݉ ௚ݕ ௚ݔ݉− 0

0 −݉ ௚ݖ ݉ ௚ݕ

݉ ௚ݖ 0 −݉ ௚ݔ

௚ݕ݉− ௚ݔ݉ 0

௒௒ܫ + ௓௓ܫ ௒௑ܫ− ௓௑ܫ−

௑௒ܫ− ௓௓ܫ + ௑௑ܫ ௓௒ܫ−

௑௓ܫ− ௒௓ܫ− ௑௑ܫ + ⎦௒௒ܫ
⎥
⎥
⎥
⎥
⎥
⎥
⎤

(2.46)
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The products of inertia are given by

௑௑ܫ = ∭ ஻ݔ
ଶ݀݉

௏ಳ
(2.47a)

௒௒ܫ = ∭ ஻ݕ
ଶ݀݉

௏ಳ
(2.47b)

௓௓ܫ = ∭ ஻ݖ
ଶ݀݉

௏ಳ
(2.47c)

௑௒ܫ = ௒௑ܫ = ∭ ஻݀݉௏ಳݕ஻ݔ
(2.47d)

௑௓ܫ = ௓௑ܫ = ∭ ஻݀݉௏ಳݖ஻ݔ
(2.47e)

௒௓ܫ = ௓௒ܫ = ∭ ஻݀݉௏ಳݖ஻ݕ
(2.47f)

The hydrostatic restoring coefficient matrix is

ܿ=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡

0 0 0

0 0 0

0 0 (଴)ܣ݃ߩ

0 0 0

0 0 0

௒ܫ݃ߩ
஺ ௑ܫ݃ߩ−

஺ 0

0 0 ௒ܫ݃ߩ
஺

0 0 ௑ܫ݃ߩ−
஺

0 0 0

ܯܩ(଴)ܸ݃ߩ ் ௑௒ܫ݃ߩ−
஺ 0

௒௑ܫ݃ߩ−
஺ ܯܩ(଴)ܸ݃ߩ ் 0

0 0 0⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

(2.48)

where (଴)ܣ is the waterplane area. ܸ(଴) is the submerged volume.

௑ܫ
஺ = ∬ −଴ݔ) ܺ଴)݀݀ݔ ݕ

ௌಲ
(బ) = ∬ ݔ஻݀݀ݔ ݕ

ௌಲ
(బ) (2.49a)

௒ܫ
஺ = ∬ −଴ݕ) ଴ܻ)݀݀ݔ ݕ

ௌಲ
(బ) = ∬ ݔ஻݀݀ݕ ݕ

ௌಲ
(బ) (2.49b)

௑௒ܫ
஺ = ௒௑ܫ

஺ = ∬ −଴ݔ) ܺ଴)(ݕ଴− ଴ܻ)݀݀ݔ ݕ
ௌಲ

(బ) (2.49c)

ܯܩ ் =
ூೊೊ
ಲ

௏(బ) + ௕ݖ − ௚ݖ (2.49d)

௅ܯܩ =
ூ೉೉
ಲ

௏(బ)
+ ௕ݖ − ௚ݖ (2.49e)
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Herein, the matrix ܿ in equation (2.48) is for a free-floating body with no external

restraints.

For an ܰ − body floating system, the equations of motion can be written as (Yu,

et al., 2010a; Yu and Falzarano, 2011)

൥
ଵଵܯ + ଵܽଵ(߱) ⋯ ଵܽே (߱)

⋮ ⋱ ⋮

ேܽଵ(߱) ⋯ ேேܯ + ேܽே (߱)
൩ቐ
ܺ̈ଵ
⋮
ܺ̈ே

ቑ+ ൥
ଵܾଵ(߱) ⋯ ଵܾே (߱)
⋮ ⋱ ⋮

ேܾଵ(߱) ⋯ ேܾே(߱)
൩ቐ
ܺ̇ଵ
⋮
ܺ̇ே

ቑ

+൥
ଵܿଵ ⋯ 0
⋮ ⋱ ⋮
0 ⋯ ேܿே

൩൝
ܺଵ
⋮
ܺே

ൡ= ൝
ଵ݂
௘௫௧

⋮

ே݂
௘௫௧
ൡ (2.50)

where ܺଵ and ܺே are the 6 × 1 motion vectors of the 1௦௧ and the Nth body; ଵଵܯ and

ேேܯ are the 6 × 6 mass matrix of the 1௦௧ and the Nth body; ଵܿଵ and ேܿே are the 6 × 6

hydrostatic restoring coefficient matrix of the 1௦௧ and the Nth body; ଵܽே (߱଴) is the 6 × 6

added mass matrix of the 1௦௧ body due to the Nth body; ଵܾே(߱ ) is the 6 × 6 radiation

damping matrix of the 1st body due to the Nth body. Herein, for a two-body system,

ܰ = 2; for a three-body system, ܰ = 3.

In terms of the convolution terms presented in Cummins equation (1962) and

Ogilvie relations (1964), the equations of motion can be also written as

ܯ] + (ݐ)ݔ̈[(∞ܽ) + ∫ −ݐ)ܭ )߬
௧

଴
)ݔ̇ )߬݀߬+ (ݐ)ݔܿ = ݂௘௫௧(ݐ) (2.51)

(ݐ)ܭ =
ଶ

గ
∫ (ܾ߱)
ஶ

଴
cos߱߱݀ݐ (2.52)

Both equations are the repeat of equations (1.10) and (1.11) in Chapter I.

For a multibody system, the equations of motion using IRFs can be expressed in

the following way:
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൥
ଵଵܯ + ଵܽଵ(∞) ⋯ ଵܽே (∞)

⋮ ⋱ ⋮

ேܽଵ(∞) ⋯ ேேܯ + ேܽே (∞)
൩ቐ
ܺ̈ଵ
⋮
ܺ̈ே

ቑ+ ∫ ൥
−ݐ)ଵଵܭ )߬ … −ݐ)ଵଵܭ )߬

⋮ ⋱ ⋮
−ݐ)ேଵܭ )߬ … ேேܭ −ݐ) )߬

൩
௧

଴
ቐ
ܺ̇ଵ
⋮
ܺ̇ே

ቑ݀߬

ഥܯ + ൥
1ܿ1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ ܿܰ ܰ

൩൝
ܺ1

⋮
ܺܰ

ൡ= ൞
1݂
ݐݔ݁

⋮
݂ܰ ݐݔ݁

ൢ (2.53)

ܿ̅

where ܺଵ, ܺ̇ଵ and ܺ̈ଵ are the displacement, velocity and acceleration vector of the 1st

body ; ܺே , ܺ̇ே and ܺ̈ே are the displacement, velocity and acceleration vector of the Nth

body. For example, the state vector of the 1st body is

ܺଵ = ቎
ଵݔ
ூ

⋮
଺ݔ
ூ
቏ (2.54)

where the superscript representsܫ the first body, and the numbers 1, 2, … , 6 denote the

six DOFs of a single rigid body.

If we ignore the body-to-body hydrodynamic interaction coefficients in equations

(2.50) and (2.53), then these two equations are mathematically simplified to represent

equations of motion of ܰ independent bodies. Moreover, for the purpose of convenience,

note the whole mass matrix in equation (2.53) as ഥܯ , and the hydrostatic restoring

coefficient matrix as ܿ̅, and they are both 6ܰ × 6ܰ matrices.

In addition, the EOM of a multibody floating system can be expressed as follows if

using the tensor notation

∑ ቄ(ܯ௜௝+ ௜ܽ௝)̈ݔ௝+ ∫ −ݐ)௜௝ܭ +௝݀߬ݔ̇߬(
௧

଴ ௜ܿ௝ݔ௞ቅ
଺ே
௝ୀଵ = ௜݂

௘௫௧(ݐ) ݅= 1, … , 6ܰ (2.55)

where the matrix impulse response function (ݐ)௜௝ܭ can be written as
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(ݐ)௜௝ܭ =
ଶ

గ
∫ ௜ܾ௝(߱)
ஶ

଴
cos(߱ݐ)݀߱ (2.56)

2.3 Impulse Response Function

The matrix impulse response function (ݐ)௜௝ܭ in equation (2.56) is the derivative

of (ݐ)௜௝ܮ , that is

(ݐ)௜௝ܭ =
డ

డ௧
(ݐ)௜௝ܮ (2.57)

The fundamental relations between the time- and frequency-domain express the

added mass coefficient ௜ܽ௝ and damping coefficient ௜ܾ௝ in terms of Fourier transforms of

(ݐ)௜௝ܮ

௜ܽ௝(߱) − (ܽ∞) = ∫ (ݐ)௜௝ܮ cos߱ݐdݐ
ஶ

଴
(2.58)

௜ܾ௝(߱) = ߱ ∫ (ݐ)௜௝ܮ sin߱ݐdݐ
ஶ

଴
(2.59)

The inverse transformation of equation (2.58) and (2.59) gives the complementary

relations for the impulse response function (WAMIT, 2008)

(ݐ)௜௝ܮ =
ଶ

గ
∫ ( ௜ܽ௝(߱) − ௜ܽ௝(∞))
ஶ

଴
cos߱ݐd߱ (2.60)

(ݐ)௜௝ܮ =
ଶ

గ
∫ (

௕೔ೕ(ఠ )

ఠ
)

ஶ

଴
sin߱ݐd߱ (2.61)

The most significant truncation error is associated with the transform of the added

mass (2.60). From the partial integration of (2.58), it follows that

௜ܽ௝(߱) − ௜ܽ௝(∞) = −
ଵ

ఠ
∫ ௜௝ܮ

ᇱஶ

଴
(ݐ) sin߱ݐdݐ≅ ௜௝ܮ−

ᇱ (0)߱ିଶ (2.62)

If equation (2.60) is truncated at a finite frequency ߱ே = Ω , the truncation

correction is
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Λ௜௝(ݐ) =
ଶ

గ
∫ [ ௜ܽ௝(߱) − ௜ܽ௝(∞)] cos߱ݐ
ஶ

Ω
d߱ (2.63)

However, an alternative procedure is adopted in the F2T module of WAMIT, and

they are

௜௝ܮ
ᇱ (0) =

ଶ

గ
∫ ௜ܾ௝(߱)
ஶ

଴
d߱ ≅

ଶ

గ
∫ ௜ܾ௝(߱)
Ω

଴
d߱ (2.64)

For more details about how to calculate IRF numerically, see Greenhow (1986)

and Lewandowski (2008).

2.4 State-space Format of EOM

The EOM of a single body based on CCM, i.e., equation (1.9), can be put into the

following form

=ݖ̇ +ݖܣ ௘௫௧݂ܤ (2.65)

where

ܣ = ൤
0 ܫ

ܯ)− + (ܽ߱଴))ିଵ ∙ ܿ ܯ)− + (ܽ߱଴))ିଵ ∙ (ܾ߱଴)
൨ (2.66)

ܤ = ൤
0

ܯ) + (ܽ߱଴))ିଵ൨ (2.67)

In a similar way, the EOM of multibody floating systems based on CCM, i.e.,

equation (2.53), can be also written in state-space format. In this study, the fourth-order

Runge-Kutta method is selected and the ODE45 solver of MATLAB is directly

employed.

Firstly, define the state variables for a single rigid body as
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(ݐ)ݖ = ൤
(ݐ)ݔ

(ݐ)ݔ̇
൨= ቈ

ݔ
−−
ݔ̇
቉ (2.68)

For the multibody system, the state variables are

(ݐ)ܼ = ቈ
തܺ(ݐ)

ത̇ܺ(ݐ)
቉=

⎣
⎢
⎢
⎢
⎢
⎢
⎡
ܺଵ
⋮
ܺே

−−−
ܺ̇ଵ
⋮
ܺ̇ே ⎦

⎥
⎥
⎥
⎥
⎥
⎤

(2.69)

For the multibody system, replace the mass matrix, stiffness matrix and

hydrostatic restoring matrix in equations (2.65) - (2.67) with the corresponding matrices

in equation (2.53), then we can obtain the state variables for the ܰ -body system based on

the CCM in a similar way.

Further, the state-space models for the IRF method are derived as following for

the single body and multibody case, respectively.

Ran (2000) and Chen (2002) presented two different ways of dealing with the

convolution terms when solving the EOM. Herein, the convolution term in equation

(2.51) is numerically computed using the trapezoidal rule

∫ −ݐ)ܭ )߬
௧

଴
)ݔ̇ )߬݀߬=

ଵ

ଶ
∑ −ݐ)ܭ] ݉ ∆ )߬ ∙ ݉)ݔ̇ ∆ )߬ + −ݐ)ܭ (݉ + 1)∆ )߬ ∙ ݉))ݔ̇ +௡ିଵ
௠ ୀ଴

1)∆ )߬] ∙ ∆߬ (2.70)

Rearrange the terms in equation (2.70)

∫ −ݐ)ܭ )߬
௧

଴
)ݔ̇ )߬݀߬=

ଵ

ଶ
(0)ܭ ∙ (ݐ)ݔ̇ ∙ ∆߬+ [∑ −ݐ)ܭ ݉ ∆ )߬௡ିଵ

௠ ୀଵ ∙ ݉)ݔ̇ ∆ )߬ ∙ [ݐ∆ +
ଵ

ଶ
(ݐ)ܭ ∙

(0)ݔ̇ ∙ ∆߬ (2.71)

where ݊ denotes the ݊௧௛ time step, and =ݐ ݊ ∙ ∆߬
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In the numerical calculation, the first term in equation (2.71) can be regarded as

the damping term to be solved at the time .ݐ The other two terms are the known terms

and can be moved to the right-hand side.

Therefore, the state-space model for equation (2.51) can be expressed as

(ݐ)ݖ̇ = +ݖ௡௘௪ܣ ௡௘௪ܤ ൭݂
௘௫௧− ෍ −ݐ)ܭ] ݉ ∆ )߬ ∙ ݉)ݔ̇ ∆ )߬ ∙ ∆ )߬]

௡ିଵ

௠ ୀଵ

−
1

2
(0)ݔ̇(ݐ)ܭ ∙ ∆ ൱߬

(2.72)

where

௡௘௪ܣ = ቈ
0 ܫ

ܯ)− + (ܽ∞))ିଵ ∙ ܿ ܯ)− + (ܽ∞))ିଵ ∙
ଵ

ଶ
(0)ܭ ∙ ∆ ቉߬ (2.73)

௡௘௪ܤ = ൤
0

ܯ) + (ܽ∞))ିଵ൨ (2.74)

The matrix ௡௘௪ܣ represents the physical property of this dynamical system, since

the total mass term ܯ + (ܽ∞), the damping term (0)ܭ and the hydrostatic restoring

coefficient ܿare all included in ௡௘௪ܣ . Moreover, ௡௘௪ܣ is dependent on the time step ∆߬

that is used to evaluate the IRFs, as indicated by equation (2.73). Therefore, how the

time step ∆߬ affects the controlling efficiency will be studied in Chapter III.

For the multibody systems, all the convolution terms ∫ −ݐ)௜௝ܭ ௝݀߬ݔ̇߬(
௧

଴
in

equation (2.53) can be numerically calculated in the same way as that in equation (2.72).

Therefore, the corresponding state-space model can be expressed as

ܼ̇ = +௡௘௪ܼܣ̅ ത௡௘௪ܤ ݂̅௡௘௪
௘௫௧ (2.75)

where
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௡௘௪ܣ̅ = ቈ
0 ܫ

ഥିଵܯ− ∙ ܿ̅ ഥܯ− ∙
ଵ

ଶ
ഥ଴ܭ ∙ ∆

቉߬ (2.76)

ഥ଴ܭ = ൥
ଵଵ(0)ܭ ⋯ ଵேܭ (0)

⋮ ⋱ ⋮
ேଵ(0)ܭ ⋯ ேே(0)ܭ

൩ (2.77)

ത௡௘௪ܤ = ቂ
0

ഥିଵܯ
ቃ (2.78)

݂̅௡௘௪
௘௫௧ =

⎣
⎢
⎢
⎢
⎢
⎡ ଵ݂

௘௫௧− ∑ ∑ −ݐ)ଵ௝ܭൣ ݉ ∆ )߬ ∙ ܺ̇௝(݉ ∆ )߬ ∙ ∆ )߬൧௡ିଵ
௠ ୀଵ −

ଵ

ଶ
(ݐ)ଵ௝ܭ ௝ܺ(0) ∙ ∆߬ே

௝ୀଵ

⋮

௜݂
௘௫௧− ∑ ∑ −ݐ)௜௝ܭൣ ݉ ∆ )߬ ∙ ܺ̇௝(݉ ∆ )߬ ∙ ∆ )߬൧௡ିଵ

௠ ୀଵ −
ଵ

ଶ
(ݐ)௜௝ܭ ௝ܺ(0) ∙ ∆߬ே

௝ୀଵ

⋮

ே݂
௘௫௧− ∑ ∑ −ݐ)ே௝ܭൣ ݉ ∆ )߬ ∙ ܺ̇௝(݉ ∆ )߬ ∙ ∆ )߬൧௡ିଵ

௠ ୀଵ −
ଵ

ଶ
(ݐ)ே௝ܭ ௝ܺ(0) ∙ ∆߬ே

௝ୀଵ ⎦
⎥
⎥
⎥
⎥
⎤

(2.79)

In equation (2.75), ௡௘௪ܣ̅ is 12N × 12N, ത௡௘௪ܤ is 12N × 6N, ݂̅௡௘௪௘௫௧ is 6N × 1. ഥ଴ܭ is

a 6N × 6N matrix incorporating all the initial values of Similar.(ݐ)௜௝ܭ to equation (2.73),

the time step ∆߬ does affect the assembly of ௡௘௪ܣ̅ , and it also affects the sum of external

forces ݂̅௡௘௪௘௫௧.

Equation (2.75) is very similar to equation (1.2) if we ignore the control force .݂

௡௘௪ܣ̅ and ത௡௘௪ܤ are corresponding to ܣ and ܧ in equation (1.2). If we consider the

feedback force ݑ (use ݂ in the structural control) provided by the DP system for the

floating system, the corresponding equation can be written as

ܼ̇ = +௡௘௪ܼܣ̅ ത௡௘௪ܤ ݂̅௡௘௪
௘௫௧ + ݑܤ (2.80)

where ݑ can be derived from various controllers, e.g., the PID controller or the optimal

LQR method. Thus the problem described in Figure 1.1 is to solve the dynamic
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responses of a multibody floating system with the feedback force to be determined,

similar to the structural control discussed in Chapter I, 1.3.

Finally, we just need to adjust the following matrix തܻ in order to output the

desired variables

തܻ= ௡௘௪ܼܥ̅ (2.81)

For a two-body system, if we need to consider the relative heave motion between

two bodies, the corresponding matrix ௡௘௪ܥ̅ can be written as

௡௘௪ܥ̅ = [0 0 1 0 0 0 0 0 −1 0 0 0] (2.82)

The output vector തܻshould be a 1 × 1 vector.

If we need to consider both the relative sway and heave motions,

௡௘௪ܥ̅ = ቂ
0 1 0 0 0 0 0 −1 0 0 0 0
0 0 1 0 0 0 0 0 −1 0 0 0

ቃ (2.83)

The output vector തܻshould be a 2 × 1 vector.

If we need to consider all the horizontal motions, such as the relative surge, sway

and heave,

௡௘௪ܥ̅ = ൥
1 0 0 0 0 0 −1 0 0 0 0 0
0 1 0 0 0 0 0 −1 0 0 0 0
0 0 1 0 0 0 0 0 −1 0 0 0

൩ (2.84)

The output vector തܻshould be a 3 × 1 vector.

2.5 Random Wave Loads

Sea state is defined in accordance with the North Atlantic Treaty Organization

(NATO) standard for the North Atlantic. Both the ship and spar need to continue
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operations through Sea State 4 (SS4), with significant wave heights 1.25-2.5 m. Herein,

the Bretschneider spectrum (Chakrabarti, 1987) is used

(ܵ߱) =
஺

ସ
௦ܪ
ଶ ఠೞ

ర

ఠ ఱ exp൬−ܣቀఠ
ఠೞ
ቁ
ିସ

൰ (2.85)

where ܣ is nondimensional coefficient, ௦ܪ is significant wave height and ߱௦ is

significant wave frequency. Herein, ܣ = 0.675 , and use ௦ܪ = 1.88 ݉ and ߱௦ =

0.5072 rad/sec to represent SS4.

The irregular sea can be simulated by

(ݐ,ݔ)ߟ = ∑ )௜cosܣ ௜݇ݔ− ߱௜ݐ+ ௜߳)
ே
௜ୀଵ (2.86)

where =௜ܣ ඥ2 (ܵ߱௜)߱߂௜.

2.6 Slow Drift Force

The slow-drift excitation loads ௜ௌ௏ܨ can be formally written as

௜ܨ
ௌ௏ = ∑ ∑ ௞ൣܶ௝௞ܣ௝ܣ

௜௖cos൛൫߱ ௞ − ߱௝൯ݐ+ ൫߳ ௞ − ௝߳൯ൟ+ ௝ܶ௞
௜௦sin൛൫߱ ௞ − ߱௝൯ݐ+ே

௞ୀଵ
ே
௝ୀଵ

൫߳ ௞ − ௝߳൯ൟ൧ (2.87)

where the wave amplitudes ௞ܣ,௝ܣ may be determined by the wave spectrum (ܵ߱) ; ߱௝

and ߱௞ are the wave frequencies; ௝߳ and ௞߳ are the random phase angles; ௝ܶ௞
௜௖ and

௝ܶ௞
௜௦ are the second-order transfer functions for the difference frequency loads. Newman’s

approximation implies that

௝ܶ௞
௜௖ = ௞ܶ௝

௜௖ = 0.5( ௝ܶ௝
௜௖+ ௞ܶ௞

௜௖) (2.88)

௝ܶ௞
௜௦ = ௞ܶ௝

௜௦ = 0 (2.89)
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It is time-consuming to directly compute the slow drift force based on equation

(2.87). Newman (1974) proposed a simplified approach by approximating the double

summation by the square of a single series. This implies that N terms should be added

together at each time step compared to N2 terms. This formula can be written as

௜ܨ
ௌ௏ = 2 ∑ൣ )௝ܣ ௝ܶ௝

௜௖)ଵ/ଶ cos(߱௝ݐ+ ௝߳)ே
௝ୀଵ ൧

ଶ
(2.90)

It should be noted that this equation provides forcing at the high frequencies,

however, these terms have no influence when studying the slow-drift response. In

equation (2.90), ௝ܶ௝
௜௖ must be positive (Faltinsen, 1990). Kaasen (1999) showed that a

modification to Newman’s method can be done in order to eliminate the high frequency

noises generated by this method. The Hilbert transformation was applied to the auxiliary

process ݑ rather than the wave elevation to eliminate high frequency noise. By not using

pre-generation of force time series, filtering out this noise must be done simultaneously

with the simulation where there is a significant challenge to avoid a phase lag that may

affect the low frequency components.

Pinkster (1980) analyzed the mean and low frequency second order wave drift

forces on bodies moored or positioned in waves and compared numerical and

experimental measurements of RAOs for a tanker, a semisubmersible and a barge. Chen

and Duan (2007) developed a new formulation to compute the QTF using the series

expansion of the second-order wave loading with respect to the difference-frequency up

to the second order. It provides a novel method to evaluate the low-frequency second-

order wave loads in a more accurate way than the zeroth order approximation (often

called Newman’s approximation) and in a more efficient way compared to the
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computation of the complete QTF. Chen and Rezende (2009) further analyzed the time-

series reconstruction of excitation loads in the motion simulation of mooring systems

and demonstrated that it’s a new, efficient and accurate scheme.

2.7 PID Controller

In control theory, the proportional, integral, and derivative terms are summed to

calculate the output of the PID controller. Defining (ݐ)ݑ as the controller output, the

final form of the PID algorithm is:

(ݐ)ݑ = ௣ܭ (ݐ݁) + ∫௜ܭ (݁ )߬݀߬
௧

଴
+ ௗܭ

ௗ

ௗ௧
(ݐ݁) (2.91)

where ௣ܭ is the proportional gain, ௜ܭ is the integral gain, and ௗܭ is the derivative gain.

In addition, (ݐ݁) is the error function, that is, (ݐ݁) = (ݐ)ݕ − (ݐ)ݎ ; (ݐ)ݕ is the plant

output; (ݐ)ݎ is the reference value. Figure 2.1 shows a block diagram of a typical PID

controller.

In order to discretize the PID controller in the simulation, approximations for the

first-order derivatives are made by backward finite differences. The integral term is

discretized with a sampling time ,ݐ∆ as follows,

∫ (݁ )߬݀߬= ∑ (௜ݐ݁)
௞
௜ୀଵ

௧ೖ
଴

ݐ∆ (2.92)

The derivative term is approximated as

ௗ௘(௧ೖ)

ௗ௧
=

௘(௧ೖ)ି௘(௧ೖషభ)

∆௧
(2.93)
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Figure 2.1 A block diagram of a PID controller (PID Controller, 2011)

For more details about the analysis, synthesis and design of a PID controller for

continuous and discrete time linear systems, see Chen (1999) and Bhattacharyya, et al.

(2009).

2.8 LQR Method

Consider the linear system

=ݔ̇ +ݔܣ ݑܤ (2.94)

If (଴ݐ)ݔ is given at ,଴ݐ consider the problem of determining the control function (ݐ)ݑ that

minimizes the cost function

=ܫ ∫ బ்ݔ்ܳݔ]

௧బ
+ +ݐ݀[ݑ்ܴݑ ݔܯ்ݔ (2.95)

where ܳ,ܴ are weighting factors, both assumed to be symmetric and positive

semidefinite and positive definite, respectively. The matrix ܯ is symmetric positive

semidefinite.
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The following derivation is from Chapter 13 of Bhattacharyya, et al. (2009). Let

(ݐ,ݔ)ܸ denote the value function. Then minimization of requiresܫ

−
డ௏(௫,௧)

డ௧
= ௨(௧)+ݔ்ܳݔ]

௜୬୤ +ݑ்ܴݑ
డ௏೅

డ௫
+ݔܣ) [(ݑܤ (2.96)

)ݔ)ܸ ଴ܶ), ଴ܶ) = )்ݔ ଴ܶ)ݔܯ( ଴ܶ) (2.97)

The optimal control (ݐ)ݑ satisfies

+ݑ2ܴ ்ܤ
డ௏

డ௫
= 0 (2.98)

So that

ݑ = −
ଵ

ଶ
ܴିଵ்ܤ

డ௏

డ௫
(2.99)

Substitute equation (2.99) into equation (2.96), we obtain

−
డ௏

డ௧
= +ݔ்ܳݔ

డ௏೅

డ௫
−ݔܣ

ଵ

ସ

డ௏೅

డ௫
்ܤଵିܴܤ

డ௏

డ௫
(2.100)

as the partial differential equation to be satisfied by (ݐ,ݔ)ܸ is subject to the boundary

condition

)ݔ)ܸ ଴ܶ), ଴ܶ) = )்ݔ ଴ܶ)ݔܯ(ܶ) (2.101)

To solve equation (2.100) and equation (2.101), we make the reasonable guess that

a ܸ function is quadratic and propose

(ݐ,(ݐ)ݔ)ܸ = ݔ்ܲݔ (2.102)

where ܲ is a symmetric matrix, as a candidate solution. Then equation (2.102) becomes

=ݔ்̇ܲݔ− +ݔ்ܳݔ −ݔܣ்ܲݔ2 ݔ்ܲܤଵିܴܤ்ܲݔ (2.103)

, and equation (2.101) becomes

)்ݔ ଴ܶ)ܲ( ଴ܶ)ݔ( ଴ܶ) = )்ݔ ଴ܶ)ݔܯ( ଴ܶ) (2.104)

Since
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ܣ2ܲ = +ܣܲ) (்ܲܣ + −ܣܲ) (்ܲܣ (2.105)

where the terms in the first bracket are symmetric and the second one is antisymmetric

and

்ݔ =ݔܵ ்ݔ− ݔܵ (2.106)

Since (ݐܵ) is antisymmetric, we can write (2.103) as

=ݔ்̇ܲݔ− ܳ]்ݔ + ܣܲ + −்ܲܣ ݔ[்ܲܤଵିܴܤܲ (2.107)

Thus, we have obtained a solution of equation (2.96) and equation (2.97) if ܲ can

be chosen to satisfy

−ܲ̇ = ܳ + ܣܲ + −்ܲܣ ்ܲܤଵିܴܤܲ (2.108)

for ∋ݐ ,଴ݐ] ଴ܶ] with

ܲ( ଴ܶ) = ܯ (2.109)

If a solution ܲ to equation (2.108) and equation (2.109) can be found, the optimal

control is

ݑ = −ܴିଵݔ்ܲܤ= − ݔ݇ (2.110)

where

݇= ܴିଵ்ܲܤ (2.111)

Equation (2.110) represents a time-varying state feedback control law.

Assuming a very far terminal time ଴ܶ → ∞, the solution of the Ricacati equation

(2.108) is expected to approach ܲ̇ = 0. Then an algebraic Riccati equation can be

solved for ܲ

0 = +்ܲܣ −ܣܲ +்ܲܤR-1ܤܲ ܳ (2.112)
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In effect this algorithm therefore finds those controller settings that minimize the

undesired deviations - ܳ , e.g., the deviations from desired altitude or process

temperature. Often the magnitude of the control action itself - ܴ is included in this sum

so as to keep the energy expended by the control action itself limited.

The LQR controller has several very important properties, including its robustness

properties, asymptotic properties, etc. It is important to stress that the properties of LQR

designs hinge upon the fact that full-state feedback is used and the specific way that the

control gain matrix ݇ is computed from the solution of the Riccati equation. However,

the full-state feedback means that every state that appears in the model of the physical

system must be measured by a sensor. The other restrictive aspect is the gap between

what the LQR controller achieves and the desired control system performance. The last

issue is that LQR controller design is an iterative process even though the methodology

systematically produces optimal, stabilizing controllers (Levine, 2000).

.
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CHAPTER III

EXAMPLE I: MOTIONS OF THE SINGLE BODY

3.1 Hydrodynamic Coefficients of the Single Body

In order to solve the equations of motion, the hydrodynamic coefficients must be

calculated in advance by solving the BVP problem. Some postprocessing tools have

been developed to assemble the hydrodynamic coefficient matrices obtained from

WAMIT.

In this chapter, we will firstly show and discuss some hydrodynamic results of the

single spar and the USNS Bob Hope, i.e., the added mass and the radiation damping.

Moreover, the impulse response functions for a single body are also obtained and

compared with IRFs from the multiple body case.

The mean drift QTF are also solved. For this dynamical system, the optimal LQR

controller is selected as the controlling method. Herein, for the purpose of simplicity, it

is assumed that the DP system can provide the optimized force calculated from the LQR

method, thus it is a full-state feedback case. In other words, it is assumed that the DP

system can ideally provide all the 6-DOF feedback forces. Moreover, various time steps

∆ ,߬ used to evaluate the IRFs, are investigated to study the stability and accuracy of the

proposed state-space model as well as the robustness of LQR controller. For the purpose

of convenience, the time step inݐ∆ the time-domain simulation is selected as the same as

∆ .߬
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Finally, the effects of various weighting parameters (ܳ,ܴ) on the controlling

efficiency are also studied.

Figure 3.1 Panel model for the spar

As shown in Figure 3.1, the spar consists of three parts with different diameters.

The top part is from the Mean Water Level (MWL) to 9 m deep below MWL, with 6.5

m diameter. The bottom part is a 106 m long cylinder with 8 m diameter. There is a 3 m

transition area between the top part and the bottom part. The total number of panels for

this spar is 1536. Moreover, the principal characteristics of the spar are listed in Table

3.1. The heave natural periods is 30.5 sec, and the angular frequency is 0.206 rad/sec.
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The roll and picth natural period is 148.8 sec, and the angular frequency is 0.0422

rad/sec ( Selfridge, 2005 ).

Table 3.1 Principal characteristics of the spar

Total length, L 129.6 m

Draught, T 118.0 m

Lower diameter, D୐ 8.5 m

Upper diameter, D୙ 6.0 m

Total displacement, ∆ 6615.0 t

As shown in Figure 3.2, the total number of panels for the USNS Bob Hope is

1416. In addition, the principle characteristics of the ship are listed in Table 3.2.

Obviously the Boh Hope is much bigger than the DWSC spar in the size.

Figure 3.2 Panel model for the Bob Hope
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Table 3.2 Principal characteristics of the USNS Bob Hope

Length between perpendiculars, L୮୮ 269.450 m

Breadth molded on waterline, B 32.258 m

Draught, T 8.795 m

Displacement volume molded, ∇ 49167.523 mଷ

The nondimensional added mass and nondimensional radiation damping are

defined in WAMIT (2008) as follows

௜௝ܣ̅ =
஺೔ೕ

ఘ௅ೖ
(3.1)

ത௜௝ܤ =
஻೔ೕ

ఘ௅ೖఠ
(3.2)

where ݇= 3 for ,݆݅= 1,2,3; ݇= 4 for ݆= 4,5,6 or ݅= 4,5,6, ݆= 1,2,3 and ݇= 5 for

,݆݅= 4,5,6.

For example, Figure 3.3 shows the frequency dependent added mass of the single

spar. The selected maximum wave frequency is about 7.0 rad/sec, and such a range is

wide enough to estimate the impulse response function. The nondimensional added mass

ଵଵܣ̅ approaches about 6100 with the increasing wave frequency. The dimensional added

mass ௜௝ܣ at the wave frequency 7.0 rad/sec is considered as the added mass at the infinite

frequency (ܽ∞), which will be used in equations (2.51) and (2.53).
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Figure 3.3 Nondimensional added mass ଵଵܣ̅ of the single spar

Figure 3.4 shows the frequency dependent radiation damping of the single spar.

The nondimensional radiation damping തଵଵܤ approaches zero with increasing wave

frequency. The dimensional radiation damping ௜௝ܤ at a specific wave frequency is the

radiation damping (ܾ߱଴) in equation (2.66).

Figure 3.4 Nondimensional radiation damping തଵଵܤ of the single spar
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3.2 Verification of the Proposed State-space Model

In order to check the accuracy of the code developed based on the state-space

modeling technology, several simple cases have been tested as follows. Assume a simple

mechanical oscillator

ܯ (ݐ)ݔ̈ + (ݐ)ݔܾ̇ + (ݐ)ݔܿ = (ݐ)ܨ (3.3)

where ܯ , ,ܾܿare the mass matrix, damping matrix and stiffness matrix, respectively;

(ݐ)ܨ denotes the sinusoidal exciting fore and (ݐ)ܨ = ଴ܨ sin߱ݐ.

Equation (3.3) can be reconstructed as

=ݖ̇ +ݖܣ ௘௫௧ܨܤ (3.4)

where

(ݐ)ݖ = ൤
(ݐ)ݔ

(ݐ)ݔ̇
൨= ቈ

ݔ
−−
ݔ̇
቉ (3.5)

ܣ = ቂ
0 ܫ

ܯ− ିଵ ∙ ܿ ܯ− ିଵ ∙ ܾ
ቃ (3.6)

ܤ = ቂ
0

ܯ ିଵቃ (3.7)

In this example, ܯ ,ܾand ܿare all 6 × 6 unit matrices, and ଴ܨ is a 6 × 1 unit

vector. The excitation frequency ߱ is 0.7 rad/sec, and the period is around 9 sec. The

analytical solution to equation (3.3) is

஺ܺ(ݐ) = ܥ sin +ݐ0.7 ܦ cos ݐ0.7 (3.8)

where ܥ = 0.6799 and ܦ = 0.9332 . Therefore, the amplitude of the steady-state

response is

| ஺ܺ| = ଶܥ√ + ଶ=1.15462ܦ (3.9)
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Define the deviation between the numerically calculated amplitude |ܺே | and the

analytical solution | ஺ܺ|,

ܦ∆ =
|௑ಲ |ି|௑ಿ |

|௑ಲ |
(3.10)

Various time steps, e.g., =ݐ∆ 0.05 sec, 0.1 sec, 0.2 sec and 0.5 sec, are tried in

the time-domain simulation. The results are given in Table 3.3. Obviously enough

numerical accuracy can be guaranteed within a wide range of time steps, from 0.05 sec

to 0.2 sec. A relatively large error occurs when the time step is greater than 0.5 sec. The

reason may be that the motion response during a large time step cannot be regarded as a

constant any more. However, the relative difference ratio between the amplitudes from

these cases should be always less than 0.5%.

Therefore, =ݐ∆ 0.05 sec or 0.1 sec is employed herein.

Table 3.3 Comparison of the response amplitudes corresponding to various time steps ݐ∆

(sec)ݐ∆ 0.05 0.1 0.2 0.5

|ܺே | 1.1550 1.1545 1.1537 1.1489

ܦ∆ -0.0329% 0.0104% 0.0797% 0.4954%

It should be noted that the damping coefficient ܾ and the exciting frequency ߱

may also affect the integration accuracy to some degree. However, the selection of time

step isݐ∆ mainly determined by both the accuracy and the total simulation time.

By analog, for the floating systems in ocean waves, we just need to replace the

mass ܯ , the damping coefficient ܾ, stiffness terms ܿwith the corresponding terms
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ܯ + (ܽ߱଴), (ܾ߱଴) and hydrostatic restoring coefficients matrix ,ܿ and directly employ

the ODE solvers of MATLAB to solve the EOMs.

3.3 Mean Drift Force

The mean drift force of surge, heave and pitch motions are shown in Figures 3.5 -

3.7, respectively. The Newman’s approximation is used to obtain the time series of the

mean drift force.

Figure 3.5 Mean drift QTF of surge motion ߚ) = 0଴)

Figure 3.6 Mean drift QTF of heave motion ߚ) = 0଴)
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Figure 3.7 Mean drift QTF of pitch motion ߚ) = 0଴)

3.4 Effects of ∆ૌand onܜ∆ the Controlling Efficiency Using the LQR Controller

Until now, both the 1st order wave loads and mean drift force are obtained using

the equations in Chapter II, 2.5 and 2.6. In this example, the LQR controller is utilized to

obtain optimized forces to be applied to this single spar, while assuming that the DP

system can provide such an amount of thruster forces. The feedback force is a 12 ×1

state vector, that is, =ݖ ቈ
ݔ
−−
ݔ̇
቉as defined in equation (2.68). The thruster forces are

assumed to be exerted at the origin of the coordinate system in WAMIT. In this example,

the origin is at the center point of the water plane of this spar.

As mentioned in Chapter II, how to evaluate the impulse response functions

determines the definition of the dynamical system, that is, the modeling of this system

depends on how to discretize the IRFs, i.e., ∆ .߬ Therefore, various ∆ ,߬ e.g. 0.05 sec, 0.1

sec and 0.5 sec, have been tried in the simulation tool to study its effects on the

controlling efficiency. Moreover, for the purpose of convenience, use the same time step
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in the time-domain simulation of motion responses, i.e., ∆߬= .ݐ∆ In addition, it should

be noted that the wave loads realizations applied in the case

∆߬= =ݐ∆ 0.1 sec and ∆߬= =ݐ∆ 0.05 sec can be directly derived from the case

∆߬= =ݐ∆ 0.5 sec by assuming that the external loads within 0.5 sec is a constant. In

other words, the wave exciting force within 0.5 sec can be considered continuously

unchanged. This way can further ensure that the realizations for these three cases are the

same.

After we have constructed the system matrix ܣ and the input matrix ,ܤ we can use

equation (2.110) to calculate the feedback force using the LQR method, in order to

mitigate the motion responses. In the LQR method, the calculation gain function ݇ is a 2

× 12 matrix, based on both the six displacements and the six velocity (that is ,ݖ a 12 × 1

vector), thus the feedback force ݑ =– ݖ݇ is a 6 × 1 vector. Figures 3.8 - 3.10 indicate

that considerable motion mitigation may be achieved for the three cases, i.e., ∆߬= =ݐ∆

0.05 sec, 0.1 sec and 0.5 sec. Further, LQR controller shows its robustness for a wide

range of time steps. In these three cases, the weighting factors (ܳ,ܴ) are (1, 1).

Figure 3.8 Surge motion of the single spar considering various time steps
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Figure 3.9 Heave motion of the single spar considering various time steps

Figure 3.10 Pitch motion of the single spar considering various time steps

However, there is an obvious difference between the case ∆߬= =ݐ∆ 0.5 sec

and the other two cases with smaller time steps. One of the reasons should be that the

definition of the system matrix ܣ depends on ∆ ,߬ thus the obtained gain function ݇must

be different. Thus the feedback force ݑ calculated from the LQR controller is also

different at each time step. Therefore, the mitigated motion responses must be different.

Secondly, in accordance with the discussion in Chapter III, 3.2, a larger numerical

discrepancy / error is observed when the time step is greater than 0.5 sec.
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Table 3.4 Motions of the single spar with and without control
Min. Max. Mean Std.

Surge

(m)

LQR Control(∆ݐ= 0.05 sec) -37.9770 30.8953 3.511 16.0222

LQR Control(∆ݐ= 0.1 sec) -33.9008 26.1866 3.0113 14.2714

LQR Control(∆ݐ= 0.5 sec) -21.0984 19.7987 1.7181 9.2451

No Control =ݐ∆) 0.05 sec) -118.0891 37.0682 -21.7803 49.2709

Heave

(m)

LQR Control(∆ݐ= 0.05 sec) -0.2972 0.2795 0.0235 0.0979

LQR Control(∆ݐ= 0.1 sec) -0.4112 0.3768 0.0237 0.1466

LQR Control(∆ݐ= 0.5 sec) -0.7318 0.751 0.025 0.2972

No Control =ݐ∆) 0.05 sec) -1.5466 1.6863 0.0309 0.6187

Pitch

(deg)

LQR Control(∆t = 0.05 sec) -34.515 29.31825 4.004975 14.87971

LQR Control(∆ݐ= 0.1 sec) -30.2374 25.8572 4.081 13.2487

LQR Control(∆ݐ= 0.5 sec) -15.7784 22.6316 4.2778 9.0937

No Control =ݐ∆) 0.05sec) -123.2279 99.7561 12.5122 54.0868

Further analysis indicates that the former factor should dominate such difference.

For example, we can roughly estimate the relative difference ratios among these cases

based on the statistics in Table 3.4, which shows the minimum (Min.), maximum (Max.),

mean and standard deviation (Std.) of surge, heave and pitch motions. For the cases

=ݐ∆ 0.5 sec and =ݐ∆ 0.05 sec considering LQR control, the difference is around

(16.0222 - 9.2451) / 16.02222 = 42.3% for the Std. of surge motion. It is much greater

than 0.5% due to the integration error, as discussed in Chapter III, 3.2. Therefore, this
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estimation quantitatively indicates that ∆߬does affect the construction of state-space

model greatly, and this consequently results in different feedback forces, thus different

controlling efficiencies.

In sum, the time step 0.05 sec or 0.1 sec is employed in the study, considering

various factors, including the numerical accuracy and the desired controlling target.

Therefore, we can briefly summarize the above discussions as follows

 Mathematically the time step ∆߬ to compute the IRFs does affect the

construction of state-space model greatly, as has been indicated in equation

(2.73).

 The optimal LQR method shows its robustness for various time steps. For

example, for the same weighting factors (ܳ,ܴ) = (1,1), a wide range of time

steps can be chosen to achieve the goal of motion mitigation.

 Thus small time steps can ensure enough numerical accuracy in the simulation,

however, a large time step may save more computation time while achieving the

goal of motion mitigation if using the LQR controller.

However, the assumptions in this example should be realized as well as the

limitations

 Phase lag for the DP system has not been considered, in other words, the DP

system is assumed to provide an instantaneous feedback force to the spar.

 It’s further assumed that the thrusters can produce the optimized force calculated

by LQR controller to counteract the wave forces, and such forces are usually at

the same level of the 1st order wave loads.
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 Since the LQR method calculates the feedback forces for all the 6-DOF motions,

however, the actual DP system can only provide the horizontal forces at most.

Therefore, the DP system employed in the two-body floating system in Chapter IV

is assumed to provide horizontal counteracting forces in only x- and y- directions, in

order to make the simulation of DP system closer to the real application.

3.5 Various Weighting Factors ࡽ) (ࡾ, for the LQR Controller

In fact, the LQR algorithm takes care of the tedious work done by the control

systems designer in optimizing the controller. However, the designer still needs to

specify the weighting factors and compare the results with the specified design goals.

Often this means that controller synthesis will still be an iterative process where the

system designer judges the produced "optimal" controllers through simulation and then

adjusts the weighting factors to get a controller more in line with the specified design

goals. In fact, the LQR algorithm is, at its core, just an automated way of finding an

appropriate state-feedback controller, i.e., the weighting factors (ܳ,ܴ).

In all the above cases, we simply set (ܳ,ܴ) = (1, 1) . In order to study the

influence of weighting factors on the motion mitigation, we change the value of ܳ only

while maintaining ܴ = 1 for the case ∆߬= =ݐ∆ 0.05 sec . Figure 3.11 shows the

robustness of the LQR method.

In order to compare the efficiency of motion mitigation corresponding to the

different (ܳ,ܴ), define the reduction ratio as
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ܴ௥ =
௫ಿ೚ ಴೚೙೟ೝ೚೗ି ௫ಽೂೃ ಴೚೙೟ೝ೚೗

௫ಿ೚ ಴೚೙೟ೝ೚೗
(3.11)

(a)

(b)

(c)

Figure 3.11 Motion RAOs of the single spar ߚ) = 0଴). a - surge, b - sway, c - heave.
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Table 3.5 Mitigation of motion responses for various weighting factors (ܳ,ܴ)

(ܳ,ܴ) Min. Max. Mean Std.

Surge

(m)

(1,1) -37.9770 30.8953 3.511 16.0222

(10,1) -36.0192 28.8501 3.580 15.2341

(100,1) -22.5044 20.0646 3.7527 11.1307

Heave

(m)

(1,1) -0.2972 0.2795 0.0235 0.0979

(10,1) -0.0562 0.0884 0.0207 0.0314

(100,1) -0.0022 0.0301 0.0131 0.0077

Pitch

(deg)

(1,1) -34.515 29.31825 4.004975 14.87971

(10,1) -32.7323 27.6702 4.0383 14.1502

(100,1) -20.2837 19.6110 4.1394 10.3524

It is obvious that considerable motion mitigation may be achieved for all these

various weighting factors (ܳ,ܴ) if comparing the statistics of each motion listed in

Table 3.4 and Table 3.5.

Further, we calculate the reduction ratios defined in equation (3.11), as given in

Table 3.6. There are greater than 50% mitigation for all the three motions if ܳ is within

the range of (1,100) while ܴ is 1.

As the weighting factor ܳ increases while keeping ܴ unchanged, the anticipated

feedback forces from the LQR method increase accordingly. We can also understand this

result in a simple but more intuitive way. If we increase ܳ only, the state vector mustݔ

be relatively smaller if we hope to keep the term ݔ்ܳݔ unchanged, assuming that the
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integral term - ∫ బ்ݔ்ܳݔ]

௧బ
+ keepsݐ݀[ݑ்ܴݑ the same. However, in reality, a smaller state

vector requires the larger feedback force provided by the thrusters. Similarly, if we keep

ܳ unchanged, a smaller ܴ means the greater motion mitigation, however, this requires

larger thruster forces.

Table 3.6 Comparison of reduction ratios ܴ௥ for various weighting factors (ܳ,ܴ)

(ܳ,ܴ)
ܴ௥

Min. Max. Mean Std.

Surge

(1,1) 67.84% 16.65% 116.12% 67.48%

(10,1) 69.50% 22.17% 116.44% 69.08%

(100,1) 80.94% 45.87% 117.23% 77.41%

Heave

(1,1) 80.78% 83.43% 23.95% 84.18%

(10,1) 96.37% 94.76% 33.01% 94.92%

(100,1) 99.86% 98.22% 57.61% 98.76%

Pitch

(1,1) 71.99% 70.61% 67.99% 72.49%

(10,1) 73.44% 72.26% 67.73% 73.84%

(100,1) 83.54% 80.34% 66.92% 80.86%



62

CHAPTER IV

EXAMPLE II: A TWO-BODY FLOATING SYSTEM

4.1 Frequency-domain Results

Figure 4.1 shows a schematic view of both the sea base - USNS Bob Hope and the

DWSC spar, with a gap ݀ between them. Moreover, the origin of the global coordinate

system is set at the center of the spar and the corresponding wave heading is defined as

shown in Figure 4.1. In this chapter, the gap ݀ is 1 m, 3 m and 7 m, respectively. It

should be noted that the Bob Hope is much bigger than the spar in size.

Figure 4.1 Relative positions of the ship and the spar

The BVP problem of this two-body floating system can be solved using WAMIT

software. The added mass and radiation damping coefficents can be assembled in 12 ×

12 matrix using the developed postprocessing tool, as shown in Appendix D. Moreover,

the nondimensional definitions of the body motions in WAMIT (2008) are
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=௜ߦ̅
క೔

஺ ௅೙/
(4.1)

where ݊ = 0 for ,݆݅= 1,2,3; ݊ = 1 for ݆= 4,5,6.The rotational motions (଺ߦ,ହߦ,ସߦ) are

measured in radians. In this example, take =ܮ 1 m.

For the general purpose, the 6-DOF motion RAOs of spar, corresponding to the

wave headings 45∘ and 315∘, are plotted and compared. Figure 4.2 corresponds to surge,

sway, heave, roll, pitch and yaw motion of this spar, respectively, when the wave

heading is 45∘. Figure 4.3 correspond to surge, sway, heave, roll, pitch and yaw motion

of this spar, respectively, when the wave heading is 315∘.

It is observed that there are obvious shielding effects for the surge, sway and pitch

motions for the spar. For example, for the surge motion at ߚ = 45଴ , the RAOs of spar

in multiple body system are above those for the single spar, especially when the wave

frequency is within 0.6 - 1.0 rad/sec. However, the RAOs of surge motion in the two-

body system are below those for the single spar within the same wave frequency range.

This is because the bigger-size Bob Hope can protect the smaller spar from the incoming

wave. A similar conclusion can be found in McTaggart (2003).

On the other hand, the heave RAOs does not change too much with the wave

heading, as indicated in Figures 4.2c and 4.3c. In the other words, this spar has a small

heave motion at different sea conditions, mainly due to its small water plane area. This is

also the reason why the crane is installed on the cylindrical spar to perform the cargo

transfer at sea. In addition, the peak point of heave RAOs indicates that the resonant

heave motion frequency is around 0.2 rad/sec, as agree well with the estimation of the

natural heave period of this spar.
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(a)

(b)

(c)

Figure 4.2 Motion RAOs of the spar in the two-body system ߚ) = 45଴). a - surge, b -
sway, c - heave.
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(d)

(e)

(f)

Figure 4.2 Continued. d - roll, e - pitch, f - yaw.
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(a)

(b)

(c)

Figure 4.3 Motion RAOs of the spar in the two-body system ߚ) = 315଴). a - surge, b -
sway, c - heave.
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(d)

(e)

(f)

Figure 4.3 Continued. d - roll, e - pitch, f - yaw.
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Further, Figure 4.4 shows the 6-DOF motion RAOs of Bob Hope when the wave

heading is 45∘.The difference between these RAOs when considering various spacing is

so small and can be neglected. Similar observation is for the wave heading ߚ = 315∘, as

indicated in Appendix B. This shows that the Bob Hope can provide a good station-

keeping capability as the seabase.

(a)

(b)

Figure 4.4 Motion RAOs of the ship in the two-body system ߚ) = 45଴). a - surge, b -
sway.
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(c)

(d)

(e)

Figure 4.4 continued ߚ) = 45଴). c - heave, d - roll, e - pitch.
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(f)

Figure 4.4 continued ߚ) = 45଴). f - yaw.

4.2 IRFs of the Single Body and the Multibody System

As plotted in Figures 4.5 - 4.7, obvious oscillation can be observed for the IRFs of

this multibody system. This is due to the fluid sloshing between the two bodies, in

addition, the memory functions are also lightly damped (Lewandowski, 2008). Thus, the

motions of both bodies due to initial values need more time to decay as compared to the

single body.

Figure 4.5 IRFs of heave of the spar
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Figure 4.6 IRFs of roll of the ship

Figure 4.7 IRFs of pitch of the ship

4.3 Time-domain Responses in Regular Waves Based on the IRF Method

In the following sea ߚ) = 0଴ ), the roll motion of this single spar is zero

theoretically, however, there is an obvious roll motion in the multibody case due to the

body-to-body hydrodynamic interaction, especially when the wave frequency is around

0.5 - 0.7 rad/sec, as indicated in Figure 4.8. Therefore, choose this wave frequency

ω଴ = 0.7 rad/sec with unit wave height. Then the equations (2.51) and (2.53) based on



72

IRF are solved to derive the time-domain responses of single body and multiple bodies

in the regular wave ω଴. Figure 4.9 is the time-domain roll motion of this spar at this

regular wave. It indicates that there is no roll motion for a single spar in the following

sea. However, the steady-state amplitude of roll is about 0.002 rad (0.114°) in the

multibody system due to the hydrodynamic interaction between the spar and the ship.

Figure 4.8 Roll RAOs of the spar considering different gaps

Figure 4.9 Time-domain roll motion of the spar at a regular wave

Further, the pitch RAOs of the spar considering different gaps are plotted in

Figure 4.10, and the corresponding time-domain responses of this spar in the regular

wave ߱଴ are solved and then shown in Figure 4.11. The steady-state amplitude of pitch
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in the 7m-space multibody system is about 0.0068 rad (0.39°) , smaller than

0.0105 rad (0.60°) for the single-body case, as shown in Figure 4.11.

Figure 4.10 Pitch RAOs of the spar considering different gaps

Figure 4.11 Time-domain pitch motion of the spar at a regular wave

4.4 Time-domain Responses in Random Seas

The time-domain responses of the spar in the two-body system in random SS4 are

shown in Figure 4.12. Herein, a 7 m gap is assumed. Again the spar shows a very small

amplitude response in the following sea, with the heave motion less than 0.3 m during a

period of 5000 seconds. Moreover, obvious roll motions are caused by the
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hydrodynamic interaction, with the maximum amplitude less than 5଴, the current criteria

of ship-based cranes (Selfridge, 2005). The pitch motion of this spar seems a little large,

and this may be due to the neglect of some factors, including the restoring effects in y-

direction due to the catamaran ship at the free surface, the viscous damping, etc.

(a)

(b)

Figure 4.12 Time-domain simulation of motion responses of the spar in the two-body
system at SS4. a - heave, b - roll.
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(c)

Figure 4.12 continued. c - pitch.

In order to verify the corresponding code, we can obtain the resonant heave

frequency by picking up the summit after the Fast Fourier Transformation (FFT), as

shown in Figure 4.13. It’s around 0.205 rad/sec, as agree well with the result shown in

Figure A.1c in Appendix A, 0.206 rad/sec.

Figure 4.13 Heave spectrum of the spar

As to the ship, generally it has small heave, roll and pitch motions, as indicated in

Figure 4.14. That is why it can be utilized as the base when transferring cargo at sea.
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(a)

(b)

(c)

Figure 4.14 Time-domain simulation of motion responses of the ship in two-body system
at SS4. a - heave, b - roll, c - pitch.
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In a similar way, we can obtain the resonant roll frequency by picking up the

summit after the FFT transformation, as shown in Figure 4.15. It’s around 0.514 rad/sec,

as is consistent with the result indicated in Figure B.1d in Appendix B.

Figure 4.15 Roll spectrum of the ship

4.5 Effects of the Body-to-body Hydrodynamic Interaction Coefficients

The effects of the body-to-body hydrodynamic interaction coefficients on the time-

domain responses are considered as follows:

 Not considering the body-to-body hydrodynamic interactions - i.e., the Diagonal

Matrix Method (DMM).

 Considering all the hydrodynamic interactions - i.e., the Full Matrix Method

(FMM).

 Define the difference ratio ௥ܦ∆ = (FMM− DMM) / FMM.

 Take quarter sea ߚ) = 45଴), for the general purpose.
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Table 4.1 Effects of the body-to-body hydrodynamic interaction on the motion responses

(β = 45଴)

Motion Method
Spar Ship

Std. ௥ܦ∆ Std. ௥ܦ∆

Heave

(m)

DMM 0.1038
0.0%

0.0053
0.0%

FMM 0.1038 0.0053

Roll

(deg)

DMM 0.9394
0.25%

0.0418
-1.46%

FMM 0.9418 0.0412

Pitch

(deg)

DMM 6.0546
0.26%

0.0006
0.0%

FMM 6.0694 0.0006

Surge

(m)

DMM 67.5432
1.56%

5.0185
-37.28%

FMM 68.6095 3.6557

Sway

(m)

DMM 14.6033
-0.51%

1.9516
16.71%

FMM 14.5291 2.3431

Yaw

(deg)

DMM 5.41×10-6

66.91%
0.3126

22.55%
FMM 1.64×10-5 0.4036

As indicated in Table 4.1, the body-to-body hydrodynamic interactions have

greater effects on the horizontal motions of both the spar and the ship, mainly because

there are no hydrostatic restoring coefficients in these modes. Moreover, the difference

ratios for the surge, way and yaw motion of the ship are all greater than 15%.
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Further, we compare the time-domain series of yaw motion of the ship using

FMM and DMM, as given in Figure 4.16. There is a considerable difference between the

two ways to estimate the time-domain responses. However, in the side-by-side offshore

operations, such discrepancy may result in potential dangers. Therefore, the body-to-

body hydrodynamic interactions coefficients should be considered in the time-domain

simulations of multiples bodies in close proximity.

Figure 4.16 Time-domain yaw motion of the ship based on FMM and DMM at SS4

4.6 Mean Drift Force of the Two-body System

Figure 4.17 shows the QTF curves of both the spar and the ship. Newman’s

approximation is used to create the time series of mean drift force, which is plotted

together with 1st order wave loads, as shown in Figure 4.18. The slow drift force is

approximately 1% - 10% of the 1st order wave loads.



80

(a)

(b)

(c)

Figure 4.17 Force and moment QTFs of the two bodies at the heading sea. a - surge, b -
sway, c - yaw.
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Figure 4.18 Time series of 1st-order wave loads and mean drift force

4.7 No Control vs. Optimal LQR Control

The LQR method is utilized in this example. It can provide the spar with an

appropriate feedback force to counteract the other external forces and moments.

However, we need to assume that the DP system can ideally produce such optimized

forces. It is easy to simulate the DP system using the state-space model. It is especially

convenient to incorporate various modern controllers and different controlling

parameters can be adjusted in the simulation.

In this example, the weighting parameters (ܳ,ܴ) are (1,1), the simulation time-

step is 0.05 sec, and we assume that the DP system can only provide the horizontal

feedback force in the -ݔ and -ݕ directions, and this is different from the motion control

of the single spar in Chapter III. As indicated in equations (2.110) and (2.111), the

feedback forces for the two-body system are the 24 × 1 state vectors, as expressed in

equation (2.69). Herein, ܰ = 2, and this 24 × 1 state vector consists two parts: one is the

12 × 1 displacement vector of the two bodies, and the other one is the 12 ×1 velocity
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vector. In addition, as shown in equation (2.95), the minimization of index isܫ based on

the absolute responses of each body in this example, instead of the relative motions.

It should be noted that the state-space modeling of a two-body system requires a

24 × 24 matrix to represent the internal system, so more computation time is needed for

such models with a high dimension. In addition, the calculation of the gain function ݇

using the LQR method also becomes more time-consuming.

(a)

(b)

Figure 4.19 Motion responses of the spar at the heading sea (SS4)
- No control vs. LQR control. a - surge, b - sway.
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(c)

(d)

(e)

Figure 4.19 continued. c - heave, d - roll, e - pitch.
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(f)

Figure 4.19 continued. f - yaw.

As shown in Figures 4.19a - 4.19b, the surge and sway motions of the spar can be

mitigated to a considerable degree by assuming the DP system can produce optimized

horizontal thruster forces in both the -ݔ and -ݕ directions. However, the thruster forces

almost do not affect the heave motion of the spar, as indicated in Figure 4.19c.

The FFT is used to obtain the response spectra and plot them in Figures 4.20a -

4.20f. The summit in Figure 4.20c shows again that the natural frequency is around

0.206 rad/sec. Figures 4.20c - 4.20d indicate that the resonance roll and pitch frequency

is around 0.04909 rad/sec, close to the natural frequency 0.0422 rad/sec. In accordance

to the time-domain responses, this DP system can reduce the energy distribution of the

surge and sway motions, as indicated in Figures 4.20a - 4.20b. Moreover, this DP system

can also help to reduce the energy distribution of the roll and pitch motions as indicated

in Figures 4.20d - 4.20e, because the thruster forces exerted at the origin of the global

coordinate system can result in the restoring roll and pitch moments. In this case, these

moments can help to reduce the roll and pitch in the time-domain. Figure 4.20c shows
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almost no difference for the heave motion between the two cases, as is also consistent

with the time-domain response given in Figure 4.19c.

(a)

(b)

Figure 4.20 Motion responses spectrum of the spar at the heading sea (SS4)
- No control vs. LQR control. a - surge, b - sway.
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(c)

(d)

(e)

Figure 4.20 continued. c - heave, d - roll, e - pitch.
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(f)

Figure 4.20 continued. f - yaw.

Finally, the time-domain simulations of the heave of spar and the roll of ship are

transformed into motion spectra, and then they are further divided by the corresponding

wave spectrum. The square root of the quotient is the corresponding RAO value. Thus

the RAOs derived from the simulations are compared with the results from WAMIT. As

shown in Figure 4.21, the heave resonance frequency of the spar from the simulation

result is close to the result from WAMIT, around 0.20 rad/sec. Moreover, the roll motion

RAO of the ship derived from the simulation is roughly consistent with the RAO from

WAMIT, as indicated in Figure 4.22.
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Figure 4.21 Comparison of the heave RAO of spar from WAMIT and the simulation

Figure 4.22 Comparison of the roll RAO of ship from WAMIT and the simulation
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CHAPTER V

EXAMPLE III: A THREE-BODY FLOATING SYSTEM

5.1 Principal Characteristics of the T-craft

Figure 5.1 Arrangement of the three-body floating system

Figure 5.1 shows the relative positions of the three bodies, and they are the Bob

Hope, the spar and the T-craft, from the top to the bottom. The gap between the ship and

spar is defined as ଵ݀, and it is 3 m in this example. The gap between the spar and the T-

craft is ଶ݀, and it is assumed to be 1 m, 3 m and 5 m. The grid of this T-craft is plotted in

Figure 5.2, totally 914 panels, and herein the air cushion effect is not considered. The

principal characteristics of this T-craft are given in Table 5.1.
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Figure 5.2 Panel model for the T-craft

Table 5.1 Principal characteristics of the T-craft

Length between perpendiculars, L୮୮ 76.35 m

Breadth molded on waterline, B 21.73 m

Draught, T 1.366 m

Displacement volume molded, ∇ 1529.86 mଷ

5.2 RAOs of the T-craft

WAMIT is used to solve the three-body BVP problem as shown in Figure 5.1, and

then postprocess the obtained hydrodynamic coefficients to output the corresponding

added mass, radiation damping and IRFs in the 18 × 18 matrix. The RAOs of the single

T-craft and those for the three-body floating system are plotted in the same figure for

comparison.
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In the cargo transfer operations, the crane that is located on the spar transfers the

cargo from the Bob Hope to the T-craft. When the wave heading is 45଴, the T-craft is

exposed directly to the disturbance from the ocean waves, resulting in a relatively larger

RAO if compared with the single T-craft, as shown in Figures 5.3a - 5.3f. Similarly,

when the wave heading is 315଴, the Bob Hope protects the T-craft from the excitation of

the ocean waves, resulting in smaller amplitude RAOs, as shown in Figures 5.4a - 5.4f.

(a)

(b)

Figure 5.3 Motion RAOs of the T-craft ߚ) = 45଴). a - surge, b - sway
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(c)

(d)

(e)

Figure 5.3 continued. c - heave, d - roll, e - pitch.
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(f)

Figure 5.3 continued. f - yaw.

(a)

(b)

Figure 5.4 Motion RAOs of the T-craft ߚ) = 315଴). a - surge, b - sway
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(c)

(d)

(e)

Figure 5.4 continued. c - heave, d - roll, e - pitch.
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(f)

Figure 5.4 continued. f - yaw.

5.3 Time-domain Responses of the Three-body Floating System

In this example, the simulation code for the two-body floating system is extended

to the three-body case. All the 12 × 12 mass matrix, convolution terms and hydrostatic

matrix for the two-body system are expanded to 18 × 18. Especially much more

computation time is required to evaluate the 18 × 18 convolution terms. However, it is

easy to output the relative motions between the three bodies after solving all the 18 × 1

state vectors.

After we have solved the time-domain responses of all the three bodies at each

time step, it is easy to obtain the relative motions between them. Since the relative

vertical motions between the three bodies are most concerned in the cargo transfer,

Table 5.2 gives a comparison of absolute vertical motions and relative vertical motions.

In fact, the relative motions are critically important in the safety evaluations of offshore
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operations. It is obvious that the relative motion −ଷݔ ଵହݔ is smaller than −ଷݔ .ଽݔ This

is most probably because the displacement of the T-craft is much smaller than the Bob

Hope.

Table 5.2 Statistics of vertical motions at SS4 during a 5000-sec simulation

Min. Max. Std.

ଷݔ (m) -0.1177 0.1163 0.0513

−ଷݔ ଽݔ (m) -0.1438 0.1476 0.0528

−ଷݔ ଵହݔ (m) -0.1911 0.1802 0.0555

NOTE: ,ଷݔ ଽݔ and ଵହݔ are the heave motion of the spar, the Bob Hope and the T-craft,
respectively.

Further, plot the relative vertical motions between the multiple bodies from 200-

sec to 1200-sec, as shown in Figures 5.5 and 5.6. Since the heave period of the T-craft is

very small, there appear many spikes for relative vertical motions.

Figure 5.5 Relative vertical motions between the spar and the ship at the heading sea
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Figure 5.6 Relative vertical motions between the spar and the T-craft at the heading sea

It should be noted that the DP system has not been considered, and this part is very

similar to the work for the two-body system in Chapter IV. However, it can be predicted

that more computation time is needed to obtain the gain function ݇ if using the optimal

LQR controller, since the dimension of internal system ܣ will be 36 × 36 and the input

matrix ܤ will be 36 × 1.
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CHAPTER VI

CONCLUSIONS AND FUTURE WORK

In this study, a new numerical scheme to simulate time-domain motion responses

of multibody floating systems has been successfully proposed, with hydrodynamic

coefficients obtained from the hydrodynamic software - WAMIT by solving the BVP

problem. The fourth-order Runge-Kutta method is employed. The way of transforming

the EOM into the state-space model makes it possible and convenient to directly utilize

the ODE45 solver of MATLAB. All the other nonlinear external forces can be

conveniently included in the right hand side of the state-space model at each time step,

including the thruster forces from DP system. The frequency- and time-domain results

of multibody floating systems show:

 The large size ship affects the relative smaller spar more, from the comparison of

RAOs in the frequency domain.

 The IRFs of the two-body system show more obvious oscillation than those of

the single body, due to the fluid sloshing between the two bodies in close

proximity and the light radiation damping.

 The body-to-body hydrodynamic coefficients have more effect on the horizontal

motions that have no restoring terms, such as surge, sway and yaw.
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The developed time-domain simulation tool based on this proposed scheme has

been verified for the single body case and the two-body case. Finally, it is extended to

the three-body case.

Since the EOMs of the multibody floating systems have been written in standard

state-space format, thus it is easy to numerically simulate the DP system in MATLAB,

for the purpose of simulating the motion response control in ship-to-ship operations. The

memory effects have been considered while assembling the state-space models for the

multibody floating system. Thus it can also be used as a new station-keeping model for

the multibody floating system, with the fluid memory effects incorporated.

The modern LQR controller has been applied in the numerical simulation. It

shows its robustness for the single body case for various time steps ∆߬ and .ݐ∆ In

addition, the study of weighting factors (ܳ,ܴ) on the effectiveness and controlling

efficiency of motion mitigations also demonstrates LQR’s robustness. It is further

successfully applied to a two-body floating system considering the feedback forces only

in x- and y-directions. In sum, the numerical study shows that the optimal LQR method

can help to mitigate the motion responses of both single-body and two-body floating

system at sea.

However, the LQR method requires the full-state measure and this is difficult to

achieve in reality. In addition, though this numerical scheme can be used to perform

time-domain simulations for the single body and two-body system, the calculation of

feedback forces using LQR method requires too much computation time for the

multiple-body case.



100

In sum, the proposed state-space modeling technologies can be used to simulate

the dynamics of multiple floating bodies in close proximity, with the thruster forces

considered as the feedback signal. As an approximate but efficient and effective way, it

can be improved in several aspects. Firstly, how to calculate the second-order wave

loads in a more accurate way is important to the design of a DP system. Secondly, the

phase lag is ignored in the current simulations, thus how and when to command the

thrusters is a critical issue. Thirdly, the incorporation of the DP system in the three-body

system should be also an interesting but challenging work. Finally, some techniques to

improve the computing speed and reduce the simulation time are also in the scope of

future work, e.g., mode reduction of the proposed state-space models and the

replacement of convolution terms.
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APPENDIX A

RAOs of the Spar in the Two-body System

(a)

(b)

(c)

Figure A.1 Motion RAOs of the spar ߚ) = 0଴). a - surge, b - sway, c - heave.
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(d)

(e)

(f)

Figure A.1 continued. d - roll, e - pitch, f - yaw.
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(a)

(b)

(c)

Figure A.2 Motion RAOs of the spar ߚ) = 90଴). a - surge, b - sway, c - heave.
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(d)

(e)

(f)

Figure A.2 continued. d - roll, e - pitch, f - yaw.
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(a)

(b)

(c)

Figure A.3 Motion RAOs of the spar ߚ) = 180଴). a - surge, b - sway, c - heave.
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(d)

(e)

(f)

Figure A.3 continued. d - roll, e - pitch, f - yaw.
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(a)

(b)

(c)

Figure A.4 Motion RAOs of the spar ߚ) = 270଴). a - surge, b - sway, c - heave.
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(d)

(e)

(f)

Figure A.4 continued. d – roll, e – pitch, f - yaw.
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APPENDIX B

RAOs of the Bob Hope in the Two-body System

(a)

(b)

(c)

Figure B.1 Motion RAOs of the ship ߚ) = 0଴). a - surge, b - sway, c - heave.
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(d)

(e)

(f)

Figure B.1 continued. d - roll, e - pitch, f - yaw.



120

(a)

(b)

(c)

Figure B.2 Motion RAOs of the ship ߚ) = 90଴). a - surge, b - sway, c - heave.
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(d)

(e)

(f)

Figure B.2 continued. d - roll, e - pitch, f - yaw.
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(a)

(b)

(c)

Figure B.3 Motion RAOs of the ship ߚ) = 270଴). a - surge, b - sway, c - heave.
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(d)

(e)

(f)

Figure B.3 continued. d - roll, e - pitch, f - yaw.
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(a)

(b)

(c)

Figure B.4 Motion RAOs of the ship ߚ) = 315଴). a - surge, b - sway, c - heave.
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(d)

(e)

(f)

Figure B.4 continued. d - roll, e - pitch, f - yaw.
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APPENDIX C

Classical Fourth-order Runge-Kutta Formula

Single-step methods are often called Runge-Kutta methods. The classical Runge-

Kutta Method uses four function evaluations per step (Press, et al., 2001):

ଵ݇ = ℎ (௡ݕ,௡ݔ݂)

ଶ݇ = ℎ ௡ݔ݂) +
௛

ଶ
௡ݕ, +

௞భ

ଶ
)

ଷ݇ = ℎ ௡ݔ݂) +
௛

ଶ
௡ݕ, +

௞మ

ଶ
)

ସ݇ = ℎ ௡ݔ݂) + ℎ,ݕ௡ + ଷ݇)

௡ାଵݕ = ௡ݕ +
ଵ݇

6
+

ଶ݇

3
+

ଷ݇

3
+

ସ݇

6
+ Ο(ℎହ)

A more general single-step formula is characterized by a number of

parameters,ߙ௜,β୧,୨, γ୧and δ୧,

௜݇= ℎ ௡ݔ݂) + ௡ݕ,௜ℎߙ + ℎ∑ ௜,௝݇ߚ ௝
௜ି ଵ
௝ୀଵ ), i = 1, … … , k

The parameters are determined by matching terms in Taylor series expansions of

the slopes. The order of a method is the exponent of the smallest power of ℎ that cannot

be matched. The fourth-order Runge-Kutta method requires four evaluations of the right

hand side per step h and is fourth-order.

The names of the MATLAB ODE solvers are all of the form ݀݋ withܠܠ݁ digits ܖܖ

indicating the order of the underlying method and a possibly empty xx indicating some

special characteristic of the method (Moler, 2004).
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APPENDIX D

Postprocessing Tool for the Two-body System

Note: The following codes are written in MATLAB. This tool can be used to output all

the added mass (AM) and radiation damping (AD) coefficients from the result files of

WAMIT. The corresponding matrices at the specific wave frequency can also be written

out in the 12 x 12 matrix for both bodies and in the 6 x 6 matrix for each independent

body. Further, the anticipated exciting force RAO can be output as a 12 x 1 vector.

_______________________________________________________________________

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% This code can be used to generate the AM & AD of two bodies and each
% body.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

clear all;
Filename1=input('Please input the full name of file(AD&AM): ','s');
disp(sprintf('The file to be postprocessed is(AD&AM): %s',Filename1));
OPTN1 = importdata(Filename1);
NPER=length(OPTN1.data(:,1))/(12*12);
for i=1:1:NPER

tempID=(i-1)*12*12;
PER(i,1)=OPTN1.data(tempID+1,1);
Freq(i,1)=2*pi/PER(i,1);

end

%%%%%%---START: 1st Body (AD & AM)---%%%%%%
for k=1:1:NPER

tempID=(k-1)*12*12;
for i=1:1:6

AM1st(k).data(i,:)=OPTN1.data(tempID+(i-1)*12+1:tempID+(i-
1)*12+6,4);

AD1st(k).data(i,:)=OPTN1.data(tempID+(i-1)*12+1:tempID+(i-
1)*12+6,5);

end
AM1st(k).PER=PER(k);AD1st(k).PER=PER(k);

end
%%%%%%---END: 1st BODY (AD & AM)---%%%%%%
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%%%%%%---START: 2nd BODY (AD & AM)---%%%%%%
for k=1:1:NPER

tempID=(k-1)*12*12+6*12;
for i=1:1:6

AM2nd(k).data(i,:)=OPTN1.data(tempID+(i-1)*12+7:tempID+(i-
1)*12+12,4);

AD2nd(k).data(i,:)=OPTN1.data(tempID+(i-1)*12+7:tempID+(i-
1)*12+12,5);

end
AM2nd(k).PER=PER(k);AD2nd(k).PER=PER(k);

end
%%%%%%---END: 2nd BODY (AD & AM)---%%%%%%

%%%%%%---START: Full matrix of both bodies (AD & AM)---%%%%%%
for k=1:1:NPER

tempID=(k-1)*12*12;
for i=1:1:12

AMmulti(k).data(i,:)=OPTN1.data(tempID+(i-1)*12+1:tempID+(i-
1)*12+12,4);

ADmulti(k).data(i,:)=OPTN1.data(tempID+(i-1)*12+1:tempID+(i-
1)*12+12,5);

end
AMmulti(k).PER=PER(k);AD_multi(k).PER=PER(k);

End
%%%%%%---END: Full matrix of both bodies (AD & AM)---%%%%%%

disp(sprintf('The available PER are: %d ','' ));
disp(sprintf('%8.4f',PER(:)));

%---> Input the period we need to study:
PER1=input('Please input a specific PER : ');
disp(sprintf('The selected PER is: ',PER1));
PER for i=1:1:NPER
if abs(AM1st(i).PER-PER1)<=10^(-4)

PERID=i;
abs(AM1st(1,i).PER-PER1);
break;

end
end

%%%%%%---START: Output the AM & AD---%%%%%%
AM1st_OPTN1=fopen('AM1st.txt','wt'); AM1st_ok=AM1st(1,PERID).data;
fprintf(AM1st_OPTN1,'%10.10f %10.10f %10.10f %10.10f %10.10f %10.10f \n
',AM1st_ok' );
AD1st_OPTN1=fopen('AD1st.txt','wt'); AD1st_ok=AD1st(1,PERID).data;
fprintf(AD1st_OPTN1,'%10.10f %10.10f %10.10f %10.10f %10.10f %10.10f \n
',AD1st_ok' );
AM2nd_OPTN1=fopen('AM2nd.txt','wt'); AM2nd_ok=AM2nd(1,PERID).data;
fprintf(AM2nd_OPTN1,'%10.10f %10.10f %10.10f %10.10f %10.10f %10.10f \n
',AM2nd_ok' );
AD2nd_OPTN1=fopen('AD2nd.txt','wt'); AD2nd_ok=AD2nd(1,PERID).data;
fprintf(AD2nd_OPTN1,'%10.10f %10.10f %10.10f %10.10f %10.10f %10.10f \n
',AD2nd_ok' );
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AMmulti_OPTN1=fopen('AMmulti.txt','wt');
AMmulti_ok=AMmulti(1,PERID).data;
fprintf(AMmulti_OPTN1,'%10.10f %10.10f %10.10f %10.10f %10.10f %10.10f
%10.10f %10.10f %10.10f %10.10f %10.10f %10.10f \n ',AMmulti_ok' );
ADmulti_OPTN1=fopen('ADmulti.txt','wt');
ADmulti_ok=ADmulti(1,PERID).data;
fprintf(ADmulti_OPTN1,'%10.10f %10.10f %10.10f %10.10f %10.10f %10.10f
%10.10f %10.10f %10.10f %10.10f %10.10f %10.10f \n ',ADmulti_ok' );
%%%%%%---END: Output the AM & AD---%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Postprocess the exciting force.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Filename3=input('Please input the full name of file(Exciting force):
','s');
disp(sprintf('The file to be postprocessed is(Exciting
force): %s',Filename3));
OPTN3 = importdata(Filename3);
NBETA=length(OPTN3.data(:,2))/(12*NPER);
for i=1:1:NBETA
BETA(i)=OPTN3.data((i-1)*12+1,2);
End

%%%%%%---START: Output all the exciting force - Fext---%%%%%%
for i=1:1:NPER

for j=1:1:NBETA
temp_ID=12*NBETA*(i-1)+12*(j-1);
Fext(i,j).PER=OPTN3.data(temp_ID+1,1);
Fext(i,j).BETA=OPTN3.data(temp_ID+1,2);
Fext(i,j).data=OPTN3.data(temp_ID+1:temp_ID+12,4);
end

end
%%%%%%---END: Output all the exciting force - Fext---%%%%%%

PER3=PERID;
disp(sprintf('The available BETA are: %d ','' ));
disp(sprintf('%8.2f',BETA(:) ));
BETA3=input('Please input a specific BETA : ');
disp(sprintf('The selected BETA is: ',BETA3));
BETA3
for i=1:1:NBETA
if abs(BETA(i)-BETA3)<=10^(-4)

BETAID=i;
break;

end
end

%%%%%%---START: Output the exciting force---%%%%%%
Fext1st_OPTN3=fopen('Fext1st.txt','wt');
Fext1st_ok=Fext(PERID,BETAID).data(1:6);
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fprintf(Fext1st_OPTN3,'%10.6f \n ',Fext1st_ok );
Fext2nd_OPTN3=fopen('Fext2nd.txt','wt');
Fext2nd_ok=Fext(PERID,BETAID).data(7:12);
fprintf(Fext2nd_OPTN3,'%10.6f \n ',Fext2nd_ok );
Fextmulti_OPTN3=fopen('Fextmulti.txt','wt');
Fextmulti_ok=Fext(PERID,BETAID).data(1:12);
fprintf(Fextmulti_OPTN3,'%10.6f \n ',Fextmulti_ok );

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Postprocess the motion RAOs.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Filename4=input('Please input the full name of file( RAO): ','s'); %
disp(sprintf('The file to be postprocessed is(RAOs): %s',Filename4));
OPTN4 = importdata(Filename4);
NBETA=length(OPTN4.data(:,2))/(12*NPER); % Num of wave headings(BETA)
for i=1:1:NBETA
BETA(i)=OPTN3.data((i-1)*12+1,2);
end

%%%%%%---START: Output all the motion RAOs---%%%%%%
for i=1:1:NPER

for j=1:1:NBETA
temp_ID=12*NBETA*(i-1)+12*(j-1);
RAOs(i,j).PER=OPTN4.data(temp_ID+1,1);
RAOs(i,j).BETA=OPTN4.data(temp_ID+1,2);
RAOs(i,j).data=OPTN4.data(temp_ID+1:temp_ID+12,4);
end

end
for j=1:1:length(BETA)

for ii=1:1:length(PER)
motionRAO1(ii,j)=RAOs(ii,j).data(1,1);
motionRAO2(ii,j)=RAOs(ii,j).data(2,1);
motionRAO3(ii,j)=RAOs(ii,j).data(3,1);
motionRAO4(ii,j)=RAOs(ii,j).data(4,1);
motionRAO5(ii,j)=RAOs(ii,j).data(5,1);
motionRAO6(ii,j)=RAOs(ii,j).data(6,1);
motionRAO7(ii,j)=RAOs(ii,j).data(7,1);
motionRAO8(ii,j)=RAOs(ii,j).data(8,1);
motionRAO9(ii,j)=RAOs(ii,j).data(9,1);
motionRAO10(ii,j)=RAOs(ii,j).data(10,1);
motionRAO11(ii,j)=RAOs(ii,j).data(11,1);
motionRAO12(ii,j)=RAOs(ii,j).data(12,1);
end

end
%%%%%%---START: Output all the motion RAOs---%%%%%%

%%%%%%---START: Output the frequency dependent FDAM(w) & FDAD(w) of
each body---%%%%%%
for i=1:1:length(Freq)
FDAM1st_11(i)=AM1st(1,i).data(1,1);FDAM1st_12(i)=AM1st(1,i).data(1,2);
FDAM1st_13(i)=AM1st(1,i).data(1,3);FDAM1st_14(i)=AM1st(1,i).data(1,4);
FDAM1st_15(i)=AM1st(1,i).data(1,5);FDAM1st_16(i)=AM1st(1,i).data(1,6);
FDAM1st_21(i)=AM1st(1,i).data(2,1);FDAM1st_22(i)=AM1st(1,i).data(2,2);



131

FDAM1st_23(i)=AM1st(1,i).data(2,3);FDAM1st_24(i)=AM1st(1,i).data(2,4);
FDAM1st_25(i)=AM1st(1,i).data(2,5);FDAM1st_26(i)=AM1st(1,i).data(2,6);
FDAM1st_31(i)=AM1st(1,i).data(3,1);FDAM1st_32(i)=AM1st(1,i).data(3,2);
FDAM1st_33(i)=AM1st(1,i).data(3,3);FDAM1st_34(i)=AM1st(1,i).data(3,4);
FDAM1st_35(i)=AM1st(1,i).data(3,5);FDAM1st_36(i)=AM1st(1,i).data(3,6);
FDAM1st_41(i)=AM1st(1,i).data(4,1);FDAM1st_42(i)=AM1st(1,i).data(4,2);
FDAM1st_43(i)=AM1st(1,i).data(4,3);FDAM1st_44(i)=AM1st(1,i).data(4,4);
FDAM1st_45(i)=AM1st(1,i).data(4,5);FDAM1st_46(i)=AM1st(1,i).data(4,6);
FDAM1st_51(i)=AM1st(1,i).data(5,1);FDAM1st_52(i)=AM1st(1,i).data(5,2);
FDAM1st_53(i)=AM1st(1,i).data(5,3);FDAM1st_54(i)=AM1st(1,i).data(5,4);
FDAM1st_55(i)=AM1st(1,i).data(5,5);FDAM1st_56(i)=AM1st(1,i).data(5,6);
FDAM1st_61(i)=AM1st(1,i).data(6,1);FDAM1st_62(i)=AM1st(1,i).data(6,2);
FDAM1st_63(i)=AM1st(1,i).data(6,3);FDAM1st_64(i)=AM1st(1,i).data(6,4);
FDAM1st_65(i)=AM1st(1,i).data(6,5);FDAM1st_66(i)=AM1st(1,i).data(6,6);
End
for i=1:1:length(Freq)
FDAD1st_11(i)=AD1st(1,i).data(1,1);FDAD1st_12(i)=AD1st(1,i).data(1,2);
FDAD1st_13(i)=AD1st(1,i).data(1,3);FDAD1st_14(i)=AD1st(1,i).data(1,4);
FDAD1st_15(i)=AD1st(1,i).data(1,5);FDAD1st_16(i)=AD1st(1,i).data(1,6);
FDAD1st_21(i)=AD1st(1,i).data(2,1);FDAD1st_22(i)=AD1st(1,i).data(2,2);
FDAD1st_23(i)=AD1st(1,i).data(2,3);FDAD1st_24(i)=AD1st(1,i).data(2,4);
FDAD1st_25(i)=AD1st(1,i).data(2,5);FDAD1st_26(i)=AD1st(1,i).data(2,6);
FDAD1st_31(i)=AD1st(1,i).data(3,1);FDAD1st_32(i)=AD1st(1,i).data(3,2);
FDAD1st_33(i)=AD1st(1,i).data(3,3);FDAD1st_34(i)=AD1st(1,i).data(3,4);
FDAD1st_35(i)=AD1st(1,i).data(3,5);FDAD1st_36(i)=AD1st(1,i).data(3,6);
FDAD1st_41(i)=AD1st(1,i).data(4,1);FDAD1st_42(i)=AD1st(1,i).data(4,2);
FDAD1st_43(i)=AD1st(1,i).data(4,3);FDAD1st_44(i)=AD1st(1,i).data(4,4);
FDAD1st_45(i)=AD1st(1,i).data(4,5);FDAD1st_46(i)=AD1st(1,i).data(4,6);
FDAD1st_51(i)=AD1st(1,i).data(5,1);FDAD1st_52(i)=AD1st(1,i).data(5,2);
FDAD1st_53(i)=AD1st(1,i).data(5,3);FDAD1st_54(i)=AD1st(1,i).data(5,4);
FDAD1st_55(i)=AD1st(1,i).data(5,5);FDAD1st_56(i)=AD1st(1,i).data(5,6);
FDAD1st_61(i)=AD1st(1,i).data(6,1);FDAD1st_62(i)=AD1st(1,i).data(6,2);
FDAD1st_63(i)=AD1st(1,i).data(6,3);FDAD1st_64(i)=AD1st(1,i).data(6,4);
FDAD1st_65(i)=AD1st(1,i).data(6,5);FDAD1st_66(i)=AD1st(1,i).data(6,6);
end
for i=1:1:length(Freq)
FDAM2nd_11(i)=AM2nd(1,i).data(1,1);FDAM2nd_12(i)=AM2nd(1,i).data(1,2);
FDAM2nd_13(i)=AM2nd(1,i).data(1,3);FDAM2nd_14(i)=AM2nd(1,i).data(1,4);
FDAM2nd_15(i)=AM2nd(1,i).data(1,5);FDAM2nd_16(i)=AM2nd(1,i).data(1,6);
FDAM2nd_21(i)=AM2nd(1,i).data(2,1);FDAM2nd_22(i)=AM2nd(1,i).data(2,2);
FDAM2nd_23(i)=AM2nd(1,i).data(2,3);FDAM2nd_24(i)=AM2nd(1,i).data(2,4);
FDAM2nd_25(i)=AM2nd(1,i).data(2,5);FDAM2nd_26(i)=AM2nd(1,i).data(2,6);
FDAM2nd_31(i)=AM2nd(1,i).data(3,1);FDAM2nd_32(i)=AM2nd(1,i).data(3,2);
FDAM2nd_33(i)=AM2nd(1,i).data(3,3);FDAM2nd_34(i)=AM2nd(1,i).data(3,4);
FDAM2nd_35(i)=AM2nd(1,i).data(3,5);FDAM2nd_36(i)=AM2nd(1,i).data(3,6);
FDAM2nd_41(i)=AM2nd(1,i).data(4,1);FDAM2nd_42(i)=AM2nd(1,i).data(4,2);
FDAM2nd_43(i)=AM2nd(1,i).data(4,3);FDAM2nd_44(i)=AM2nd(1,i).data(4,4);
FDAM2nd_45(i)=AM2nd(1,i).data(4,5);FDAM2nd_46(i)=AM2nd(1,i).data(4,6);
FDAM2nd_51(i)=AM2nd(1,i).data(5,1);FDAM2nd_52(i)=AM2nd(1,i).data(5,2);
FDAM2nd_53(i)=AM2nd(1,i).data(5,3);FDAM2nd_54(i)=AM2nd(1,i).data(5,4);
FDAM2nd_55(i)=AM2nd(1,i).data(5,5);FDAM2nd_56(i)=AM2nd(1,i).data(5,6);
FDAM2nd_61(i)=AM2nd(1,i).data(6,1);FDAM2nd_62(i)=AM2nd(1,i).data(6,2);
FDAM2nd_63(i)=AM2nd(1,i).data(6,3);FDAM2nd_64(i)=AM2nd(1,i).data(6,4);
FDAM2nd_65(i)=AM2nd(1,i).data(6,5);FDAM2nd_66(i)=AM2nd(1,i).data(6,6);
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end
for i=1:1:length(Freq)
FDAD2nd_11(i)=AD2nd(1,i).data(1,1);FDAD2nd_12(i)=AD2nd(1,i).data(1,2);
FDAD2nd_13(i)=AD2nd(1,i).data(1,3);FDAD2nd_14(i)=AD2nd(1,i).data(1,4);
FDAD2nd_15(i)=AD2nd(1,i).data(1,5);FDAD2nd_16(i)=AD2nd(1,i).data(1,6);
FDAD2nd_21(i)=AD2nd(1,i).data(2,1);FDAD2nd_22(i)=AD2nd(1,i).data(2,2);
FDAD2nd_23(i)=AD2nd(1,i).data(2,3);FDAD2nd_24(i)=AD2nd(1,i).data(2,4);
FDAD2nd_25(i)=AD2nd(1,i).data(2,5);FDAD2nd_26(i)=AD2nd(1,i).data(2,6);
FDAD2nd_31(i)=AD2nd(1,i).data(3,1);FDAD2nd_32(i)=AD2nd(1,i).data(3,2);
FDAD2nd_33(i)=AD2nd(1,i).data(3,3);FDAD2nd_34(i)=AD2nd(1,i).data(3,4);
FDAD2nd_35(i)=AD2nd(1,i).data(3,5);FDAD2nd_36(i)=AD2nd(1,i).data(3,6);
FDAD2nd_41(i)=AD2nd(1,i).data(4,1);FDAD2nd_42(i)=AD2nd(1,i).data(4,2);
FDAD2nd_43(i)=AD2nd(1,i).data(4,3);FDAD2nd_44(i)=AD2nd(1,i).data(4,4);
FDAD2nd_45(i)=AD2nd(1,i).data(4,5);FDAD2nd_46(i)=AD2nd(1,i).data(4,6);
FDAD2nd_51(i)=AD2nd(1,i).data(5,1);FDAD2nd_52(i)=AD2nd(1,i).data(5,2);
FDAD2nd_53(i)=AD2nd(1,i).data(5,3);FDAD2nd_54(i)=AD2nd(1,i).data(5,4);
FDAD2nd_55(i)=AD2nd(1,i).data(5,5);FDAD2nd_56(i)=AD2nd(1,i).data(5,6);
FDAD2nd_61(i)=AD2nd(1,i).data(6,1);FDAD2nd_62(i)=AD2nd(1,i).data(6,2);
FDAD2nd_63(i)=AD2nd(1,i).data(6,3);FDAD2nd_64(i)=AD2nd(1,i).data(6,4);
FDAD2nd_65(i)=AD2nd(1,i).data(6,5);FDAD2nd_66(i)=AD2nd(1,i).data(6,6);
end
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APPENDIX E

Motion Responses Spectrum of the Bob Hope of the Two-body System at Heading Sea

(SS4) -No control vs. LQR control

(a)

(b)

Figure E.1 Motion responses spectrum of the ship at the heading sea (SS4)
- No control vs. LQR control. a - surge, b - sway.
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(c)

(d)

(e)

Figure E.1 continued. c - heave, d - roll, e - pitch.
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(f)

Figure E.1 continued. f - yaw.
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