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ABSTRACT

Three Essays on Microfoundations of Economics. (August 2011)

Gaosheng Ju, B.S., Shandong Institute of Economics;

M.S., Peking University

Co–Chairs of Advisory Committee: Dr. Qi Li
Dr. Li Gan

This dissertation, which consists of three essays, studies three applications.

Each of them emphasizes the microfoundations of economic models.

The first essay proposes a nonparametric estimation of structural labor supply

and exact welfare change under nonconvex piecewise-linear budget sets. Different

from previous literature, my method focuses on a nonparametric specification of an

indirect utility function. I find that working with the indirect utility function is very

useful in simultaneously addressing the labor supply problems with individual het-

erogeneity, nonconvex budget sets, labor nonparticipation, and measurement errors

in working hours that previous literature was unable to. Further, the estimated indi-

rect utility function proves to be convenient and efficient in calculating exact welfare

change and deadweight loss under general piecewise-linear budget sets.

In the second essay, I solve the equity premium, risk-free rate, and capital struc-

ture puzzles by laying a more solid microfoundation for consumption-based asset

pricing models. I argue that the above two asset pricing puzzles arise from the ag-

gregation of hump-shaped life-cycle consumption into per capita consumption, which

accounts for the unanimous rejections of Euler equations in the literature. As for the

third puzzle, I show that a firm’s capital structure can be determined by heterogenous
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investors maximizing life-time utility even though the capital structure is irrelevant

on the firm side. The endogenously determined leverage generates an even larger

equity premium than a fixed one.

The third essay studies the solution concepts of coalition equilibrium. Tradi-

tional solution concepts such as Strong Nash Equilibrium, Coalition-proof Nash Equi-

librium, Largest Consistent Set, and Coalition Equilibrium violate the fundamental

principles of individual rationality. I define a new solution concept, Weak Coalition

Equilibrium, which requires each coalitional deviation to be within-coalition self-

enforceable and cross-coalition self-enforceable. The cross-coalition self-enforceability

endows coalitions with farsightedness. Weak Coalition Equilibrium is a generalization

of Coalition-proof Nash Equilibrium and a refinement of the concept Nash Equilib-

rium. It exists under a weak condition. Most importantly, it is in line with the

principle of individual rationality.
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CHAPTER I

INTRODUCTION

The term microfoundations typically appears in the literature of macroeconomics. It

refers to microeconomic analysis of the behavior of individual agents that underpins a

macroeconomic theory (Barro (1993)). However, the importance of microfoundations

is not limited within macroeconomics. In this dissertation, I show that a multitude

of other economic applications such as welfare analysis, finance and coalition analysis

need a solid microfoundation, too.

The contribution of my dissertation is not about methodology. I will not offer a

general theory or method on how to lay solid microfoundations for different economic

applications. It seems impossible. On the contrary, I will present three essays, each

of which addresses its own issues by building models with solid microfoundations.

Therefore, the dissertation has a multiple of contributions spread among three essays.

This first essay contributes to the literature in both the estimation of structural

labor supply and the calculation of exact welfare effects. It proposes a nonparametric

method to estimate labor supply with nonconvex piecewise-linear budget sets. Dif-

ferent from previous literature such as Blomquist and Newey (2002) and Soest, Das,

and Gong (2002), our method focuses on a nonparametric specification of an indirect

utility function. I find that working with the indirect utility function is very useful in

simultaneously addressing the labor supply problems with individual heterogeneity,

nonconvex budget sets, labor nonparticipation, and measurement errors in working

hours that previous literature was unable to.

Further, the estimated indirect utility function proves to be convenient and effi-

The journal model is Econometrica.
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cient in calculating exact welfare change and deadweight loss under general piecewise-

linear budget sets. Previous welfare calculation in a nonparametric framework re-

lies on Vartia (1983)’s numerical method (Hausman and Newey (1995), and Kumar

(2008)). I show that Vartia’s Method is computationally cumbersome particularly

when the budget set is nonconvex. With the estimated indirect utility function, I

define a generalized indirect utility that is a function of the entire budget set. I am

able to estimate the desired choices under piecewise-linear budget sets before and

after the tax reform. Also, the utility attained at the choice points are computable

with the ordinary indirect utility function. This generalized indirect function greatly

facilitates an ex ante assessment of tax reforms.

This essay includes applications to the 1986 tax reform and 2001 Bush tax cut.

I find that the estimates of labor elasticities and the exact measure of deadweight

loss are sensitive to the functional specifications of preferences. In addition, convexi-

fication of nonconvex budget sets may severely bias the estimation of deadweight loss

incurred by the reform of Earned Income Tax Credit (EITC) program.

The microfoundation in the above applications lies in the heterogeneous prefer-

ences among individuals. In the literature of labor supply estimation with nonpara-

metric methods, researchers usually estimate conditional mean labor supply. The

unobserved heterogeneity in preferences thus is integrated out. Correspondingly, the

estimation can be interpreted as the preference of an aggregate individual. How-

ever, the estimated aggregate labor supply is not proper for the calculation of welfare

change due to income tax reforms, particularly when the budget set is piecewise-

linear. For example, the tax reform of EITC enormously changes the shape of the

budget sets near zero working hours, but slightly modifies the budget segments on

which the choice of an aggregate individual falls. An economist using the estimated

mean labor supply may conclude that the welfare effect of the reform is near zero
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since the choice the aggregate individual is unchanged. However, it is no doubt that

welfare effects on those eligible for EITC program are significant. In this essay, I find

that the 1986 reform of EITC generates a deadweight loss which was not identified

in the literature.

The second essay contributes to the literature by solving the equity premium

puzzle, risk-free rate puzzle, and capital structure puzzle. I find that all three puzzles

arise from weak microfoundations of traditional models. First, two asset pricing puz-

zles are able to be resolved if the hump-shaped life-cycle consumption curve is applied

in an asset pricing model. In my overlapping-generations model which incorporates

life cycle features, the calibrated equity premium and risk-free rate are consistent with

the observed U.S. historical data. The degree of risk aversion used for the calibration is

1.2, which is plausible and much lower than those in the literature. The hump-shaped

consumption curve is the key to resolving the two asset pricing puzzles. Aggregating

the consumption across different generations into per capita consumption leads to the

non-orthogonality between the stochastic pricing kernel and the market excess return

rate, which is the key problem of asset pricing models. Second, the capital structure

is resolved as the investors’ behaviors are taken into account. Modigliani and Miller

(MM) theorem (1958) states that the capital structure of a firm is irrelevant for the

firm to maximize its value. However, the assumption of value maximization is not

justified in the literature and lacks microfoundations. I address the determination

of capital structure in an asset pricing framework. I show that investors who are

endowed with life-cycle features and maximize their life-time utility can collectively

determine the capital structure by optimizing their asset portfolios. The calibrated

debt-to-capital ratio is 1/3, which is close to the observation in U.S. market.

What distinguishes my solutions from those in the previous literature is that I

address the capital structure puzzle and asset pricing puzzles in one common frame-
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work. First, the determination of capital structure is related to the prices of assets

because stock and bond owners make investment decisions based on asset returns.

Second, asset prices which represent owners’ claims of future payoffs are no doubt

mostly determined by the capital structure of firms which determines the future pay-

offs of assets. Therefore, it seems natural to address three puzzles together in one

model.

In the third essay, I study the solution concepts of coalition equilibrium. Tradi-

tional solution concepts such as Strong Nash Equilibrium, Coalition-proof Nash Equi-

librium, Largest Consistent Set, and Coalition Equilibrium violate the fundamental

principles of individual rationality. The violation reveals the lack of microfounda-

tions in the study of group behavior. I define a new solution concept, Weak Coalition

Equilibrium, which requires each coalitional deviation to be within-coalition self-

enforceable and cross-coalition self-enforceable. The cross-coalition self-enforceability

endows coalitions with farsightedness. Weak Coalition Equilibrium is a generalization

of Coalition-proof Nash Equilibrium and a refinement of the concept Nash Equilib-

rium. It exists under a weak condition. Most importantly, it is in line with the

principle of individual rationality.
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CHAPTER II

NONPARAMETRIC ESTIMATION OF STRUCTURAL LABOR SUPPLY AND

EXACT WELFARE CHANGE UNDER NONCONVEX PIECEWISE-LINEAR

BUDGET SETS

2.1. Introduction

This essay contributes to the literature in both the estimation of structural labor

supply and the calculation of exact welfare effects. It proposes a nonparametric

method to estimate labor supply with nonconvex piecewise-linear budget sets. Dif-

ferent from previous literature such as Blomquist and Newey (2002) and Soest, Das,

and Gong (2002), my method focuses on a nonparametric specification of indirect

utility function. I find that working with the indirect utility function is very useful in

simultaneously addressing the labor supply problems with individual heterogeneity,

nonconvex budget sets, labor nonparticipation, and measurement errors in working

hours that previous literature was unable to.

Further, the estimated indirect utility function proves to be convenient and effi-

cient in calculating exact welfare change and deadweight loss under general piecewise-

linear budget sets. Previous welfare calculation in a nonparametric framework relies

on Vartia’s (1983) numerical method (see Hausman and Newey (1995) and Kumar

(2008)). I show that Vartia’s Method is computationally cumbersome particularly

when the budget set is nonconvex. With the estimated indirect utility function, I

define a generalized indirect utility that is a function of the entire budget set. This

function facilitates an ex ante assessment of tax reforms.

I apply the method to estimate the labor supply for married women using the

Panel Study of Income Dynamics (PSID) data of 1983 and 2000. I find the estimates
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of labor elasticities are sensitive to the functional specifications of preferences. Us-

ing 1983 PSID data, the labor supply elasticity based on the preferred third order

polynomials is only half of the elasticity based on the second order polynomials. In

welfare calculations, I find that the estimates of the exact deadweight loss are sen-

sitive to the functional specifications of preferences. In addition, convexification of

nonconvex budget sets may severely bias the estimation of deadweight loss incurred

by the reform of Earned Income Tax Credit (EITC) program.

It is of considerable interest to estimate the labor supply and exact welfare effects

with general piecewise-linear budget sets. The progressive (federal and state) income

taxes, payroll taxes, and various transfer programs such as Earned Income Tax Cred-

its (EITC) create nonconvex piecewise-linear budget constraints. Each tax reform in

the U.S. history abolished or introduced some tax rules. The tax reforms changed

each individual’s nonlinear budget set to another nonlinear budget set. It is desir-

able to precisely predict the labor choice on the budget sets and accurately evaluate

the welfare change and deadweight loss before the complex reforms are implemented.

Accounting for the complete form of the piecewise-linear budget constraints is neces-

sary. The nonlinearity of tax systems results in a simultaneity problem between labor

choices and net wages. A large body of work including Burtless and Hausman (1978),

Hausman (1985), Kumar (2008), and among others, found evidence of downward

bias in wage elasticity estimates if the nonlinearity of the budget sets is ignored. An

estimate of welfare change based on the biased labor supply is, of course, misleading.

Another important factor in estimating the labor supply is the specification of

the labor supply function. Many researchers prefer a simple (typically linear) form

of labor supply primarily for its manageability (see Burtless and Hausman (1978);

Hausman (1981b, 1985); Triest (1990); Fullerton and Gan (2004) among others). A

simple linear specification of labor supply has the advantages of being able to obtain
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closed-form indirect utility function by solving a differential equation. Further, the

closed-form direct utility function can be derived from the indirect utility function by

solving an optimization problem. Both the direct and indirect utility functions are

vital to calculations of welfare change and the desired working hour under a nonconvex

budget set. However, these simple linear models are shown to have resulted in biased

estimates in labor elasticity. When measuring deadweight loss, a misspecified model

is especially troublesome since the “second order” properties of the labor supply curve

is critical (Hausman (1981a)). Moreover, Brown and Walker (1989) argued that the

unobserved heterogeneity in preferences should enter into the basic labor supply1

function in a nonlinear form. Otherwise, the Slutsky matrix becomes asymmetric,

violating the axioms of rationality. Unfortunately, Brown and Walker’s work has not

drawn much attention in the literature.

In the literature, because of the potential specification bias, several attempts

have been made in nonparametric specifications of labor supply under piecewise-

linear budget sets. Blomquist and Newey (2002) proposed a nonparametric method

that treats the labor supply as a function of the entire budget set.2 They showed that,

if the budget set and preference are convex, the conditional mean hour of working

given the budget set is simply the sum of unconditional expected working hours on

all segments and kink points. However, their technique does not work in a general

context. In the presence of a nonconvex budget set, the desired working hour is

discontinuous with respect to unobserved heterogeneity. Thus, some parts of the

budget set will not contribute to the conditional mean working hour. It is impossible

1Blomquist (1988) called the labor supply functions that would be generated by lin-
ear budget constraints the basic labor supply functions, and the labor supply functions
generated by nonlinear budget constraints the mongrel labor supply functions.

2Liang (2009) extended Blomquist and Newey’s (2002) method to handle cases with
labor nonparticipation.
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to correctly determine these non-contributing parts without a global algorithm. Soest,

Das, and Gong (2002) presented another nonparametric method in which the direct

utility function is approximated with a series expansion and the budget set is replaced

by a finite number of points. The unresolved challenge for Soest et al. (2002) is how

to deal with the measurement error in the working hour which enters into the direct

utility function in a nonlinear fashion. The measurement error in the working hour,

as Soest et al (2002) pointed out, can have a detrimental effect on the estimates of

policy relevant parameters.

This essay presents a new method to nonparametrically estimate the labor sup-

ply and the exact welfare measures. Instead of focusing on working hours or direct

utility, I focus on the nonparametrically specified indirect utility function, and obtain

the labor supply function via Roy’s Identity. In particular, the desired labor supply

is a function of three arguments: the entire budget set, the ordinary indirect utility

function, and the heterogeneity of preference for working. Contrast to Blomquist

and Newey (2002), I maintain the heterogeneity of preferences in an indirect utility

function with a flexible functional form. The importance of unobserved heterogeneity

is widely recognized in the labor supply literature. Also, Fullerton and Gan (2004)

argued that accounting for the unobserved heterogeneity is crucial in the welfare cal-

culation if the budget is piecewise-linear. Ignoring the unobserved heterogeneity may

lead to biased estimation of the exact welfare change. In a traditional nonparametric

regression model, the unobserved heterogeneity in preferences is integrated out, as in

both Hausman and Newey (1995) and Blomquist and Newey (2002). The regression

component in the nonparametric model thus is explained as the labor supply of an

average individual. However, the aggregation leads to biased estimates of welfare

effects if Hausman and Newey’s (1995) two-step method were applied in a context

with piecewise-linear budget sets. In my model, the functional of the ordinary indi-
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rect utility and the distribution of unobserved heterogeneity can be estimated using

a simulated likelihood method.

When indirect utility function is specified, the desired labor supply is easily

calculated. For every individual, his/her basic labor supply is easily derived from the

indirect utility function via Roy’s identity. Then the basic labor supply function can

be used to locally determine whether the choice falls on a particular segment or a

kink point. If the budget set is nonconvex, the local analysis may predict that more

than one segment or kink point are possible to attain the maximum utility. I then

compare the indirect utility derived from these segments or kink points to infer the

global optimal choice.

A key technique involved in the global algorithm is how to derive the indirect

utility at a kink point. My simple idea is to work out the supporting line that is

tangent with an indifference curve at this kink point (see Blundell, et al., (1988)3).

I design an efficient numerical algorithm to solve the tangent line. The algorithm

converges to the root at an exponential rate. Once the supporting line is available,

the utility at the kink point can be calculated by substituting the slope and intercept

of the tangent line into the ordinary indirect utility function. I call the maximum

indirect utility derived among all the segments and kink points a generalized indirect

utility.

In terms of welfare calculation, a nonparametric specification of the indirect util-

ity function proves to be convenient and efficient. Hausman and Newey’s (1995) is

the first to examine the exact welfare changes in a nonparametric framework. Their

approach is a two-step method. In the first step, they applied nonparametric re-

gression models to the estimation of ordinary demand curves. Then, in the second

3Blundell, et al. searched for the supporting line by minimizing the indirect utility
function. They applied a grid search method.
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step, Vatia’s (1983) numerical methodology was employed to approximate the wel-

fare measures. However, their method requires a linear budget set, which impedes

its applications to a context with complex taxes and tax reforms. Kumar (2008)

proposed an ex post evaluation method using panel data based on Blomquist and

Newey’s (2002) and Hausman and Newey’s (1995) approaches. But, his evaluation

requires the choice information before and after a tax reform. It is feasible to ex-

tend Hausman and Newey’s (1995) welfare evaluation method to deal with general

piecewise-linear budget sets (see Appendix A). Unfortunately, the extended method

is computationally demanding, particularly when the budget sets are nonconvex. Dif-

ferent from Hausman and Newey (1995) and Kumar (2008), my method of estimation

of exact welfare changes is based on the estimated indirect utility function. I treat

the generalized indirect utility as a function of the entire budget set. The general-

ized indirect utility given a piecewise-linear budget set can be efficiently computed

using the above global algorithm. As such, it is efficient to numerically compute the

compensating variation (CV) and equivalent variation (EV) based on my tool, the

generalized indirect utility function.

Finally, I apply my method to study the 1986 tax reform and the 2001 Bush

tax cut. I find that estimation is sensitive to the labor supply specification. The

labor supply elasticity is only half in a model with a third order approximation (pre-

ferred model) than that of the second order approximation. The welfare change and

deadweight loss are calculated using the ordinary indirect utility functional and the

distribution of unobserved heterogeneity estimated in the structural labor supply. A

simulation based method (see Fullerton and Gan, (2004)) is employed to account for

the differential welfare effects on heterogeneous individuals.
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2.2. An Economic Framework

I consider a static partial equilibrium labor supply model with heterogeneous indi-

viduals. Assume that the i-th individual is endowed with a stochastic one-dimension

preference εi. The individual maximizes utility with respect to choices about leisure

and other consumption goods gi (numeraire). Her desired hour of work is denoted to

be π∗i ,
4 so −π∗i is her leisure. Let yni denote the after-tax nonlabor income, and w∗i

the latent real gross wage which is exogenously determined in the competitive labor

market for the i-th individual. Let u(πi, gi, εi) and v(w∗i , y
n
i , εi) be the random direct

utility function and the random indirect utility function respectively. The individual’s

problem without a labor income tax is as follows:

v(w∗i , y
n
i , εi) = max

gi,π∗i
u(π∗i , gi, εi)

s.t. gi − w∗i π∗i = yni ,

π∗i ≥ 0, gi ≥ 0,

(2.1)

where the price of g is normalized to be 1. According to the Roy’s identity, the desired

hours of working π∗i can be expressed as

π∗i = π(w∗i , y
n
i , εi) =

∂v(w∗i , y
n
i , εi)/∂w

∗
i

∂v(w∗i , y
n
i , εi)/∂y

n
i

. (2.2)

Typically, the random term εi enters the desired working hours π(w∗i , y
n
i , εi) and

indirect utility v(w∗i , y
n
i , εi) in a nonlinear manner, as is known to be important from

Brown and Walker (1989). Note that this is a deterministic optimization problem

for the particular individual. However, the randomness across individuals make it a

random utility model for an econometrician.

4I use ∗ to emphasize that the variable is known to the individual.
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2.2.1. Piecewise-linear Budgets

Under a graduated tax system and various transfer programs, an individual’s budget

set becomes piecewise linear. It may be convex or nonconvex. Given an individual’s

before-tax wage rate w∗i , the after-tax non-labor income yni , and the Tax system T , I

can construct the budget set B∗i = B(w∗i , y
n
i , T ). Let a tax bracket be represented by

{tj;Yj−1, Yj}, where tj is the marginal tax rate for a person whose before-tax income

lies within the interval [Yj−1, Yj]. Information about {tj;Yj−1, Yj} can often be found

from tax tables. Note that the relevant budget set is based on after-tax income. Let

the end points of the segment in a budget set that corresponds to bracket {Yj−1, Yj}

be {yaj−1, y
a
j }, where ya refers to after-tax income. A complete characterization of

budget segments requires information on working hours that correspond to the set

[yaj−1, y
a
j ], and I denote these hours as [Hj−1, Hj]. To calculate the location of each

budget segment, I start with the first budget segment and proceed through all budget

segments. Besides the before-tax wage rate w∗i , another critical piece of information

necessary is Y n
i , the non-labor income this person may have. Let yni be after-tax non-

labor income, where the tax is calculated as if the person had no labor income. Then

labor income pushes the person into successively higher tax brackets. I summarize

information on budget segments in Table (I).5 Throughout, the numbering of budget

segments is individual-specific.

One interesting observation from Table (I) is that non-labor income affects the

location of the budget segments for each individual, since the end points of a budget

segment are functions of Y n
i or yni :

5Virtual income is defined as the intercept of the line that extends budget segment j
to the zero-hours axis. It is a function of non-labor income and the tax system: yvi,j =
Y n
i (2− t1 − tj)− Yi,j(1− tj) +

∑j
k=1(1− tk)(Yi,k − Yi,k−1). Virtual incomes do not depend

on before-tax wage rate. As the before-tax wage rate changes, all the budget segments of
one person rotate around their corresponding virtual income points.



13

Table I.: Summary of Budget Segments

Budget segment 1 Budget segment j > 1
After-tax income yai = yni + w∗i (1− t1)h∗i yai = yai,j−1 + w∗i (1− tj)(h∗i −Hi,j−1)

Kink points for income ya0 = yni yai,j = yai,j−1 + w∗i (1− tj)(Hi,j −Hi,j−1)

Kink points for hours Hi,0 = 0, Hi,1 = (Yi,1 − Y ni )/w∗i Hi,j = (Yi,j − Y ni )/w∗i
Virtual income yvi,1 = yni yvi,j = yai,j−1 − w∗i (1− tj)Hi,j−1

Hi,j = (Yi,j − Y n
i )/w∗i ,

yai,j = yni +

j∑
k=2

(1− tk)(Yi,k − Yi,k−1). (2.3)

2.2.2. Desired Working Hours under Piecewise-Linear Budgets

It is well known in the literature that a person’s locally optimal working hour may be

at a kink point or on the interior of a segment, in the framework of piecewise-linear

budget constraints. Define

Si,j =

 1 if the choice is on the interior of segment j,

0 otherwise;
(2.4)

Ki,j =

 1 if the choice is at the j-th kink ,

0 otherwise.
(2.5)

The conditions determining the values of Si,j and Ki,j require knowledge of the

basic labor supply function (2.2).The necessary conditions for Sj = 1 or Kj = 1 are:

Si,j = 1 if Hi,j−1 < π(w∗i,j, y
v
i,j, εi) < Hi,j,

Ki,j = 1 if π(w∗i,j+1, y
v
i,j+1, εi) ≤ Hi,j ≤ π(w∗i,j, y

v
i,j, εi),

(2.6)

where w∗i,j = w∗i (1− tj).

If the budget set is convex, condition (2.6) is necessary and sufficient and only
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one of Si,j or Ki,j is 1. Thus, the desired working hour for i-th agent is

h∗i =

J(i)∑
j=1

Si,jπ(w∗i,j, y
v
i,j, εi) +

J(i)∑
j=0

Ki,jHi,j, (2.7)

where J(i) is the maximum number of budget segments for the i-th individual. How-

ever, if the budget set is not globally convex, more than one of Si,j or Ki,j may be

1. A global algorithm is required to determine the desired working hour. The opti-

mal working hour should offer the maximum utility among all the segments and kink

points. Define the maximum utility among all the segments and kink points as

umaxi =max
{
max{v(w∗i,j, y

v
i,j, εi) | Si,j = 1, j = 1, . . . , J(i)},

max{u(Hi,j, y
a
i,j, εi) | Ki,j = 1, j = 0, . . . , J(i)}

}
,

where w∗i,j = w∗i (1 − tj). If only one segment or one kink point attains umaxi , the

desired working hour for i-th individual is

h∗i =

J(i)∑
j=1

Si,j1
(
v(w∗i,j, y

v
i,j, εi) = umaxi

)
π(w∗i,j, y

v
i,j, εi)

+

J(i)∑
j=0

Ki,j1
(
u(Hi,j, y

a
i,j, εi) = umaxi

)
Hi,j.

(2.8)

In a rare case, more than one choice attain umaxi . I assume that the agent’s desired

working hour is the one closest to the observed working hour hi.
6

Overall, the analysis under piecewise-linear budgets is reduced to several local

optimization problems under linear budgets. Thus, all the textbook theories under

linear budgets can be taken full advantages in my framework.

6If more than one h∗i are identically far away from hi, I randomly designate one of them
as the desired choice.
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2.2.3. Kink Points and Indirect Utility

The desired working hours depend on the knowledge of the direct utility function

u(πi, gi, εi), the indirect utility function v(w∗i , y
n
i , εi), and the labor supply function

π(w∗i , y
n
i , εi). As the budget set is convex and the preference is strictly convex, the

knowledge of the labor supply is adequate to derive the desired working hours, since

only one segment or kink point is chosen and the process of utility comparison is

not invoked. However, as the budget set is nonconvex, the labor supply function

and utility functions are needed. The problem is the complexity involved in the

transformation among these three functions. For example, it is simple to derive

the labor supply function from the indirect utility function via Roy’s identity while

the opposite transformation is much more difficult. It involves solving a differential

equation whose closed-form solution is hard to find or does not exist at all.

I find that it is convenient to derive the mongrel labor supply from the indirect

utility function in the framework of piecewise-linear budgets and strict convex prefer-

ences, since the direct utility at a convex kink point is the same as the indirect utility

if I can work out the supporting budget line that is tangent with an indifference curve

at this kink point. Note that it if of no need to derive the utility at a concave kink

point, since it is never a local optimum choice when the preference is strictly convex.

Consider the j-th kink point A, as in Figure (1). The working hour and after-tax

income at this kink point are (Hi,j, y
a
i,j). The indifference curve at this kink point is

represented by AC. Note that AC is not tangent with any existing budget segments.

Now let a solid line AB, representing a budget line, be tangent to the indifference

curve AC at the kink point A. The slope of this new budget line AB is in the interval

[w∗i,j+1, w
∗
i,j]

7. That is, this new budget line AB represents a marginal tax rate that

7If w∗i,j+1 > w∗i,j , the kink is a concave point and therefore it will never be chosen if the
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Fig. 1.: The Tangent Line at the Convex Kink Point

is between those of the segment j and segment j+1.

Draw an arbitrary budget line with a slope λ ∈ [w∗i,j+1, w
∗
i,j] and let it pass

through the kink point A, denoted as the dashed line AC in the graph. Its corre-

sponding virtual income is yvλ = yai,j − Hi,jλ. The indifference curve that is tangent

with the dashed budget line AC is DE, tangent at point D in the graph. The optimal

working hours on this new budget line is π(λ, yvλ, εi). Its distance with the kink point

A is

d2(λ) = [π(λ, yvλ, εi)−Hi,j]
2.

The purpose is to find the slope of AB. Note that the desired slope (or after-tax wage

rate) λ̄ of the budget line AB is the root such that it satisfies d2(λ̄) = 0. Therefore,

my problem of finding the slope of AB becomes the problem of obtaining the root of

preference is strictly convex.
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the equation d2(λ̄) = 0.

Unfortunately, as pointed out in Blundell et. al (1988), the traditional root-

finding methods of grid search may encounter the problem of slow convergence. Here

I follow a more efficient and effective root-finding binary search method.

Again, consider the solid line AB that tangent to the indifference curve AC at

the kink point A. Suppose the dashed line AC has a smaller slope than that of the

tangent line. In light of the convexity of the preference, the line AC must intersect

the indifference curve to the right of the kink point A. Evidently, the choice falls to

the right of A (on the interior of the segment AC) if an individual’s budget line were

the dashed line AC. Similarly, the choice falls to the left of point A if an individual’s

budget line had a slope larger than that of the solid line AB. Let us define

D(λ) = (−1)1(π(λ,yvλ,εi)≤Hi,j)d2(λ), λ ∈ [w∗i,j+1, w
∗
i,j], (2.9)

where 1(·) is an indicator function. The function D(λ) has a favorable property. If

λ < λ̄, I have D(λ) < 0; If λ > λ̄, I have D(λ) > 0. The unique root λ̄ of D(λ) can

be solved by applying a binary search algorithm as follows:

(1) Initialize an interval [a, b] = [w∗i,j+1, w
∗
i,j]. Thus, the root must be inside the

interval.

(2) Divide the interval into two halves [a, a+b
2

] and [a+b
2
, b]. If D(a+b

2
) < 0, assign a

to be a+b
2

. If D(a+b
2

) > 0, assign b to be a+b
2

.

(3) Repeat step (2) till the length of the interval is less than a given precision.

It is well known in the literature that this binary search method converges to

the zero point at an exponential rate, much faster than the grid search method. This

fast algorithm makes the global algorithm very efficient.
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Once the root is available, the direct utility at the j-th kink point is the same as

the indirect utility when wage rate is λ̄:

u(Hi,j, y
a
i,j, εi) = v(λ̄, yai,j −Hi,jλ̄, εi). (2.10)

Therefore, the explicit form of the direct utility function is not needed and only the

indirect utility function is needed to 8 solve for the labor supply.

The above-mentioned binary search algorithm may be invoked a multiple of times

for each observation. The weak law of revealed preference is useful in avoiding un-

necessary calculations. If I infer that a segment or a kink point is a candidate for

labor choice from a local analysis, and if another kink point is below the supporting

line which passes through the segment or the first kink point, I can safely rule out

the second kink point from the candidate list.

2.3. The Econometric Model

2.3.1. Specification

My model focuses on the indirect utility function, specified as a polynomial in its three

arguments: the net wage w, virtual income y, and heterogeneity in the preference ε:

v(w, y, ε) =
∑

r+s+t∈{0,1,...,K}

α(r, s, t)wrysεt, (2.11)

where K is the order of the polynomial and the parameter α(r, s, t) represents the

coefficient of the term wrysεt. As K is allowed to be arbitrarily large, the polynomial

can approximate any function of w, y, and ε to any degree of accuracy. In this

sense, my estimation is nonparametrically flexible. If I fix K, the model reduces to a

8In appendix A, I show that only the labor supply function is needed to derive the desired
labor supply if Vartia’s method is applied. However, it is computationally challenging.
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parametric one. In practice however, only small values of K can be used because of

the size of the sample. In my applications, a polynomial of order 2 or 3 is enough.

Some restrictions should be imposed on the indirect utility function. First, the

ordinal utility function is only identified up to a monotonic transformation. So I im-

pose normalization restrictions: α(0, 0, t) = 0 and α(0, 1, 0) = 1. Second, the indirect

utility function should be monotonically increasing in terms of income. I restrict that

∂v
∂y
> 0. This restriction can be imposed through a data-driven method. For example,

if I apply the method of simulated annealing to search for the true parameter, the

optimization method will avoid the parameters which violate the restrictions. Third,

following Blomquist and Newey (2002), I restrict that π(w, y, ε) be strictly increasing

in ε. Thus, I can explain ε as the heterogeneity in preference for labor.

Assume that the heterogeneity of preferences εi is expressed as

εi = ziγ + ηi, ηi ∼ N(0, σ2
η), (2.12)

where zi is a set of demographic characteristics, and ziγ and ηi can be interpreted as

observed and unobserved taste heterogeneity in preference. Following the literature,

I assume that the unobserved heterogeneity is independent with the covariates, in-

cluding the demographic characteristics zi, the gross wage rate w∗i , and the before-tax

non-labor income Y n
i . Notice that the unobserved heterogeneity and the net wage

rate are correlated.

I consider a labor supply function of the form

hi = h∗i + ui = h(B∗i , v, εi) + ui (2.13)

where ui is an optimization error9 or the measurement error of the observed labor

9Hausman (1981b) explained the difference between the observed and desired working
hours as a result of unexpected layoffs, short time, overtime, or the worker’s poor health
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supply. The desired working hour is a function of three arguments: the entire budget

set B∗i , the ordinary indirect utility functional v, and the heterogeneity εi. Taking the

complete budget set as one argument of the labor supply function is in the spirit of

Blomquist and Newey (2002). Contrast to Blomquist and Newey (2002), the curse of

dimensionality is not a problem in my model, because the nonparametric specification

associates with the ordinary indirect utility functional v rather than the (mongrel) la-

bor supply h. Nonconvex budget sets are handled with the aid of the global algorithm

discussed in the previous subsection. My specification is convenient for explicitly

considering the measurement error in the working hour. Soest, Das and Gong (2002)

argued that the measurement error in hours worked can have a detrimental effect on

the estimates of the policy effects. Unfortunately, their framework is unable to taken

account of the measurement error because it enters into their model in a nonlinear

fashion. Following Hausman (1981b), I assume that the optimization/measurement

error is zero when the individual is not willing to work, i.e.,

P{ui = 0|h∗i = 0} = 1. (2.14)

Also, I assume that it is normally distributed, i.e.,

ui|(h∗i , h∗i > 0) ∼ N(0, σ2
u). (2.15)

Note that the current framework can simultaneously address several important

issues in the literature such as (i) sample selection due to labor nonparticipation

(Heckman 1979), (ii) fixed costs of working (Cogan 1981), and (iii) measurement

errors of wage rates (Blomquist 1996). I have not done all of them.

together with measurement error.
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2.3.2. Estimation

If I fix the polynomial order K in (2.11), all the parameters in this model can be

estimated by the method of maximum likelihood (ML). Let Xi = (zi, w
∗
i , Y

n
i ). The

likelihood of working hour when the individual works is

f(hi|Xi) = f(hi|Xi, h
∗
i > 0)P (h∗i > 0|Xi)

=

∫
h∗i>0

f(hi|η,Xi, h
∗
i > 0)dF (η|Xi, h

∗
i > 0)P (h∗i > 0|Xi)

=

∫
h∗i>0

f(hi|η,Xi, h
∗
i > 0)dF (η|Xi)

=

∫
h∗i>0

fu [hi − h∗i (B∗i , v, ziγ + η)|η,Xi, h
∗
i > 0] dF (η|Xi)

=

∫ +∞

−∞
fu [hi − h∗i (B∗i , v, ziγ + η)|η,Xi, h

∗
i > 0] 1(h∗i > 0)dF (η|Xi) (2.16)

where f(·), fu(·) and F (·) denote the probability density functions of hi and u, and

the cumulative density function of η, respectively. The first equality in equation (2.16)

arises from the fact that P{h∗i > 0 | hi > 0} = 1. Notice that ui|(η,Xi, h
∗
i > 0) ∼

N(0, σ2
u). Let φ(·) denote the density function of the standard normal density. Then

fu[ui|(η,Xi, h
∗
i > 0)] = 1

σu
φ( ui

σu
). Therefore, I have

f(hi|Xi) =

∫ +∞

−∞

1

σu
φ(
hi − h∗i (B∗i , v, ziγ + η)

σu
)1(h∗i > 0)dF (η|Xi). (2.17)

The indicator function 1(h∗i,j > 0) is not differentiable with respect to parameters.

I can smooth it by a differentiable kernel function.

k(h∗) =


0, h∗ ≤ 0;

1
2

[
1− cos(πh∗

δ
)
]
, 0 < h∗ < δ;

1, h∗ >= δ.

(2.18)

I apply the method of simulated maximum likelihood (SML). Draw R error terms



22

from the distribution of η. The corresponding simulated likelihood is

f̂(hi|Xi) =
1

R

R∑
j=1

1

σu
φ(
hi − h∗i (B∗i , v, ziγ + ηj)

σu
)1(h∗i,j > 0). (2.19)

Evidently, the sample mean f̂(hi|Xi) is an unbiased and consistent estimator of

f(hi|Xi).

The probability that the individual chooses not to work is p(hi = 0|Xi) =

p(h∗i ≤ 0|Xi) + p(h∗i > 0, h∗i + ui ≤ 0|Xi). Note that p(h∗i > 0, h∗i + ui ≤ 0|Xi) =

E
[
Φ(
−h∗i
σu

)1(h∗i > 0)|Xi

]
, where Φ(·) is the cumulative density function of a standard

normal distribution. The corresponding simulated maximum likelihood is

p̂(hi = 0|Xi) =
1

R

R∑
j=1

(1− 1(h∗i,j > 0)) +
1

R

R∑
j=1

Φ(
−h∗i,j
σu

)1(h∗i,j > 0), (2.20)

where h∗i,j = h∗i (B
∗
i , v, ziγ + ηj).

Combining (2.19) and (2.20) yields the simulated log-likelihood:

L =
n∑
i=1

1(hi > 0)ln[f̂(hi|Xi)] + 1(hi = 0)ln[p̂(hi = 0|Xi)], (2.21)

where the unknown parameters are {α(r, s, t) | r + s + t ∈ {0, 1, . . . , K}}, γ, ση and

σu. Note that some parameters are restricted.

2.4. Measure of Welfare Change and Deadweight Loss

2.4.1. Welfare Calculation Based on the Generalized Indirect Utility Function

The utility that the i-th agent attains depends on five factors: the gross wage rate

w∗i , the after-tax nonlabor income yni , the tax system T , the functional of the basic

indirect utility v, and the index of the heterogeneity in preferences εi. Let us introduce

V (w∗i , y
n
i , T, v, εi) to denote the generalized indirect utility function. Similar to the

labor supply function, the generalized indirect utility function takes the entire budget
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set as on argument. The first three arguments are all the factors used to generate the

budget set. The mapping from the arguments to the generalized indirect utility is

seemingly complex. But it is numerically computable and the computation is efficient.

As the tax system changes from T 0 = {t0j ;Y 0
j−1, Y

0
j } to T 1 = {t1j ;Y 1

j−1, Y
1
j }, the

welfare change can be measured in terms of either CV or EV . The CV and EV are

formally defined as:

V (w∗i , y
n
i (T 0), T 0, v, εi) = V (w∗i , y

n
i (T 1) + CVi, T

1, v, εi) (2.22)

V (w∗i , y
n
i (T 1), T 1, v, εi) = V (w∗i , y

n
i (T 0)− EVi, T 0, v, εi) (2.23)

where yni (T i) is the after-tax non-labor income under tax system T i (i = 0, 1). Note

that the generalized indirect utility function is monotonically increasing with respect

to the second argument. The CV ( similarly EV ) can be numerically solved by a

binary search as follows:

(1) Compute the maximum indirect utility Vi attained under the tax system T i

(i=1,2).

(2) If V0 > V1, let a be 0 and choose a positive b such that V (w∗i , y
n
i (T 1)+b, T 1, v, εi) >

V0; If V0 < V1, let b be 0 and choose a negative a such that V (w∗i , y
n
i (T 1) +

a, T 1, v, εi) < V0. Thus, the CVi must be inside the interval [a, b].

(3) Divide the interval into two halves [a, a+b
2

] and [a+b
2
, b]. If V (w∗i , y

n
i (T 1)+a+b

2
, T 1, v, εi) >

V0, assign b to be a+b
2

. If V (w∗i , y
n
i (T 1) + a+b

2
, T 1, v, εi) < V0, assign a to be a+b

2
.

(4) Repeat step (3) till the length of the interval is less than a given precision.

The binary search algorithm converges to the desired CVi at an exponential rate.

The efficiency of this numerical computation is useful particularly when a simulation-

based method is employed.
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The sample mean CV (or EV) can be calculated by employing a simulation-based

method (see Fullerton and Gan, 2004). Let CVi(εi,j) (or EVi(εi,j)) denote the CV (or

EV) for an individual with a heterogeneity index εi,j. Then the sample mean values

of CV and EV are

CV =
1

nR

n∑
i=1

R∑
j=1

CVi(εi,j), (2.24)

and

EV =
1

nR

n∑
i=1

R∑
j=1

EVi(εi,j), (2.25)

where n is the number of observations and R the number of random draws.

Based on the measure of CV or EV , I can define the deadweight loss. The tax

reform affects the tax revenues from non-labor income and labor income. After a

tax change, the utility-maximizing agent’s choices of working hours may change from

a segment or a kink point to a new segment or a new kink point. If the agent’s

before-tax-change choice is on the j0-th segment or (j0 − 1)-th kink point, i.e. h∗0i ∈

[H0
i,j0−1, H

0
i,j0), and the after-tax-change choice is on the j1-th segment or (j1 − 1)-th

kink point, i.e. h∗1i ∈ [H1
i,j1−1, H

1
i,j1), the change of tax revenue from labor income

∆Rl can be expressed as

∆Rl =

j1−1∑
k=1

(H1
i,k −H1

i,k−1)w∗i t
1
k + (h∗1i −H1

i,j1−1)w∗i tj1


−

j0−1∑
k=1

(H0
i,k −H0

i,k−1)w∗i t
0
k + (h∗0i −H0

i,j0−1)w∗i tj0

 .
(2.26)

Let ∆Rn denote the changes of tax revenue from non-labor income. Then the

deadweight loss calculated based on CV and EV are CVi − (∆Rl + ∆Rn) and

(∆Rl + ∆Rn)− EVi respectively.

Similarly, the sample mean of deadweight loss is calculated using the simulation-

based method. Let DWLi(εi,j) denote the deadweight loss of an individual with a
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heterogeneity index εi,j. Then the sample mean of DWL is

DWL =
1

nR

n∑
i=1

R∑
j=1

DWLi(εi,j). (2.27)

2.4.2. Vartia’s Method and Welfare Calculation under Piecewise-Linear Budgets

When the labor supply function is flexibly specified, Vartia (1983)’s method is typ-

ically used in the literature (see Hausman and Newey 1995, and Kumar 2008) to

estimate the exact welfare changes.

Vartia’s method is useful if the budget constraint is linear. Suppose a policy

changes an individual’s net wage from w0 to w1. What is the compensating variation?

The key insight of Vartia’s method for this problem is moving along the indifference

curve by compensating the income in response to the change of the wage. Vartia’s

(1983) idea is as follows. Let π(w, y) and v(w, y) denote the market ordinary labor

supply and its indirect utility function respectively. On the same indifference curve,

the net wage rate w and the compensated non-labor income y are subject to the

following differential equation:

dv(w(t), y(t))

dt
=
∂v(w(t), y(t))

∂w

dw(t)

dt
+
∂v(w(t), y(t))

∂y

dy(t)

dt
= 0. (2.28)

Combining with the Roy’s identity π(w, y) = ∂v(w,y)/∂w
∂v(w,y)/∂y

, Vartia obtained a differential

equation

dy(t)

dt
= −π(w(t), y(t))

dw(t)

dt
(2.29)

with the initial conditions w(0) = w0 and y(0) = y0. The compensated income y(1) at

the new net wage rate w(1) = w1 can be solved numerically to any degree of accuracy.

A simple numerical method is to recursively apply the following formula:

y(tk)− y(tk−1) = −π(w(tk−1), y(tk−1))(w(tk)− w(tk−1)),
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where tk = k/K (k=1,2,. . . ,K). Note that the functionals w(·) and π(·, ·) are known.

Fig. 2.: The Calculation of CV under Piecewise-linear Budgets

However, in the presence of piecewise-linear budget sets, Vartia’s method is not

applicable. Consider the calculation of welfare change as shown in Figure (2). Before

the tax reform, the budget line is HI and the choice is at point A. After tax reforms,

the budget line becomes JKE and the new choice is point B. If the nonlinearity of

tax reform is ignored, the calculated CV based on Vartia’s method is equal to EG.

However, the individual attains the same utility as that at point A by choosing point

D on the compensated budget line DF. Obviously, the calculation bias of CV is FG.

Therefore, it is a must to modify Vartia’s method to account for the nonlinearity

unless an alternative methodology is available.

It is complicated to extend Vartia’s method to a general context with piecewise-

linear budget sets and complex tax reforms. The first and foremost challenge is to

determine the touching point between the old indifference curve and the compensated
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after-tax budget set. Note that the slope of the supporting line which is tangent to

the old indifference curve at the above touching point may not be equal to the slope

of the supporting line which passes through the post-reform choice point. Thus,

Vartia’s method is not applicable in a general context. In the appendix A, I extend

Vartia’s method to handle general piecewise-linear budget sets. Unfortunately, the

updated Vartia’s method is computationally demanding particularly when the budget

is nonconvex. The second challenge is how to determine the desired working hours

given a piecewise-linear budget set. If the budget set and the preference are convex,

it is easy to calculate the unique choice. However, if the budget set is convex, more

than one local optimum choice are predicted. Without closed-form utility functions,

Vartia’s method has to be applied a multiple times to select the global optimal choice.

Evidently, it is computationally demanding to estimate the structure labor supply

function.

Contrasting the above two methods, I conclude that, if the budget set is piecewise-

linear, working with the indirect utility function is more convenient and efficient than

with the labor supply function. This is particularly true if the budget set is noncon-

vex.

2.5. Application One: The 1986 Tax Reform

The first application of my estimation methodology is the 1986 Tax Reform. I consider

the welfare change and the deadweight loss incurred by the modifications of the federal

income tax and the EITC program due to the Tax Reform Act of 1986. I use the tax

rules in tax year 1987 as the new tax regime. Income taxation in the United States is

a complex system. Following Hausman (1981b) and especially Triest (1990), I focus

on four types of income taxes in tax year 1983—the federal income tax, state income
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Table II.: U.S. Federal Income Tax Schedules in 1983 and 1987

Tax Schedule in 1983 Tax Schedule in 1987
Income Marginal Income Marginal
(Dollars) Tax Rate (Dollars) Tax Rate
$0-$2,100 0.11 $0-$3,000 0.11
$2,100-$4,200 0.13 $3,000-$28,000 0.15
$4,200-$8,500 0.15 $28,000-$45,000 0.28
$8,500-$12,600 0.17 $45,000-$90,000 0.35
$12,600-$16,800 0.19 $90,000+ 0.385
$16,800-$21,200 0.23
$21,200-$26,500 0.26
$26,500-$31,800 0.30
$31,800-$42,400 0.35
$42,400-$56,600 0.40
$56,600-$82,200 0.44
$82,200-$105,600 0.48
$105,600+ 0.50

tax, payroll tax and EITC program.

2.5.1. The U.S. Income Tax System in 1983 and 1987

Table (II) presents the federal income tax schedules for married couples filing joint

returns. In 1983, the federal income tax consisted of 13 brackets.10 The Tax Reform

Act of 1986 greatly simplified the tax code. In 1987, the number of tax brackets

decreased to 5. This reform generally reduced the tax burden of an average family,

with the maximum marginal tax rates lowering from 50% to 38.5%.

The federal income tax entitled married couples to claim some exemptions and

deductions. In 1983, the standard exemption for a married couple was $2, 000 plus

$1, 000 per dependent. If the couple used the standard deduction, an amount of

$3400 was allowed to be subtracted from their taxable income (TI). If they instead

itemized the deductions, I follow Triest (1990)’s method to assign an amount equal to

10The zero-bracket is family-specific. It does not appear in Table (II).
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the average itemized deduction (excluding the state tax payments deduction) within

their adjusted gross income class in Individual Income Tax Returns (by Statistics of

Income Division, Internal Revenue Service). In 1983, a special deduction was allowed

for the married couples when both work. The deduction was the minimum of $3, 000

and 10 percent of the earned income of the spouse with the smaller earnings. In 1987,

the standard exemption for a married couple and each of their dependents increased

to $3800 and $1900 respectively. Also, the standard deduction rose to $3760.

The income tax varied among states.11 In 1983, ten states imposed no or very

limited income tax. Thirty three states imposed a progressive tax which is structurally

similar to the federal income tax. Still eight states imposed a flat tax. Among them,

Illinois, Michigan and Pennsylvania imposed a flat rate on taxable income, Indiana

on AGI, yet Nebraska, Rhode Island and Vermont on the federal income tax liability.

The state Massachusetts imposed on non-labor income (interest, dividend and net

capital gains) and earned income each a different flat tax rate.

If married couples itemize deductions, the state tax payments can be subtracted

from TI when computing federal income tax liability. In sixteen states, federal income

tax payments are allowed to be deducted from TI when computing state income tax

liability. The one-way and two-way deducting considerably reduced the effective

marginal tax rates. Following Triest (1990), I assume that couples who itemized

deductions on their federal returns also itemized on their state returns, and claimed

the same amount of deductions. The deductions complicate the combination of the

federal income tax schedule and the state income tax schedule.

Both the federal income tax and the state income taxes are progressive. Their

combination produces a progressive tax schedule and convex budgets for each indi-

11The information on the state tax systems is available in the 1982-83 edition of Significant
Features of Fiscal Federalism.
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Table III.: EITC Tables in 1983 and 1987

EITC in 1983
Earned income (x) Stage Credit
$0-$5,000 phase in 10%*x
$5,000-$6,000 plateau $500
$6,000-$10,000 phase out $500-12.5%*(x-6,000)
$10,000+ no credit $ 0

EITC in 1987
Earned income (x) Stage Credit
$0-$6,080 phase in 14%*x
$6,080-$6,920 plateau $851.2
$6,920-$15,432 phase out $851.2-10%*(x-6,920)
$15,432+ no credit $ 0

vidual. However, the regressive properties in the federal payroll tax and the EITC

program create nonconvex regions in the budgets.

In 1983, workers paid 6.7 percent of their earned income (up to $35, 700) for the

social security tax. The upper limit of the payroll tax will generate a concave kink

point in the budgets. Note that the payroll tax is imposed on an individual worker

rather than a family. Thus, I calculate the payroll taxes of two spouses separately.

Table (III) presents the structure of the EITC (1983 and 1987) for couples filing

jointly with at least one dependent child. The credits were characterized by three

stages. In the phase-in stage, married couples(or single heads of households) collected

a tax credit equal to a fixed percent of the household earned income (up to an upper

limit) from the federal government. In the plateau stage, no more credits can be

collected. In the last stage, the tax credit phased out at a fixed rate until it reached

zero. The upper limit to the phase-out of EITC creates a concave point in the budgets.

Compared to the EITC in 1983, the EITC in 1987 expanded both intensively

and extensively. In 1987, households collected more tax credits than in 1983 from
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each dollar of earned income in the phase-in stage. Also, the width of the phase-in

stage was increased. Moreover, in 1987, the tax credits began to phase out at a larger

level of earned income and at a slower rate than in 1983.

2.5.2. Construction of Exact Budget Sets

The budgets used in the literature typically are rough approximates of the actual

ones. A common problem in combining tax rules is that the possibility of mutual de-

ductions of payments is not precisely taken account of when the federal tax schedule

and the state income tax schedule are combined together. Though the approxima-

tion error in the budgets might cause only minor problems in estimating the labor

supply elasticities (see Hausman 1981b and Triest 1990), it may severely affect the

the estimates of welfare measures. It is impossible to derive an exact budget set for

each individual, due to lack of information on detailed household characteristics and

the inability to incorporate all the tax systems and welfare programs. However, I can

construct the most precise budget sets based on all the information at hand.

Let Tf = {tfj ;Y
f
j−1, Y

f
j } and Ts = {tsj ;Y s

j−1, Y
s
j } denote the federal and state in-

come tax schedules respectively. The first tax brackets {tf1 ;Y0, Y1} and {ts1;Y0, Y1}

can be zero brackets which include exemptions and deductions (standard or itemized

deductions12). Let TIf and TIs denote the effective taxable incomes for the federal

or state income tax. If sample members indicated that they used the standard de-

duction to compute the federal tax liabilities, then TIf is equal to the total income I.

Similarly, I have TIs = I if married couples chose standard deduction or the federal

income tax payments were not deductible as they computed the state tax liability.

Let TLf and TLs denote federal and state tax liabilities. If TLs were deductible,

12Over here, the itemized deduction excludes the federal or state income tax payments.
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then TIf = I − TLs; If TLf were deductible, then TIs = I − TLf .

The combined tax schedule of the federal and state tax can be defined recursively.

Let Tfs = {tfsj ;Y fs
j−1, Y

fs
j } denote the combined tax schedule. Suppose that the (j−1)-

th bracket has been defined, the j-th bracket will be defined if I know the marginal

tax rate tfsj and the right end of the j-th tax bracket, Y fs
j . I consider three scenarios.

• Case 1) Both TLf and TLs are deductible:

Suppose that the effective taxable incomes of the federal and state income taxes

are TIf and TIs when the total income I equals Y fs
j−1. Assume that the rel-

evant federal and state marginal tax rates are tf and ts corresponding to an

infinitesimal increase of I, ∆I. Then I have

∆TLf = (∆I −∆TLs)tf (2.30)

and

∆TLs = (∆I −∆TLf )ts, (2.31)

where ∆TLf and ∆TLs are infinitesimal increases of TLf and TLs. The solu-

tions of the equations (2.30) and (2.31) are

∆TLf =
tf − tf ts
1− tf ts

∆I, (2.32)

and

∆TLs =
ts − tf ts
1− tf ts

∆I. (2.33)

Therefore, the marginal tax rate at the j-th bracket of the combined tax sched-

ule, tfsj , equals
tf+fs−2tf ts

1−tf ts
. The corresponding changes of the effective taxable

incomes will be

∆TIf = ∆I −∆TLs =
1− ts

1− tf ts
∆I (2.34)



33

and

∆TIs = ∆I −∆TLf =
1− tf

1− tf ts
∆I. (2.35)

As the tax brackets on which TIf and TIs fall do not change, tf and ts are

constant and the changes of TLf , TLs, TIf , and TIs are proportional to ∆I. Let

Df denote the maximum change of TIf such that tf keeps constant. Similarly,

I define Ds. Therefore, I have

Y fs
j = Y fs

j−1 +min{1− tf ts
1− ts

Df ,
1− tf ts
1− tf

Ds}. (2.36)

Given the above procedure, all the brackets of the combined tax schedule Tfs =

{tfsj ;Y fs
j−1, Y

fs
j } can be defined one by one. Notice that TIf = 0 and TIs = 0

when I = 0.

• Case 2) TLf is not deductible but TLs is deductible:

In this scenario, I have

∆TLf = (∆I −∆TLs)tf (2.37)

and

∆TLs = (∆I)ts. (2.38)

The solutions of the equations (2.37) and (2.38) are

∆TLf = (1− ts)tf∆I, (2.39)

and

∆TLs = ts∆I. (2.40)

Thus, the new marginal tax rate tfsj equals tf + ts − tf ts. The effective taxable

incomes are linked to the total income by ∆TIf = (1− ts)∆I and ∆TIs = ∆I.
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Therefore,

Y fs
j = Y fs

j−1 +min{ 1

1− ts
Df , Ds}, (2.41)

where Df and Ds are defined as in case (1).

• Case 3) TLs is deductible and the state tax is α percent of federal income tax

liability:

The federal and state tax liabilities can be expressed as

∆TLf = tf∆TIf = (∆I −∆TLs)tf , (2.42)

∆TLs = ∆TLfα. (2.43)

So, ∆TLf =
tf

1+tfα
∆I and ∆Ts =

tfα

1+tfα
∆I. Thus, the marginal tax rate tfsj

equals
tf (1+α)

1+tfα
. The new brackets will be the federal tax brackets enlarged by a

factor of 1 + tfα, because ∆TIf = 1
1+tfα

∆I.

2.5.3. The Data Used

The data are drawn from Wave XVII of the PSID. I follow Triest (1990)’s observation

selection procedure. Observations from the Survey of Economic Opportunity are

excluded. I restrict that married wives and their spouses be aged between 25 and 55

and have average hourly earnings between $1 and $50. Those who were disabled and

those who reported self-employment or farm incomes are eliminated from the sample.

This procedure results in 1004 observations.13

The characteristic variables describing a wife’s observed heterogeneity in prefer-

ence for labor include the number of children less than 6 years old, the family size, her

13Triest (1990)’s data set has 978 observations. Despite this difference, the summary
statistics for my data and Triest’s data are very close. One possible explanation is that the
new version of PSID has fewer missing values.
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school years of education, a dummy for college education (equal to 1 if a woman has

completed more than 12 years of education), yearly payments of mortgage, a dummy

for her bad health status, her age and an extra age14 (equal to 0 for women less than

35, equal to age-35 for those between 35 and 45, and equal to 10 for those 45 or over).

In the appendix, Heckman’s sample selection procedure is provided to impute the

latent wage rates of nonparticipating wives.

2.5.4. Estimation Results

2.5.4.1. The Structural Labor Supply

Fig. 3.: Labor Supply Curves

Maximization of the log likelihood functions is performed using the method of

simulated annealing.15 This method statistically guarantees finding a global optimal

14It was used by Hausman (1981b) and Triest (1990).
15A “C++” software for Windows XP is constructed to compute the problem of maximiz-
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solution if it runs in an infinite time. I modify the method of simulated annealing to

incorporate the restriction on the indirect utility function. For example, the derivative

∂v
∂y
> 0. If the restriction is violated at an iteration, the modified algorithm traces

back to the previous iteration and restarts the random search.

I have estimated the model for K = 2, 3, and 4. The model with K = 1 is not

interesting, since its corresponding labor supply is constant. In Figure (3) I present

the labor supply curves for a married woman with an average non-labor income and

an average heterogeneity in the preference for labor. The solid curve corresponds to

the model with K = 2. It is very close to a linear labor supply model. However,

nonlinearity of the labor supply appears as K increases. The dashed and the dotted

curves in the figure correspond to the models with K = 3 and 4 respectively.

Likelihood ratio tests suggest that a series expansion of order three is enough to

approximate the unknown preferences. The third order is not rejected by the fourth

order model at the 5% significance level, but the second order model is rejected. If

the Akaike information criterion (AIC) is used, I also arrive at the same conclusion

that the model with k = 3 is the best. This result is similar to Soest et al (2002) who

found that a polynomial series expansion of order two is enough to approximate the

direct utility function in their discrete choice model in a study of Dutch labor supply.

Table (IV) presents results of three models with different specifications of the

indirect utility functions. I find that only the following eight terms are relevant:

w, y, w2, w ∗ y, w ∗ ε, w3, w2 ∗ e, and w4. Notice that some coefficients of the

polynomials are limited to be zeros because of the various restrictions on the indirect

utility functions. The coefficients of w∗y are associated with the income effects. In all

ing likelihood. Traditional matrix platforms such as Gauss and Matlab may be not efficient
since my problem involves two levels of optimization. At every iteration of maximizing
likelihood, it may be needed to numerically solve the supporting wage rates at the kink
points.
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three specifications, I identify negative income effects that are statistically significant.

Among all the demographic variables, the number of kids (aged less than 6) and the

family size significantly affect a women’s decision in working hours.

As in most applications of the two error model, the estimated standard deviation

of unobserved heterogeneity in preferences is statistically significant. Also, I observe

that the standard deviation of optimization/measurement errors has a tendency to

decrease as I increase the flexibility of preferences. This is not very surprising since I

specify this error term to be orthogonal to the desired working hour.

The wage elasticity is an important variable for policy analysis. Since the labor

supply model is nonlinear and the elasticities vary over the sample, it is necessary to

define a wage elasticity for the whole population. The elasticities in Table (IV) are

computed according to the following formula,16

lim
t→1+

∑n
i=1

∑R
j=1 h

∗
i [B

∗
i (t · w∗i , yni , T ), v, εj]−

∑n
i=1

∑R
j=1 h

∗
i [B

∗
i (w

∗
i , y

n
i , T ), v, εj]

(t− 1)
∑n

i=1

∑R
j=1 h

∗
i [B

∗
i (w

∗
i , y

n
i , T ), v, εj]

.

Put simply, the aggregate elasticity is the percentage change of the total desired

working hours if everyone’s gross wage rate rises by 1%. This definition takes full

account of the tax system and heterogeneity in preferences.

An interesting finding is that the functional specification of preferences has a

substantial impact on the estimated elasticities. The estimated wage elasticity de-

creases from 0.250 to 0.102 as the order of series expansion K rises from 2 to 3. This

result suggests that (i) a linear labor supply model is most likely misspecified; and

(ii) a misspecified model would generate a substantial bias in labor supply elasticities.

Triest (1990) has estimated wage elasticity using the same data set with a para-

metrically specified linear labor supply function. His wage elasticity is around 0.25,

16This definition is similar to the one used by Soest, Das, and Gong (2002).
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Table IV.: Estimates of Labor Supply with Flexible Preferences (1983)

2nd Order 3rd Order 4th Order
Heterogeneity in Preferences
ση 647.590 745.108 737.638

(40.021) (7.716) (53.079)
constant 909.183 1091.905 1074.850

(NA) (25.333) (31.854)
Number of kids (Age≤ 6) -331.650 -370.177 -367.529

(22.429) (16.376) (15.181)
Family Size -128.776 -116.139 -118.335

(7.960) (33.213) (5.696)
Age (35-45) 11.081 3.791 8.488

(17.788) (16.601) (14.306)
Age-45 -22.756 -15.170 -19.181

(13.381) (12.879) (11.300)
Education 18.846 27.870 29.262

(18.336) (8.120) (8.297)
College education 108.910 104.337 102.393

(92.451) (84.970) (78.687)
Log of yearly mortgage payment 10.892 14.609 17.716

(9.828) (10.452) (10.104)
Bad health -200.262 -217.705 -231.633

(157.092) (150.678) (142.906)
Indirect Utility Function
w 64.112 77.676 83.689

(218.173) (171.781) (144.371)
w2 26.356 -14.106 -26.856

(8.891) (18.279) (3.322)
w ∗ y -1.087e-2 -1.166e-2 -1.203e-2

(3.672e-3) (6.044e-4) (3.062e-3)
w3 1.126 1.639

(0.721) (1.055)
w2 ∗ ε 1.969e-3 3.656e-3

(1.089e-2) (1.036e-2)
w4 -3.703e-3

(3.903e-2)
σu 766.124 634.510 616.327

(73.068) (103.882) (71.573)
Uncompensated wage elasticity: 0.250 0.102 0.112
Log likelihood= -6331.605 -6325.079 -6324.535
Note: (1) The coefficient of y and w ∗ ε are set to be 1;

(2) The number of simulated repetitions R=2000.
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Table V.: Estimates of Welfare Changes and Deadweight Loss (K=3;1986)

Federal EITC EITC Federal income
income tax (Convexified) tax+EITC

Average working hours 977.046 977.046 977.325 977.046
before the reform (48.526) (50.304) (47.889) (57.908)
Average working hours 986.547 976.333 976.568 985.805
after the reform (55.570) (50.199) (47.793) (63.151)
Labor supply change as % of 0.972 -0.073 -0.078 0.896
working hours before the reform (1.285) (0.046) (0.039) (1.243)

Average tax revenue 8573.588 8573.588 8575.768 8573.588
before the reform (191.543) (181.887) (191.049) (213.824)
Average tax revenue 6955.484 8539.245 8541.370 6921.327
after the reform (187.813) (182.371) (191.264) (207.827)
Tax revenue change as % of -18.873 -0.401 -0.401 -19.272
old tax revenue (0.517) (0.020) (0.016) (0.572)

Average CV -1708.989 -32.806 -35.788 -1741.670
(40.284) (1.987) (3.238) (41.131)

CV as % of -19.933 -0.383 -0.417 -20.314
old tax revenue (0.102) (0.027) (0.043) (0.162)

Average DWL -90.885 1.537 -1.390 -89.409
(48.348) (2.432) (3.062) (49.268)

DWL as % of -1.060 0.018 -0.016 -1.043
old tax revenue (0.551) (0.028) (0.035) (0.564)

Average AGI 37066.446 37066.446 37069.725 37066.446
before the reform (454.493) (438.676) (449.903) (510.223)
Average AGI 37275.170 37062.026 37064.967 37270.557
after the reform (546.279) (437.779) (449.000) (600.068)
Note: (1) Standard errors are in parentheses.

(2) CV < 0 means a gain.
(3) Working hours are evaluated for a married woman.
(4) Tax revenues and AGI are evaluated for a family.
(5) The number of simulated repetitions R=2000.
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almost same as the wage elasticity calculated here when using second order polyno-

mial. A more flexible third and fourth order polynomials generate much smaller wage

elasticity. This is consistent with Blomquist and Newey (2002) who found that non-

parametric estimation of wage elasticity is 60% of one based on a linear parametric

method.

2.5.4.2. Welfare Change and Deadweight Loss

The welfare effects are obtained by doing simulations based on the structural labor

supply function and the generalized indirect utility function. Standard errors are

computed by bootstrapping. I repeat the simulations many (100) times with new

parameters drawn from their estimated distributions. Standard errors are calculated

from the bootstrapped sample.

Table (V) presents the estimated welfare effects due to the change of the federal

income tax and/or the expansion of EITC program (The order of series expansion K is

equal to 3). My framework enables us to study these reforms separately or as a whole.

The reform of the federal income tax significantly reduced the federal government’s

tax revenue but made working families much better off. An average couple would pay

20% of their before-tax-reform tax revenue to be just as well off after the reform as

they were before the reform. The reform of the federal income tax in 1986 associated

with a reduction in DWL because it encouraged married women to work or work more

hours. However, the changes of working hours are not statistically significant, which is

consistent with the estimated relatively low labor elasticity. The expansion of EITC in

1986 also greatly benefited the families with dependent children. However, it produced

DWL by discouraging married wives to work if their family income was near the phase-

out stage of the EITC before its expansion. The slight decrease of working hours

indicates that the overall income effects dominate the overall substitution effects.
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Another interesting finding is that convexifying the budgets may bias the esti-

mate of CV downward. In this application, the sign of the DWL of the expansion of

EITC reverses if I use convex hulls in lieu of the original nonconvex budget sets. Ev-

idently, an accurate construction of budget sets matters in evaluating welfare effects.

This application shows that a correct specification of preferences also matters in

estimating welfare effects. Table (VI) presents the estimated welfare effects from the

restricted model (K = 2). Contrast to the results in Table (V), the magnitude of

the labor supply change is much larger and statistically more significant. The change

of federal income tax increases the average married woman’s working hour by about

2.81% of that before the reform in the restricted model, while only 0.97% in the more

flexible model. The expansion of EITC in 1986 decreases the her working hour by

about 0.16% in the restricted model, while only 0.07% in the more flexible model.

This difference in the responsiveness of labor supply can be explained by the difference

in estimated labor elasticity from two models. The change of the federal income tax

in 1986 actually decreases the tax rate and thus increases a married woman’s net

wage rate. A model with a larger estimated wage elasticity will produce a larger

labor supply increases corresponding to the tax reform. The expansion of EITC in

1986 actually decreases the net wage rate just beyond the phase-out stage of the old

EITC. A model with larger estimated wage elasticity may produce a larger decreases

in labor supply. More importantly, the CVs estimated from two models differ slightly,

while the estimated DWLs see a considerable difference. Overall, the restricted model

overstates the effects of the reforms.
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Table VI.: Estimates of Welfare Changes and Deadweight Loss (K=2;1986)

Federal EITC EITC Federal income
income tax (Convexified) tax+EITC

Average working hours 963.767 963.767 964.321 963.767
before the reform (33.521) (34.283) (37.919) (31.515)
Average working hours 990.874 962.242 962.850 989.347
after the reform (34.797) (34.275) (37.846) (34.746)
Labor supply change as % of 2.813 -0.158 -0.153 2.654
working hours before the reform (0.831) (0.029) (0.031) (0.769)

Average tax revenue 8585.954 8585.954 8589.656 8585.954
before the reform (123.418) (128.022) (138.526) (124.204)
Average tax revenue 6991.278 8549.911 8553.737 6955.794
after the reform (115.285) (128.046) (138.714) (119.864)
Tax revenue change as % of -18.573 -0.420 -0.418 -18.986
old tax revenue (0.332) (0.013) (0.014) (0.326)

Average CV -1717.112 -32.977 -36.098 -1749.787
(26.697) (0.825) (0.845) (27.652)

CV as % of -19.999 -0.384 -0.420 -20.380
old tax revenue (0.060) (0.012) (0.015) (0.060)

Average DWL -122.436 3.128 -0.179 -119.627
(33.290) (0.539) (0.605) (33.656)

DWL as % of -1.426 0.036 -0.002 -1.393
old tax revenue (0.377) (0.006) (0.007) (0.376)

Average AGI 37158.192 37158.192 37164.410 37158.192
before the reform (282.532) (293.290) (327.539) (284.932)
Average AGI 37468.000 37149.489 37155.739 37459.103
after the reform (323.485) (292.823) (326.809) (342.463)
Note: (1) Standard errors are in parentheses.

(2) CV < 0 means a gain.
(3) Working hours are evaluated for a married woman.
(4) Tax revenues and AGI are evaluated for a family.
(5) The number of simulated repetitions R=2000.
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Table VII.: The Bush Tax Cut of 2001

Old tax regime New tax regime
Income Marginal Income Marginal
(Dollars) Tax Rate (Dollars) Tax Rate
$0-$43,850 0.15 $0-$6,000 0.10
$43,850-$105,950 0.28 $6,000-$43,850 0.15
$105,950-$161,450 0.31 $43,850-$105,950 0.25
$161,450-$288,350 0.36 $105,950-$161,450 0.28
$288,350+ 0.396 $161,450-$288,350 0.33

$288,350+ 0.35

2.6. Application Two: The 2001 Bush Tax Cut

In the second application of my estimation methodology, I consider the welfare change

and the deadweight loss for a married woman due to the Economic Growth and Tax

Reconciliation Act of 2001 (the Bush tax cut). Table (VII) presents the tax regimes

before and after the Bush cut. I consider only the changes in marginal tax rates.

Since the changes are phased in, I use the rates after 2006 when all changes are fully

implemented.

Similar to the application in section (2.5), the budget set of a married women is

constructed by considering four types of income taxes—the federal and state income

taxes, payroll tax, and the EITC program. Compared to the year 1983, the income

taxes changed significantly in the year 2000. For a detailed description of the state

income tax, see the 2001 state tax handbook. In 2006, workers paid 6.2% of their

earned income (up to $76,200) for the social security tax. All earnings were subject to

Medicare’s Hospital Insurance tax (1.45%). Table (VIII) shows the EITC parameters

in 2000. A family without a child was also eligible for EITC if the family income is

very low. The tax credits for a family with one or more children were quite generous.

I use the data set from the PSID of 2001. The data pertain to the year 2000. The
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Table VIII.: The EITC Table in 2000

No child
Earned income (x) Stage Credit
$0-$4,610 phase in 7.65%*x
$4,610-$5,770 plateau $352.665
$5,770-$10,380 phase out $352.665-7.65%*(x-5,770)
$10,380+ no credit $ 0

One child
Earned income (x) Stage Credit
$0-$6,920 phase in 34%*x
$6,920-$12,690 plateau $2352.8
$12,690-$27413 phase out $2352.8-15.98%*(x-12,690)
$27,413+ no credit $ 0

More than one child
Earned income (x) Stage Credit
$0-$9,720 phase in 40%*x
$9,720-$12,690 plateau $3888
$12,690-$31,152 phase out $3888-21.06%*(x-12,690)
$31,152+ no credit $ 0
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criterion for data exclusion is similar to the above application except that I restrict

the hourly earning for either spouse in the range between $1 and $70. This leaves us

with 1,166 observations. The demographic variables are chosen almost the same as

in the above application except that the number of children less than 6 years old is

replaced with the age of the youngest child17. In addition, the latent wage rates of

nonparticipating wives are imputed using Heckman’s sample selection procedure (see

Appendix B).

The parameter estimates of the structural labor supply are listed in Table (IX).

Both the likelihood ratio test and the AIC model selection support the model with

K = 2. One interesting aspect of the estimates is the small standard deviation of the

heterogeneity of preference for labor.

The estimates of welfare effects are listed in Table (X). The model with K = 2

and the model with K = 3 offer similar estimates of welfare effects. The Bush tax cut

reduced the government revenue but encouraged married women to work more hours

(not statistically significant). The policy benefited an average family and reduced the

deadweight loss.

2.7. Summary

In this essay, I estimate labor supply and exact welfare change under nonparamet-

rically specified preference and nonconvex piecewise-linear budgets. Different from

Blomquist and Newey (2002), my estimation method can handle nonconvex budget

sets; different from Soest et al, my method can handle measurement errors in working

hours. My estimation starts from a indirect utility function from which the derivation

of uncompensated labor supply involves a differentiation rather than an integration.

17If no child is in a family, the value of this variable is assigned 18.
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Table IX.: Estimates of Labor Supply with Flexible Preferences (2000)

2nd Order 3rd Order 4th Order
ση 97.609 80.975 82.351

(828.415) (829.424) (905.074)
constant 22.905 32.379 31.891
Age of the youngest child 66.714 67.153 67.135

(10.111) (9.258) (20.614)
Education 44.539 47.281 52.636

(24.763) (11.631) (26.251)
Log of yearly mortgage payment 89.838 89.949 90.562

(17.355) (16.879) (29.848)
Bad health -1034.941 -1029.143 -1030.921

(69.656) (73.791) (345.952)
Indirect Utility Function
w 17.118 17.563 27.695

(325.583) (191.432) (663.198)
w2 12.969 9.021 4.401

(6.695) (5.297) (62.008)
y2 5.228e-6 5.228e-6 5.250e-6

(1.998e-6) (2.667e-6) (1.720e-6)
w ∗ y 5.132e-4 -2.900e-3 -2.018e-3

(3.424e-3) (6.899e-3) (8.311e-3)
w3 6.242e-2 9.424e-2

(0.298) (2.413)
w2 ∗ y 1.025e-4 5.847e-5

(1.742e-4) (6.363e-4)
w2 ∗ e 6.213e-6 1.371e-5

(7.311e-3) (2.163e-2)
w ∗ y2 1.907e-8 6.954e-9

(2.606e-8) (1.912e-8)
w4 -3.828e-4

(2.576e-2)
w3y 1.379e-6

(1.575e-5)
w3e 3.040e-6

(5.691e-4)
σu 912.817 913.057 908.181

(47.449) (41.639) (45.501)
Uncompensated wage elasticity: 0.105 0.127 0.113
Log likelihood= -8313.233 -8311.479 -8311.250
Note: (1) For identification, The coefficients of y and w ∗ ε are restricted to be 1;

(2) The constant in equation (2.12) and the coefficient of w are not identified
simultaneously.
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Table X.: Welfare Effects of the 2001 Bush Tax Cut (K=2 and K=3)

2nd order 3rd order
Average working hours 1383.422 1387.154
before the reform (30.850) (46.185)
Average working hours 1386.484 1392.087
after the reform (30.772) (47.022)
Labor supply change as % of 0.222 0.354
working hours before the reform (0.158) (0.201)

Average tax revenue 20879.581 21010.172
before the reform (217.583) (368.588)
Average tax revenue 19915.736 20063.669
after the reform (209.158) (356.817)
Tax revenue change as % of -4.616 -4.505
old tax revenue (0.089) (0.117)

Average CV -1003.940 -1014.139
(17.809) (26.544)

CV as % of -4.808 -4.826
old tax revenue (0.043) (0.049)

Average DWL -40.094 -67.636
(19.828) (27.335)

DWL as % of -0.192 -0.321
old tax revenue (0.094) (0.128)

Average AGI 84253.832 84564.388
before the reform (531.068) (896.025)
Average AGI 84349.025 84728.338
after the reform (552.023) (935.728)
Note: (1) Standard errors are in parentheses.

(2) CV < 0 means a gain.
(3) Working hours are evaluated for a married woman.
(4) Tax revenues and AGI are evaluated for a family.
(5) The number of simulated repetitions R=2000.
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This facilitates building the flexible preferences into a fully structural model, and also

welfare calculation.

I apply my method to study the 1986 tax reform and 2001 Bush tax cut. I

estimate the labor supply model using PSID data of 1984 and 2001. My estimates

show that a correct specification of preferences and an accurate approximation of the

budget sets are vital to the estimation of exact welfare effects, particularly of the

DWL. Convexifying the budgets sometimes results in misleading conclusions in the

welfare evaluation particularly when the relevant policies are regressive. As such,

incorrectly specified preferences may lead to an understate or overstate of the size of

DWL.
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CHAPTER III

A RESOLUTION TO EQUITY PREMIUM, RISK-FREE RATE, AND CAPITAL

STRUCTURE PUZZLES

3.1. Introduction

In this essay, I address the equity premium puzzle, risk-free rate puzzle, and capital

structure puzzle by examining a large, overlapping-generations and consumption-

based asset pricing model. One novelty is that it explains the asset pricing puzzles

using hump-shaped life-cycle consumption. I show that the equity premium puzzle

arises primarily from the aggregation of hump-shaped life-cycle consumption. The

stochastic discount factor constructed with per capita consumption and utility func-

tions of micro-level agents is typically not orthogonal to the market excess return

rate. To force the orthogonality condition of a representative agent model to hold

generally involves an artificial specification of preferences which do not reflect the

behaviors and risk attitudes of realistic micro-level agents. The risk-free rate is much

smaller than that in a representative agent model because a portion of individuals in

my model save for their future lives while all the individuals in a representative agent

model typically prefers to borrow in a growing economy. Another novelty is that the

capital structure is endogenously determined by investors hedging against risks. The

endogenously determined leverage generates an even larger equity premium than a

fixed leverage.

The hump-shaped life-cycle consumption exhibits a good performance in resolv-

ing the asset pricing puzzles. I maintain the traditional rational expectation frame-

work and adopt the simple constant relative risk averse (CRRA) utility function. The

baseline model with a degree of risk aversion 1.2 generates an equity premium as high
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as 4% and a risk-free rate as low as 0.7%. Also, the model performs very well in

explaining the formation of capital structure. In the baseline model, the calibrated

debt-to-equity ratio is around 0.5. Equivalently, the calibrated debt-to-capital ratio

is around 0.33. They are consistent with the empirical results.

The best known empirical failures of consumption-based asset pricing models1 are

the equity premium puzzle and the risk-free rate puzzle. Mehra and Prescott (1985)

investigate U.S. data from 1889 to 1978 and find that the mean annual premium of

equity return over the riskless rate was around 6% which is too large to be justified by

the standard Arrow-Debreu model with a plausible degree of risk aversion. In other

words, stocks are not sufficiently riskier than Treasury bills to explain the spread in

their returns. This is the well-known equity premium puzzle. In the same paper,

Mehra and Prescott point out that the real interest rate of 0.8% is too low to be

explicable in their model. Weil (1989) terms the low interest rate as a puzzle because

it cannot be justified by his representative agent model with a plausible degree of

risk aversion and an arbitrary level of inter-temporal elasticity of substitution. These

asset pricing puzzles represent large gaps in our understanding of macroeconomy (see

Kockerlakota 1996).

In the past two decades, numerous ideas were presented to generate a high equity

premium or low risk-free rate. However, more and more economists agree that it

is not sufficient for resolving the asset pricing puzzles to build a model capable of

generating reasonable asset return rate. A convincing solution must explain why

the Euler equations are rejected in an Econometric test. A large volume of literature,

including Hansen and Singleton (1982), Grossman, Melino, and Shiller (1987), Hansen

and Jagannathan (1991), Ferson and Constantinides (1991), and Kockerlakota (1996)

1See Merton (1971, 1973), Rubinstein (1976), Lucas (1978), Breeden (1979), and Cox,
Ingersoll, and Ross (1985).
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report the rejections.

Euler equations are associated with four classes of factors including consumption

paths, preferences, probability distributions of asset returns, and other elements such

as market incompleteness and imperfections. I argue that the consumption path is

responsible for the rejections of Euler equations. Most models in the literature are

based on a representative agent model with per capita consumption. However, from

the literature of life-cycle studies, a more realistic, micro-level consumer’s consump-

tion curve is hump-shaped, which is in sharp contrast to the stochastically grow-

ing consumption curve of an individual who infinitely lives in a representative agent

model. Since the consumption growth is the basic element of pricing kernels, the pric-

ing equations derived from a representative agent model with per capita consumption

may not reflect a realistic consumer’s investment behavior and risk attitudes.

The existing literature has intensively explored virtually all the factors except

for consumption paths. However, puzzles are still unresolved. One line of work in the

literature specifies alternative preferences.2 Despite the fact that it produces fruitful

results, altering utility functions is always under suspicion. More importantly, the

new preferences designed for a representative agent may not reflect the behaviors

and risk attitudes of realistic micro-level agents. Further, this line of research by

its nature is unable to answer why the simple CRRA utility function and rational

expectation theories fail to explain the asset returns but work pretty well in other

areas such as real business cycle. Another line of literature modifies the probability

distributions of asset returns. Reitz (1988), Barro (2006) and Barro (2009) argue that

2Typically, researchers adopt utility with habit persistence or non-expected utility. For
habit persistence, see Abel (1990), Boldrin, christiano and Fisher (2001), Campbell and
Cochrane (1999), Constantinides (1990) and Ferson and Constantinides (1991). For non-
expected utility theories, see Benartzi and Thaler (1995), Epstein and Zin (1989, 1991) and
Weil (1989).
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rare disasters explain a large portion of the equity premium. However, the calibrated

degree of risk aversion is still too large to be true. Still a third line of literature tries

to use market incompleteness and/or market imperfections3 to explain asset pricing

puzzles. Unfortunately, it generally lacks success in explaining the equity premium

puzzle (see Kockerlakota 1996). The recent work by Constantinides, Donaldson, and

Mehra (2002) and Storesletten, Telmer, and Yaron (2007) find that life-cycle features

are useful to generate a high equity premium.4 But their focus still is on how to

generate reasonable asset return rate, but not on how to address the rejections of

Euler equations.

Though the choice of consumption path accounts for the key problems of asset

pricing models, it does not imply a high equity premium. In my model, the high

equity premium is related to an endogenously determined capital structure. It is well

known that a fixed leverage is able to generate a large equity premium. The literature

includes Abel (1999), Barro (2006), Benninga and Protopapadakis (1990), Chan and

Kogan (2002), Constantinides (1990), Constantinides, Donaldson, and Mehra (2002),

Ebrahim and Mathur (2001), Jermann (1998), etc. An endogenous leverage is able to

produce an even larger equity premium. In my model, the firm borrows more as the

expected system growth rate is high or the interest rate is low; it borrows less as the

expected growth rate is low or the interest rate is high. Thus, the total capital return

3For example, Aiyagari and Gertler (1991), Alvarez and Jermann (2000), Attanasio,
anks, and Tanner (2002), Bansal and Coleman (1996), Basak and Cuoco (1998), Brav,
Constantinides and Geczy (2002), Cogley (2002), Constantinides and Duffie (1996), Dan-
thine, Donaldson, and Mehra (1992), Detemple and Serrat (2003), He and Modest (1995),
Heaton and Lucas (1996, 1997, 2000), Jacobs (1999), Krusell and Smith (1998), Lucas
(1994), Luttmer (1996), Mankiw and Zeldes (1991), Mankiw (1986), Marcet and Singleton
(1999), McGrattan and Prescott (2000,2001), Telmer (1993), Vissing-Jorgensen (2002), and
Zhou (1999).

4They employ a 2 or 3-period overlapping generations model to incorporate life-cycle
features. A common characteristic of these models is that aggregate risks concentrate on
older agents so that the older generation demands a high equity premium.
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rate and the stock return rate is larger than those acquired with a fixed leverage.

In the literature, the determination of capital structure is puzzling. Myers (1984)

terms this as the capital structure puzzle5. Modigliani and Miller (1958) argue that

the capital structure is irrelevant for a firm to maximize its value. Though this

theoretical result is widely accepted, it is not helpful for our understanding of asset

pricing. A good knowledge of the determination of capital structure is crucial for us

to address the equity premium puzzle because the choice of debt level by the firm

affects the dividend flow of its stocks and consequently stock returns.

Different from the literature, the capital structure in my model is determined

by investors rather than the management of firms. Economists typically assume that

the management of a firm determines the capital structure by optimizing a single

objective function, say, the firm’s value. However, from the perspective of corporate

governance, the management is appointed or dismissed by the owners. The decision

of the management is subject to the owners. A single objective, whatever it is, may

never be agreed to by heterogenous owners whose interests are typically in conflict.

For example, a young investor may weight more of future development of the firm

and prefer the management to borrow more and distribute less dividends. However,

an aged investor may do the opposite. As a matter of fact, financing decision is an

optimization problem with multiple objectives. In my model, the owners of a firm are

agents of overlapping generations who maximize their own life-time utility. I find that

the free financial market is a natural way to reconciling the multiple and conflicting

objectives. In the equilibrium, the total bond held by the consumers are equal to

the debt of the firm. In sum, I study the determination of capital structure in the

framework of asset pricing and the capital structure is essentially determined by the

5Three popular theories about the determination of capital structure are the trade-off
theory, pecking order theory, and the theory of agency costs.
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investors.

3.2. Motivation

The key problems of asset pricing models are the unanimous rejections of Euler equa-

tions. In this section, I offer a motivation for the usefulness of hump-shaped life-cycle

consumption curve in correcting for the rejections.

Kocherlakota (1996) illustrates that the equity premium puzzle and risk-free rate

puzzle are awfully robust by testing the Euler equations:

Et

[
β
c−γt+1

c−γt

(
Pt+1 +Dt+1

Pt
−Rf

t

)]
= 0, (3.1)

and

Et

[
β
c−γt+1

c−γt
Rf
t

]
= 1, (3.2)

where γ is the degree of risk aversion in a CRRA utility function, β the constant

discount factor, and Pt, Dt, R
f
t , and ct respectively denoting the price of risky assets,

dividend, gross risk-free rate and consumption at time t. Econometric tests indicate

that no appropriate γ makes the above two Euler equations hold at the same time.6

The following simple example may reveal that the aggregation of life-cycle consump-

tion across different generations accounts for the rejections of Euler equation tests.

Suppose agents in an economy live for three period. They are endowed with CRRA

preferences. Their degree of risk aversion is γ. Let M1 = β1
c−γ2,t+1

c−γ1,t

and M2 = β2
c−γ3,t+1

c−γ2,t

be the stochastic discount factors for the first and second generations, where β1 > 1,

β2 < 1, and ci,t denotes the consumption of the i-th generation at time t. In their

first period, they value more of consumption in the next period than current con-

6A large γ may make the first Euler equation hold, but the second one will be rejected;
a small γ may make the second Euler equation hold, but fails the first equation.
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sumption; In their second period, they value more of current consumption than that

in the next period. If β1 and β2 are far away from 1, I have that Et(c2,t+1) > c1,t and

Et(c3,t+1) < c2,t. That is, the life-cycle consumption curve is hump-shaped. At the

equilibrium, two stochastic discount factors M1 and M2 are orthogonal to the excess

return rate
(
Pt+1+Dt+1

Pt
−Rf

t

)
. Let c̄t = (c1,t + c2,t + c3,t)/3 be the per capita con-

sumption which is apparently much smoother than the life-cycle consumption. The

term
c̄−γt+1

c̄−γt
is generally not orthogonal to the excess return rate. It might be possible

to construct a stochastic discount factor orthogonal to the excess return rate based

on the per capital consumption. But, the degree of risk aversion may not be γ or

the utility function for the aggregate agent will not be of CRRA class. Therefore, a

representative agent model may never correctly identify the behaviors of micro-level

agents with a realistic life-cycle consumption.

3.3. The Model

I construct an overlapping generations model with a pure exchange economy. The

economy is similar to those studied by Lucas (1978) and Mehra and Prescott (1985).

Two distinctions are (1) that consumers are equipped with micro-level life-cycle fea-

tures, and (2) that I introduce an income distributor — the firm.

3.3.1. Consumers

Consider an economy with overlapping generations of agents who live a maximum of

I = 75 periods, with ages denoted by i ∈ I ≡ {1, . . . , I}. Agents can die earlier.

The probability of surviving between age i and i + 1 is denoted by si, with sI = 0.

The unconditional probability of being alive at age i is s(i) =
∏i−1

j=1 sj, with s1 = 1.

Assume that the measure of newly-born agents is fixed. The size of the population
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and the sizes of different cohorts do not change over time. I normalize the population

size to 1. Then the size of agents at age i is µi = s(i)∑I
i=1 s

(i) .

An agent born at time t wishes to maximize the lifetime expected utility,

Et

{∑
i∈I

βi−1s(i)U(ci,t+i−1)
}
, β > 1, (3.3)

where ct is a stochastic process of consumption of a perishable consumption good, β is

a discount factor, U(·) is an instantaneous utility function, and E{·} is an expectation

operator. The instantaneous utility function is restricted to be of the constant relative

risk aversion class,

U(c) =
c1−γ − 1

1− γ
, (3.4)

where γ measures the degree of relative risk aversion.

This lifetime utility function has been studied by José-Vı́ctor Ŕıos-Rull (1996).

Both β and si’s govern the shape of the life-cycle consumption curve. I restrict β to be

larger than 1, which implies that agents value future consumption more than today’s

consumption. When agents are young, si’s are close to 1. The growth in consumption

is determined primarily by β. This growing consumption when agents are young is

consistent with the life-cycle literature. When agents are old, the survival rates si’s

decrease towards 0, and the values of the sequence βi−1s(i) reduce to a number less

than 1. Therefore, old agents value future consumption less, and consumption is

decreasing with age.

The first generation at each period follows a social convention to chooses the

consumption level. The convention is formulated as

c1,t = ρc20,t, 0 < ρ < 1. (3.5)

In other words, the first generation pegs to the consumption of the twentieth gener-
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ation. This is similar to the idea of habit formation. But it is a social habit rather

than an individual habit.

Agents are endowed with one unit of labor. Let εi denote an age-specific and

exogenously given productivity parameter. The competitive market wage rate at time

t is wt. Agents make full use of labor. Thus, the labor income of an agent aged i at

time t is εiwt.

Agents can invest in stocks and one-period riskless bonds7. Let Pt denote the

ex-dividend price of the stock at time t, and Dt the dividend. The price of one unit

of bond is 1. The bond claims a risk-free payoff Rf
t at time t + 1. Let ai,t+i−1 and

bi,t+i−1 denote the quantity of stocks and bonds held by an age-i agent born at time t.

An agent may die leaving stocks and bonds behind. I assume that consumers of the

newly-born generation equally inherit all the unclaimed assets. Let a0,t−1 and b0,t−1

denote the inherited securities by an agent, then

a0,t−1 =

∑I−1
i=1 µiai,t−1(1− si)

µ1

, (3.6)

and

b0,t−1 =

∑I−1
i=1 µibi,t−1(1− si)

µ1

. (3.7)

7Riskless investment technology must come from an institutional arrangement. Notice
that a riskless apple tree does not exist In Lucas’ world. The one-period return rate, from
time t to t+1, of the i-th apple tree is defined as ri,t+1 = pi,t+1+di,t+1

pit
. If the return rate of the

tree is riskless, it is necessary that the numerator pi,t+1 +di,t+1 be without uncertainty con-
ditional on all the information up to time t. However, this is impossible. Let us consider the

pricing equation of the i-th apple tree at time t+1: pi,t+1 = Et+1

[∑∞
j=1

βjU
′
(ct+1+j)

U ′ (ct+1)
dt+1+j

]
.

Even if the future output process {di,t+1, di,t+2, . . .} is certain, the consumption process
{ct+1, ct+2, . . .} may be still uncertain. The stochasticity of the consumption process
cs =

∑n
i=1 dis (s ≥ t + 1) is attributed to the randomness of other apple trees’ output.

Therefore, pi,t+1 is stochastic. So is the return rate ri,t+1. Particularly, the trees producing
a constant output at each time are not riskless. A riskless apple tree, if it exists, must live
for no more than one period. At the beginning of next period, it produces a certain amount
of apples and dies. Obviously, this tree does not exist at the steady-state equilibrium.
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Therefore, the life-time budget constraint for an agent born at time t is:

ci,t+i−1 =εiwt+i−1 + ai−1,t+i−2(Pt+i−1 +Dt+i−1) + bi−1,t+i−2R
f
t+i−2

− ai,t+i−1Pt+i−1 − bi,t+i−1, i ∈ I .

(3.8)

At each period, I have 2I − 2 Euler equations:

1 = Et

[
βsic

−γ
i+1,t+1

c−γi,t

]
Rf
t , (i = 1, . . . , I − 1), (3.9)

Pt = Et

[
βsic

−γ
i+1,t+1

c−γi,t
(Pt+1 +Dt+1)

]
, (i = 1, . . . , I − 1). (3.10)

I prohibit consumers from short-selling, i.e. ai,t ≥ 0 (∀i ∈ I ,∀t)8. Also, con-

sumers are not allowed to borrow after retirement. Suppose I1 is the retirement age.

Thus, I restrict bi,t ≥ 0 (I1 + 1 ≤ i ≤ I,∀t). If the constraint is not binding, the Euler

equation (3.9) or (3.10) holds. Otherwise, ai,t or bi,t is equal to zero. Allowing for

constraints, the Euler equations (3.9) and (3.10) are upgraded to the following:

Et

[
βsi

(
ci+1,t+1

ci,t

)−γ]
Rf
t − 1 = 0, (i = 1, . . . , I1), (3.11)

bi,t

{
Et

[
βsi

(
ci+1,t+1

ci,t

)−γ]
Rf
t − 1

}
= 0, (i = I1 + 1, . . . , I − 1), (3.12)

ai,t

{
Et

[
βsi

(
ci+1,t+1

ci,t

)−γ
(Pt+1 +Dt+1)

Pt

]
− 1

}
= 0, (i = 1, . . . , I − 1). (3.13)

3.3.2. The Firm and Income Distribution

A competitive firm is endowed with yt consumption good at time t. I assume that the

growth rate of the endowment λt+1 = yt+1

yt
follows a two-state Markov chain process,

8The short-selling constraint is not binding in my calibration.
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with transition probabilities given by

φij = Prob{λt+1 = λj|λt = λi}, (3.14)

where i, j ∈ {1, 2}, and
∑2

j=1 φij = 1, ∀i.

The firm has outstanding one unit of equity share which is perfectly divisible.

Also, the firm issues one-period bonds which cost 1 at time t and promise a gross

interest rate Rf
t at the beginning of time t + 1. The competitive firm takes Rf

t as

given.

The firm acts as an income distributor in the economy. It distributes a fixed

proportion, α, of the endowment yt to the owners of labor9. The firm pays the

matured bonds Bt−1R
f
t−1 at time t. Now that the consumption good is perishable,

the firm keeps no consumption good. All the remaining endowment, together with

the revenue from issuing new bonds, Bt, is distributed to the owners of the equity

shares. Thus, the dividend Dt is

Dt = (1− α)yt −Bt−1R
f
t−1 +Bt. (3.15)

I term equation (3.15) as the income distribution equation.

In this pure exchange economy, there is no physical capital. But this does not

prevent us from studying the capital structure, since the observed ratio Bt
Pt

on the

consumer side is equal to the debt-to-equity ratio on the firm side. Considering

physical capital and production does not produce any new economic insight, but only

complicates the computation. 10

9The proportion of labor income is exogenously specified. Generally speaking, it is
determined by the production function, say, Cobb-Douglas function.

10In an economy with production, it is required to assume that the management maxi-
mizes profits. This extra assumption can help to pin down the quantity of physical capital.
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The income distribution equation is also the budget constraint of the firm. The

firm’s choice variable is bond, Bt or dividend Dt. The assumption that the consump-

tion good is perishable enables us to focus on only the policy of bond issuing. The

dividend policy is immediately implied by the policy of bond issuing.

The bond issuing changes the the probability distribution of the stock return. A

rise (fall) of bond issued, Bt, increases (decreases) the current dividend, but decreases

(increases) future payoffs of stocks. Thus, in my model, the probability distribution

of the stock return is endogenously determined.

I assume that the management of the firm prefer to borrow a maximum amount of

risk-less funds which are available in the market. The supply of the bond is perfectly

elastic.

3.3.3. Equilibrium

In the equilibrium, four markets including the labor market, two asset markets, and

the good market clear. We have,

I∑
i=1

µiεiwt = αyt, (3.16)

I−1∑
i=1

µiai,t = 1, (3.17)

I−1∑
i=1

µibi,t = Bt, (3.18)

and
I∑
i=1

µici,t = yt.
11 (3.19)

At each time t, the dynamic system has 3I unknown variables, including Pt, R
f
t ,

11It is easy to verify that equation (3.19) is redundant given the income distribution
equation (3.15).
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Dt, ai,t,(i = 1, 2, . . . , I − 2), bi,t,(i = 1, 2, . . . , I − 1), and ci,t,(i = 1, 2, . . . , I). Also,

it has 3I restrictions, including 2I − 2 Euler equations (3.11) – (3.13), I number of

budget constraints, the equation (3.5) and the income distribution equation (3.15).

Thus, the solution of the dynamic system can be determined.

3.3.4. Transformation to a Stationary System

The solutions of Pt, R
f
t , ai,t(i = 1, . . . , I−2) and bi,t(i = 1, . . . , I−1) can be expressed

as functions of the states including the endowment yt, its growth rate λt, and the

income distribution structure inherited from the previous period

(a1,t−1, . . . , aI−2,t−1, b1,t−1R
f
t−1, . . . , bI−1,t−1R

f
t−1).

Let

Pt = P (a1,t−1, . . . , aI−2,t−1, b1,t−1R
f
t−1, . . . , bI−1,t−1R

f
t−1, λt, yt), (3.20)

Rf
t = Rf (a1,t−1, . . . , aI−2,t−1, b1,t−1R

f
t−1, . . . , bI−1,t−1R

f
t−1, λt, yt), (3.21)

ai,t =ai(a1,t−1, . . . , aI−2,t−1, b1,t−1R
f
t−1, . . . , bI−1,t−1R

f
t−1, λt, yt),

(i = 1, 2, . . . , I − 2),

(3.22)

bi,t =bi(a1,t−1, . . . , aI−2,t−1, b1,t−1R
f
t−1, . . . , bI−1,t−1R

f
t−1, λt, yt),

(i = 1, 2, . . . , I − 1).

(3.23)

The income distribution structure should be stationary. As the endowment yt

is non-stationary, it is inferred that Dt, Bt, and bi,t (i = 1, 2, . . . , I − 1) should be

proportional to yt up to a bounded functional. Considering that the risky return rate

Pt+1+Dt+1

Pt
is a bounded functional, we infer that Pt is also proportional to yt up to a

bounded functional. Let Pt = P̃tyt, bi,t = b̃i,tyt,(i = 1, 2, . . . , I − 1) and Dt = D̃tyt.

Thus,

Dt = D̃tyt =

[
(1− α)−

B̃t−1R̃
f
t−1

λt
+ B̃t

]
yt. (3.24)
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The unknown functionals can be expressed as follows:

Pt = P̃ (a1,t−1, . . . , aI−2,t−1, b̃1,t−1R
f
t−1, . . . , b̃I−1,t−1R

f
t−1, λt)yt, (3.25)

Rf
t = R̃f (a1,t−1, . . . , aI−2,t−1, b̃1,t−1R

f
t−1, . . . , b̃I−1,t−1R

f
t−1, λt), (3.26)

ai,t =ãi(a1,t−1, . . . , aI−2,t−1, b̃1,t−1R
f
t−1, . . . , b̃I−1,t−1R

f
t−1, λt),

(i = 1, 2, . . . , I − 2),

(3.27)

bi,t =b̃i(a1,t−1, . . . , aI−2,t−1, b̃1,t−1R
f
t−1, . . . , b̃I−1,t−1R

f
t−1, λt)yt.

(i = 1, 2, . . . , I − 1).

(3.28)

Define πi ≡ αεi∑I
i=1 µiεi

. Then labor income of age-i agent born at time t is

εiwt+i−1 = πiyt+i−1. The agent’s life-time budget constraint becomes

ci,t+i−1 =πiyt+i−1 + ai−1,t+i−2(Pt+i−1 +Dt+i−1) + bi−1,t+i−2R
f
t+i−2

− ai,t+i−1Pt+i−1 − bi,t+i−1, i ∈ I .

(3.29)

Let ci,t = c̃i,tyt. The budget constraint (3.29) now becomes

c̃i,t+i−1 =πi + ai−1,t+i−2(P̃t+i−1 + D̃t+i−1) +
b̃i−1,t+i−2R

f
t+i−2

λt+i−1

− ai,t+i−1P̃t+i−1 − b̃i,t+i−1, i ∈ I .

(3.30)

Substituting (3.15), (3.25) and (3.30) into (3.11) – (3.13), the Euler equations

become

Et

[
βsiλ

−γ
t+1

(
c̃i+1,t+1

c̃i,t

)−γ]
Rf
t − 1 = 0, (i = 1, . . . , I1), (3.31)

b̃i,t

{
Et

[
βsiλ

−γ
t+1

(
c̃i+1,t+1

c̃i,t

)−γ]
Rf
t − 1

}
= 0, (i = I1 + 1, . . . , I − 1), (3.32)

ai,t

Et
βsiλ1−γ

t+1

(
c̃i+1,t+1

c̃i,t

)−γ (P̃t+1 + D̃t+1

)
P̃t

− 1

 = 0, (i = 1, . . . , I − 1).

(3.33)
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3.4. Calibration

3.4.1. Parameters

The technology parameters follow those derived by Mehra and Prescott (1985). Mehra

and Prescott observe that a two-state Markov chain with λ1 = 1.054, λ2 = 0.982,

φ11 = φ22 = 0.43 and φ12 = φ21 = 0.57, fairly well approximates the annual growth

rate of per capita consumption over the period 1889-1978. The labor share of income

α is set to be 0.7. It is consistent with the estimation by Alan B. Krueger (1999) and

Douglas Gollin (2002).

The labor efficiency εi’s are listed in Table (XI). The labor efficiency of males

and females from age 21 to 60 is adopted from G. D. Hansen (1993). I assume

that the agents enter my model at the age of 21 and retire at age 60 (I1 = 40).

After retirement, the efficiency is set to be 0. In the calibration, I apply the average

efficiency of males and females. The survival rates si’s are based on U.S. life table of

1901. The maximum age is set to be 95 (I = 75).

Table XI.: Life-cycle Labor Efficiency

Age 21-25 26-35 36-45 46-55 56-60 61-95
Average 0.735 1.015 1.135 1.130 1.085 0

3.4.2. Computation

The computation of a large-scale overlapping generations model with aggregate un-

certainty is challenging. Since the portfolios of financial assets across generations have

to be included as state variables in the argument list of endogenous choice functions,

one faces a curse of dimensionality as the life span of agents increases. I provide an
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infeasible Taylor series approximation to show the difficulty in computation. Then,

I present a “reduced-form” numerical solution. I express all the unknown variables

as functions of current and past exogenous state variables which drive the whole dy-

namic system. A feasible solution is to approximate Euler equations using finite latest

exogenous state variables.

The procedure of Taylor series approximation is as follows. First, I introduce

separate functionals for different values of λt’s. Hence, P̃ (. . . , λt) is decomposed into

two functionals: P̃1 when λt = λ1 and P̃2 when λt = λ2. Similarly, R̃f (. . . , λt) is

decomposed into R̃f
1 and R̃f

2 , ãi(. . . , λt) into ãi,1 and ãi,2, and b̃i(. . . , λt) into b̃i,1 and

b̃i,2.

Second, let us approximate the unknown functionals using a first-order approxi-

mation. I recursively define

P̂1,t = xp1 · (1, â1,t−1, . . . , âI−2,t−1, b̂1,t−1R̂
f
t−1, . . . , b̂I−1,t−1R̂

f
t−1)′, (3.34)

P̂2,t = xp2 · (1, â1,t−1, . . . , âI−2,t−1, b̂1,t−1R̂
f
t−1, . . . , b̂I−1,t−1R̂

f
t−1)′, (3.35)

R̂f
1,t = xRf1 · (1, â1,t−1, . . . , âI−2,t−1, b̂1,t−1R̂

f
t−1, . . . , b̂I−1,t−1R̂

f
t−1)′, (3.36)

R̂f
2,t = xRf2 · (1, â1,t−1, . . . , âI−2,t−1, b̂1,t−1R̂

f
t−1, . . . , b̂I−1,t−1R̂

f
t−1)′, (3.37)

âi,1,t = xai,1 · (1, â1,t−1, . . . , âI−2,t−1, b̂1,t−1R̂
f
t−1, . . . , b̂I−1,t−1R̂

f
t−1)′, (i = {1, . . . , I − 2}),

(3.38)

âi,2,t = xai,2 · (1, â1,t−1, . . . , âI−2,t−1, b̂1,t−1R̂
f
t−1, . . . , b̂I−1,t−1R̂

f
t−1)′, (i = {1, . . . , I − 2}),

(3.39)

b̂i,1,t = xbi,1 · (1, â1,t−1, . . . , âI−2,t−1, b̂1,t−1R̂
f
t−1, . . . , b̂I−1,t−1R̂

f
t−1)′, (i = {1, . . . , I − 1})

(3.40)
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and

b̂i,2,t = x
′

bi,2 · (1, â1,t−1, . . . , âI−2,t−1, b̂1,t−1R̂
f
t−1, . . . , b̂I−1,t−1R̂

f
t−1)′(i = {1, . . . , I − 1}),

(3.41)

to approximate the functionals P̃1, P̃2, R̃f
1 , R̃f

2 , ãi,1(i = {1, . . . , I − 2}), ãi,2(i =

{1, . . . , I−2}), b̃i,1(i = {1, . . . , I−1}), and b̃i,2(i = {1, . . . , I−1}). In these formulas,

x’s are time-invariant coefficient vectors.

Third, I generate T observations of λt’s. Next, I pick a set of initial values for

x’s, a, b and Rf for time t = 1. Starting from t = 2, I recursively approximate

unknown functionals using (3.34) – (3.41), calculate D̂t, â0,t−1, b̂0,t−1 and ĉi,t’s based

on equations (3.24), (3.6), (3.7) and (3.30), and then compute the approximation error

of the new versions of Euler Equations (3.31) – (3.33). Let SAEa,i,t(i = 1, . . . , I −

1) and SAEb,i,t(i = 1, . . . , I − 1) denote the squared approximation errors of the

corresponding restrictions at time t. I define the mean squared approximation error

as

MSAE =
1

(T − 1)(2I − 1)

T∑
t=2

{
I−1∑
i=1

[SAEa,i,t + SAEb,i,t] + (c1,t − ρc20,t)
2

}
. (3.42)

The unknown coefficients x’s can be solved by minimizing the MSAE.

The issue of the method of Taylor series approximation is the curse of dimen-

sionality. Even the first order approximation involves an optimization problem with

4(I−1)(2I−1) (equals 47064 if I = 75) variables. It is obviously infeasible in practice.

I turn to a discrete approximation method.

The motivation of the “reduced-form” (discrete) approximation method arises

from the fact that the dynamic system is driven by the exogenous process {λt} and

each endogenous variable at time t should be a function of historical state values
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{λs, s ≤ t}. Let us define time-invariant discrete functions

P̂t = P (λt−L+1, λt−L+2, . . . , λt) (3.43)

R̂f
t = Rf (λt−L+1, λt−L+2, . . . , λt) (3.44)

âi,t = ai(λt−L+1, λt−L+2, . . . , λt), i = 1, . . . , I − 2 (3.45)

b̂i,t = bi(λt−L+1, λt−L+2, . . . , λt), i = 1, . . . , I − 1 (3.46)

to approximate the unknown functionals, where P (·), Rf(·), ai(·), and bi(·) are dis-

crete functionals taking on 2L values. I introduce a distinct variable for each value.

Therefore, the optimization problem involves (2I − 1)2L choice variables if I include

L lags to approximate each functional. Obviously, the curse of dimensionality is also

an issue for the approach of discrete approximation if L is too large. But, as L

is small, a rough approximation is feasible. My strategy is start from a rough ap-

proximation and increase the precision of approximation by adding more and more

lags. Each time I increase one more lag, the less precise solution can be the ini-

tial values of the choice variables in the extended optimization problem. For ex-

ample, if P (λt−L+1, λt−L+2, . . . , λt) = P̂ as L lags are included, the initial values of

P (λt−L = λ1, λt−L+1, λt−L+2, . . . , λt) and P (λt−L = λ2, λt−L+1, λt−L+2, . . . , λt) in the

enlarged optimization problem will be assigned to be equal to P̂ .

The detailed procedure of L-order discrete approximation is as follows. First,

pick a set of initial values for Pt, R
f
t , ai,t(i = 1, . . . , I − 2) and bi,t(i = 1, . . . , I − 1)

for all of their discrete states. Since the discrete functions are time-invariant, I au-

tomatically assign the values for Rf
t−1, ai,t−1(i = 1, . . . , I − 2), bi,t−1(i = 1, . . . , I −

1), Pt+1, ai,t+1(i = 1, . . . , I − 2) and bi,t+1(i = 1, . . . , I − 1) for all of their dis-

crete states. Second, calculate D̂t, â0,t−1, b̂0,t−1 and ĉi,t’s based on equations (3.24),

(3.6), (3.7) and (3.30), and then compute the approximation errors of Euler Equa-
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Table XII.: Calibration Results (γ = 1.2, β = 1.03, ρ = 0.7)

# of Risk-Free Risky Rate Debt-to-Capital
order V ariables MSAE Rate E(Rft ) E(Pt+1+Dt+1

Pt
) Premium Ratio E( Bt

Bt+Pt
)

1 298 1.1152e-3 1.0047 1.0493 0.0446 0.3356
3 1192 6.5306e-4 1.0070 1.0477 0.0407 0.3342
5 4768 5.6824e-4 1.0072 1.0477 0.0405 0.3353
7 19072 5.3191e-4 1.0074 1.0478 0.0405 0.3359
9 76288 5.1759e-4 1.0074 1.0478 0.0404 0.3361

tions (3.31) – (3.33). Let SAEa,i(λt−L, λt−L+1, λt−L+2, . . . , λt)(i = 1, . . . , I − 1) and

SAEb,i(λt−L, λt−L+1, λt−L+2, . . . , λt)(i = 1, . . . , I − 1) denote the squared approx-

imation errors of the corresponding restrictions if the latest historical states are

(λt−L, λt−L+1, λt−L+2, . . . , λt). I define the mean squared approximation error as

MSAE =
1

2L+1(2I − 1)

∑
λk∈{λ1,λ2},t−L≤k≤t{

I−1∑
i=1

[SAEa,i(λt−L, . . . , λt) + SAEb,i(λt−L, . . . , λt)] + (c1,t − ρc20,t)
2

}
.

(3.47)

The L-order discrete approximating functionals can be solved by minimizing the

MSAE.

3.4.3. Calibration Results

The calibration results are reported in Tables (XII)-(XVII). The degree of relative

risk aversion γ is set to be plausible: 1.2, 1.5, or 2.0. The discount factor β is set

between 1.02 and 1.05. I include up to 9 lags to approximate the unknown functions,

which involves 76, 288 variables in the optimization problem. The estimated equity

premium and debt-to-capital ratio are relatively stable as I increase the lags from 1
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Table XIII.: Calibration Results (γ = 1.5, β = 1.02, ρ = 0.83)

# of Risk-Free Risky Rate Debt-to-Capital
order V ariables MSAE Rate E(Rft ) E(Pt+1+Dt+1

Pt
) Premium Ratio E( Bt

Bt+Pt
)

1 298 1.1106e-3 1.0131 1.0548 0.0418 0.3201
3 1192 6.0381e-4 1.0162 1.0526 0.0365 0.3184
5 4768 4.9135e-4 1.0177 1.0524 0.0347 0.3229
7 19072 4.4296e-4 1.0181 1.0525 0.0344 0.3251
9 76288 4.2698e-4 1.0182 1.0525 0.0343 0.3252

Table XIV.: Calibration Results (γ = 1.5, β = 1.03, ρ = 0.8)

# of Risk-Free Risky Rate Debt-to-Capital
order V ariables MSAE Rate E(Rft ) E(Pt+1+Dt+1

Pt
) Premium Ratio E( Bt

Bt+Pt
)

1 298 1.2423e-3 1.0075 1.0512 0.0437 0.3261
3 1192 6.2926e-4 1.0101 1.0494 0.0392 0.3250
5 4768 5.3783e-4 1.0109 1.0493 0.0384 0.3276
7 19072 4.7867e-4 1.0111 1.0495 0.0384 0.3289
9 76288 4.5312e-4 1.0131 1.0500 0.0370 0.3311

to 9.

The estimated riskless rates are low, given a plausible degree of risk aversion γ

and the discount factor β. As γ = 1.2 and β = 1.03, the calibrated riskless rate

is around 0.74 percent. As γ = 1.5 and β = 1.04, the riskless rate is around 0.54

percent. In my model, the low riskless rate is primarily determined by the discount

factor β. The more individuals care about future consumption, the more they would

save. A high saving leads to a low interest rate. For example, an increase of β from 1.3

to 1.4 (γ=1.5), the riskless interest rate decreases from 1.31 percent to 0.54 percent.

Another factor influencing the level of riskless rate is the degree of risk aversion. If

individuals become more risk averse, the riskless rate may increases because they
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Table XV.: Calibration Results (γ = 1.5, β = 1.04, ρ = 0.72)

# of Risk-Free Risky Rate Debt-to-Capital
order V ariables MSAE Rate E(Rft ) E(Pt+1+Dt+1

Pt
) Premium Ratio E( Bt

Bt+Pt
)

1 298 1.1944e-3 1.0034 1.0481 0.0447 0.3305
3 1192 6.2503e-4 1.0055 1.0468 0.0413 0.3295
5 4768 5.3323e-4 1.0052 1.0470 0.0418 0.3303
7 19072 4.9246e-4 1.0053 1.0471 0.0418 0.3310
9 76288 4.7547e-4 1.0054 1.0471 0.0418 0.3312

Table XVI.: Calibration Results (γ = 2.0, β = 1.04, ρ = 0.8)

# of Risk-Free Risky Rate Debt-to-Capital
order V ariables MSAE Rate E(Rft ) E(Pt+1+Dt+1

Pt
) Premium Ratio E( Bt

Bt+Pt
)

1 298 1.2814e-3 1.0094 1.0500 0.0406 0.3370
3 1192 5.7145e-4 1.0122 1.0482 0.0360 0.3356
5 4768 4.3522e-4 1.0129 1.0479 0.0350 0.3371
7 19072 3.7867e-4 1.0131 1.0480 0.0349 0.3380
9 76288 3.5358e-4 1.0131 1.0480 0.0349 0.3383

Table XVII.: Calibration Results (γ = 2.0, β = 1.05, ρ = 0.74)

# of Risk-Free Risky Rate Debt-to-Capital
order V ariables MSAE Rate E(Rft ) E(Pt+1+Dt+1

Pt
) Premium Ratio E( Bt

Bt+Pt
)

1 298 1.3449e-3 1.0071 1.0475 0.0404 0.3443
3 1192 5.8591e-4 1.0095 1.0459 0.0365 0.3439
5 4768 4.5310e-4 1.0099 1.0459 0.0359 0.3451
7 19072 3.9572e-4 1.0100 1.0460 0.0360 0.3455
9 76288 3.7005e-4 1.0100 1.0460 0.0360 0.3458
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would demand more bonds to hedge against risks. For examples, we can make a

comparison of Tables (XII) and (XIV) and a comparison of Tables (XV) and (XVI).

The calibrated equity premium is around 4%, which is consistent with Jeremy

J. Siegel (1998)’s estimate with a larger sample from 1802 to 1998. An equity pre-

mium as high as 6 percent can be generated only if I set β to be a large number.

But the corresponding riskless rate becomes implausibly low. I conclude that the

bulk of equity premium can be explained in my parsimonious model. The residual

premium should be ascribed to other numerous factors such as rare disaster, market

incompleteness and imperfections.

The estimated debt-to-capital ratio is around 1/3, which is consistent with em-

pirical evidence in the U.S. presented by Raghuram G. Rajan and Luigi Zingales

(1995) and Ronald W. Masulis (1988). Rajan and Zingales record that the median

U.S. market debt-to-capital ratio in 1991 is 28%. Masulis reports that the debt-to-

capital ratio of U.S. firms has varied between 13% and 44% from 1929 to 1986. The

under-leverage puzzle in the literature can be explained by the fact that the equity

return rate is much larger than the riskless rate. An average individual prefers to

invest more in stocks than in bonds.

Table (XVIII) shows a cross-section snapshot of portfolio choices and consump-

tion for different cohorts. The short-selling constraint is not binding, whereas the

retirees-can-not-leverage constraint is binding. Relaxing this constraint will induce

the retirees to borrow and buy more risky assets. This reduces the leverage effect and

decreases the equity premium. Therefore, borrowing constraints matter.

3.4.4. Endogenous Leverage and Equity Premium

My calibration shows that an endogenous leverage produces an even larger premium

than a fixed leverage does. From proposition II of MM theorem, the equity premium
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Table XVIII.: Life-cycle Evolution of Portfolios and Consumption

Age 21 22 23 24 25 26 27 28 29 30
E(a) 0.854 0.760 0.634 0.703 0.735 0.750 0.574 0.556 0.560 0.707
E(b̃) 5.941 7.375 9.162 8.268 7.888 7.993 10.605 11.006 11.100 9.267
E(c̃) 0.688 0.704 0.720 0.736 0.752 0.768 0.784 0.799 0.814 0.830
Age 31 32 33 34 35 36 37 38 39 40
E(a) 0.737 0.565 0.516 0.675 0.786 0.914 0.673 0.649 0.631 0.724
E(b̃) 9.057 11.522 12.245 10.174 8.808 7.360 10.869 11.347 11.723 10.594
E(c̃) 0.844 0.859 0.874 0.888 0.902 0.916 0.930 0.943 0.956 0.969
Age 41 42 43 44 45 46 47 48 49 50
E(a) 0.754 0.795 0.875 0.999 1.037 0.989 1.039 1.055 1.116 1.195
E(b̃) 10.338 9.940 9.036 7.573 7.313 8.193 7.725 7.726 7.136 6.315
E(c̃) 0.982 0.994 1.007 1.019 1.030 1.042 1.053 1.063 1.073 1.084
Age 51 52 53 54 55 56 57 58 59 60
E(a) 1.231 1.213 1.269 1.357 1.347 1.427 1.439 1.520 1.643 1.675
E(b̃) 6.099 6.602 6.105 5.203 5.639 4.824 4.942 4.146 2.832 2.775
E(c̃) 1.093 1.103 1.112 1.121 1.129 1.136 1.142 1.147 1.152 1.156
Age 61 62 63 64 65 66 67 68 69 70
E(a) 1.685 1.663 1.697 1.672 1.639 1.615 1.579 1.538 1.497 1.448
E(b̃) 2.098 1.840 0.842 0.650 0.553 0.313 0.217 0.153 0.079 0.058
E(c̃) 1.160 1.157 1.155 1.159 1.164 1.170 1.181 1.194 1.209 1.226
Age 71 72 73 74 75 76 77 78 79 80
E(a) 1.397 1.342 1.284 1.221 1.155 1.086 1.013 0.938 0.860 0.783
E(b̃) 0.039 0.028 0.020 0.016 0.013 0.013 0.014 0.016 0.028 0.029
E(c̃) 1.245 1.267 1.291 1.316 1.339 1.360 1.373 1.378 1.373 1.354
Age 81 82 83 84 85 86 87 88 89 90
E(a) 0.705 0.626 0.545 0.471 0.406 0.325 0.227 0.221 0.183 0.140
E(b̃) 0.032 0.058 0.151 0.181 0.128 0.352 0.867 0.206 0.066 0.053
E(c̃) 1.324 1.280 1.225 1.158 1.083 1.002 0.913 0.816 0.728 0.641
Age 91 92 93 94 95
E(a) 0.104 0.071 0.043 0.010 0.000
E(b̃) 0.029 0.026 0.025 0.136 0.000
E(c̃) 0.558 0.478 0.404 0.336 0.270
γ = 1.5, β = 1.04, and α = 0.7.
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can be expressed as

Rr −Rf = (R̄−Rf )(1 +
B

P
)

where Rr, R̄, and B
P

denote the risky return rate, average return rate, and debt-

to-equity ratio respectively. Obviously, a fixed leverage is able to generate a large

equity premium. In my model, the firm adjusts the debt level, thus the leverage

ratio, according to the economy states. As follows is the correlation matrix of λt+1,

R̄t, R
f
t , Bt

Pt
, Bt and Dt+1 calibrated from the model with γ = 1.2, β = 1.03.

corr(λt+1, R̄t, R
f
t ,
Bt

Pt
, Bt, Dt+1) =



1.00 0.91 −0.03 0.13 0.13 −0.66

0.91 1.00 0.16 0.10 0.02 −0.56

−0.03 0.16 1.00 −0.35 −0.58 0.21

0.13 0.10 −0.35 1.00 0.93 −0.80

0.13 0.02 −0.58 0.93 1.00 −0.77

−0.66 −0.56 0.21 −0.80 −0.77 1.00


Intuitively, if the growth rate λt+1 is high or the risk-free rate Rf

t is low, the firm

chooses to raise the leverage ratio to increase the risky return rate; however, if the

growth rate is low or the risk-free rate is high, the firm opts to lower the ratio to

reduce the loss. Obviously, compared to a fixed leverage, the endogenous leverage

results in an even larger equity premium. In the above model,

E(R̄t) = 1.0341 > E(λt+1) = 1.0180.
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3.4.5. Robustness Checks

Another method of solving the dynamic system is to minimize the mean squared

stochastic error. Define squared stochastic errors as follows

SSEb,i =

{[
βsiλ

−γ
t+1

(
ĉi+1,t+1

ĉi,t

)−γ]
R̂f
t − 1

}2

, (i = 1, . . . , I1), (3.48)

SSEb,i = 1(b̂i,t > 0)

{[
βsiλ

−γ
t+1

(
ĉi+1,t+1

ĉi,t

)−γ]
R̂f
t − 1

}2

, (i = I1 + 1, . . . , I − 1),

(3.49)

SSEa,i = 1(âi,t > 0)


βsiλ1−γ

t+1

(
ĉi+1,t+1

ĉi,t

)−γ (P̂t+1 + D̂t+1

)
P̂t

− 1


2

, (i = 1, . . . , I − 1).

(3.50)

The mean squared stochastic error is defined as

MSSE =
1

2L+1(2I − 2)

∑
λk∈{λ1,λ2},t−L≤k≤t

I−1∑
i=1

[SSEa,i(λt−L, . . . , λt) + SSEb,i(λt−L, . . . , λt)] .

(3.51)

The estimates are very close to the results reported in Tables (XII)-(XVII).

3.5. Summary

I resolve the equity premium puzzle, the risk free-rate puzzle, and the capital structure

puzzle. In my large-scale overlapping generations model with a simple CRRA utility

function and the rational expectation, the calibrated debt-to-capital ratio and risk-

free rate are consistent with empirical evidence and the bulk of the equity premium

is accounted for.

The capital structure is endogenously determined purely by consumers’ hedg-

ing behavior. Modigliani and Miller (1958)’s capital structure irrelevance steps from

the assumption that the risk-neutral management is the decision maker of corporate
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financing. However, as I argue, the usual one single objective applied by the manage-

ment, whatever it is, is not valid to study the financing behavior of a firm. I show that

investors collectively determine the capital structure through trading assets in the fi-

nancial market. The endogenously determined capital structure is able to generate

an even larger equity premium than a fixed leverage.

The endogenous formation of capital structure might help to understand why the

CRRA utility function and rational expectation theory work well in the area of real

business cycle but not in asset pricing. Typically, the asset or capital is not divided

into the risk asset and the riskless asset in the real business cycle. In traditional asset

pricing models, this division exists but only in a conceptual level. The riskless asset

actually is not introduced in most models since the aggregate bond among consumers

at the equilibrium is zero. Correspondingly, the returns of stocks are not volatile

enough to generate a high equity premium.

Lastly, my resolution of asset pricing puzzles may help to understand why the

asset pricing puzzles are robust. The unanimous rejections of Euler equations tests

in the literature may arise from the application of per capita consumption. A test

based on longitudinal data is promising to find empirical evidence to support the asset

pricing models based on life-cycle consumption. This work is left to future research.
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CHAPTER IV

WEAK COALITION EQUILIBRIUM

4.1. Introduction

A drawback of Nash’s (1951) fundamental solution concept, non-cooperative equi-

librium, is Pareto inefficiency. The notion of Nash equilibrium assumes that each

participant is rational and acts independently. In some cases, however, players lim-

ited to individual rationality may be trapped in an inefficient outcome which can be

avoided by collaboration.

Several theories have been developed to incorporate the consideration of coali-

tional collaboration into the non-cooperative game theory. Aumann (1959) pioneers

the study of multilateral deviations by defining the concept Strong Nash equilibrium.

Bernheim, Peleg, and Whinston (1987) propose the concept of Coalition-Proof Nash

equilibrium which is widely applied in economic contexts. Assuming that the game

players are farsighted, Chwe (1994) and Mariotti (1997) consider the dynamics of

coalition formation and offer notions of Largest Consistent Set and Coalition Equi-

librium, respectively. Ambrus (2006) has recently defined a non-equilibrium theory,

Coalitional Rationalizability. These concepts and many others greatly enhance our

understanding of group behavior.

However, most existing coalition solution concepts violate the fundamental prin-

ciple of individual rationality. For example, for the well-known game of the Prisoner’s

Dilemma, the notions of Largest Consistent Set and Coalition Equilibrium predict

the dominated strategy (Don’t Confess, Don’t Confess), whereas only the strategy

(confess, confess) is individually rationalizable. The violation of the principle of indi-

vidual rationality may exclude reasonable strategies. Let us take the game in Table
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(XIX) as an example. In this game, strategies (A1, B1, C1) and (A2, B2, C2) are Nash

equilibria. The strategy (A1, B1, C1) is obviously a reasonable coalitional outcome.

Although players A and B can jointly deviate from (A1, B1, C1) to (A2, B2, C1), this

deviation is perhaps individually irrational if each individual is farsighted. The max-

imum potential gain from this deviation is 0.1, while the possible loss caused by

player C’s further deviation is 19. A convincing notion may have to retain the strat-

egy (A1, B1, C1). Unfortunately, the notion of Coalition-Proof Nash equilibrium and

the theory of Coalitional Rationalizability predict the strategy (A2, B2, C2) but com-

pletely exclude the strategy (A1, B1, C1). Further, the violation of the principle of

individual rationality may lead to the non-existence of a solution. For the game in

Table (XIX), the set of Strong Nash equilibrium is empty. In section 4.3, we will see

two examples of the non-existence of Coalition-Proof Nash equilibrium.

Table XIX.: A Modified Version of Ambrus’ Example

C1 C2
B1 B2 B1 B2

A1 20, 20, 20 0, 0, 0 A1 0, 0, 0 0, 0, 0
A2 0, 0, 0 20.1, 20.1, 0 A2 0, 0, 0 1, 1, 1

The objective of this essay is to develop a coalition concept which is in line with

the fundamental principle of individual rationality and guarantees the existence of the

solution. This is done by defining a weakening criterion of coalition-proofness that re-

quires players to deviate only when the deviation is strongly self-enforceable, i.e., cred-

ible not only within but also across coalitions. Based on the notion of within-coalition

self-enforceability derived from the concept of Coalition-Proof Nash equilibrium, I

define three new notions: cross-coalition self-enforceability, strong self-enforceability,

and Weak Coalition equilibrium. A deviation is strongly self-enforceable if it is self-
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enforceable both within the coalition and across the coalitions. I term the solution

concept as Weak Coalition equilibrium since fully farsighted players in our concept

are very cautious when considering a coalitional deviation. Weak Coalition equilib-

rium is a generalization of Coalition-Proof Nash equilibrium. All the Coalition-Proof

Nash equilibria are contained in the set of Weak Coalition equilibria which is further

a subset of Nash equilibria. Weak Coalition equilibrium exists under a very weak

condition. It exists if a Nash equilibrium exists.

This essay is organized as follows. In section 4.2, I will define the solution concept

Weak Coalition equilibrium and discuss its properties. In section 4.3, I present some

examples.

4.2. Definitions and Characterization

I assume that players in a normal form game are individually rational and fully far-

sighted. An arbiter prescribes a strategy for all the players before they simultaneously

play the game. Players can freely discuss the strategy and can coordinate to deviate.

However, players cannot make binding commitments. Introducing an arbiter helps us

understand the forthcoming concepts. But it is inessential.

I denote the normal form game as G = [I, (Si)i∈I , (Ui)i∈I ], where I = {1, 2, ..., n}

denotes a finite set of players, Si the strategy set of player i, and Ui :
∏

i∈I Si 7→ R

the payoff function of player i. A coalition J is a nonempty subset of I. Let

C = {J : J 6= ∅, J ⊆ I} denote all the possible coalitions. I call J a singleton

coalition if its size is 1, a complete coalition if its size is n. Let −J denote the com-

plement of J in I. Let CJ = {q ∈ C : q 6= J, q ⊆ J} be the set of proper sub-coalitions

of coalition J . If J is a singleton coalition, CJ = {}.1 Let SJ ≡
∏

i∈J Si, particularly

1To avoid possible confusion, I designate ∅ and {} to be the empty subsets of I and C .
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S ≡ SI . Finally, for each s−J ∈ S−J , let G/s−J denote the game induced on the

subgroup J by the actions s−J for coalition −J , i.e.,

G/s−J ≡
[
J, (Si)i∈J , (Ũi)i∈J

]
,

where Ũi : SJ 7→ R is given by Ũi(sJ) = Ui(sJ , s−J) for all i ∈ J and sJ ∈ SJ .

Let us recall the definition of Coalition-Proof Nash equilibrium. The solution

concept is recursively defined as follows.

Definition 1. (i) In a single player game G, s∗ ∈ S is a Coalition-Proof Nash equi-

librium if and only if s∗ maximizes U1(s).2

(ii) Let n > 1 and assume that Coalition-Proof Nash equilibrium has been defined

for games with fewer than n Players. Then,

(ii.a) For any game G with n players, s∗ ∈ S is self-enforceable if, for all J ∈ CI , s
∗
J

is a Coalition-Proof Nash equilibrium in the game G/s∗−J .

(ii.b) For any game G with n players, s∗ ∈ S is a Coalition-Proof Nash equilibrium if

it is self-enforceable and if there is not another self-enforceable strategy vector s ∈ S

such that Ui(s) > Ui(s
∗) for all i ∈ I.

Compared to the concept of Strong Nash equilibrium3 which implicitly assumes

that one-step coalitional deviation would always be made if each member is better

off than without deviating, Coalition-Proof Nash equilibrium requires that the devi-

ation be self-enforceable within the coalition. Alternatively, players in the concept of

Coalition-Proof Nash equilibrium are farsighted, but the farsightedness is restricted

within the coalition. I illustrate this point by offering an equivalent definition of the

2The subscript 1 is the index number of the unique player.
3A strategy s∗ ∈ S is a Strong Nash equilibrium if for all J ∈ C , there is no strategy

sJ ∈ SJ such that for every agent i ∈ J , Ui(sJ , s∗−J) > Ui(s∗).



79

concept.

Definition 2. In a game G, s∗ ∈ S is a Coalition-Proof Nash equilibrium if there is

no coalition J ∈ C such that there exists one strategy vector sJ ∈ SJ in the game

G/s∗−J such that (i) Ũj(sJ) > Ũj(s
∗
J) for all j ∈ J ; and (ii) For an arbitrary proper

sub-coalition Q ∈ CJ , sQ is Coalition-Proof Nash equilibrium in game G/s−Q, where

s = (sJ , s
∗
−J).

Definition 1 is equivalent to definition 2. If n = 1, then J = {1} and −J =

∅. Definition 2 says that there is no s1 ∈ S1 such that Ũ1(s1) > Ũ1(s∗1), which is

equivalent to saying that s∗1 maximizes Ũ1(s). Note that the proper sub-coalition of

a singleton coalition is empty and the condition (ii) of definition 2 holds. If n > 1, I

have two subcases to consider. First, when J = I ∈ C , definition 2 is equivalent to

saying that there is not another self-enforceable strategy making every player better

off. Second, when J ∈ CI , definition 2 means that s∗ ∈ S is self-enforceable.

The limited farsightedness of the notion of Coalition-Proof Nash equilibrium

can lead to violation of individual rationality. Short-sighted players may agree to

a coalitional deviation without realizing that ensuing cross-coalition deviations may

hurt them so much that they are worse off than without supporting the first deviation.

I will extend the notion of farsightedness beyond a coalition. First, I define a

sequence of within-coalition self-enforceable deviations.

Definition 3. A coalition J’s deviation from s∗ to s = (sJ , s
∗
−J) is within-coalition

self-enforceable if (i) ∀j ∈ J, Uj(s) > Uj(s
∗); (ii) for an arbitrary proper sub-coalition

Q ∈ CJ , sQ is a Coalition-Proof Nash equilibrium in the game G/s−Q.

Let s∗ →
J
s0 denote a within-coalition self-enforceable deviation by coalition

J from s∗ to s0. Within-coalition self-enforceable deviations may form a sequence.
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Denote π = {s(k−1) →
Jk
sk} as a sequence of within-coalition self-enforceable deviations.

Let l(π) denote the length of the sequence. The sequence may be infinite. For

example, within-coalition self-enforceable deviations may constitute a circle.

Since our objective is to develop a weakening of the Coalition-Proof Nash equilib-

rium, I only consider subsequent deviations which are within-coalition self-enforceable.

A deviation by coalition J may trigger a multiple of sequences of within-coalition

self-enforceable deviations. The final outcome should be one of the strategies in the

sequences. Since I assume that every player is farsighted, the final outcome should not

be the strategy from which some members forming a coalition always benefit by a co-

ordinate deviation. Therefore, the final equilibrium strategies are either the terminal

nodes in the sequences or the intermediate nodes from which all the within-coalition

self-enforceable deviations are not credible across coalitions. I assume that players

are very cautious and that the deviation by J is taken only if all members get a higher

payoff at all the possible final strategies than without moving. The cross-coalition

self-enforceability is formally defined as follows.

Definition 4. The deviation from s∗ to s0 = (sJ , s
∗
−J) by coalition J ∈ C is cross-

coalition self-enforceable, if it satisfies one of the following two conditions: (i) J is a

singleton coalition; or (ii) any subsequent sequence of within-coalition self-enforceable

deviations π = {s0 →
J1

s1, s1 →
J2

s2, s2 →
J3

s3, . . .} satisfies (a) l(π) < ∞; and (b)

∀m ∈ {0, 1, . . . , l(π)}, if sm is the terminal node or if all the within-coalition self-

enforceable deviations starting from sm are NOT cross-coalition self-enforceable, and

if the consecutive deviations sk−1 →
Jk

sk(k = 1, . . . ,m) are all cross-coalition self-

enforceable, it is the case that ∀j ∈ J , Uj(s
m) > Uj(s

∗).

I emphasize that the definition relies on a recursive argument rather than a cycli-

cal one. The definition of cross-coalition self-enforceability of a deviation recursively
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depends on the definition for all the subsequent within-coalition deviations. But the

terminal deviations in all the sequences are automatically defined. They are always

cross-coalition self-enforceable.

Condition (i) in definition (4) stems from the principle of individual rational-

ity. This restriction rules out the non-Nash-equilibrium strategies from the solution

concept which I will define based on this definition. Condition (ii.a) is necessary

due to the recursive nature of the definition. The definition of cross-coalition self-

enforceability of s∗ →
J
s0 depends on the definition of s0 →

J1

s1, which further depends

on the definition of s1 →
J2

s2, and so on. If the deviation sequence is infinite, the

definition will not be well-defined. 4

Fig. 4.: Cross-coalition Self-enforceability

The key points of this definition arise from condition (ii.b). I design an illustrative

example as in Figure (4) to interpret the ideas. If coalition J moves from s∗ to s0, the

deviation can trigger a sequence of within-coalition self-enforceable deviations which

4The restriction (ii.a) can be found in the literature, say, Mariotti (1997).
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is one of the four sequences: π1 = {s0 →
J1

s1, s1 →
J4

s4, s4 →
J8

s8}, π2 = {s0 →
J1

s1, s1 →
J5

s5, s5 →
J9

s9}, π3 = {s0 →
J2

s2, s2 →
J6

s6, s6 →
J10

s10}, or π4 = {s0 →
J3

s3, s3 →
J7

s7}. Since

the definition of cross-coalition self-enforceability of the deviation s∗ →
J
s0 recursively

depends on the definition of all the subsequent deviations, I apply the procedure of

backward induction which is common in the subgame perfection. First, the terminal

deviations s4 →
J8

s8, s5 →
J9

s9, s6 →
J10

s10, and s3 →
J7

s7 are cross-coalition self-enforceable.

This is because condition (ii) holds as no sequence of within-coalition self-enforceable

deviations can be derived from Coalition-Proof Nash equilibria s8, s9, s10 and s7. In

Figure (4), I use solid arrows to denote cross-coalition self-enforceability, while dashed

arrows indicate that the deviations are not cross-coalition self-enforceable.

Along all the sequences, we move one step backward. The deviation s1 →
J4

s4

(similarly, s1 →
J5

s5 and s0 →
J3

s3) is indicated not cross-coalition self-enforceable, which

means that ∃j ∈ J4 such that Uj(s
8) ≤ Uj(s

1). In contrast, that the deviation s2 →
J6

s6

is indicated cross-coalition self-enforceable implies that ∀j ∈ J6, Uj(s
10) > Uj(s

2).

The subsequence of deviations {s2 →
J6

s6, s6 →
J10

s10} is interesting. If the status quo is

s2, all the members in coalitions J6 and J10 together might have difficulty in reaching

an agreement moving from s2 to s10 because some members in coalition J10 may

prefer the strategy s2 to s10 and oppose the deviation. But a careful analysis reveals

that the opposition is futile. All the members in J6 are better off than keeping status

quo no matter whether the outcome is s6 or s10. The opposers in J10 know that the

members of coalition J6 always deviate. Therefore, as rational players, they should

move to s10 rather than stick to s2. However, if the deviation s2 →
J6

s6 is not within-

coalition self-enforceable, the opposers in J10 may be able to deter the deviation

from s2 to s10. This is why I confine our interest of the triggered coalitional moves

in within-coalition self-enforceable deviations rather than other types of deviations

when defining the cross-coalition self-enforceability.
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I call a deviation strongly self-enforceable if it is self-enforceable both within

the coalition and across the coalitions. Implicitly, the definition (4) assumes that

players deviate if and only if the deviation is strongly self-enforceable. This restriction

helps avoiding the possible conflict between the coalitional rationality and individual

rationality, because nobody will be worse off after this kind of deviations.

Along the sequences π1, π2, and π3, we continue to move one step backward. The

deviation s0 →
J1

s1 is cross-coalition self-enforceable. Though some members of J1 may

be worse off if the outcome is s4, s5, s8, or s9, these outcomes are not reachable as

J4 and J5 do not deviate from s1. Thus, a member j in J1 can safely get the payoff

Uj(s
1). That the deviation s0 →

J2

s2 is indicated as cross-coalition self-enforceable

implies (i) the deviations s2 →
J6

s6 and s6 →
J10

s10 are strongly self-enforceable; and (ii)

∀j ∈ J2, Uj(s
10 > Uj(s

0)). It is possible that some members in J2 are worse off than

keeping the status quo if the outcome is s6. But, s6 is not stable. All the members in

J2 will agree to the deviation s0 →
J2

s2 knowing that J6 ∪ J10 will accommodate their

actions and move from s2 to s10.

Finally, let us discuss the cross-coalition self-enforceability of the deviation s∗ →
J

s0. Starting from s0, we move forward step by step along all the solid arrows. We will

stop at either s1 or s10, which are reachable strategies. If, for all j ∈ J , Uj(s
1) > Uj(s

∗)

and Uj(s
10) > Uj(s

∗), the deviation s∗ →
J
s0 is cross-coalition self-enforceable. The

payoffs derived from the strategies s3, s4, s5, s7, s8, and s9 are irrelevant because the

deterrence by coalition J3, J4 and J5 makes these strategies unreachable.

Given the definitions of within-coalition self-enforceability and cross-coalition

self-enforceability, I can define a new solution concept, Weak Coalition equilibrium,

which is a weakening of the notion of Coalition-Proof Nash equilibrium.
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Definition 5. In a game G, s∗ ∈ S is a Weak Coalition equilibrium if there are no

strongly self-enforceable deviations.

The conciseness of the definition 5 enables us to associate it with other three

concepts: Nash equilibrium, Coalition-Proof Nash equilibrium, and Strong Nash equi-

librium. In a Nash equilibrium, there is not an individually conceivable deviation; in

a Weak Coalition equilibrium, there is not a strongly self-enforceable deviation; in a

Coalition-Proof Nash equilibrium, there is not a within-coalition self-enforceable de-

viation; in a Strong Nash equilibrium, there is not any conceivable coalition deviation.

The equilibrium requirements of the solution concepts, Nash equilibrium, Weak Coali-

tion equilibrium, Coalition-Proof Nash equilibrium, and Strong Nash equilibrium, be-

come increasingly stronger because {d | d is an individually conceivable deviation}⊆{d

| d is a strongly self-enforceable deviation}⊆{d | d is a within-coalition self-enforceable

deviation}⊆{d | d is a conceivable coalition deviation}. Therefore, in a game, we have

{e | e is a Nash equilibrium}⊇ {e | e is a Weak Coalition equilibrium}⊇{e | e is a

Coalition-Proof Nash equilibrium}⊇{e | e is a Strong Nash equilibrium}.

A Weak Coalition equilibrium always exists, if a Nash equilibrium exists in the

game. The arguments are as follows. Starting from an arbitrary Nash equilibrium s∗,

I construct sequences of with-coalition self-enforceable deviations. Two cases need to

be considered. First, if no strongly self-enforceable deviation is derived from s∗, then

s∗ is a Weak Coalition equilibrium. Second, if there is one strongly self-enforceable

deviation from s∗ to s, then the terminal node of every subsequent sequence of within-

coalition self-enforceable deviations is a Coalition-Proof Nash equilibrium, hence is a

Weak Coalition equilibrium. In sum, at least a Weak Coalition equilibrium exists in

the game.
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Definition 6. In a game G, s∗ ∈ S is an Efficient Weak Coalition equilibrium if s∗ is

a Weak Coalition equilibrium and there is not another Weak Coalition equilibrium s∗∗

such that, ∃J ∈ C , (i) ∀j ∈ J, Uj(s∗∗) > Uj(s
∗); and (ii) ∀j ∈ −J, Uj(s∗∗) ≥ Uj(s

∗).

The notion of Efficient Weak Coalition equilibrium selects Pareto-efficient strate-

gies from the set of Weak Coalition Equilibria.

4.3. Examples

In this section, I discuss a series of examples in order for the reader to gain more

insights into the notion of Weak Coalition equilibrium. I associate the examples

with the concept Coalition-Proof Nash equilibrium to justify the definition of Weak

Coalition Equilibrium.

Example 1. The Prisoner’s Dilemma

Table XX.: The Prisoner’s Dilemma

Don’t Confess Confess
Don’t Confess -2, -2 -10, -1

Confess -1, -10 -5, -5

Table (XX) presents the well-known game of the Prisoner’s Dilemma. The strat-

egy (Confess, Confess) is the unique Weak Coalition equilibrium in this game. Though

both row and column players are better off by the deviation (Confess, Confess)

−→
All P layers

(Don’t Confess, Don’t Confess), it is not within-coalition self-enforceable.

Additionally, from the status quo strategy (Don’t Confess, Don’t Confess), we can

derive two sequences of strongly self-enforceable deviations: {(Don’t Confess, Don’t

Confess) −→
Row Player

(Confess, Don’t Confess), (Confess, Don’t Confess) −→
Column Player
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(Confess, Confess)} and {(Don’t Confess, Don’t Confess) −→
Column Player

(Don’t Con-

fess, Confess), (Don’t Confess, Confess) −→
Row Player

(Confess, Confess)}.

Example 2. Ambrus’ Example

Table (XIX) in the introduction is modified from Ambrus’s example. The strate-

gies (A1, B1, C1) and (A2, B2, C2) are two Weak Coalition equilibria. The deviation

(A1, B1, C1) →
A,B

(A2, B2, C1) is not cross-coalition self-enforceable because it may

trigger the deviation (A2, B2, C1)→
C

(A2, B2, C2). The notion of Weak Coalition equi-

librium can not rule out the strategy (A2, B2, C2). Given the strategy (A2, B2, C2)

as the status quo, the deviation (A2, B2, C2) →
A,B,C

(A1, B1, C1) is in the interest of

players A and B, whereas player C may deter this deviation worrying about a further

deviation by players A and B. With an efficiency restriction, the notion of Efficient

Weak Coalition equilibrium predicts (A1, B1, C1).

Example 3. Coalitional Betrayal and Coalitional Antagonization

Table (XXI) shows a three-player game in which players are assumed to play pure

strategies. The strategies (A1, B1, C1), (A1, B2, C2) and (A2, B2, C1) are three Nash

equilibria. Given the strategy (A1, B1, C1), players B and C have a within-coalition

self-enforceable deviation from (B1, C1) to (B2, C2); given (A1, B2, C2), players

A and C have a within-coalition self-enforceable deviation from (A1, C2) to (A2,

C1); given (A2, B2, C1), players A and B have a within-coalition self-enforceable

deviation from (A2, B2) to (A1, B1). Within-coalition self-enforceable deviations

constitute a circle of cross-coalition betrayals. In this game, Coalition-Proof Nash

equilibrium does not exist because there is a within-coalition self-enforceable deviation

for all Nash equilibria. In fact, an individual player is not necessarily agree to the

first betrayal deviation if he/she anticipates there might be further deviations which

punish him/her. Therefore, the concept of Coalition-Proof Nash equilibrium violates
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the basic principle of individual rationality. Any coalitional solution concept should

treat (A1, B1, C1), (A1, B2, C2) and (A2, B2, C1) equally, in view of their symmetric

position. All of them are Weak Coalition equilibria.

Table XXI.: An Example of Coalitional Betrayal

C1 C2
B1 B2 B1 B2

A1 3, 2, 1 0, 0, 0 A1 0, 0, 0 1, 3, 2
A2 .5, .5, .5 2, 1, 3 A2 0, 0, 0 0, 0, 0

Table (XXII) shows a four-player game, in which players are assumed to play

pure strategies. The strategies (A1, B1, C1, D1), (A2, B2, C1, D1), (A1, B1, C2,

D2) and (A2, B2, C2, D2) are four Nash equilibria. Given strategy (A1, B1, C1, D1),

players C and D have a within-coalition self-enforceable deviation from (C1, D1) to

(C2, D2); given strategy (A1, B1, C2, D2), players A and B have a within-coalition

self-enforceable deviation from (A1, B1) to (A2, B2); given strategy (A2, B2, C2, D2),

players C and D have a within-coalition self-enforceable deviation from (C2, D2) to

(C1, D1); given strategy (A2, B2, C1, D1), players A and B have a within-coalition

self-enforceable deviation from (A2, B2) to (A1, B1). In this game, Coalition-Proof

Nash equilibrium does not exist because there is a within-coalition self-enforceable

deviation for all Nash equilibria. Any coalitional solution concept should treat (A1,

B1, C1, D1), (A2, B2, C1, D1), (A1, B1, C2, D2) and (A2, B2, C2, D2) equally, in

view of their symmetric position. All of them are Weak Coalition equilibria.

The games of coalitional betrayal and coalitional antagonization are two rep-

resentative examples of a circle of deviations. If the strategy space is infinite, it is

possible that distinct deviations form an infinite sequence. It is uncertain which strat-

egy in the circle or the infinite sequence will happen; we are not able to determine
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wether the first deviation will be carried out or not. Now that we aim at defining

a weak criterion, we impose restriction (ii.a) in the definition (4) to rule out these

cases.

Table XXII.: An Example of Coalitional Antagonization

D1 D2
B1 B2 B1 B2

C1 A1 2, 2, 1, 1 0, 0, 0, 0 A1 .5, 0, 0, 0 0, 0, 0, 0
A2 0, 0, 0, 0 1, 1, 2, 2 A2 0, 0, 0, 0 .5, 0, 0, 0

B1 B2 B1 B2
C2 A1 .5, 0, 0, 0 0, 0, 0, 0 A1 1, 1, 2, 2 0, 0, 0, 0

A2 0, 0, 0, 0 .5, 0, 0, 0 A2 0, 0, 0, 0 2, 2, 1, 1

Example 4. Solution Refinement

Table XXIII.: An Example of Solution Refinement

D1 D2
B1 B2 B1 B2

C1 A1 2, 2, 3, 3 0, 0, 0, 0 A1 1.5, 1.5, 4, 4 0, 0, 0, 0
A2 0, 0, 0, 0 1, 1, 7, 7 A2 0, 0, 0, 0 0, 0, 0, 0

B1 B2 B1 B2
C2 A1 0, 0, 0, 0 0, 0, 0, 0 A1 .5, .5, .7, .7 0, 0, 0, 0

A2 0, 0, 0, 0 0, 0, 0, 0 A2 0, 0, 0, 0 2, 2, 3, 3

The notion of Weak Coalition equilibrium is a good refinement of Nash set. For

example, in Table (XXIII), (A2, B2, C1, D1) is a Nash equilibrium. If the arbiter

prescribes this strategy to the players, then players A and B jointly deviate from (A2,

B2) to (A1, B1). This deviation is strongly self-enforceable. After this deviation, A

and B always get a payoff value larger than the status quo value 1. If D would not
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Table XXIV.: An Example without Solution Refinement

D1 D2
B1 B2 B1 B2

C1 A1 2, 2, 3, 3 0, 0, 0, 0 A1 .6, 1.5, 4, 4 0, 0, 0, 0
A2 0, 0, 0, 0 1, 1, 7, 7 A2 0, 0, 0, 0 0, 0, 0, 0

B1 B2 B1 B2
C2 A1 0, 0, 0, 0 0, 0, 0, 0 A1 .5, .5, .7, .7 0, 0, 0, 0

A2 0, 0, 0, 0 0, 0, 0, 0 A2 0, 0, 0, 0 2, 2, 3, 3

deviate, A and B get a payoff value 2. Even if D deviates from (D1) to (D2), the

payoff value is 1.5, which is also larger than 1. Therefore, (A2, B2, C1, D1) is not a

Weak Coalition equilibrium. However, in Table (XXIV), (A2, B2, C1, D1) is a Weak

Coalition equilibrium. If A and B move first, D deviates to D2. Then the payoff of A

will decrease to 0.6 in the end. Knowing this, player A would be irrational to agree

to deviate from (A2, B2) to (A1, B1), even though this deviation is within-coalition

self-enforceable.

4.4. Summary

I recursively define a concept Weak Coalition equilibrium in which coalitional ratio-

nality is reconciled with the fundamental principle of individual rationality. Starting

from an assignment prescribed by an arbiter, the game players who can freely discuss

their strategies but cannot make binding commitments agree with a coalition to coor-

dinate and deviate only when the deviation is strongly self-enforceable, i.e., credible

not only within but also across coalitions. Weak Coalition equilibrium is a general-

ization of Coalition-Proof Nash equilibrium. All the Coalition-Proof Nash equilibria

are contained in the set of Weak Coalition equilibria which is further a subset of Nash

equilibria. A Weak Coalition equilibrium exists if a Nash equilibrium exists.
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CHAPTER V

SUMMARY

Three essays show that microfoundations are important not only in the macroeco-

nomic analysis, but also in the analysis of welfare, finance and coalition etc. Economists

have a tendency to oversimplify the economic structures. On the one hand, the

simplification helps us to capture the key logic underlying complex economic phe-

nomena. On the other hand, economists may neglect some pivotal microeconomic

factors. Many puzzles in the literature may step from the weak microfoundations in

the economic models.

With stronger microfoundations of economic models, three essays contribute to

the literature in different respects. In the first essay, I propose a brand-new method-

ology to nonparametrically estimate the structural labor supply and exact welfare

change and deadweight loss due to tax reforms. Different from Hausman, I specify

an ordinary indirect utility function. Compared to the specification of labor sup-

ply function in the Hausman’s framework, the indirect utility function facilitates the

calculation under non-convex piecewise-linear budget sets. My method is able to ad-

dress many problems such as individual heterogeneity, nonconvex budget sets, labor

nonparticipation, and measurement errors. This method is a good generalization and

substitute of Vartia’s method. In the second essay, I contribute to the literature by re-

solving the equity premium puzzle, risk-free rate puzzle, and capital structure puzzle.

I point out that the microfoundations in a representative-agent, consumption-based

asset pricing model is too weak to correctly price the assets. To generate the historical

data of equity premia and risk-free rates, an asset pricing model should incorporate

the hump-shaped life-cycle consumption curve. In addition, this essay presents a new

solution to the determination of capital structure. Different from Modigliani and
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Miller, the capital structure in my model is determined by investors. The third es-

say proposes a new coalition solution concept, Weak Coalition Equilibrium, in which

the coalitional deviations are in line with the fundamental principles of individual

rationality.



92

REFERENCES

ABEL, A. B. (1990): “Asset Prices under Habit Formation and Catching up with

the Jones,”American Economic Review, 80, 38-42.

ABEL, A. B. (1999): “Risk Premia and Term Premia in General Equilib-

rium,”Journal of Monetary Economics, 43, 3-33.

AIYAGARI, S. R., AND M. GERTLER (1991): “Asset Returns with Transactions

Costs and Uninsured Individual Risk,”Journal of Monetary Economics, 27, 311-

331.

ALVAREZ, F., AND U. JERMANN (2002): “Efficiency, Equilibrium, and Asset

Pricing with Risk of Default,”Econometrica, 68, 775-797.

AMBRUS, A. (2006): “Coalitional Rationalizability,”Quarter Joural of Economics,

121, 903-929.

ATTANASIO, O. P., J. BANKS, AND S. TANNER (2002): “Asset Holding and

Consumption Volatility,”Journal of Political Economy, 110, 771-792.

AUMANN, R. J. (1959): Acceptable Points in General Cooperative n-Person

Games. Princeton, NJ: Princeton University Press.

BANSAL, R., AND J. W. COLEMAN (1996): “A Monetary Explanation of the

Equity Premium, Term Premium and Risk-Free Rate Puzzles,”Journal of Political

Economy, 104, 1135-1171.

BARRO, R. J. (1993): Macroeconomics. Cambridge, MA: MIT Press.

BARRO, R. J. (2006): “Rare Disasters and Asset Markets in the Twentieth Cen-

tury,”Quarterly Journal of Economics, 121, 823-866.



93

BARRO, R. J. (2009): “Rare Disasters, Asset Prices, and Welfare Costs,”American

Economic Review, 99, 243-264.

BASAK, S., AND D. CUOCO (1998): “An Equilibrium Model with Restricted

Stock Market Participation,”Review of Financial Studies, 11, 309-341.

BENARTZI, S., AND R. H. THALER (1995): “Myopic Loss Aversion and the

Equity Premium Puzzle,”Quarterly Journal of Economics, 110, 73-92.

BENNINGA, S., AND A. PROTOPAPADAKIS (1990): “Leverage, Time Pref-

erence, and the ’Equity Premium Puzzle’,”Journal of Monetary Economics, 25,

49-58.

BERNHEIM, B. D., B. PELEG, and M. D. WHINSTON (1987): “Coalition-proof

Nash Equilibrium I. Concepts,”Journal of Economic Theory, 42, 1-12.

BLOMQUIST, S. (1988): “Nonlinear Taxes and Labor Supply,”European Economic

Review, 32, 1213-1226.

BLOMQUIST, S. (1996): “Estimation Methods for Male Labor Supply Functions–

How to Take Account of Nonlinear Taxes,” Journal of Econometrics, 70, 383-405.

BLOMQUIST, S., AND W. K. NEWEY (2002), “Nonparametric Estimation with

Nonlinear Budget Sets,”Econometrica, 70, 2455-2480.

BLUNDELL, R., C. Meghir, E. Symons, and I. Walker (1988): “Labor Supply

Specification and the Evaluation of Tax Reforms,” Journal of Public Economics,

36, 23-52.

BOLDRIN, M., L. J. CHRISTIANO, AND J. D. M. FISHER (2001): “Habit Per-

sistence, Asset Returns, and the Business Cycle,”American Economic Review, 91,

149-166.



94

BRAV, A., G. M. CONSTANTINIDES, AND C. C. GECZY (2002): “Asseting

Pricing with Heterogeneous Consumers and Limited Participation: Empirical Ev-

idence,”Journal of Political Economy, 110, 793-824.

BREEDEN, D. T. (1979): “An Intertemporal Asset Pricing Model with Stochastic

Consumption and Investment Opportunities,”Journal of Financial Economics, 7,

265-296.

BROWN B. W., AND M. B. WALKER (1989): “The Random Utility Hypothesis

and Inference in Demand Systems,”Econometrica, 57, 815-829.

BURTLESS G., AND J. A. HAUSMAN (1978): “The Effect of Taxation on La-

bor Supply: Evaluating the Gary Negative Income Tax Experiment,”Journal of

Political Economy, 86, 1103-1130.

CAMPBELL, J. Y., AND H. H. COCHRANE (1999) “By Force of Habit: A

consumption-Based Explanation of Aggregate Stock Market Behavior,”Journal of

Political Economy, 107, 205-251.

CHAN, Y. L., AND L. KOGAN (2002): “Catching Up with the Joneses: Heteroge-

neous Preferences and the Dynamics of Asset Prices,”Journal of Political Economy,

110, 1255-1285.

CHWE, M. S. (1994): “Farsighted Coalitional Stability,”Journal of Economic The-

ory, 63, 299-325.

COGAN, J. F. (1981): “Fixed Costs and Labor Supply,”Econometrica, 49, 945-963.

COGLEY, T. (2002): “Idiosyncratic Risk and the Equity Premium: Evidence from

the Consumer Expenditure Survey,”Journal of Political Economy, 49, 309-334.



95

CONSTANTINIDES, G. M. (1990): “Habit Formation: A Resolution of the Equity

Premium Puzzle,”Journal of Political Economy, 98, 519-543.

CONSTANTINIDES, G. M., J. B. DONALDSON, AND R. MEHRA (2002): “Ju-

nior Can’t Borrow: A New Perspective on the Equity Premium Puzzle,”Quarterly

Journal of Economics, 117, 269-296.

CONSTANTINIDES, G. M., AND D. DUFFIE (1996): “Asset Pricing with Het-

erogeneous Consumers,”Journal of Political Economy, 104, 219-240.

COX, J. C., J. E. ENGERSOLL JR., AND S. A. ROSS (1985): “An Intertemporal

General Equilibrium Model of Asset Prices,”Econometrica, 53, 363-384.

DANTHINE, J. P., J. B. DONALDSON, AND R. MEHRA (1992): “The Equity

Premium and The Allocation of Income Risk,”Journal of Economic Dynamics and

Control, 16, 509-532.

DETEMPLE, J. B., AND A. SERRAT (2003): “Dynamic Equilibrium with Liq-

uidity Constraints,”Review of Financial Studies, 16, 597-629.

EBRAHIM, M. S., AND I. MATHUR (2001): “Investor Heterogeneity, Market

Segmentation, Leverage and the Equity Premium Puzzle,”Journal of Banking and

Finance, 25, 1897-1919.

EPSTEIN, L. G., and S. E. ZIN (1989): “Substitution, Risk Aversion, and the

Temporal Behavior of Consumption and Asset Returns: A Theoretical Frame-

work,”Econometrica, 57, 937-969.

EPSTEIN, L. G., AND S. E. ZIN (1991): “Substitution, Risk Aversion, and the

Temporal Behavior of Consumption and Asset Returns: An Empirical Analy-

sis,”Journal of Political Economy, 99 , 263-286.



96

FERSON, W. E., AND G. M. CONSTANTINIDES (1991): “Habit Persistence

and Durability in Aggregate Consumption: Empirical Tests,”Journal of Financial

Economics, 29, 199-240.

FULLERTON D., AND L. GAN (2004): “A Simulation-Based Welfare Loss Cal-

culation for Labor Taxes with Piecewise-linear Budgets,” Journal of Public Eco-

nomics, 88, 2339-2359.

GOLLIN, D. (2002): “Getting Income Shares Right,”Journal of Political Economy,

110, 458-474.

GROSSMAN S. J., A. MELINO, AND R. J. SHILLER (1987): “Estimating the

Continuous-Time Consumption-Based Asset-Pricing Model,”Journal of Business

& Economic Statistics, 5, 315-327.

HANSEN, G.D. (1993): “The Cyclical and Secular Behavior of the Labour Input:

Comparing Efficiency Units and Hours Worked,”Journal of Applied Econometrics,

8, 71-80.

HANSEN, L. P., AND R. JAGANNATHAN (1991) “Implications of Security Mar-

ket Data for Models of Dynamic Economies,”Journal of Political Economy, 99,

225-262.

HANSEN, L. P., AND J. S. KENNETH (1982): “Generalized Instrumental Vari-

ables Estimation of Nonlinear Rational Expectations Models,”Econometrica, 50,

1269-1286.

HAUSMAN J. A. (1981a): “Exact Consumer’s Surplus and Deadweight Loss,”

American Economic Review, 71, 662-676.



97

HAUSMAN, J. A. (1981b): “Labor Supply,”in How Taxes Affect Economic Behav-

ior, ed. by H. J. Aaron and J. A. Pechman. Washington: The Brookings Institution.

HAUSMAN, J. A. (1985): “Taxes and Labor Supply,”in Handbook of Public Eco-

nomics, Vol. 1., ed. by A. Auerbach and M. Feldstein. Amsterdam Netherland:

North-Holland.

HAUSMAN, J. A., AND W. K. NEWEY (1995): “Nonparametric Estimation of

Exact Consumers Surplus and Deadweight Loss,” Econometrica, 63, 1445-1476.

HE, H., AND D. M. MODEST (1995): “Market Frictions and Consumption-Based

Asset Pricing,”Journal of Political Economy, 103, 94-117.

HEATON, J., AND D. J. LUCAS (1996): “Evaluating the Effects of Incomplete

Markets on Risk Sharing and Asset Pricing,”Journal of Political Economy, 104,

443-487.

HEATON, J., AND D. J. LUCAS (1997): “Market Frictions, Savings Behavior and

Portfolio Choice,”Journal of Macroeconomic Dynamics, 1, 76-101.

HEATON, J., AND D. J. LUCAS (2000): “Portfolio Choice and Asset Prices: The

Importance of Entrepreneurial Risk,”Journal of Finance, 55, 1163-1198.

HECKMAN J. J. (1979): “Sample Selection Bias as a Specification Error,” Econo-

metrica, 47, 153-161.

JACOBS, K. (1999): “Incomeplete Markets and Security Prices: Do Asset-Pricing

Puzzles Result from Aggregation Problems?,”Journal of Finance, 54, 123-163.

JERMANN, U. J. (1998): “Asset Pricing in Production Economies,”Journal of

Monetary Economics, 41, 257-275.



98

KOCHERLAKOTA, N. R. (1996): “The Equity Premium: It’s Still a Puz-

zle,”Journal of Economic Literature, 34, 42-71.

KRUEGER, A. B. (1999): “Measuring Labor’s Share,”American Economic Review,

89, 45-51.

KRUSELL, P., AND A. A. SMITH (1998): “Income and Wealth Heterogeneity in

the Macroeconomy,”Journal of Political Economy, 106, 867-896.

KUMAR A. (2008): “Labor Supply, Deadweight Loss and Tax Reform Act of 1986:

A Nonparametric Evaluation Using Panel Data,” Journal of Public Economics, 92,

236-253.

LIANG C. (2009): “Nonparametric Structural Estimation of Labor Supply in the

Presence of Censoring,”Unpublished Manuscript, Department of Economics, Upp-

sala University.

LUCAS, D. J. (1994): “Asset Prices with Undiversifiable Risk and Short Sales Con-

straints: Deepening the Equity Premium Puzzle,”Journal of Monetary Economics,

34, 325-341.

LUCAS JR., R. E. (1978): “Asset Prices in An Exchange Economy,”Econometrica,

46, 1429-1445.

LUTTMER, E. G. J. (1996): “Asset Prices in Economies with Fric-

tions,”Econometrica, 64, 1439-1467.

MANKIW, N. G. (1986): “The Equity Premium and the Concentration of Aggre-

gate Shocks,”Journal of Financial Economics, 17, 211-219.

MANKIW, N. G., AND S. P. ZELDES (1991): “The Consumption of Stockholders

and Nonstockholders,”Journal of Financial Economics, 29, 97-112.



99

MARCET, A., AND K. J. SINGLETON (1999): “Equilibrium Asset Prices

and Savings of Heterogeneous Agents in the Presence of Portfolio Con-

straints,”Macroeconomic Dynamics, 3, 243-277.

MARIOTTI, M. (1997): “A Model of Agreements in a Strategic Form

Games,”Journal of Economic Theory 74, 196-217.

MASULIS, R. W. (1988): The Debt-Equity Choice. Cambridge, MA: Ballinger

Press.

MCGRATTAN, E. R., AND E. C. PRESCOTT (2000): “Is the Stock Market

Overvalued?”Federal Reserve Bank of Minneapolis Quarterly Review, 24, 20-40.

MCGRATTAN, E. R., AND E. C. PRESCOTT (2001): “Taxes, Regulations, and

Asset Prices,”Working Paper, Federal Reserve Bank of Minneapolis.

MEHRA, R., AND E. C. PRESCOTT (1985): “The Equity Premium: A Puz-

zle,”Journal of Monetary Economics, 15, 145-161.

MERTON, R. C. (1971): “Optimum Consumption and Portfolio Rules in a

Continuous-Time Model,”Journal of Economic Theory, 3, 373-413.

MERTON, R. C. (1973): “An Intertemporal Capital Asset Pricing

Model,”Econometrica, 41, 867-887.

MODIGLIANI, F., AND M. H. MILLER (1958): “The Cost of Capital, Corpo-

ration Finance and the Theory of Investment,”American Economic Review, 48,

261-297.

MYERS, S. C. (1984): “The Capital Structure Puzzle,”Journal of Finance, 39,

575-592.



100

NASH, J. (1951): “Non-Cooperative Games,”Annals of Mathematics, 54, 286-295.

RAJAN, R. G., AND L. ZINGALES (1995): “What Do We Know About Capital

Structure? Some Evidence from International Data,”Journal of Finance, 50, 1421-

1460.

RIETZ, T. A. (1988): “The Equity Premium: A Solution,”Journal of Monetary

Economics, 22, 117-131.
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APPENDIX A

VARTIA’S METHOD AND ITS APPLICATION TO PIECEWISE-LINEAR

BUDGET SETS

A.1. A Framework for Calculation of Welfare Change under Piecewise-Linear

Budgets Sets

Let T denote a tax system. For an individual with a before-tax wage rate w∗, non-

labor income Y n and a “virtual” lump-sum subsidy S, we express his/her budget set

as B(w∗, T, Y n, S). The “virtual” subsidy S is only conceptually meaningful. The

individual’s true budget is B(w∗, T ;Y n, S = 0). The subsidy shifts the position of

the budget set, but does not change the after-tax wage rate at each budget segment.

Define the government expenditure function as:

e(w∗, T, Y n;u) = inf{S | ∃ (h, g) ∈ B(w∗, T ;Y n, S) and u(h, g) ≥ u}. (A.1)

The expenditure e(w∗, T, Y n;u) is the minimum subsidy from the government to help

the individual to attain a given utility level u. It is possible to for e to take a negative

value. For notational convenience, I suppress w∗ and Y n in the expenditure function

and the budget set hereafter.

Consider a case where a change of tax system from T 0 to T 1 leads to a change of

the individual’s utility level from u0 to u1 (ui = max{u(h, g) | (h, g) ∈ B(T i, S = 0)}).

Obviously, we have e(T 0, u0) = 0 and e(T 1, u1) = 0. The compensating variation (CV)

and equivalent variation (EV) can be formally defined as:

CV = e(T 1;u0)− e(T 1;u1) = e(T 1;u0), (A.2)

EV = e(T 0;u0)− e(T 0;u1) = −e(T 0;u1). (A.3)
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We will only discuss CV. The EV can be calculated similarly.

The key issue in calculating the CV is to obtain the touching point of the budget

set B[T 1; e(T 1;u0)] and the indifference curve with utility u0. Suppose the touching

point is (h̄, ḡ), then

CV = ḡ − ya(h̄, T 1), (A.4)

where the second term denotes the after-tax income under T 1 tax system if the actual

working hour is h̄.

Vartia’s numerical algorithm depends on four types of information: (1) the mar-

ket labor supply function π(w, y); (2) the choice point (h0, g0) on the budget set

B[T 0, 0]; (3) the net wage rate w0 and the virtual income y0 at the choice point

(h0, g0) before the tax reform; (4) the net wage rate w̄ at the touching point be-

tween the compensated budget set B[T 1, e(T 1;u(h0, g0))] and the indifference curve

with utility u(h0, g0). Equipped with these four types of information, we can work

out the compensated virtual income ȳ at the touching point by numerically solving

the differential equation (2.29). Thus, the compensated choice of labor supply will

be h̄ = π(w̄, ȳ) and the corresponding consumption of the numeraire good will be

ḡ = w̄h̄+ ȳ.

A.2. Application of Vartia’s Method to Convex Budget Sets

We assume that the budget set is convex and the preference is strictly convex. In this

case, the information of a labor supply function π(w, y) will be shown to be adequate

to measure the welfare change. That is, the direct or indirect utility function is not

needed to calculate the welfare change if we apply Vartia’s method.

It is relatively easy to obtain the initial point (h0, g0) and the corresponding w0

and y0. The labor supply choice h0 on this convex budget set is unique, which can
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be determined by employing the necessary and sufficient condition (2.6). If h0 falls

on a segment of the budget set B[T 0; 0], the net wage rate w0 and the virtual income

y0 correspond to the slope and the intercept of the segment (extended to the zero-

hour axis). If h0 falls on a kink point, w0 and y0 can be calculated according to the

methodology in section (2.2.3).

We need to obtain the wage rate w̄ at the touching point. At this touching point,

the tangent line to the indifference curve (with utility u(h0, g0)) separates the curve

from the budget set B[T 1, e(T 1;u0)]. If the touching point falls on a budget segment,

say, the j-th segment, then w̄ = w∗j . If it falls on a kink, say, the j-th kink point,

then w̄ will be in the interval [w∗j+1, w
∗
j ]. As the budget set is convex, its slope is

decreasing if we move to the left (increase the labor supply) along the budget set and

increasing if we move to the right (decrease the labor supply). Similarly, the slope

of the budget set is increasing if we move to the left along the indifference curve and

deceasing if we move to the right.

To characterize the slope of the budget set B(T 1, 0), we define a correspondence

ω(·, B(T 1, 0)) : R+ 7→ I as follows:

ω(h,B(T 1, 0)) =

 [w∗j , w
∗
j ], if Hj−1 < h < Hj,∀j;

[w∗j+1, w
∗
j ], if h = Hj,∀j,

(A.5)

where I is a set of intervals. The correspondence is monotonically decreasing, i.e.

inf
[
ω(h1, B(T 1, 0))

]
≥ sup

[
ω(h2, B(T 1, 0))

]
,

whenever h1 ≤ h2. At the unique touching point, we have w̄ ∈ ω(π(w̄, ȳ), B(T 1, 0)).

But for any slope of the indifference curve w different from w̄ and its corresponding

compensated virtual income y, it is the case that w 6∈ ω(h(w, y), B(T 1, 0)).

The correspondence is useful in determining the direction of the movement along
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the indifference curve. If w0 > sup [ω(h0, B(T 1, 0))], the touching point should lie to

the right of the initial point (h0, g0) and the desired wage rate w̄ should be larger

than sup [ω(h0, B(T 1, 0))]. Similarly, the touching point should lie to the left of the

initial point if w0 < inf [ω(h0, B(T 1, 0))] and the desired wage rate w̄ should be less

than inf [ω(h0, B(T 1, 0))].

We numerically solve the differential equation (2.29). If the touching point is to

the right of the initial point, we appropriately choose a differential and monotonically

decreasing function w(t) such that w(0) = w0 and w(1) = sup [ω(h0, B(T 1, 0))].

Suppose that the numerical method for the differential equation takes the following

recursive formulae1:

y(tk) = ϕ [y(tk−1), w(tk), w(tk−1)] , (A.6)

where tk = k/K, k = 0, 1, . . . , K. The iteration will be carried out till

tk = min{tk | w(tk) ≤ sup
[
ω(π(w(tk), y(tk)), B(T 1, 0))

]
, k = 0, 1, . . . , K}.

The wage rate w(tk) will be a good approximation of w̄ if K is large enough. If the

touching point is to the left of the initial point, we choose a differential and monoton-

ically increasing function w(t) such that w(0) = w0 and w(1) = inf [ω(h0, B(T 1, 0))].

The stopping criteria will be

tk = min{tk | w(tk) ≥ inf
[
ω(π(w(tk), y(tk)), B(T 1, 0))

]
, k = 0, 1, . . . , K}.

A.3. Application of Vartia’s Method to nonconvex Budget Sets

If the budget set is nonconvex, we are still able to estimate the exact welfare change

use only the information of the market labor supply π(w, y), without invoking the

1See Vartia (1983) and Hausman and Newey (1995) for other numerical methods for
solving the differential equation.
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direct or indirect utility function. However, the estimation procedure is much more

complicated and computationally demanding.

The choice point (h0, g0) on the budget set B[T 0; 0] can be solved in two steps.

First, we apply the necessary condition in (2.6) to search for the local optimum

bundles. Second, if there are more than one bundle satisfying (2.6), we single out

the best by applying Vartia’s method. We pairwise compare bundles to eliminate the

less preferred. Staring from one bundle, we move along the indifference curve. If the

second choice is above the indifference curve, then the first bundle will be discarded,

and vice versa.2

We divide the nonconvex budget set into a multiple of convex sets. Thus, the

methodology applied to the convex budget sets can be utilized here. To illustrate the

idea, we consider a case in which there is only one concave point in the budget set.

It is straightforward to extend the method to the cases with a multiple of concave

points.

Assume that the k-th kink point is concave. We divide the budget into two

halves. For the left part, we define the slope correspondence to be

ω(h,B(T 1, 0)) =



[w∗j , w
∗
j ], if Hj−1 < h < Hj,∀j > k;

[w∗j+1, w
∗
j ], if h = Hj, ∀j > k;

[w∗k+1,M1], if h = Hk;

[M1,M1], if h < Hk,

(A.7)

where M1 = max{w∗j | 1 ≤ j ≤ k + 1}. Similarly, for the right part, we define the

2Implicitly, we assume that the preference is monotonically increasing with respect to
the numeraire.
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slope correspondence to be

ω(h,B(T 1, 0)) =



[w∗j , w
∗
j ], if Hj−1 < h < Hj,∀j ≤ k;

[w∗j+1, w
∗
j ], if h = Hj,∀j < k;

[M2, w
∗
k], if h = Hk;

[M2,M2], if h > Hk,

(A.8)

where M2 = min{w∗j | j ≥ k − 1}. If the compensated variation calculated based on

the left and right convex budget sets are CV1 and CV2, then the desired CV will be

min{CV1, CV2}.
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APPENDIX B

IMPUTATION OF WIVES’S WAGE RATES

This appendix provides the estimated parameters used to impute the latent wage

rates of nonparticipating wives. We follow Triest’s procedure of applying Heckman’s

technique for correcting for sample selection bias. Table (XXV) and (XXVI) show

the estimated parameters of wives’ decisions of labor participation for 1983 and 2000

respectively. Slightly different from Triest’s, we include the log of yearly mortgage

payment as a regressor to predict the probability of working.

Variable Coefficient
Constant 1.403

(0.260)
Number of kids (Age≤ 6) -0.332

(0.072)
Family Size -0.118

(0.044)
Age (35-45) 0.004

(0.025)
Age-45 -0.014

(0.018)
Wife’s nonlabor income (in dollars) -1.860e-05

(2.910e-06)
Bad health -0.269

(0.183)
Log of yearly mortgage payment 0.021

(0.013)
College education 0.436

(0.101)
Log likelihood= -537.645
Number of observations: 1004

Table XXV.: Probit Model: Wives’ Labor Participation (1983)
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Table XXVI.: Probit Model: Wives’ Labor Participation (2000)

Variable Coefficient
Constant 0.167

(0.346)
Age of the youngest child 0.053

(0.012)
Number of kids (Age < 18) -0.034

(0.057)
Age (35-45) 0.006

(0.033)
Age-45 -0.014

(0.018)
College 0.256

(0.098)
Wife’s nonlabor income (in dollars) -2.220e-06

(7.510e-07)
Bad health -0.652

(0.164)
Log of yearly mortgage payment 0.061

(0.015)
Log likelihood= -463.729
Number of observations: 1166
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Table (XXVII) and (XXVIII) present the results of wage regression for 1983 and

2000 respectively. Different from Triest (1990), we control for the variable indicating

whether the women joins a union in the regression.

Table XXVII.: Wives’ Wage Imputation Regression (1983)

Variable Coefficient
(Age/10)2 -0.380

(0.137)
Education -1.127

(0.672)
Education2 0.324

(0.229)
Education*Age/10 0.298

(0.081)
Nonwhite -0.140

(0.574)
Union 1.772

(0.431)
County unemployment rate -0.025

(0.046)
Inverse Mills’ ratio 0.918

(0.829)
Constant 7.518

(4.430)
R2= 0.18
Number of observations: 725
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Table XXVIII.: Wives’ Wage Imputation Regression (2000)

Variable Coefficient
Age 0.267

(0.239)
Education -4.266

(2.068)
Education2 0.324

(0.229)
Education*Age/10 2.407

(0.719)
Nonwhite 0.561

(1.030)
Union 2.203

(0.759)
Inverse Mills’ ratio 0.227

(1.933)
Constant 22.814

(16.346)
R2= 0.21
Number of observations: 984



112

VITA

Name: Gaosheng Ju

Address: Department of Economics, Texas A&M University

College Station, TX 77843-4228

Email Address: gju@econmail.tamu.edu

Education: B.S., Economics, Shandong Institute of Economics, 1999

M.S., Management, Peking University, 2003

Ph.D., Economics, Texas A&M University, 2011

The typist for this dissertation was Gaosheng Ju.


