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ABSTRACT 

 

Influence of Salinous Solutions in the Pressure and Volume Modulations of the 

Intracranial Cavity. (August 2011) 

Mariana Ceballos, B.S., Florida International University 

Co-Chairs of Advisory Committee: Dr. Hong Liang 
                Dr. Sai Lau  
 

Following a head concussion the intracranial pressure increases due to the impact, which 

cannot be adequately relieved because of the stiffness of the skull. Popular strategies 

aimed at decompressing the head consist in the administration of osmotic agents and 

skull removal.  

The mechanical properties of bone can be affected by the administration of 

different solutions. If the malleability of skull is influenced by the osmotic agents that 

are administered to the patient then the pressure and volume in the intracranial cavity 

can also be modified following the treatment. In this thesis research, we hypothesize that 

administered osmotic agents can influence the mechanical properties of the skull, 

which can also impact the volume the cavity can hold and subsequently the pressure 

in the head. 

This premise was tested by modifying existing mathematical models compiled 

through two general MATLAB® codes that allow the computation of a non-symbolic 

differential-algebraic initial value problem. Three main features were changed in 

comparison to current models: the skull’s influence on the pressure and volume 
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modulation was tested (inputs were obtained from skull tested under different solutions); 

pulsatile flow was accounted for on the creation and movement of cerebrospinal fluid; 

and the input on the mechanical behavior of the cranial vessels was accounted for 

through previously published continuum-mechanics vessel-behavior models. To 

complete the model, materials and mechanical properties were obtained through 

laboratory experiments as well as data collection from existing literature. 

From our bone test we were able to conclude that there are different factors that 

affect the mechanical properties of bone in various degrees. There is a mild statistical 

correlation (p-value ≥ 0.05) between the mechanical properties of bone obtained from 

different regions of the skull samples (2-14mm) and the DPBS and hDPBS solutions. 

Additionally there is a strong statistical difference (p-value ≤ 0.05) between the 

mechanical properties obtained from cross head speed (0.02, 0.002, & 0.004 (mm/s)) and 

solution variation (DI, DPBS and hDPBS). Finally, we were able to see that there seems 

to be a correlation between the mechanical properties of bone, the solution treatments 

and hypertension; although more test need to be developed to affirm this premise since 

our results are preliminary.   
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NOMENCLATURE AND ABBREVIATIONS 

 

a  Final radius 

Coeff  Coefficient 

Conc  Concentration 

Cond  Conductivity 

CPP  Cerebral Perfusion Pressure 

CVS  Cardiovascular 

d  Diameter  

D  Diameter 

Depol  Depolarization 

DI  Dionized water 

DPBS  Diphosphate-Buffered Saline 

E  Young’s modulus 

H  Height 

Hct  Hematocrit 

hPBS  Hyperosmolar Diphosphate-Buffered Saline 

HR  Heart Rate 

HTS  Hypertonic Saline 

ICP  Intracranial Pressure 

P  Pressure 

R  Resistance 
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SPT  Small Punch Test 

Sys  Organ System 

TBI  Traumatic Brain Injury 

Trans  Transport 

V  Volume 

ε  Strain 

μ  Viscosity 

π  Tissue Pressure 

σpl  Peak stress
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CHAPTER I 

INTRODUCTION 

 

The relationship between hypertension and the skull rarely gets highlighted. It is 

important to understand how the bone interfaces with the intracranial cavity and how it 

reacts on the onset and treatment of hypertension, because this information will aid in 

the understanding of intracranial pressure (ICP). 

In certain cases the skull cannot be used as a consideration in mathematical 

models of traumatic brain injury and its treatments because the knowledge base for the 

skull is incomplete. In order to improve the knowledge base about the skull and its 

relationship to the intracranial cavity we perform the following investigation which is 

organized as follows: The first portion of this chapter will briefly review common 

concepts for the study of mammalian biological systems and the condition studied in this 

investigation, Traumatic Brain Injury (TBI). The second section introduces the 

mechanical testing of bone and the analytical and theoretical aspects that are 

implemented in the analysis of bone. The third portion of this chapter will discuss the 

mathematical and biological models that have been developed, and are being developed, 

to study the influence that hyperosmolar1 solutions have on the body.  

____________ 
This thesis follows the style of Annual Review of Biomedical Engineering. 
 
1 Hyperosmolar solutions or hypertonic solutions are solutions with a high solute content that are aimed at 
reducing edema in the patient (1). Hyperosmolar NaCl solutions were used by Dr. Wolf to test his 
mathematical model (2).  
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1.1. Regulation, injury and the restoration of activity in a biological system 

Biological systems require a set of stable parameters like temperature, pressure, and 

concentration of substances to sustain life (3). The body’s capability to uphold this  

range of values that bolster biological functions is called homeostasis (3; 4). 

Homeostasis is maintained through a set of organ systems which work as a unit 

to maintain biological functions (3). In the human body, there are eleven main organ 

systems: circulatory, digestive, endocrine, integumentary, immune, skeletal, muscular, 

nervous, reproductive, respiratory, and urinary (3). This thesis will mainly focus on the 

study of the circulatory system and the skeletal system.  

The circulatory system is comprised of the vessels, the heart, and the blood (3). It 

aids in the distribution of nutrients, water, gases, and other substances, and in the 

removal of metabolic wastes (5). The circulatory system regulates the pressure and 

volume of the whole body with the aid of the other organ systems to maintain 

homeostasis.  

For example, the kidneys and hormonal signals are part of the vast regulation of 

vasoconstriction and dilation (e.g. natriuretic peptides and agiotensin II influence kidney 

ion excretion), which aid in the easing of pressure loads that damaged hearts can no 

longer bear (4). Other less common, and non-efficient, ways of coping with change in 

pressure or volume of fluid to maintain homeostasis might include an enlargement of the 

heart (6) and thickening of the skull (7). 



 

 

3

The circulatory system can be compromised from several pathological conditions 

and toxins. Its impairment can be critical to the body because it can affect the blood 

supply and quality of the blood delivered to the organs and systems. 

1.1.1. Injury 

After an initial homeostatic upset of a biological system there are several stages 

that follow which are aimed at restoring homeostasis in the organism. The first response 

following an upset of the system is the inflammatory response (8). The inflammatory 

response is the cascade of events that involve the activation of immune cells, capillary 

leakage, increase of endothelial cell activity, dilation of the tissue, and other events that 

occur as a consequence of injury, disease, or other pathological condition (8; 9). 

Inflammation can be beneficial to the body and help the system heal, it can also 

destroy tissues and endanger the organism (9). Inflammation can be acute or chronic. 

Acute inflammation lasts for a couple of days and involves the previously described 

processes(9). Chronic inflammation can last years (or an extended period of time) and 

deteriorates the tissues due the excessive inflammation, repair processes, and self-

destruction of the organs. Examples of this inflammation are atherosclerosis, 

inflammatory bowel disease (9),  and possibly Alzheimer’s (10). 

1.1.2. Traumatic Brain Injury (TBI) 

Disruption of homeostasis by injury to the brain is often referred to as Traumatic Brain 

Injury, or TBI. TBI can cause two types of injury, initial or primary injury, which are the 

main trauma to the head that can be caused by several reasons (Figure 1) and injury that 

happens after the initial trauma (secondary injury). Primary injury can have grave 
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consequences such as permanent disfigurement, impairment of mental abilities, and 

death. However, in most cases the real danger of primary injury is its creation of 

secondary injury. 

 
 
 
 
 
 

 

Figure 1 Major causes of Traumatic Brain Injury (11; 12). 

 
 
 
Secondary injury can be caused by delayed tissue death or as a result of 

enzymatic and hypoxic processes (low oxygen supply) caused by the initial trauma (13). 

Secondary injury can also cause the creation of pores in the lipid bilayer which creates a 

misbalance in the ion concentrations in the cell plasma such as potassium, intracellular 
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sodium, chloride, and calcium levels (14).  This non-homeostatic ion level can cause 

apoptosis and edema (14). Figure 2 shows some examples of primary injury and 

secondary injury. 

 
 
 

 

Figure 2 Traumatic Brain Injury. 

 
 
 

There are an estimated 1.6-3 million TBI cases per year in the United States (14; 

15). Patients that experience persistent and elevated pressure as a result of trauma 

 

Inflammatory response 
and free radicals 

TBI 

Primary Injury
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usually do not obtain a good prognosis (16). There is a real need in hospitals to lower the 

pressure of these patients in a timely manner since it has been noted that intracranial 

pressure above 20mmHg has been statistically correlated with a bad prognosis (17; 18). 

The brain, which is surrounded by a solid skull, has a gel-like consistency and is 

embedded in fluid (18; 19), making an initial brain injury dangerous since skull stiffness 

concentrates the force applied (20). The injury, prognosis, and incidence of TBI make it 

a topic which needs to be researched in more depth. Nevertheless, there have been some 

interesting developments regarding the study of TBI in recent years. For example, while 

the rat is a well-known model for the study of TBI, swine is considered to be a better 

model for the study of this condition (14). Swine exhibits a traumatic injury response 

similar to the human and is now being used to study TBI (21). 

Drug-based treatments that rely on osmosis and skull removal are the methods of 

choice for physicians treating TBI (22). But ICP as a result of TBI is a complicated 

condition, and no completely satisfactory treatment has yet been found since there are 

side effects for the used treatments such as hyperkalemia and hypernatremia (23; 24). 

Because these treatments are not completely effective we need to search for better ones. 

As we search for better treatments it is important to pinpoint what is effective and not in 

the current remedies. Therefore, in these studies we designed a computer code that can 

be used to analyze current and future treatments.  

1.2. Mechanical evaluation and interpretation 

Head testing for swine has been limited to the mandible test (25). The cranium 

mechanical test in swine is important in order to better understand the implications and 
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surroundings involved in traumatic brain injury. Better and more analysis are needed for 

swine bone, specifically of the skull. Bone cannot be analyzed and tested as a simple 

solid. It is compressible2, anisotropic3 (27), and viscoelastic4 (28). Hooke’s law5 cannot 

be immediately applied to its analysis because of the compressibility2 and anisotropy3 of 

the material. Moreover, bone differs in its properties among close samples due to the 

small differences in constitution, in unit structure6, and the failure of those structures 

(29);  therefore small volumes of samples need to be tested. 

1.2.1. Cellular solids 

Cellular solids are solids with small compartments—or cells—that can be compressed 

through the collapse of their unit structures6. The small cells of these materials are 

arranged in two dimensional or three dimensional configurations (Figure 3) (26). These 

micro compartments are connected to each other in a partially or fully covered 

structures, consequently named open or closed cell foams (26).  

 

 

____________ 
2  Compressible: the unit structures of bone and other cellular solids fail under compressible loads 
following a similar pattern of linear elasticity, plateau and densification (described in section 1.2.1). 
Overall the compression collapses the unit structure of the material, but produces a small spreading of the 
material in the lateral direction. It has been cited that cellular solids have a ration of 0.04 in lateral spread 
to axial compression (26).   
3 Anisotropy: the material displays different mechanical behavior along different directions. 
4 Viscoelasticity: the material stress-strain behavior depends on the rate of loading. 
5 Hooke’s Law: metals and other common materials deform in following the prescribed mathematical 
relationship σ=Eε where σ represents the stress, E the Young’s modulus and ε the engineering strain (28).  
6 Unit Structure: cellular solids are characterized by structures that resemble cells, for example the cells in 
the corks. These structures are composed of smaller solid filaments or struts. Because this thesis includes 
other biological terms, the use of the term cellular structure was substituted for unit structure. After all, the 
cellular structure was the unit of the analysis and is the basis for the cellular behavior which gives bone 
most of its mechanical characteristic properties (26). 
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Figure 3 Three dimensional and open cell structure (struts are 
connected in an open arrangement) often found in cellular solids. 

Bone also displays micro compartments and is very compressible; therefore bone 

can be described as a cellular solid. Density is important in cellular solids because it 

strongly influences other mechanical properties such as the Young’s modulus (26). The 

density, the cellular arrangement, and material which form the struts6 are the most 

important factors that determine the mechanical properties of cellular solids (30). 

Mechanically, cellular solids behave similarly under compressive loads. They 

display three distinct phases in their load compression curves: a linear elastic region; a 

plateau phase, in which there is a relative large displacement for the given load; and 
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finally, after a large compaction of the cells, there is a densification phase (31; 32). 

Bone, as can be observed in the results section, displays the distinct mechanical behavior 

of cellular solids as well. 

1.2.2. Bone 

Bone is part of the skeletal system. The purpose for the skeletal system is to protect the 

internal structures, provide mobility for the body, serve as a hemopoitic locus, and 

support other tissues (33). Bone is composed mainly of water,  hydroxyapatite, collagen, 

non-collagenous proteins, and cells (34). Bone develops into specific shapes such as 

long (e.g. arms and clavicles), flat (e.g. pelvis and skull), and short/irregular (vertebra 

and sternum) (28; 33). 

Bones have an exterior more compact structure called cortical bone, and an 

interior medulla or cancellous bone (29). Compact bone has microscopic pores and is 

denser than cancellous bone (34; 35). Both have the same main organizational entity, the 

osteon (~150µm in diameter and ~1-2 cm in length), which can vary in morphology 

depending on the class of bone (36). 

Bone behaves differently than other tissues when homeostasis is disrupted, 

because it can recover the use of function to nearly 100% through regulated cell 

behavior (8). Bone continuously grows and remodels to meet the demands it is 

subjected. Bone homeostasis is based on a delicate balance of bone growth and 

absorption, which is controlled by the osteoblast and osteoclast cells (36-40).  
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1.2.3. Bone mechanical behavior 

The characteristics of bone in a macroscopic level (its pore size, density, strut 

characteristics, etc...) are determined by its use. Modifications happen during healing or 

remodeling and aid in making resistant structures that withstand the load the bone is 

subjected to (41-46). It is also important to mention that there is a significant variability 

between various characteristics of the bone in areas of the body (28) and among species 

(28). 

There is also difference in the mechanical properties of bones treated with certain 

solutions. For example, Fluoride has been used for years to boost bone mass (47). 

Another substance that has known to affect the mechanical properties of bone is sodium 

chloride (salt). Salt can cause bone absorption (48), and therefore is one substance can 

decrease the strength of bone in-vivo (49). In-vitro modification of the mechanical 

properties of bone has never been positively proven prior to this research. 

Finally, because bone is composed of ductile and elastic materials, the plateau 

failure is not as simple as other materials with a high level of elastic behavior. The 

elastic components in the material bestow special mechanical characteristics when tested 

due to the movement of each of the collagen fibers. These elaborate constitution makes 

bone mechanical properties dependent on the strain rate (or cross head speed7) used to 

test the material (28; 50; 51).  

____________ 
7Cross head speed: The speed at which the metallic arm of the test (cross head portion of the compressive 
test) is lowered in the experiment. This speed can be related to the strain rate.  
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1.2.4. Characterization of biological materials  

Characterization of biological materials can determine the behavior of the material under 

physiological and non-physiological loading. There are different ways that materials can 

be characterized; mechanically, thermally, electrically, and chemically, among other 

characterizations (8). 

Hard tissue e.g., bone, cartilage, horns and soft tissue e.g., skin, muscle, organs are 

often tested differently and the results analyzed in a different manner. This is because the 

properties of both are very different. For example the behavior of soft tissue vessels 

often gets recreated by the use of Fung’s strain energy equation, which can recreate the 

behavior of soft tissue using concepts of continuum mechanics (52). Bone follows the 

behavior of other cellular solids such as foamed metals and polymers.  

There are four common types of mechanical testing machines used for the 

characterization of bones (28). Single-axis machines, which are made of one axis, can be 

used for compressive, tensile, three-point bending test, and other popular tests (28). 

Multi-axis machines are used to resemble physiological forces, and are valuable in the 

test of spines because they have a rotary actuator that can simulate complicated loads 

(28). 
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Figure 4 Bone and its main components. 

 
 
 

Micromechanical testing machines allow the testing of parts of the unit structure of 

bone, such as the osteons and trabeculae (Figure 4). Hardness and indentation machines 

allow a complex characterization of bone because the load is a combination of shear and 

compressive forces (28). There are several micro hardness indentation tests which allow 

the characterization of the bone, including the unit structure (in this case that structure is 

100 μm), such as the Small Punch Test and the Vicker’s test. 

1.2.5. Small Punch Test (SPT) 

In the case of bone samples, it is difficult to consider a big portion of the bone with the 

same thickness and architecture. In this and other instances, it can be necessary to use a 
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small sample in the testing as mentioned before. The Small Punch Test (SPT) allows us 

to test miniature samples with mixed forces of compression and shear. 

The SPT was developed to characterize the samples in the power generation 

industry which relied on the accuracy of the mechanical test of a small representative 

sample (53). Other important applications of the SPT have been to characterize the 

microstructure of specimens such as UHMWPE8 and PMMA9, popular polymers in the 

biomedical industry, which have been used in joint replacement and anchoring 

applications (i.e. bone cements10) (53; 55). The SPT has additional benefits such as the 

capability of characterizing ductility in the plastic failure of samples (56). 

1.3. Models for hyperosmolar solutions and hypertension 

1.3.1. Animal models 

An animal model is an animal used for the testing of pathological conditions and/or 

treatments that is aimed for human use or understanding. The United States has a strong 

culture of animal testing following the Food and Drug Administration (FDA) guidelines. 

Animal tests are conducted when there is a need to present preliminary test to the FDA, 

prior to human-subject experiments, and when testing on humans is unsafe or unethical 

(this last case is known as “the animal rule”) (57). 

____________ 
8 UHMWPE: Ultra-high-molecular-weight polyethylene which is usually abbreviated as UHMWPE is a 
common polymer in bone replacement applications because it is very resistant  (54).  
9 PMMA: Poly (methyl methacrylate) is usually abbreviated as PMMA. It is a common polymer that due 
to it high stiffness (when compared to other polymers) is used for bone cement applications (53).  
10 Bone cements: Materials used to fix artificial joints (53). 
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Figure 5 Animals and humans are used in cardiovascular research. 

 
 
 
Efficaciously matching a disease or condition to an animal model can be a 

complicated task. Pigs have been successfully used in neuroscience research (21) with 

implementations in traumatic brain injury research (14); both of these developments 

justify a new use in intracranial hypertension research.  

The pig has shown to be a good animal model in several other instances too 

which show the superiority of this animal model compared to other previously used in 

intracranial hypertension research (Figure 5). They have been used in bone research, 

since their bones remodel in similar patterns as humans (47), and in cardiovascular 

research because of similarities in the circulatory system anatomy, electrical activity of 
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the heart fibers, and other similarities (58). However, there have been few studies that 

characterize the bone of the head of the pig in detail. The only available studies that have 

researched swine skulls have focused in the mandible (25; 41; 59). Therefore the 

characterization of swine parietal and frontal bone areas during the present study can add 

detail to our existing knowledge of swine biology. 

1.3.2. General mathematical models 

Animal models are not the only way of studying pathological and physiological 

conditions. Computer models have become very powerful in recent years because they 

provide a cost effective way of exploring treatments and conditions prior to expensive 

animal models. 

Because the use of salt solutions that are aimed at mitigating or reversing the 

effects of ICP could have severe consequences (e.g. they can cause increased intracranial 

pressure, alteration of heartbeat patterns, and the onset of adult respiratory distress 

syndrome (23; 24)), it is thus desirable to develop models that are aimed at the 

understanding of the interactions that hyperosmolar11 solutions have on the elevated 

intracranial pressure patients. 

Guyton was one of the pioneers who originally developed models for the study of 

the interaction of pressures in large mammals (60; 61). His model has been subsequently 

improved and revised, and thus provides a good foundation for this research. In this 

____________ 
11 Hyperosmolar solutions or hypertonic solutions are solutions with a high solute content that are aimed at 
reducing the edema in the patient (1). Hyperosmolar NaCl solutions were used by Dr. Wolf to test his 
mathematical model (2). 
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model there are cross-references of results and analyses between the respective animal 

model (dog) and his empirical model. This model paved the way for further 

developments of mathematical models (60-62). 

More than fifteen years later, Wolf developed a mathematical model that 

corroborated some of the results that were obtained by Guyton (63). This model did not 

account for the delicate ion balance between compartments, but included important 

elements such as the pressure, volume, and transport relationships present in the 

mammalian system (2; 63). 

Gyenge took advantage of the vast information and equations from Wolf and 

Guyton and incorporated an analysis of the ionic balance of the systemic circulation and 

movement through four main areas, which he abstracted as mass transfer compartments. 

This last model involved twenty simultaneous differential equations solved with multiple 

auxiliary algebraic equations (23; 24) and systemic cardiovascular and tissue constants. 

 In order to maintain an adequate fluid balance, the body (with the exception of 

the brain) regulates itself mainly through the cardiovascular system, the hypothalamus 

and hormonal regulation (4). The mechanisms that it uses can be applied locally such as 

the constriction and dilation of the precapillary sphincters (4). The mechanisms can also 

impact the whole, as in kidney regulation, where these modulations aid in the regulation 

of the amount of fluid in the system (4). 
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Figure 6 Tight junctions present in the brain. 

 
 
 
The brain cannot be modeled following the same guidelines as the rest of the 

body, mainly because the circulation dynamics are different. The input from the arterial 

circulation into the brain gets regulated through tight junctions (Figure 6) that restrict the 

input and output of substances to the brain, which helps maintain a pathogen-free and 

toxin-free environment and homeostatic fluid balance (4). Additionally, the brain’s 

biological homeostatic constants and parameters, such as hydraulic conductivity (64), 
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lack of lymphatic system (64), and lack of bodily fluid (the brain is surrounded by 

cerebrospinal fluid12 instead of interstitial fluid) differ from the overall system. 

Based on the general principles and formulas that were compiled into 

mathematical models by Guyton, Wolf, and Gyene we created an improved model that is 

relevant to the intracranial cavity. This model includes other principles and formulas not 

previously used in mathematical models of this nature before; therefore it is used to 

improve the understanding of this subsystem of the human circulation. A main input into 

the model is the possibility of including bone mechanics inputs that allow its reference to 

a real situation. The author recommends future testing in-vivo to make a final conclusion 

on the usage of this mathematical model. 

 

 

 

 

 

 

____________ 
12 CSF: Cerebrospinal Fluid is a clear solution formed in the choroid plexus (region of the brain ventricles) 
that has protective properties (i.e. protective properties against a hit to the head and a tightly regulated 
environment).  
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CHAPTER II 

MOTIVATIONS AND OBJECTIVES 

 

As previously discussed traumatic brain injury (TBI) is a leading cause of death in the 

United States. The aftermath of TBI can be exacerbated because of the lack of 

information and faulty treatment modalities. Skull removal is practiced to relieve the 

pressure in the brain once the pressure reaches treacherous levels (≥20mmHg), but it is 

not a silver bullet because the pressure and volume relationships in the brain are mostly 

controlled by a blood brain barrier, which are a series of tight junctions surrounding the 

vessels. Hyperosmolar therapy11 is administered in lower pressure levels, and although 

extensive research supports its more widespread use, the treatment has dangerous side 

effects. 

Previous research suggests that the skull plays a role in establishing intracranial 

pressure and volume dynamics. This hypothesis is supported by thousands of clinical 

cases, as well as animal model experimental work, in which top portions of the skull 

were removed and its removal affected the pressure and volume related to intact skull 

measurements. Likewise, a softer and more malleable skull is hypothesized by the author 

to allow more volume fluctuations when compared to a sturdier skull. 

The hypothesis is: salinous solutions have an impact on the mechanical 

properties of bone in vivo. The influences of osmotic agents could also change the 

mechanical properties of bone and influence the pressure and volume relationship of 

the intracranial cavity.  
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In testing our hypothesis we designed the following specific aims which strive to 

find the pressure and volume relationships on a mathematically model of intracranial 

hypertensive patients. Such patients will have one of three hypothetical solutions, which 

are DPBS, hDPBS, and DI on their system. Each of these solutions has different osmotic 

coefficients and therefore generate variations in chemical potential in the blood. In order 

to test the model empirically we used bone soaked in different solutions as an input to 

the computer model. 

1. Characterize the behavior of skull under different osmotic concentrations. 

There are two main experiments that aim at testing our hypothesis, which are: 

(Note: These aims are practiced in the swine animal model because the test 

requires a high volume of samples and subjects.) 

a. Development of a factorial experiment (see section 3.7.1) that 

compares the salt solution content and the cross head speed7. The 

solution chosen as control is DI water, and two high-salt solutions are 

also tested: PBS and hDPBS. 

b. The bone extracted was cut in 2mm intervals. All of the 2mm, 4mm, 

6mm, 8mm, 10mm, 12mm, and 14mm samples are extracted from 

individual skull cylinders (see section 3.7.1) which are statistically 

analyzed separately. This analysis is based on two saline solutions; 

hDPBS and PBS, in a factorial experiment. The aim of this 

experiment is to see if there is any difference between the solutions 

when analyzed with respect to the depth of the samples extracted. 
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2. Create an improved intracranial dynamics model which has the following 

unique properties: 

a. Consideration of the skull influence on the pressure and volume 

modulation (inputs were obtained from motivation 1). This input is 

unique because the consideration of the skull influence has not been 

fully considered in similar models before. 

b. Consideration of the pulsatile flow on the creation and movement of 

cerebrospinal fluid (CSF). Previous models consider the creation of 

CSF to be bulk flow or linear; however, more recent publications 

have shown the creation of CSF is sinusoidal in its nature due to the 

influence of the vessel pulsations. 

c. Use of better methods of characterizing vessel behavior. Previously 

described models use formulas derived from curve fitting to 

characterize vessel behavior, but better methods are available for use. 

These methods rely on continuum mechanics models to predict the 

behavior of the vessel when pressurized. We use this method as an 

input to the model rather than traditional curve fitting methods, which 

can be less exact. 
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CHAPTER III 

BONE MECHANICS 

 

The relationship between hypertension and the skull rarely gets highlighted. It is 

important to understand how the bone interfaces with the intracranial cavity and how it 

reacts on the onset and treatment of hypertension, because this information will aid in 

the understanding of intracranial pressure (ICP). 

3.1. The use of animals in scientific investigations  

The use of animals for scientific investigations has been a tool available to researchers 

since antiquity. In the third century BC Erasistratus performed animal experimentation 

to study body humorous (64). In the nineteenth century the use of animals in 

experiments had become a standard practice (64). Today animal use plays a vital role in 

our society. Animal testing gets conducted prior to launching and/or testing 

cardiovascular devices in humans following the Food and Drug Administration (FDA) 

guidelines (65). 

The FDA guidelines regulate the use of animals as models for pathological 

conditions, and these guidelines are stipulated under the Federal Regulation codes 21: 

CFR 314.600 and CFR 601.90. These codes describe what is known as the “Animal 

Rule” which is the testing of biological, pharmaceutical, and other products on animals 

when testing on human beings is unethical or not possible (57). 

Animal studies are designed for their applicability to human situations (57). 

Matching animal models to their use can be very sophisticated, and proper and legal 
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handling of the animal needs to follow (65). Swine can be a successful animal model 

because of its cardiovascular (58), osseous (66), and neurological (21) similarities to 

humans (21). 

In order to better understand the human hypertension conditions, mechanical 

characterization was implemented in skull samples embedded in osmotic solutions or 

water. The mechanical information that the test yielded needed to be used for elastic 

modulus13 and peak stress calculations (comparison test for the solution effect on the 

mechanical properties). Therefore 10-20 samples were tested with the small punch test 

tool under 3 different strain rates and the information obtain was analyzed using 

ANOVA test. 

3.2. Sample preparation 

The sample preparation follows guidelines to ensure that the test conditions are as close 

as possible to the living situations. The bone is stored at -17°C and tested fresh once 

removed from storage. All samples are carefully machined and tested at room 

temperature (28). But as it can be interpreted from Table 1 further analysis is needed to 

understand this animal model because we can see that few areas of the swine have been 

investigated for their mechanical properties. 

 
 
 

____________ 
13 Elastic modulus also called Young’s modulus. 
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Table 1 Mechanical properties of swine bone. 

Body Part Peak Load (kg) Peak Stress (MPa) Modulus (MPa) 

Mandible (59) 
 

2.4±0.9 8.2±4.1 63.0±25.4 

Metacarpal (59) 
 

5.5±2.6 11.3±5.3 84.7±35.1 

Zygomatic Arch (59) 
 

16.4 ± 7.5 12.3 ± 4.6 91.7 ± 30.5 

Vertebra (67)  15 ± 6 229 ± 138 

 
 
 
The bone samples were tested with the load applied on the most exterior regions 

of the samples. This correlated to the skull under pressure from the inside, or as Figure 7 

shows, +Z direction. 
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Figure 7 Pressure characteristics in intracranial hypertension. The 
samples obtained were taken from the frontal and pariental bone and 
tested in the +Z direction which will mimic the force depicted in this 
image. 

 
 
 

 Eight Sinclair Minipigs were used for the experiment. These animals were 

donated by the Texas A&M Institute for Preclinical Studies (TIPS). In the institute the 

animals were kept under laboratory conditions: diet and living conditions were kept 

stable. After sacrifice using barbiturates the animals were kept in a refrigerator inside a 

leak proof bag for 0-4 days. According to other authors, leak proof bag storage for less 

than 1 week does not affect the mechanical properties of the bone (28). In total, eight 

animals averaging 1 year old and 42 kg were used for the experiment. One female and 
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seven males were sacrificed. The use of these animals aided in the minimization of 

anisotropy because the animals had flat skulls in the areas extracted. 

 
 
 

 

Figure 8 Sinclair Minipig with areas drilled. 

 
 
 
In order to extract skull samples the swine was taken from the storage 

refrigerator and set up in a necropsy table. The quadrant of skin that covers the frontal 

bone and portions of the parietal bone was removed (from the end of the ears to the 

beginning of the eye area, Figure 8 and Figure 9). This area, which is flat in this swine 

species, ensures that the bone is even facilitating the drilling process and minimizing 

anisotropy. Once the patch was open for 1 cm, measurements were performed and traced 

Parietal bone  
Frontal bone  
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to draw a quadrant in the pig cranium. Intersections were used as guides for drilling 

areas; uneven areas were not drilled. 

 
 
 

 

Figure 9 Swine drilling procedure on a 50 kg and 1 year of age swine.   

 
 
 

 During our preliminary studies several protocols were tested to ensure minimal 

damage to the cranium samples. Initially the tissues were cut and then drilled with a 

large-scale drilling machine. The force of the samples and sample preparation yielded 

uneven results; perhaps this was due to the damage of the samples in the machining 

process. 
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Figure 10 Tools for the bone extraction (drill, drill bits and Vernier). 

 
 
 
The sample preparation for which the data yielded homogenous results was to 

use 3 mm diameter drill bits to drill on the cranium itself at ~2,500rpm (the tools used 

for the drilling procedure can be seen in Figure 10), which at this point of the 

investigation, was be approximated to break at ~9MPa (the peak stress of mandible the 

point at which fracture is produced in compression of most materials). Following its 

extraction the samples were immersed in the required solutions (please see section 3.3) 

and stored at -17°C for 2-3 weeks. 
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Although the aim of this study was to drill and extract a complete sample (whole 

contents of the swine skull), often the top portion (2-4mm), or the top and middle portion 

(2-8mm), will separate from the extraction of the sample and break inside of the pig. The 

skull has been described as a sandwich14 structure of cortical bone, or heavier and 

sturdier bone in the exterior and cancellous bone (2-5mm), or lighter and softer bone, in 

the interior. These slight differences in structure and density probably made the 

composite separate. Therefore the areas that separated were assumed to be cortical or 

cortical and cancellous depending on the last layer of bone extracted. In Figure 11 we 

have an example of layers separating because of the difference in structure of the 

sample. In this instance the brown marrow was located in the middle of the sample; 

based on the color and location we can conclude that the exterior is cortical bone.  

Following the procedures of other successful bone characterizations (29), the 

samples were allowed to acclimate to regular laboratory temperature for two (51) to 

three hours (28). Once the samples were acclimated, each rod (due to the extraction 

process the samples drilled had a rod shape of 3mm diameter and 2-14mm in length) was 

cut into 2mm intervals. 

 

 

 

____________ 
14 Sandwich structures or sandwich panels are those composed of tougher exterior sheets that protect a 
softer and less dense interior (26).  



 

 

30

 

Figure 11 Cranium composition. Please note the separation of the 
layers due to the structure difference in the bone compositions. 

 
 
 
The first 2mm of bone cut from each rod were analyzed separately for statistical 

significance following a factorial experiment that will be described in section 3.7.1. The 

next sample, which represented the interval 2-4mm from the cut rod, was also analyzed 

separately with other similar rod samples. This procedure was repeated seven times to 

span the 14mm, maximum length achieved in the samples obtained, Figure 12 

exemplifies this procedure. 
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Figure 12 Sample preparation for the different millimeters obtained.  

 
 
 

The samples were then cut using a thin blade with ~5N force to avoid breaking the 

small samples. In certain instances the cylinders extracted during the procedure were not 

exactly the size required. Certain samples were polished using a 320/P400 grit silicon 

carbide grinding paper to ensure the required size and surface roughness was 200±20 μm 

(Figure 13). 

 



 

 

32

 

Figure 13 Samples extracted from the pig cranium. Please note the 
orientation of the osteon parallel to the +Z axis which ensured isotropy. 

 
 
 

3.3. Osmolarity modification 

The bone was stored for two to three weeks in three solutions: deionized water (DI), 

hyperosmolar diphosphate saline (hPBS), and diphosphate saline (PBS). The two saline 

solutions tested were comparable to those used by Dr. Gyenge in his osmotic 

experiments (24), 2000-24000mosmol/l (hyperosmolar saline) and 300mosmol/l 

isosmotic NaCl saline, and therefore provided a good point of cross reference with the 

bone test. 
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3.4. Bone mechanical characterization 

The mechanical behavior of bone is less predictable than that of metals. Bone samples 

behave linearly-elastic at low strains and plastically at higher strains when they are wet. 

When dried the bone becomes more brittle (34). The small punch test can be applied to 

the mechanical characterization of ductile and brittle materials (55; 68). 

 The characterization of bone samples was attempted using the small punch test. 

The SPT tool is made of two encasings that have 3mm openings in the middle; the 

encasings are closed via four screws creating a cylinder that holds the sample in the 

center. Four legs are positioned next to the screws, and these legs can be pushed up and 

down to allow the encasing to remain until a load slowly lowers one of the encasings. 

The encasing has an opening in the middle that allows a 1mm ball bearing to be pushed 

by a piston-like tool. The system is laid over an Instron 4411 tensile and compression 

machine tester. A Solidworks drawing of the SPT can be seen in Figure 14. 

 
 
 

 

Figure 14 Small Punch Test procedure. 
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The Instron 4411 machine was used to produce the load in the experiment 

(Figure 15). There is a control panel with Texas Instruments Lab View software for 

control and data collection that allows the user to obtain the pertinent displacement 

information that is related to the prescribed load (Figure 15). 

A force versus extension curve was then recorded in each trial. This curve 

corresponded to the information that the computer software extracted using the data 

acquisition system; this information is then displayed as a curve using LabView. 

 
 
 

 

Figure 15 Representation of the Small Punch Test hardware and 
software. 
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The specimens under this testing were loaded until it was clear that the 

specimens reached a densification region. The time (minutes) that guaranteed us that the 

samples were densified were estimated using previous curves obtain while performing 

preliminary studies in swine samples. These curves allowed us to see how much testing 

time was necessary to obtain a Young’s modulus 15  and peaks stress, which were 

important factors in the investigation. 

3.5. Mechanical analysis 

Cellular solids like bone can be characterized mechanically, even in cases in which they 

have seemingly haphazard behavior (26). Young’s modulus can be calculated from the 

application of the Hertzian formula Table 2 (69). This formula had been applied in 

ceramic materials which were tested under compressive load with a variety of spherical 

tips (69). 

 
 
 

Table 2 Hertzian formula for Young’s modulus characterization (69). 

Where: P=load, R=radius, v =Poisson’s ratio, E= Young’s modulus 

____________ 
15 The Young’s modulus (which is also called modulus of elasticity or elastic modulus) can be calculated 
from the slope of the stress strain curve in the initial linear elastic region of the graph.  

Indentation (indenter and material) 
(69) 
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3.6. Microscopy 

Images of the specimens were taken before the mechanical testing to determine if any 

cracking had been caused due to handling of the material, and after the testing to verify 

the failure mode of the sample. Images were taken at 20x magnifications before testing, 

and at 20x and 100x magnifications after the testing. This allowed a broad perspective of 

the specimen. A Keyence VHX-600 digital microscope was used in conjunction with a 

Keyence microscope base and a Keyence VH-Z20 digital lens.  

The analysis of the images before the mechanical test were done on random 

samples in order to verify visually the structural integrity of the samples and to possibly 

make a connection that could explain of statistical outliers. Only 20% of the samples 

were analyzed before the mechanical test was conducted and they were viewed quickly 

since there was the possibility of drying the samples, which could affect the mechanical 

properties (34).  

Images obtained before testing were thus analyzed at 20x magnification only. 

Images taken after the bone was mechanically tested were analyzed to gain insight into 

the failure pattern of the bone. These images were taken at several magnifications (20x 

and 100x) and in both dry and wet conditions, which allowed a better perspective of the 

bone since the water can pose as a reflective agent. In these instances the shape of the 

bone cells and different components of the structure were observed. Also, an analysis of 

bone with different solutions was made. 
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3.7. Design of experiment and statistical analysis  

In order to evaluate and draw adequate conclusions from our statistical data, we needed 

to find a point estimator16 that could serve as a reliable predictor for the mean Young’s 

modulus of the population. Common estimators for the population mean are: the sample 

mean, the sample median (the middle value of the sample data), and the average of the 

smallest and largest sample values (70). The sampling distribution determined which of 

the available estimators were applicable to our analysis. For instance, a sample mean 

estimator is applied when there is proof that the sample distribution is normal17. 

 We used sample mean, trimmed mean, and median to test which point estimate 

was a reliable predictor for the population mean because: 1) the sample mean is one of 

most used population mean estimators; 2) the trimmed mean allowed us to reduce the 

variance in our statistical analysis; and 3) the median was a simple and widely used 

estimator. 

3.7.1. Factorial experiments 

We developed two factorial experiments to test the effect that three important factors had 

on the Young’s modulus of the swine skull. In the first factorial experiment we 

compared the effect produced by osmotic agents and cross head speeds. In the second 

factorial experiment we compared the effect produced by osmotic agents and bone 

____________ 
16 Point estimate: a statistics that serves as a guess (or estimator) of the true population parameter (i.e. the 
value that could exist if someone knew the behavior of all of the samples) (70). 
17 Normal distribution: when the distribution of the sample data follows a Gaussian function (70).  
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location. Table 3 shows the variables tested in the factorial test and the increments with 

which each variable was tested. 

 
 
 

 Table 3 The two factorial experiments developed in the current investigation. 

Experiments Factor 1 solution 
 

Factor 2 
 

1 
 

DI 0.002 (mm/s) 

DPBS 0.004 (mm/s) 

hDPBS 0.02 (mm/s) 

2 DPBS 
Location : 

2-14 mm (2 mm increments)

 
 
 

3.7.2. Statistical analysis 

Due to the large variability in the samples it was necessary to compare different 

estimators for the sample mean. In the case of swine skull, a simple 5%-25% trimmed 

mean of the measurements ensures that the values behave mechanically and statistically 

the same. The results were trimmed discarding the lowest and highest values in all of the 

result sections prior to the analysis. These results were compared to the original mean 

and median of the sample. The trimmed mean samples were used in ANOVA statistical 

comparisons. 

The analysis of variance (ANOVA) was tested for a null hypothesis that we had 

equal sample means (HO: µ1=µ2= µ3=etc...) in the two comparisons; we tested the 

hypothesis taking into account a confidence interval of 95%. 
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3.8. Mechanical behavior of bone 

Prior to the mechanical analysis of bone, the assumption that bone behaves like a cellular 

solid (Figure 16) was tested. Originally it was assumed that the behavior of bone 

resembled that of an Elastic-plastic material (Figure 17). However, preliminary 

mechanical tests showed that the mechanical behavior of bone was more complicated.  

 
 
 

 

Figure 16 Mechanical behavior of cellular solids and sample behavior 
in an indenter test with high plasticity. In this figure we can see three 
clearly demarked regions: region I (linear elastic region), region (II) 
plateau region characterized by the failure of the material unit structure, 
and region III densification region characterized by a compaction of the 
material structures that give rise to an exponential growth of the 
material. The Young’s modulus and peak stress σpl are also located in 
the Figure. 
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Figure 17 Compressive mechanical behavior of cellular solids with 
high elastic component (26). 

 
 
 
In order to relate the mechanical behavior of bone to the change in the structure 

characteristics when the indenter is penetrating the sample we analyzed the microscopy 

of the samples. In this way we could see if the deformation was ductile, fragile, or elastic 

(buckling). We were able to see that the mechanical behavior of bone is more 
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complicated than was expected. The sample three-dimensional structure starts breaking 

when the indenter is pushed through the sample, as suggested in Figure 16. In this case 

the sample broke at a micro-structural level, which is evident by zooming into the force 

versus extension graphs (Figure 18) and by analyzing the microscopy of the sample 

(Figure 19). Because fracture characterizes elastic brittle behavior, this provided 

evidence to testify that the sample had fracture failure at least in the micro-scale. 
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 Figure 18 Elastic-brittle behavior of the material. 
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Figure 19 When bone is subjected to SPT the structures break as can be 
seen.  

 

 
 

Additionally in the millimeter scale we can see that the sample had a clear linear 

elastic region; a plateau and a densification region (regions clearly identified in Figure 

16). The linear elastic region gave into the plateau region in a sharp crest as opposed to a 

‘hump’ (the two types of transitions are evident in Figure 20). We can conclude that 

therefore there is a mix of behaviors. 
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Figure 20 Elastomeric and elastic-plastic behavior of the material. 

 
 
 

 Additionally, we were able to see from the images that the indenter forces the 

sample until it breaks (Figure 19 and Figure 21), while the side regions of the material 

deform simultaneously. Because the material is an open cell solid, made of layers of 

bone in a three dimensional arrangement, breaking the sample from the top creates 

stacks of sample layers which allow the material to become denser when compressed. 
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Figure 21 Application of the force in the SPT. 

 
 
 

Finally, because our goal was to calculate the Young’s modulus, and because the 

behavior is complicated, we analyzed the data in order to see the overall value of the 

peak stress. The peak stress functions as an input in the Hertzian contact stress formula 

(Table 2).  

We were able to see that the peak stress value fluctuated around 0.2mm. In order 

to create an overall location for the peak stress for all of the samples we decided to set 

the value at 0.2 mm. From this pre-described peak stress we calculated the Young’s 

modulus based on Table 2. We used the previous number because choosing a larger or 

smaller displacement location would mean choosing an outlier because most of the 

values were around 0.2 mm.  

Figure 20 depicts the complicated behavior of bone, which is a mixture of the 

aforementioned elastomeric behaviors (Figure 17). The images also show that, when the 
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indenter pushes downward the material, the sidewise structures are pulled until they 

fracture; in other words, the bone fibers behave elastically until they yield plastically 

when pushed from the top and pulled from the bottom. The previously described force is 

characteristic of the force generated by a spherical indenter: a combination of 

compressive and shear force. Also, a similar reaction pattern of elastic deformation and 

plastic yield when the material was pulled from the bottom have been reported for other 

cellular solids with high plasticity (71). 

3.9. Factors affecting the mechanical behavior of bone 

In the mechanical characterizations of bone it was important to take into account how 

the material was affected by the input of the solution. In Figure 22 we can see that the 

mechanical behavior of the skull samples is slightly modified when treated with DPBS 

or hDPBS. In both instances we can see that the overall differences among the sample 

mean is minimal at 0.2 mm, the location of the peak stress. After the peak stress the 

linear elastic region ends and the plateau begins. Because the plateau and the linear 

elastic region are defined by their mechanical characteristics, the rate changes in the 

force versus extension curve graph signals the transition between one another (this rate 

changes are more visible in Figure 16 which was created to emphasize the difference in 

the three characteristic regions). 
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Figure 22 Mechanical behavior at different stages. 

 
 

 
After the plateau the densification region takes precedence, as we can see near 

0.75 mm in Figure 22. This region is the final region of the curve and is characterized by 

a sharp increase in the load the material can withstand per displacement (i.e. an 

exponential increase in the stress from a stress-strain curve). This region can continue 

until the sample is very compact; in our case we stopped the testing of the material when 

the sample was compressed to 1 mm in order to avoid damaging the SPT tool.  

 In these instances the statistical difference among the two samples with a 

negative hypothesis of same sample means at α=0.05 is only p=0.09. While this is not a 
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statistically significant number, it is not extremely large and the value might suggest that 

if a higher concentration of sodium chloride was used in the experiment, it might have 

yielded a statistically significant difference. In Figure 23 we can see the mechanical 

behavior of the 2mm segments (segments of the bone analyzed separately). The skull 

structure is a biological sandwich structure14 which is composed of a denser exterior 

made of whiter cortical bone and an interior formed of less dense cancellous bone (this 

structure has a soft pink hue due to the brown marrow) (Figure 12). Therefore we were 

able to see that the first 4 mm of the rod had a cortical bone morphology and color. The 

next 6 mm had a cancellous bone morphology and color. The last bone samples obtained 

were again whiter and denser; therefore they also appear to have cancellous bone 

characteristics.  

The mechanical behavior of these different regions was the same as the previously 

describe behavior for cellular solids. There exists a linear elastic region, a plateau region 

with large deformation, and a densification region in which the samples become very 

compact. Therefore, in this region the sample withstands high loads, and the material 

behaves like a bulk material rather than a porous material. 
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Figure 23 Behavior of the different regions of bone extracted. 

 
 
 
The Hertz formula (Table 1) was used to analyze the linear elastic region. The 

inputs to this formula were the peak stress coordinates in the respective relevant units, 

the radius of the indenter and the Poisson’s ratio for the indenter and the bone. Once this 

information was calculated the samples were statistically analyzed. The different 

locations of the rod that were analyzed did not yield statistical significances when 

analyzed for the difference in peaks stress. However, the factorial experiment that 
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compared the solutions used to the different cross head speeds used7 yielded some 

statistically significant comparison pairs (Section 3.10). 

3.10. Statistical results 

It was difficult to analyze statistically the mechanical behavior of the samples because 

they had high variability. It was necessary to see the values of several statistical 

estimators for the population mean. In doing so we calculated the media, trimmed media, 

and the mean. These are reliable estimators for the population mean and therefore 

provided a good comparison for their usage in this application. 

 Figure 24 depicts Young’s modulus calculated for the bone treated with DI 

solutions. In the case of DI, the trimmed mean could be a reliable estimator of the 

sample mean in all of the cross head tests done. This is because the two have seemingly 

comparable results with the trimmed mean having less variance. It can also be seen that 

the Young’s modulus decreases with decreasing cross head. The mechanical behavior 

change between the samples that have 0.004 and 0.002(mm/s) cross head speeds is 

around the same as those of the samples with larger differences 0.004 and 0.02(mm/s). 

The difference in behavior was thought to be proportional to the change in cross head 

speed, but this test indicates no. 
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Figure 24 DI statistical analysis. 

 
 
 

In the treatments of sodium chloride it was evident that, although the mean had 

slight variations between treatments, there were outliers. It is hypothesized that this is 

due to the variations in biological sample constitution and how the treatment affected the 

bone samples. However, that the variance is high, even when the samples are trimmed. It 

is believed that the solution concentrations are not exact in all of the bone samples 

because sometimes the solutions osmotically diffused differently through the samples, 

for example changes in temperature in the testing room could affect the mixing 

conditions of the samples and the osmotic coefficient of the samples. 



 

 

51

Results reported by other authors that tested swine bone were faced with similar 

or higher values of variance (47; 67; 72). Because this variability was not found in other 

published studies on bovine bone it could be an indication that the swine bone has high 

variability (73; 74).  

Because of the high variability a trimmed mean was preferred. The lower 

standard deviation allowed us to have an attempt at a statistical analysis since the 

analysis of variance (ANOVA) uses the variance of the samples for comparison. Using a 

trimmed mean is an approach that can be applied to biomedical samples which have 

large variability (75).  

If the largest and smallest of the samples are trimmed, and there is evidence that 

by applying this consistently the samples yield statistically different results, then it will 

be suggestive that the samples may be different despite variability among replicates.  

The statistical test yielded a p-value of less than 0.001, Ho of equal sample mean 

in the trimmed results of the Young’s modulus samples vs. strain rate. The tests were 

robust with each containing 10-20 samples per test.  

ANOVA comparison test also compares pairs for statistical difference when 

doing a comparison test for several combinations; this process is similar to a two sample 

t-test. From this second statistical test, the following combinations (Table 4) yielded a 

statistically significant p-value (less than 0.05). The values are presented with the 

mathematical difference between the means in order to provide insight into the great 

difference between the sample means in the Young’s modulus results. 

 
 



 

 

52

Table 4 Mean differences in statistically significant samples. 

Solution Difference Difference Between Means (Pa) 

DI .02 (mm/s)-DI.002 (mm/s) 1.05*108 

DI .004 (mm/s)-DI.002 (mm/s) 8.97*107 

DI .02 (mm/s)-hDPBS.02 (mm/s) 1.14*108 

DI .02 (mm/s)-hDPBS.002 (mm/s) 1.08*108 

DI.02 (mm/s)- hDPBS .004 (mm/s) 9.77*107 

DI .004 (mm/s)- hDPBS.02 (mm/s) 9.95*107 

DI .004 (mm/s)-hDPBS.002 (mm/s) 9.27*107 

 
 
 

3.11. Reasoning behind the change in the mechanical behavior 

The fluid present in the bone pores can have an effect on the stiffness, work, density, and 

other calculations of the mechanical characteristics of the bone (34). Effort has to be 

taken to take into account the fluid present in bone, which is a part of its regular 

constitution if the bone is to be tested wet (26). 

Calculations were made that compared the results obtained in the various 

solutions tested. Again, for this type of analysis the cellular theory was used. In this 

instance the theory takes into account the displacement of the solid, the fluid viscosity, 

the velocity of the fluid when it moves outside of the pores, strain rate, foam shape, and 
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temperature.  The fluid trapped inside of the cell can have a larger contribution to the 

mechanical properties of the material when there is applied pressure (Figure 25). The 

contribution of the fluid to the strength of the material at the peak stress portion can be 

calculated using the formulas in Table 5. 

 
 
 

 

Figure 25 Cortical bone under indentation test. The fluid inside each of 
the cell structures has an impact in the overall behavior of the material. 
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Table 5 Equations used to solve for the mechanical stress of the bone. 

Hardness solved for yield stress of foams 
(76) 

Strain at the initial of 
plateau after 
densification 

(76) 

Contribution of fluid to 
the strength of the 

material 
(26) 

1

3

32
2 2
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1
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 
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C L
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



     
 

 

Where: *
g =contribution of fluid to the strength, C =proportionality constant ≈1,  =viscosity of the 

fluid,  =strain, 


=strain rate, L =unit structure length considering a honeycomb, l =thickness of the 
trabeculae, a=the diameter of the indentation, R= the radius of the indenter, h= depth of the indentation 

and plastic zone under the indenter, P= force, y =stress at a point.  

 
 

In order to perform the analysis, a 0.1mm indentation (“h” Table 5) was 

considered to calculate the strain. This number was chosen because it correlated well 

with the total compression of the specimen in length (obtained by measuring the 

thickness of the specimen after testing). A simple mathematical relationship was then 

performed in this case, correlating the predicted strain, strain rate, and the length at the 

peak stress point. The values used the stress as an input and therefore the stress was 

calculated as well in  Table 6. 
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 Table 6 Calculated stress of swine bone used to compare the fluid 
contribution. 

 
Cross Head 

(mm/s) 
DI NS HYP 

Value  µ STD µ STD µ STD 

σ (MPa) 

0.02 53 11 32 15 30 18 

0.004 41 12 36 10 31 21 

0.002 2.7 12 39 13 31 22 

 
 
 
The result of this difference is depicted in (Table 7). Here we can see that the 

difference is high because this represents the value in just one point. The summation of 

all of the information can yield quite a difference considering that the value can be 

compared to the 1mm diameter indenter. 

 
 
 

Table 7 Stress contributions solutions for the fluid contributions to 
mechanical properties of bone. 

 Solution 

Cross Head (mm/s) DI (Pa) DPBS (Pa) hDPBS (Pa) 

0.02 2.16*10-5 2.28*10-5 9.15*10-5 

0.004 4.5*10-5 4.75*10-5 14.0*10-5 

0.002 2.25*10-5 2.37*10-5 9.51*10-5 
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CHAPTER IV 

MATHEMATICAL MODELING OF INTRACRANIAL HYPERTENSION  

 

TBI is one of the leading causes of death in developing countries (17). It creates primary 

and secondary. The initial tissue damage that happens at the moment of the impact is the 

primary pathway. It can cause the creation of pores in the lipid bilayer, which in turn can 

create a misbalance in the concentration of ions in the cell plasma (e.g. potassium, 

intracellular sodium, chloride and calcium) (14). These non-homeostatic ion levels can 

then cause grave consequences such as apoptosis and edema (14). Figure 26 highlights 

three pathways that cause cell injury and death as a result of calcium ion mismatch in the 

cell plasma levels (14). 

The portions of the responses that happen as a result of the primary injury, but 

occur at a later time, are called secondary injury responses (1; 17). These negative 

responses can further endanger the health of the patient. For example the inflammatory 

response can be so severe that the blood supply of the patient is disrupted (77). Table 7 

states some of the symptoms, consequences, and treatments of the overall injury caused 

by TBI. This table was organized by the most affected organ systems. 

From Table 8, one of the secondary injury responses that is closely monitored for 

its risk, is high blood pressure in the intracranial cavity (ICP) caused by the 

inflammation of the injured areas. High blood pressure can further damage the tissue and 

it has been implicated in the decrease of blood supply to the tissue (78). Therefore is no 
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surprise that patients with TBI who experience intracranial hypertension generally 

receive poor prognoses (16; 17; 79). 

 
 
 
 

 

Figure 26 Cell death/injury pathways caused by calcium mismatch in 
the cell plasma. 



 

. 
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 Table 8 Table depicting: the symptoms of TBI, the beneficial effects of the therapy, the nocive effects of the therapy 
and the overall outcome. 

Sys. TBI symptoms Beneficial HTS effect Nocive HTS effect Overall Outcome 

CVS 

Calcium damage, 
ischemia, edema, high 

ICP (14). 
 

Increase heart contraction, 
increase in cardiac output 
by a reduction in vascular 
resistance (1; 80), plasma 

expansion (1; 81). 

Hemodilution (82) which can cause 
hypoxia, acidosis, organ failure, etc (1), 

hypernatremia, hyperosmolarity (24; 
83), among other conditions. 

Overall good recovery (84) outcomes from acute 
hematoma are the following : 

epidural 75%, subdral 23%, intracerebral mass 
lesion 12%, diffuse brain injury 40% (85). 

Endocrine 
Pituitary can get 

affected leading to 
hypopituitarism (86). 

Increase hormones and 
endothelins, e.g. cortisol 

(1; 80). 

Please see immune and CVS cells the 
whole system is related. 

Following published guidelines (84) the 
outcomes to Anterior Pituitary dysfunction in 

TBI are: good recovery 55.9%, moderate 
disability 32.3%, severe disability 11.8% (87). 

Immune 

Secondary injury can 
activate resident 

immunocompetent 
cells, secreation of 

intrathecal cytokines 
and (88). 

 

Increase in secretion of 
prostanglandins (80) and 
decline of the adherence 

of leukocytes (1; 89). 

There is evidence to the modulation of 
the brain’s inflammation responses by 
the immune system (90). An adverse 

response can be understood as a 
decrease of this response to a point 

that is not beneficial by HTS, but this 
information has not been found 

reported. 

 

Nervous 

Auxonal injury due to 
a disruption of the 

proteins present in the 
cytoskeleton (14). 

 

Restoration of osmotic 
balance (Figure 26) (1; 

89). 

Adverse responses to the CVS are 
occurring in the brain; both of these 

systems are affected (see CVS cells). 
Demyelination can occur (91). 

 

Overall good recovery (84) outcomes from 
positive key neurological responses are the 
following: motor 61%, oculocephalic 66%, 

pupilary light 85%, 
overall good/moderate recovery 64%(85). 
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4.1. Treatment  

The treatments applied for TBI vary, but there are some guidelines that are followed: the 

doctors monitor the intracranial pressure if the patient is neurologically compromised 

(GCS score18 less than 9) (92). After the dangerous pressure of 20 mmHg is reached, the 

doctor has to ensure that the patient has no obstruction to flow and no hematomas (the 

patient is drained) (77; 92); at this point a craniectomy and osmotherapy are 

recommended (77). Additional therapies are practiced as directed by Figure 27. 

The administration of osmotic agents for the treatment of TBI has been studied 

extensively (1; 82; 93-96). These studies include animal, mathematical, and analytical 

models (60). The mathematical models used have employed the most recent information 

available to create the necessary codes. For example, Wolf’s model (63) uses a fitted 

equation from the work produce by Guyton to describe the behavior of the interstitial 

fluid pressure (60). 

In our case we attempted to update the current models to include new constants, 

the mechanical vessel behavior (based on continuum models) and the mechanical 

behavior of bone, which have an impact on the overall intracranial hypertension 

behavior. Studies have shown modifications in the morphology of the skull with ICP 

changes (7), and the lack of cranium has been implicated in the modification of pressure-

volume relationships present in the head (97; 98). Therefore, we used the current models 

____________ 
18 GCS score: GCS score is a set of characterizations that are assigned to neurological status in cases of 
TBI and other head injuries (13).  
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and formulas to test the role the cranium has in the intracranial pressure-volume 

modulations.  

Additionally, we based the arterial compartment compliance on current 

constitutive relationships that relate changes in radius to changes in pressure (52) and we 

based the formation of the movement of cerebrospinal fluid on pulsating (Womersley 

flow) calculations.  

 
 
 

 

Figure 27 Treatment modalities for TBI. 
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4.2. Calculations for the determination of factors in the intracranial hypertensive 

model  

4.2.1. Pulsatile calculations for the determination of CSF 

For years it was assumed that the flow of water and substances through the brain and 

into the brain ventricles was through bulk flow (99-102). More recent investigations 

suggest that this movement occurs by the propulsion that the vascular system pressure 

waves cause when they travel through the brain (103), which is reliant on the vessel 

elastic properties (104). Pulsatile flow calculations allow this movement to be analyzed. 

 
 
 

Table 9 Fluid flow formulas used for the analysis [103]. 

Meaning Equation (105) 
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One mathematical description that takes into account periodic pressure gradients 

is Womersley Flow. Womersley studied the pulsatile blood flow through arteries by 

using classical principles such as the continuity equation and pressure. Unsteady flow is 

added to the steady solutions to determine the whole nature of the flow therefore there is 

a need to provide a waveform input to solve for the other variable (in Figure 28 we can 

see how the basilar arterial waveform was fitted using Fourier transform principles) 

(106; 107). Therefore, the unsteady and steady flow through tubular vessels was then 

added to the code in order to generate fluid flow patterns through the brain vessels and 

into the ventricles (Table 9). 

Summarizing, when solved for the boundary conditions at the vessel wall, 

Poiseuille flow describes the steady and laminar flow through straight tubes. This 

equation is expressed in spherical coordinates and has inputs of pressure and viscosity. 

Womersley flow is used to describe the non-linear pulsatile flow through the vessel. 
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Figure 28 Basilar flow rate waveform with a Fourier transform was 
applied to it following equation 15 (in the table). 

 
 
 

4.2.2. Constitutive framework of vascular compliance 

The description of vessel compliance in mathematical models has usually been obtained 

through empirical observations (63), curve fitting (60; 63), and basic computer 

simulations (108). Constitutive models that describe the behavior of vessels have been 

developed by Dr. Fung, but have not been applied to this instance (52). Descriptions of 

the common carotid and modifications of the radius, and constants of these descriptions, 
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were used for the compliance input in the model for the two compartments instead of 

relying on curve fitting of previous animal studies.   

Published analysis was recreated using the following equations of W, Q, Cauchy 

stress, and green strain in spherical coordinates. The formulas used were coded to solve 

for the pressure inside of the vessel and the relationship to the radius. This information 

was used to solve for the compliance of the vessel per radius, which correlates with time 

since there are fluid inputs. The formulas in Table 10 and constants present in Table 11 

were added to the general code.  

 
 
 

Table 10 Equations to determine the hoop stress of the vessel. 

Meaning  Equation (105) 
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 Table 11 Constants used for the analysis. 

Meaning Constant 
Human 
Specific 

Constant c1 (KPa) 0.40206 

Constant c2 (KPa) 0.3847 

Constant c3 (KPa) 0.0225 

Undeformed 
external diameter 

do (mm) 2.411 

Undeformed 
internal diameter 

Di 3.541 

Deformed external 
diameter 

D0 4.852 

Deformed internal 
diameter 

Di 4.431 

Extension in z 
direction Z  1.72 

 
 
 

4.3. Compartmentalization model 

We designed a theoretical compartmentalized model during this investigation. The 

model is based on 7 main compartments as can be inferred from the drawing (Figure 29): 

a brain arterial compartment, vascular compartment, venous compartment, brain 

compartment, skull compartment and ventricle compartment. This model was solved 

analytically with the equations presented in Table 12 using MATLAB®. 
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Figure 29 Theoretical compartmentalized model. 

 
 
 

Due to the constraints in MATLAB®, solving for a direct non-symbolic 

differential-algebraic initial value problem simultaneously was not possible (unlike 

Maple or other computer languages); therefore the code was run in pieces. First the 

variables and values (present in Table 11, Table 13 and the cited papers) were compiled 

and run in a MATLAB® symbolic subroutine that enabled the creation of large solutions 

for unknown differential equations.  
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These equations were then solved simultaneously using a function for 

simultaneous differential initial value problems and then retrieved, compiled, and 

graphed. The values were compared to other literature featuring swine traumatic injury 

study. 

 
 
 

Table 12 Code related equations. 

Meaning  Equation and Author 

Main volume 
relationship brain 

 

1 
VBlood+VCSF+VBrain 
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Table 12 Continued. 

 
 

Meaning  Equation and Author 

Volume 
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the capillary II 
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 Table 13 Main constants used for the mathematical model (111).  

Constant Regular Brain Edema  

Capillary Flow 
Jcap 1.1*10-3 11*10-3 

Capillary Conductivity 
Lcap 1.5*10-3 1.5*10-3 

Osmotic reflection coefficient 
of the tissue 

σoncoic 

1 0.93 

Osmotic reflection coefficient 
of the salt 

σsalt 

1 0 

Hydrostatic pressure plasma 
Πsalt,plasma  

5100 5100 

Hydrostatic pressure tissue 
Πsalt,oncoic 

25 25 

Osmotic reflection coefficient 
of the salt 

σsalt 

1 0 

 
 
 

4.4. CSF movement and creation 

The pressure, volume and ion dynamics of the intracranial cavity are for the most part 

modulated by the vessel’s integrity. Intracranial vessels are bounded by tight junctions 

that enforce a strictly regulated environment inside the cavity. However, the creation and 

movement of the CSF through the system is regulated through pulsations. These 

pulsations create pressure waves that can be traced to the movement of fluid in and out 

of the ventricles and into the venous system (Figure 30). 
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Figure 30 Velocity flow rate (ml/cm/s) generated by Womersley flow. 
These results show how the waveform in fact can create the inflow and 
outflow patterns that have discussed earlier and which can be 
corroborated with other studies. 

 
 
 

4.5. Volume in different compartments 

In Figure 31 we can see the behavior of a vessel when it is being pressurized. As the 

pressure increases the vessel diameter increases to a point in which the increase 

diminishes. This time-wise compliance relationship has not been used as a compliance 

input in the past. This information was coupled with the information obtained from the 

other equations in order to obtain pressure and volume values for the brain cavity. 

Flow out of ventricle 

Flow into ventricle 
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Figure 31 Pressure vs. diameter for the femoral artery generated by 
published constants. The information was in turn related to the 
compliance of vessel. 

 
 
 
The following results represent information obtained from the formulas and 

simulations described in the previous sections of this chapter. These values were 

compared to the values obtain from the authors of the formulas (2; 23; 24; 63).  

Figure 32 represents the interstitial volume change in the systemic circulation 

and its change when there is salt in the system. We can see that there is a negative 

correspondence in the two values, which correlates to the shifts in the volume in the 

compartments. This mechanism will be affected by the salt concentration in the plasma 

and similarly in the brain. 
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Figure 32 The blood interstitial compartment. The initial portions of the 
graph correspond to the infusion of the volume in the system. 

 
 
 
Figure 33 represents the plasma volume compartment and the change it 

represents as well. As we can see from the graph the fluid shift decreases due to the 

infusion of solution in the system. This happens because after the solution is diluted it 

loses potency due to the modification of the osmolarity.  
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Figure 33 The water volume shifts in the plasma create the movement 
of solutes in the other compartments. This is because this compartment 
is the only one with inputs from the system. Then the Starling 
relationship takes place and allows seepage of fluid through the system.  

 
 
 

Salt treatments affect the vasculature in ways that have been mentioned 

previously. The salt concentrations generate a larger volume change and this is how 

edema and the influx of fluid get relieved. There is a predicted response since the water 

that fluxes into the vessels does not follow regular patterns. In the case of the intracranial 

cavity, the skull restricts the volume change, and therefore unlike the systemic models 

there is a volume change that has a limit; the limit in our case is the upper bound that the 

size of the skull can enclose which varies slightly with a change of Young’s modulus as 

a result of the salt concentrations. 
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Figure 34 In this graph we can see the difference that happens when 
there is a hyperosmotic concentration in the compartments. This 
instance is considered to start after the previous case. Therefore the 
shift starts at 0.2 L. 

 
 
 

4.6. Intracranial pressure and the skull 

Intracranial pressure follows the same dynamics that are depicted in Figure 34, but the 

skull is an upper bound limit. The skull also creates additional tension in the tissues that 

cause extra damage, which can increase the pressure inside of the cavity. In Table 14 we 

can see the effect on the pressure due to the hypertonic and normal saline embedded in 

the system. In this high pressure instance, the salt effect in the skull can have a great 

impact in the overall dynamics of the system. 

 From these results it can also be hypothesized that the skull can absorb the salts 

and therefore restrict the therapy potency even further in those instances in which the 

therapy ceases to work (after several hours of treatment). Furthermore, it can be seen 

that the tension increases as the brain radius decreases (more tension towards the 
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ventricles). The morphology of the brain includes the gray matter, the white matter and 

the ventricles. 

 
 
 

Table 14 Intracranial tension results at 100 mm Hg (0.004 trimmed 
mean samples). 

Condition Tension at the white matter Tension at the gray matter 

DPBS 120 ± 90 29 ± 7

hDPBS 147 ± 84 35 ± 20
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CHAPTER V 

CONCLUSIONS AND FUTURE RECOMMENDATIONS  

 

This research investigated the impact that saline solutions have on the skull. We were 

able to successfully establish that there is a statistical difference in the Young’s modulus 

of bone that was treated when comparing to treatment with solutions of different ion 

strengths. Below is the summary of the research results. 

5.1. Main findings  

5.1.1. Bone mechanical testing 

After the onset of intracranial hypertension in TBI, patients experience inflammatory 

responses and other secondary pathways that can worsen the prognosis of the patient. 

Hypertonic saline solutions are one of the recommended treatments to relieve these 

effects. Therefore, we tested the premise that bone gets affected by the treatment of these 

solutions when compared to the control which is water. 

Testing and analyzing of the mechanical properties of bone had to follow a 

special framework. It was determined by visual inspection (microscopy) that the bone 

has porosity. Because of the porosity of the material, and because it did not behave 

following Hooke’s law, we concluded the material was a cellular solid. The material 

appear to behave like a cellular solid because of the porosity, unit structure, and theory 

(Dr. Gibson has stated that bone is a cellular solid (26)). The cellular solids theory states 

that the materials with high porosity have three prearranged regions: a liner elastic 
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region, a plateau region, and a densification region. We could see that these regions were 

present in the analysis of bone. 

The Young’s modulus analysis yielded high statistical difference when two 

solutions were compared (DI, hDPBS) in different cross head conditions (0.02, 0.004, 

0.002 (mm/s)). This test was performed to see if the solution affected the behavior when 

compared to the cross head speed, a measurement factor that is can influence the 

mechanical properties of bone. 

The factorial test described in the previous paragraph yielded a statistical 

difference of less than p=0.001 for a Ho that the means are equal. The specific pairs in 

the comparison that yielded a p-value ≤ 0.05 were the following for this test: DI 0.02 

(mm/s) vs. DI 0.002 (mm/s), DI 0.004 (mm/s) vs. DI 0.002 (mm/s), DI 0.02 (mm/s) vs. 

hDPBS 0.02 (mm/s), DI 0.02 (mm/s) vs. hDPBS 0.002 (mm/s), DI 0.02 (mm/s) vs. 

hDPBS 0.004 (mm/s), DI 0.004 (mm/s) vs. hDPBS 0.02 (mm/s) and DI 0.004 (mm/s) vs. 

hDPBS 0.002 (mm/s). This information was set up in Table 4. 

This shows that the strain rates yield statistically different results because there is 

a difference among the DI samples tested with different cross head speed, and a 

difference among DI and hDPBS samples. For the samples prepared with hDPBS, it was 

found that there was no statistical difference found among the cross head speeds tested 

when compared to each other. 

5.1.2. Modeling of solutions 

Traumatic Brain Injury is a major cause of death in the United States and the healing 

methodologies are gravely ineffective. Additionally it is very difficult to study an 
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organism as a whole involving all of the components, so mathematical modeling for this 

condition is one of the most feasible choices for its study. 

When modeling the solutions in the intracranial cavity current models were used. 

The model was based on the Guyton, Wolf, and Gyene main equations, although 

additional equations from other authors were also used (Table 10). The main additions to 

the current models were three: 1) the involvement of pulsatile flow creation; 2) the 

inclusion of continuum principles when modeling the behavior of the vessel; and 3) the 

inclusion of the bone input in the model. 

We can see that sinusoidal movement of the vascular fluid in the brain allows for 

the creation of the CSF and that the information plotted can be related to other published 

results (Figure 30). Elastic constants can be better modeled by the use of constitutive 

relationships of bio-material characteristics than by empirical relationships. Plasma 

shifts are similar in the intracranial cavity that in the overall system. 

Taking the inclusion of the bone input into the model, we find that the tension in 

the skull increases with decreasing radius, and that the salt concentration modifies the 

skull properties in a very small scale. But this minimal change can have a large impact 

when the changes in pressure are large and towards the ventricles Table 15. 
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Table 15 Intracranial tension results. 

Condition 
Tension at the white matter 

(mmHg) 
Tension at the gray matter (mmHg) 

DPBS 120 ± 90 29 ± 7

hDPBS 147 ± 84 35 ± 20

 
 
 

5.2. Recommendations for future research 

Pericardial swine xenograft heart valves have been successfully used to supplant human 

heart valves. They provide advantages over man-made materials, and part of their 

efficiency relies on the valve treatment which destroys the cells and protein present; 

therefore it does not cause adverse biological reactions. 

Bone marrow functions as a hematopoetic source; its properties are beyond the 

regulation of bone mechanics. Bone implants should consider this aspect more deeply. 

Swine bone could theoretically be used as skull replacement for excised pieces. The 

compressive strength of the human skull is 73MPa, and that of swine is 50MPa. Bone is 

also a more advantageous structure to undergo denatured treatments, and because the 

majority of the strength of bone relies on its matrix this could be a successful application 

of xenotransplant. 

In regards to the model created, the modeling of new treatments was an important 

factor taken into account when the code was created. Current treatments are very 

inadequate and there needs to be a framework that is easy to use, reliable, and that 

involves current information in which new hypotheses can be tested.  
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