
TWO CASE STUDIES ON

VISION-BASED MOVING OBJECTS MEASUREMENT

A Thesis

by

JI ZHANG

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

August 2011

Major Subject: Computer Engineering

TWO CASE STUDIES ON

VISION-BASED MOVING OBJECTS MEASUREMENT

A Thesis

by

JI ZHANG

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Approved by:

Co-Chairs of Committee, Dezhen Song
Wei Yan

Committee Member, Ricardo Gutierrez-Osuna
Head of Department, Valerie Taylor

August 2011

Major Subject: Computer Engineering

iii

ABSTRACT

Two Case Studies on Vision-based Moving Objects Measurement. (August 2011)

Ji Zhang, B.E., Tsinghua University

Co–Chairs of Advisory Committee: Dr. Dezhen Song
Dr. Wei Yan

In this thesis, we presented two case studies on vision-based moving objects measure-

ment.

In the first case, we used a monocular camera to perform ego-motion estimation for

a robot in an urban area. We developed the algorithm based on vertical line features

such as vertical edges of buildings and poles in an urban area, because vertical lines

are easy to be extracted, insensitive to lighting conditions/shadows, and sensitive to

camera/robot movements on the ground plane. We derived an incremental estimation

algorithm based on the vertical line pairs. We analyzed how errors are introduced and

propagated in the continuous estimation process by deriving the closed form represen-

tation of covariance matrix. Then, we formulated the minimum variance ego-motion

estimation problem into a convex optimization problem, and solved the problem with

the interior-point method. The algorithm was extensively tested in physical experi-

ments and compared with two popular methods. Our estimation results consistently

outperformed the two counterparts in robustness, speed, and accuracy.

In the second case, we used a camera-mirror system to measure the swimming

motion of a live fish and the extracted motion data was used to drive animation of

fish behavior. The camera-mirror system captured three orthogonal views of the fish.

We also built a virtual fish model to assist the measurement of the real fish. The

fish model has a four-link spinal cord and meshes attached to the spinal cord. We

iv

projected the fish model into three orthogonal views and matched the projected views

with the real views captured by the camera. Then, we maximized the overlapping

area of the fish in the projected views and the real views. The maximization result

gave us the position, orientation, and body bending angle for the fish model that

was used for the fish movement measurement. Part of this algorithm is still under

construction and will be updated in the future.

v

To my parents

vi

ACKNOWLEDGMENTS

I would like to thank my committee co-chairs, Dr. Song and Dr. Yan, my committee

member, Dr. Gutierrez-Osuna, my project collaborators, Dr. Rosenthal and Dr.

Johnson, for their valuable guidance and support through my master’s program.

Also, thanks to my friends and colleagues in the NetBot lab, the Viz Lab, the

Rosenthal Lab at Texas A&M University, and the Jerry Johnson Lab at Brigham

Young University for their insightful suggestions and inputs to my research projects.

vii

TABLE OF CONTENTS

CHAPTER Page

I INTRODUCTION . 1

A. Vision-based Measurement of Robot Ego-motion 1

B. Vision-based Measurement of Fish Swimming Motion . . . 2

II VISION-BASED MEASUREMENT OF ROBOT EGO-MOTION 4

A. Introduction . 4

B. Related Work . 6

C. Problem Definition . 9

1. Assumptions . 9

2. Notations and Coordinate Systems 9

3. Problem Description 11

D. Deriving a Minimum Solution with a Single Vertical

Line Pair . 12

1. Deriving Fs(·) . 13

2. Computing Jacobian Matrices 14

3. Sensitivity Analysis 17

E. Error Aware Ego-motion Estimation Using Multiple Ver-

tical Line Pairs . 20

F. Algorithms . 24

G. Experiments . 25

1. Experiment Setup . 25

2. Validating the Minimum Solution and the BSP Algorithm 26

3. Validating the MVEE Algorithm 29

a. A Sample Case in Simulation 29

b. A Comparison of Different Pair Aggregation

Methods in Physical Experiments 30

4. Comparison of MVEE with Existing Point and Line-

based Odometry Methods 32

H. Conclusion and Future Work 34

III VISION-BASED MEASUREMENT OF FISH SWIMMING

MOTION . 40

A. Introduction . 40

viii

CHAPTER Page

B. Related Work . 42

C. System Configuration . 42

D. Camera Calibration . 46

1. Assumptions . 46

2. Notations and Coordinate Systems 46

3. Problem Definition . 47

4. Locate Intersection Points on Front Face 48

5. Estimate Camera Optical Center 50

E. Extract Fish Area from Video 52

F. Build Virtual Fish Model 53

G. Reconstruct Fish Swimming Motion 56

H. Conclusion and Future Work 56

IV CONCLUSION AND FUTURE WORK 59

REFERENCES . 60

VITA . 70

ix

LIST OF TABLES

TABLE Page

1 Feature quality and computation speed comparison. 39

x

LIST OF FIGURES

FIGURE Page

1 An illustration of monocular visual odometry using vertical line

pairs. (a) An image frame taken by the robot with vertical lines

highlighted in orange color. (b) Corresponding vertical lines in

two consecutive frames after the robot moving forward along the

optical axis direction of the camera by 10 meters. (c) A top view

of the vertical edges (black dots in the figure) in (a) and potential

choice of pairs (edges between black dots). 5

2 Superimposed CCSs x− y− z and ICSs u− v for the vertical line

i over frames k − 1, k and k + 1. 10

3 Computing Jacobian matrices using a geometric approach. Point

A at (dx∗k+1, d
z∗
k+1) is the unknown true location of the displacement. . 15

4 (a) The camera and the robot used in the experiment. (b) Exper-

iment site from the robot view for the minimum solution. We use

the vertical lines on the frontal plane of a building as highlighted

in yellow color. The vertical lines are numbered in pairs. 25

5 Statistical experiment results for the minimum solution. Note

that the red line is the mean value, the blue box represents the

population ranging from 25 percentile to 75 percentile, and the

black dashed intervals indicate the data range. Numbers inside

the parentheses are the numbers of trials. (a) εz vs. εx. (b)

Camera rotation vs. no camera rotation. (c) εz vs. δ. (d) εz vs.

z. The number in the parenthesis is the number of trials used to

compute the statistics. 28

6 (a) A top view of vertical lines and corresponding weights for pairs

for the sample case. The black dots are vertical lines. The result-

ing weights for each vertical line pair are presented as edges in

grayscale. Darker edge means heavier weight. (b) Weight distri-

bution in decreasing order corresponds to the edges in (a). 29

xi

FIGURE Page

7 (a) Experiment site 1 from the robot view with vertical edges

highlighted in green. (b) and (c) Experiment sites 2 and 3 with

robot trajectories highlighted in black. 30

8 (a) A comparison of robot trajectories from BSP, MVEE and E-

WA with ground truth (dashed black poly line). (b) Mean relative

error ε̄ and its standard deviation over #steps for both BSP and

MVEE. (c) ε̄ vs. camera resolutions. 31

9 Physical experiment results. (a) A comparison of robot trajecto-

ries from the three methods with the ground truth (dashed black

poly line). (b) A comparison of ε̄ values for the three methods at

each experiment site. 33

10 Illustration of the system. We record camera footages by (1) A

camera-mirror system, then we extract the fish area from the video

by color segmentation at (2). Meanwhile, a virtual fish model is

built at (3) And the fish model is projected to camera views at

(4). Finally, we match the projected views and the real views to

reconstruct the fish swimming motion at (5). 40

11 An illustration of camera-mirror system configuration. The sys-

tem includes a rectangular tank, two reflective mirrors, and a

video camera. The mirrors and the camera can create three or-

thogonal views of the fish in the tank. 43

12 Design of the small tank. The tank has an openable top board and

a tube connected with a water reservoir. The tank, the reservoir,

and the tube compose a communicating vessel, which makes the

water levels in the tank and the reservoir in the same height. 44

13 Design of the large tank. The tank has an openable bottom holder

that contains shadow water. The tank is sinked in the shadow

water in the bottom holder. Because of atmospheric pressure, the

tank fully holds water without any air in the tank. The large

reservoir is for the purpose of filling water into the tank. 45

xii

FIGURE Page

14 Definition of tank coordinate system x − y − z. The face closer

to the camera is the front face, the face further away from the

camera is the back face. A pair of points on the front face and

the back face that share the same position in the camera image

are indicated as Xf and Xb, respectively. 47

15 (a) Before and (b) After image correction. After the correction,

the tank front wall appears rectangular in the image. 49

16 Camera calibration. A light ray starts from a point on the back

face, X ′b, through a point on the front face, X ′f , into camera optical

center, Xc. 50

17 A sample color segmentation result with the fish area shown in

white color and the background in black color. (a) Front view.

(b) Left view. (c) Top view. 53

18 Top-down view of the virtual fish bone model. The bone model

has four links and three pan DOFs for each connection of the links. . 54

19 Position and orientation of the virtual fish model in the tank coor-

dinate. The model has three parameters to determine the position

and three parameters to determine the orientation. 54

20 B-spline generated from the four-link bone model. The blue solid

lines represent the bone model, the red dashed curve represents

the b-spline curve, and the black crosses are the b-spline curve

key points. 55

21 (a) Ellipses attached to the b-spline curve. The size of the ellipses

are measured from the real fish. The ellipses are perpendicular

to the b-spline curve and evenly distribute along the curve. (b)

Virtual fish model in the tank. The red curve is the b-spline curve

and the blue area is the 100 ellipses. 55

22 Projection of the virtual fish model in Fig. 21(b) onto three or-

thogonal views. The projections are implemented in the same

directions as captured by the camera-mirror system. (a) Front

view. (b) Left view. (c) Top view. 56

xiii

FIGURE Page

23 (a) Recovered virtual fish model from a camera frame, correspond-

ing to Fig. 17. (b)-(c) The three projected views of (a). 57

1

CHAPTER I

INTRODUCTION

Research on vision-based measurements has gained extensive attention over the recent

decade, partly because of the fast developing technology on digital video cameras

and the increasing processing power. In this thesis, we present two case studies on

vision-based measurement of moving objects. In the first case, we use a monocular

camera to measure the ego-motion of a robot moving in urban area. We employ

vertical line features and build an algorithm to estimate the robot 2D ego-motion

in an incremental format. In the second case, we use a camera-mirror system to

measure the swimming motion of a live fish in a tank. The camera-mirror system

creates three orthogonal views of the fish. We then build a virtual fish model and

reconstruct its swimming motion from the camera video. The rest of this thesis is

organized as follows. We present the two case studies in Chapter II and Chapter III,

respectively. The conclusion and future work are in Chapter IV.

A. Vision-based Measurement of Robot Ego-motion

In Chapter II, we perform vision-based measurement on the ego-motion of a moving

robot. We work on the particular scenario that a small robot with limited onboard

computation capability moves in an urban area. Due to the fact that tall buildings

in urban areas along the road often form a deep valley and block GPS signals, and

wheel encoders and low cost inertial measurement units (IMU) usually cannot provide

enough accuracy for the ego-motion estimation, we propose a vision-based method

that is suitable for working in urban area.

This thesis follows the style of IEEE Transactions on Robotics.

Ji
Typewritten Text

Ji
Typewritten Text

2

We realize that urban area has an abundant amount of vertical lines. Vertical

lines are very easy to extract from camera images because they are all parallel to each

other and perpendicular to the ground plane. Manipulating vertical lines in camera

images only needs very low computational cost which allows the algorithm runs on low

cost onboard computers with limited computation capability. Also, vertical lines are

sensitive to the camera horizontal movement because they are perpendicular to the

ground. Based on the above consideration, we propose a 2D ego-motion estimation

method that estimates the robot horizontal movement using vertical line features.

The method works in an incremental estimation format and minimizes the esti-

mation error variance. We first derive an incremental estimation algorithm based on

vertical line pairs. We analyze how errors are introduced and propagated in the con-

tinuous estimation process by deriving the closed form representation of covariance

matrix. Then, we formulate the minimum variance ego-motion estimation problem

into a convex optimization problem and solve the problem with the interior-point

method. The algorithm is extensively tested in physical experiments and compared

with a point feature based method and a line feature based method. Our estima-

tion results consistently outperform the two counterparts in robustness, speed, and

accuracy.

B. Vision-based Measurement of Fish Swimming Motion

In Chapter III, we perform vision-based measurement on the swimming motion of

a live fish. The motivation of this work rises from the fact that video playback has

become a useful tool for biological study on animal visual communication and its

related behaviors. Currently, video playbacks are generated in two ways: (1) hand

connecting live video sequences of the animal and (2) using 3D animation tools to

3

create artificial movement of a virtual animal. Both of them are labor-intensive and

also often result in confounding artifacts on the animal motion, shape, and texture.

The work in this thesis presents a way of automatically tracking and reconstruct-

ing the swimming motion of a live fish. The implementation of this work can reduce

labor time for manual video recording, manipulating, and video playback creating.

Also since the fish swimming motion is reconstructed from a real fish, it can generate

more natural and fish-like swimming motion than existing methods.

To reconstruct the swimming motion, the fish is housed in a tank. We build a

camera-mirror system to capture three orthogonal views of the fish in the tank. We

also build a virtual fish model from measurements of the real fish. The fish model

has a four-link spinal cord and meshes attached to the spinal cord. We project the

fish model onto three orthogonal views and match the projected views with the real

views captured by the camera. Then, we maximize the overlapping area of the fish in

the projected views and the real views. That way, we reconstruct the fish swimming

motion.

4

CHAPTER II

VISION-BASED MEASUREMENT OF ROBOT EGO-MOTION

We report our development of a monocular visual odometry system based on vertical

lines such as vertical edges of buildings and poles in the urban area. Since vertical

lines are easy to be extracted, insensitive to lighting conditions/shadows, and sensitive

to robot movements on the ground plane, they are excellent landmarks. We derive an

incremental visual odometry method based on the vertical line pairs. We analyze how

errors are introduced and propagated in the continuous odometry process by deriving

the closed form representation of covariance matrix. We formulate the minimum

variance ego-motion estimation problem and present two different algorithms. The

two algorithms have been extensively tested in physical experiments. The error aware

odometry method has also been compared with two popular methods and consistently

outperforms the two counterparts in robustness, speed, and accuracy. The relative

errors of the odometry are less than 2% in physical experiments.

A. Introduction

When a small robot travels in urban area, tall buildings along road side form a deep

valley and often block GPS signals. Wheel encoders and low cost inertial measure-

ment units (IMU) cannot provide enough accuracy for ego-motion estimation. Visual

odometry becomes an important supplemental motion estimation method for the

robot. Although capable of providing motion estimation for all six degrees of free-

dom, existing visual odometry methods require extensive computation and cannot

be trivially scaled down to be implemented on a low power computation platform.

We are interested in designing a light-weighted planar motion estimation scheme for

5

x

z

y

(, 1) (, 1)(,)i k i kx z− −

1 1(,)x z
k kd d+ +

v

u
(, 1)i ku −

(,) (,)(,)i k i kx z

(, 1) (, 1)(,)i k i kx z+ +

(,)i ku(, 1)i ku +

(,)
u
i kd, 1

u
i kd +

(,)x z
k kd d

u

z

v

x

y

(, 1) (, 1)(,)i k i kx z− −

(,) (,)(,)i k i kx z
(, 1) (, 1)(,)i k i kx z+ +

(,)x z
k kd d

1 1(,)x z
k kd d+ + uvO

xyzO

(, 1)i ku −(,)i ku(, 1)i ku +

(, 1)
u
i kd + (,)

u
i kd f

-40 -20 0 20
0

50

100

150

200

250

300

(m)

(m)

(b)

(a)

(c)

(b)

(a)

(c)

Fig. 1. An illustration of monocular visual odometry using vertical line pairs. (a)

An image frame taken by the robot with vertical lines highlighted in orange

color. (b) Corresponding vertical lines in two consecutive frames after the robot

moving forward along the optical axis direction of the camera by 10 meters. (c)

A top view of the vertical edges (black dots in the figure) in (a) and potential

choice of pairs (edges between black dots).

those low power platforms.

Urban environments often offer a rich set of structured features. As illustrated

in Fig. 1(a), building edges and poles are common features in urban area. Those

vertical lines are insensitive to lighting conditions and shadows. They are parallel to

each other and to the gravity direction. Extracting parallel lines using the gravity

direction as a reference can be done quickly and accurately in a low power computation

platform. Moreover, vertical lines are sensitive to robot motion on the ground plane.

Hence vertical lines are natural choices for landmarks.

Here we present a visual odometry method based on paired vertical lines for a

robot equipped with a single camera. We first show a single pair of vertical lines can

provide a minimal solution for estimating the robot ego-motion up to similarity. Since

6

there often exist multiple vertical edges in urban scenes (Fig. 1(b)), there are multiple

vertical line pairs. Different choices of the vertical line pairs affect the ego-motion

estimation accuracy. We analyze how errors are introduced and propagated in the

continuous odometry process by deriving the recursive and closed form representation

of error covariance matrix. We formulate the minimum variance ego-motion estima-

tion problem and present an algorithm that outputs weights for different vertical

line pairs. The resulting visual odometry method is tested in physical experiments

and compared with two existing methods that are based on point features and line

features, respectively. Our result outperforms the two counterparts in robustness, ac-

curacy, and speed. The relative errors of our method are less than 2% in experiments.

This chapter combines our two previous conference papers [1, 2] with a com-

prehensive and complete approach and more experimental results. The rest of this

chapter is organized as follows. First we review related work in Section B. We

formulate the vertical line pair-based ego-motion estimation problem in Section C.

Modeling and analysis of ego-motion estimation for a single vertical line pair are p-

resented in Section D. Building on the result, we present the variance minimization

method to aggregate motion estimation results from multiple vertical line pairs in

Section E. We summarize the two resulting algorithms in Section F. The algorithms

are extensively tested in physical experiments in Section G before we conclude the

chapter in Section H.

B. Related Work

Visual odometry [3] utilizes images taken from on-board camera(s) to estimate robot

motion. It can be viewed as a supplementary method when GPS signals are chal-

lenged. Visual odometry has many successful applications including aerial vehicles [4],

7

underwater vehicles [5], legged robots [6], and ground mobile robots [7, 8]. Visual

odometry is closely related to simultaneous localization and mapping (SLAM) [9]

and can be viewed as a building block for Visual SLAM [10–18]. A better visual

odometry method can certainly increase SLAM performance.

Although our work is based on a regular pinhole camera system that follows a

minimalism design to save power usage, visual odometry and visual SLAM can be

performed with different sensor combinations such as omnidirectional cameras, stereo

vision systems, and laser range finders.

An omnidirectional camera has been a popular choice for odometry applica-

tions [19]. Scaramuzza and Siegwart propose a real-time visual odometry algorithm

for estimating the vehicle ego-motion using the omnidirectional camera [3, 20]. Al-

so using an omnidirectional camera, Wongphati et al. propose a fast indoor SLAM

method [21]. New vertical line detection and matching methods have been devel-

oped for omnidirectional cameras [22, 23]. In our system, we use a regular camera

because the regular camera distributes pixels into space more evenly than that of an

omnidirectional camera and hence can achieve better accuracy.

A very popular sensor in visual odometry is the stereo vision system [24, 25].

Nister et al. develop a visual odometry system to estimate the motion of a stereo

head or a single camera on a ground vehicle [26, 27]. The stereo vision-based visual

odometry used on Mars rovers is a well-known example [28–30]. Laser range finders

[31,32] and sonars [33] that provide proximity data can also be used in assisting visual

odometry or SLAM. Inspired by the fact that a human can perform odometry with

a single eye, we focus on monocular vision-based approaches.

A different way of classifying visual odometry and visual SLAM is based on

what kind of features or landmarks have been used. Point features, such as Harris

Corners, scale-invariant feature transformation (SIFT) points [34], speed up robust

8

feature (SURF) points [35], or the recently proposed CENter SURround Extremas

(CenSurE) feature points [36], are the most popular ones in visual odometry [26] since

they are readily available and well developed in computer vision literature. However,

point features usually contain a large number of noisy data and must be combined

with filtering methods such as RANdom SAmple Consensus (RANSAC) [37, 38] to

allow correct correspondence across frames to be found. Such combination usually

results in very high computation cost.

Moreover, a point feature mathematically is a singularity in the feature space and

sometimes might not have an actual geometric meaning, which could lead to problems

if serving as a landmark because we are unsure how robust such singularity would be

under different lighting/shadow conditions. Humans do not view a scene as isolated

points and are still capable of performing odometry tasks. Lines are often used by

humans in estimating distance. Easy to be extracted [39], lines are inherently robust

and insensitive to lighting conditions or shadows. Due to this characteristic, line

features see many successful applications in visual SLAM [11, 40–44], structure from

motion [45, 46], indoor localization [47], scene analysis [48], and camera orientation

estimation [49,50].

Vertical lines are a special class of lines and widely exist in urban environments.

Earth gravity forces us to construct buildings with vertical edges. They are inherently

parallel to each other and dramatically reduce the feature extraction difficulties [51].

Moreover, they are very sensitive to robot motion on the ground. All of those prop-

erties make vertical lines perfect for visual odometry applications. Building on the

existing work, we aim to develop a new systematic method to utilize those advantages,

which can dramatically reduce the computation cost of odometry without sacrificing

accuracy.

9

C. Problem Definition

We want to estimate the robot motion on the horizontal plane. The robot periodi-

cally takes frames to estimate its ego-motion in each step. To setup this ego-motion

estimation problem, we begin with assumptions.

1. Assumptions

1. We assume that the initial step of the robot motion is known as a reference. This

is the requirement for the monocular vision system. Otherwise the ego-motion

estimation is only up to similarity.

2. We assume that the vertical lines, such as poles and building vertical edges, are

stationary.

3. We assume that the camera lens distortion is removed by calibration and the

camera follows the pinhole camera model with square pixels and a zero skew

factor. If not, we can use intrinsic parameters from pre-calibration to correct

the discrepancy.

4. For simplicity, we assume the camera image planes are perpendicular to the

horizontal plane, and parallel to each other. If not, we can use homography

matrices [38] constructed from vanishing points [49] to rotate the image planes

to satisfy the condition.

2. Notations and Coordinate Systems

In this chapter, all coordinate systems are right hand systems (RHS). For camera

coordinate systems (CCS), we define z-axis as the optical axis of the camera, and

let y-axis point upward toward the sky. The optical axis is always parallel to the

10

x

z

y x

z

y

1lHFOV HFOV 2l 1l

u

z

v

x

y

(, 1) (, 1)(,)i k i kx z− −

(,) (,)(,)i k i kx z
(, 1) (, 1)(,)i k i kx z+ +

(,)x z
k kd d

1 1(,)x z
k kd d+ + uvO

xyzO

(, 1)i ku −(,)i ku(, 1)i ku +

(, 1)
u
i kd + (,)

u
i kd f

Fig. 2. Superimposed CCSs x− y− z and ICSs u− v for the vertical line i over frames

k − 1, k and k + 1.

x − z plane which is horizontal. The corresponding image coordinate system (ICS)

is defined on the image plane parallel to the x− y plane of CCS with its u-axis and

v-axis parallel to x-axis and y-axis, respectively. The optical axis intersects ICS at its

origin on the image plane. To maintain RHS, the x-axis of CCS and its corresponding

u-axis in ICS must point left (see Fig. 2).

Since image planes are perpendicular to the horizontal plane, and parallel to

each other, the corresponding CCSs are iso-oriented during computation. Therefore,

the robot ego-motion on the horizontal plane in different CCSs is equivalent to the

displacement of vertical lines in a fixed CCS in the opposite direction. The x− y− z

coordinate in Fig. 2 illustrates the superimposed CCSs for three consecutive frames

k − 1, k and k + 1, respectively. At time k, k ∈ N+, let (x(i,k−1), z(i,k−1)), (x(i,k),

z(i,k)), and (x(i,k+1), z(i,k+1)) be the (x, z) coordinate of the intersection between the

corresponding vertical line i and the x − z plane for frames k − 1, k, and k + 1,

respectively. Let (dxk, d
z
k) be the vertical line i’s displacement from frame k − 1 to k,

we have dxk = x(i,k) − x(i,k−1), dzk = z(i,k) − z(i,k−1).

The u − v coordinate in Fig. 2 shows the corresponding superimposed ICSs for

frames k − 1, k and k + 1. Let u(i,k−1), u(i,k), and u(i,k+1) be the u-coordinate of

11

the intersections between vertical line i and u-axis in frames k − 1, k, and k + 1,

respectively. Let du(i,k) be vertical line i’s displacement in ICS from frame k − 1 to

k, we have du(i,k) = u(i,k) − u(i,k−1). With the above notations and coordinate systems

defined, we will describe our task.

3. Problem Description

Define n as the number of corresponding vertical lines in three consecutive frames

k − 1, k, and k + 1. Define I = {1, 2, ..., n} as the index set of the lines. Let

ui = [u(i,k−1), u(i,k), u(i,k+1)]
T be vertical line i’s u-coordinate in frames k − 1, k, and

k+1. Given the robot displacement in pervious step, dk = [dxk, d
z
k]
T , we can calculate

the displacement of the current step dk+1 = [dxk+1, d
z
k+1]

T using the corresponding

vertical line positions in the three images, u1:n = {ui, i ∈ I}, as follows,

dk+1 = F(dk,u1:n), (2.1)

where function F(·) will be determined later in the chapter.

Eq. (2.1) provides a recursive format for us to estimate the robot ego-motion

that is represented by dk+1. However, in each step of calculation, errors are brought

into the system. We do not know the actual values of dk and ui, which are defined as

d∗k and u∗i , respectively. dk and ui are measurements of d∗k and u∗i , respectively. As

a convention in this chapter, we use starred notation a∗ to indicate the true value of

variable a and define error value ea of a as ea = a∗− a. Hence we have ed
k = d∗k −dk,

ed
k+1 = d∗k+1 − dk+1, and eu

i = u∗i − ui, where eu
i = [eu(i,k−1), e

u
(i,k), e

u
(i,k+1)]

T describes

the measurement error from line segment extraction for line i in frames k− 1, k, and

k + 1.

Define Σd
k and Σd

k+1 as the covariance matrices for ed
k and ed

k+1, respectively. At

time k, Σd
k is known from the previous step. Σd

k+1 is influenced by the errors from the

12

previous step, namely, Σd
k , and the new measurement errors eu

i . For measurement

error eu
i , we assume that each vertical line follows independent and identical Gaussian

distribution with zero mean and a variance of σ2
u. The covariance matrix Σu of eu

i is

a diagonal matrix, Σu = diag(σ2
u, σ

2
u, σ

2
u).

To measure how Σd
k+1 changes, we use its trace σ2

k+1 = Tr(Σd
k+1) as a metric.

Hence our incremental error aware motion estimation problem becomes,

Definition 1 Given dk with Σd
k and new measurements (ui, i ∈ I) with Σu, derive

F(·) and Σd
k+1 while minimizing σ2

k+1 with respect to design options.

There are two design options: a minimal solution using a single vertical line pair

and a multiple vertical line pair-based solution. We begin with the minimal solution.

D. Deriving a Minimum Solution with a Single Vertical Line Pair

With two equations for two unknowns, a pair of vertical lines can offer us a minimum

solution for the ego-motion estimation. The minimum solution is a foundation for

multiple vertical line-based solutions. The minimum solution can also help us un-

derstand how factors, such as locations of vertical lines and relative positions of the

lines, affect the solution quality.

Let ui and uj be the input pair of vertical lines where i ∈ I, j ∈ I, and i 6= j.

Then (2.1) can be rewritten as,

dk+1 = Fs(dk,ui,uj), (2.2)

where Fs(·) is the motion estimation function for the minimum solution.

13

1. Deriving Fs(·)

Define f as the camera focal length in units of camera pixel width. Since the camera

has square pixels and a zero skew factor, we can reduce the camera to the simple

pinhole camera model to obtain the following relationship between (x(l,k), z(l,k)) and

u(l,k), l = i, j,

u(l,k) =
fx(l,k)
z(l,k)

, l = i, j. (2.3)

Combining (2.3) with x(i,k−1) = x(i,k)− dxk, x(i,k+1) = x(i,k) + dxk+1, z(i,k−1) = z(i,k)− dzk,

and z(i,k+1) = z(i,k) + dzk+1, we have

u(i,k−1) =
fx(i,k−1)
z(i,k−1)

=
f(x(i,k) − dxk)
z(i,k) − dzk

, (2.4)

u(i,k) =
fx(i,k)
z(i,k)

, (2.5)

u(i,k+1) =
fx(i,k+1)

z(i,k+1)

=
f(x(i,k) + dxk+1)

z(i,k) + dxk+1

. (2.6)

Combining (2.4-2.6) to eliminate x(i,k) and z(i,k), we have

dxk+1 + aid
z
k+1 = bi, (2.7)

where ai = −u(i,k+1)

f
, bi =

u(i,k+1)−u(i,k)
u(i,k)−u(i,k−1)

(dxk −
u(i,k−1)

f
dzk).

Similarly, we have the following for vertical line j,

dxk+1 + ajd
z
k+1 = bj, (2.8)

where aj = −u(j,k+1)

f
, bj =

u(j,k+1)−u(j,k)
u(j,k)−u(j,k−1)

(dxk −
u(j,k−1)

f
dzk).

Combine (2.7) and (2.8), we have the Fs(·) function

dk+1 = Fs(dk,ui,uj) = M−1
k+1Mkdk, (2.9)

14

where

Mk =

 f(u(i,k+1) − u(i,k)) −u(i,k−1)(u(i,k+1) − u(i,k))

f(u(j,k+1) − u(j,k)) −u(j,k−1)(u(j,k+1) − u(j,k))

 ,
Mk+1 =

 f(u(i,k) − u(i,k−1)) −u(i,k+1)(u(i,k) − u(i,k−1))

f(u(j,k) − u(j,k−1)) −u(j,k+1)(u(j,k) − u(j,k−1))

 .
2. Computing Jacobian Matrices

When errors are brought into the system, (2.2) becomes

dk+1 + ed
k+1 = Fs(dk + ed

k ,ui + eu
i ,uj + eu

j). (2.10)

Since we are interested in how errors propagate, we want to derive the following

relationship from (2.10),

ed
k+1 = G(ed

k , e
u
i , e

u
j). (2.11)

When errors are small, function G can be approximated by a linear expression

ed
k+1 = P(i,j)e

d
k + Q(i,j)e

u
i + Q(j,i)e

u
j , (2.12)

where P(i,j) = ∂Fs/∂ed
k , Q(i,j) = ∂Fs/∂eu

i and Q(j,i) = ∂Fs/∂eu
j are Jacobian matri-

ces. Note that Q(i,j) and Q(j,i) are for vertical line i and j, respectively.

Obtaining Jacobian matrices is necessary for studying how errors propagate. It

is possible to take an algebraic approach. However, it is more intuitive to use a

geometric approach, which helps understand the error propagation process.

Fig. 3 illustrates the geometric approach. Let li be the line described by (2.7),

which intersects with dx-axis at bi with angle αi. Recalling that ai is defined in (2.7),

we have tanαi = −1/ai = f/u(i,k+1). Similarly, let lj be the line described by (2.8),

which intersects with dx-axis at bj with angle αj. Also, we have tanαj = 1/aj =

15

x

z

y

(, 1) (, 1)(,)i k i kx z− −

1 1(,)x z
k kd d+ +

v

u
(, 1)i ku −

(,) (,)(,)i k i kx z

(, 1) (, 1)(,)i k i kx z+ +

(,)i ku(, 1)i ku +

(,)
u
i kd, 1

u
i kd +

(,)x z
k kd d

u

z

v

x

y

(, 1) (, 1)(,)i k i kx z− −

(,) (,)(,)i k i kx z
(, 1) (, 1)(,)i k i kx z+ +

(,)x z
k kd d

1 1(,)x z
k kd d+ + uvO

xyzO

(, 1)i ku −(,)i ku(, 1)i ku +

(, 1)
u
i kd + (,)

u
i kd f

-40 -20 0 20
0

50

100

150

200

250

300

(m)

(m)

(b)

(a)

(c)

(b)

(a)

(c)

xd

zd

jl

jl′′
jl′

il

il′′
il′

A

C

B
D

jα iα

ieαjeα

b
ie−

b
je {{

1 1(,)x z
k kd d∗ ∗
+ +

1 1(,)x z
k kd d+ +

ibjb x zd d
O

Fig. 3. Computing Jacobian matrices using a geometric approach. Point A at

(dx∗k+1, d
z∗
k+1) is the unknown true location of the displacement.

−f/u(j,k+1). li and lj intersect at point A, which is the robot displacement dk+1.

Let eαi , ebi be the parameter errors of αi, bi, respectively. Due to the existence of

ebi , li shifts to l′i, where l′i is a line parallel to li. Due to the existence of eαi , l′i shifts

to l′′i , where l′′i is a line intersects with l′i on dx-axis. Let eαj and ebj be the parameter

errors of αj and bj, respectively. Similarly, we have lines l′j and l′′j . Accordingly, the

intersection between li, lj becomes that of l′′i , l
′′
j , locating at point C, which is the

estimated displacement dk+1. The difference between C and A is the robot ego-motion

estimation error ed
k+1.

Let B be the intersection between li and l′′j and D be the intersection between

l′′i and lj. Since eαi and eαj are both very small, we can approximate ABCD as a

parallelogram. Thus, we have

exk+1 = |AB| cosαi − |AD| cosαj, (2.13)

ezk+1 = |AB| sinαi + |AD| sinαj. (2.14)

From the geometry relationship, we have

|AD| = − ebi sin(αi)

sin(αi + αj)
+
eαi (bj − bi) sin(αj)

sin2(αi + αj)
. (2.15)

16

Let eai be the parameter error of ai in (2.7), Since ai = −1/ tanαi, we have eai =

eαi / sin2 αi. At the same time, applying tanαi = f/u(i,k+1) and tanαj = −f/u(j,k+1),

(2.15) becomes

|AD| = η/ sinαj, (2.16)

where η =
−febi

u(i,k+1)−u(j,k+1)
+

f2eai (bj−bi)
(u(i,k+1)−u(j,k+1))

2 . Similarly, we have

|AB| = µ/ sinαi, (2.17)

where µ =
febj

u(i,k+1)−u(j,k+1)
+

f2eaj (bj−bi)
(u(i,k+1)−u(j,k+1))

2 . Substituting (2.16) and (2.17) into (2.13)

and (2.14), and using tanαi = f/u(i,k+1) and tanαj = −f/u(j,k+1), we have

exk+1 = µu(i,k+1)/f + ηu(j,k+1)/f, (2.18)

ezk+1 = µ+ η. (2.19)

Recalling ai in (2.7), we have

eai = −eu(i,k+1)/f. (2.20)

From (2.4) and (2.5), we have u(i,k) − u(i,k−1) = (fdxk − u(i,k−1)dzk)/z(i,k). Recall that

du(i,k) is the u-displacement of vertical line i in the superimposed ICS from frame k−1

to k, we have du(i,k) = u(i,k) − u(i,k−1). After deriving bi in (2.7) and substituting the

above equations, we have

ebi =eu(i,k+1)

z(i,k)
f
− eu(i,k)

z(i,k)
f

(1 +
du(i,k+1)

du(i,k)
)

+ eu(i,k−1)
z(i,k−1)
f

du(i,k+1)

du(i,k)
+ (exk −

u(i,k−1)
f

ezk)
du(i,k+1)

du(i,k)
. (2.21)

Substituting (2.20), (2.21), bi, and bj into the expression of η in (2.16), and

applying the same substitution that we used in (2.21), we have the expression of η,

and similarly, the expression of µ in (2.17). Then, we substitute η and µ into (2.18)

17

and (2.19). Finally, we can obtain the Jacobian matrices shown in (2.22) and (2.23)

in the following,

P(i,j) = du
(i,k+1)

du
(i,k)

u(j,k+1) −
du
(j,k+1)

du
(j,k)

u(i,k+1) −
du
(i,k+1)

du
(i,k)

f
u(j,k+1)u(i,k−1) +

du
(j,k+1)

du
(j,k)

f
u(i,k+1)u(j,k−1)

du
(i,k+1)

du
(i,k)

f −
du
(j,k+1)

du
(j,k)

f −
du
(i,k+1)

du
(i,k)

u(i,k−1) +
du
(j,k+1)

du
(j,k)

u(j,k−1)


u(j,k+1) − u(i,k+1)

,

(2.22)

Q(i,j) = du
(i,k+1)

du
(i,k)

u(j,k+1)z(i,k−1) −(1 +
du
(i,k+1)

du
(i,k)

)u(j,k+1)z(i,k) u(j,k+1)z(i,k+1)

du
(i,k+1)

du
(i,k)

fz(i,k−1) −(1 +
du
(i,k+1)

du
(i,k)

)fz(i,k) fz(i,k+1)


u(j,k+1) − u(i,k+1)

. (2.23)

3. Sensitivity Analysis

With Jacobian matrices ready, we can analyze how errors are introduced and propa-

gated over the computation. The first analysis we conduct is to study which dimension

of the ego-motion estimation error ed
k+1 is more suspectable to the error introduced

by line detection. In this case, matrix Q(i,j) is scrutinized. We have the following

result.

Theorem 1 Let Qgh
(i,j) be the (g, h)-th entry of Q(i,j). If the camera horizontal field

of view (HFOV) 6 50◦, then |Q1h
(i,j)/Q

2h
(i,j)| 6 0.46, h = 1, 2, 3.

Proof From (2.23), we have

Q1h
(i,j)/Q

2h
(i,j) = u(j,k+1), h = 1, 2, 3. (2.24)

18

Since the HFOV 6 50◦, we have

− tan 25◦ 6
x(j,k+1)

z(j,k+1)

6 tan 25◦. (2.25)

Combining (2.25) with (2.3), we have

−0.46 6 u(j,k+1) 6 0.46. (2.26)

Thus

|Q1h
(i,j)/Q

2h
(i,j)| 6 0.46, j = 1, 2, 3. (2.27)

�

This theorem indicates that the introduced error in x-direction is smaller than

that in z-direction. The result could also be explained by Fig. 3, where point C only

moves inside ∠BAD. Since the HFOV 6 50◦, angles αi and αj are bounded inside

set [65◦, 90◦]. Hence the quadrilateral ABCD is long in dz-direction and narrow in

dx-direction. Since a regular camera has HFOV less than 50◦, the conclusion is that

the depth error is at least twice more than the lateral error.

Another interesting question is how the ego-motion estimation error ed
k+1 relates

to the position of the vertical line pair. In other words, if there are many vertical

line pairs available in the scene, how to find the pair that provides the most accurate

ego-motion estimation. Define δuk+1 = u(i,k+1) − u(j,k+1) as the distance between the

two vertical lines in ICS. Recall that z(i,k+1) is the depth of vertical line i. We have,

Theorem 2 ∂|Q2h
(i,j)|/∂|δuk+1| 6 0, ∂|Qgh

(i,j)|/∂z(i,k+1) > 0, g = 1, 2, h = 1, 2, 3.

Proof The first step is to prove ∂|Q2h
(i,j)|/∂|δuk+1| 6 0, h = 1, 2, 3. We prove the

inequality for the case of h = 1 because other cases can be proved similarly. From

(2.23), we have

Q21
(i,j) = −

du(i,k+1)z(i,k−1)

du(i,k)(u(i,k+1) − u(j,k+1))
. (2.28)

19

Since δuk+1 = u(i,k+1) − u(j,k+1), we have

∂Q21
(i,j)

∂δuk+1

=
du(i,k+1)z(i,k−1)

du(i,k)δ
u
k+1

2 = −
Q21

(i,j)

δuk+1

. (2.29)

For the case when Q21
(i,j) > 0 and δuk+1 > 0, or the case when Q21

(i,j) < 0 and δuk+1 < 0,

we have

∂
∣∣Q21

(i,j)

∣∣/∂ ∣∣δuk+1

∣∣ = −Q21
(i,j)/δ

u
k+1 6 0. (2.30)

For the case when Q21
(i,j) > 0 and δuk+1 < 0, or the case when Q21

(i,j) < 0 and δuk+1 > 0,

we have

∂
∣∣Q21

(i,j)

∣∣/∂ ∣∣δuk+1

∣∣ = Q21
(i,j)/δ

u
k+1 6 0. (2.31)

Thus,

∂
∣∣Q21

(i,j)

∣∣/∂ ∣∣δuk+1

∣∣ 6 0. (2.32)

The second step is to prove ∂|Qgh
(i,j)|/∂z(i,k+1) > 0, g = 1, 2, h = 1, 2, 3. Here we

only prove the inequality for g = 1 and h = 1. All other cases with different g and h

values can be proved similarly. From (2.23), we have

Q11
(i,j) = −

du(i,k+1)u(j,k+1)z(i,k−1)

du(i,k)(u(i,k+1) − u(j,k+1))
. (2.33)

Substituting z(i,k−1) = z(i,k+1) − dzk − dzk+1 into (2.33), we have

∂Q11
(i,j)

∂z(i,k+1)

=
−du(i,k+1)u(j,k+1)

du(i,k)(u(i,k+1) − u(j,k+1))
=

Q11
(i,j)

z(i,k−1)
. (2.34)

Since z(i,k−1) > 0, when Q11
(i,j) > 0, we have

∂
∣∣Q11

(i,j)

∣∣/∂z(i,k+1) = Q11
(i,j)/z(i,k−1) > 0. (2.35)

When Q11
(i,j) < 0 we have

∂
∣∣Q11

(i,j)

∣∣/∂z(i,k+1) = −Q11
(i,j)/z(i,k−1) > 0. (2.36)

20

Thus,

∂
∣∣Q11

(i,j)

∣∣/∂z(i,k+1) > 0. (2.37)

�

This theorem indicates that the ego-motion estimation error ed
k+1 grows as the

depth of the vertical line z(i,k+1) increases. Also the depth error, which is the dz-

direction of dk+1, decreases as |δuk+1| increases. From Theorem 1, we know that the

depth error dominates the lateral error. Therefore, choosing the vertical line pair with

short depth and a large distance between the two lines can improve the accuracy of

the ego-motion estimation.

E. Error Aware Ego-motion Estimation Using Multiple Vertical Line Pairs

There are often multiple vertical lines in the scene. For n vertical lines, there are

n(n−1)/2 pairs. Each pair is capable of providing a minimum solution. The intuition

is that we should be able to combine those solutions to yield a motion estimation with

minimal error variance. To achieve this, we first define the final motion estimation

result as the weighted sum of the minimum solutions from all possible pairs. Plugging

(2.2) in, the new recursive ego-motion estimation function is

dk+1 =
n−1∑
i=1

n∑
j=i+1

w(i,j)Fs(dk,ui,uj), (2.38)

where w(i,j) is the weight of vertical line pair (i, j). w(i,j)’s are standardized,

n−1∑
i=1

n∑
j=i+1

w(i,j) = 1, (2.39)

w(i,j) = w(j,i) > 0, i ∈ I, j ∈ I, and i 6= j. (2.40)

21

We want to compute a set of w(i,j) to minimize σ2
k+1,

{w(i,j),∀i, j ∈ I, i 6= j} = arg min
{w(i,j)}

σ2
k+1. (2.41)

To solve this optimization problem, we need to derive the closed form of σ2
k+1. Let

us begin with deriving the expression of the estimation error ed
k+1 and its covariance

matrix Σd
k+1. We know that ed

k+1 has two parts,

ed
k+1 = epk+1 + emk+1, (2.42)

where epk+1 is the estimation error propagated from the previous step ed
k and emk+1 is

introduced from the measurement errors of the current step eu
i , i ∈ I. From (2.12)

and (2.38), we have the expressions of epk+1 and emk+1 as,

epk+1 =
n−1∑
i=1

n∑
j=i+1

w(i,j)P(i,j)e
d
k = Ted

k , (2.43)

where T =
n−1∑
i=1

n∑
j=i+1

w(i,j)P(i,j), and

emk+1 =
n−1∑
i=1

n∑
j=i+1

w(i,j)(Q(i,j)e
u
i + Q(j,i)e

u
j) =

n∑
i=1

(
n∑

j=1,j 6=i

w(i,j)Q(i,j))e
u
i =

n∑
i=1

Sie
u
i ,

(2.44)

where Si =
n∑

j=1,j 6=i
w(i,j)Q(i,j). In the above equations, T and Si are just the Jacobian

matrices corresponding to ed
k and eu

i , respectively. With the error relationship, we

can derive the covariance matrices.

Similar to (2.42), the covariance matrix Σd
k+1 of the estimation error ed

k+1 also

has two parts because errors propagated from the previous step are independent of

the measurement errors in the current step. Hence,

Σd
k+1 = Σp

k+1 + Σm
k+1, (2.45)

22

where Σp
k+1 and Σm

k+1 are corresponding to epk+1 and emk+1, respectively.

Recall that the covariance matrix Σd
k of ed

k in (2.43) is known from the previous

step. Recall that the covariance matrix Σu of eu
i in (2.44) is a diagonal matrix,

Σu = diag(σ2
u, σ

2
u, σ

2
u). Using the covariance matrices with (2.43) and (2.44), we have

Σp
k+1 = TΣd

kT
T , (2.46)

Σm
k+1 =

n∑
i=1

SiΣ
uSTi = σ2

u

n∑
i=1

SiS
T
i . (2.47)

Therefore, Σd
k+1 and its trace can be obtained,

Σd
k+1 = Σp

k+1 + Σm
k+1 = TΣd

kT
T + σ2

u

n∑
i=1

SiS
T
i , (2.48)

σ2
k+1 = Tr(Σd

k+1) = Tr(TΣd
kT

T) + σ2
u

n∑
i=1

Tr(SiS
T
i). (2.49)

With the closed form of σ2
k+1 derived, we can solve the problem defined in (2.41).

Let us define vector w = [w1, ..., wn(n−1)/2]
T with its g-th entry obtained as follows,

wg = w(i,j), where

 i = 1, ..., n− 1, j = i+ 1, ..., n,

g = (i− 1)(n− i/2) + j − i.
(2.50)

Vector w is our decision vector for the optimization problem in (2.41), which can be

rewritten as,

min
w
σ2
k+1 = wTAw, subject to:−w 6 0, and cTw = 1, (2.51)

where c = 1n(n−1)/2×1 is a vector with all elements being 1 and A is an n(n− 1)/2×

n(n− 1)/2 matrix obtained from (2.49).

Let us detail how to obtain each entry for A, which actually represents the

correlations between the vertical line pairs. A also consists of two parts A = Ap+Am,

where Ap is the error propagation from the previous step and Am is newly introduced

23

in the current step. Define Aghp as the (g, h)-th entry of Ap. Similarly, Aghm is the

(g, h)-th entry of Am. Then Ap and Am are obtained from (2.49) as follows, Aggp = Tr(P(i,j)Σ
d
kP

T
(i,j)), i = r, j = m,

Aghp = Ahgp = Tr(P(i,j)Σ
d
kP

T
(r,m)), otherwise,

(2.52)



Aggm = σ2
u(Tr(Q(i,j)Q

T
(i,j)) + Tr(Q(j,i)Q

T
(j,i)),

i = r, j = m,

Aghm = Ahgm = σ2
uTr(Q(i,j)Q

T
(r,m)), i = r, j 6= m,

Aghm = Ahgm = σ2
uTr(Q(j,i)Q

T
(m,r)), i 6= r, j = m,

Aghm = Ahgm = σ2
uTr(Q(j,i)Q

T
(r,m)), j = r, j 6= m,

Aghm = Ahgm = 0, otherwise,

(2.53)

where 

i = 1, ..., n− 1, j = i+ 1, ..., n,

r = i, ..., n− 1, m = j, ..., n,

g = (i− 1)(n− i/2) + j − i,

h = (r − 1)(n− r/2) +m− r.

Each diagonal entry of A is exactly the estimation error variance of each single

vertical line pair. Defining it as σ2
(i,j), we have

σ2
(i,j) = Agg = Tr(P(i,j)Σ

d
kP

T
(i,j)) + σ2

u(Tr(Q(i,j)Q
T
(i,j)) + Tr(Q(j,i)Q

T
(j,i)), (2.54)

for vertical line pair (i, j). This can be simply proved by degenerating (2.49) into the

case of containing only two vertical lines. Since A is positive definite, the feasible set

in the optimization problem in (2.51) is convex. Hence, this problem is a quadratic

convex optimization problem. For such a problem, it is well studied and has various

solving methods [52]. In this chapter, we use the well-known interior-point method

[53] to solve it.

24

F. Algorithms

The above analysis implies two different algorithms: best single pair (BSP) and min-

imum variance ego-motion estimation (MVEE) with multiple pairs. The BSP selects

the best pair from multiple vertical line pairs using the results in sensitivity analysis

in Section D. The MVEE uses the weights computed from solving the optimization

problem (2.41).

The two algorithms share a common structure as indicated in Algorithm 1. Note

that the function T (n) in Algorithm 1 is the complexity of either BSP subroutine

in Algorithm 3 or MVEE subroutine in Algorithm 4. For simplicity, we adopt the

approximation that z(i,k−1) ≈ z(i,k) and z(i,k+1) ≈ z(i,k) in the algorithm (see line

4-9). Since dz(i,k) � z(i,k) and dz(i,k+1) � z(i,k) for consecutive image frames, this

approximation is reasonable. At line 29, we call either BSP subroutine in Algorithm 3

or MVEE subroutine in Algorithm 4 to obtain ego-motion estimation results. It is

not difficult to find that,

Theorem 3 The computation times for the BSP algorithm and the MVEE algorithm

are O(n4) and O(n6), respectively.

At first glance, the computation complexity seems to be high. However, there

are O(n2) pairs to start with. The dominating computation in MVEE is from the

use of the interior-point method (IPM) [53] to get w, which takes O(n6) time for the

worst case in our IPM implementation, which apparently can be improved. However,

the speed is not a concern since n is the number of vertical lines and usually no more

than 20. The problem size is still small and our testing results have also confirmed

that.

25

G. Experiments

1. Experiment Setup

(a) (b)

Fig. 4. (a) The camera and the robot used in the experiment. (b) Experiment site

from the robot view for the minimum solution. We use the vertical lines on

the frontal plane of a building as highlighted in yellow color. The vertical lines

are numbered in pairs.

The algorithms are implemented on a Compaq V3000 laptop PC with an Intel

1.6GHz dual core CPU and 1.0G RAM and programmed in MatLab environment.

We use a Sony DSC-F828 Camera mounted on a robot in the experiment as shown in

Fig. 4(a). The camera HFOV is set to 50◦ with a resolution of 640× 480 pixels. The

robot is custom made in our lab. The robot measures 50× 47× 50 cm3 in size. The

robot has two front drive wheels and one rear cast wheel and uses a typical differential

driving structure. The robot can travel at a maximum speed of 50 cm/second.

We define a relative error metric ε for the comparison purpose. Let dx∗k and dz∗k

be the true displacements (i.e. ground truth) of the robot in x- and z-directions at

step k, respectively, which are obtained using a tape measurer in our experiments.

Recall that the corresponding outputs of visual odometry are dxk and dzk. ε is defined

as

ε =
√
ε2x + ε2z. (2.55)

26

where εx and εx are relative errors in x- and z- directions, respectively,

εx =
|
∑

k d
x
k −

∑
k d

x∗
k |∑

k

√
(dx∗k)2 + (dz∗k)2

, εz =
|
∑

k d
z
k −

∑
k d

z∗
k |∑

k

√
(dx∗k)2 + (dz∗k)2

.

This metric describes the ratio of the ego-motion estimation error in comparison to

the overall distance traveled.

During the experiments, we employ Gioi et al.’s method to extract the line seg-

ments from the images [54]. The vertical lines are found using an inclination angle

threshold [51] and vanishing points. Then, we employ the vanishing point method [49]

for vertical and horizontal lines to construct homographies that project images into

the iso-oriented ICSs with their u−v planes parallel to the vertical lines, which allows

us to align the ICSs at frames k − 1, k, and k + 1 for step k + 1. The correspon-

dence between lines in adjacent frames is found by directly matching pixels of vertical

stripes at the neighboring region of the vertical lines.

2. Validating the Minimum Solution and the BSP Algorithm

We first validate the minimum solution and its sensitivity analysis results in the

physical experiment. The experiment site is in front of a building on Texas A&M

University campus (see Fig. 4(b)). We use eight pairs of vertical lines on the frontal

plane of the building. In Fig. 4(b), two lines with the same number belong to the

same pair. The relative distance between the two lines in each pair is defined as δ.

During the experiment, the camera has to face the building frontal plane to obtain

edge position readings. Hence, the z-direction is the direction perpendicular to the

frontal plane and x-direction is the direction parallel to the frontal plane.

During each trial, the robot moves along a straight line with 11 incremental

steps and the step length of 0.5m. The robot takes images at each of the 12 positions

introduced by the 11-step movement. Recall that the robot displacement of the first

27

step is given as a reference. For the subsequent 10 steps, we compute the robot ego-

motion using (2.9) and compare it with the ground truth. Each trial is the average

of the outcome of the 10 steps.

The combination of four different experimental conditions are tested in different

trials:

C1: Two different robot headings including x- and z-directions,

C2: Eight different relative distance settings δ between the vertical line pair,

C3: Eight different depth of vertical line pair z. The initial positions of the robot

with respect to the building frontal plane are from eight different depth settings

ranging from 35m to 70m with 5m intervals, and

C4: Camera rotation vs. no camera rotation. For cases without camera rotation, we

adjust camera pan and tilt in the experiment to force CCSs to be iso-oriented.

For cases with camera rotation, we introduce CCSs with ±10◦ orientational

difference.

Therefore, we conduct a total of 256 trials in the experiments.

Fig. 5 illustrates experiment results. As shown in Fig. 5(a), regardless of the

robot moving directions, the depth direction estimation error εz is always over two

times as large as the lateral direction error εx, which confirms Theorem 1.

Since the depth error εz is the dominating error, we only compare εz. Fig. 5(c)

illustrates how εz changes with respect to different δ settings. It is clear that as δ

increases, εz decreases. Fig. 5(d) illustrates how εz changes as z changes. There is

a trend that εz decreases as z decreases although the trend is not clear when z is

relatively small since factors other than z dominate the error. These results confirm

Theorem 2.

28

0

10

20

30

40

xε zε xε zε
Moving along x Moving along z

(%)

(64)

(64)

(64)

(64)

0

10

20

30

40

xε zε xε zε
Without rotation With rotation

(128)

(128)

(128)

(128)

(%)

(a)

0

10

20

30

40

xε zε xε zε
Moving along x Moving along z

(%)

(64)

(64)

(64)

(64)

0

10

20

30

40

xε zε xε zε
Without rotation With rotation

(128)

(128)

(128)

(128)

(%)

(b)

2.1 5.0 8.0 10.8 13.6 16.4 19.4 22.1
0

10

20

30

40

50

35.0 40.0 45.0 50.0 55.0 60.0 65.0 70.0
0

10

20

30

40

50

(%)
 zε

(m)δ

(16)

(16)(16)(16)

(16)

(16)

(16)

(16)

(m)z

(16)

(16)

(16)

(16)
(16)

(16)
(16)

(16)

(%)
 zε

(c)

2.1 5.0 8.0 10.8 13.6 16.4 19.4 22.1
0

10

20

30

40

50

35.0 40.0 45.0 50.0 55.0 60.0 65.0 70.0
0

10

20

30

40

50

(%)
 zε

(m)δ

(16)

(16)(16)(16)

(16)

(16)

(16)

(16)

(m)z

(16)

(16)

(16)

(16)
(16)

(16)
(16)

(16)

(%)
 zε

(d)

Fig. 5. Statistical experiment results for the minimum solution. Note that the red

line is the mean value, the blue box represents the population ranging from

25 percentile to 75 percentile, and the black dashed intervals indicate the data

range. Numbers inside the parentheses are the numbers of trials. (a) εz vs.

εx. (b) Camera rotation vs. no camera rotation. (c) εz vs. δ. (d) εz vs. z.

The number in the parenthesis is the number of trials used to compute the

statistics.

Additionally, Fig. 5(b) illustrates how camera rotation impacts εx and εz. It is

clear that there is no significant difference between the two cases for either εx or εz.

The result shows that assuming CCSs are iso-oriented in the analysis is reasonable.

29

(,)i jw

ranked weight

-4 4
10

20

30

40

1 4 7 100

0.2

0.4

0.6

0.8

1

(m)
z

(m)x

(a)

(,)i jw

ranked weight

-4 4
10

20

30

40

1 4 7 100

0.2

0.4

0.6

0.8

1

(m)
z

(m)x

(b)

Fig. 6. (a) A top view of vertical lines and corresponding weights for pairs for the

sample case. The black dots are vertical lines. The resulting weights for each

vertical line pair are presented as edges in grayscale. Darker edge means heavier

weight. (b) Weight distribution in decreasing order corresponds to the edges

in (a).

3. Validating the MVEE Algorithm

a. A Sample Case in Simulation

For MVEE validation, we first present a sample case to see how the weights are

assigned by the MVEE algorithm for a typical vertical line distribution. We want to

know which pairs are more important than others. We setup a scenario that eight

vertical lines are symmetrically located along each side of a road as illustrated in

Fig. 6(a). This is to simulate the urban case where buildings are evenly distributed

on both sides of a road.

Originally, the robot is located at (x = 0, z = 0). Then the robot moves two

steps by traveling 1m at a time in z-direction. The first step is given as an initial

reference and the MVEE algorithm is executed at the end of the second step.

Fig. 6(a) highlights more heavily weighted pairs by darker edge. The pairs with

weights less than 1% of the maximum weight have little contribution to the final

ego-motion estimation and are not drawn. It is clear that the vertical line pair that

30

is closest to the camera has the heaviest weight, which is expected according to our

results in the minimum solution sensitivity analysis.

Fig. 6(b) illustrates ordered weights by their values. It is clear that only a small

part of the vertical line pairs (20%) have their contributions more than 1% of the

maximum weighted pair. This result suggests that it is not necessary to track all

edges if computation power is limited. In fact, the best pair actually contributes over

70% to the final result, which indicates that BSP is an available choice for cases when

computation power is extremely limited.

b. A Comparison of Different Pair Aggregation Methods in Physical Experiments

(a) (b)

(c)

Fig. 7. (a) Experiment site 1 from the robot view with vertical edges highlighted in

green. (b) and (c) Experiment sites 2 and 3 with robot trajectories highlighted

in black.

The MVEE aggregates motion estimation results from multiple vertical line pairs

using the variance minimization method. Here we compare MVEE with the results

from BSP and a simple equal weighting for all (EWA) pairs. The experiment site is

31

shown in Fig. 7(a). In each trial, the robot moves 31 steps along a zigzagging poly

line with a step length of 1 m for odd steps and a step length of 0.5 m for even steps

(Fig. 8(a)). We also repeat the experiment with three different camera resolutions:

640× 480, 1280× 960 and 2560× 1920 pixels. With 10 trials for each resolution, we

have a total of 30 trials.

0

0.02

0.04

0.06

2 11 21 31
0

0.05

0.1

0.15

9 6 3 0

0

5

10

15

12 8 4 0

0

5

10

15

20

25

#steps

ε

(m)
z

1280 960× 2560 1920×

ε

(b)

(a) (c)
 (m)x 640 480×

BSP
EWA
MVEE
Real

BSP
MVEE

BSP
MVEE

Fig. 8. (a) A comparison of robot trajectories from BSP, MVEE and EWA with ground

truth (dashed black poly line). (b) Mean relative error ε̄ and its standard

deviation over #steps for both BSP and MVEE. (c) ε̄ vs. camera resolutions.

The experiment results of the three different pair aggregation methods are shown

in Fig. 8. With a camera resolution of 640× 480 pixels, Fig. 8(a) presents the sample

ego-motion estimation results in the form of robot trajectories for one trial. Since

EWA is much worse than either BPS or MVEE, it has to be shown in the bigger scale

in the small thumbnail at the lower left corner of the figure. The comparison between

BPS and MVEE is shown both in the format of the robot trajectories in Fig. 8(a)

and in ε̄ over steps in Fig. 8(b). Each ε̄ in Fig. 8(b) is an average of ε over the trials

with all camera resolutions at the same step number. Without a surprise, MVEE

32

consistently outperforms BPS at all resolution settings (Fig. 8(c)).

4. Comparison of MVEE with Existing Point and Line-based Odometry Methods

We compare MVEE with two popular ego-motion estimation methods in physical

experiments:

• Nister [26]: This method is selected because it is a representative point feature-

based method. The method employs Harris corner points as landmarks. This

method supports both monocular and stereo configurations. We use its monoc-

ular configuration in the experiments.

• L&L [11]: This method is selected because it is a representative line feature-

based method. The method is a monocular vision based SLAM method using

general line segments as landmarks. We turn off the loop closing for visual

odometry comparison purpose.

Both methods estimate 3D robot movements. Since our method is 2D, we only

compare the odometry results on the x− z ground plane.

We run tests at three experiment sites (Fig. 7) for all three methods. At each

site, the robot moves along a planned trajectory for a certain number of steps. The

details about each site are described below:

• Site 1: The same 31-step performed in Fig. 8(a) for the site in Fig. 7(a).

• Site 2: The robot moves toward the depth direction for 51 steps with a step

length of 1 m (Fig. 7(b)).

• Site 3: The robot has two trajectories as indicated by the black solid and

dashed lines, respectively. Each trajectory has 31 steps along the depth direc-

33

tion followed by 20 steps along the lateral direction with a step length of 1 m

(Fig. 7(c)).

We run the robot for 10 trials at each site (for site 3, each trajectory takes 5 trials)

which leads to a total of 30 trails.

9 6 3 0

0

4

8

12

16

0

0.02

0.04

0.06

0.08

0.1

ε

Site 2 Site 3Site 1

(m)
z

 (m)x

Nister
L&L
MVEE

Nister
L&L
MVEE
True

(a)

9 6 3 0

0

4

8

12

16

0

0.02

0.04

0.06

0.08

0.1

ε

Site 2 Site 3Site 1

(m)
z

 (m)x

Nister
L&L
MVEE

Nister
L&L
MVEE
True

(b)

Fig. 9. Physical experiment results. (a) A comparison of robot trajectories from the

three methods with the ground truth (dashed black poly line). (b) A compar-

ison of ε̄ values for the three methods at each experiment site.

The experiment results of the three methods are shown in Fig. 9. Fig. 9(a)

presents a representative sample trial of estimated trajectory comparison at site 1.

Fig. 9(b) compares the mean values of ε for the three methods at each site. It is clear

that MVEE outperforms its two counterparts in estimation accuracy.

Table 1 compares feature quality and computation speed for the three methods.

Each row in Table 1 is the average of the 30 trials. It is obvious that the two line

feature based methods, MVEE and L&L, outperform the point feature based Nister

method, which conforms to our expectation. MVEE is slightly faster than L&L due

to its smaller input sets since vertical lines are a subset of general lines. Note that all

implementations are in MatLab and the speed should be much faster if converted to

C++ but the factors should remain the same.

34

For feature quality, it is clear that Nister method employs much more features

than MVEE and L&L, while its inliers/total-features ratio is the lowest. On the

contrary, MVEE has the least number of features with the highest inlier ratio. This

indicates that MVEE is more robust than the other two methods. Overall, MVEE

outperforms the other two methods in robustness, accuracy, and speed.

H. Conclusion and Future Work

We reported our development of an incremental error-aware monocular visual odom-

etry method that utilizes vertical edges of buildings in urban area. We derived how

to estimate the robot ego-motion using vertical line pairs. To improve the accuracy,

we analyzed how errors are introduced and propagated in the continuous odometry

process by deriving the recursive and closed form representation of error covariance

matrix. We formulated the minimum variance ego-motion estimation problem and

presented two algorithms. The resulting visual odometry methods were extensively

tested in physical experiments. The proposed odometry method was compared with

two popular existing methods and consistently outperforms the two counterparts in

speed, robustness, and accuracy.

In the future, we will extend the approach by exploring different combinations of

geometric features such as vertical planes, horizontal lines, and points with geometric

meanings (e.g. intersections between lines and planes) in visual odometry. We will

also look into methods using texture features in combination with geometric features.

35

Algorithm 1: BSP and MVEE Algorithms

1 input : dk, ui, i ∈ I, f , σ2
u, Σd

k

2 output : dk+1, Σd
k+1

3 begin

4 for i = 1 to n do O(n)

5 du(i,k+1) = u(i,k+1) − u(i,k); O(1)

6 du(i,k) = u(i,k) − u(i,k−1); O(1)

7 z(i,k) =
(dxk−u(i,k−1)d

z
k)

(u(i,k)−u(i,k−1))
; O(1)

8 z(i,k−1), z(i,k+1) = z(i,k); O(1)

9 end

10 for i = 1 to n− 1 do O(n)

11 for j = i+ 1 to n do O(n)

12 Calculate P(i,j), Q(i,j), Q(j,i) based on (2.22) and (2.23); O(1)

13 end

14 end

15 Continue on Algorithm 2.

16 end

36

Algorithm 2: BSP and MVEE Algorithms (Continue)

1 begin

2 for i = 1 to n− 1 do O(n)

3 for j = i+ 1 to n do O(n)

4 g = (i− 1)(n− i/2) + j − i; wg = w(i,j), (2.50); O(1)

5 for r = i to n− 1 do O(n)

6 for m = j to n do O(n)

7 h = (r − 1)(n− r/2) +m− r; O(1)

8 Calculate Aghp using P(i,j), P(r,m) based on (2.52); Calculate

Aghm using Q(i,j), Q(j,i), Q(r,m), Q(m,r) based on (2.53); O(1)

9 Agh = Aghp + Aghm ; O(1)

10 end

11 end

12 end

13 end

14 Call BSP subroutine or MVEE subroutine; T (n)

15 Return dk+1, Σd
k+1;

16 end

37

Algorithm 3: BSP Subroutine

1 input : dk, ui, i ∈ I, f , σ2
u, Σd

k , A

2 output : dk+1, Σd
k+1

3 begin

4 for i = 1 to n− 1 do O(n)

5 for j = i+ 1 to n do O(n)

6 g = (i− 1)(n− i/2) + j − i; O(1)

7 Record the maximum Agg and the corresponding i, j as i∗, j∗; O(1)

8 end

9 end

10 Calculate T based on (2.43) for (i∗, j∗); O(1)

11 Calculate Σp
k+1 based on (2.46); O(1)

12 Calculate Si∗ , Sj∗ based on (2.44) for (i∗, j∗); O(1)

13 Calculate Σm
k+1 based on (2.47) for (i∗, j∗); O(1)

14 Calculate Σd
k+1 based on (2.45); O(1)

15 Compute dk+1 based on (2.9) for (i∗, j∗); O(1)

16 Return dk+1, Σd
k+1;

17 end

38

Algorithm 4: MVEE Subroutine

1 input : dk, ui, i ∈ I, f , σ2
u, Σd

k , w, A

2 output : dk+1, Σd
k+1

3 begin

4 Calculate w in (2.51) using IPM; O(n6)

5 for i = 1 to n− 1 do O(n)

6 for j = i+ 1 to n do O(n)

7 g = (i− 1)(n− i/2) + j − i; w(i,j) = wg, (2.50); O(1)

8 end

9 end

10 Calculate T based on (2.43); O(n2)

11 Calculate Σp
k+1 based on (2.46); O(1)

12 for i = 1 to n do O(n)

13 Calculate Si based on (2.44); O(n)

14 end

15 Calculate Σm
k+1 based on (2.47); O(n)

16 Calculate Σd
k+1 based on (2.45); O(1)

17 for i = 1 to n− 1 do O(n)

18 for j = i+ 1 to n do O(n)

19 Calculate F(dk,ui,uj) based on (2.9); O(1)

20 end

21 end

22 Calculate dk+1 based on (2.38); O(n2)

23 Return dk+1, Σd
k+1;

24 end

39

Table 1. Feature quality and computation speed comparison.

Methods
Feature Speed

Total Inliers Ratio Time Factor

Nister 3425 245 7% 15.2s 6.6x

L&L 122 41 34% 3.4s 1.5x

MVEE 59 25 42% 2.3s 1.0x

39

Ji
Typewritten Text

40

CHAPTER III

VISION-BASED MEASUREMENT OF FISH SWIMMING MOTION

We present the system and approach to track and reconstruct the movement of a live

fish in a tank as shown in Fig. 10. We use a camera-mirror system to capture three

orthogonal views of the fish. We build a virtual fish model from measurements of the

real fish. The fish model has a four-link spinal cord and meshes attached to the spinal

cord. We project the fish model onto three orthogonal views and match the projected

views with the real views captured by the camera. We then maximize the overlapping

area of the fish in the projected views and the real views, which results in our fish

swimming motion reconstruction. Part of this algorithm is still under construction

and will be updated in the future.

A. Introduction

Camera mirror
system

Color
Segmentation

Virtual fish model

Motion
reconstruction

Camera footages Extracted fish area

Camera
projection3D fish model Projected views of

Output: fish

the fish model

swimming motion

(1) (2)

(3) (4)

(5)

Fig. 10. Illustration of the system. We record camera footages by (1) A camera-mirror

system, then we extract the fish area from the video by color segmentation

at (2). Meanwhile, a virtual fish model is built at (3) And the fish model is

projected to camera views at (4). Finally, we match the projected views and

the real views to reconstruct the fish swimming motion at (5).

In biology research, video or animated video playback is a useful tool to study

41

visual communication and its related behaviors of animals. Due to the fast improved

technology for generating and manipulating videos, the use of video playback for

biological study has significantly increased over the last decade [55, 56]. Currently,

video playback is generated in two ways: (1) hand connecting live video sequences of

the animal [57] and (2) using 3D animation tools to create artificial movement of a

virtual animal [58]. Both of the two ways require close human interaction which often

results in confounding artifacts on the animal motion, shape, and texture. Further

more, both methods are labor intensive.

In this chapter we present the system setup and approach to automatically track

and reconstruct the movement of a live fish in a tank. The work is a combination of

the two available video playback generating methods. We use a camera-mirror system

to capture three orthogonal views of the fish. We also build a virtual fish model from

measurements of the real fish. The fish model has a four-link spinal cord and meshes

attached to the spinal cord. We project the fish model onto three orthogonal views

and match the projected views with the real views captured by the camera. Then, we

maximize the overlapping area of the fish in the projected views and the real views,

which results in our fish swimming motion reconstruction. Comparing with the two

available methods, our work saves large amount of time on manual video recording,

manipulating, and creates video playback based on the motion of a live fish, which

can generate more natural and fish-like swimming motion.

Since fish extensively use visual communication and many fish species can be

easily housed in a tank for video recording, the technique proposed in this chapter

can be greatly helpful for biologists who research on fish visual communication and its

related behaviors. Further more, the technique will also favors computer animation

specialist working on underwater environment and can be developed into instructional

tools for undergraduate and K-12 class students for fish behavior studies.

42

B. Related Work

This chapter focuses on fish swimming motion tracing and reconstructing, which is

related to visual tracking and human/animal motion 3D reconstruction.

Visual tracking is the process of locating a particular object in camera videos,

and is widely used in security and surveillance [59,60], traffic control [61,62], medical

imaging [63], etc. From the perspective of algorithm output, visual tracking can be

classified into blob tracking [64,65], contour tracking [66,67], and feature matching [68,

69]. Blob tracking localizes the interior of an object and computes the center position

of the object, contour tracking estimates the boundary of the object, and feature

matching identifies particular features (i.e. points, lines) on the object. In our work,

we adopt contour tracking because blob tracking which only computes the object

center position cannot provide enough information to reconstruct the movement of a

live fish, and feature matching is limited to a few fish species because the features on

a fish body varies significantly from species to species.

Human 3D reconstruction has been developed for computer animation purpose.

The technique usually adopts multiple cameras [70, 71]. Chai, et al, develop a tech-

nique of human motion reconstruction with a monocular camera [72]. The technique

requires human interference for feature point selection. 3D reconstruction for animals

has been implemented on elephant [73], fish [74], extinct animals [75], et al. Our work

is an improvement of the pervious works in that we use computer vision technology

to reconstruct the fish swimming motion from a live fish.

C. System Configuration

The camera-mirror system is shown in Fig. 11. The system is composed of a rectan-

gular tank, two reflective mirrors, and a video camera. The mirrors and the camera

43

Camera

Tank

Mirrors

TankReservoir

Tube

Openable
Top Board

Tank

Openable
Bottom Holder

Large Reservoir

x

y

z

fX

cX

bX

0P

3P
2P

1θ 2θ 3θ
4P

x

y

z

α
β

γ
1P

Fig. 11. An illustration of camera-mirror system configuration. The system includes

a rectangular tank, two reflective mirrors, and a video camera. The mirrors

and the camera can create three orthogonal views of the fish in the tank.

create a live video of the fish in the tank with three orthogonal views. The fish

swimming motion is reconstructed from the video.

We use a Panasonic AG-DVX100B video camera for the experiment with the

resolution of 720× 480 pixels and the frame rate of 30 frames/second. We have two

configurations of the tank. The first one is a small sized tank for system testing

purpose. The tank is made of plastic board and measures 7× 7× 5 cm3 in size. The

second one is a large sized tank for actual experiment purpose. The tank is made of

glass board and measures 41×16×16 cm3 in size. The two tanks share some common

characteristics: (1) Both of them provides a closed space for water only, with no air

in the tank. This is because the camera-mirror system takes a top-down view of the

tank. Any water surface that is connected with air will create wave on the water

surface. The wave will distort the view of the fish in the water. (2) The tanks must

have at least one side of the walls openable to allow fish to be put into the tank.

Fig. 12 shows the design of the small tank. The tank has an openable top board

and a tube connected with a water reservoir. The top board is not airtight which

44

Camera

Tank

Mirrors

TankReservoir

Tube

Openable
Top Board

Tank

Openable
Bottom Holder

Large Reservoir

x

y

z

fX

cX

bX

0P

3P
2P

1θ 2θ 3θ
4P

x

y

z

α
β

γ
1P

Fig. 12. Design of the small tank. The tank has an openable top board and a tube

connected with a water reservoir. The tank, the reservoir, and the tube com-

pose a communicating vessel, which makes the water levels in the tank and

the reservoir in the same height.

can allow air goes into/out of the tank. The top of the reservoir is open. The tank,

the reservoir, and the tube compose a communicating vessel, which makes the water

levels in the tank and the reservoir in the same hight. To start an experiment, we

1. Fill water into the reservoir until the tank is almost full with water;

2. Put a fish into the tank and close the top board;

3. Fill more water into the reservoir to squeeze out any air in the tank.

To finish an experiment, we

1. Slightly lower the position of the reservoir to allow air goes into the tank;

2. Open the top board and take the fish out of the tank;

3. Lower the position of the reservoir more to drill out all the water in the tank.

Fig. 13 shows the design of the large tank. Due to the large size of the tank, it

is rather difficult to squeeze out all the air in the tank if we use the same design with

the small tank. In our experiment, air bubbles remain in the tank which disturb the

45

Camera

Tank

Mirrors

TankReservoir

Tube

Openable
Top Board

Tank

Openable
Bottom Holder

Large Reservoir

x

y

z

fX

cX

bX

0P

3P
2P

1θ 2θ 3θ
4P

x

y

z

α
β

γ
1P

Fig. 13. Design of the large tank. The tank has an openable bottom holder that

contains shadow water. The tank is sinked in the shadow water in the bottom

holder. Because of atmospheric pressure, the tank fully holds water without

any air in the tank. The large reservoir is for the purpose of filling water into

the tank.

top-down view. Therefore, we bring in another design for the large tank. As shown

in Fig. 13, the tank has an openable bottom holder that contains shadow water. The

tank is sinked in the shadow water. Because of atmospheric pressure, the tank can

fully hold water without any air in the tank. The design also contains a large reservoir

for the purpose of filling water into the tank. To start an experiment, we

1. Put the tank and the bottom holder into the large reservoir and sink them

completely into water;

2. Put a fish into the tank and close the bottom holder;

3. Lift the tank with the bottom holder together out of the large reservoir and

keep them in level attitude.

To finish an experiment, we

1. keep the tank and the bottom holder in level attitude and put them into the

large reservoir;

2. Open the bottom holder and take the fish out of the tank;

3. Lift the tank and the bottom holder out of the large reservoir separately.

46

For a physical experiment, we first test in the small tank. Then, we use the large

tank for final experiment. Both of the tanks are tested in experiment.

D. Camera Calibration

The camera calibration is a pre-processing procedure for each experiment. The pro-

cedure corrects the orientation of the image plane and at the same time computes

the camera relative position to the tank. We run camera calibration once before each

individual experiment. We begin with assumptions.

1. Assumptions

1. We assume the tank is in rectangular shape with the length of its edges known.

The interior of the tank is filled with water (refractive index 1.333) and the

exterior of the tank is air (refractive index 1.000).

2. We assume that the camera follows the pinhole camera model with square pixels

and a zero skew factor. The camera lens distortion is removed. If not, we

can use intrinsic parameters from radial distortion calibration to correct the

discrepancy.

2. Notations and Coordinate Systems

As shown in Fig. 14, the rectangular illustrates the tank. The camera points at two

parallel faces of the tank. We call the face closer to the camera the front face, and

the face further away from the camera the back face. Without loss of generality, we

define tank coordinate system x − y − z with its origin at the left-bottom vertex of

the tank with respect to the camera, on the front face. The x-axis is along with one

horizontal edge of the tank pointing rightward, the y-axis is along with one horizontal

47

Camera

Aquarium

Mirrors

AquariumReservoir

Tube

Openable
Top Board

Aquarium

Openable
Bottom Holder

Large Reservoir

x

y

z

fX

cX

bX

Fig. 14. Definition of tank coordinate system x− y− z. The face closer to the camera

is the front face, the face further away from the camera is the back face. A

pair of points on the front face and the back face that share the same position

in the camera image are indicated as Xf and Xb, respectively.

edge of the tank pointing in the inverse direction to the camera position, and the z-

axis is along with one vertical edge of the tank pointing upward. With the coordinate

system defined, the front face of the tank is on the x− z plane.

Let Xc be the camera optical center, Xc = (xc, yc, zc). Here, since the y-axis is

pointing in the inverse direction to the camera, there is always yc < 0. Viewing from

the camera optical center, a point on the front face is corresponding to a point on the

back face, i.e. the two points overlaps in the camera image. A pair of corresponding

points are defined as Xf and Xb, where Xf = (xf , 0, zf) is the point on the front face

and Xb = (xb, yb, zb) is on the back face. Note that due to the refraction between

water, tank wall, and air, Xc, Xf and Xb are not collinear, the three points follow

Snell’s refraction law [76], which will be discussed later in this chapter.

3. Problem Definition

To calibrate the camera, a grid is attached on the back face of the tank, as illustrated

by the blue colored doted grid on the back face (Fig. 14). The grid’s measure is

known, and we use the horizontal and vertical lines’ intersections on the grid for the

48

camera calibration. Let the set of the intersection points be Xb, and let a point in

Xb be X ′b, X
′
b = (x′b, y

′
b, z
′
b) ∈ Xb. X ′b in the tank coordinate can be obtained from its

relative position on the grid.

Each intersection point on the back face is corresponding to a point on the front

face, as illustrated by the blue colored solid grid on the front face (Fig. 14). Let the set

of the corresponding points be Xf , and let a point in Xf be X ′f , X
′
f = (x′f , 0, z

′
f) ∈ Xf .

X ′f in the tank coordinate can be obtained from its relative position on the front face

in the camera image.

The task of camera calibration is to find the position of the camera optical center

Xc using the correspondence between Xf and Xb, then use Xc to find the point-wise

mapping between the front and the back faces. Mathematically, the problem can be

defined as

Definition 2 Given Xb and a camera image, compute Xf and estimate Xc, then

reversely for any given point Xf on the front face, use Xc to find the corresponding

point Xb on the back face.

4. Locate Intersection Points on Front Face

In this subsection we will compute Xf in the tank coordinate. For a camera image

as Fig. 15(a), we define the image coordinate system u − v with its origin at the

left-bottom corner of the image. The u- and v- axis are horizontal and vertical axis

pointing rightward and upward, respectively. A point in the u − v coordinate is

denoted as I = (u, v).

As shown in Fig. 15(a), since the camera principal axis may not necessarily be

perpendicular to the front face, the rectangular shaped front face in the camera image

is not necessarily rectangular. We have to correct the image such that the front face

49x

y

z

x

y

z

iα iβ
iγ

eαeβ

eγ

fX ′

bX ′
D
B

A

C
cX

fX

cX

bX

fI fI ′
oI oI ′

u

v

u′

v′

aα

d

gα
wα

w

(a)

x

y

z

x

y

z

iα iβ
iγ

eαeβ

eγ

fX ′

bX ′
D
B

A

C
cX

fX

cX

bX

fI fI ′
oI oI ′

u

v

u′

v′

aα

d

gα
wα

w

(b)

Fig. 15. (a) Before and (b) After image correction. After the correction, the tank front

wall appears rectangular in the image.

appears rectangular, as shown in Fig. 15(b). Define the image coordinate system

u′− v′ for Fig. 15(b) in the same fashion with coordinate u− v, a point in the u′− v′

coordinate is denoted as I ′ = (u′, v′).

The image correction is achieved by a homography translation. Since the measure

of the front face is known, we can construct a homography matrix H using the four

corner points of the front face [38]. The mapping is up to similarity, where each point

I in the u − v coordinate is mapped to a point I ′ in the u′ − v′ coordinate by the

following relationship,

s

[
u′ v′ 1

]T
= H

[
u v 1

]T
(3.1)

where s is a scale factor.

Let If be the image point of X ′f in the u− v coordinate, and let Io be the image

point of the tank coordinate origin. Using (3.1), the corresponding image points of

If and Io in the u′ − v′ coordinate is obtained, denoted as I ′f and I ′o, I
′
f = (u′f , v

′
f)

and I ′o = (u′o, v
′
o). X

′
f can be computed by its relative position on the front face, x′f

z′f

 =

 la(u
′
f − u′o)/li

ha(v
′
f − v′o)/hi

 , (3.2)

50

where la and ha are the width and height of the front face in the tank coordinate,

measured before hand, and li and hi are the width and height of the front face in the

u′−v′ coordinate, measured from the camera image. Computing each intersection on

the front face, we obtain Xf .

5. Estimate Camera Optical Center

x

y

z

x

y

z

iα iβ
iγ

eαeβ

eγ

fX ′

bX ′
D
B

A

C
cX

fX

cX

bX

Fig. 16. Camera calibration. A light ray starts from a point on the back face, X ′b,

through a point on the front face, X ′f , into camera optical center, Xc.

In this subsection, we will present a method to recover Xc from Xf and Xb. As

shown in Fig. 16, recall that points X ′f and X ′b are a pair of intersections on the front

face and back face, respectively, X ′f ∈ Xf and X ′b ∈ Xb. AB is the line segment

passing through X ′f and perpendicular to the x − z plane. Points C and D are the

projections of Xc and X ′b onto the plane passing through AB and parallel to the y−z

plane. αi, βi, γi, αe, βe, and γe are six angles defined in the figure.

According to Snell’s refraction law, αi and αe follow the following relationship,

na sinαe = nw sinαi. (3.3)

Since 4ACXc and 4BDX ′b are a pair of similar triangles, we have

γe = γi, (3.4)

51

then, from geometry relationship, we have

tan βe = tanαe cos γe. (3.5)

Plugging (3.3) and (3.4) into (3.5), we have

tan βe =
(nw/na) sinαi cos γi√
1− (nw/na)2 sin2 αi

. (3.6)

Replacing sinαi, cos γi, and tan βe in (3.6) by the expressions of Xc, X
′
f , and X ′b,

where

tan βe =
AC

AX ′f
=
z′f − zc
−yc

, (3.7)

sinαi =
BX ′b
XfX ′b

=

√
(x′b − x′f)2 + (z′b − z′f)2√

(x′b − x′f)2 + y′b
2 + (z′b − z′f)2

, (3.8)

cos γi =
BD

BXb

=
z′b − z′f√

(x′b − x′f)2 + (z′b − z′f)2
, (3.9)

we obtain a linear equation of yc and zc,

a1yc + zc = b1, (3.10)

where

a1 = −
nw(z′b − z′f)√

(n2
a − n2

w)((x′b − x′f)2 + (z′b − z′f)2)− n2
wy
′
b
2
,

b1 = z′f .

Eq. (3.10) is derived by projecting Xc and X ′b to C and D, respectively. Similarly,

we project Xc and X ′b onto a plane passing through AB and parallel to the x − y

plane, and we obtain a linear equation of xc and yc as

xc + a2yc = b2, (3.11)

52

where

a2 = −
nw(x′b − x′f)√

(n2
a − n2

w)((x′b − x′f)2 + (z′b − z′f)2)− n2
wy
′
b
2
,

b2 = x′f .

Combine (3.10) and (3.11), we have the following equation,

A

[
xc yc zc

]T
= b, (3.12)

where

A =

 0

1

a1

a2

1

0

 , b =

 b1

b2

 .
This indicates that for a pair of corresponding X ′f and X ′b, we can derive two linear

equations as (3.12). Doing this for each pair of points in Xf and Xb, we have a stack

of equations. Recovering Xc from the equations set is a standard procedure using

SVD. Therefore, Xc is computed.

E. Extract Fish Area from Video

The fish area in each image frame of the video is extracted using color segmentation.

In this task, the image background is a material located on the back of the tank.

We choose a unique blue colored material because this color is significantly different

from the colors on the fish body. With the material setup, the color of the image

background is known. The color segmentation is simply a process of looking for an

area in the image frame where the color is the most different from the background.

Before the color segmentation, we first boost the color difference between the

fish area and the background using consecutive frame information. As in our obser-

vation, it is very rare that the fish body stays exactly statistic for a moment of time.

Therefore, the following equation is employed to utilize the fish body movement to

53

boost the color difference,

Cb
(u,v,k) = 0.5C(u,v,k) + 0.5C(u,v,k+1) + 0.2|C(u,v,k) − C(u,v,k+1)|, (3.13)

where C(u,v,k) and C(u,v,k+1) are the pixel color for frame k and k+1 respectively, with

the image coordinate of (u, v), and Cb
u,v,k is the corresponding boosted pixel color.

The color segmentation is then performed using a color threshold, (Cblue −

Cthre, Cblue+Cthre), where Cblue is the background color and Cthre is the color thresh-

old. Any pixel in the image frame whose color is located in (Cblue−Cthre, Cblue+Cthre)

is regarded as background, and otherwise perspective fish area.

A connectivity check is performed finally. Since we know the size of the fish in

the image frame, for any exacted area significantly smaller than the fish size, we treat

them as noise. The exacted areas that pass the connectivity check are regarded as

fish areas. A sample color segmentation result is shown in Fig. 17.

(a)

(b)

(c)

Fig. 17. A sample color segmentation result with the fish area shown in white color

and the background in black color. (a) Front view. (b) Left view. (c) Top

view.

F. Build Virtual Fish Model

We build a virtual fish model in the same size and shape as the real fish for the

swimming motion reconstruction. Fig. 18 shows the virtual fish bone model. The

54

Camera

Aquarium

Mirrors

AquariumReservoir

Tube

Openable
Top Board

Aquarium

Openable
Bottom Holder

Large Reservoir

x

y

z

fX

cX

bX

0P
3P

2P
1P

1θ 2θ 3θ
4P

Fig. 18. Top-down view of the virtual fish bone model. The bone model has four links

and three pan DOFs for each connection of the links.

bone model has four rigid links denoted as P0P1, P1P2, P2P3, and P3P4. The relative

length of the four links are determined based on [77]. The bone model has three pan

DOFs on each link connection. Define θi, i = 1, 2, 3 as the intersection angle between

link Pi−1Pi and PiPi+1 as illustrated in Fig. 18. The counterclockwise direction is the

positive direction for θi.

Camera

Aquarium

Mirrors

AquariumReservoir

Tube

Openable
Top Board

Aquarium

Openable
Bottom Holder

Large Reservoir

x

y

z

fX

cX

bX

0P

3P
2P

1θ 2θ 3θ
4P

x

y

z

α
β

γ
1P

Fig. 19. Position and orientation of the virtual fish model in the tank coordinate. The

model has three parameters to determine the position and three parameters

to determine the orientation.

To determine the position and orientation of the virtual fish model in the tank

coordinate, we need six parameters: three parameters for the position and three pa-

rameters for the orientation. Let Xf be the tank coordinate of P0, Xf = {xf , yf , zf}.

Let α, β, and γ be respectively the pan, tilt, and rotation angles of the first link of

the virtual fish bone model, P0P1. As illustrated in Fig. 19, α, β, and γ are defined

in Euler order. With the position and orientation determined, the virtual fish model

55

has totally nine DOFs indicated as θ1, θ2, θ3, xf , yf , zf , α, β, and γ.

Camera

Aquarium

Mirrors

AquariumReservoir

Tube

Openable
Top Board

Aquarium

Openable
Bottom Holder

Large Reservoir

x

y

z

fX

cX

bX

0P

3P
2P

1θ 2θ 3θ
4P

x

y

z

α
β

γ
1P

Fig. 20. B-spline generated from the four-link bone model. The blue solid lines repre-

sent the bone model, the red dashed curve represents the b-spline curve, and

the black crosses are the b-spline curve key points.

With the virtual fish bone model built, we use third-order b-spline to interpolate

the five vertices of the four-link bone model, which generates a smooth curve as

shown in Fig. 20. The blue solid lines represent the bone model, the red dashed curve

represents the b-spline curve, and the black dots are the b-spline curve key points.

Camera

Aquarium

Mirrors

AquariumReservoir

Tube

Openable
Top Board

Aquarium

Openable
Bottom Holder

Large Reservoir

x

y

z

fX

cX

bX

0P

3P
2P

1θ 2θ 3θ
4P

x

y

z

α
β

γ
1P

(a)

Camera

Aquarium

Mirrors

AquariumReservoir

Tube

Openable
Top Board

Aquarium

Openable
Bottom Holder

Large Reservoir

x

y

z

fX

cX

bX

0P

3P
2P

1θ 2θ 3θ
4P

x

y

z

α
β

γ
1P

(b)

Fig. 21. (a) Ellipses attached to the b-spline curve. The size of the ellipses are mea-

sured from the real fish. The ellipses are perpendicular to the b-spline curve

and evenly distribute along the curve. (b) Virtual fish model in the tank. The

red curve is the b-spline curve and the blue area is the 100 ellipses.

Finally, we attach a number of 100 ellipses on to the b-spline curve. As illustrated

in Fig. 21, the size of the ellipses are measured from the real fish. The 100 ellipses

are perpendicular to the b-spline curve and evenly distributed along the curve. With

the ellipses attached, the virtual fish is model is complete as shown in Fig. 21.

56

G. Reconstruct Fish Swimming Motion

Camera

Aquarium

Mirrors

AquariumReservoir

Tube

Openable
Top Board

Aquarium

Openable
Bottom Holder

Large Reservoir

x

y

z

fX

cX

bX

0P

3P
2P

1θ 2θ 3θ
4P

x

y

z

α
β

γ
1P

(a)

Camera

Aquarium

Mirrors

AquariumReservoir

Tube

Openable
Top Board

Aquarium

Openable
Bottom Holder

Large Reservoir

x

y

z

fX

cX

bX

0P

3P
2P

1θ 2θ 3θ
4P

x

y

z

α
β

γ
1P

(b)

Camera

Aquarium

Mirrors

AquariumReservoir

Tube

Openable
Top Board

Aquarium

Openable
Bottom Holder

Large Reservoir

x

y

z

fX

cX

bX

0P

3P
2P

1θ 2θ 3θ
4P

x

y

z

α
β

γ
1P

(c)

Fig. 22. Projection of the virtual fish model in Fig. 21(b) onto three orthogonal views.

The projections are implemented in the same directions as captured by the

camera-mirror system. (a) Front view. (b) Left view. (c) Top view.

So far, we obtain the fish area from color segmentation as shown in Fig. 17,

and we build a virtual fish model as in Fig. 21(b). Projecting the virtual fish model

onto three orthogonal views, we can obtain three views of the fish area as shown in

Fig. 22. The projections are implemented in the same directions as captured by the

camera-mirror system.

We match the projected views (Fig. 22) with the real camera images (Fig. 17) to

reconstruct the fish swimming motion. We compute the overlapping area of the fish

in the projected views and the real views, and we maximize the overlapping fish area

to estimate the parameters of the virtual fish model. By doing this, we obtain the

parameters of the virtual fish model for one camera frame. The reconstruction result

is shown in Fig.23. Using multiple frames, we can recover the fish swimming motion.

H. Conclusion and Future Work

We use camera-mirror systems to capture three orthogonal views of the fish. We build

two tanks: a small tank for testing purpose and a large tank for accurate experiment.

Both of the tanks can completely hold water without air in them. However, the small

57

(a)

(b)

(c)

(d)

Fig. 23. (a) Recovered virtual fish model from a camera frame, corresponding to

Fig. 17. (b)-(c) The three projected views of (a).

tank can only hold fish for a short amount of time (half an hour in our experiment)

for the limited amount of oxygen in the tank. We extract the fish area from the

camera image using color segmentation. Also, we build a virtual fish model using

measurements from the real fish, the fish model is projected onto three orthogonal

views. The projected views are matched with the real camera images and the fish

swimming motion is then reconstructed. The algorithm works well for tracking a

single fish. However, if multiple fish are put in the tank, the reconstruction becomes

less actuate when two fish have an overlapping area in the camera view.

In future work, instead of using two mirrors, we will try to use only one mirror

and reconstruct the fish swimming motion from two orthogonal views (the top view

and the front view). This work will reduce some complexity on the experiment setup.

Also, since we only adopt one species of fish in this experiment, in the future we will

58

try to address the scenario of multiple species of fishes in the tank. Classification

approaches will be adopted to recognize the fish species. Further more, since the

current fish model does not have fins, we will try to add in fin models to make the

reconstruction more complete and accurate.

59

CHAPTER IV

CONCLUSION AND FUTURE WORK

Two case studies on the vision-based measurement of moving objects are presented. In

the first case, a monocular camera ego-motion estimation approach is proposed. The

algorithm employs vertical line features and works particularly in urban area. Physical

experiment is implemented while our algorithm outperforms its two counterparts in

both speed and accuracy. In the second case, a 3D reconstruction approach for live fish

swimming motion is proposed. Camera-mirror systems are built and the swimming

motion is reconstructed from the fish live video. The approach works well for a single

fish tracking. But if multiple fish are in the tank, the reconstruction becomes less

actuate when two fish have an overlapping area in the camera view.

Both of the two case studies have their own future work. For the ego-motion

estimation case, we will try to extend the approach to 3D ego-motion estimation,

we will also try to employ multiple types of features (e.g. geometric features and

texture features together) instead of only vertical lines. For the fish swimming motion

estimation case, we will try to implement the work with two orthogonal views instead

of three views. We will try to add fins onto the fish model, and we will also try to

address the scenario that multiple species of fishes in the tank.

60

REFERENCES

[1] J. Zhang and D. Song, “On the error analysis of vertical line pair-based monoc-

ular visual odometry in urban area,” in Proc. of the IEEE/RSJ International

Conference on Intelligent Robots and Systems, St. Louis, MO, Oct. 2009, pp.

187–191.

[2] J. Zhang and D. Song, “Error aware monocular visual odometry using vertical

line pairs for small robots in urban areas,” in Proc. of the AAAI Conference on

Artifical Intelligence, Atlanta, GA, July 2010, pp. 2531–2538.

[3] D. Scaramuzza and R. Siegwart, “Appearance-guided monocular omnidirectional

visual odometry for outdoor ground vehicles,” IEEE Transactions on Robotics,

vol. 24, no. 5, pp. 1015–1026, 2008.

[4] O. Amidi, T. Kanade, and J. Miller, “Vision-based autonomous helicopter re-

search at Carnegie Mellon Robotics Institute 1991-1997,” in Proc. of the Amer-

ican Helicopter Society International Conference, Heli, Japan, April 1998, pp.

321–331.

[5] R. Marks, H. Wang, M. Lee, and S. Rock, “Automatic visual station keeping

of an underwater robot,” in Proc. of the Oceans Engineering for Today’s Tech-

nology and Tomorrow’s Preservation Conference, Brest, France, Sept. 1994, pp.

2575–2580.

[6] R. Ozawa, Y. Takaoka, and Y. Kida, “Using visual odometry to create 3D maps

for online footstep planning,” in Proc. of the IEEE International Conference on

Systems, Man and Cybernetics, Big Island, HI, Oct. 2005, pp. 652–659.

61

[7] P. Corke, D. Strelow, and S. Singh, “Omnidirectional visual odometry for a plan-

etary rover,” in Proc. of the IEEE/RSJ International Conference on Intelligent

Robots and Systems, Sendai, Japan, Sept. 2004, pp. 149–171.

[8] M. Agrawal and K. Konolige, “Rough terrain visual odometry,” in Proc. of the

International Conference on Advanced Robotics, Jeju, South Korea, Aug. 2007,

pp. 3721–3726.

[9] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics, Cambridge, MA,

The MIT Press, 2005.

[10] A. Davison, L. Reid, N. Molton, and O. Stasse, “MonoSLAM: Real-time single

camera SLAM,” IEEE Transactions on Pattern Analysis and Machine Intelli-

gence, vol. 29, no. 6, pp. 1052–1067, 2007.

[11] T. Lemaire and S. Lacroix, “Monocular-vision based SLAM using line segments,”

in Proc. of the IEEE International Conference on Robotics and Automation,

Roma, Italy, May 2007, pp. 2791–2796.

[12] B. Steder, G. Grisetti, and C. Stachniss, “Visual SLAM for flying vehicles,”

IEEE Transactions on Robotics, vol. 24, no. 5, pp. 1088–1093, 2008.

[13] T. Marks, “Gamma-SLAM: Visual SLAM in unstructured environments using

variane grid maps,” Journal of Field Robotics, vol. 26, no. 1, pp. 26–51, 2009.

[14] K. Konolige and M. Agrawal, “FrameSLAM: From bondle adjustment to real-

time visual mapping,” IEEE Transactions on Robotics, vol. 24, no. 5, pp. 1066–

1077, 2008.

[15] J. Civera, A. Davison, and J. Montiel, “Inverse depth parametrization for monoc-

ular SLAM,” IEEE Transactions on Robotics, vol. 24, no. 5, pp. 932–945, 2008.

62

[16] J. Civera, D. Bueno, A. Davison, and J. Montiel, “Camera self-calibraction for

sequential bayesian structure form motion,” in Proc. of the IEEE International

Conference on Robotics and Automation, Kobe, Japan, May 2009, pp. 130–134.

[17] R. Sim, P. Elinas, M. Griffin, and J. Little, “Vision-based SLAM using the rao-

blackwellised particle filter,” in Proc. of the International Joint Conference on

Artificial Intelligence, Edinburgh, Scotland, July 2005, pp. 303–318.

[18] G. Klein and D. Murray, “Parallel tracking amd mapping for small AR

workspaces,” in Proc. of the International Symposium on Mixed and Augmented

Reality, Nara, Japan, Nov. 2007, pp. 1–10.

[19] T. Lemaire and S. Lacroix, “SLAM with panoramic vision,” Journal of Field

Robotics, vol. 24, no. 1/2, pp. 91–111, 2007.

[20] D. Scaramuzza and R. Siegwart, “Monocular omnidirectional visual odometry

for outdoor ground vehicles,” Computer Vision Systems, vol. 5008, pp. 5206–215,

2008.

[21] M. Wongphati, N. Niparnan, and A. Sudsang, “Bearing only fast SLAM using

vertical line information from an omnidirectional camera,” in Proc. of the IEEE

International Conference on Robotics and Biomimetics, Bangkok, Thailand, Feb.

2009, pp. 494–501.

[22] D. Scaramuzza and R. Seigwart, “A robust descriptor for tracking vertical lines

in omnidirectional images and its use in mobile robotics,” The International

Journal of Robotics Research, vol. 28, no. 2, pp. 149–171, 2009.

[23] G. Caron and E. Mouaddib, “Vertical line matching for omnidirectional stereo-

vision images,” in Proc. of the IEEE International Conference on Robotics and

63

Automation, Kobe, Japan, May 2009, pp. 149–171.

[24] J. Sola, A. Monin, M. Devy, and T. Vidal-Calleja, “Fusing monocular informa-

tion in multicamera SLAM,” IEEE Transactions on Robotics, vol. 24, no. 5, pp.

958–968, 2008.

[25] L. Paz, P. Pinies, and J. Tardos, “Large-scale 6-DOF SLAM with stereo-in-

hand,” IEEE Transactions on Robotics, vol. 24, no. 5, pp. 946–957, 2008.

[26] D. Nister, O. Naroditsky, and J. Bergen, “Visual odometry for ground vechicle

applications,” Journal of Field Robotics, vol. 23, no. 1, pp. 3–20, 2006.

[27] D. Nister, O. Naroditsky, and J. Bergen, “Visual odometry,” in Proc. of the

IEEE Computer Society Conference on Computer Vision and Pattern Recogni-

tion, Washington, DC, June 2004, pp. 652–659.

[28] M. Maimone, Y. Cheng, and L. Matthies, “Two years of visual odometry on the

mars exploration rovers,” Journal of Field Robotics, vol. 24, no. 2, pp. 169–186,

2007.

[29] Y. Cheng, M. Maimone, and L. Matthies, “Visual odometry on the mars explo-

ration rovers,” in Proc. of the IEEE International Conference on Systems, Man

and Cybernetics, Big Island, HI, Oct. 2005, pp. 903–910.

[30] D. Helmick, Y. Cheng, and D. Clouse, “Path following using visual odometry

for a mars rover in high-slip environments,” in Proc. of the IEEE Aerospace

Conference, Big Sky, MT, March 2004, pp. 255–264.

[31] D. Cobzas, H. Zhang, and M. Jagersand, “Image-based localization with depth-

enhanced image map,” in Proc. of the IEEE International Conference on

Robotics and Automation, Taipei, Taiwan, Sept. 2003, pp. 243–282.

64

[32] W. Zhou, J. Miro, and G. Dissanayake, “Information-efficient 3-D visual SLAM

for unstructured demains,” IEEE Transactions on Robotics, vol. 24, no. 5, pp.

1078–1087, 2008.

[33] S. Li, T. Kanbara, and A. Hayashi, “Making a local map of indoor environments

by swiveling a camera and a sonar,” in Proc. of the IEEE/RSJ International

Conference on Intelligent Robots and Systems, Kyongju, South Korea, Oct. 1999,

pp. 239–246.

[34] D. Lowe, “Distinctive image features from scale-invariant keypoints,” Interna-

tional Journal of Computer Vision, vol. 60, no. 2, pp. 91–110, 2004.

[35] H. Bay, A. Ess, T. Tuytelaars, and L. Gool, “SURF: Speeded up robust features,”

Computer Vision and Image Understanding, vol. 110, no. 3, pp. 346–359, 2008.

[36] M. Agrawal, K. Konolige, and M. Blas, “SenSurE: Center surround extremas for

realtime feature detection and matching,” in Proc. of the European Conference

on Computer Vision, Marseille, France, Oct. 2008, pp. 79–116.

[37] M. Fischler and R. Bolles, “Random sample consensus: a paradigm for model

fitting with applications to image analysis and automated cartography,” Com-

munications of the ACM, vol. 24, no. 6, pp. 381–395, 1981.

[38] R. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision,

New York, Cambridge University Press, 2004.

[39] D. Ziou and S. Tabbone, “Edge detection techniques-an overview,” International

Journal of Pattern Recognition and Image Analysis, vol. 8, no. 4, pp. 537–559,

1998.

65

[40] P. Smith, I. Reid, and A. Davison, “Real-time monocular SLAM with straight

lines,” in Proc. of the British Machine Vision Conference, Edinburgh, UK, Sept.

2006, pp. 3015–3020.

[41] Y. Choi, T. Lee, and S. Oh, “A line feature based SLAM with low grad range

sensors using geometric constrains and active exploration for mobile robot,” Au-

tonomous Robot, vol. 24, pp. 13–27, 2008.

[42] M. Dailey and M. Parnichkun, “Landmark-based simultaneous localization and

mapping with stereo vision,” in Proc. of the Asian Conference on Industrial

Automation and Robotics, Bangkok, Thailand, May 2005, pp. 847–853.

[43] A. Gee and W. Mayol-Cuevas, “Real-time model-based SLAM using line seg-

ments,” Advances in Visual Computing, vol. 4292, pp. 354–363, 2006.

[44] A. Martignoni and W. Smart, “Localizing while mapping: A segment approach,”

in Proc. of the AAAI Conference on Artificial Intelligence, Edmonton, Canada,

July 2002, pp. 45–61.

[45] C. Taylor and D. Kriegman, “Structure and motion from line segments in mul-

tiple images,” Transactions on Pattern Analysis and Machine Intelligence, vol.

17, no. 11, pp. 1021–1032, 1995.

[46] J. Montiel, J. TardoH, and L. Montano, “Structure and motion from straight

line segments,” Pattern Recognition, vol. 32, pp. 1295–1307, 2000.

[47] M. Kim, S. Lee, and K. Lee, “Self-localization of mobile robot with single camera

in corridor environment,” in Proc. of the IEEE International Symposium on

Industrial Electronics, Pusan, South Korea, June 2001, pp. 4100–4105.

66

[48] Y. Sakamoto and M. Aoki, “Street model with multiple movable panels for

pedestrian environment analysis,” in Proc. of the IEEE Intelligent Vehicles Sym-

posium, Parma, Italy, June 2004, pp. 61–85.

[49] A. Gallagher, “Using vanishing points to correct camera rotation in images,”

in Proc. of the Canadian Conference on Computer and Robot Vision, Victoria,

Canada, May 2005, pp. 127–140.

[50] J. Guerrero, R. Martinez-Cantin, and C. Sagues, “Visual map-less navigation

based on homographies,” Journal of Field Robotics, vol. 22, no. 10, pp. 569–581,

2005.

[51] J. Zhou and B. Li, “Exploiting vertical lines in vision-based navigation for mobile

robot platforms,” in Proc. of the IEEE International Conference on Acoustics,

Speech and Signal Processing, Honolulu, HI, April 2007, pp. 465–468.

[52] J. Nocedal and S. Wright, Numerical Optimization, New York, Springer-Verlag,

2006.

[53] S. Boyd and L. Vandenberghe, Convex Optimization, New York, Cambridge

University Press, 2006.

[54] R. Gioi, J. Jakubowicz, J. Morel, and G. Randall, “LSD: A fast line segment

detector with a false detection control,” IEEE Transactions on Pattern Analysis

and Machine Intelligence, vol. 32, no. 4, pp. 772–732, 2010.

[55] R. Oliveira, G. Rosenthal, and I. Schlupp, “Considerations on the use of video

playbacks as visual stimuli,” Acta Ethologica, vol. 3, no. 1, pp. 61–65, 2000.

[56] T. Ord and C. Evans, “Interactive video playback and opponent assessment in

Lizards,” Behaviural Processes, vol. 59, no. 2, pp. 55–65, 2002.

67

[57] G. Rosenthal, “Design considerations and techniques for constructing video s-

timuli,” Acta Ethologica, vol. 3, no. 1, pp. 49–54, 2000.

[58] G. Rosenthal and C. Evans, “Femal preference for swords in Xiphophorus Helleri

reflects a bias for large apparent size,” National Academy of Science USA, vol.

95, pp. 4431–4436, 1998.

[59] W. Hu, T. Tan, L. Wang, and S. Manybank, “A survey on visual surveillance

of ojbect motion and behaviors,” IEEE Transactions on System, Man, and

Cybernetics, vol. 34, no. 3, pp. 334–352, 2004.

[60] P. Perez, J. Vermaak, and A. Blake, “Data fusion for fisual tracking with parti-

cles,” Proc. of the IEEE, vol. 92, no. 3, pp. 495–513, 2004.

[61] C. Smith, C. Richards, S. Brandt, and N. Papanikolopoulos, “Visual track-

ing for intelligent vechicle-hightway systems,” IEEE Transactions on Vehicular

Technoloty, vol. 45, no. 4, pp. 744–759, 2002.

[62] S. Atev, H. Arumugam, O. Masoud, R. Janardan, and N. Papanikolopoulos,

“A vision-based apporach to collision prediction at traffic intersections,” IEEE

Transactions on Intelligent Transportation, vol. 6, no. 4, pp. 416–423, 2005.

[63] M. Betke, J. Gips, and P. Fleming, “The camera mouse: visual tracking of body

features to provide computer access for people with severe disabilities,” IEEE

Transactions on Neural Systems and Rehabilitation Engineering, vol. 10, no. 1,

pp. 1–10, 2002.

[64] R. Collins, “Mean-shift blob tracking through scale space,” in Proc. of the IEEE

Computer Society Conference on Computer Vision and Pattern Recognition,

Madison, WI, July 2003, pp. 234–240.

68

[65] M. Isard and J. MacCormick, “BraMBLe: A bayssian multiple-blob tracker,” in

Proc. of the International Conference on Computer Vision, Vancouver, Canada,

July 2001, pp. 285–295.

[66] A. Baumberg and D. Hogg, “An efficient method for coutour tracking using

active shape models,” in Proc. of the IEEE Workshop on Motion for Non-rigid

and Articulated Objects, Austin, TX, Nov. 1994, pp. 194–199.

[67] L. Peihua, T. Zhang, and E. Arthur, “Visual contour tracking based on particle

filters,” Image and Vision Computing, vol. 21, no. 1, pp. 111–123, 2003.

[68] S. Se, D. Lowe, and J. Little, “Vision-based mobile robot localization and map-

ping using scale-invariant features,” in Proc. of the IEEE Internatioanl Confer-

ence on Robotics and Automation, Taipei, Taiwan, July 2003, pp. 2051–2058.

[69] E. Rosten and T. Drummond, “Fusing points and lines for high performance

tracking,” in Proc. of the IEEE Internatioanl Conference on Computer Vision,

Beijing, China, Oct. 2005, pp. 1508–1515.

[70] A. Sundaresan and R. Chellappa, “Markerless motion capture using multiple

cameras,” in Proc. of the Computer Vision for Interactive and Intelligent Envi-

ronment Conference, Lexington, KY, Nov. 2005, pp. 1–12.

[71] E. Aguiar, C. Stoll, C. Theobale, N. Ahmed, H. Seidel, and S. Thrun, “Perfor-

mance capture from sparse multi-view video,” ACM Transactions on Graphics,

vol. 27, no. 3, pp. 1–10, 2008.

[72] Y. Chen, J Min, and J Chai, “Flexible registration of human motion data with

perameterized motion models,” in Proc. of the Symposium on Interactive 3D

Graphics and Games, New York, Nov. 2009, pp. 183–190.

69

[73] A. Sharf, D. Alcantara, T. Lewiner, C. Greif, A. Sheffer, N. Amenta, and

D. Cohen-Or, “Space-time surface reconstruction using incompressible flow,”

ACM Transactions on Graphics, vol. 27, no. 5, pp. 110:1–110:10, 2008.

[74] V. Kraevoy and A. Sheffer, “Mean-value geometry encoding,” International

Journal of Shape Modeling, vol. 12, no. 41, pp. 29–46, 2006.

[75] K. Bates, P. Manning, D. Hodgetts, and W. Sellers, “Estimating mass properties

of dinosaurs using laser imaging and 3D computer modelling,” PLoS ONE, vol.

4, no. 2, pp. 4532–4552, 2009.

[76] K. Wolf, “Geometry and dynamics in refracting systems,” European Journal of

Physics, vol. 16, pp. 4–12, 1995.

[77] J. Yu and L. Wang, “Parameter optimization of simplified propulsive model

for biomimetic robot fish,” in Proc. of the IEEE International Conference on

Robotics and Automation, Barcelona, Spain, April 2005, pp. 179–193.

70

VITA

Name: Ji Zhang

Address: 316 H.R. Bright Building, Texas A&M University,

Department of Computer Science and Engineering,

College Station, TX 77843-3112

Email Address: jizhang@cse.tamu.edu

Education: B.E., Automation, Tsinghua University, 2008

M.S., Computer Engineering, Texas A&M University, 2011

