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ABSTRACT 

  

Surface Reductive Capacity of Carbon Nanomaterials 

after Various Heating and Aging Processes. (August 2011) 

Chunghoon Lee, B.E., Korea Military Academy 

Chair of Advisory Committee: Dr. Bing Guo 

 

Understanding the toxicity of carbon nanomaterials, such as carbon nanotubes 

and graphenes, is important for the development of nanotechnology. Studies have shown 

that surface redox capability is an important factor for toxicity of carbon nanomaterials. 

We have measured the surface reductive capacity for a number of carbon nanomaterials 

in previous studies, but the effects of various engineering processes on surface redox 

capability have not been investigated until this study.  

In this study, commercially available carbon black, carbon nanotubes, standard 

reference materials, fullerenes, graphenes and acetylene soot generated in the lab were 

used. The carbon nanomaterials were subjected to heating at various temperatures in 

various atmospheres up to 500 ˚C, and soaking in water at room temperature under 

various atmospheres, and weathering in the powder form at room temperature under 

various atmospheres. The redox capability of the carbon nanomaterials was quantified in 

terms of the reductive capacity towards Fe
3+
 ions (RCFI). The RCFI values of the as-

received nanomaterials and that of the nanomaterials after various treatments were 

compared. The carbon nanomaterials were also characterized using x-ray photoelectron 
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spectroscopy (XPS), for understanding the surface chemistry mechanisms of RCFI and 

the effects of various treatments. 

In general, heating induced a significant increase in RCFI, regardless of the 

atmosphere under which the nanomaterials were heated. On the other hand, aging in O2-

containing atmospheres brought about significant decrease in RCFI, either in water 

suspension or in the powder form. Water vapor enhanced the aging effect of O2. CO2 

was found to affect the RCFI and the aging of carbon nanomaterials. The extent of RCFI 

change due to heating or aging was dependent on the type of material.  

According to the XPS results, the RCFI of some carbon nanomaterials such as 

carbon black may be correlated with the C-O surface functional groups. However, the 

definitive correlation between the oxygen-containing surface functional group and RCFI 

for all carbon nanomaterials couldn’t be determined by the XPS result. This indicates 

that the RCFI changes of carbon nanomaterials after treatments mainly derived from the 

factors such as the active sites of edges other than the oxygen-containing surface 

functional group changes as other studies show. This suggests that the RCFI 

measurement cannot be replaced by XPS analysis. 

The effects of heating and aging on RCFI, and more generally the surface redox 

capability of carbon nanomaterials, reveals that various engineering and environmental 

processes may significantly change the toxicity of carbon nanomaterials. The findings of 

this study suggest that it is important to take into account the effects of engineering and 

environmental processes when assessing the toxicity of carbon nanomaterials.  
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1. INTRODUCTION
1
 

 

Carbon nanomaterials are generated as natural or anthropogenic products, and 

may be emitted to the environment or the work place. After generation, carbon 

nanomaterials may experience environmental or engineering processes such as heating 

or aging. 

The toxicity of the carbon nanomaterials have been studied in various ways [1-5]. 

One of the studies shows that carbon nanomaterials can generate reactive oxygen 

species(ROS) by donating electrons in the presence of transition metals including iron 

ions. Reactive oxygen species(ROS) such as superoxide(O2
-
) and hydroxyl radical(OH

·
) 

can bring about toxic effects on the human body by causing oxidative stress [1, 2, 6]. 

Specifically, the toxicity of carbon nanomaterials has been associated with the reductive 

capacity towards Fe
3+
 ions(RCFI) of carbon nanomaterials [4].  

 Even though plenty of toxicology studies have gone forward, little is known 

about the effects of engineering and environmental processes such as heating and 

exposing to various gases, on the toxicity of carbon nanomaterials. The motivation of 

this study was to find how engineering or environmental treatments might affect the 

toxicity of carbon nanomaterials. 

In previous studies, surface functional group quantity changes after aging and 

heating treatments had been revealed [7-12]. In most cases, the oxygen-containing 
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surface functional groups were increased after aging, and the oxygen-containing surface 

functional groups were decreased after heating [7-9]. Aging treatment induced depletion 

of C-O single bond and growth of C=O double bonds(Carbonyl) [7]. Heating led to 

decrease of OH groups(Hydroxyl)[10]. On the other hand, surface reductive capacity of 

carbon nanomaterials had been related to surface functional groups. Therefore, the 

oxygen-containing surface functional group changes after engineering treatments would 

also affect on the toxicity of carbon nanomaterials by altering the surface redox 

capability. However, the effects of these processes on the RCFI of carbon nanomaterials 

have not been investigated until this study. 

In previous studies, a relatively long period of time(2 months to 24 months) was 

needed to obtain the aging results [8]. In these studies, relatively thick layers of 

nanomaterials were exposed to static air. The time scale for gas diffusion through the 

nanomaterial layers was quantified. The long time required could be due to the long time 

scale of diffusion. There is a need to investigate the aging effects for shorter, 

environmentally relevant lengths of time.  

The objective of this study was to find the pattern of RCFI changes after various 

heating and aging treatments and the reason of the RCFI changes. The reason of the 

RCFI changes was studied by examining other studies and the relation with the surface 

functional group changes obtained by XPS. In this way, this study would reveal how 

various engineering and environmental processes significantly affect on the toxicity of 

carbon nanomaterials.  



 3

2. MATERIALS AND METHODS 

 

 Commercially available carbon nanomaterials were purchased, and used for the 

various treatments. After treatments, RCFI of carbon nanomaterials was measured, and 

XPS analysis was carried out. 

 

2.1 Materials and Experiment Matrix 

 

Table 1 shows detailed information of the carbon nanomaterials that were used in 

this study. All the materials were purchased from commercial companies except soot-A. 

Soot-A particles were generated in the lab by using acetylene [13]. 

 

Table 1. Sample information of the carbon nanomaterials 

Sample ID. Materials Physical dimensionsa 
ID # 

(CAS/Lot ) 
Manufacturer 

CB 
Carbon Black 

(Printex 90) 
Mean diameter : 14 nm C1333-86-4 Degussa 

Soot-A 
Soot generated from 

acetylene 
Mean diameter : 52.8 nm [14] N/A In-house 

SCNT_1 
Single-wall carbon 

nanotubes 

Outer Diameter : 1-2 nm 

Length : 5-30 µm 
Sku-0101 

Cheap Tubes 

SCNT_2 

Single-wall carbon 

nanotubes 

with OH groups 

Outer Diameter : 1-2 nm 

Length : 10-30 µm 
Sku-0102 

SCNT_3 

Single-wall carbon 

nanotubes 

with COOH groups 

Outer Diameter : 1-2 nm 

Length : 5-30 µm 
Sku-0103 

MCNT_1 

Multi-wall carbon 

nanotubes 

Outer Diameter : < 8 nm 

Length : 10-30 µm 
Sku-030101 

MCNT_2 
Outer Diameter : 10-20 nm 

Length : 10-30 µm 
Sku-030103 

MCNT_3 
Outer Diameter : > 50 nm 

Length : 10-20 µm 
Sku-030107 

MCNT_4 
Graphitized 

MCNT_2 

Outer Diameter : 10-20 nm 

Length : 10-30 µm 
Sku-030103 

MCNT_5 
Graphitized 

MCNT_3 

Outer Diameter : > 50 nm 

Length : 10-20 µm 
Sku-030107 
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Table 1 continued 

Sample ID. Materials Physical dimensionsa 
ID # 

(CAS/Lot ) 
Manufacturer 

GNP_1 
Graphene Nano Platelets 

Grade 1 

Diameter : 5 µm 

Average Thickness : 15 nm 
N/A 

Cheap Tubes GNP_2 
Graphene Nano Platelets 

Grade 2 

Diameter : 5 µm 

Average Thickness : 10 nm 
N/A 

GNP_3 
Graphene Nano Platelets 

Grade 3 

Diameter : 2 µm 

Average Thickness : Sub micron 
N/A 

C60 
Refined Mixed 

Fullerenes 

Theoretical outer diameter 

 : 1 nm 

C99685 

-96-8 
MER 

DPM 
Diesel Particulate 

Matter 
Mean diameter : 1.62 µm 2975 

NIST 

UPM 
Urban Particulate  

Matter 

200 nm – 100 µm 

(Mode : 20 µm) 
1648a 

*
 The physical dimensions of CB, CNTs, GNPs and SRMs were provided by the manufacturers, and  

a theoretical value was used for C60. 

 

 

 

Table 2 shows the specific surface area for some of the carbon nanomaterials that 

were used in this study. The BET surface areas of SCNTs and MCNTs were obtained 

from Hwang’s thesis [15]. The BET surface areas of carbon black and DPM were 

adopted from Drake’s thesis[13]. The specific surface area of GNPs was provided by the 

manufacturer (Cheap Tubes Inc.). 
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Table 2. Carbon nanomaterials surface area 

Sample ID. Surface Area(m
2
/g) 

CB 354.5 

SCNT_1 425.4236 

SCNT_2 (SCNT_OH) 336.4877 

MCNT_2 153.8514 

GNP_1 50 

GNP_2 100 

GNP_3 600-750 

DPM 118.7 

       * Surface area of CB, SCNT_1, SCNT_2, MCNT_2, and DPM was determined by BET     

         measurements. Specific surface area of GNPs was provided by the manufacturer (Cheap Tubes Inc.). 

 

 

 

 The heating and aging treatments carried out on various carbon nanomaterials are 

listed in Table 3. The experimental nomenclature of this study was determined as 

described in Table 3.  
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Table 3. Experiment matrix 
Carbon 

Nanomaterials 
RCFI XPS Other 

CB 

P, HH, HN, HA(0.5~5), HNM(0.5~5), 

HAM(0.5~5), HNC, HNCM, AA, AAM, AN, 

ANM, AO, AOM, ACA, ACAM, AWO, AWN, 

AAC, ACM 

P, HAM, AAM, 

AWO 
BET 

Soot-A P, HH, HN, HA, AAM, AWO   

SCNT_1 P, HA, AWO  BET 

SCNT_2 P, HA, AWO  BET 

SCNT_3 P, HA, AWO, AAM   

MCNT_1 P, HA, AWO, AAM   

MCNT_2 P, HA, AWO, AAM  BET 

MCNT_3 P, HA, AWO, AAM   

MCNT_4 P, HA, AWO, AAM   

MCNT_5 P, HA, AWO, AAM   

GNP_1 P, HA, AWO, AAM, AWA, AWC P, HA, AAM  

GNP_2 P, HA, AWO, AAM, AWA, AWC P, HA, AWO, AAM  

GNP_3 P, HA, AWO, AAM, AWA, AWC, AC P, HA, AWO, AAM  

C60 P, HA   

DPM P, HA(1~3), AWO, AAM  BET 

UPM P, HA, AWO, AAM   

* HA(Heated in air), HH(Heated in H2/N2), HN(Heated in N2), HNC(Heated in N2/CO2), HXM(Heated in 

X gas with moisture), HX(a~b)(Heated in X gas at a × 100~b × 100ºC), AAM(Weathered in moist 

synthetic air), AA(Weathered in synthetic air), AOM(Weathered in O2 with moisture), AO(Weathered in 

O2), ANM(Weathered in N2 with moisture), AN(Weathered in N2), ACM(Weathered in moist synthetic air 

and CO2), AAC(Weathered in synthetic air and CO2), ACA(Weathered in air), ACAM(Weathered in moist 

air), AC(Weathered in CO2), AWO(Soaked in water under O2), AWN(Soaked in water under N2), 

AWA(Soaked in water under N2/O2), AWC(Soaked in water under N2/O2 and CO2) 
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2.2 Measurement of Reductive Capacity towards Fe
3+

 Ions (RCFI) 

 

The RCFI was measured using a spectrophotometric method after incubating the 

carbon nanomaterial in a Fe
3+
 solution. Details are given below. 

Samples were prepared for each RCFI measurement. Three replicate samples 

were made by using 200-ml beakers by adding 9.0 ± 0.2 mg of the Iron(III) sulfate 

hydrate (Fe2(SO4)3·xH2O, Reagent grade, Alfa Aesar, Ward Hill, MA) and 30± 0.2 mg 

of the carbon nanomaterials. In case of hydrophobic carbon nanomaterials (C60), 2 ml of 

0.12 mM surfactant (Tween 20, Bio-Rad, Hercules, CA) was added. After adding 75ml 

of DI water each beaker, the beakers were sealed with Parafilm
®
 (Pechiney Plastic 

Packing, Chicago, IL). A 10 L analog water bath (Cole Parmer, Vernon Hills, IL) was 

warmed up and set at 37
 
˚C. The three sample solutions stayed in the water bath for 16 

hours. After 16 hours of incubation, solutions were filtered into 100ml volumetric flasks 

through 9 cm diameter paper filters (grade 415, 28320-041, VWR, West Chaser, PA). 

After separating each particle-free solution, three 25-mL of particle-free solution was 

taken and put into three 100 ml volumetric flasks. And then, these three flasks were 

labeled A, B and C. 0.25 ml of 20 % of sulfuric acid (H2SO4, 95 %, Labchem, Pittsburgh, 

PA) was added to all the A, B and C flasks by using micropipettes with ranges of 40 ~ 

200 µl and 200 ~ 1000 µl (Cole Parmer, Vernon Hills, IL). 1 ml of 1 % hydroquinone 

(C6H4(OH)2, 99 %, Alfa Aesar, Ward Hill, MA) was added only to ‘B’ flask to reduce 

Fe
3+
 remaining in ‘B’ flask to Fe

2+
. 10ml of 0.3% 1,10-phenanthroline (C12H8N2, >99 %, 

Alfa Aesar, Ward Hill, MA) was added to ‘B’ and ‘C’ flasks for color development. 5, 
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10 and 25 ml of polystyrene pipettes (Becton Dickinson Labware, Franklin Lakes, NJ) 

were used for adding chemical compounds.  Each solution was diluted to 100 ml with DI 

water. After leaving the solutions for 1 hour to develop their color, 2~3 ml of solution 

was moved to the 4.5 ml optical polystyrene cuvette (58017-880, VWR, West Chaser, 

PA) to measure the absorbance at wavelength 512 nm with a single-beam 1100 series 

Spectrophotometer (Cole Parmer, Vernon Hills, IL). Absorbance of DI water was set to 

zero before measurement. An ultrasonic cleaner (Model T50, VWR, West Chaser, PA) 

was used for cleaning glassware before and after RCFI measurements. 

After the absorbance measurement, the difference between absorbance of 

Fe
2+
(Flask ‘C’) and absorbance of method blank (Flask ‘A’) was calculated. The 

difference indicates intensity of color due to purely Fe
2+
. The corresponding Fe

2+
 ions 

concentration (mg/L) in the solution could be found by multiplying the slope of the 

calibration curve to the absorbance difference between flask A and C. The detailed RCFI 

calculation is described in Appendix B.  

Transition iron (Fe
3+
) was incubated without carbon nanomaterials by adding 

9.0± 0.2 mg of the Iron(III) sulfate hydrate in 200-ml beakers with 75ml of DI water to 

measure the original Fe
2+
 concentration. Three replicate samples were made and 

incubated in the water bath for 16 hours. After 16 hours of incubation, RCFI of transition 

iron was measured as the same procedure above. The RCFI of transition iron without 

carbon nanomaterials was 8.22×10
-4
g/g. This indicates that the Iron(III) sulfate hydrate 

originally contains a small amount of Fe
2+  

in itself. 
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2.3 Treatment Methods and Variables 

 

2.3.1 Atmosphere Settings in Heating Treatments 

 

Various heating apparatuses were installed so that different heating atmospheres 

could be used. For each heating treatment, a total of 110mg carbon nanomaterial was 

placed in an alumina crucible and heated in a tube furnace.  

Fig. 1 (a) is a schematic of the heating treatment under various atmospheres. Gas 

tubes were connected to the furnace tube. For 5mol% H2 and 95mol% N2 atmospheres, 

N2 gas was flown thorough the furnace at 1 standard liter per minute(SLM) for 2 

minutes; then H2 gas was turned on at 50 standard cubic centimeter per minute(sccm) so 

that 5% H2 gas flow rate could be obtained. The furnace was heated up to 200˚C at a 

temperature ramping rate of 5 ºC/min, and maintained at the maximum temperature for 2 

hours. After 2 hours at 200˚C, the heating element was turned off, and the H2/N2 flow 

rates kept unchanged. Once the temperature decreased below 50˚C, the gases were 

turned off, and the particles were retrieved.  

After the heating treatments, 90mg of the carbon nanomaterial was used for the 

RCFI measurement, and 20mg was used for the XPS measurement if applicable.  

Heating treatment was carried out in 100% N2 gas atmosphere. The procedure 

was the same as described above except that the H2 gas tube was retracted and only N2 

gas was flown into the furnace at 1 SLM.  
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Heating treatment in the air was carried out in a manner similar to what is 

described above after retracting the gas tubes and disconnecting both ends of the tube to 

open to the air. 

Also, carbon black particles were heated with moist air or N2 gas as shown in Fig. 

1 (b). A gas tube was connected to the flask that contained DI water, and 1 SLM of 

compressed air or N2 was flown into the flask and bubbled through the water so that the 

gas could flow into the quartz tube with containing the moisture.  

 

 

 

 

 

Fig. 1. Heating in various gas atmospheres. (a) Heating in various gas atmospheres 

without moisture (b) Heating in various temperature with moisture 
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Carbon black particles were also heated in N2 and CO2 gases with and without 

moisture to examine the effect of CO2 on carbon nanomaterials heating. In the case of 

the heating treatment with moisture, N2 and CO2 gas tubes were connected to the quartz 

tube, and a flask with DI water was connected between gas tubes and the quartz tube as 

shown in Fig. 2. After flowing 79sccm of N2 and 21sccm of CO2 gas, the furnace was 

heated up to 200˚C for 2 hours at a temperature ramping rate of 5 ºC/min. After heating, 

the RCFI was measured. 

 

 

 

 

Fig. 2. Heating in N2/CO2. (a) Heating in N2/CO2 gas without moisture (b) Heating in 

N2/CO2 gas with moisture 
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2.3.2 Temperature Settings of Heating Treatments 

 

Heating treatments was done in various temperature settings to examine the 

effects of the various heating conditions. The apparatus setup was the same as shown in 

Fig.1 (a). 

Heating conditions were varied in the following three ways: different maximum 

temperatures (from 50 to 500˚C), different dwelling times at a maximum temperature of 

200˚C (from 0.5 to 5 hours), and different temperature ramping rates at a 200˚C 

maximum temperature and a 2 hour dwelling time (from 1 to 30˚C/min). All the other 

values except the variable value were fixed as shown in Table 4.  

Also, RCFI of carbon black particles was measured with various waiting times 

(from 0 to 20 hours) after completion of heating, by leaving the heat-treated carbon 

black particles in ambient air at room temperature. Table 4 shows the various heating 

conditions and the waiting times. 

 

Table 4. Various heating conditions and waiting times 

Variable Value Numerical Value Fixed Value 

Maxumum 

Temperature(ºC) 
50 100 200 300 400 500 · 

Dwelling time 2hours, 

Ramping rate 5 ºC/min, 

Waiting time 0 

Dwelling time 

(hours) 
0.5 1 2 3 4 5 · 

Maximum temperature 

200ºC, Ramping rate 5 

ºC/min, Waiting time 0 

Temperature 

ramping 

rate(ºC/min) 

1 3 5 10 15 20 30 

Maximum temperature 

200ºC, Dwelling time 

2hours, Waiting time 0 

Waiting Time 

(hours) 
0 10 20 · · · · 

Maximum temperature 

200ºC, Dwelling time 

2hours, Ramping rate 5 

ºC/min 
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2.3.3 Soaking in Water under Various Atmospheres 

 

Carbon nanomaterials were soaked in water under various atmospheres as shown 

in Fig. 3. 120mg of carbon nanomaterials were used for the treatment by stirring in 

100ml of DI(De-ionized) water for 2 weeks at 20±3˚C. As shown in the Table 5, O2 and 

N2 gas was introduced separately at 30 sccm(standard cc per minute) to compare O2 and 

N2 gas effect on oxidation(condition 1, 2), and synthetic air (N2/O2) and CO2 gases were 

flown into the flask under two conditions(condition 3, 4) to compare N2/O2 and CO2 gas 

effect. After 2 weeks of soaking, the RCFI measurement was done by dividing 75ml of 

suspension into three-25ml portions, resulting in three replicate samples. The last 25ml 

of suspension was used for XPS measurement. 

 

 

 

Table 5. Various gas flow rate in soaking 

Gas Condition 1 Condition 2 Condition 3 Condition 4 

N2(sccm) 0 30 79 79 

O2(sccm) 30 0 21 21 

CO2(sccm) 0 0 0 0.5 

 

 

 

                        
Fig. 3. Soaking in water under various atmospheres 
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2.3.4 Weathering in Packed Bed in Gas Flow 

   

Carbon nanomaterials in the dry powder form were placed between two paper 

filters and subjected to gas flows with controlled atmospheres. As shown in Fig. 4, 

110mg of carbon nanomaterial particles was spread uniformly on a 47mm filter paper 

and covered by another 47mm filter, to make a “sandwich”. The sandwich sample was 

securely held in a filter holder. 

The N2/O 2 and compressed air (C.Air) gas tubes were connected to the HEPA 

filter (high efficiency particulate air filter). And the HEPA filter was connected to two 

filter holders; one filter holder was connected to the flask with DI water so that the gases 

can carry the moisture, and the other filter holder was connected to the HEPA filter 

directly. The N2/O 2 and compressed air (C.Air) gas flow rate was controlled in four 

conditions in Table 6 to determine the various gas effects on weathering. 

 

 Table 6. Various gas flow rates 

Gas Condition 1 Condition 2 Condition 3 Condition 4 

N2(sccm) 100 79 0 0 

O2(sccm) 0 21 100 0 

Compressed 

Air(sccm) 
0 0 0 100 

 

The humidity of the filter holder connected to the water flask was measured by 

the humidity meter (HOBO U10, 2006 Onset Computer Corporation) in front of the 

filter holder outlet (Humidity was 90 ± 4 %). After a week of weathering at 20±3˚C, 
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90mg of carbon nanomaterial sample was used for the RCFI measurement, and 20mg of 

carbon nanomaterial sample was used for the XPS measurement. Especially, carbon 

black particles were weathered in moist synthetic air for various weathering times (1, 3, 

5, 7days) to determine the RCFI change in various weathering time differences. The 

weight change of sandwich samples was also measured after weathering to determine the 

mass of absorbed water.  

  

  

Fig. 4. Weathering in packed bed in gas flow 
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Carbon black was also weathered in the packed bed in synthetic air (N2/O2) and 

CO2 gas flow to find the effect of CO2 on weathering in synthetic air as shown in Fig. 5. 

The experimental procedure was the same as above except that the synthetic air and CO2 

gas tubes were connected to the HEPA filter and the gas flow rates were controlled 

under four conditions in Table 7 below so that 20%/10%/5%/0.5% of CO2 gas can be 

flown. Other conditions such as humidity and temperature were the same as above. After 

a week of weathering, the RCFI of carbon black was measured by the same procedure.  

 

Table 7. Synthetic air and CO2 gas flow rate in weathering 

Gas Condition 1 Condition 2 Condition 3 Condition 4 

N2(sccm) 64 78 76 78.6 

O2(sccm) 16 12 19 20.9 

CO2(sccm) 20 10 5 0.5 

 

 

Fig. 5. Weathering in synthetic air and CO2 
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2.3.5 Weathering in CO2 for Blocking Effect 

 

Graphene nanoplatelets grade 3 was weathered in 100% CO2 to find the CO2 

blocking effect as shown in Fig. 6. The sandwich sample containing 180mg of GNP_3 

particles was made by the same procedure above. The sandwich sample was put inside 

the filter holder. CO2 gas tube was connected to the HEPA filter. 100 sccm of CO2 gas 

was flown through the filter holder. After a week of weathering, CO2 gas tube was 

retrieved and the sample was taken out. The RCFI of 90mg of GNP_3 was measured. 

The remaining 90mg of GNP_3 was put in the filter holder again. N2/O2 tubes were 

connected to the HEPA filter. And the flask with DI water was connected between the 

HEPA filter and the filter holder. The moist synthetic air (N2/O2) was flown into the 

filter holder. Other conditions such as humidity and temperature were the same as above. 

After a week of weathering, the RCFI of GNP_3 (90mg) was measured.  

 

 
Fig. 6. Weathering in CO2 for blocking effect 
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2.3.6 Weathering in Still Atmosphere 

 

Carbon black particles were weathered in still atmosphere for various times as 

shown in Fig. 7. 110mg of carbon black particles were uniformly spread on the bottom 

of a 47mm diameter petri dish. The petri dish was placed on a plate over the water 

surface in the water bath. The water bath was covered, and the weathering treatments 

were done for various times (1, 2, 3, 4 weeks). The cap was opened for 10 minute once a 

day to refresh the air inside. Room temperature was kept at 20 ± 3 ˚C during the 

treatment. The relative humidity inside the water bath was 96 ± 2%. After weathering, 

the RCFI of carbon black particles was measured. The weight after weathering was also 

measured to determine the mass of absorbed water. 

 

 

Fig. 7. Weathering in still atmosphere 
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2.3.7 Weathering in Grazing Gas Flow 

 

Carbon black particles were subjected to a grazing moist air for a week as shown 

in Fig. 8. 110mg of carbon black particles were uniformly spread on the bottom of a 

47mm diameter petri dish. The petri dish was placed on a plate over the water surface in 

the water bath. The water bath was covered, and the left side was connected with the 

N2/O2 and CO2 tubes. The other side was connected with the outlet tube. Synthetic air 

(N2/O2) and CO2 gases were flown into the water bath as the two flow rate conditions are 

shown in Table 8. Room temperature was kept at 20 ± 3 ˚C during the treatment. After 

weathering, the RCFI of carbon black particles was measured. The weight after 

weathering was also measured to determine the mass of absorbed water. 

 

Table 8. Grazing gas flow rate 

Gas Condition 1 Condition 2 

N2(sccm) 79 79 

O2(sccm) 21 21 

CO2(sccm) 0 0.5 

 

 

 

Fig. 8. Weathering in grazing gas flow 
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2.3.8 Weathering in Still Air and Various Lighting Conditions 

 

Several samples were prepared by spreading 110mg of carbon black particles on 

a 47mm filter paper uniformly. One sample was wrapped with aluminum foil so that the 

carbon black particles would remain in darkness, and the other sample was not wrapped 

so that the carbon black particles would be exposed to the room light and the natural 

daylight. The two samples were placed in separate petri dishes, and the cap was covered 

so that there would not be any direct contaminations. Three replicate samples were made 

in the same way as shown in Fig. 9. The petri dishes with the samples were left on the 

shelf. The RCFI of each samples were measured after 1, 2 and 3 months.  

 

 

 

Fig. 9. Weathering in still air and various lighting conditions 
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2.3.9 Treatment Cocktails 

 

Carbon black samples were subjected to combined treatments. Carbon black 

particles were heated at 200ºC for 2 hours in air and soaked or weathered. 120mg of 

heat-treated carbon black particles were soaked for two weeks in water under O2as 

shown in Fig. 3. 110mg of heat-treated carbon black particles were weathered for a week 

in moist synthetic air (N2/O2) as shown in Fig. 4. After soaking or weathering, the RCFI 

of heat-treated carbon black was measured. 
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2.3.10 Diffusion Time Calculation for Weathering Treatments 

 

Before weathering treatments in air were carried out, diffusion time was needed 

to be calculated. To determine the weathering time, the diffusion coefficient should be 

considered and calculated. After setting up the weathering apparatus shown in Fig. 4, the 

diffusion coefficient was calculated by considering the air diffusion to the packed carbon 

black particles in the filter.  

According to STANLEY-WOOD et al., Knudsen Diffusion Coefficient ( κD ) is 

defined as[16]; 

                                                
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R  is gas constant, M is molecular weight. r  is radius of a capillary or an equivalent 

void through a packed powder. f  is proportion of the molecules striking the surface 

[16].  

 

 Knudsen had used the very small value of f , which is equal to 0.98. 
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 in air was calculated in STANLEY-WOOD et al. Accordingly, equation (1) 

can be defined as [16]; 
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 This equation was used to calculate the diffusion time for weathering by 

determining radius of an equivalent void ( r ) in carbon black particles. And the detailed 

calculation is described in the results.  
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2.4 XPS Analysis 

 

X-ray photoelectron spectroscopy (XPS) was carried out for some samples of 

carbon nanomaterials after treatments. The Kratos Axis Ultra Imaging XPS (Kratos 

Analytical, Manchester, UK) was used for the XPS analysis of surface functional group 

changes after treatments. The following are typical settings for XPS data acquisition: 

Analyzer Mode – Spectrum; Lens mode – Hybrid; Resolution – Pass energy 160; 

Aperture – Slot; Anode– Mono(Al); Current (mA) – (10); Anode HT (kV) – (12); 

Charge Neutralizer – on for acquisition; Type- spectrum; B.E.; Ref. – Mono(Al); Energy 

regions – On. In scan control section, proper scan parameters were typed. The following 

are typical settings for survey scan; Center eV: (700) ; Width eV: (1400); Step eV: (0.5); 

Sweeps: (300); #Sweeps: (3). The following are typical settings for high resolution scan; 

Width eV (2~3 eV higher than the default setup); Step eV : (0.1 eV); Sweeps : (60s); 

#Sweeps : (>3). After XPS data acquisition, XPS deconvolution was carried out by Kyle 

Cummins for the quantitation of surface functional groups[17, 18]. The XPS 

deconvolution data was analyzed with the RCFI results.  
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2.5 Statistical Analysis 

 

 Analysis of variance (ANOVA) was used to determine whether the RCFI results 

were significantly different before and after treatments. The RCFI results were obtained 

from triplicate samples in each measurement to minimize possible errors. The RCFI 

difference within a group of more than two materials was estimated by one-way 

ANOVA with a significance level of 0.05 (p = 0.05) to see the significance of the RCFI 

difference before and after treatments. All the RCFI results were described as mean ± 

standard deviation. 
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3. RESULTS 

 

 The RCFI of carbon nanomaterials after various engineering treatments was 

determined. Heating generally led to the significant increase in RCFI, regardless of the 

atmosphere. Aging with O2 resulted in significant decrease in RCFI. Water vapor 

enhanced the aging effect of O2. CO2 had a “blocking” effect, hindering the aging effect 

by O2. 

 

3.1 RCFI of Pristine Carbon Nanomaterials 

 

 As shown in Fig. 10, the RCFI of all the pristine carbon nanomaterials listed in 

Table 1 was measured. The RCFI of the carbon nanomaterials ranged from 0.16×10
-3
 to 

34.07×10
-3
 g/g. The graphene nanoplatelets grade 3(GNP_3) had the highest RCFI, and 

the fullerene (C60) had the lowest RCFI. Average RCFI of carbon nanomaterials was 

6.59×10
-3
g/g.  

 The RCFI of pristine carbon nanomaterials was recalculated as the surface area 

which is described in Table 2. Table 2 and Fig 11(a) show that the RCFI is not 

proportional to specific surface area. In addition, if the RCFI is proportional to the 

specific surface area, the RCFI of carbon nanomaterials recalculated based on the 

specific surface area in Fig. 11 (b) would be in the same range. Accordingly, this result 

indicates that the RCFI is not proportional to the specific surface area. On the other hand, 

SCNT with hydroxyl (OH) surface groups (SCNT_2) had the higher RCFI than the 
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pristine SCNT because the OH surface groups help the reduction of Fe
3+
 as the 

following reaction: 

~C-OH + Fe
3+
 → ~C=O+Fe

2+
 + H

+  
[19] 

 

 
Fig. 10. RCFI of pristine carbon nanomaterials. (a) Pristine carbon black (b) Pristine soot 

A (c) Pristine SCNT (d) Pristine SCNT  with OH groups (e) Pristine SCNT with COOH  

groups (f) Pristine Multi-wall CNT with outer diameter (OD) of < 8 nm (g) Pristine 

Multi-wall CNT with OD of 10 - 20 nm (h) Pristine Multi-wall CNT with OD of > 50 

nm(MCNT_3) (i) Pristine Graphitized MCNT_2(MCNT_4) (j) Pristine Graphitized 

MCNT_3(MCNT_5) (k) Pristine GNPs grade 1 (l) Pristine GNPs grade 2 (m) Pristine 

GNPs grade 3 (n) Pristine UPM(Urban Particulate Matters) (o) Pristine DPM(Diesel 

Particulate Matters) (p) Pristine Fullerenes(C60) 
Error bar indicates standard deviation. 
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Fig. 11. RCFI of carbon nanomaterials based on surface area. (a) RCFI of pristine  

carbon nanomaterials (b) RCFI of carbon nanomaterials based on surface area 
Error bar indicates standard deviation. 
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3.2 Effect of Heating 

 

3.2.1 Heating Generally Led to Increase of RCFI 

 

 Fig. 12 shows that the RCFI of heated carbon black and soot A was significantly 

increased after being heated in three different gas conditions (100% N2, 5% H2, and air). 

The extent of RCFI changes in the three conditions was similar. This result shows that 

heating treatments induce significant increase in RCFI, regardless of the atmosphere 

under which the carbon nanomaterials were heated. The RCFI of carbon black was 

increased from 0.96×10
-2 
to the range of 1.22×10

-2
 ~ 1.28×10

-2
 g/g. The RCFI of soot A 

was increased from 0.34×10
-2 
to the range of 0.48×10

-2
 ~ 0.50×10

-2
 g/g. This extent of 

RCFI change indicates that the RCFI of carbon black can be increased by 27~33%, and 

the RCFI of soot A can be increased by 41~47% after heating.  
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Fig. 12. RCFI of heated carbon black and soot A. (a) Pristine Carbon black (b) CB 

heated in 100% N2 gas (c) CB heated in 5%H2/95% N2 gas (d) CB heated in air (e) 

Pristine Soot A (f) Soot A heated in 100% N2 gas (g) Soot A heated in 5%H2/95%N2 gas 

(h) Soot A heated in air 
‘*’ means significantly different from pristine sample according to the ANOVA (p: 0.05). 

Error bar indicates standard deviation. 
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 Various carbon nanomaterials were heated in air at 200ºC for 2 hours, and the 

significant RCFI increase was found in most cases. 

 Fig. 13(a) shows that the RCFI of all the three single-wall carbon nanotubes was 

significantly increased after heating. This result indicates that the RCFI of single-wall 

carbon nanotubes can be increased by 48~62% after heating.  

 As shown in Fig. 13(b), the RCFI of all the multi-wall carbon nanotubes was 

increased by 11~42% after heating. However, only the MCNT_1 and MCNT_2 had the 

significant difference of RCFI change after heating. This result shows that the MCNT_1 

and MCNT_2 are more easily affected by the heating treatment than the other MCNTs. 

 The Fig. 13(c) indicates that the RCFI of graphene nanoplatelets (GNPs) grade 1 

and 2 was significantly increased after heating. On the other hand, the RCFI of GNPs 

grade 3 was decreased after heating. GNP grade 3 was the only material whose RCFI 

was decreased after heating. The RCFI of GNPs grade 1 and 2 was increased by 22~24%, 

while the RCFI of GNPs grade 3 was decreased by 9% after heating.  

 Fig. 13(d) shows that the RCFI of fullerenes(C60) and SRMs(UPM, DPM) was 

all significantly increased after heating. The RCFI of C60 and SRMs increased 2 ~ 3 

times after heating. This indicates that the RCFI of fullerenes and SRMs was strongly 

affected by the heating treatment. 
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Fig. 13. RCFI of various heated carbon nanomaterials. (a) RCFI of pristine and heated 

single-wall CNTs (b) RCFI of pristine and heated multi-wall CNTs (c) RCFI of  pristine 

and heated GNPs(Graphene nanoplatelets) (d) RCFI of pristine and heated 

fullerenes(C60) and SRMs(Standard reference materials) 
‘*’ means significantly different from pristine sample according to the ANOVA (p: 0.05). 

Error bar indicates standard deviation. 
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3.2.2 Effects of Moisture and Temperature Settings on Heating Treatment 

 

 Carbon black was heated in compressed air with moisture and N2 with moisture 

as various temperatures as shown in Fig. 1(b). Fig. 14 indicates that the RCFI increase 

after heating was greater when the atmosphere contained water vapor. This result shows 

that the water moisture enhances the RCFI increase of carbon black when it is treated 

with the proper heat temperature. In addition, the carbon black was not burnt when it 

was heated at 500ºC in N2 gas with moisture unlike the carbon black heated at 500ºC in 

air with moisture and without moisture due to the lack of the oxygen.  
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Fig. 14. RCFI of heated carbon black in various temperatures with moisture 
‘*’ means significantly different from pristine sample according to the ANOVA (p: 0.05). 

Error bar indicates standard deviation. 
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3.2.3 CO2 Had No Significant Effect on Heating 

 

 The carbon black particles were heated in N2 and CO2 gases to determine the 

effect of CO2 gas on the heating treatment as shown in Fig. 2. The result, shown in Fig. 

15 indicates that the RCFI of carbon black was significantly increased after in both cases 

of heating in N2 and CO2 gases with moisture or without moisture. When it is compared 

to the result of heating in pure N2, this result shows that the CO2 gas does not affect the 

heating treatment. And the RCFI of carbon black heated in N2/CO2 increased more when 

it was heated with moisture. This result is the same as the result of Fig. 14 in the point 

that the water enhances the increase of RCFI in the heating treatment.   

 

 
Fig. 15. RCFI of heated carbon black in N2 and CO2 gases. (a) pristine CB (b) CB heated 

200ºC for 2 hours in N2 (c) CB heated 200ºC for 2 hours in N2/CO2 (d) CB heated 200ºC 

for 2 hours in N2 with moisture (e) CB Heated in N2/CO2 gas with moisture  
‘*’ means significantly different from pristine sample according to the ANOVA (p: 0.05). 

Error bar indicates standard deviation. 
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3.2.4 RCFI of Carbon Black Heated under Various Heating Conditions 

 

 Carbon black particles were heated in various conditions as shown in Table 4 to 

determine the effects of heating conditions on the RCFI changes. The results were 

shown in Fig. 16. Fig. 16 (a) indicates that the RCFI of carbon black particles increased 

as the temperature increased to 200ºC, but it was consistent over 200ºC. And the carbon 

black was burnt and lost most of its weight when it was heated at 500ºC for 2 hours in 

air. This result means that the carbon black particles should be heated at least at 200ºC to 

get the maximum RCFI increase after heating.  

 As shown in Fig. 16 (b), the RCFI of carbon black particles continually increased 

as the dwelling time increased up to 1 hour. However, it stayed consistent after 1 hour of 

dwelling time. This result indicates that the carbon black needs to be heated at least for 1 

hour of dwelling time at 200ºC to attain the maximum RCFI increase. 

 Fig. 16 (c) shows that the RCFI change of carbon black was consistent until 

5ºC/min of increasing ramping rate, but it was decreased when the ramping rate was 

increased more than 5ºC/min. This result reveals that the ramping rate of heating carbon 

black particles should be less than 5 ºC/min to get the maximum value of RCFI change.  

 As shown in Fig. 16 (d), a waiting time of up to 20 hours before RCFI 

measurement had no influence on the RCFI of heated carbon black particles.  

 According to this result of various heating conditions, heating carbon 

nanomaterials in air at 200ºC and 5ºC/min ramping rate for 2 hours was determined as 

the standard heating condition for the heating treatment of carbon nanomaterials. 
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Fig. 16. RCFI of carbon black heated under various heating conditions. (a) heated in 

various maximum temperature (b) heated for various dwelling time (c) heated as various 

ramping rates (d) various waiting times after heating 
‘*’ means significantly different from pristine sample according to the ANOVA (p: 0.05). 

Error bar indicates standard deviation. 

 

 

 Also, the RCFI of DPMs was measured after heating at various temperatures. As 

shown in Fig. 17, The RCFI of DPM was increased as the maximum temperature 

increased. The RCFI of heated DPMs was most significantly increased between 140ºC 

and 200ºC, and it was consistent after 200 ºC. This result indicates that the different 

carbon nanomaterials can have the different aspects of RCFI increase by heating. 
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Fig. 17. RCFI of heated DPM in various temperatures 

‘*’ means significantly different from pristine sample according to the ANOVA (p: 0.05). 

Error bar indicates standard deviation. 
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3.3 Effect of Soaking in Water 

 

3.3.1 Soaking in Water under O2 Led to Decrease of RCFI 

 

Carbon black and soot A particles were soaked in water for 2 weeks under O2 

and N2 respectively, as shown in Fig. 3. The result, shown in Fig. 18 indicates that the 

RCFI of carbon black and soot A was significantly decreased after soaking in water 

under O2 gas. The RCFI of carbon black was decreased by 24%, and the RCFI of soot A 

was decreased by 16% after soaking in water under O2. On the other hand, RCFI of 

carbon black was not significantly decreased after soaking in water under N2 gas. The 

RCFI decrease of carbon black soaked in water under N2 gas was 10%. This result 

shows that the N2 gives no critical effect on the soaking, and the O2 gas enhances aging 

of the carbon nanomaterials in water.  
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Fig. 18. RCFI of carbon black and soot A soaked in water. (a) pristine CB (b) CB soaked 

in water under O2 gas (c) CB soaked in water under N2 gas (d) pristine Soot A (e) Soot A 

soaked in water under O2 gas 
‘*’ means significantly different from pristine sample according to the ANOVA (p: 0.05). 

Error bar indicates standard deviation. 
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3.3.2 Other Carbon Nanomaterials Soaked in Water under O2 

 

Various carbon nanomaterials were soaked in water under O2 for 2 weeks, and 

the significant RCFI decrease was found in most cases. 

Fig. 19(a) shows that the RCFI of single-wall carbon nanotubes (SCNTs) was 

decreased after soaking in water under O2 gas. The decrease was within the range of 

15~38%. The RCFI changes of SCNTs with OH and COOH groups had significant 

differences. But only the RCFI change of pristine SCNTs was not significant. 

As shown in Fig. 19(b), the RCFI of multi-wall carbon nanotubes (MCNTs) was 

decreased after soaking in water under O2 gas. The RCFI of MCNTs was decreased by 

15%~38%. Among the five MCNTs, MCNT_3 was the only material which did not 

experience the significant RCFI decrease. 

The result in Fig. 19(c) shows that the RCFI of both standard reference materials 

was significantly decreased after soaking in water under O2. The RCFI of diesel 

particulate matters (DPMs) was decreased by 20%, and the RCFI of urban particulate 

matters (UPMs) was decreased by 27% after soaking. 

 



 40

 
Fig. 19. RCFI of various carbon nanomaterials soaked in water under O2. (a) RCFI of 

single-wall CNTs soaked in water under O2 (b) RCFI of multi-wall CNTs soaked in 

water under O2 (c) RCFI of standard reference materials (SRMs) soaked in water under 

O2 
‘*’ means significantly different from pristine sample according to the ANOVA (p: 0.05). 

Error bar indicates standard deviation. 
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3.3.3 Graphene Nanoplatelets Soaked in Water under Various Gas Conditions 

 

The result, shown in Fig. 20 indicates that the RCFI of graphene nanoplatelets 

(GNPs) was significantly decreased after soaking in water under O2. The RCFI change 

of GNPs were within the range of 34~48%. Also, the RCFI of GNPs was significantly 

decreased after soaking in water under synthetic air (N2/O2). However, the RCFI 

decrease of GNPs after soaking in water under synthetic air was less than the RCFI 

decrease of GNPs soaked in water under O2. This supports the result above that the N2 

gives no critical effect on the aging in water.  In addition, the RCFI decrease after 

soaking in water under synthetic air and 0.5% CO2 was less than the RCFI decrease after 

soaking in water under synthetic air. This result indicates that the small amount of CO2 

gas inlet may have interrupted the aging process in water suspension. 
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Fig. 20. RCFI of graphene nanoplatelets (GNPs) soaked in water. (a) Pristine GNP_1 (b) 

GNP_1 soaked in water under O2 gas (c) GNP_1 soaked in water under synthetic air (d) 

GNP_1 aged in water under synthetic air/0.5%CO2 (e) Pristine GNP_2 (f) GNP_2 

soaked in water under O2 gas (g) GNP_2 soaked in water under synthetic air (h) GNP_2 

soaked in water under synthetic air/0.5%CO2 (i) Pristine GNP_3 (j) GNP_3 soaked in 

water under O2 gas (k) GNP_3 soaked in water under synthetic air (l) GNP_3 soaked in 

water under synthetic air/0.5%CO2 

‘*’ means significantly different from pristine sample according to the ANOVA 

(p: 0.05). Error bar indicates standard deviation. 
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3.4 Effect of Weathering in Gases 

 

3.4.1 Weathering in O2-containing Gas Led to Decrease of RCFI 

 

 Weathering of carbon black was done in packed bed with various gas flow 

conditions as shown in Fig. 4 and Table 6. As shown in Fig. 21, the RCFI of carbon 

black was decreased after weathering in various air and humidity conditions. The RCFI 

of carbon black was significantly decreased when it was weathered in O2 gas (16% 

decrease). And the RCFI of carbon black was decreased more significantly when the 

carbon black was weathered in moist synthetic air (30~34% decrease). This indicates 

that the water moisture enhances the RCFI decrease in weathering. On the other side, the 

RCFI of carbon black was not decreased as much as the RCFI of carbon black weathered 

in moist synthetic air when the carbon black was weathered in compressed air (15% 

decrease). This result shows that the CO2 in compressed air might have interrupted the 

aging process. Accordingly, it can be determined that both of O2 and moisture are 

important factors to cause the significant RCFI decrease of weathered carbon 

nanomaterials, and the CO2 can be a factor that prohibits the aging effect. 
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Fig. 21. RCFI of carbon black weathered in various gas conditions. (a) pristine CB (b) 

CB weathered in N2 moist synthetic air (c) CB weathered in synthetic air (d) CB 

weathered in moist N2 gas (e) CB weathered in N2 gas (f) CB weathered in moist O2 gas 

(g) CB weathered in O2 gas (h) CB weathered in moist compressed air (i) CB weathered 

in compressed air 
‘*’ means significantly different from pristine sample according to the ANOVA (p: 0.05).  

Error bar indicates standard deviation. 
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The result, shown in Fig. 22(b) indicates that the RCFI of multi-wall carbon 

nanotubes (MCNTs) was decreased after weathering in moist synthetic air. The RCFI of 

MCNTs was decreased within the range of 10%~36%. Among five MCNTs, MCNT_5 

was the only material that did not experience a significant RCFI decrease after 

weathering. 

Fig. 22(c) indicates that the RCFI of graphene nanoplatelets (GNPs) was 

significantly decreased after weathering in moist synthetic air. The RCFI change of 

weathered GNPs were within the range of 25~44%. Most of all, the RCFI of GNP grade 

1 and GNP grade 3 has decreased more than 40% percent after weathering. 

Fig. 22(d) shows that the RCFI of both standard reference materials was 

significantly decreased after weathering in moist synthetic air. The RCFI of diesel 

particulate matters (DPMs) was decreased by 33%, and the RCFI of urban particulate 

matters (UPMs) was decreased by 28% after weathering. 
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Fig. 22. RCFI of various carbon nanomaterials weathered in moist synthetic air. (a) 

RCFI of soot A and SCNT_COOH weathered in moist synthetic air (b) RCFI of multi-

wall CNTs weathered in moist synthetic air (c) RCFI of graphene nanoplatelets (GNPs) 

weathered in moist synthetic air (d) RCFI of standard reference materials (SRMs) 

weathered in moist synthetic air 
‘*’ means significantly different from pristine sample according to the ANOVA (p: 0.05).  

Error bar indicates standard deviation. 
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3.4.2 Weathering in Moist Synthetic Air for Various Weathering Times 

 

The carbon black was weathered in moist synthetic air (N2/O2 + H2O) in various 

weathering times. Fig. 23 shows that the RCFI of carbon black was decreased more as 

the weathering time increased. The RCFI difference was significant when the carbon 

black was weathered more than 3 days. According to the results of Fig. 22 and 23, 

weathering in moist synthetic air for a week was determined as the standard weathering 

condition for the aging in gases treatment of carbon nanomaterials. 
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Fig. 23. RCFI of carbon black weathered in moist synthetic air for various weathering 

times 
‘*’ means significantly different from pristine sample according to the ANOVA (p: 0.05). 

Error bar indicates standard deviation. 
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3.4.3 Consideration of Absorbed Water Mass by Samples after Weathering 

 

Water absorption during weathering in moist synthetic air was measured in order 

to obtain the correct mass for RCFI calculation after weathering. Table 9 shows that the 

mass of absorbed water after one week of weathering was only about 5% of carbon black 

mass. The RCFI change related to the mass of absorbed water was calculated by 

subtracting the water mass from the mass of the carbon black. Table 10 shows that the 

difference of RCFI, considering the absorbed water after one week of weathering, was 

3.17 x 10
-4
 g/g, and it was not a significant difference. For this reason, the mass of 

absorbed water in sandwich samples was not considered in the RCFI of carbon 

nanomaterials weathered in moist synthetic air.  

 

 

 

Table 9. Mass of water absorbed onto carbon black weathered in moist synthetic air 

Time 
Mass of sandwich samples 

before weathering (mg) 

Mass of sandwich samples 

after weathering (mg) 

Mass of absorbed 

water(mg) 

1 day 303.5 303.7 0.2 

3 days 296.7 301.0 3.3 

5 days 303.4 308.5 5.1 

1 week 302.4 308.4 6 

* Mass of carbon black sample before weathering was 30±0.2mg 

 

 

 

Table 10. RCFI of weathered carbon black subtracting mass of absorbed water 

Time 

RCFI of weathered  

carbon black  

before subtraction(g/g) 

RCFI of weathered  

carbon black  

after subtraction (g/g) 

RCFI differences 

(g/g) 

1 day 9.333 x 10
-3
 9.348 x 10

-3
 0.15x 10

-4
 

3 days 7.499 x 10
-3
 7.706 x 10

-3
 2.07x 10

-4
 

5 days 6.569 x 10
-3
 6.843 x 10

-3
 2.74x 10

-4
 

1 week 5.981 x 10
-3
 6.298 x 10

-3
 3.17x 10

-4
 



 49

3.4.4 Effect of CO2 on RCFI Decrease in Weathering 

 

 Weathering in CO2 containing air led to RCFI decrease less than RCFI decrease 

due to weathering in non-CO2-containing air. Fig. 24 shows that the RCFI of carbon 

black particles was significantly decreased after weathering in moist synthetic air and 

CO2. The four different CO2 gas flow rate conditions had almost the same extent of 

RCFI decrease. However, the RCFI decrease after weathering in synthetic air and CO2 

was less than the RCFI decrease after weathering in synthetic air. Furthermore, the 

difference between the RCFI after weathering in synthetic air with CO2 gas and the 

RCFI after weathering in moist synthetic air was significant. And this result was similar 

to the RCFI result of carbon black weathered in compressed air (C.Air). Accordingly, 

this fact supports the result that the small amount of CO2 gas inlet can inhibit the effect 

of aging in synthetic air.  
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Fig. 24. RCFI of carbon black weathered in CO2-containing air. (a) pristine CB (b) CB 

weathered in moist synthetic air (c) CB weathered in synthetic air (d) CB weathered in 

20%CO2/moist synthetic air (e) CB weathered in 20%CO2/synthetic air (f) CB 

weathered in 10%CO2/moist synthetic air (g) CB weathered in 10%CO2/synthetic air (h) 

CB weathered in 5%CO2/moist synthetic air (i) CB weathered in 5%CO2/synthetic air (j) 

CB weathered in 0.5%CO2/moist synthetic air (k) CB weathered in 0.5%CO2/synthetic 

air (l) CB weathered in moist C. air (m) CB weathered in C. air 
‘*’ means significantly different from pristine sample according to the ANOVA (p: 0.05).  

Error bar indicates standard deviation. 

 

 

3.4.5 The “Blocking” Effect of CO2 
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For this reason, the heating caused the RCFI increase of carbon nanomaterials in any gas 

atmospheres as shown in Fig. 12 above. On the other hand, the RCFI of heated GNP 3 

was not increased because its surface was largely free of absorbed CO2. Thus, the RCFI 

of GNP_3 had been decreased after weathering in pure CO2 because of CO2 adsorption. 

Fig. 25 also shows that the RCFI of GNP 3 weathered in CO2 was decreased more after 

weathering in moist synthetic air. This result coincides with the previous result that the 

RCFI of pristine carbon nanomaterials was significantly decreased after weathering in 

moist synthetic air. And this result proves that the pristine carbon nanomaterials contain 

some amount of CO2 on their surface.  

 

 

 
Fig. 25. RCFI of graphene nanoplatelets 3 weathered in CO2 for blocking effect.  

(a) pristine GNP_3 (b) GNP_3 weathered in 100% CO2 gas (c) GNP_3 weathered in 

CO2 then weathered in moist synthetic air (d) GNP_3 weathered in moist synthetic air 
‘*’ means significantly different from pristine sample according to the ANOVA (p: 0.05).  

Error bar indicates standard deviation. 
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3.4.6 RCFI of Carbon Black Weathered in Still Moist Air in Various Times 

 

Weathering in still moist air up to 4 weeks did not cause a significant RCFI 

change of carbon black. As shown in Fig. 26 (a), the RCFI of carbon black was 

significantly decreased after 2 weeks of weathering in water bath. However, there was 

no more decrease after 3 and 4 weeks of weathering.   

The weight after weathering was also measured to determine the mass of 

absorbed water, as shown in Table 11. The mass of absorbed water after one week was 

only about 5.8% of carbon black mass. However, the mass of absorbed water after 2 

weeks was increased critically. And the mass of sandwich sample was increased by 30% 

after one month of weathering. For this reason, the RCFI of weathered carbon black was 

calculated again by subtracting the mass of absorbed water. Table 12 and Fig. 26 (b) 

indicate that the RCFI decrease of weathered carbon black were not significant, and the 

RCFI was similar to the RCFI of pristine carbon black after subtracting the absorbed 

water mass.  

 

Table 11. Mass of absorbed water after weathering in still moist air 

Time 
Mass of sandwich samples 

before weathering (mg) 

Mass of sandwich samples 

after weathering (mg) 

Mass of 

absorbed water(mg) 

1 week 110 116.4 6.4 

2 week 110 134.9 24.9 

3 week 110 138.5 28.5 

4 week 110 142.0 32.0 
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Table 12. RCFI of carbon black weathered in still moist air  

subtracting mass of absorbed water 

Time 
RCFI of weathered carbon 

black before subtraction(g/g) 

RCFI of weathered carbon 

black after subtraction (g/g) 

RCFI differences 

(g/g) 

1 week 9.313 x 10
-3
 10.196 x 10

-3
 0.883 x 10

-3
 

2 week 7.116 x 10
-3
 9.023 x 10

-3
 1.907 x 10

-3
 

3 week 7.085 x 10
-3
 9.329 x 10

-3
 2.244 x 10

-3
 

4 week 6.871 x 10
-3
 9.377 x 10

-3
 2.506 x 10

-3
 

 

 

 

 
Fig. 26. RCFI of carbon black weathered in still moist air in various weathering times. 

(a) RCFI of carbon black weathered in still moist air before subtracting absorbed water 

mass (b) RCFI of carbon black weathered in still moist air after subtracting absorbed 

water mass 
‘*’ means significantly different from pristine sample according to the ANOVA (p: 0.05).  

Error bar indicates standard deviation. 
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 3.4.7 RCFI of Carbon Black Weathered in Grazing Moist Synthetic Air 

 

As shown in Fig. 27, the RCFI of carbon black was not significantly decreased 

after a week of weathering in still moist air (room air, CO2-containing). Also, the RCFI 

of carbon black was not significantly decreased when the carbon black was weathered in 

grazing moist synthetic air and CO2. However, there was significant RCFI decrease 

when the carbon black was weathered in grazing moist synthetic air. This indicates that 

the small amount of CO2 can inhibit the aging effect of O2. The CO2 gas in the water 

bath in still moist air would have interrupted the aging of the carbon black in the same 

way of moist synthetic air and CO2 flow. This result shows the reason why the RCFI of 

carbon black was not decreased after a month of weathering in still moist air above. 

 

 
Fig. 27. RCFI of carbon black weathered in grazing moist synthetic air. (a) pristine CB 

(b) CB weathered in still moist air (c) CB weathered in grazing moist synthetic air (d) 

CB weathered in grazing moist synthetic air and CO2 (e) CB weathered in moist 

synthetic air (f) CB weathered in synthetic air 
‘*’ means significantly different from pristine sample according to the ANOVA (p: 0.05).  

Error bar indicates standard deviation. 
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3.4.8 RCFI of Carbon Black Weathered in Still Air with Different Lighting Conditions 

 

 Three pairs of carbon black samples were weathered in petri dishes as shown in 

Fig. 9 to determine the effect of light exposure on the weathering of carbon 

nanomaterials. As shown in Fig. 28, the RCFI of carbon black particles did not change 

until 2 months of weathering. The RCFI of carbon black was decreased after 3 months of 

weathering, but the change was not significant. The RCFI of carbon black which was not 

covered and exposed to the light was decreased more than that of covered carbon black. 

This indicates that the light exposure may be a significant factor which affects on aging, 

such that the RCFI of carbon black would be significantly decreased after a long time of 

weathering more than 3 months if it is exposed to the light.  

 

 
Fig. 28. RCFI of carbon black weathered in still air with different lighting conditions. (a) 

pristine CB (b) uncovered CB weathered for 1 month (c) covered CB weathered for 1 

month (d) uncovered CB weathered for 2 months (e) covered CB weathered for 2 

months (f) uncovered CB weathered for 3 months (g) covered CB weathered for 3 

months 
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3.4.9 Diffusion Time Calculation for Weathering Treatment 

 

The diffusion time was determined by calculating the aforementioned diffusion 

coefficient. In the equation (2) above, radius of an equivalent void ( r ) needed to be 

found in order to determine the Knudsen Diffusion Coefficient ( κD ). 

Porosity of carbon black was found to be 14 to 18% in Lamond et al [20]. If 14% 

porosity is assumed for the maximum diffusion time calculation, porosity volume (Vp ) 

of cmcmcm 1.011 ××  volume of carbon black particles would be 

 

                                               33 014.014.01.0 cmcmVp =×=                                         (3) 

 

Degussa carbon black particle diameter was provided by the manufacturer as 14nm. 

Volume of one Degussa carbon black particle (Vc ) would be 

 

                                           )(1044.1)107(
3

4 31837 cmcmVc −− ×=×=
π

                          (4) 

 

Total number of carbon black in cmcmcm 1.011 ×× excluding voids would be 

 

                          163183 1097.51044.1)014.01.0( ×=×÷−= − cmcmNc                           (5) 
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If it is assumed that the same number of spherical voids ( Nv ) completely fill in porosity 

volume, the volume of a void (Vv ) and radius of a void ( r ) would be 

 

                      33163

3

4
1097.5014.0 rcmcmVv 








=×÷=

π
,  nmr 82.3=∴                       (6) 

 

Substituting the value of r into equation (2), 

 

               scmscmcmD /101.1
2

)98.01(
)/325.2(1082.3

3

4 287 −− ×=






 −
×××=κ            (7) 

                                        

                                  
12

111

DDD keff

+= , scmOND /202.0)( 2

2212 =−   [21]                  (8) 

 

Substituting the value of Dk into equation (8),  

 

                                                           scmDeff /101.1 28−×=                                          (9) 

 

Diffusion time scale is defined as  

  

                                                                         
effD

L
T

2

~                                                (10) 
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Accordingly, diffusion time scale for 1mm thickness of carbon black 

dayshoursT 5.10253min152,15sec091,909
)101.1(

1.0
8

2

1 ====
×

=
−

 

 

The volume of 110mg of carbon black particles contained in a vial was measured as  

3567799 mmmmmmmm =××  

 

If 110mg of carbon black particles were dispersed on a 47mm diameter filter paper 

equally, the thickness ( L ) would be 

L
mm

mm ×= 23 )
2

47
(567 π , mmL 33.0=  

 

Diffusion time scale for mmL 33.0=  would be 

dayshoursT 2.15.27min650,1sec000,99
)101.1(

033.0
8

2

33.0 ====
×

=
−

 

 

According to the diffusion time scale calculation above, diffusion time for 

110mg of carbon black particles was calculated as 1.2 days. However, because the 

thickness of the sample could not be perfectly uniform, the actual diffusion time scale 

should be longer. The actual thickness of some portions would be thicker or thinner. For 

this reason, one week of weathering time was used in each treatment to allow for enough 

diffusion time. 
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3.5 RCFI of Carbon Nanomaterials after Treatment Cocktails  

 

3.5.1 Carbon Black Heated and Soaked in Water under O2 

 

Carbon black was heated in air at 200ºC for 2 hours, and then it was soaked in 

water with O2 for 2 weeks. Fig. 29 shows that the RCFI of heated carbon black particles 

was significantly decreased after 2 weeks of soaking in water. It was decreased by 42% 

compared to the RCFI of heated carbon black. This result indicates that soaking can 

reduce the RCFI of carbon nanomaterials even after the RCFI of carbon materials was 

increased by heating treatments. Accordingly, it can be determined that the soaking 

treatment is the opposite process of heating treatment in terms of the RCFI changes of 

carbon nanomaterials. 

 

 
Fig. 29. RCFI of carbon black heated and soaked in water under O2. (a) pristine CB (b) 

CB heated 200ºC for 2 hours in air (c) CB heated soaked in water under O2 for 2 weeks 
‘*’ means significantly different from heated samples according to the ANOVA 

(p: 0.05). Error bar indicates standard deviation. 
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3.5.2 Carbon Black Heated and Weathered in Moist Synthetic Air 

 

Carbon black was heated in air at 200ºC for 2 hours, and then it was weathered in 

moist synthetic air for 1 week. As shown in Fig. 30, the RCFI of heated carbon black 

was significantly decreased after weathering in moist synthetic air. It was decreased by 

29% compared to the RCFI of heated carbon black. This result is in accordance with the 

result of Fig. 29, that the RCFI of heated carbon black can retrieve its RCFI by 

weathering treatment. 

 

 
Fig. 30. RCFI of carbon black heated and weathered in moist synthetic air. (a) pristine 

CB (b) CB heated 200ºC for 2 hours in air (c) CB heated and weathered in moist 

synthetic air 
‘*’ means significantly different from heated samples according to the 

ANOVA (p: 0.05). Error bar indicates standard deviation. 
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3.6 XPS Results and Analysis 

 

3.6.1 XPS Result of Carbon Black 

 

 In association with the XPS result, the O2 high resolution scan of some carbon 

nanomaterials was not acquired. For those samples, the XPS deconvolution was carried 

out using the survey scan and the high resolution scan of carbon. Accordingly, it is 

possible that the XPS deconvolution data may have some inaccuracies. 

 The XPS result of carbon black in Table 13 shows that the pristine carbon black 

has a higher surface oxidation than the heated and aged carbon black. A general 

correlation between surface oxidation and the RCFI could not be found as shown in 

Table 13. This means that the XPS result can not show the oxidation of the carbon 

nanomaterials. This is because some carbon may be oxidized to carbon dioxide and 

released, as found in other studies [19, 22]. Also, there wasn’t any general correlation 

between functional group changes and treatments as shown in Fig. 31. However, the 

depletion of C-O single bond after aging and the increase of C-O single bond after 

heating can be found. This result coincides with the other studies that the aging treatment 

induced the depletion of C-O single bond, and the OH surface functional groups enhance 

the reduction of Fe
3+
 as explained above [19]. In addition, high adventitious C and 

COOH (Carboxyl) functional group ratio in high RCFI could be found. Accordingly, 

adventitious C and COOH functional groups might be related to the reason of the RCFI 

increase. Thus, it can be determined that the definitive correlation between the oxidation 
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and RCFI changes of carbon black can not be found by the XPS result, but C-O or 

adventitious C and COOH surface functional groups may have an effect on the RCFI of 

carbon black.  

 

Table 13. XPS deconvolution result and RCFI of carbon black 

Species 
CB AW 

(at. %) 

CB AA 

(at. %) 

Pristine CB 

(at. %) 

CB HA 

(at. %) 

RCFI(g/g) 0.0061 0.0062 0.0096 0.0123 

GRAPHITE 1.32 0.00 0.00 0.00 

C=C 74.89 83.48 55.84 64.33 

Adventitious C 8.20 5.20 26.34 21.46 

C-O 2.56 4.09 6.35 6.43 

C=O 0.82 0.00 0.50 0.00 

COOH 3.97 1.04 7.82 4.94 

%Cunox =[Cunox/ Cunox+Cox]*100 91.99 94.53 84.85 88.30 

%Cox =[Cox/ Cunox+Cox]*100 8.01 5.47 15.15 11.70 

%Cox :%Cunox 0.09 0.06 0.18 0.13 

%CC-OH =[CC-O/ Cunox + 

Cox]*100 
0.03 0.04 0.07 0.07 

%C(O)C=O =[COC=O + CC=O/ 

Cunox+Cox]*100 
0.05 0.011 0.09 0.05 

%C(O)C=O  :%CC-OH 1.87 0.25 1.31 0.77 

* HA(Heated in air), AA(Weathered in N2/O2 with moisture), AW(Soaked in water with O2) 

 

 

 

 
Fig. 31. RCFI of carbon black vs. surface functional group changes 

* HA(Heated in air), AA(Weathered in N2/O2 with moisture), AW(Soaked in water with O2) 
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3.6.2 XPS Result of Graphene Nanoplatelets 

 

 As shown in Table 14, we couldn’t find any general correlation between the 

oxidation and RCFI changes of graphene nanoplatelets after heating and aging 

treatments by XPS result. This XPS result of GNPs strengthens the result that there is no 

correlation between oxidation and oxygen functional group changes of carbon 

nanomaterials. In addition, Fig. 32 shows that the oxygen-containing functional group 

changes of GNPs do not have any proportional relation with the RCFI changes of GNPs 

after treatments. Also, it was dissimilar with the XPS result of carbon black that any 

correlation could not be found between C-O single bond and RCFI changes of GNPs. 

This means that the RCFI changes of carbon nanomaterials after treatments mainly 

originated from other factors rather than the oxygen-containing surface functional group 

changes.  

 

 

Table 14. XPS deconvolution result and RCFI of graphene nanoplatelets 

Species 

GNP_1 

AA 

(at. %) 

GNP_1 

(at. %) 

GNP_1 

HA 

(at. %) 

GNP_2 

AW 

(at. %) 

GNP_2 

AA 

(at. %) 

GNP_2 

(at. %) 

GNP_2 

HA 

(at. %) 

GNP_3

AW 

(at. %) 

GNP_3 

AA 

(at. %) 

GNP_3 

(at. %) 

GNP_3 

HA 

(at. %) 

RCFI(g/g) 0.0036 0.0065 0.0080 0.0057 0.0078 0.0104 0.0127 0.0176 0.0193 0.0340 0.0311 

GRAPHITE 2.61 2.57 1.26 4.20 1.16 2.12 2.71 0.56 1.12 0.00 0.00 

C=C 83.52 84.13 82.91 82.89 74.03 84.18 83.63 75.93 78.31 72.80 71.90 

Adventitious C 3.84 4.04 5.05 4.02 9.13 6.99 4.47 11.46 7.49 10.88 10.39 

C-O 2.59 2.55 2.42 2.51 2.18 2.16 1.59 3.48 2.15 2.35 4.89 

C=O 1.03 0.66 1.00_ 0.05 1.93 0.57 0.11 1.86 0.46 1.22 3.35 

COOH 0.75 0.46 1.49 0.72 1.55 0.71 0.73 1.52 0.66 1.25 2.05 

%Cunox =[Cunox/ 

Cunox+Cox]*100 
95.37 96.11 94.78 96.53 93.71 96.44 97.39 92.76 96.37 94.55 88.89 

%Cox =[Cox/ 

Cunox+Cox]*100 
4.63 3.89 5.22 3.47 6.29 3.56 2.61 7.24 3.63 5.45 11.11 

%Cox :%Cunox 0.05 0.04 0.06 0.04 0.07 0.04 0.03 0.08 0.04 0.06 0.13 

%CC-OH =[CC-O/ 

Cunox + Cox]*100 
0.03 0.03 0.03 0.03 0.02 0.02 0.02 0.04 0.02 0.03 0.05 

%C(O)C=O =[COC=O 

+ CC=O/ 

Cunox+Cox]*100 

0.02 0.01 0.03 0.01 0.04 0.01 0.01 0.04 0.01 0.03 0.06 

%C(O)C=O:%CC-

OH 
0.69 0.44 1.03 0.31 1.60 0.59 0.53 0.97 0.52 1.05 1.10 

* HA(Heated in air), AA(Aged in N2/O2 with moisture), AW(Aged in water with O2) 
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Fig. 32. RCFI of GNPs vs. surface functional group changes 

* HA(Heated in air), AA(Weathered in N2/O2 with moisture), AW(Soaked in water with O2) 
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4. DISCUSSION 

  

The RCFI was not proportional to specific surface area. This suggests that RCFI 

is related to surface sites that are reactive towards Fe
3+
; the density of such reactive sites 

on the surface apparently depends on the carbon nanomaterial 

The reason for the RCFI increase of carbon nanomaterials after heating may be 

explained by the release of CO2 from the surface which is blocking the reactive surface 

sites. The CO2 desorption from activated carbon at temperatures raging from 440K to 

870K was revealed by Haydar et al. In Haydar et al., the temperature-programmed 

desorption (TPD) apparatus was used under vacuum to obtain the CO2 desorption 

spectra of activated carbon [23]. 

Aging by O2 led to significant RCFI decreases. The result may be explained by 

the decrease of reactive surface sites. Aging by O2 in the presence of water vapor caused 

decrease of RCFI more than aging by O2. Also, the RCFI of carbon nanomaterials was 

increased more when the carbon nanomaterials were heated with moisture. This 

indicates that the water vapor can enhance the RCFI decrease in aging and the RCFI 

increase in heating. According to the Petit et al, water vapor reacts with activated carbon 

evolving CO2 at 150ºC, and this reaction was due to the hydrolysis reaction or water-

catalysed decomposition of some oxygenated groups [24]. Thus, the RCFI increase in 

heating would be derived from the CO2 release by reaction between water vapor and 

CO2 in the surface. And the water vapor would be the driving force of aging process 

which decreased the RCFI by reacting with activated carbon. 
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Besides, CO2 had an influence on the RCFI of aged carbon nanomaterials. The 

RCFI of carbon nanomaterials was less decreased when the carbon nanomaterials were 

aged in CO2-containing gas. This indicates that the CO2 can interrupt the aging effect. 

The inlet of CO2 gas of carbon nanomaterials might have interrupted the reaction 

between active sites and oxygen. 

The XPS results of carbon nanomaterials could not reveal a definitive correlation 

between the oxidation and RCFI changes after aging by O2. This suggests that we may 

not be able to quantitatively predict the reductive capacity of carbon nanomaterials. In 

addition, we could not find a positive proportional relation between the RCFI changes 

after treatments and the oxygen-containing functional group changes of carbon 

nanomaterilas. One thing we could find in the XPS result was the proportional increase 

of C-O single bond as the RCFI increase and the high percentage of adventitious C and 

COOH in high RCFI, but it was only for the case of carbon black. This indicates that the 

RCFI changes of carbon nanomaterials after treatments mainly derived from factors 

other than the oxygen-containing surface functional group changes.  

Fu et al. proposed that the reductive capability of activated carbon fibers was 

mainly related with the edges rather than the surface of the carbon. The oxygen-

containing functional groups provide only a small part of the reduction capacity. Many 

active sites with active hydrogen such as anthracene and phenanthrene participate in 

redox reaction [19]. Thus, the RCFI decrease of aged carbon nanomaterials would be 

generally caused by the decrease of active sites of edges and the surface rather than the 

oxygen-containing functional group changes. 
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5. SUMMARY AND CONCLUSION 

 

The RCFI of carbon nanomaterials after various engineering treatments was 

determined as below: 

• Heating led to significant increase in RCFI, regardless of the atmosphere.  

• Water vapor enhanced the increase of RCFI in the heating treatment; CO2 did not 

affect the heating treatment significantly. 

• Aging by O2 resulted in significant decrease in RCFI, either in water or gas 

atmosphere.  

• Water vapor enhanced the RCFI decrease due to weathering in synthetic air. 

Thus, both O2 and water are important factors to cause the significant RCFI 

decrease. 

• Small amounts of CO2 inhibited aging by O2 in both soaking and weathering. 

 

The correlation between the RCFI changes after various treatments and the 

oxygen-containing surface functional group changes were studied using XPS. The 

results are as follows: 

• C-O or adventitious C and COOH surface functional groups showed some 

correlation with RCFI of carbon black. 

• The definitive correlation between the RCFI changes after treatments and the 

oxygen-containing functional group changes couldn’t be found. 

 



 68

In conclusion, aging by O2 led to the RCFI decrease of carbon nanomaterials. 

The RCFI decrease after aging would be mainly caused by the decrease of reactive sites 

on the surface. On the other hand, heating led to the RCFI increase of carbon 

nanomaterials. The RCFI increase after heating is probably due to the release of 

absorbed CO2 that would block the reactive sites. Aging by O2 may decrease the toxicity 

of carbon nanomaterials while heating may increase the toxicity of carbon nanomaterials.  

CO2 inhibits the aging effect by O2, but absorbed CO2 also affects the RCFI. 

Therefore, environmental concentration of CO2 may affect the mitigation (or 

exacerbation) of carbon nanomaterials release into the environment. Finally, this study 

shows that the RCFI measurement have its own value that can be used to determine 

reductive capability that is not feasible with XPS measurement. 
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APPENDIX A 

 

CHEMICAL REACTION FOR COLOR DEVELOPMENT 

 

1,-10-Phenanthroline is a polycylclic organic compound which has the molecular 

formula of C12H8N2. It is composed of three benzene rings with two nitrogen atoms. 

When 1,10-phenanthroline meets Fe
2+
 it forms a ‘ferroin’ which appears in red. This 

reaction can be described by the following:  

 

Fe
2+ 
+ 3Phen → [Fe(Phen)3]

2+
, E

o
 = 1.06V [25] 

 

1,10-phenanthroline was used as an indicator of Fe
2+
 ion by using the color 

development in a spectrophotometer.  

 

Hydroquinone is a heterocyclic organic compound with two hydroxyl groups (-

OH) bonded to a phenyl ring which has the chemical formula of C6H4(OH)2. When 

Hydroquinone meets Fe
3+
, it donates electrons and reduces Fe

3+
 to Fe

2+
 by the following 

reaction: 

 

2Fe
3+
 + C6H4(OH)2 → 2Fe

2+
 + C6H4O2 + 2H

+
 , E

o
 = 0.071V [26] 

 

The reduction of Fe
3+
 by hydroquinone would finish when either Fe

3+
 or 

hydroquinone is completely consumed. 
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APPENDIX B 

 

RCFI CALCULATION 

 

The RCFI of carbon nanomaterials was calculated by using the calibration curve 

which was determined in Hwang’s thesis [15]. The calibration curve was made by a 

series of absorbance measurements with Fe
2+
 concentration. After plotting the results, it 

was found that the absorbance and Fe
2+
 ion concentration (mg/L) has a linear 

relationship with a slope of 0.1893 [15]. The Fe
2+
 ions concentration (mg/L) in the 

solution was found by multiplying the slope of the calibration curve (0.1893) to the 

absorbance difference between flask A and C. And then, the dilution factor (4) and 

volume of the incubated solution (0.1L) were multiplied to the Fe
2+
 ions concentration in 

final solution (mg/L) to determine the mass of Fe
2+
 reduced from Fe

3+
 during incubation 

(mg). Finally, the mass of Fe
2+
 reduced from Fe

3+ 
(mg) was divided by the mass of the 

incubated carbon nanomaterials (mg) to get the RCFI of carbon nanomaterials (g/g). The 

mean of the RCFI calculated from triplicate samples could be used as the final RCFI of 

the carbon nanomaterials.  
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APPENDIX C 

 

EQUIPMENT FOR HEATING AND AGING TREATMENTS 

 

In terms of heating treatments, carbon nanomaterials were heated in a tube 

furnace (Barnstead international, Dubuque, Iowa, USA). The tube furnace had a quartz 

tube inside which has 900mm length, 50mm diameter and 3mm thickness. De-ionized 

(DI) water used for the treatments was obtained via a Millipore Milli-Q and Milli-RO 

Ultrapure Water Purification System. Glassware and laboratory tools were sonicated, 

rinsed with DI water, and dried in ambient air before and after treatments. Room 

temperature was kept at 20 ± 3 ˚C while all experiments were conducted. A HEPA filter 

(high efficiency particulate air filter, Life Sciences) was used to filter the air flowing 

through the alumina filter. A humidity meter (HOBO U10, 2006 Onset Computer 

Corporation) was used to measure the humidity during the weathering treatments in the 

air filter. A multi gas controller 647C (2004 MKS Instruments Deutschland GmbH) was 

used for controlling gas flow rate. A stirring plate (610T, Fisher Scientific Inc.) was 

operated during soaking treatment in water.  
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APPENDIX D 

 

HEATING TREATMENT SAFETY OPERATION PROCEDURE 

 

(a) Go ‘SPrr’ mode, and set a heating rate. (If using H2 gas, 5 
o
C/min can only be used as  

       the ramping rate) 

(b)  Set the heating temperature and time. (If needed, change the heating mode, it is  

       normaly set Opt.1). Make sure that the furnace is off. 

(c) Place the sample into the furnace. 

(d) Make sure the gas tubes are properly connected and both sides are covered well.  

     (Gas cylinder → mass flow controller → furnace) 

(e) Set flow rate of each gas, and make sure the mass controller channels are closed. 

(f) Open gas cylinder valves. Check the cylinder gauge if the gas is properly flowing. 

(g) Turn on each gas and check if the actual flow rate on the mass controller panel is   

     the same as you set. Put the gas tubes into water to see if the gas actually comes out. 

(h) Turn off all gases, and connect the gas tubes to the furnace. 

(i) Turn on all gases except H2 first to allow them enough time to fill up the furnace tube. 

(j) Turn on the H2 gas last. 

(k) Turn on the furnace. Check that the temperature increases with the correct heating  
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      rate. 

(l) After heating, wait until the temperature decreases to 50
o
C with all gases on.  

(m) Turn off the gases and close the cylinder valves. 

(n) Take the sample out. (Use the insulated gloves in case the temperature is hot) 
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APPENDIX E 

 

METHOD OF XPS DATA CONVERSION FOR DECONVOLUTION 

 

XPS instrument generates dset or ASCII type files. ASCII files contain only the 

XY data collected from the analysis. This data is unusable for the reliable quantification. 

VAMAS format is a designated and pertinent format for the XPS spectrum 

deconvolution. The Kratos Axis Ultra XPS instrument can output files which adhere to 

the VAMAS format. In order to output files in this format, the dset file needs to be 

converted by using the CnvtDSet.exe program.  The CnvtDSet.exe program takes a 

directory of dset files. The dset is the Kratos file set used to set up and execute the 

analysis. CnvtDSet.exe program converts dset fileset to .kal files, which are tantamount 

to VAMAS. After opening CnvtDSet program, select the folder containing dset files, and 

click convert. The dset file set will be converted to .kal files. 
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