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ABSTRACT

Flash Memory Garbage Collection in Hard Real-Time Systems. (August 2011)

Chien-An Lai, B.S., National Taiwan University

Chair of Advisory Committee: Dr. Riccardo Bettati

Due to advances in capacity, speed, and economics, NAND-based flash memory

technology is increasingly integrated into all types of computing systems, ranging

from enterprise servers to embedded devices. However, due to its unpredictable up-

date behavior and time consuming garbage collection mechanism, NAND-based flash

memory is difficult to integrate into hard-real-time embedded systems. In this thesis,

I propose a performance model for flash memory garbage collection that can be used

in conjunction with a number of different garbage collection strategies. I describe

how to model the cost of reactive (lazy) garbage collection and compare it to that of

more proactive schemes. I develop formulas to assess the schedulability of hard real-

time periodic task sets under simplified memory consumption models. Results show

that I prove the proactive schemes achieve the larger maximum schedulable utiliza-

tion than the traditional garbage collection mechanism for hard real-time systems in

flash memory.
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CHAPTER I

INTRODUCTION

Due to advances in capacity, speed, and economics, NAND-based flash memory tech-

nology is increasingly been integrated into all types of computing systems, ranging

from enterprise servers [1, 2] to embedded devices [3]. The advantages of NAND-

based flash memory versus traditional storage technologies lie in its speed and low

power consumption, and the lack of mechanical components. The latter in turn leads

to benefit in packaging (small size) and environmental parameters (e.g. shock resis-

tance). In particular the benefits in power and packaging have made flash memory

very popular in embedded systems.

Unfortunately, the asymmetric performance characteristics of flash memory (in

particular its slow erase operation) make it difficult to integrate into time-critical and

real-time systems: while read and write operations can be supported at relatively

high speed (350 µs and 920 µs per 512 bytes, respectively) [4], overwrite operations

require a block-wide erase, which is significantly more time consuming (typically in

the order of 2 ms). In order to amortize the cost of such operations, flash memory

designers use out-place update and bulk-erase. For flash memory, the page, usually

512 bytes, is the smallest unit for reading and writing. Pages in turn are arranged

in blocks (typically a block contains 64 pages). Once a page is written, it can not be

updated directly. During an update request, the original page is labeled as invalid,

 The journal model is IEEE Transactions on Automatic Control.
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and the update data is written to the new empty pages.

As update requests are processed, empty pages are consumed. New empty pages

are generated by recycling invalid pages. This is achieved by erasing the content of

the invalid pages and by adding these pages to the set of empty pages. This process

is complicated in flash memory because erase operations can be performed at block

level only. Since any block may contain valid pages in addition to the invalid pages

to be recycled, the recycling process must first copy the content of remaining valid

pages to empty pages elsewhere before erasing the entire block. Once the block is

erased, its pages are added to the available empty pages and become available for

subsequent write and update operations. The cost to do so depends on the number of

such valid pages. Therefore, the timing behavior of real-time tasks depends critically

on the order of flash memory operations, thus making the completion times of such

tasks highly unpredictable.

The process of recycling invalid pages is de-facto a garbage collection oper-

ation [5, 6, 7]. Typically, garbage collection of flash memory is triggered when

the flash memory capacity reaches a low watermark, and it recycles one block at

a time [5, 8]. This form of garbage collection (which we call reactive garbage col-

lection) naturally causes problems for real-time systems, as time-critical tasks may

get blocked at unpredictable points in time for unpredictable lengths of time due

to garbage collection. From a schedulability point of view, flash memory garbage

collection poses two problems: First, the worst-case blocking time caused by a single
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garbage collection round must be represented and bounded. Second, tasks experience

what we call ”delayed-effect priority inversion”, where the processing of low-priority

tasks consumes memory and so can lead to resource starvation and of blocking of

high-priority tasks some time later in their execution. Examples of such delayed ef-

fects occur in many other resource-constraint settings, such as caches [9] or garbage

collected memory [10], or in thermally constrained systems [11].

In many cases this form of priority inversion can be addressed by appropriate

partitioning of shared resources (see [9] for the case of cache partitioning). This is

not possible in the case of thermal constraints or flash memory, however. In the

case of thermal control it is naturally impossible to partition the available thermal

budget. In the case of flash memory, partitioning is rendered impossible by the fact

that the flash memory translation layer (FTL) [12] is typically not accessible from

outside of the memory.

In this thesis we first develop a performance model for flash-memory garbage col-

lection in order to understand the blocking times due to garbage collection. Since the

effectiveness of flash memory garbage collection is highly dependent on the number

of empty pages (the available capacity of the memory,) several trade-offs exist in the

design of garbage collection schemes. We develop a garbage collection effectiveness

model, which we then apply to a number of garbage collection schemes to assess their

effect on the overall schedulability of the system: We first study reactive garbage col-

lection and determine a schedulability bound for this scheme. We then proceed to
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analyze two proactive schemes: (i) We develop schedulability bounds for a proactive

scheme that performs garbage collection during idle intervals as well as when the

system runs out of pages. (ii) We then describe the effect of an allocated-bandwidth

garbage collector, which uses a portion of the CPU utilization to proactively perform

garbage collection at all times (in addition to blocking all tasks to perform garbage

collection wherever the system runs out of pages).

This thesis is organized as follows: In Chapter II we provide the background

for our work. We will describe the operation of flash memory, provide details on the

flash memory translation layer and describe related work in the area of flash memory

management. Moreover, we review the previous research about garbage collection in

real-time system. In Chapter III we will describe a simplified flash memory model

that will be used throughout the rest of the thesis. In Chapter IV, we describe the

problem of scheduling real-time tasks with flash memory garbage collection. We

describe the workload model and provide a simplified memory consumption model.

In Chapter V, we analyze the equilibrium state and schedulable utilization for the

simple case of identical-period real-time tasks with flash memory. In Chapter VI,

we illustrate the constant-bandwidth garbage collection and explain how to calculate

the equilibrium speed as a function of the capacity level. In Chapter VII, we show

the performance evaluation and demonstrate that the proactive garbage collection,

which we propose in this thesis, can achieve higher schedulable utilization comparing

to the traditional reactive garbage collection. Chapter VIII is the conclusion.
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CHAPTER II

PRELIMINARIES AND RELATED WORK

A. Flash Memory Architecture

SLC (Single Level Cell) and MLC (Multiple Level Cell) flash memory are two major

NAND flash memory designs. In SLC NAND flash memory, one cell contains one bit

of information, while the same cell could contain n bits in MLC flash memory. The

latter is usually denoted by MLC×n. The trade-off between SLC and MLC is not a

simple one. For example, while MLC×n NAND flash memory has the advantage of

information density compared to SLC NAND flash memory, pages in MLC×n flash

memory can only be written sequentially in one block, while pages in SLC flash

memory can be written randomly across the block [13]. MLC NAND flash memory

is usually cheaper than SLC NAND flash memory. Throughout this thesis, we will

use SLC since it has better performance, endurance and reliability.

The system architecture of flash memory storage systems consist of two primary

layers: The Memory Technology Device (MTD) layer, which supports read and write

functions of the file system, and the Flash Translation Layer (FTL), which translates

addresses between Logical Block Addresses (LBA) and Physical Block Addresses

(PBA), and which is responsible for garbage collection. Besides, the FTL also ad-

dresses wear leveling : It distributes block erase evenly across the memory to extend

the flash memory life time.
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Fig. 1.: Page mapping in the FTL protocol

B. Flash Translation Layers

One of the biggest factors of flash memory performance is the design of the page

allocation algorithms in the [12]. There are two main flash memory implementation

protocols: (1) FTL (flash translation layer protocol) and (2) NFTL (NAND flash

translation layer protocol).

In FTL [14], when a page is accessed in flash memory, the translation layer

determines the exact position by looking up the LBA-to-page mapping, which is

maintained in RAM. An example of FTL is shown in Figure 1. The FTL maps the

page identified by LBA = 3 to Page 5 of Block 0 in flash memory.

In NFTL [15], in order to access a page, the primary block is checked first. If the

page is labeled as ”invalid”, then the mapping proceeds to look up the replacement

block to find the first valid page whose LBA is matched from the bottom to the top.
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Fig. 2.: Page mapping in the NFTL protocol

If the operation is a write, the NFTL marks the corresponding page in the primary

block as invalid and then writes the data in the first empty page from the top of

the replacement block. Figure 2 is an example of a mapping in NFTL: The data

at LBA=4 are updated, so NFTL check whether the corresponding page in primary

block is empty. If not, NFTL writes data to the page on replacement block sequen-

tially.

The flash translation layer is designed not only to implement the translation

between the Logical Block Addresses (LBA) and the Physical Block Address (PBA),

but also to implement garbage collection in flash memory. Because of the asymmet-

ric performance characteristics of flash memory between writing/reading and eras-

ing mentioned above, researchers have proposed different strategies to minimize the

garbage collection overhead. For example, the authors in [7] propose the Ef-greedy

policy, which focuses on reducing garbage collection time as well as wear-leveling. To

address the problem that the original greedy policy does not consider wear-leveling,
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the Ef-greedy policy selects blocks based on a combination of page update frequency

and block-erase time. Alternatively, the authors in [6] regard the least recently

swapped-out page from main memory as a hot page, which is likely to be swapped-in

main memory next as a result of the round-robin operating system scheduler. The

garbage collector adopts the extended greedy policy by considering the swapped-out

time of the pages. In this thesis, we use a simple greedy garbage collector as de-

scribed in [16]: The garbage collector always chooses the block containing the most

of invalid pages to recycle. When garbage collection is required, the garbage collector

always recycles the block containing the maximum number of invalid pages.

The performance of flash memory is also affected by the access patterns of user

applications. By exploiting the locality of flash memory accesses, the garbage collec-

tor can group hot pages and cold pages respectively. This can significantly reduce

garbage collection overhead because blocks with hot pages have fewer valid pages

that must be copied before erasing the block [15]. However, when flash memory

storage systems are adopted for general-purpose applications or for systems with

multiple independent tasks, memory accesses come from all of the applications run-

ning on the system. As a result, the memory locality of user applications becomes

ambiguous and hard to predict. For example, the authors in [17] describe how worst-

case response times can happen when pages are accessed randomly. In this thesis,

we ignore memory locality, which is appropriate when we model aggregated memory

access from multiple independent tasks and FTL-level permutation of pages. By

assuming that write operations occur for random pages, we can evaluate the system
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performance to capture worst-case write response times.

Since NAND flash memory can only stand for limited erase times (usually 100000

erase times per block in SLC and 10000 erase times per block in MLC,) researchers

proposed different strategies to achieve wear leveling i.e., to distribute block erase

times evenly to improve the lifetime and reliability of flash memory. For example,

Chang et al. [18] used static wear leveling, which moves data proactively, so that

cold data will not hold block for a long time. Besides, Wang et al. [19] proposed

dynamic wear leveling, depending on dynamic logical mapping table to decide which

block should be erased, as the wear leveling policy. In this thesis, we won’t concern

the wear leveling problem so that we could maximize the schedulable utilization of

real-time systems.

C. File Systems for Flash Memory

Modern file systems are designed for hard drives and tend to access metadata, such

as file attributes, frequently in small chunks. This kind of metadata access strategy

causes problems when adopted to flash memory storage systems. In hard drives,

in-site overwrite of data is possible and has no vice effects. Comparing with hard

drives, one of the distinct properties of flash memory is out-place updates: When an

update request comes, the FTL allocator allocates a new page for writing the new

data and labels the old data page as invalid. The out-place requirement for flash

memory might quickly deteriorate the memory capacity and system performance

when small-size updates for metadata are requested frequently. To conquer this
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problem, two native flash file systems have been proposed: Journaling Flash File

System (JFFS) [20] and Yet Another Flash File System (YAFFS) [21]. JFFS is a

log-structure file system [22] for NOR flash memory, and JFFS2, the second version of

JFFS, would work for NAND flash memory. On the other hand, YAFFS is designed

for NAND flash memory, and YAFFS2, the second version of YAFFS, would work

for MLC flash memory, which requires special constraints on write operations.

D. Garbage Collection in Real-Time Systems

Due to its notorious unpredictability, garbage collection has been extensively studied

in the context of real-time systems. For example, Nilsen proposed real-time garbage

collection for linked data structures and string regions [23]. Schoeberl introduced a

real-time garbage collector that can be executed like a normal real-time thread [24].

Pizlo et al. proposed a concurrent and real-time garbage collector that can guarantee

time-and-space worst-case bounds [25].

Because of the required out-place updates and the significant overhead for

garbage collection mechanism, garbage collection affects the real-time system per-

formance much more in flash memory than in RAM. Chang et al. [5] proposed a

real-time garbage collection policy that can guarantee performance for hard real-

time time systems under reactive garbage collection. In this thesis, we formulate

a performance model for flash memory garbage collection and use it to form the

garbage collection policies to maximize the schedulable utilization of real-time tasks.
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CHAPTER III

FLASH MEMORY MODEL

We model the flash memory in a system as a collection of N blocks, each consisting

of B pages. Pages can be in one of the following states: empty, valid, invalid. Page

that are marked as empty contain no data and can therefore be written to. A valid

page can be read, but it must be erased before being written to. An invalid page

is the result of an update operation. Since the update can not happen in-place, the

memory controller writes the new data into an empty page and marks the old page

as invalid.

The memory controller supports the following three types of operations:

• Read operation: This operation reads data from a memory page. Let tr be the

latency of a read operation.

• Write operation: This operation writes data into an empty page. We let tw

denote the latency of write operation.

• Update operation: This operation overwrites the current data in a page. Since

data cannot be overwritten directly at page level, the memory controller reads

the current content of the page, performs the update, and writes the updated

content to an empty page. The FTL [12] remaps the user-level identifier of

the page to the new page, thus rendering the migration of the page content

invisible to the user. The cost tu of an update is thus tr + tw if an empty page

is available. If no such page is available, the update cost must include the cost
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to recover at least one empty page by recycling invalid pages.

A. Reclaiming Empty Pages

Empty pages to be used in write operations are reclaimed by recycling invalid pages

as follows:

1. Identify a block, say Block bi, that contains invalid pages.

2. Copy the valid pages in Block bi to empty pages.

3. Erase Block bi. Append the B newly generated empty pages to the list of

empty pages.

Assuming that Block bi contains Ii invalid pages and Ei empty pages, the cost

to reclaim the Ii pages is (B − Ii − Ei) × (tr + tw) + te, i.e. the cost to copy the

B − Ii − Ei valid pages plus the time to erase the block. For the specific Ii, the

worst-case garbage collection delay happens when Ei = 0, which means that all of

the pages in Bi except the invalid pages are valid.

In practice, the cost to reclaim pages depends greatly on the distribution of

invalid pages per block. In the following, we assume that the FTL permutes pages

sufficiently to eliminate task-level locality. After a start-up period we assume that

write operations happen to random pages in the flash memory. It has been shown that

random accesses cause the worst-case delay for update operations [17]. We assume

that block information is stored in RAM and operations such as finding the block
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with the maximum number of invalid pages can be made with negligible overhead.

Therefore, the garbage collector will pick that block with maximum number Ii of

invalid pages in order to minimize the cost of the garbage-collection round.

B. Effectiveness of Flash Memory Garbage Collection

Fig. 3.: Effectiveness of garbage collection

Figure 3 shows the result of a simulation that monitors the garbage collection

activity of a flash memory controller. We use flashsim [26], a high-fidelity flash

memory simulator. The workload writes to random pages (as visible to the user,

the flash translation layer maps these pages internally). In order to capture the

effectiveness of the garbage collection under different conditions, we triggered garbage

collection at random intervals. We ran the simulation on a simple flash memory with

10 blocks of 64 pages each. The user sees 5 blocks, with the rest of the memory used

internally to support garbage collection and other activities. (This is a very small

memory, but the results hold with increasing memory sizes as well.) In the following

discussion we call the number of empty pages the capacity of the memory and we
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denote it by C. The number of valid pages is denoted by V , and the number of

invalid pages by I. Therefore, the following relation holds:

C = N ×B − V − I . (3.1)

Figure 3 displays the effectiveness f(C) of the garbage collector in terms of

number of pages ”freed” in one garbage collection round. This representative figure

illustrates the following points: First, the value of f(C) diminishes as the available

capacity C increases. This is to be expected, as with increasing capacity the number

of invalid pages in blocks diminishes, and the garbage collector has fewer invalid

pages to reclaim in a single round. Second, f(C) is upper-bounded by the block size

and by the total number of pages that are made available to the user. Finally, f(C)

is lower-bounded as well. In the following, we will characterize this lower bound in

terms of the flash memory parameters.

C. Lower Bound on Garbage Collection Effectiveness

Recall that we denote by C the memory capacity (in number of empty pages) at the

beginning of the garbage collection. Furthermore, we denote by f(C) the number of

freed pages during a garbage collection round as a function of the memory capacity.

We claim that f(C) is lower-bounded as follows:

f(C) ≥ −a× C + b , (3.2)

with the following discussion defining parameters a and b.
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Lemma 1.

f(C) ≥ I

N
=

(N ×B − V − C)

N
.

Proof. A page can either be valid, invalid, or empty. By pigeon-hole principle, the

minimum number of invalid pages in one block is lower-bounded by the overall min-

imum invalid pages divided by the number of blocks, in this case (N × B − V −

C)/N .

We make the following two observations:

Observation 1. When no empty pages are available, the minimum number of re-

claimable pages is lower-bounded by (N×B−V )
N

, i.e.

f(0) ≥ (N ×B − V )

N
.

Observation 2. The effectiveness of the garbage collector is null if no invalid pages

are available, i.e. f(C = N ×B − V ) = 0.

By Lemma 1 and the above two observations we can derive that even in the

worst scenario, the garbage collection effectiveness is lower-bounded as follows:

f(C) ≥ −C
N

+
N ×B − V

N
. (3.3)

Thus, the effectiveness can be lower-bounded by the function f(C) = −aC + b,

where a = 1
N

and b = N×B−V
N

.
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D. Garbage Collection in the Time Domain

The time for the garbage collector to recycle one block is the sum of (1) the time to

read and write the valid pages in the block and (2) the time for erasing the blocks.

For convenience, we let twr denote tw + tr. The variables B, N , twr and te are prop-

erties of the flash memory, hence we can treat them as constants. The worst-case

garbage collection delay happens when all pages except the invalid ones are valid

pages in the freed block. In this case, we need to move the most of valid pages

to other block. We conservatively assume that the block to be freed contains only

invalid and valid pages in the following discussion. We can formulate the time tB for

recycling one block as follows:

tB = (B − f(C))× twr + te . (3.4)

From Equation (3.2) and (3.4), we can formulate the time tP for recycling one page

as follows:

tP =
tB
f(C)

=
(B − f(C))twr + te

f(C)
(3.5)

=
Btwr + te
f(C)

− twr =
Btwr + te
−aC + b

− twr . (3.6)

Therefore, the total time, denoted by ∆T for garbage collection from capacity C1 to

C2 is:
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∆T =

C2∫
C1

tPdC =

C2∫
C1

(
Btwr + te
−aC + b

− twr)dC . (3.7)

This resolves to:

∆T =
Btwr + te
−a

× ln

∣∣∣∣b− aC2

b− aC1

∣∣∣∣− twr × (C2 − C1) . (3.8)

If we define G = C2−C1 as the total capacity recycled by garbage collection, we can

rewrite the relationship between time and recycled capacity as follows:

∆T =
Btwr + te
−a

× ln

∣∣∣∣b− aG− aC1

b− aC1

∣∣∣∣− twr ×G . (3.9)

In Equation (3.9), the total recycled capacity G appears twice on the right side,

which prevents us from representing G by total time ∆T . On the other hand, we

know that G cannot be less than the number of pages recycled in the first erased

block. The number of recycled pages in the first block is in turn lower-bounded by

−aC1 + b. So we can derive the following equation:

∆T ≤ Btwr + te
−a

× ln

∣∣∣∣b− aG− aC1

b− aC1

∣∣∣∣− twr × (−aC1 + b) . (3.10)

By Equation (3.10), we can represent the total recycled capacity G during time ∆T

as follows:

G ≥ b

a
− C1 − (

b

a
− C1)× e

a2C1twr−abtwr−a∆T
B×twr+te . (3.11)
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In the following we will use the notation

G = G(C,∆T )

to emphasize that G is a function of the global capacity C and the running time ∆T

of the garbage collector.

If we denote by c(t) the capacity at time t, we can lower-bound the capacity

freed by the garbage collector starting at time t0 and running for ∆T time as follows:

c(t0 + ∆T ) = c(t0) +G(c(t0),∆T )

≥ b

a
− (

b

a
− c(t0))× e

a2c(t0)twr−abtwr−a∆T
B×twr+te .

(3.12)

Figure 4 shows the shape of the curve of Equation (3.11).

Fig. 4.: Relationship between time and freed memory capacity during garbage col-

lection

Equation (3.12) provides a model for the effectiveness of a flash memory garbage

collector in the time domain. We will make use of this model to derive the effect
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of flash memory garbage collection on the schedulability of real-time flash systems.

We will follow a scheme originally defined to analyze the schedulability of thermally

constraint systems [11]: We first define the characteristics for the critical instant,

i.e. the worst-case workload arrival that causes maximum response time for the

task being analyzed. We then proceed to determine the periodic steady state that

guarantees all deadlines without exceeding the available memory capacity. This in

turn allows us to compute the schedulable utilization bounds for the given garbage

collection scheme.

E. Garbage Collection in the Presence of Other Workload

The model described in this chapter is valid for a garbage collector that runs without

correlation by other workload. It can be applied easily to cases where the garbage

collector has to run in the presence of other workload in the system. In such cases it

is important to define how the system resources are partitioned between the garbage

collector and the other workload. In this thesis we will describe three approaches on

how to do just that, namely the reactive garbage collector, the proactive garbage col-

lector, and finally the constant-bandwidth garbage collector. The three approaches

differentiate from each other as follows:

• The reactive garbage collector is inactive as long as there is memory available in

the system. Once the capacity hits a low watermark Cmin, the garbage collector

reclaims just sufficient memory to have the capacity exceed Cmin. In this way

the reactive garbage collector maximizes the CPU bandwidth allocated to other

workload as long as there is memory capacity available.
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• The proactive garbage collector extends the reactive one by allowing the garbage

collector to run at maximum speed while the CPU is idle. This is particularly

beneficial for lightly loaded systems with high memory consumption rates.

• The constant-bandwidth garbage collector has a minimum system bandwidth al-

located at all times. In this way, the net memory consumption by the workload

can be slowed down at the cost of reduced system bandwidth to the workload.

In the following chapters we will compare the effectiveness of these three approaches

in terms of worst-case schedulability of real-time workload.



21

CHAPTER IV

FLASH MEMORY GARBAGE COLLECTION AND REAL-TIME TASKS

In the previous chapters we developed a performance model that describes the rela-

tion between time cost and number of freed memory for the flash memory garbage

collector. In this chapter we will apply this model and develop a schedulability anal-

ysis for real-time tasks in the presence of a flash memory garbage collector. We

will first describe the task model and then proceed to formulate the worst-case task

release pattern, the so-called critical instant.

A. Periodic Real-Time Tasks

We consider a workload that consists of a set of identical-period1 tasks Γi : i = 1, 2, ..., n,

where each task Γi = (P,wi, λi) consists of a sequence of jobs, and any two jobs ar-

rivals are separated at least by a minimum job interarrival time (called the period)

P . Each job requires wi processor cycles to complete in the worst case. In addition,

task Γi updates flash memory pages at a memory consumption rate λi; that is, when

executing for w cycles, task Γi updates (and thus renders invalid) λi × w pages.

B. Critical Instant

In order to compute the worst-case response time for jobs of a task Γi we need to de-

termine the worst-case arrival pattern of jobs in Γi and other tasks. We call this the

1We limit ourselves to identical-period tasks. The critical instant for arbitrary-period
tasks is an open problem.
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critical instant. It is a well known result that the critical instant for preemptively

scheduled independent periodic tasks without resource access is for a job of Γi to

arrive together with jobs of all higher-priority tasks. We will describe in this section

how to determine the critical instant for tasks in the presence of a flash memory

garbage collector.

We define c(t) and ∆T as the initial memory capacity and the length of time

for garbage collection. Then we have the following lemma:

G(c(t),∆T ) =
b

a
− c(t)− (

b

a
− c(t))× e

a2c(t)twr−abtwr−a∆T
B×twr+te . (4.1)

Lemma 2. If c(t) is a constant and ∆T increases, G increases, as well, that is, the

amount of reclaimed memory increases with increasing running time of the garbage

collector.

Proof. First, we have:

f(c(t)) ≥ −a× c(t) + b ≥ 0 , (4.2)

b

a
− c(t) ≥ 0 , (4.3)

e
a2c(t)twr−abtwr−a∆T

B×twr+te ≥ 0 . (4.4)

As a result, whenever ∆T increases, e
a2c(t)twr−abtwr−a∆T

B×twr+te decreases. Therefore, ( b
a
−

c(t))× e
a2c(t)twr−abtwr−a∆T

B×twr+te decreases, which leads the amount G of reclaimed memory
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to increase.

Lemma 3. If ∆T is a constant and c(t) increases, G decreases, that is, the amount

of reclaimed memory decreased with decreasing number of invalid pages.

Proof. First of all, we define k as a positive integer, and we set two variables, K1

and K2, as follows:

K1 = e
a2c(t)twr−abtwr−a∆T

B×twr+te , (4.5)

K2 = e
a2(c(t)+k)twr−abtwr−a∆T

B×twr+te . (4.6)

Since −a(c(t)+k)+b ≥ 0 from Equation (4.2), we know that K2 ≥ K1. Furthermore,

K2 = e
a2(c(t)+k)twr−abtwr−a∆T

B×twr+te

= e
−atwr(−a(c(t)+k)+b)−a∆T

B×twr+te ≤ 1 .

(4.7)

This allows us to derive the following inequality:

G(c(t),∆T )−G(c(t) + k,∆T )

= [
b

a
− c(t)− (

b

a
− c(t))×K1]

− [
b

a
− c(t)− k − (

b

a
− c(t)− k)×K2]

= −(
b

a
− c(t))×K1 + k + (

b

a
− c(t)− k)×K2

= k(1−K2) + (
b

a
− c(t))× (K2 −K1) ≥ 0 ,



24

which proves the lemma.

While the effectiveness of the garbage collector increases with decreasing avail-

able memory capacity, this does not make up for the difference in capacity, as the

following lemma shows:

Lemma 4. If c(t0) ≤ c(t1), then we have c(t0)+G(c(t0),∆T ) ≤ c(t1)+G(c(t1),∆T ).

Proof. We assume the garbage collector takes ∆T
′
to increase memory capacity from

c(t0) to c(t1). Because c(t0) ≤ c(t1) and ∆T
′ ≥ 0, we have c(t0) + G(c(t0),∆T ) =

c(t1)+G(c(t1),∆T −∆T
′
). By Lemma 2, the above value must be less than or equal

to c(t1) +G(c(t1),∆T ), since ∆T −∆T
′ ≤ ∆T .

Lemma 5. If the execution of a task is delayed, this reduces the memory capacity

after the completion of the execution interval.

Fig. 5.: An example of a shifted successive execution part of job
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Proof. We assume the fixed memory capacity c(t0) at t0 like Figure 5 . There are

four cases:

Case 1: The memory capacity neither hits Cmin during [t∗0, t
∗
1] for the job-shifted

scenario nor during [t0, t1] for the original scenario. Because both of scenarios don’t

hit Cmin, they take the same time and consume the same amount of memory ca-

pacity. We define t2 as the time in original scenario such that t − t2 = t − t∗1 and

t2 − t0 = t∗1 − t0. It is obvious that we have c(t1) ≤ c(t0). By Lemma 3, we have

G(t1, t2 − t1) ≥ G(t0, t
∗
1 − t0), and it’s equal to c(t2) ≥ c(t∗1). By Lemma 4, we have

c(t2) +G(t2, t− t2) ≥ c(t∗1) +G(t∗1, t− t∗1), that’s equal to c(t) ≥ c(t∗).

Case 2: The memory capacity hits Cmin during [t∗0, t
∗
1] for the job-shifted scenario

and also hits Cmin in [t0, t1] for the original scenario. Because both of scenario hit

Cmin, we have c(t1) = c(t∗1) = Cmin. In addition, t − t1 ≥ t − t∗1. By Lemma 2, we

can make sure c(t) ≥ c(t∗).

Case 3: The memory capacity does not hit Cmin during [t∗0, t
∗
1] for the job-shifted

scenario but hits Cmin in [t0, t1] for the original scenario. In this case, we introduce

a transition scenario that the job is executed during [t∗∗0 , t
∗∗
1 ], where t0 ≤ t∗∗0 ≤ t∗0,

t1 ≤ t∗∗1 ≤ t∗1, and the memory capacity hits Cmin just at t∗∗1 in this scenario. The

existence of this scenario is obvious. Define c(t∗∗) as the memory capacity at t in this

scenario. Since the memory capacity hits Cmin at the boundary t∗∗1 in the transition

scenario, we can treat it as the scenario that the memory capacity hits Cmin either
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during the execution time or after the execution time. Therefore, we can apply either

of the analysis in Cases 1 and 2 to this scenario. First, we compare the original sce-

nario with the transition scenario. We apply the analysis in Case 2 to both scenarios.

Following the result of Case 2, we have:

c(t) ≥ c(t∗∗)

Second, we compare the transition scenario with the job-shifted scenario. We apply

the analysis in Case 1 to both scenarios. Following the result of Case 1, we have:

c(t∗∗) ≥ c(t∗)

Therefore, we have c(t) ≥ c(t∗).

Case 4: The memory capacity hits Cmin during [t∗0, t
∗
1] for the job-shifted scenario

but doesn’t hit Cmin during [t0, t1] for the original scenario. Since t0 ≤ t∗0, we have

c(t0) ≤ c(t∗0). It is impossible to hit Cmin during [t∗0, t
∗
1] and not hit Cmin during

[t0, t1]. The case will never happen.

Theorem 1. Assume that the tasks in a task system are phased so that the last job

of each task during the busy interval Λ is completed a sufficiently-small time interval

ε before the completion time of the last job of the next lower-priority task during the

busy interval Λ. The release time of the first job of each task during Λ will be a

critical instant when the memory capacity at the beginning of Λ is minimized.

Proof. If we shift a task such that its last job during the busy interval Λ is completed

ε time unit before the completion time of the last job of its next higher-priority

during the busy interval Λ, then we will not change the worst-case preemption by
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the high-priority tasks. However, with the shifted task, more jobs should be pushed

forward before the critical time instance of each task. Then, by Lemma 5, the initial

memory capacity will be decreased. The release time of the first job of each task

during Λ will be a critical instant when the memory capacity at the beginning of Λ

is minimized.
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CHAPTER V

SCHEDULABILITY ANALYSIS FOR IDENTICAL-PERIOD TASKS

Fig. 6.: Illustration of a periodic task under garbage collection

Once the critical instant is identified, one can proceed to develop a schedulabil-

ity analysis, which in turn allows to determine whether a set of tasks is schedulable

in the presence of garbage collection. Unfortunately, even with the crisp definition

of the critical instant as formulated in Theorem 1 earlier, it is very difficult to derive

results that hold for arbitrary periodic task sets. Even for the mathematically much

simpler case of scheduling in the presence of thermal constraints, arbitrary periodic

task sets are an open problem. We therefore limit ourselves to the case of identical-

period task sets, i.e., task sets where all tasks have the same period length.

In this chapter, we describe how to compute worst-case memory capacities and

worst-case response times in the presence of garbage collection. For this we define the

concept of memory steady state: The maximum schedulable utilization is achieved
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when the capacity at the beginning of the period is equal to the capacity at the end

of the period. The rationale for this straightforward: Were the capacity to decrease,

garbage collection would force tasks to miss their deadlines. Were it to increase on

the other hand, then the utilization could be increased as well.

If we denote the total workload W =
∑
wi, Figure 6 illustrates the execution

of a single-period task set in the presence of a garbage collector. The busy interval

starts at time tk,0 and ends at time tk,1. The memory capacity hits Cmin at time tk,H ,

at which point the garbage collector starts reclaiming pages. This in turn reduces

the processing speed allocated to real-time tasks from SH to some lower speed SE,

which we call equilibrium speed. 1 In order to describe the memory steady state, we

first obtain the time-instance formulas for tk,0, tk,H , and tk,1.

The time tk,0 is the beginning of the k-th period. At that point, the tasks consume

memory at the SH until the memory level hits Ck,H at time tk,H .

tk,0 = kP , (5.1)

tk,H = tk,0 +
Ck,0 − Ck,H

SH

, (5.2)

The end of the busy interval can then be calculated by having the processor run at

speed SH until tk,H and then complete the rest of the workload W at speed SE by

1The computation of SE is described in Chapter VI.
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time tk,1:

tk,1 =
SH

SE

(tk,0 +
W

SH

)− (
SH

SE

− 1)tk,H . (5.3)

By setting the memory capacity during the low-speed execution to the low-watermark,

i.e., Ck,H = Cmin and Ck,1 = Cmin, we obtain the memory capacity at the begin-

ning of the period as follows:

Ck,0 = Cmin +G(Cmin, tk,0 − tk−1,1) . (5.4)

Based on the above formulas, we define the length of the high-speed execution in-

terval πk,0H , the length of the low-speed execution interval πk,H1, the length of the

overall execution interval πk,01, and the length of the idle interval πk−1,10 as follows:

πk,0H = tk,H − tk,0 =
Ck,0 − Ck,H

SH

, (5.5)

πk,H1 = tk,1 − tk,H =
SH

SE

(
W

SH

− πk,0H) , (5.6)

πk,01 = tk,1 − tk,0 =
W

SE

+ (1− SH

SE

)(πk,0H) , (5.7)

and

πk−1,10 = tk,0 − tk−1,1

= (P − W

SE

) + (
SH

SE

− 1)(
Ck−1,0 − Ck−1,H

SH

) .
(5.8)

Now we can compute limk→∞Ck,0, which is the steady state memory utiliza-
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tion at the beginning of the period. As k → ∞, we derive the fixed point C∗ =

limk→∞Ck,0 by the following equation:

C∗ =
b

a
− Cmin − (

b

a
− Cmin)× e

a2Cmintwr−abrwr−aπ
∗

B×twr+te , (5.9)

where π∗ denotes the length of the idle interval in steady state:

π∗ = tk,0 − tk−1,1

= (P − W

SE

) + (
SH

SE

− 1)(
C∗ − Cmin

SH

) .
(5.10)

Figure 7 illustrates how the relationship between C∗ and P can be linearly approxi-

mated. This example plots C∗ against P for a system with a given set of parameters.

Fig. 7.: The relationship between P and C∗

Now, we go back to the original identical-periodic-task set. C∗ is the minimal

memory capacity at the beginning of the busy interval. Based on this, we want to

obtain the memory capacity at the critical instant of each task. The following lemma

allows us to formulate the latter as a function of the task’s memory consumption:
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Lemma 6. Let C∗i denote the memory capacity at the critical instant of task Γi.

Then C∗i can be expressed by the following formula:

C∗i = max{Cmin, C
∗ −

∑
j>i

λj × wj} . (5.11)

Proof. At the critical instant ri,c, the jobs of lower-priority tasks will be aligned back-

to-back before ri,c. If the memory capacity does not hit Cmin at ri,c, i.e., C∗i > Cmin,

we have

C∗i = C∗ −
∑
j>i

λj × wj . (5.12)

If the memory capacity does hit Cmin before ri,c, then we have C∗i = Cmin, and

the lemma is proved.

Now we consider the response time di,c for the instance Ji,c, that is, the cth invocation

of Task Γi. If C∗i = Cmin, we have

di,c =
1

SE

∑
j≤i

λj × wj . (5.13)

Otherwise,

di,c = lim
k→∞

πk,01 −
1

SH

∑
j>i

λj × wj . (5.14)

If we define Cmin = 0, we have
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lim
k→∞

πk,01 = P − lim
k→∞

(tk,0 − tk−1,1) (5.15)

= P − lim
k→∞

(
Btwr + te
−a

× ln

∣∣∣∣ b− aCk,0

b− aCmin

∣∣∣∣
− twr × (Ck,0 − Cmin)) (5.16)

= P +
Btwr + te

a
× ln

∣∣∣∣b− aC∗b

∣∣∣∣+ twr × C∗ . (5.17)

This gives rise to the following theorem, which bounds the worst-case delay:

Theorem 2. The worst-case delay dPGC
i experienced by a job in task Γi under proac-

tive garbage collection can be bounded as follows:

If C∗ −
∑

j>i λj × wj > Cmin,

dPGC
i < P +

Btwr + te
a

× ln

∣∣∣∣b− aC∗b

∣∣∣∣
+ twr × C∗ −

1

SH

∑
j>i

λj × wj ,

otherwise,

dPGC
i ≤ 1

SE

∑
j≤i

λj × wj . (5.18)

In memory systems, tasks must be completed before the end of their period. One
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model for such task sets uses a deadline ration to represent the need to complete

early: In such task sets the deadline di,c of the cth invocation of task Γi is ζPi after

the release time of the cth invocation. we call ζ the deadline ratio of the task set.

The following corollary bounds the worst-case completion time of tasks with early

deadlines in systems with proactive garbage collection.

Corollary 1. If the deadline of task Di = ζP , where 0 < ζ ≤ 1, then under proactive

garbage collection we have the worst-case delay di for task Γi bounded as follows:

dPGC
i < P +

Btwr + te
a

× ln

∣∣∣∣b− aC∗b

∣∣∣∣+ twr × C∗ ,

when

1

SE

n∑
i=1

wi ≤ P .

Proof. Since the task Γn will experience the maximum delay, we have dPGC = dPGC
n .

Then by Theorem 2, we have

dPGC ≤



P + Btwr+te
a
× ln

∣∣ b−aC∗

b

∣∣+ twr × C∗

when C∗ > Cmin ,

1
SE

∑
j≤nwj

when C∗ = Cmin .

C∗ > Cmin means that

1

SE

∑
j≤n

wj < P ,
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and C∗ = Cmin means that

1

SE

∑
j≤n

wj = P .

A. Utilization-Based Analysis

Often, it is preferrable to have a quicker schedulability test at hand, which gives a first

approximation at least of the ability of the system to meet the deadlines. One popular

such approach is the so-called utilization-based analysis [27]. A utilization-based

schedulability test compares the maximum utilization caused by the task set (the so-

called utilization factor of the task set) against the so-called schedulable utilization

of the system. The schedulable utilization denotes the maximum utilization level at

which the system is guaranteed to be schedulable. This level depends on the available

resources and on the scheduling algorithm and resource access protocols being used.

If we define the utilization factor as

U =
n∑

i=1

wi
SH

P
,

then we can formulate the schedulable utilization for early-deadline periodic tasks as

follows:

Lemma 7. The maximum schedulable utilization UPGC for a task set with deadline

ratio ζ under proactive garbage collection can be expressed as
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UPGC = min{ζ, SE

SH

ζ + (
SH

SE

− 1)(
SE

SHSHP
)

(
b

a
− b

a
e

(ζ−1)aP
Btwr+te ) + btwr(

SE

SHP
)} . (5.19)

Proof. Corollary 1 states that whenever the task set is schedulable by the end of the

period with a purely reactive garbage collector, i.e., when 1
SE

∑n
i=1wi ≤ P ,

then it can meet an early deadline ζP for some ζ if

P +
Btwr + te

a
× ln

∣∣∣∣b− aC∗b

∣∣∣∣+ twr × C∗ ≤ ζP . (5.20)

Equation (5.20) can be rewritten by a tighter bound:

P +
Btwr + te

a
× ln

∣∣∣∣b− aC∗b

∣∣∣∣ ≤ ζP , (5.21)

i.e.,

C∗ ≥ b

a
− b

a
e

(ζ−1)aP
Btwr+te . (5.22)

In addition, by Equation (5.10), and using Equation (5.22) (5.9) to replace π∗, we

have

1

SE

n∑
i=1

wi ≤ ζP + (
SH

SE

− 1)(
C∗

SH

) + btwr . (5.23)

Therefore,

U =
n∑

i=1

wi
SH

P
=

1

SE

n∑
i=1

wi(
SE

SHP
) (5.24)

≤ SE

SH

ζ + (
SH

SE

− 1)(
C∗

SH

)(
SE

SHP
)

+ btwr(
SE

SHP
) . (5.25)



37

By replacing C∗ by its lower bound from Equation (5.22), we represent the schedu-

lable utilization as follows:

U ≤ SE

SH

ζ + (
SH

SE

− 1)(
b

a
− b

a
e

(ζ−1)aP
Btwr+te )(

SE

SHSHP
)

+ btwr(
SE

SHP
) . (5.26)

Moreover, the workload when executed at speed SH has to be finished before the

deadline:

n∑
i=1

wi

SH

≤ ζP , (5.27)

which in turn bounds the schedulable utilization:

U =
n∑

i=1

wi
SH

P
≤ ζ . (5.28)

By Equation (5.26) and Equation (5.28), the lemma is proved.

The schedulable utilization (if available) allows for the easy comparison of system

designs, ranging from scheduling algorithms to resource access protocols to resource

reclamation schemes. It is therefore particular by applicable when comparing proac-

tive and reactive garbage collection schemes. It is easy to show that under reactive

garbage collection we have

1

SE

n∑
i=1

wi ≤ ζP . (5.29)

The maximum schedulable utilization URGC for the tasks under reactive garbage
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collection for an identical-period task sets can therefore be expressed as

URGC =
SE

SH

ζ . (5.30)

The figure on page 42 in Chapter VII compares the schedulable utilization of a

proactive vs. a reactive garbage collector for varying deadline ratios for a given task

set.
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CHAPTER VI

CONSTANT-BANDWIDTH GARBAGE COLLECTION

While reactive garbage collection reclaims pages in a lazy fashion, and the proactive

scheme described earlier reclaims pages during idle intervals as well, other schemes

can be envisioned and assessed with our performance model. For example, the real-

time tasks can be throttled to reduce their memory consumption. The freed CPU

bandwidth could then be allocated to the garbage collector. We call this the constant-

bandwidth garbage collector. The name of this garbage collection approach indicates

that the latter could be implemented by having the system scheduler allocate a guar-

anteed system bandwidth to the garbage collector.

We define UW and UGC as the utilization allocated to workload and garbage

collection, respectively. Based on that, we can define the workload memory con-

sumption rate at the capacity C as follows:

ΛW = Σλi

wi
SH×UW

Pi

, (6.1)

and reclamation rate is:

ΛGC = − −aC + b

(B + aC − b)twr + te
× UGC . (6.2)

Hence, the overall memory consuming rate at capacity C is

Λ(C) = Σλi

wi
SH×UW

Pi

− −aC + b

(B + aC − b)twr + te
× UGC . (6.3)
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Fig. 8.: The relationship between speed and capacity

Figure 8 shows the relationship between speed and capacity for a flash memory

system with parameters a = 0.1, b = 32, twr = 1267, te = 1881, B = 64. The system

bandwidth is partitioned as follows: Uw = 0.8 and UGC = 0.2.
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CHAPTER VII

PERFORMANCE EVALUATION

In this chapter, we compare the performance of proactive garbage collection with

that of reactive garbage collection based on the theoretical results from the previous

sections. We use maximum schedulable utilization (MSU) as the performance metric.

In our evaluation, we assume a flash memory with the following parameters:

tr = 348, tw = 919, te = 1881. We also assume that the garbage collector effective-

ness is characterized by a = 0.1 and b = 32. By Lemma 7, we know that the MSU

depends on ζ and P . In the following, we fix one of the parameters and measure

how the MSU is affected by the other parameters. In each setting, we measure MSU

under proactive and reactive garbage collection. Figure 9 displays the level at which

proactive garbage collection achieves a higher MSU than a reactive scheme. In the

following, we explain the details of our results for each setting.

MSU vs. Deadline Ratio ζ: We measure how the deadline constraint affects

MSU. We set P = 200ms and vary ζ from 0 to 1. When ζ is small, MSU is restricted

by (5.28). This means that the flash memory capacity is always sufficient to sup-

port execution at speed SH , and the garbage collector only executes during the idle

interval. As ζ becomes larger, MSU is bounded by Equation (5.26). The proactive

garbage collection take the advantage from executing real-time tasks by high speed

and using the idle interval to reclaim invalid pages. In this way, the proactive garbage
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(a) MSU vs. deadline ratio

(b) MSU vs. period time

Fig. 9.: Maximum schedulable utilization
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collection can achieve the higher schedulable utilization than reactive schemes even

when the deadline ratio is equal to one.

MSU vs. Period P: We measure how the value of period affects the MSU. We

set ζ = 0.8 and vary P from 0ms to 20ms. When P is small, UPGC is much higher

than URGC . With increasing P , UPGC decreases and approaches to URGC , though

the former is still higher than the latter. The reason is that with the small period

P , the memory consumption in the busy interval is small, and the garbage collection

is very efficient during the short idle time. The amount of freed pages is enough to

keep the system run at high-speed, so MSU reaches the maximal value. When period

P increases, the memory consumption increases, but the garbage collection can not

maintain such efficiency. Since the memory which is recycled during idle time isn’t

sufficient to run system at high-speed for whole busy interval, garbage collector has

to execute when memory capacity touch the lower-bound, so that MSU decreases.
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CHAPTER VIII

CONCLUSION

The latency induced by page reclamation in NAND-based flash memory systems

makes it difficult to take advantage of this storage technology in real-time embedded

systems. To make matters worse, the flash translation layer often makes it impos-

sible to apply partitioning techniques or other schemes that would allow to reduce

priority inversions. In this thesis we describe an approach to model flash memory

garbage collection in a way that captures its cost for task sets for a simplified mem-

ory consumption model. Unfortunately, garbage collection for flash memory behaves

in a highly non-linear fashion: The lower the available memory, the higher the ef-

fectiveness of the garbage collection. As a result, it is not clear how much benefit

an eager garbage collection scheme brings. While the chance of memory under-run

is reduced by early page reclamation, the reduced effectiveness in turn increases the

contention cost of the garbage collector for real-time tasks. Additional design issues

must be considered as well, such as the need for wear leveling. For example, aggres-

sive garbage collection tends to reclaim pages from blocks that have fewer invalid

pages. Since the valid pages must be copied before erasing the block, this scheme

leads to increased write activity and earlier wear-out of the flash memory. Finally, it

appears that the design of effective flash memory schemes for hard-real-time systems

is greatly dependent on the development of specially targeted flash translation layers

that allow for flash-layer partitioning of resources or other mechanisms to reduce

priority inversions for application tasks.
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