
 
 

 

 

 

DEVELOPMENT OF MICRO/NANO-SCALE SENSORS FOR INVESTIGATION OF 

HEAT TRANSFER IN MULTI-PHASE FLOWS 

 

 

A Dissertation 

by 

SAE IL JEON 

 

 

Submitted to the Office of Graduate Studies of 
Texas A&M University 

in partial fulfillment of the requirements for the degree of 
 

DOCTOR OF PHILOSOPHY 
 

 

August 2011 

 

 

Major Subject: Mechanical Engineering 

  



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Development of Micro/Nano-Scale Sensors for Investigation of Heat Transfer in 

Multi-Phase Flows 

Copyright 2011 Sae Il Jeon 



 
 

 

 

DEVELOPMENT OF MICRO/NANO-SCALE SENSORS FOR INVESTIGATION OF 

HEAT TRANSFER IN MULTI-PHASE FLOWS 

 

A Dissertation 

by 

SAE IL JEON 

 

 
 

Submitted to the Office of Graduate Studies of 
Texas A&M University 

in partial fulfillment of the requirements for the degree of 
 

DOCTOR OF PHILOSOPHY 

 

Approved by: 

Chair of Committee,        Debjyoti Banerjee 
Committee Members,       Nicole S. Zacharia 

      Eric L. Petersen 
      Frederick J. Strieter 

Head of Department,       Dennis O’Neal 
 

August 2011 

 

 

Major Subject: Mechanical Engineering 



iii 
 

ABSTRACT 

 

Development of Micro/nano-scale Sensors for Investigation of Heat Transfer in 

Multi-Phase Flows. (August 2011) 

Sae Il Jeon, B.E., Korea Aerospace University; 

M.S., Seoul National University 

Chair of Advisory Committee: Dr. Debjyoti Banerjee 

 

The objective of this investigation was to develop micro/nano-scale temperature 

sensors for measuring surface temperature transients in multi-phase flows and heat 

transfer. Surface temperature fluctuations were measured on substrates exposed to phase 

change processes. Prior reports in the literature indicate that these miniature scale 

surface temperature fluctuations can result in 60-90% of the total heat flux during phase 

change heat transfer.  

In this study, DTS (Diode Temperature Sensors) were fabricated with a doping 

depth of ~100 nm on n-type silicon to measure the surface temperature transients on a 

substrate exposed to droplet impingement cooling. DTS are expected to have better 

sensor characteristics compared to TFTs (Thin Film Thermocouples), due to their small 

size and faster response (which comes at the expense of the smaller operating 

temperature range). Additional advantages of DTS include the availability of robust 

commercial micro fabrication processes (with diode and transistor node sizes currently 

in the size range of ~ 30 nm), and that only 2N wire leads can be used to interrogate a set 
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of N x N array of sensors (in contrast thermocouples require 2 N x N wire leads for N x 

N sensor array). 

The DTS array was fabricated using conventional semi-conductor processes. The 

temperature response of the TFT and DTS was also calibrated using NIST standards. 

Transient temperature response of the DTS was recorded using droplet impingement 

cooling experiments. The droplet impingement cooling experiments were performed for 

two different test fluids (acetone and ethanol). An infrared camera was used to verify the 

surface temperature of the substrate and compare these measurements with the 

temperature values recorded by individual DTS. 

PVD (Physical Vapor Deposition) was used for obtaining the catalyst coatings 

for subsequent CNT synthesis using CVD (Chemical Vapor Deposition) as well as for 

fabricating the thin film thermocouple (TFT) arrays using the “lift-off” process. Flow 

boiling experiments were conducted for three different substrates. Flow boiling 

experiments on bare silicon wafer surface were treated as the control experiment, and the 

results were compared with that of CNT (Carbon Nano-Tube) coated silicon wafer 

surfaces. Similar experiments were also performed on a pure copper surface. In addition, 

experiments were performed using compact condensers. Micro-scale patterns fabricated 

on the refrigerant side of the compact heat exchanger were observed to cause significant 

enhancement of the condensation heat transfer coefficient. 
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NOMENCLATURE 

 

Greek Symbols 

α  Thermal diffusivity of air ሾmଶ/sሿ 

β  Thermal expansion coefficient of air ሾ1/Kሿ 

υ  Kinematic viscosity of air ሾmଶ/sሿ 

υ  Forward voltage [V] 

ω  Relative uncertainty [%] 

∆ Difference 

 

Roman Symbols 

g Gravity ሾm/sଶሿ 

h Heat Transfer Coefficient ሾW/mଶ ∙ Kሿ 

I Current [A] 

k Thermal Conductivity ሾW/m ∙ Kሿ 

L Wafer Thickness [cm] 

Nu Nusselt Number 

q"  Heat Flux ሾW/mଶሿ 

R Resistance ሾmଶ ∙ K/Wሿ 

Ra Rayleigh Number 

T Temperature [°C] 

V Voltage [V] 
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x Position [m] 

x  Vector (boldface) or its component 

 

Subscripts 

2P Two Phase 

air Air 

avg Average 

c Contact 

DTS Diode Temperature Sensor 

HP Hot Plate 

NC Natural Convection 

room Room 

s Saturation 

surf Surface 

T Thermal 

w Wall 

 

Other Symbols 

∞ Bulk / Ambient 

ϵ    Error of  
∆ઽ

ઽ
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CHAPTER I  

INTRODUCTION 

 

As we enter the era of nanotechnology, a primary challenge is to cool these novel 

devices in industries which include transportation, microelectronics, solid-state lighting 

and manufacturing. Smaller chips and faster performance (microprocessor speed or 

clock frequency) in the electronic industry and optical devices with higher power ratings 

are producing devices / platforms with higher thermal loads which cannot subsist on 

conventional fin-fan cooling. Thermal loads as high as 100-1000 W/cm2 have been 

reported for various electronic chips [1] and the current methods of cooling (which 

mostly use single phase convective heat transfer air/liquid cooling) have reached their 

limits and failed to meet these high levels of cooling loads. Consequently a resurrected  

interest in multi-phase flows (boiling and condensation heat transfer) has occurred in the 

past decade due to the high fluxes that can be achieved in cooling systems that utilize 

phase change phenomena. 

A. Review of Boiling on Micro / Nano Surfaces 

Both pool and flow boiling are very effective in delivering high heat fluxes with 

a small temperature difference between the heated surface and the cooling fluid. Boiling 

is a highly non-linear phenomenon where the underlying mechanisms for transport 

_________________ 

This dissertation follows the style of Journal of Heat Transfer. 
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processes are intricately coupled. For a given working fluid, the variables affecting the 

boiling heat flux include wall superheat, nucleation site density, bubble diameter, bubble 

departure frequency, contact angle, heater orientation etc. [2]. Higher heat fluxes are 

obtained in boiling (than that of natural or forced convection) due to mass transfer 

associated with latent heat transfer, sensible heat transfer as well as periodic transient 

conduction by direct liquid-solid contact and “micro-layer” effects. While nucleating and 

departing from the surface, the bubbles absorb large amounts of thermal energy through 

phase change phenomena and also promote circulation of colder bulk fluid to the heater 

surface resulting in an increase in the overall convective heat transfer.  

A vast body of correlations has been reported in the literature for predicting the 

various experimental parameters, such as heat flux, bubble departure diameter and 

bubble departure frequency. However, the intricate nature of the non-linear coupling of 

the experimental parameters (and thermo-physical properties) as well as large variability 

in the experimental data  has created the need for development of more intricate 

metrology platforms as well as more sophisticated and comprehensive correlations that 

are based on the fundamental transport mechanisms (including at the micro/nano-scales).  

Jensen and Memmel [3] compared twelve correlations from the current literature 

for estimating bubble departure diameter and concluded that Kutateladze and Gogonin [4] 

had the best-fitting correlation with an average absolute deviation (AAD) of 45.4%. 

Thus, it is obvious that we are still in need of a comprehensive correlation for predicting 

bubble departure diameter and frequency. Besides this, recently invented techniques to 

fabricate engineered micro/nano-scale surfaces have put forth new challenges in front of 
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existing models.  Miller et al. [5] tested hexagonal dimples on a silicon chip using FC-72 

as the working fluid. Phadke et al [6] tested reentrant cavities on a vertical silicon chip 

with R-113. O’Connor et al [7] investigated sprayed aluminum particles and painted 

diamond particles on an aluminum foil and silicon chip in FC-72. Chang and You [8] 

studied painted diamond particles on a copper chip in FC-72. Honda et al [9] tested pin 

fins with submicron-scale roughness on a silicon chip in FC-72.  

Also, boiling on surfaces coated with carbon nanotubes, which possess high 

thermal conductivity and mechanical strength, has shown significant enhancement in 

boiling heat transfer coefficient and critical heat flux (CHF) along with a decrease in 

boiling incipience superheat [10-12]. Furthermore, low density (compared to metals) and 

high specific heat capacity values (similar to graphite) make carbon nanotubes (CNT) 

suitable candidates for surface texturing with the intent of enhancing heat transfer in 

multi-phase flows. Therefore, in this study various aspects of heat transfer in multi-phase 

flows have been investigated. The aim of this study is to extend the boundaries of 

scientific research by investigation of transport phenomena during phase change at 

smaller spatial scales (with a concomitant ability to gather data at higher frequencies for 

the transport processes). Hence, the scope of this study is focused on the investigation of 

coupled thermal-hydraulic transport phenomena during phase change heat transfer on 

micro/nano-structured surfaces, through the development and testing of high density – 

high speed micro/ nano-sensors, and the development of high speed digital flow 

visualization techniques. 
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In the following sections, literature studies have been performed and reported. 

The literature study has been classified into four different types of engineered surfaces, 

which include: (1) Micro-finned surfaces, (2) Micro-porous structures, (3) CNT coated 

surfaces and (4) Other nano-structured surfaces. 

(1) Micro-finned surfaces 

Micro-pin-fins were fabricated on a silicon chip by a dry etching process with the 

dimension of  50 × 50 × 60 µm3 (width × thickness × height) [9]. The effect of the 

micro-pin-fins on pool boiling with different geometries and dimensions were also 

studied by other authors [13]. Square micro-pin-finned chip with an inline array of 10, 

20, 30 and 50 µm thick (and 60 µm in height) were used in these studies. Distances 

between the fins were identical to the fin thickness [9]. O’Connor et al. [7] prepared an 

aluminum foil coated with diamond. Anderson and Mudawar [14] used a vapor-blasted 

copper chip with 0.305 mm thick and 0.506 mm high square pins. Oktay [15] tested a 

dendritic heat sink with 1 mm high brush-like structure on a silicon chip. Table 1.1 

summarizes the previous studies on boiling heat transfer enhancement using micro-fin 

structures. 

(2) Micro-porous structures 

As an alternative technique for enhancing boiling heat transfer, micro-porous 

coatings have been investigated by various researchers. The effect of micro-porous 

coating itself and the various parameters that affect boiling performance are discussed 

next. O’Connor and You [7] introduced a painting technique where 1.5 g of silver flakes 

of 3 -10 m size were used to prepare the surface of the heater. An aluminum foil 
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surface was used as the control experiment for comparison purposes. The thickness of 

the paint was under 25 m and the working fluid was FC-75. The boiling incipience was 

drastically  

 

Table 1. 1 Literature review for boiling on micro-finned surfaces. 

 

Author 
Material & 
Heater Type 

Fluid Result 

Honda et al. 
(2002) 

Silicon 
Chip 

FC-72 
Effect of micro-pin fin dimensions, and 
sub-cooling on CHF 
 

Honda and 
Wei 

(2004) 

N/A 
N/A 

N/A 
Effect of surface microstructures on 
CHF (Review paper) 
 

Miller 
(1990) 

Silicon 
Chip 

FC-72 
Effect of hexagonal dimples on 
incipient superheat and temperature 
overshoot 

Wei et al. 
(2009) 

Silicon 
Chip 

FC-72 
Effect of micro-pin finned surface, and 
with sub-cooling in flow boiling on 
CHF 

Wei and 
Honda 
(2002) 

Silicon 
Chip 

FC-72 
Effect of height and thickness of square 
micro-pin fin on CHF 
 

Wei et al. 
(2005) 

Silicon 
Chip 

FC-72 
Effect of micro-pin fins on CHF 
 
 

Guglielmini 
(1996) 

Finned Copper 
Flat 

Gladen 
Ht-55 

Effect of non-boiling waiting period, 
pressure and spine dimensions on 
boiling behavior 

 

 

reduced from ~20 - 27 °C (on the reference surface) to ~3 - 8.5 °C (on micro-porous 

coated surfaces). Furthermore, the critical heat flux (CHF) was enhanced by more than 

100% from 14.3 W/cm2 for the reference surface to 30 W/cm2 for the enhanced surface. 
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The heat flux was also enhanced significantly in the nucleate boiling regime.  The 

bubble diameter at departure was also reduced significantly on the micro-porous surface 

in the nucleate boiling regime. Larger bubbles were formed on the reference surface 

whereas tinier bubbles were observed to form on the painted surface. This is due to early 

nucleation (boiling inception) on the painted surface. The authors obtained the difference 

in bubble diameters by analytical calculations using the given pressure and superheat 

conditions for their experiment. 

Alumina particles were coated to enhance the boiling heat transfer in other 

studies [8,16,17]. Chang and You applied this surface treatment technique and 

investigated the effects of fin length on boiling characteristics focusing on the critical 

heat flux [8]. In their study, the performance of the pinned surface was compared with a 

machined surface for comparison. Rainey and You coated heater surfaces using “ABM 

method” [17]. They named the ABM coating from the initial letters of its three 

components: Aluminum particles/Devcon Brushable Ceramic epoxy/Methyl-Ethyl-

Keytone (M.E.K.). Three components were mixed and sprayed over the heater surfaces. 

In this study, aluminum particles with a size range of 1 to 20 m were used and the total 

thickness of this coating was about 50 m. The authors reported that the plain and 

roughened surfaces were placed between the micro-porous and the highly polished 

surfaces. The results from these experiments showed that the roughness of a surface was 

not the dominant parameter that affected the boiling performance in the nucleate boiling 

regime and the critical heat flux (CHF). The authors concluded that the enhancement of 

the nucleation site density due to the increased volume of entrapped gasses in the porous 
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surface resulted in enhancement in pool boiling heat transfer. The effects of micro-

porous coating on boiling heat transfer were also studied using wire shaped heaters [17, 

18]. Micro-porous coating was applied on a platinum wire using DOM method. DOM 

coating was named from the three components of the coating: (1) synthetic Diamond 

particles (8-12 m); (2) Omegabond 101 epoxy binder; and (3) Methyl-ethyl-keytone 

carrier. The effect of the micro-porous coating on a wire heater were even more 

pronounced that of the horizontal plate heaters. A significant increase in the critical heat 

flux was reported in this study. Experimental investigations for boiling heat transfer 

enhancement on a heater with micro-porous coatings were also reported by Kim et al. 

[19]. The authors summarized from their experimental results that the microporous 

coatings: (1) enhanced the active nucleation site density; (2) reduced bubble departure 

diameters; and (3) enhanced the bubble departure frequency. However, at higher heat 

fluxes, the transient conduction from the heater surface to the superheated liquid layer 

enhanced the boiling heat transfer. The enhancement of this micro convection transport 

processes delayed the onset of the critical heat flux by increasing the hydrodynamic 

stability of the vapor leaving the surface. Other reports in the literature on the micro-

porous coatings are summarized in Table 1-2. 

(3) CNT coated surfaces 

In this section, reports in the literature involving boiling on CNT coated surfaces 

are discussed [10, 12, 13, 20]. The effect of coating silicon and copper substrates with 

CNT was reported [20]. Different CNT array densities and area coverages were tested on 

1.27 × 1.27 mm2 silicon and copper samples in FC-72. The density of the light CNT 
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array is estimated to be 30 CNTs/μm2 and a dense CNT array had twice the density 

which is 60 CNTs/μm2.  ‘Grid-’ and ‘Island-‘ patterned surfaces were used to 

differentiate the area coverage using the CNT coated surfaces. The dense array shows a 

noticeable decrease in  

 

Table 1. 2 Literature review of micro-porous surfaces (Note: NB denotes nucleate boiling and SH denotes 
superheat.) 

 

Author 
Material & 
Heater Type 

Fluid Result 

You et al. 
(1990) 

Si, SiO2Al2O3 

Cylinder 
FC-72 
R-113 

Effect of liquids on the wall SH at the 
incipience and surface materials on the 
surface energy. 

O’Connor 
and You 
(1995) 

Alumina, Diamond 
Rect.Flat plate 

FC-72 
85 % reduction in incipient SH 
70 % to 80 % decrease in NB SH 
100% increase in critical heat flux 

Chang and You 
(1997-a) 

Diamond 
Square Flat Plate 

FC-72 

Classifying ‘micro-porous’ and ‘porous’ 
coating. The most enhanced CHF in the 
largest particle size. The smallest 
incipient SH at the smallest particle 
coating. 

Chang and You 
(1997-b) 

ABM, CBM 
Square Flat Plate 

FC-72 

80 - 90 % reduction of incipience SH 
30 % enhancement of the NB heat 
transfer coefficient. Comparing two 
different coating methods. 

Rainey and You 
(2000) 

ABM 
Pin Finned Plate 

FC-72 

Comparing micro-porous surfaces and 
roughened surfaces. Effect of fin length 
on boiling heat transfer characteristics. 
More than 100 % enhanced heat transfer 
coefficient by micro-porous coating on 
the finned surfaces. 

Rainey and You 
(2001) 

DOM 
Square Plate 

FC-72 

Effect of heater inclination on the CHF 
and nucleate boiling (Decreased CHF as 
increased inclination of heater). Heater 
size effect (No significant effect on both 
CHF and nucleate boiling region). 

Kim et al. 
(2002) 

DOM 
Wire 

FC-72 

Confirmation of the similar effect of 
micro-porous coating. 130% 
enhancement in CHF and 600% 
enhancement in NB region. 



9 
 

the boiling incipience superheat as well as a shift of the entire nucleate boiling region 

towards lower wall superheats (to the left in the boiling curve) [21]. Thome reported that 

nucleate boiling heat transfer can be enhanced by increasing nucleation site density (per 

unit area) [22]. However, the CHF value for the light array revealed boiling superior 

performance compared to that of the dense array. The general perception in the boiling 

literature is that CHF enhancement is commonly achieved by increasing boiling surface 

area using various kinds of fin shapes and sizes [20]. However, it appears that the dense 

array provides less accessible surface area compared to the lightly packed array. This 

may partially explain the inferior CHF value on the densely packed CNT coated surface. 

A study from Reed and Mudawar [23] showed that the CNT mesh provides reservoir-

type cavities that are ripe for nucleation with minimal superheat. Also, the high thermal 

conductivity of CNTs is believed to aid the boiling process augmentation by the 

enhanced surface area, thus facilitating the reduction of resistance to conduction heat 

transfer [24-26]. In addition, the grid patterned CNT coated surface did not show heat 

transfer enhancement compared to the lightly coated CNT surface. Hence, the authors 

concluded that the macro-scale attempts to manipulate the CNT area coverage and 

layout are ineffective in enhancing CHF.  

Another study on CNT coated surfaces was reported by Ahn et al. [10]. In this 

study the height of the CNT coating on the substrate was controlled.  Two types of CNT 

coated surfaces were introduced, which where Type-A (for a CNT height of 9 m) and 

Type-B (for a CNT height of 25 m), where the CNT diameter ranged from 8-16 nm 

(i.e., these were multi-walled CNT). The working fluid for this study was PF-5060 
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(which is a dielectric refrigerant, and is a commercial version of FC-72). The 

experiments were conducted in the nucleate boiling regime as well as in the film boiling 

regime. Boiling heat transfer enhancement was observed in nucleate boiling regime, 

which is consistent with the result from Ujereh et al. (2007) [20]. The height of the CNT 

did not seem to play a key role in the nucleate boiling regime. In contrast, the film 

boiling regime was strongly sensitive to the height of the CNT. The dynamic values of 

the minimum vapor film thickness in film boiling of PF-5060 were predicted to be less 

than 15 m [27, 28]. As a result, if the surface micro/nano-structures are engineered to a 

height exceeding 15 μm, they can disrupt the vapor film leading to a possible collapse of 

the film boiling into a hybrid boiling phenomena representative of transition boiling (i.e., 

a significant part of the boiling surface is in the nucleate boiling regime). Thus, Type-B 

(with a CNT height of 25 μm) can augment the boiling heat transfer compared to that of 

the bare silicon wafer. The boiling heat flux for Type-A in film boiling was identical to 

that of bare silicon surfaces. Figure 1-1 schematically demonstrates the different 

disruption behavior of two different samples. 
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Figure 1. 1 Schematic of the heat transfer mechanism for carbon nanotubes in film boiling: (a) Type-A (9 µm 
thickness), and (b) Type-B (25 µm thickness) MWCNT [29] 

 

    

 (4) Other nano-structured surfaces   

Several studies have been performed for boiling performance on inorganic nano-

coatings on heater surfaces (or for engineered nano-structures on heater surfaces). 

Sriraman reported boiling characteristics on silicon (Si) pin finned surfaces where the 

diameter of the silicon pins was ~ 200 nm and the height of the fins was varied from 10 -

600 nm [30]. The nano-finned surfaces exhibited higher heat fluxes as well as CHF in 

the nucleate boiling regime compared to the bare silicon surfaces. The CHF was 
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enhanced by 120% (in contrast, the CHF was enhanced by ~60% for pool boiling on 

CNT coated heaters). This demonstrated that the interfacial thermal resistance (Kapitza 

resistance) was the dominant parameter in controlling the level of CHF. The Kapitza 

resistance for silicon is predicted to be 1000 times smaller than that of CNT. 

Chen et al. also performed pool boiling experiments on nano-finned surfaces 

using randomly oriented Si-nanowires and Cu-nanowire coatings and using deionized 

water as the working fluid [31]. Small sized heaters were used in this study where the 

edge effects are likely to have modified the true values of the boiling heat flux resulting 

in apparent enhancement of the results. In the study performed by Sriraman [30] a “large 

heater” was used (Heater Size: 5.8738 cm × 3.175 cm). However, Chen et al. [31] used 

“small heater” (heater size: 1cm × 1cm). In the “small heater” regime, as the heater size 

decreases the boiling heat flux increases, for all other parameters remaining constant. 

Hence the observed boiling heat flux enhancements  reported by Chen et al. [31] needs 

to be qualified for the heater size, when comparisons are made with other reports in the 

literature. Similar arguments are also valid for other studies reported in the literature for 

nanostructured surfaces (e.g., [10, 12, 13, 20, 23, 24, 26]).  

The Taylor instability wavelength (	்ߣ) and length of scale in boiling(݈଴) are [32, 

33]: 

     

்ߣ	                       ൌ ߨ2 ൤ ఙ

௚൫ఘ೑ିఘ೒൯
൨

భ
మ
                                                  (1.1) 
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                           ݈଴ ൌ ට
ఙ

௚൫ఘ೑ିఘ೒൯
                                                      (1.2) 

 

where ்ߣ  and  ݈଴  are the Taylor instability wavelength and length of scale in boiling, 

respectively. The length of scale in boiling is estimated to be 2.5 mm and 0.8 mm for 

saturated water and PF-5060 at one atmosphere, respectively.  

The most dangerous wavelength (ߣ஽) is approximately ten times larger than the 

length scale (݈଴) in boiling, and is expressed as: 

 

஽ߣ                                           ൌ 3√்ߣ	 ൌ ݈଴	ሺ2	ߨ		3√	ሻ                                     (1.3) 

 

Hence, the most dangerous wavelength in pool boiling has a magnitude of 2.5 cm 

and 0.8 cm, for saturated water and PF-5060, respectively. The heater size needs to be at 

the minimum ~5-10 times the size of the most dangerous wavelength to be classified as a 

“large heater”. If the heater size is below this limit – it is qualified as a “small heater”. 

Hence, from this discussion it is apparent that the experiments reported by Chen et al. 

[31] were for the “small heater” regime and therefore the heat flux values reported are 

not representative of the true boiling heat flux values.  

Hence, in this study, the sub-cooled flow boiling experiments were conducted for 

“large heater” substrates consisting of Copper, Silicon and Multi Walled Carbon 

Nanotube (MWCNT) coated Silicon surfaces. The experiments were conducted in a 

horizontal rectangular channel and water was used as the working fluid in these studies.   
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B. Review of Condensation on Micro / Nano Surfaces 

Microchannels are widely used in industry due to its advantage of yielding 

compact packaging for heat transfer applications. Abundant literature [34-37] exists on 

single-phase flow, pressure drop and heat transfer in microchannels. Various reports in 

the literature discuss in boiling and evaporation phenomena such as pool boiling and 

flow boiling in microchannels, for the heat removal at high heat fluxes in different 

applications. However, limited research has been conducted on the measurement of 

pressure drop and heat transfer coefficient during condensation in microchannel 

geometries especially in the sub-millimeter range of hydraulic diameters. The rejection 

of the large heat fluxes using compact condensers has not been addressed adequately in 

the literature. The research challenge in micro scale condensation is that two phase flow 

and flow regime transitions in these tiny channels are different from the conventional 

larger scale channels. The relative magnitude of gravity, surface tension effects, and 

shear which determine the flow regime at a given liquid and vapor phase are different in 

micro scale compared with the macro-scale. Coleman and Garimella experimentally 

demonstrated and interpreted these differences in flow mechanisms and transitions for 

air-water flows [38] as well as for the condensation of refrigerants [39-42]. In addition, 

they developed a model for condensation pressure drop in annular flow [43] and further 

extended it to a comprehensive multiregime pressure drop model [44] for circular 

microchannels.  

The present work investigates the heat transfer enhancement with different 

surface treatment for a compact condenser. The design includes novel microchannel 
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geometries to efficiently transfer heat from condensing R-134a to liquid water in a 

counter flow configuration. Low thermal resistances from both the refrigerant and water 

sides were needed to achieve high values of overall heat transfer coefficient. 

Two unique microchannel enhancement geometries were tested using R-134a 

and water in a counter flow condensing test section. A flatchannel baseline design with 

the cross section of 200 μm height and 8.2 mm width was used for the control 

experiments.The results from the control experiments were compared to that of the 

micropost microchannel configuration which had the same cross sectional dimensions as 

the flat channel configuration but had in addition 2500 microfins micromachined onto 

the substrate. Each channel design was tested with identical inlet conditions. The 

micropost geometry microchannel showed better performance for heat transfer. 

C. Review of Micro / Nano Sensors 

Cooling technologies for high heat flux devices are required for the next 

generation of cutting edge platforms ranging from energy harvesting applications to 

applications in electronics chip cooling. Other applications include: fuel cells, high 

performance compact heat exchangers, chemical synthesis/ refining processes, batteries 

used for EV(electric vehicles) and biomedical devices. Such applications also rely on 

precise measurement and control of operating temperatures using sensors that need to be 

fabricated in-situ. However, current commercial sensors may not meet these 

requirements and technical specifications, due to the constraints arising from the 

challenges of interfacing with these devices of interest and due to the limitations 
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imposed on the size and speed of operation arising from the conventional fabrication 

techniques used for manufacturing these sensors [45]. 

In order to overcome these challenges, various approaches have been proposed 

for developing integrated temperature, pressure and flow sensors [46-48]. For 

commercial applications - thermocouples have been of interest for their wide range of 

operating temperatures, durability in harsh conditions as well as ease of use (e.g., 

standardized calibration procedures and sensor responses). However, conventional wire 

bead thermocouples are expected to affect boiling and condensation studies by acting as 

nucleating spots which will in turn affect the local heat flux and the transient response of 

the surface temperature transients. Hence the geometry and size of the temperature 

sensors need to be altered to have minimal impact on the transport processes during 

investigation of the local values of heat flux and temperature transients.  

In order to compensate for these disadvantages, many investigators have 

developed various thermal sensors such as micro-RTD (resistance temperature detector) 

sensors [26, 49-51]. Nguyen and Kiehnscherf [52] and Rasmussen et al [53] used RTD 

sensors for measuring temperature difference between the upstream and downstream 

locations in microfluidics devices.  

A micro/nano-scale temperature sensor with a simpler fabrication method and a 

simpler calibration process was developed to overcome the drawbacks of the sensors 

mentioned previously. Sunder and Banerjee [54] developed thin-film thermocouples 

(TFT) and employed for surface temperature measurements with high spatial and 

temporal resolution.  
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In this study the TFT (Thin film thermocouples) were fabricated using Alumel 

and Chromel alloys to form a K-type junction at the point of interest. The TFT were 

fabricated by using Physical Vapor Deposition (PVD) for deposition of the alloys. Lift-

off process was used in conjunction with photolithography techniques to pattern the 

metal traces on the silicon substrates. The thickness of the TFT was 250 nm for each 

material resulting in 500 nm at the junction of the two materials (Chromel and Alumel) 

An adhesion layer (either Cr or Ti) was used before deposition of Chromel or Alumel.  

In addition, the feasibility of using Diode Temperature Sensors (DTS) for 

measuring surface temperature transients in multiphase flows was demonstrated using 

droplet impingement cooling experiments. An array of DTS was fabricated using 

standard semi-conductor processes. Kersjes et al [50] and Van der Wiel et al [51] 

developed micro-thermal flow sensors that employed diode temperature sensors for 

detecting a temperature difference between the upstream and downstream flows. The 

DTS array used in this study consisted of 100 temperature sensors in an area of 1.87 mm 

× 1.87 mm on a silicon wafer. The DTS provides two primary advantages compared 

with other nano-sensors mentioned previously. The first advantage is that the packaging 

requirements are reduced dramatically. An array of N*N sensors can be addressed by 

only 2*N wires. This simplifies the effort for packaging the temperature nano-sensors 

dramatically. The second advantage is that the sensors are located flush under the 

surface which does not perturb of the hydrodynamic and thermal transport processes on 

the surface exposed to phase change heat transfer phenomena. In this study, flow boiling 
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experiments were also conducted for CNT coated surfaces with deionized water (“DI 

Water” or “DIW”) as the working fluid. 

The aim of this study is to develop the instrumentation for miniaturized 

temperature measurements and the associated experimental capabilities for exploring the 

role of various micro/nano-scale transport mechanisms in multi-phase flows and heat 

transfer. The effect of the micro/nano-scale coating on a surface for enhancing flow 

boiling heat transfer enhancement was also explored. A flow boiling apparatus and 

droplet impingement cooling apparatus were developed and used in this study.  

D. Review of Droplet Cooling 

Both experimental and theoretical studies have been reported for droplet 

impingement cooling. Understanding the physics of impingement dynamics as well as 

developing the models for predicting the behavior of the evaporating droplet has been of 

interest in predicting the cooling (phase change) heat flux values. Some of the studies are 

focused on the parameters such as spreading diameter, dynamic contact angle and crown 

evolution [55-58] while others have focused on the surface conditions [59, 60] such as 

surface roughness and surface temperatures. 

Droplet to surface interactions during the impact and during the boiling / 

evaporation process is crucial to understanding the transport processes. Fingering and 

splashing can take place under certain conditions that make the behavior difficult to 

predict. Various studies on fingering and instability propagation have been reported in 

the literature [61, 62].  Also, correlations developed in terms of Reynolds and Weber 

numbers have been reported [63, 64]. Dynamic contact angle is often used as a defining 
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parameter in investigation of the impinging process. Chandra et al. [65] documented that 

the enhancement of heat transfer occurred with increased wetting of a surface. Several 

studies were reported for predicting the dynamic contact angle as a function of contact 

line velocity [66], wetting theory model [67] and the molecular-kinetic theory of wetting 

model [68]. In addition, maximum spreading diameter is an important parameter that is 

based on surface energy analysis of the droplet before the impact at maximum spreading 

speed [69-71]. 

Droplet impingement on a heated surface is a fundamental topic for investigation 

of spray cooling. Typically three stages are identified during the evaporation process for 

a single droplet impingement. Stage 1 refers to when the droplet impacts the surface 

until flow oscillations subside. Stage 2 refers to when the droplet evaporates mostly with 

a decrease in the dynamic contact angle. Stage 3 refers to the flow phenomena when the 

contact angle remains invariant after the droplet has reached a critical size. 

Many studies have focused on experiments involving single droplet impact, in 

order to obtain a better handle on the droplet impact dynamics [68, 69] because the 

single droplet behavior can be representative of the spray cooling phenomena. This is 

also of considerable interest in designing platforms for electronics cooling as well as for 

enumerating the performance of fuel spray injectors in high performance internal 

combustion engines.  

From reports in the literature, four regimes were identified for spray cooling heat 

transfer - that are similar to that of the pool boiling phenomena that is often described 

based on the surface temperature (or wall superheat). (1) Single phase film evaporation 
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occurs when the heat transfer is driven by conduction and convection without phase 

change. (2) As the temperature increases to the critical heat flux (CHF) condition - 

multiphase phenomena plays a major role in defining the overall magnitude of the heat 

transfer. (3) This is followed by the transition boiling regime where a vapor layer is 

formed at the liquid-solid interface, thus reducing the heat transfer while the temperature 

increases rapidly to reach the Leidenfrost temperature. (4) Finally, in the film boiling 

region the vapor layer becomes stable – thus causing conduction and radiation to be the 

dominant mechanisms for the overall heat transfer. 

In this study the droplet impingement cooling experiments were performed using 

single droplet impingement configuration. The transient measurement of the surface 

temperature fluctuations were performed using temperature nano-sensors (DTS) for 

experiments involving impinging droplets.  

E. Significance of the Current Study 

The research results are expected to make contributions to the field of heat 

transfer metrology (and associated instrumentation capabilites) using integrated nano-

scale devices/ sensors and to the field of heat transfer enhancement using micro/nano-

scale surface texturing (by involving engineered surfaces and nano-caoted surfaces).  

This study will contribute to existing heat transfer literature in multiphase flows, 

particularly for flow boiling and droplet impingement cooling. The fabrication 

techniques, experimental apparatus/ procedure and results in this study are expected to 

make contributions to the heat transfer research in the following ways: 
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1. Make contributions to nano-fabrication techniques, testing methods and 

development of novel infrastructure for heat transfer research. 

2. Design, fabricate and test nano-scale devices (temperature nano-sensors and 

nano-coatings) for heat transfer research involving multiphase flows. This 

study will prove the feasibility of employing these nano-scale devices for 

heat transfer research involving multiphase flows. 

3. Assess the impact of various parameters (wall superheat, liquid subcooling, 

flow rates, surface conditions, heat flux) on the dynamics of flow boiling and 

droplet impingement cooling.  

4. Develop compact condensers using plain and micro-scale structures 

machined inside microchannels for enhancing condensation heat transfer.  

5. Assess the impact of various parameters (wall superheat, liquid subcooling, 

flow rates, surface conditions, heat flux) on the dynamics of condensation 

heat transfer. 

6. Nano-sensors will be employed in these experiments to obtain experimental 

data for surface temperature transients during phase change and to analyze 

the spatio-temporal variation of surface temperature distribution. 
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CHAPTER II 

EXPERIMENTAL SETUP AND PROCEDURE 
 

A. Flow Boiling 

a. Introduction 

Better cooling technologies are required for development of the next generation of 

devices and platforms in various industries which include transportation, 

microelectronics, opto-electronics (e.g., lasers), communications, and advanced 

manufacturing (e.g., laser cutting). The smaller footprints and faster clock speeds in 

micro-chips in the electronic industry as well as the brighter and more efficient optical 

devices have enhanced the cooling loads for these platforms. These cooling loads are 

exceeding the capabilities of the fan-cooling platforms typically used for such systems. 

Thermal (cooling) loads as high as ~102-103 W/cm2 have been reported for the next 

generation of electronic chips and devices under development. The current methods of 

cooling which mostly use single phase convective heat transfer (such as air or liquid 

cooling) have reached their fundamental limits and have failed to meet the required 

cooling loads. Phase change heat transfer (such as pool and flow boiling, condensation, 

ablation, etc.) is considered to be an attractive option for application in these future 

generations of cooling systems.        

Both pool and flow boiling is very effective in achieving a high heat flux with a 

small temperature difference between the heated surface and the cooling fluid. Luttich et 

al. [72] indirectly measured the local temperature fluctuations during pool boiling on 
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horizontal heaters and predicted the maximum heat flux to be over 6 MW/m2 (~104 

W/cm2). These predictions were based on near surface optical measurements of 

temperature fluctuations and inverse conduction methods [72]. Flow boiling delivers 

higher levels of heat fluxes compared to pool boiling since the total heat flux is then a 

sum of phase change heat flux and forced convection heat flux. Hence, cooling platforms 

utilizing flow boiling designs provide compact components that have smaller space (or 

volume) footprints compared to passive air-cooling or fan-cooling platforms. However, 

the work input (e.g., power input for the motors and pumps) for these cooling platforms 

utilizing phase change heat transfer are usually higher than for fan cooling. 

Boiling is a highly non-linear phenomenon where the underlying mechanisms for 

transport processes are intricately coupled. For a given working fluid, the variables 

affecting the boiling heat flux include wall superheat, nucleation site density, bubble 

diameter, bubble departure frequency, contact angle, heater orientation etc. [2]. Higher 

heat fluxes obtained in boiling than natural or forced convection involve mass transfer 

associated with latent heat transfer, sensible heat transfer as well as periodic transient 

conduction by direct liquid-solid contact and “micro-layer” effects. During bubble 

nucleation, growth and departure cycles, higher magnitudes and rates of thermal energy 

are absorbed and transported in the phase change processes. In each cycles, and for each 

bubble departure and re-flooding of the heater surface with colder fluid - higher amounts 

of transient heat fluxes also occur (compared to air-cooling). These cyclical variations in 

induced or forced convective heat flux (in single phase) as well as the phase change heat 

flux, results in the enhancement of the total heat flux.  
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Numerous studies can be found in the existing literature that are focused on 

predicting the correlations for bubble departure diameter and frequency as well as the 

associated heat fluxes as a function of flow rate, wall superheat and liquid subcooling. 

These studies provide space and time averaged information – thus losing out on the 

intricacies of the transport mechanisms associated with the spatial and temporal 

fluctuations that are manifested by these transport processes. Also these correlations are 

only valid within the limitations of the geometry, configurations and experimental 

parameters used in each study and are not universally applicable. This limits the 

repatability of these experiments to very narrow range of conditions. Jensen and 

Memmel [3] compared twelve correlations from current literature for estimating bubble 

departure diameter and concluded that Kutateladze and Gogonin [4] had the best-fitting 

correlation with an average absolute deviation (AAD) of 45.4%. Thus, it is obvious that 

there is a need for a comprehensive correlation for predicting bubble departure diameter 

and frequency in flow boiling. Besides, recently invented techniques (such as using 

microfabricated and engineered surfaces with micro/ nano-scale textures and particle-

coatings) have set new challenges for the applicability of the existing models which are 

often based on continuum assumptions. However, the flow regimes within these nano-

textured surfaces are often in the non-continuum regime. Hence, new experimental 

techniques need to be developed to explore the transport phenomena on these novel 

surfaces and coatings that are considered attractive for enhancing heat transfer in mutli-

phase flows. In association with the new experimental techniques new theoretical and 

fundamental frameworks also need to be developed that can provide new models and 
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correlations to account for the non-continuum flow regimes on the heater surface as well 

as the spatio-temporal fluctuations that are responsible for the bulk of the total heat flux. 

One such invention is to coat a heater surface with multi-walled carbon nanotubes 

(MWCNTs). Boiling heat fluxes measured on surfaces coated with MWCNT were found 

to be enhanced by ~30-300% (depending on the boiling regime – such as boiling 

incipience, fully developed boiling and critical heat flux or “CHF”) compared to that on 

bare uncoated surfaces. A decrease in boiling incipience superheat was also observed in 

these experiments [10-12]. MWCNT are reported to possess high thermal conductivity 

and mechanical strength. Furthermore, low density (compared to metals) and high 

specific heat similar to graphite make MWCNT attractive materials for surface texturing 

(and nano-coatings).  

Visualization studies for pool boiling heat transfer were reported by Luke and Cheng 

[73], Diao et al. [74-76], Williamson [77] and Jo et al. [78]. Khanikar [79] reported flow 

boiling experiments on CNT coated copper micro channels. Most of these studies used 

high speed camera to visualize flow configuration but they did not characterize the 

variations in bubble departure diameter and frequency with change in the experimental 

parameters (such as wall superheat, flow rates, liquid subcooling, etc.).  

 In this study, by using high speed photographic techniques, bubble characteristics 

(bubble departure height with time) were measured for sub-cooled flow boiling of water 

over MWCNT coated Silicon surfaces in a horizontal rectangular channel with a 

designated region heated electrically. Measurement sensors used previously is the TFT 

(Thin Film Thermocouple) that was fabricated using photolithography and metal 
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evaporation processes. The details of the experiment setup and experimental procedure 

are described in this chapter. 

b. Test Surface Preparation & Description of Working Fluid 

The test substrates were prepared starting from a 3” diameter silicon wafer. All 

the substrates were purchased and diced to the dimension shown as below in Figure 2.1. 

 
 
 

 

Figure 2. 1 Geometry of the heater (test) surface. All dimensions in inches. 

 
 
 

The test substrates were diced to obtain the dimensions shown in Figure 2.1.  These 

dimensions were chosen to be consistent with the dimensions of the copper heating 

block (which is described in the next section). The dicing operations were performed 
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using a dicing saw located in the MCF (Material Characterization Facility) at Texas 

A&M University.  

CNT synthesis can be performed using a variety of techniques which include: Arc 

discharge, Laser ablation, CVD (Chemical vapor deposition), and Super-growth CVD. 

Arc discharge method is a classical way of synthesizing the CNT since this method was 

the pioneering technique for discovery of CNT. Carbon soot of graphite electrodes 

during arc discharge produced nanotubes at a current of 100 amps that were intended to 

produce fullerenes. Arc discharge method yields a high-quality mixture of MWCNT and 

SWCNT (Single Walled CNT) which are usually 1 ~ 30 nm in diameter and 10 microns 

in length.  Laser ablation method uses a pulsed laser that vaporizes a graphite target in a 

high-temperature reactor while an inert gas is bled into the chamber. The nanotubes are 

condensed on the cooler surface and collected. This method primarily yields SWCNT 

and the diameter of the nanotubes can be controlled by controlling the reaction rates. 

However, this method is more expensive than the arc discharge or the CVD method. 

 In the CVD method a substrate is coated with a layer of a catalyst material, such as 

Fe, Ni, Co, Pt, Pd, etc. The substrate coated with the catalyst material is typically heated 

to approximately 700°C. A process gas and a carbon-containing gas are blown into the 

chamber for the CVD reaction. The direction of the nanotube growth can be controlled 

by imposing an electric field in the vicinity of the substrate surface. The size of the 

synthesized nanotubes depends on the size of the catalyst layer or the catalyst 

nanoparticles. CVD is an attractive method for commercial synthesis of CNT coatings 
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because of the cost-effectiveness and that the synthesis process is amenable for direct 

synthesis of CNT on the desired substrates.  

The super-growth CVD is a water-assisted chemical vapor deposition process where 

the activity and the lifetime of the catalyst are enhanced by introduction of water vapor 

into the CVD reactor. The temporal growth of CNT., i.e., height of CNT, H, as a 

function of time, t,  in the CVD process can be expressed as (K. Hata et al. (2005)): 

 

                                                      0
0 1

t

H t e 
   

 
                                                      (2.1) 

 

  is the initial growth rate and 0  is the characteristic catalyst lifetime. 

In this study, a tube furnace (Manufacturer: Blue-M) as shown in Figure 2.2 was 

used for performing the CVD synthesis of MWCNT coating on silicon substrates. 

Acetylene and nitrogen were used as process gases. The temperature of the furnace 

typically ranged from 750°C ~ 800°C during the synthesis step. MWCNT synthesis 

using CVD suffers from large amount of crystal lattice defects but it enables rapid 

synthesis of long and aligned nanotubes. The lattice defects can affect the electrical 

properties of the MWCNT while the thermal and mechanical properties are not as 

strongly sensitive to the lattice defects. Hence, for boiling experiments using MWCNT 

coatings – the CVD synthesis provides a quick and economical method for realizing 

these nano-coatings. 
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Figure 2. 2 Blue-M CVD furnace used for MWCNT coating of various substrates. 

 
 
 

c. Description of Experimental Apparatus 

The experimental setup that was used in this study for measuring flow boiling heat 

flux consists of a flow boiling test section integrated with a calorimeter platform and 

pumping and metrology devices. The dimensions of the copper block are shown in 

Figure 2.3. The dimensions were designed to fit flush with the bottom surface of the 

flow boiling test section. The dimensions of the top surface of the copper block were 

designed to accommodate the diced 3” diameter silicon wafers (as depicted in Figure 2. 

1). The silicon wafers were diced to this size so that they could be placed inside the 

CVD tube furnace (which had a diameter of 2.5 inches). Eight cartridge heaters were 

embedded into the copper block to serve as the heat sources. A DC power supply from 

AMREL was used to supply electrical power to the heaters. The power supply was 
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programmed to supply a fixed current and voltage. Figure 2.3 shows the schematic of the 

copper block and the experimental setup. 

 
 
 

 

Figure 2. 3 Schematic of the copper block geometry with embedded cartridge heaters and thermocouples for 
heat flux measurements. All dimensions in mm. 
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Figure 2. 4 Schematic view of the experiment setup. 
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Figure 2.4 shows the overall setup of the flow boiling experiment. The flow 

boiling test section is comprised of the rectangular flow chamber where the copper block 

heater is mounted flush with the bottom surface of the test section. A water tank with an 

immersion heater is used to preheat the water (for degassing as well as to supply the 

water at a fixed subcooling to the inlet of the test section). A centrifugal pump is used to 

pump the water into the test section. Flow rate meters and differential pressure sensors 

are used to monitor the flow rates and pressure drops in the test section. A high speed 

camera is used for high speed digital image acquisition for the bubble growth rates and 

departure. A high speed data acquisition system (National Instruments) is used to record 

the temperature data from the temperature nano-sensors as well as the embedded 

thermocouples in the calorimeter apparatus as well as in the inlet and outlet of the test 

section.  

 Flow Boiling Test Section  

The flow boiling test section was fabricated using 1 inch thick high grade aluminum 

plates. The two side walls were machined to enable the location of a transparent window 

(using plexiglass windows). This provided optical access for viewing the boiling surface 

(top surface of the copper block that was mounted flush with the bottom surface of the 

test section). Two different side walls were fabricated with two different window sizes. 

The walls of the test section were assembled by fastening to the bottom plate and using 

o-rings that were installed in machined grooves for achieving leak proof sealing. A 

stainless steel plate was press fitted onto a circular aluminum plate in a hot chamber (the 

copper block was inserted into the aluminum plate and mounted flush using o-rings). 
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Stainless steel was chosen for its lower thermal conductivity than aluminum. A vent hole 

with a valve was fabricated on the top cover to eliminate the gas (air) during degassing 

operation at the start of the experiment. The top cover also had a viewing window for 

image acquisition as well for using a halogen lamp to illuminate the boiling surface. 

Circular pipes were welded to provide the inlet and outlet to the test section. The copper 

block was heated using 750 W cartridge heaters made from Omega. Total of 8 cartridge 

heaters were embedded into the copper block to provide a total of 6 KW thermal power 

input to the test section. The power to the cartridge heaters were controlled using a DC 

power supply (manufacturer: AMREL, Ratings: 6.6 KW 125 Volts – 53 Amperes). In 

order to record the temperature at different locations of the copper block, 17 holes each 

of 1.5 mm diameter were drilled into the copper block and sheathed K-type 

thermocouples were inserted into these holes, as shown in Figure 2.3. The K-type 

thermocouples (Chromel-Alumel thermocouples) are rated for temperature 

measurements up to 700 °C. Five of these thermocouples were used to monitor the 

temperature at the center core of the copper block. These thermocouples were separated 

by a distance of 5, 10.5 and 16 cm from the top of the copper block (as shown in Figure 

2. 3). The copper block was mounted with a 1mm clearance from base plate to enable 

the silicon wafer (mounted on the copper block) to be flush with the inside surface of the 

base plate. The thermocouples were connected to a high speed data acquisition system 

(Manufacturer: National Instruments). 
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 Water Tank  

A horizontal leg type tank (Manufacturer: Norwesco) was used to store the deionized 

(DI) water that were used in the flow boiling experiments. The water tank has a diameter 

of 0.58 m, is 0.66 m in height, and is 1.09 m long with the maximum volume capacity of 

246 L and is made of polyethylene.  

A hole was machined at the bottom of the water tank and an adapter (Model: 

1MKH9, connecting to a 2 ¼” diameter pipe, Material: polypropylene, Temperature 

Rating: -20 to 150 °F, Connection Type: FNPT.) was used to connect the water tank to 

the centrifugal pump. This adapter was selected since it had a threaded end on one side 

that can be used for connecting to a standard sized pipe whereas the other side of the 

adapter had a vortex breaker that enabled uniform supply of water to the centrifugal 

pump to minimize flow oscillations to the test section.  

An immersion heater (Manufacturer: TEMPCO) was also installed in the water tank 

to preheat the water and for degassing the water at the beginning of the experiment. This 

enabled the supply of water to the test section at a fixed value of liquid subcooling. The 

immersion heater was designed to preheat the water to a maximum temperature of 

200 °F (~ 90 °C).   

 Centrifugal Pump and Piping Installation 

A centrifugal pump (Manufacturer: Goulds Pumps Inc.; Model: G&L Series NPO) 

was used for pumping water from the storage tank to the flow boiling test section. The 

pump has a variable port positioning anatomy so that the outlet direction in the 

circumferential position of the impeller can be positioned according to the user’s needs. 
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Table 2. 1 provides the parts list for the pump (this was obtained from the 

manufacturer’s website). After the main test section, a water filter and a turbine type 

flow meter were installed.  

 Data Acquisition System 

A data acquisition system (Manufacturer: National Instruments) consisting of a 

thermocouple amplifier, a signal conditioning module, isothermal terminal block and an 

M-series multifunction DAQ device that can record data at 5 KHz was used in this study. 

The data collection and DAQ interfacing was performed by using LABVIEW® software 

(Manufacturer: National Instruments).  

 High Speed Imaging System 

A Fastec Imaging Corp. Troubleshooter high-speed video camera with an 

INFINITY Model KC 991260 lens (focus from infinity to 985 mm), an INFINITY IF-3 

91107 objective (1.71x to 2.13x, 100 mm to 86 mm working distance), and a Lowel P2-

10 Prolight tungsten halogen lamp were used for high speed digital image acquisition. 

This image acquisition apparatus was used for video capture of the bubble nucleation, 

growth and departure from the test surfaces that were mounted on the copper block 

(calorimeter apparatus). 
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Table 2. 1 List of components for the centrifugal pump. 

 

Item No. Description Materials 

100 Casing AISI 304 SS 

101 Impeller AISI 316L SS 

108 Motor adapter AISI 316L SS 

108A Motor adapter seal vent / flush AISI 316L SS 

123 Deflector BUNA-N 

184 Seal Housing AISI 316L SS 

184A Seal housing seal vent / flush AISI 316L SS 

240 Motor support STEEL 

304 Impeller locknut AISI 304 SS 

349 Seal ring, guidevane VITON 

370 Socket head screws, casing AISI 410 SS 

371 Bolts, motor PLATED STEEL 

283 Mechanical seal  

408 Drain and vent plug AISI 316L SS 

412B O-ring, drain and vent plug VITON 

513 O-ring, casing VITON 

Motor NEMA standard, 56J flange  

 Beating frame, greased for life IRON 
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d. Experimental Procedure 

The experimental procedure consists of the preparation step for the flow boiling 

test section (including degassing of the DI water test liquid), setting up the data 

acquisition and high-speed image acquisition. 

 Preparation Step for Flow Boiling Test Section  

The top surface of the copper block is cleaned prior to mounting the test surface 

(coated or uncoated silicon wafer) on the top surface of the copper block. Thermal paste 

(Manufacturer: Omega, Figure 2.6) is applied between the copper block and the silicon 

wafer. A uniform force of 50 N is applied on the silicon wafer for an hour under ambient 

room temperature conditions to eliminate the trapped air gaps in the thermal paste. A 

mixture of Teflon and silicone paste is applied around the perimeter of the copper block 

surface that is mated to the flow boiling test section for preventing any leaks. The copper 

block with the wafer is then precisely docked onto the main test section with a manual 

jack and leveled using a level gauge (to obtain a horizontal orientation for the boiling 

surface). The assembled apparatus is then allowed to dry for ~ 6 hours. A leak test is 

performed subsequently. Figure 2.5 shows an image of the top surface of the copper 

block after the application of the thermal paste. Additional details on the preparation and 

assembly of the experimental apparatus are provided in the Appendix. 

 Degassing Step 

After leak test is performed - the apparatus is allowed to dry. The test fluid is 

then boiled for 20 minutes at its boiling point (~100 °C) within the test section and the 
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storage tank for performing degassing operation - in order to remove the trapped gases 

and dissolved air from the test fluid and to prevent premature nucleation. 

 

 

 

Figure 2. 5 Thermal paste on the copper block.  
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 Data Acquisition 

 The temperature of the water tank is then fixed to achieve the desired liquid 

subcooling. The immersion heater power supply is then disconnected (for the sub-cooled 

flow boiling experiments). The AMREL power supply is used to control the power input 

to the cartridge heaters. The system is allowed to reach steady state conditions for each 

power setting. The temperature of the test fluid is carefully monitored using 

LABVIEW® and adjustments to the liquid temperature level are made accordingly 

during the time taken to reach steady state. The temperatures within the copper block are 

also monitored simultaneously in LABVIEW®. Once steady state conditions are 

achieved, the DAQ system is used to record the thermocouple readings for a period of 

two minutes at a rate of 200 Hz. The temperature readings are used to evaluate the heat 

fluxes and wall superheats. These are then used to construct the flow boiling curves for 

the experiments. The current and voltage supplied to the cartridge heaters are recorded to 

obtain the power input values. In addition the temperature of the water storage tank is 

also recorded. The input voltage for the cartridge heaters is then increased in steps of 

approximately 3 or 5 volts and the aforementioned data acquisition procedure is repeated. 

 High Speed Digital Image Acquisition 

High speed digital image acquisition was performed at 250, 500 and 1000 frames per 

second (fps) at a resolution of 1280 x 512 pixels. The shutter speed was varied from 1X 

to 10X (of the image acquisition speed) depending on the intensity of the light source 

and the quality of the image. After reaching steady state conditions, the tungsten halogen 

lamp was turned on and the digital recording by the camera was initiated for 



40 
 

approximately 2 to 3 seconds. The lamp was immediately turned off to minimize the 

thermal perturbation of the test section. 

B. Condensation 

a. Compact Condensation Test Section 

 

Figure 2. 6 Condensation experiment schematic. 

 
 
 
Figure 2.6 shows the refrigeration flow loop apparatus used for testing the 

compact condenser configurations. The refrigeration flow loop consists of an evaporator, 

compressor, pre-condenser, compact condenser, post condenser and the expansion valve. 

A variac power supply is connected to the evaporator to supply electrical power to two 

heating pads that are mounted on the evaporator section (and insulated to prevent 

substantial heat loss to the ambient). A miniature compressor (Model 19-24-000X, 
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Aspen Compressor, LLC) was used to actuate the refrigeration loop. A pre-condenser (a 

counter flow heater exchanger for water cooling) is placed after the compressor to 

control the inlet quality of the compact condenser. The water loop is driven by a mini 

centrifugal pump (Model 809-2, March MFG, Ltd). The flow rate is controlled with a 

needle valve that is located at the outlet of the mini pump. The compact condenser is 

located between the pre-condenser and the post-condenser. The refrigerant is cooled in 

the compact condenser heat exchanger using counter current water flow. The compact 

condenser test section is termed as the “Coupon”. The post-condenser (heat exchanger) 

was located right after the compact condenser and is connected to the expansion valve. 

The expansion valve was a needle type valve where the opening was precisely controlled 

(with provisions for both manual and automatic control). P1 - P5 in Figure 2.6 indicates 

the location of pressure sensor stations. T1 - T5 follows identical nomenclature for the 

location of the temperature sensors stations.  

b. Description of Experimental Apparatus 

 Mini Compressor 

The mini-compressor (Manufacturer: Aspen, Model number of 19-24-00X) was 

used to drive the refrigeration flow loop in the condenser testing test rig, originally 

developed at Aspen. Aspen thermal systems introduced the smallest and lightest rotary 

compressor (Figure 2.7) for refrigeration systems. The variable speed refrigeration 

compressor was designed for a 24V DC power supply and primary use with refrigerant 

R-134a. Its size, weight, and durability made it ideally suited for mobile or portable 
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application including kitchen appliances, miniature refrigerator or freezer systems, 

thermally-controlled transit containers, electronics cooling systems, medical devices, 

beverage dispensers, and mini-chilled water systems. Table 2.2 lists the technical 

specifications while the following graph shows the operating characteristics for the mini 

compressor (courtesy of Aspen Systems Inc.). 

 
 

 
Table 2. 2 Mini compressor technical details 

 
Application Information Design 

Refrigerant R-134a Motor 
Brushless DC 

(BLDC) 

Voltage Range 20 ~ 30 VDC Drive 
Advanced 
Sensorless 

Evaporator Temp 
Range°C (°F) 

-24 ~ +65 
(-10 ~ +75) 

Speed Range 2000 ~ 6000 

Condenser Temp 
Range°C (°F) 

+26 ~ +65 
(79 ~ 149) 

Pump Displacement 
cm3 (in3) 

1.9 (0.1159) 

Max. Discharge 
Temp 

°C (°F) 

130 
(266) 

Oil Quantity 
cm3 

21 

Max. Compression 
Ratio 

8:1 
Housing Volume 

cm3 (in3) 
171.2 (10.5) 

Max. Compartment 
Temp 

°C (°F) 

55 
(131) 

Total Weight 
kg (lb) 

0.59 (1.3) 

Protection Systems Voltage, Thermal, Rotor 
Diameter cm (in) 

Height cm(in) 
5.58 (2.20) 
7.74 (3.05) 
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Figure 2. 7 Picture of the mini-compressor. 

 
 
 
The following graph (Figure 2.8) represents the rpm of the compressor with the 

given DC voltage to the compressor. 

 
 
 

 

Figure 2. 8 Operating characteristics (VDC vs. RPM) of the mini compressor. 

3  
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 Compact Condenser 

The compact condenser sections were fabricated and assembled for two different 

design configurations that were used in this study. Prototype design variations are listed 

in the following table along with a list of the key design parameters. The first design 

(Design F) is the Flatchannel baseline to be used as the control experiment. The other 

design (Design M) includes 2,500 microfins. The microfins were designed to enhance 

the surface area in order to perform efficient wicking of the condensed liquid refrigerant 

and to augment the condensation heat transfer with minimal effect on the pressure drop 

in the compact condenser. Both designs have unique heat transfer (HT) enhancement 

characteristics and were designed to measure the flow characteristics. The following 

picture (Figure 2.9) shows the microchannel coupon with the machined microfins. An 

image with enhanced magnification (using a microscope) is also shown in Figure 2.10 

where the microfins can be identified more clearly. Table 2.3 summarizes the details for 

coupon F and M designs. 

 
 

 
Table 2. 3 Specification of the condenser test section. 

 

Coupon  
Design 

Micro-posts 
[number] 

Height 
[mm] 

Width 
[mm] 

Surface Area 
[cm2] 

F 0 0.20 8.2 14.7 
M 2500 0.20 8.2 20.0 
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Figure 2.9 shows the surface of the flatbed and the coupon with the micro-posts. A 

microscope picture follows where the micro-posts are seen from the top.  

 
 
 

 
 

Figure 2. 9 Image of microchannel compact condenser configurations: (Left)  F: Flatbed; and (Right) M: 
Microfin. 

 
 
 

 

Figure 2. 10 Image of microfins that were machined inside the microchannel of the compact condenser, that 
were used in the experiments. (a) Low magnification, (b) Enhanced magnification (using a microscope). 
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c. Data Acquisition System 

Temperature and pressure data were recorded using the data acquisition system that 

was connected to each sensor. The thermocouples and the pressure transducers were 

connected separately to the terminal blocks. LabView © was used for the data 

acquisition program for the measurement as well as to monitor the experimental 

parameters (Figure 2.11). The sensor data from the measurements were used to calculate 

the enthalpy of the refrigerant at each measurement station (with the aid of the Mollier 

diagram for R-134a). Table 2.4 summarizes the hardware configuration. 

 
 
 

Table 2. 4 List of data acquisition hardware used in this study (Manufacturer: National Instruments) 

 
Part No. Detail Remark 

776570-01 SCXI-1000 4 Slot Chassis (120 VAC) Chassis 

776572-02 
SCXI-1102 32-Channel Thermocouple Amplifier. 
Signal Conditioning Module for thermocouples and low bandwidth 
millivolt, volt, and current inputs. 

Thermocouple 
Module 

777687-03 
SCXI-1303 32-Channel Isothermal Terminal Block. 
Connects thermocouples and signals to SCXI-1100 / SCXI-1102 
Modules. 

Thermocouple 
Connection 

776572-02C 
SCXI-1102C 32-Channel Amplifier, 10 kHZ Bandwidth. Signal 
Conditioning Module with gain and filters on each 32 channels. 

Pressure 
Module 

777687-00 SCXI-1300 General Purpose Screw Terminal Block, Cast. 
Pressure 

Connection 

776576-60 
SCXI-1360 Front Filler Panel. 
Covers one empty slot (Front). 

Cover 

776576-61 
SCXI-1351 Rear Filler Panel. 
Covers one empty slot (Rear). 

Cover 

182671-01 
SCXI-1349 Bracket / Adapter Assembly. 
Connects the modules to the PC. 

Adapter 

192061-02 SHC68-68-EPM Shielded Cable, 68-D-Type to VHDCI Offset, 2m. Cable 

781048-01 
NI PCIe-6351, X Series Multifunction DAQ (16 Al, 24 DIO, 2 AO), 
1.25 MS/s single-channel sampling. 

PCIe Card 
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Figure 2. 11 Virtual instrument (VI)™ from the Labview® that was used to record the temperature and pressure in the compact condenser testing rig.
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d. Data Analysis 

This section describes the calculation procedure for the obtaining the average heat 

transfer coefficient in the refrigerant side as well as for estimating the overall heat 

transfer coefficient for the compact condenser. The experimental apparatus was 

assembled to include two heating pads which were installed around the evaporator. 

Double-layered HVAC piping heat insulation was used to minimize heat loss from the 

heating pads to the ambient. Since the power supply to the heating pads was modulated 

using a variac power supply, the power from the power supply to the evaporator may be 

expressed as (assuming negligible heat loss): 

 

                                       ܲ ൌ ܫܸ ൌ ሶ݉ ሺ݄ଵ െ ݄ହሻ                                                (2.2) 

 

The subscripts represent stations that are shown in Figure 2.6. Then the mass 

flow rate of the refrigerant can be expressed as: 

 

                                                 ሶ݉ ൌ ௏ூ

ሺ௛భି௛ఱሻ
                                                       (2.3) 
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Figure 2. 12 Schematic of the counter flow heat exchanger analysis used in this study. 

 

 

Figure 2.12 shows the schematic for performing a counter flow heat exchanger 

analysis involving the use of log mean temperature difference (LMTD) to calculate the 

device performance. For counter flow heat exchangers, the endpoint temperature 

differences at the inlet and outlet of the compact condenser are defined as: 

 

                                    
∆ ௜ܶ௡ ൌ ௥ܶ௘௙,௜௡ െ ௪ܶ,௢௨௧

∆ ௢ܶ௨௧ ൌ ௥ܶ௘௙,௢௨௧ െ ௪ܶ,௜௡
                                                (2.4) 

where 

                                              
௥ܶ௘௙,௜௡ ൌ ଶܶ

௥ܶ௘௙,௢௨௧ ൌ ଷܶ
                                                        (2.5) 

 

Hence the LMTD for the compact condenser may be expressed as: 
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                ௅ܶெ்஽ ൌ
൫்ೝ೐೑,೔೙ି்ೢ ,೚ೠ೟൯ି൫்ೝ೐೑,೚ೠ೟ି்ೢ,೔೙൯

௟௡ቆ
೅ೝ೐೑,೔೙ష೅ೢ,೚ೠ೟
೅ೝ೐೑,೚ೠ೟ష೅ೢ,೔೙

ቇ
                                    (2.6) 

 

Since heat is rejected to the water side of the heat exchanger, the total heat 

transfer is expressed as: 

 

௪ݍ             ൌ ܿ௣ ሶ݉ ௪൫ ௪ܶ,௢௨௧ െ ௪ܶ,௜௡൯ ൌ ௖௢௡ௗܣܷ ௅ܶெ்஽                                      (2.7) 

                          Uൌ
௖೛௠ሶ ೢ൫்ೢ ,೚ೠ೟ି்ೢ,೔೙൯

஺೎೚೙೏ ಽ்ಾ೅ವ
                                     (2.8) 

 

where, u is the overall heat transfer coefficient for the compact condenser, and ܣ௖௢௡ௗ is 

the surface are of the refrigerant side of the compact condenser. For heating of a fluid 

under turbulent flow conditions (where the surface temperature exceeds the fluid 

temperature) the Dittus Boelter correlation can be used to estimate the heat transfer 

coefficient on the water side of the compact heat exchanger as:  

 

஽ݑܰ                                     ൌ 0.023	ܴ݁஽
଴.଼	ܲݎ଴.ସ                                               (2.9) 

 

Also,  

 

ݑܰ                                                ൌ
௛ೢ஽೓
௞ೢ

                                                      (2.10) 
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In these calculations the thermal conductivity of water (݇௪) is used for property values at  

50°C (which is the mean fluid temperature on the water side). The hydraulic diameter is 

calculated using the following expression: 

  

௛ܦ                                                 ൌ
ସ஺ೢೌ೟೐ೝ

௉
                                                  (2.11) 

 

where, ܣ௪௔௧௘௥ refers to the cross sectional area of the microchannels for flow of water, 

P is the wetted perimeter of the cross-section. After obtaining the heat transfer 

coefficient for the water side (݄௪) from equation 2.10, and the overall heat transfer 

coefficient (u) from 2.8, the heat transfer coefficient for the refrigerant side (݄௥௘௙) is 

calculated from the following equation 2.12.  

 

                                                
ଵ

௎
ൌ ଵ

௛ೝ೐೑
൅ ଵ

௛ೢ
                                            (2.12) 

 

C. Fabrication & Calibration of Micro / Nano Sensor 

a. Introduction 

Conventional thermocouples are widely used for their wide range of temperature 

measurement applications. However, the size of these conventional thermocouples 

usually is in the order of hundreds of microns – which makes them unsuitable for 
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metrology of phase change processes since these are affected even by surface roughness 

as small as 1 micron.  

To obviate these issues TFT (Thin film thermocouple) have been developed. TFT 

uses identical principle as the conventional wire-bead type thermocouple which is the 

Seebeck effect. The Seebeck effect causes a potential to develop at a junction of 

dissimilar materials and the potential developed is proportional to the temperature of the 

junction. The proportionality constant is known as the Seebeck coefficient. The TFT 

sensor is realized by deposition of different materials (metals or alloys) on a semi-

conducting or electrically non-conducting substrate (such as wafer or a glass surface).  

Typically the Physical Vapor Deposition (PVD) technique is used for metal evaporation 

or metal deposition process followed by the lift-off process to pattern the deposited 

layers of metals to realize a junction of dissimilar materials. However, each sensing node 

requires two lead wires and two interconnection bond pads for transferring the sensing 

(electrical potential) signals to the external data acquisition system. For instance, in 

order to measure 100 sensor nodes located within a small area, 200 lead wires (and 200 

bond pads) are required. Hence, TFT sensors are useful when only a small number of 

sensing locations are required for high speed temperature sensing. For high speed and 

high spatial density sensing needs (with minimal perturbation of the transport 

mechanisms) TFT sensors are cumbersome due to the need for packaging high number 

of interconnects to the data acquisition system. Furthermore, a fundamental limitation of 

is that the thickness of the deposited metal layers need to be higher than ~ 200 nm, since 
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below this size limit phonon dispersion causes these metal traces to behave as resistors 

rather than thermocouples (i.e., emf sources). 

In order to overcome the drawbacks of the TFT, a DTS (Diode Temperature 

Sensor) array was developed in this study. With the DTS, it is possible to sense 

temperature fluctuations with high spatial density (~ 1 micron pitch) and high speed (~ 1 

MHz), while the packaging requirements for the interconnects are minimized. Since the 

DTS does not require individual lead wires for each location while the individual sensing 

nodes can be addressed using a novel semiconductor based addressing scheme (i.e., 

using the diode principle of much reduced backward bias current compared to forward 

bias current). Hence, when the DTS array is fabricated geometrically in an array of 10 

columns and 10 rows forming 100 sensing node locations, only 20 bond pads (or 

interconnects) are required for addressing all of the sensing nodes. In this study, DTSA 

(Diode Temperature Sensor Array) were fabricated. The feasibility of applying these 

sensors for transient measurement of the surface temperature fluctuations during heat 

transfer in multi-phase flows has been demonstrated by performing droplet impingement 

cooling experiments on a substrate with DTSA fabricated in-situ and flush beneath the 

surface of the substrates.  

b. Principle of Sensing Using DTS 

The diode equation expresses the working principle of a diode and is closely 

approximated by 

                                      1TV
si I e

   
 

                                 (2.13) 
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where, sI  is a constant for a given diode at a given temperature and is usually called the 

saturation current or scale current. sI  is proportional to the cross-sectional area of the 

diode.   is the given forward voltage. TV  is a constant called the thermal voltage and is 

expressed as 

                                                            T

kT
V

q
                                        (2.14)

    

where, 

     5 238.62 10 1.38 10k eV K J K      : Boltzmann’s constant 

  T: Absolute temperature in Kelvin; 273T temperature C    
  

   191.60 10q coulomb   : Magnitude of electronic charge 

Equation (2.13) shows that 

 

                                                     0.0862TV T mV                        (2.15) 

 

substituting the constants above. For instance, at room temperature of 25 C  the value of 

TV  is  25.7 mV . The i-v characteristic in the forward region (Figure 2.13) of the diode 

reveals that for a fully-conducting diode the voltage drop lies in a narrow range, 

approximately  0.6 V  to  0.8 V . It is assumed that a conducting diode has 

approximately a  0.7 V  potential drop across it. 
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Figure 2. 13 The diode i-v relationship with some scales expanded and others compressed in order to reveal 
details. 

 
 
 

sI  and TV  are functions of temperature. The forward i-v characteristic varies with 

temperature as can be seen in Figure 2.13 and Figure 2.14. Generally, silicon diodes 

have a forward voltage drop of 0.7V. Near room temperature, this voltage decreases by 

2mV for every 1 °C increase in the operating temperature of the diode. 
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Figure 2. 14 Temperature dependence of the diode forward characteristic. At a constant current, the voltage 
drop decreases by approximately 2 mV for every 1°C increase in temperature. 

 
 
 
Due to variations in the fabrication process as well as variations in the spatial 

distribution of the dopants and impurities, diodes can display different temperature 

characteristics. Hence, the individual diode sensors must be calibrated in order to 

determine the relationships between the temperature and the forward voltage drop. The 

calibration can be performed using a heated chuck (with precise temperature control) 

placed in a probe station with micropositioners (for achieving electrical contacts with the 

bond pads to address individual diode sensors in an array). Details of the sensor 

characterization are discussed in the next chapter. 

c. Sensor Design (DTS) 

Diode temperature sensors were fabricated using classical methods. The design 

of the sensor array was performed with an aim to locate one hundred sensing nodes in 

the array with a small spatial footprint (~ 5 mm square) which can be addressed with 
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only 20 bond pads (thus requiring the packaging operation for only 20 interconnects). 

Figure 2.15 shows an image of DTS array that was fabricated in this study. Each row in 

the image has an array of 100 DTS. The image shows 8 rows of DTSA, each array 

containing 100 DTS. 

 

 

Figure 2. 15 Image of silicon wafer with DTS fabricated under the surface of the wafer. 
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d. Fabrication Sequence 

 Wafer Selection 

The DTSA were fabricated using a 3” diameter n-type silicon wafer as the 

substrate. Table 2.5 summarizes the properties of the 3” diameter n-type silicon wafer. 

 
 
 

Table 2. 5 Properties of the n-type silicon wafer. 

 

Properties Details 

Diameter 76.2 mm (3”) 

Type / Dopant N / phos. 

Orientation < 1 0 0 > 

Slice Align ±0.5 deg. 

Resistivity 1.0 ~ 10.0 Ω-cm 

Thickness 330 ~ 430 μm 

Flats SEMI std. 

Grade SSP/E - Test 

Growth Method CZ 
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 Photo Mask Layout Design 

The fabrication process is categorized into two parts. Mask layout design is the 

first step followed by photolithography. In order to fabricate the DTSA, 4 masks were 

necessary for the photolithography sequence. Since the substrate was selected as an n-

region, Mask #1 was used to open a p-region onto the substrate. Mask #2 was used to 

open a n-region on top of the p-region to create n-p-n layer. Mask #3 and Mask #4 were 

used for obtaining the contact opening and metallization layer (for bond pads) 

respectively. 

Figure 2.16 shows the mask layout design used in this study. One photo-mask 

was used to realize the four mask sequence. The strategy was to shift the wafer by one 

masking step (using the same photo-mask) from Mask #1 through Mask #4 by 

repositioning and aligning on the mask aligner during the fabrication (and 

photolithography) sequence. Figure 2.17 shows a detailed view of the mask features and 

the feature dimensions.  
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Figure 2. 16  Photo-mask layout design used for fabrication of the DTSA. 

 

 

 

(a) Mask 1 : p-layer 
 

Figure 2. 17 Details of the dimensions and features for the four photolithography steps integrated into one 
photo-mask layout. (a) Mask 1, (b) Mask 2, (c) Mask 3, (d) Mask 4 
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(b) Mask 2 : n-layer 

 

 

 

 

(c) Mask 3 : Contact opening 

 
Figure 2. 17 Continued. 
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(d) Mask 4 : Metallization layer 
 

Figure 2. 17 Continued. 

 

 Initial Oxidation  

Process chemicals that are needed for the various fabrication steps are 

summarized in Table 2.6. 

All the fabrication process steps start with the cleaning of the wafer in piranha 

solution. Each time a fresh piranha solution is prepared by mixing 3 portions of sulfuric 

acid (by volume) and 1 portion of hydrogen peroxide. For instance, 300 ml of sulfuric 

acid was prepared in Pyrex © beaker and 100 ml of hydrogen peroxide was slowly 

added to the sulfuric acid. The preparation must be performed in a clean room facility 

along with use of all the protective gears and required safety practices/ protocols in 

performing these operations. When the hydrogen peroxide is slowly poured into the 

sulfuric acid, oxidizing fumes are created within the solution. The mixture was then  
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Table 2. 6 List of process chemicals used for fabrication of DTSA. 

 

Name Chemical Formula Usage 

BOE (Buffered Oxide Etchant) 
1 part HF  to 
7 parts 2H O  Oxide layer etching 

Hydrogen Peroxide 30% 2 2H O  To make piranha 

Sulfuric Acid 2 4H SO  To make piranha 

Positive Photoresist (AZ4512)   

μ-posit MF-312 Developer 
(tetramethylammonium 

hydroxide) 
 3 4
CH NOH  Positive photoresist 

developer 

Aluminum Etchant   

 
 
 

placed on a hot plate set at 50 °C and mixed uniformly using a Teflon ™ stirrer. Two 

additional beakers with deionized water were prepared to rinse the wafer that was 

immersed in the piranha solution for the cleaning protocol. The wafers were immersed in 

the heated piranha for 5 minutes on the stirrer. After 5 minutes, the wafer was carefully 

removed from the piranha solution using tweezers and then immersed in the first beaker 

with deionized water for another 5 minutes. Then the second rinsing step for the wafer 

was performed by immersing in the fresh deionized water. Specially designed tweezers 

were used to move the wafers from one solution bath to the next while ensuring that they 

were rinsed in separate deionized water sprays every time the tweezers were used. After 

the two-step rinsing process was performed, the cleaned wafer was dried using ultra high 

pure nitrogen (N2) gun with micro-pored filter attached to the nozzle. The drying step 
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was performed until no water marks were visible on the wafer surface. The proper 

handling procedure requires that during the drying step the wafer is held at an angle 

while resting at an angle on a wafer wipe cloth while the nitrogen gun was pointed at the 

wafer surface. Resting the edge of the wafer on the wipe cloth helps with faster drying of 

the wafer surface. Figure 2.18 shows a wafer in piranha and demonstrates the proper 

procedure for handling a wafer during the drying step. After the drying process is 

accomplished, the wafer was placed in a closed convection oven (that is set at 120 °C) 

for 15 minutes to enable complete elimination of water on the wafer surface. At this 

point, the wafer cleaning was completed and the wafer is ready to be inserted into the 

oxidation furnace. 

Initially, the n-type wafer does not have any oxide layer on the surface (other 

than a native oxide layer that is a few nanometers thick). An oxidation process is used to 

realize a thick layer of SiO2. A “Thermco Mini-Brute 70” furnace was used as an 

oxidation furnace. A bubbler apparatus with a heater (for heating the water through 

which oxygen is bubbled) was used for wet oxidation.  
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(a) Wafer in piranha. 

 

(b) Wafer position when drying using a N2 gun. 

Figure 2. 18  (a) Wafer in piranha, (b) Wafer position when drying using a N2  gun. 
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Table 2. 7 Initial oxidation process. 

 

Steps Oxidation Type Time Temperature Pressure 

1 Dry O2 10 min. 1100 °C 1 atm 

2 Wet O2 130 min. 1100 °C 0.9 atm 

3 Nitrogen (N2) only 10 min. 1100 °C 1 atm 

 
 
 
The bubbler apparatus is connected to the oxygen supply line (from an oxygen 

cylinder). Table 2.7 summarizes conditions needed for the furnace operation in order to 

achieve approximately 1 μm thickness of SiO2 layer on the cleaned n-type silicon wafer. 

The cleaned wafer was loaded onto a quartz boat (Figure 2.19) and a quartz rod for 

insertion into the furnace. Safety equipment such as the heat resistant gloves and eye 

protector with mask were used, when the wafer on the boat was pushed into the furnace. 

The boat was pushed slowly into the furnace in order to prevent a sudden heat shock to 

the wafers loaded on the boat. The boat was positioned at the entrance of the furnace 

tube for 2 minutes. With nitrogen gas flowing in the furnace, the wafer was then pushed 

approximately to the middle of the furnace tube. The furnace cap was closed and the 

springs were secured. The oxygen valve was controlled with a flow meter gauge and 

opened slowly to achieve the process conditions described in Table 2.7. 

A dummy wafer was placed at the front of the stack of wafers on the quartz boat, 

with the polished surface reversed to the flow direction inside the furnace. The other 

cleaned process wafers were inserted approximately 1.5” behind the dummy wafer. After 
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the oxidation process was finished, the quartz boat containing the stack of wafers was 

taken out of the furnace slowly and positioned at the entrance for 2 minutes (for 

temperature equilibration). The wafer was then cooled under natural circulation 

conditions in the clean room ambient temperature (in the open air) before resuming the 

next process step. Figure 2.20 presents a flow chart for the fabrication process steps. 

 

 

 

Figure 2. 19 Quartz boat to load 3” wafers. 

 

  P-Layer Opening  

The silicon wafer with the oxide layer is then processed for the photolithography 

step. To obtain the p-layer strips in the n region, the first mask layer is used in the 

photolithography step. This process is the initial usage of the mask and therefore no 

alignment was necessary. The wafer with the oxide layer can get contaminated with 

organic materials and natural oxidation may also occur, hence the first photolithography 

step was performed only after cleaning the wafer in freshly prepared piranha solution. 
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As before, the wafer was immersed in piranha and dried with nitrogen gun followed by 

heating in an oven at 120°C for removal of water. After mounting the wafer on a spin 

coater, a small quantity of photoresist (AZ-5214) was then dispensed using a pipette.  

The wafer was placed on the chuck of the spin coater and centered. A vacuum 

pump was used to suction mount the wafer. Photoresist was dispensed to cover the entire 

surface of the wafer and visibly ensuring that no significant bubbles were present. If any 

bubbles were visible, they were eliminated by using the pipette to physically suction 

them out. The spin coater was programmed to rotate at 3000 rpm for 30 seconds. When 

the wafer was set on the chuck and photoresist was properly applied, the lid was closed 

and the spin coater was turned on for operation. After the spin coating process, any 

extraneous particles or other foreign materials could be detected by the visible striation 

marks and traces that were formed after the spinning process. In such a situation, the 

wafer was cleaned again using acetone and isopropanol followed by rinsing in deionized 

water and the spin coating operation was repeated. If no striation marks were detected on 

visual inspection after the spin coating process - the wafer was placed on a hot plate (set 

at 110°C) for 3 minutes for soft-bake. This step is known as the “pre-exposure bake” and 

is performed before the wafer is placed on the mask aligner. The conditions for the soft-

bake are usually determined based on the manufacturer recommendation for the 

photoresist. The mask aligner (Manufacturer: Karl Suss) used in this study is operated 

manually and has four power settings. The first power setting is used to turn on the main  
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Figure 2. 20 Diode temperature sensor fabrication flow chart. 
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power. The second power setting is used to turn on the vacuum pump for suction 

mounting of the wafer on the aligner chuck. The third power setting is used for setting 

the pressure toggles switches. The fourth power setting is used for turning on the light 

source for the microscope. The photomask was cleaned using IPA and suction mounted 

onto the mask-tray. Then the soft-baked wafer was placed in the sliding wafer-tray on 

the mask aligner. Control knobs were used to elevate the wafer closer to the mask. 

Interference optical ripples appear at certain proximity of the wafer to the mask – at 

which point the adjustment of the control knobs should be stopped. At this time, the 

mask and the wafer are in the contact mode. When the ripples are observed, the 

separation lever needs to be engaged to change the status from contact mode to 

separation mode. This is needed to enable a small gap between the photomask and the 

wafer in the event the mask needs to be shifted for performing alignment procedures.  

To open the oxide mask for obtaining the p-layer, the wafer did not require any 

mask alignment and thus was ready to be exposed when the ripples were observed. The 

exposure time was calculated from the intensity of the main power and the dose required 

for the photoresist for developing step. The following equation was used to calculate the 

exposure time for the wafer. 

 

Intensity  2
mW

cm
    Time = Dose 

 

For the mask aligner (Karl Suss), the intensity was 7.5 2mW cm    and the dose 

required for the photoresist was 150. Hence, the exposure time was set for 22 seconds. 
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After the exposure step the exposed photoresist was developed by immersing in a 

photoresist developer solution. The solution was prepared by mixing 3 volume portions 

of the developer and 2 volume portions of deionized water. Light agitation of the wafer 

on top of a Teflon© stirrer was needed to ensure uniform mixing. As soon as the 

exposed features were visibly apparent, the wafer was immediately removed from the 

developer bath for rinsing in afresh bath of deionized (DI) water and drying step with 

nitrogen gun. The wafer was checked under the microscope to make sure that it was 

exposed and developed properly. A quick strategy for checking the adequacy of the yield 

of the photolithography step is to focus the microscope on the resolution mark when 

observing under the microscope. The resolution marks designed in the mask layout are 

shown in Figure 2.21. The image of the wafer observed using a 3-D microscope is 

shown in Figure 2.22. 

 

 

 

Figure 2. 21 Exploded view of resolution test pattern (designed in the mask layout for the alignment marks). 
The largest of the diagonal squares is 80 μm on a side, and the smallest is 10 μm. 
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Figure 2. 22 Image of the resolution mark after developing process using a 3D microscope. 

 

Once the success (and yield) of the photolithography step was checked, it was 

placed into the oven to hard-bake at 120 °C for 10 ~ 15 minutes. As soon as the wafer 

was hard-baked and cooled under natural convection in room temperature conditions, it 

was etched using the BOE (Buffered Oxide Etch) solution. After etching in BOE 

solution the wafer was cleaned in piranha and was loaded onto the quartz boat for gate 

oxidation. The purpose of the gate oxidation was to form a very thin oxide layer to act as 

a damper for the ion implantation step. The oxidation process was identical to the ones 

described previously but the conditions were different, as mentioned in Table 2.8. The 

wafer was packaged into a specialized container to be shipped for commercial 
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processing for ion implantation step (performed by Core Systems Inc.).  The ion 

implantation was performed for obtaining the p-layer in the wafer. Boron was used to 

form a region of the p-layer on the n-type wafer. The conditions for the boron ion 

implantation are summarized in Table 2.9. 

 
 
 

Table 2. 8 Gate oxidation process conditions. 

 

Steps Oxidation Type Time Temperature Pressure 

1 Dry O2 10 min. 1100 °C 1 atm 

2 Wet O2 10 min. 1100 °C 0.9 atm 

3 Nitrogen (N2) only 10 min. 1100 °C 1 atm 

 

. 

 
Table 2. 9 Ion implantation condition (B+). 

 

Item Detail 

Machine 3015 

Wafer Size / Scan 3” 

Side Front 

Species B+ 

Dose 1.2 e14 

Energy (keV) 100 

 



74 
 

 

Table 2. 9 Continued 

 

Item Detail 

Offset 7 

Current (μA) 75 

Area (cm2) 1821 

Mode Hybrid 

Vacuum (Torr) 7.0 e -07 

 

  

 Annealing of Implanted Boron and “Emitter” Process 

Upon receiving the ion implanted wafer back from Core Systems (with implanted 

Boron), the wafer was cleaned in piranha and annealed in a furnace. The processing 

conditions for this step are listed in Table 2.10. 

 

 
Table 2. 10 Steps for annealing boron. 

 

Steps Oxidation Type Time Temperature Pressure 

1 Nitrogen ( 2N ) only 200 min. 1100 C  1 atm 

2 Wet 2O  10 min. 1100 C  0.9 atm 

3 Nitrogen ( 2N ) only 10 min. 1100 C  1 atm 
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After the annealing process, the wafer was cleaned and subsequent steps were 

performed to realize the “Emitter” device. Photolithography was performed to open the 

oxide layer for realizing the n-region in the p-well. In short, an opening in the oxide 

layer was performed create the n-region window on top of the p-layer. The opening in 

the oxide layer was devised for either ion implantation of Arsenic or by Phosphorous 

diffusion. 

 Arsenic Ion Implantation  

The wafer was sent to the same company (Core Systems) for ion implantation of 

As for the n-layer through the window created from the emitter process. The conditions 

for the arsenic ion implantation are summarized in Table 2.11. Upon receiving the wafer 

after the As ion implantation, the wafer was first cleaned in piranha and annealed in the 

furnace using the processing conditions described in Table 2.12. 

 

 

 
 

Table 2. 11 Ion implantation condition (As+). 

 

Item Detail 

Machine 3015 

Wafer Size / Scan 3” 

Side Pattern 

Species As+ 
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Table 2. 12 Continued 

 

Item Detail 

Dose 1.0 e16 

Energy (keV) 100 

Offset 70 

Current (μA) 200 

Area ( 2cm ) 62.55 

Mode X4 

Vacuum (Torr) 2 e -06 

 
 
 

Table 2. 13 Steps for annealing arsenic. 

 

Steps Oxidation Type Time Temperature Pressure 

1 Dry 2O  10 min. 1000 C  1 atm 

2 Wet 2O  60 min. 1100 C  0.9 atm 

3 Nitrogen ( 2N ) only 15 min. 1100 C  1 atm 

 

 

  Contact Opening  

The annealed wafer was prepared for subsequent processing steps. The wafer 

was cleaned using the cleaning protocol described earlier, followed by spin coating of 
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photoresist. The contact opening in the oxide layer was obtained by photolithography 

using Mask #3. This was followed by etching of the oxide layer using BOE solution. 

 Metallization  

With the contact opening on the wafer, a metal layer was deposited and patterned 

in order to obtain the bond pads (for connecting the lead wires). Metallization was 

performed by evaporating Al onto the wafer using the metal evaporator at MCF 

(Material Characterization Facility) at Texas A&M University. The target thickness of 

the metal layer is 3000Å~4000Å. In this study the target thickness for metal deposition 

using PVD was set to 3500Å. The metal evaporation was performed at the chamber 

pressure of  74 10 torr . Five pure Al targets were placed on a tungsten boat. The 

thickness of the metal layer was monitored using a crystal monitor/ indicator. After the 

metal evaporation step, the wafer was ready for the final processing step. Since the 

pattern for the metallization step used a negative mask, the wafer was coated with the Al 

layer prior to the photolithography to realize the required pattern. The wafer was spin-

coated with photoresist after the metal deposition, followed by exposure on the mask 

aligner and immersion in developer bath (along with rinsing in DI water). The developer 

solution was prepared by mixing 1 portion of A400K and 4 portions of DI water. The 

exposed Al layer was etched using Al etchant using an etching time of 4 minutes. After 

the etching process, the wafer with the metal features was cleaned in piranha and dried. 

Fabrication for the diode temperature sensor is finalized. Figure 2.23 shows the oxide 

opening for metallization under the 3D microscope. 
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Figure 2. 23 Image of the oxide opening for metallization. The image was obtained using a 3D microscope. 
 
 
 

 

D. Droplet Cooling Experiment 

a. Introduction 

The diode temperature sensor’s electrical output was calibrated and correlated to the 

surface temperature of the silicon substrate. The correlation constants were obtained by 

measuring the steady state response of the sensors. The electrical response of DTS can 

be affected by illumination, humidity, ambient temperature, electro-magnetic 

interference (emi) from the distant power cables as well as other devices in the proximity 

of the probe station. In addition, continued oxidation of the diode temperature sensor 

itself and the heat transfer from (or to the) diode can affect the calibration as well as 

temperature measurements. The primary objective was to evaluate the feasibility of the 

fabricated DTSA for transient measurements of the surface temperature fluctuations 
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during droplet impingement cooling experiments. Hence, calibration curves were 

generated by applying different bias voltages. In this chapter the experimental hardware 

and the data acquisition equipment are described that were used for the calibration step. 

Thermal measurement using the infrared camera was performed simultaneously for 

minimizing the measurement uncertainty during calibration. 

b. Description of Experimental Apparatus 

The experimental apparatus consists of a probe station with 2 micro-positioners 

that are connected to the data acquisition device (DAQ). A syringe pump is positioned 

next to the probe station to supply the droplet using a tube placed directly above the 

DTSA. The data was recorded using PC which was connected to the DAQ. A black box 

was used to minimize the illumination of the DTSA from external light sources. The 

silicon wafer was placed on a hot plate that was maintained at a fixed temperature for 

each experiment. Figure 2.24 shows the image of the fabricated Diode Temperature 

Sensor. Figure 2.25 shows the droplet cooling experiment picture within the probe 

station. Figure 2.26 shows additional K-type thermocouples attached onto the test 

substrate for surface temperature monitoring and calibration purposes.  
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Figure 2. 24 Image of diode temperature sensor array fabricated on a silicon wafer. 

 

 

 

 

 

Figure 2. 25 Droplet impingement experiment using acetone. 
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Figure 2. 26 Image showing a close-up view of the experimental apparatus. 

 
 
 

c. Experimental Procedure 

The experiments were performed in the dark by enclosing the experimental 

apparatus in a black box to avoid illumination of the DTS. The flow rate in the syringe 

pump was fixed to a constant value and the time from one droplet to the other was 

measured using the stop watch before the experiment. In each experiment 10 droplets 

were fed through the syringe pump continuously and the data was saved into a text file 

for each drop. The raw experimental data in ASCII text format was then imported into 

MS-Excel® spreadsheet for further analysis. K-type thermocouple was installed on the 

surface of the wafer for continuous monitoring of steady state conditions. The surface 

temperature monitoring using K-Type thermocouples was performed with a separate 

data acquisition device (from National Instruments using SCXI module with a sampling 

rate of 200Hz). The surface temperature was monitored in real time. As soon as the 
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steady state conditions were detected for the surface temperature, the droplet 

impingement cooling experiments were resumed.  

d. Data Acquisition System 

Two measurement instruments were used in the calibration for the DTS as well 

as the actual droplet cooling experiment. NI DAQ was used to detect the steady state 

response of the DTS. Keithley 2400 SMU was used to measure the transient current 

response at a fixed biased voltage. NI DAQ that was used in this study consisted of a 

thermocouple amplifier, a signal conditioning module, isothermal terminal block and an 

M-series multifunction DAQ device that can record data at 5 KHz. The data collection 

and DAQ interfacing was performed by LABVIEW® software. Keithley 2400 SMU was 

used for characterizing the current versus voltage plot as well as the transient current 

output at a fixed bias voltage applied to the DTS. 

The temperature of the hot plate was fixed to achieve a desired temperature level 

for each experiment. The actual temperature on the surface of the wafer (measured by 

the DTS) was different from the temperature set on the hot plate. Hence a K-Type 

thermocouple was used to monitor the steady state surface temperature of the silicon 

wafer. The hot plate was allowed to reach steady state conditions for each temperature 

setting. The temperature on the surface of the wafer (from the K-type thermocouple) was 

carefully monitored in LABVIEW® in real time for monitoring the steady state 

conditions. After steady state conditions were achieved, the DAQ system is used to 

record the thermocouple readings for a period of two minutes at a rate of 200 Hz. The 
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raw data was then checked and averaged. The hotplate temperature was increased in 

steps of 10 °C or 15 °C and the calibration procedure was repeated.  

When steady state condition was reached, the Keithley 2400 SMU was used to 

measure the output current from the diode temperature sensor with bias voltages ranging 

from -5.0V to 5.0V in steps of 0.5V increment. The calibration process was repeated for 

3 times to ensure the repeatability. Table 2.13 summarizes the data acquisition hardware 

from national instruments. 

 
 
 

Table 2. 14 NI DAQ equipment details. 

 
Part No. Detail Remark 

776570-01 SCXI-1000 4 Slot Chassis (120 VAC) Chassis 

776572-02 
SCXI-1102 32-Channel Thermocouple Amplifier. 
Signal Conditioning Module for thermocouples and 
low bandwidth millivolt, volt, and current inputs. 

Thermocouple 
Module 

777687-00 
SCXI-1300 General Purpose Screw Terminal Block, 
Cast. 

Pressure 
Connection 

776576-60 
SCXI-1360 Front Filler Panel. 
Covers one empty slot (Front). 

Cover 

776576-61 
SCXI-1351 Rear Filler Panel. 
Covers one empty slot (Rear). 

Cover 

182671-01 
SCXI-1349 Bracket / Adapter Assembly. 
Connects the modules to the PC. 

Adapter 

192061-02 
SHC68-68-EPM Shielded Cable, 68-D-Type to 
VHDCI Offset, 2m. 

Cable 

781048-01 
NI PCIe-6351, X Series Multifunction DAQ (16 Al, 24 
DIO, 2 AO), 1.25 MS/s single-channel sampling. 

PCIe Card 
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e. Calibration 

The calibration curves were obtained by placing the wafer with the DTSA on a 

hot chuck. The performance of the diode temperature sensor was measured using the 

Alessi probe station with micro-positioners that were connected to the source meter. 

Steady state temperature conditions were ensured before recording the sensor response 

with the source meter. Surface temperature monitoring for the steady state conditions 

was performed using the NI SCXI DAQ. As soon as the steady state temperature 

conditions were reached, the bias voltage was varied in the range of -5.0 V to 5.0 V in 

steps of 0.5V.  The resulting current output was recorded in a text file. The following 

picture shows the measurement devices without the dark chamber in place (Figure 2.27). 

In order to conduct the droplet cooling experiment, two fluids were selected. One 

is Acetone and the other Ethanol. The following graphs represent the calibration curves 

for each of the fluids. A forward bias of 1.5V for Acetone and 2V for Alcohol was 

selected. Figure 2.27 shows the general setup of the droplet cooling experiment without 

the black chamber cover over the probe station. Figure 2.28 and 2.29 represent the 

calibration curves for acetone and ethanol respectively. 
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Figure 2. 27 Droplet cooling experiment rig. 

  
 
 

 

Figure 2. 28 Calibration curve (Acetone) 
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Figure 2. 29 Calibration curve (Ethanol) 

 
 
 

f. Comparison with the IR Data 

Infrared camera (Manufacturer: Fluke) was used to calibrate the surface 

temperature of wafer at the location of the DTS. As mentioned before a K-type 

thermocouple was placed on the silicon surface for monitoring the steady state surface 

temperature. After reaching steady state conditions, the IR images were obtained and 

edited using the SmartView 3.1.82.0 software (provided by Fluke Thermography Inc.). 

The following IR images are presented for each hot plate temperature setting and the 

corresponding surface temperature values are summarized below (in °F). 
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Figure 2. 30 Hot plate indicator 40°C – thermocouple 35.7°C 

 
 
 
 

 

Figure 2. 31 Hot plate indicator 45°C – thermocouple 38.6°C 

 
 
 
 

 

Figure 2. 32 Hot plate indicator 50°C – thermocouple 41.3°C 
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Figure 2. 33 Hot plate indicator 55°C – thermocouple 48.3°C 

 
 
 
 

 

Figure 2. 34 Hot plate indicator 60°C – thermocouple 52.5°C 

 

 

 

Figure 2. 35 Hot plate indicator 65°C – thermocouple 57.1°C 
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For each image, Row #4 of the DTSA was chosen as the region for measurement. 

The square indicates temperature measurement for Row #4 in the images. The average, 

maximum and minimum value of the IR data for temperature is shown in the images. 

The units are in °F. Table 2.14 summarizes the data in °C. Figures 2.30 – 2.35 represents 

the infrared camera image taken for each surface temperature of 35.7ºC, 38.6 ºC, 41.3 ºC, 

48.3 ºC, 52.5 ºC and 57.1 ºC. Each image was taken at a steady state of the surface 

temperature at the identical distance between the infrared camera and the diode 

temperature sensor.  

 
 
 

Table 2. 15 IR calibration for DTSA. 

 

Hot Plate Ind. 
[°C] 

Thermocouple 
[°C] 

IR Camera 
[°C] avg. 

IR Camera 
[°C] 

40 35.4 33.7 35.1 

45 36.8 35.2 36.4 

50 40.5 37.9 40.1 

55 44.7 42.0 44.1 

60 48.9 45.4 48.4 

65 54.7 49.4 54.1 
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From Table 2.14, the difference in temperature for the thermocouple and the IR 

camera is observed to range from 0.3°C ~ 0.6°C. Since the thermocouple for monitoring 

the surface temperature was positioned at the perimeter of the wafer, where higher 

temperature were observed from the IR images, it was expected that the thermocouple 

would record slightly higher values compared to the temperature recordings by the IR 

Camera.  

g. Data Analysis 

In this section, temperature results with respect to time are plotted as the result of the 

experiment. To setup the schematic for calculation, Figure 2.36 depicts a schematic of 

the single droplet impingement experiments. 

 

 

Figure 2. 36 Schematic of droplet impingement experiments and analysis (Tw: measurement by DTS, TH: hot 
plate temperature). 

 

Tw and TH correspond to the surface temperature of the Silicon wafer where the 

DTS is fabricated and the surface of the heated surface where the DTS is on. δ refers to 

the thickness of the wafer provided by the manufacturer. 
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The surface temperature of the DTS was recorded as a current while performing 

the droplet impingement test. The current data was then converted into temperature 

using the calibration curve of each fluid. The data was analyzed for natural convection 

and the two phase region which refers to before the actual drop impact on the surface 

and after the impact on the surface respectively. 

For natural convection region which is before the droplet impacts the surface, the 

time when the droplet actually hit the surface was recorded to identify the region for the 

natural convection. Then, the duration of the natural convection was separated into three 

identical time period regions. The second portion of the total natural convection region 

was selected for the calculation of the DTS surface temperature. With the averaged DTS 

surface temperature in natural convection region, the Rayleigh number (Ra) was 

calculated according to the following formula; 

 

                            Ra ൌ
୥ஒ൫୘ీ౐౏,౗౬ౝି୘౨౥౥ౣ൯ൈ୐య

஥஑
               (2.16) 

 

where, Tୈ୘ୗ,ୟ୴୥ is the average value surface temperature data recorded by the DTS prior 

to start of the droplet impingement experiments, and Troom is the ambient temperature, L 

is the characteristic length of the wafer (hot surface),  is the dynamic viscosity and   is 

the thermal diffusivity of air. 
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The thermophysical properties were obtained from the standard air 

thermophysical table for the corresponding DTS average temperature in the natural 

convection regime. 

The Nusselt number for this experiment was computed as: 

 

                                           Nu୒େ ൌ 0.54 ൈ Ra଴.ଶହ          (2.17) 

 

The Nusselt number value was then used to obtain the heat transfer coefficient: 

 

                                  h୒େ ൌ
୩౗౟౨∙୒୳ొి

୐
                             (2.18) 

 

where the kୟ୧୰ሾW/m ∙ Kሿ  refers to the thermal conductivity of the air. 

The natural convection heat flux was calculated by using the temperature 

difference between the average value of DTS measurements for the surface temperature 

in natural convection region and the room temperature, as:  

 

                       q୒େ
" ൌ h୒େ ൈ ൫Tୈ୘ୗ,ୟ୴୥ െ T୰୭୭୫൯                (2.19) 

 

Thermal contact resistance Rୡ, between the hotplate and the wafer is expressed as: 

 

                                   Rୡ ൌ
୘ౄౌି୘ీ౐౏,౗౬ౝ

୯ొి
"                           (2.20) 
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where , Tୈ୘ୗ,ୟ୴୥ is the average value surface temperature data recorded by the DTS prior 

to start of the droplet impingement experiments, and THP is the hot plate temperature 

programmed to be at a constant value on the hot plate controller. 

The two phase heat flux was then expressed in terms of the thermal contact 

resistance as: 

 

                                  qଶ୔
" ൌ

୘ౄౌି୘ీ౐౏
ୖౙ

                             (2.21) 

 

where , TDTS is the transient surface temperature data recorded by the DTS during the 

droplet impingement experiments.  

The heat transfer coefficient for two phase droplet impingement cooling 

experiments was then calculated using the following equation. 

 

                                       hଶ୔ ൌ
ሺ୘ౄౌି୘ీ౐౏ሻ

୯మౌ
"                   (2.22) 

 

The raw data was imported into a spreadsheet (using MS-Excel®) and the 

calculation mentioned above was performed. Graphs for transient value of temperature, 

heat flux (qଶ୔
" ) and heat transfer coefficient (h2P) were plotted. 
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CHAPTER III 

RESULTS AND DISCUSSION 
 

A. Flow Boiling 

a. Infra-Red (IR) Image Analyses for Surface Temperature Calibration 

IR images were obtained using an IR camera (Manufacturer: Fluke, Model: IQ50) 

to calibrate the surface temperature of the test surface as a function of the thermocouple 

reading from the copper block. The images were acquired when the temperature 

fluctuation of the copper block was observed to decay to a minimum value (assuring 

steady state conditions were reached). When steady conditions were achieved the 

temperature fluctuations were observed to be less than ±0.3°C of the mean value. Figure 

3.1 shows the sequence of the IR images that were used for calibrating the surface 

temperature of the test surface to that of the copper block temperature. 

b. High Speed Digital Image Acquisition  

The high speed digital image acquisition apparatus was used to record the bubble 

nucleation, growth and departure cycles on the boiling surface. Figure 3.2 shows the 

sequence of images obtained from a representative flow boiling experiment. 
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Figure 3. 1 IR images of the surface of the copper block. 
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Figure 3. 2 Sequence of high speed digital images for bubble growth and departure. 
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c. Characterization of MWCNT Coated Silicon Wafer Substrates 

A set of silicon wafer were coated with MWCNT. The silicon wafer surface was 

initially dices to the dimensions shown in Figure 2.1. A layer of iron was deposited using 

PVD to a thickness of ~ 20nm. The wafer was then placed in the CVD furnace to obtain 

the MWCNT coating.  Figures 3.3 and 3.4 show the Scanning Electron Microscopy 

(SEM) images of the MWCNT coating showing that the MWCNT were ~ 20-30 nm in 

diameter. The SEM images were obtained using an FE-SEM instrument located at the 

Microscopy and Imaging Center (MIC) at the Texas A&M University (The FE-SEM 

image acquisition was supported by the NSF grant DBI-0116835, the Office of the Vice 

President for Research, and the Texas Engineering Experiment Station). 

d. Heat Flux Measurements 

The heat flux data was analyzed by using the temperature gradients within the 

copper block in the calorimetry apparatus. The heat flux data was plotted as a function of 

the wall superheat from the flow boiling experiments in figure 3.5 for the three different 

test surfaces: bare copper surface, bare silicon substrate and MWCNT coated silicon 

substrate. From figure 3.5 it is observed that among all the surfaces Copper surface 

exhibits the highest wall heat flux (at a fixed wall superheat). Significant enhancement in 

the values of wall heat flux are observed for the case of MWCNT coated surface 

compared to that on bare Silicon surface. As the surface temperature increases, the 

enhancement in heat flux also increases.  

This enhancement can be explained to be due to the following transport 

mechanisms: (a) higher thermal conductivity of MWCNT compared to Silicon, (b) 
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disruption of microlayer by the presence of MWCNT, (c) increase in number of active 

nucleation sites (enhancement of number of nucleating bubbles per unit projected area of 

the boiling surface), and (d) “nano-fin” behavior of the MWCNT coating resulting in 

enhancement of the effective surface area for heat transfer. (e) The augmentation of the 

surface area due to the MWCNT coating also results in an enhancement of transient 

solid-liquid contact causing enhancement of transient heat conduction transfer (that is 

much smaller in magnitude for the bare silicon surfaces).  

 

 

 

 

Figure 3. 3 CNT Forest on CNT coated silicon wafer (magnification 25,000X) 
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In nucleate boiling, the MWCNT tends to disrupt a thin layer of liquid film or 

“microlayer” that is believed to exist under the vapor bubbles leading to enhanced heat 

transfer. The number of nucleation sites is observed to increase for the wafers coated 

with MWCNT than that of a bare silicon wafer. This could be responsible for the 

significant enhancement in the heat transfer for nucleate pool boiling and flow boiling. 

The high thermal conductivity of MWCNT results in a very small temperature 

differential between the base and tip of the MWCNT. The presence of MWCNT 

enhances the effective heat transfer area thus acting as nano-fins. 

 

 

 

Figure 3. 4 CNT Forest on CNT coated silicon wafer (magnification 200,000X) 
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Figure 3. 5 Heat transfer performance curve for three different surfaces. 

0

10

20

30

40

50

60

60 80 100 120 140 160

H
ea

t 
F

lu
x 

[W
/c

m
2 ]

Temperature [°C]

G = 3.8 [l/min], Tsub = 40 [°C], Re = 2100

Copper

Bare Silicon

CNT



101 
 

 

 
 

Figure 3. 6 Heat transfer performance curve for three different flow rates on CNT coated wafer. 

 

Figure 3.6 shows the heat transfer performance for a CNT coated wafer with 

different Reynolds number. From Figure 3.6 it is observed that at higher Reynolds 

number, the heat flux is enhanced dramatically. Figures 3.7 – 3.11 show the bubble 

analysis results. 
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Figure 3. 7 Bubble neck diameter analysis with the time for a MWCNT coated substrate. 

 
 
 

 

Figure 3. 8 Variation of bubble height with time in nucleate boiling regime for MWCNT coated substrate at 1.9 
l/min. 
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Figure 3. 9 Variation of bubble height with time in nucleate boiling regime for MWCNT coated substrate at  
7.6 l/min. 

 
 
 

 

Figure 3. 10 Variation of bubble height with time in nucleate boiling regime for bare silicon wafer at 1.9 l/min. 
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Figure 3. 11 Variation of bubble height with time in nucleate boiling regime for bare silicon wafer at 7.6 l/min. 

 
 
 

e. Summary 

The effect of MWCNT (Multi Wall Carbon Nano Tube) coating on flow boiling was 

experimentally investigated. Flow boiling experiments were conducted for three 

different surfaces which are pure copper, bare silicon wafer and MWCNT coated silicon 

wafer using deionized water as the working fluid. All the surfaces were tested in the 

nucleate boiling regime at 40°C sub-cooling. High speed video at 1000 ~ 1300 frames 
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the higher wall superheat. Experiments were also conducted with different flow rate of 

the working fluid for CNT coated substrate. It was observed that with a flow rate of 

2GPM enhanced the heat transfer performance as much as 67% compared with lower 

Reynolds number. 

Significant heat flux enhancement for CNT coated Silicon wafer in comparison 

with bare Silicon wafer was observed. This enhancement can be explained to be due to 

high thermal conductivity of the carbon nano-tubes, micro-layer effect, increase in solid-

liquid contact area due to presence of CNT “nano-fins” (enhancement of transient 

conduction) and enhancement of active nucleation site density. As the surface 

temperature increases, the enhancement in heat flux was also observed to increase. The 

possible reasons for this phenomenon are higher thermal conductivity of MWCNT 

compared to Silicon surface, disruption of microlayer by the presence of MWCNT, 

increase in number of active nucleation sites, augmented surface area resulting in an 

enhancement of solid liquid contact in the form of nano-fins (the “nano-fin” effect). In 

nucleate boiling, the CNT tends to disrupt the vapor film or “microlayer” under the 

bubbles leading to enhanced heat transfer. The number of nucleation sites in case of the 

wafer coated with CNT was observed to be higher than that of a bare silicon wafer. This 

could be responsible for the significant enhancement in the heat transfer for nucleate 

pool boiling and flow boiling. The high thermal conductivity of CNT results in a very 

small temperature differential between the base of the CNT and its tips. The presence of 

CNT enhances the effective heat transfer area thus acting as nano-fins. 
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High-speed video measurements showed the behavior of the bubble departure for 

the bubble height with time for two different surfaces (Figures 3.7 – 3.11). Due to 

difficulties in flow visualization, the bubble images recorded in this study were not 

obtained from the actual test surface. The images were obtained for bubbles nucleating 

in the gap between the copper block and the mating parts for the main test section – as 

shown in Figure 3.12. 

 

 

 

Figure 3. 12 Cross sectional view of the bubble image recorded location. 

 

 

B. Condensation 

Prototype M (Micropost) is similar to F (Flatbed) except that the Prototype F is 

populated with over 2500 microfins. The design provides a third more surface area for 
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heat transfer than the baseline. The design was expected to increase the pressure drop 

due to the unique geometry of the fins. Figure 3.13 shows the micropost model in detail. 

The design for the spacing of the microposts was explored in advance of fabrication – 

with the intent to minimize the pressure drop (due to flow separation and friction losses). 

It is expected that the microfins will increase the heat transfer coefficient compared to 

the flatbed. Table 3.1 shows the summary of the design difference and numerical results 

for both designs of the microfin spacing. The purpose was to investigate and determine 

the most optimal design for the compact condenser geometry. 

   

 

 

Figure 3. 13 Compact condenser micropost model 

 

 

Table 3. 1 Design difference between design 6 and design 6B. 

 

Design 
µ-posts 
(Width) 

Rows 
(Length) 

Total 
%open 

(Volume) 
Dh 

[mm] 
Re 

6 55 70 3850 53.9 0.19 1293 

6B 55 64 3520 58.4 0.20 1311 
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Design 6 

 

Design 6B 

Figure 3. 14 Averaged pressure in cross sections (a) Design 6 (b) Design 6B. 
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Figure 3. 15 Pressure drop between the inlet and outlet of a single flow element. 

 
 
 

According to the numerical analysis (Figure 3.14 and Figure 3.15), model 6 and 6B 

are different in the aspect of the row numbers. The differences in the row numbers arise 

from the differences in the design of the layout. However, the single elements 

(individual microfin) had the same dimensions in both designs. From the results, the 

pressure drop of model 6B was found to be less than that of model 6 for all the inlet 

velocities. In addition, there is a slight difference in the velocity and Reynolds number 

for the two designs, where the pressure drop for flow around a single microfin was 

calculated to be 2.12 Pa for model 6 and 1.70 Pa for model 6B (for an inlet velocity of 

10 cm/s). Hence model 6B was chosen for this study. 

Two condenser plate designs were experimentally investigated in the 

refrigeration loop, starting with the flatbed channel as a baseline (Design F). Each 

condenser plate was tested at least five times to ensure the repeatability. Table 3.2 
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summarizes the key results for the most important performance parameters of the tested 

microchannel designs. Important performance parameters are namely, the heat transfer 

coefficient (kW/m2-K) and the pressure drop (Pa or psi). The value of the heat transfer 

coefficient is the average value calculated from the net conductance, (hA) as mentioned 

before in the data analysis section.  

 
 
 

Table 3. 2 Test results summary of key performance parameters. 

 

Parameter 
Design M 
Micropost 

Design F 
Flatbed 

Heat transfer coefficient “h” 
(W/m2-K) 

3873.2 2672.6 

Pressure Drop “ΔP” 
[kPa] 

81.4 (11.8 psi) 7.6 (1.1 psi) 

Standard Deviation 
(h / ΔP) 

241.18 / 0.15 192.65 / 0.48 

 
 
 

C. Droplet Cooling 

The transient measurement of surface temperature fluctuations by DTS during 

droplet impingement experiments are shown in Figure 3.17 for acetone and alcohol. The 

transient values of heat flux and the heat transfer coefficient were also calculated and 

shown in figure 3.16. Additional results can be found in Appendix. 
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Figure 3. 16 Transient heat flux calculations for droplet impingement cooling experiments for acetone (LEFT) 
and ethanol (RIGHT).  
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D. Uncertainty Calculation 

a. Measurement Uncertainty (Flow Boiling) 

For estimating the measurement uncertainty for heat flux calculations the method 

of Kline and Mc-Clintock (1953) (Kine and Mc-Clintock, 1953) was used. For two 

vertically aligned thermocouples 1 and 2, the relative uncertainty (ω) in the heat flux (q”) 

is estimated as: 
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                       (3.1) 

 

where, k is the thermal conductivity of the copper block, T is the temperature recorded 

by the thermocouples and x　  is the distance between the two vertically aligned 

thermocouples.  

The uncertainty in estimating the various parameters are enumerated next. The 

resolution of the data acquisition system (National Instrument) used for this study was 

set to a 16-bit accuracy. This is equivalent to an absolute error of 0.0046 ºC ~ 0.005 ºC 

in the temperature range of 0-300 ºC. The standard deviation of the temperature 

fluctuations in steady state conditions was ~0.05 ºC. Therefore the total uncertainty of 

the temperature measurement was ~ 0.055 ºC. In addition, the uncertainty values for the 

copper thermal conductivity and from the machining accuracy were ~1.0% and ~3.0% 

respectively. Hence the estimated maximum uncertainty of the heat flux values was 

6~25%. 
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b.  Measurement Uncertainty (Bubble Height) 

The bubble height was calculated using: 

 

                                            ݄஻ ൌ
௬೟೚೛ି௬್೚೟೟೚೘

஼ி
                                                   (3.2) 

 

where ݕଵ and ݕଶare measured vertical coordinates of the bottom and top of each bubble 

in pixels and CF is the calibration factor. CF is associated with the frame resolution 

which is 113.04 pixels/mm or 1280 ൈ 511 resolution. 

The dominant uncertainty for bubble height measurement originated from the 

blurry edges of the captured bubble images. The uncertainty ߱௬ of the measurements 

 ௕௢௧௧௢௠ was estimated as ±5 pixels. The Kline-McClintock method was used toݕ ௧௢௣ andݕ

derive the following equation for 2 measurements. 

 

                                                 ߱௛ಳ ൌ √2
ఠ೤

஼ி
                                                    (3.3) 

 

The uncertainty for the 2 measurement was ±0.03 mm. All the high speed camera 

images were recorded at 1280 ൈ 511 resolution with the Troubleshooter high speed 

camera. 

c. Measurement Uncertainty (Condensation) 

The measurement uncertainty for the calculation of the heat transfer coefficient 

on the refrigerant side is primarily affected by the measurements errors originating from 
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the temperature measurement.  The uncertainty for estimating heat transfer coefficient 

may be calculated using the method of Klein and McClintock (1953) as: 

 

   
∆௛ೝ೐೑
௛ೝ೐೑

ൌ
∆୙
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                                           (3.4) 

 

where, the measurement error terms in the numerator for heat transfer coefficient refers 

to the ±3 (standard deviation) variation on the average temperature of the inlet and 

outlet of the compact condenser under steady state conditions (99% confidence level) 

and the denominator refers to the average value for each parameter.  The error in 

estimating U is expressed as: 
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As for the contact TLMTD, the corresponding error in estimating this value is 

expressed as:  
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Since the heat transfer coefficient on the water side is calculated from equation 

2.9 and 2.10 where the mass flow rate of the cooling water was driven by a pump, the 

relative error for the water flow rate was small enough to be neglected. 

 

                                           
∆௛ೢ
௛ೢ

	~0     (3.7) 

 

Hence, the uncertainty in estimating heat transfer coefficient on the refrigerant 

side may be expressed as: 
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                                       (3.8) 

 

Hence, the measurement uncertainty for the heat transfer coefficient on the 

refrigerant side is expected to be ~5.7% for the flatbed coupon experiments and ~7.6% 

for the micropost coupon experiments. 

d. Measurement Uncertainty (Droplet Cooling Experiment) 

The measurement uncertainty for the calculation of the 2 phase heat flux values 

is primarily affected by the measurements errors originating from the calibration of the 

DTS.  The uncertainty for estimating natural convection heat flux may be calculated 

using the method of Klein and McClintock (1953) as: 
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                             (3.9) 

 

where, the measurement error terms in the numerator for DTS temperature refers to the 

±3 (standard deviation) variation on the average temperature of the surface under 

steady state conditions (99% confidence level) and the denominator refers to the average 

value for each parameter.  The error in estimating h୒େ is expressed as: 
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      (3.10) 

 

As for the contact resistance (Rc) between the hot plate and wafer substrate, the 

corresponding error in estimating this value is expressed as:  
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The hot plate temperature is maintained at a constant value by an active 

controller. Hence, the relative error for the hot plate temperature was small enough to be 

neglected. 
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Finally, the uncertainty in estimating the two phase heat flux is expressed as: 
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The uncertainty for the surface temperature by the diode temperature sensor and 

the heat flux is summarized in the following Table 3.3 and Table 3.4. 

 
 
 

Table 3. 3 Measurement uncertainty for temperature (°C) in droplet impingement experiments. 

 

 
TDTS[min] TDTS[max] (%) 

Acetone - 45 24.9 27.4 0.06 

Acetone - 50 34.3 35.0 0.05 

Acetone - 55 37.8 39.6 0.04 

Ethanol -45 21.6 24.2 0.07 

Ethanol - 55 31.7 33.8 0.05 

Ethanol -65 40.3 45.0 0.04 
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Table 3. 4. Measurement uncertainty for two phase heat flux (W/m2) in droplet impingement experiments. 

 

 
q"2P 

[Min] 
q"2P 

[Max] 
(%) 

Acetone - 45 65.7 99.1 10.15 

Acetone - 50 250.7 400.7 7.65 

Acetone - 55 571.3 769.2 6.50 

Ethanol -45 8.7 52.7 13.80 

Ethanol - 55 116.5 217.5 10.14 

Ethanol -65 249.3 633.8 14.84 

 
 
 
Hence, the measurement uncertainty for heat flux is expected to be ~6-10% for 

the acetone experiments and ~10-15% for the ethanol experiments. 
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CHAPTER IV 

CONCLUSION AND FUTURE DIRECTIONS 
 

A. Summary 

In this study, flow boiling experiments have been conducted under sub-cooled 

conditions on plain substrates and nano-structured surfaces (substrate coated with 

MWCNT). Nano-structured surfaces were found to enhance the flow boiling heat flux by 

more than 200%. Several transport mechanisms were identified to be responsible for the 

enhancement in heat fluxes observed in multi-phase flows. It is expected that small-scale 

surface temperature transients are responsible for a major proportion of the total heat 

flux. 

To enumerate the micro/nano-scale transport mechanisms for heat transfer in 

multi-phase flows miniaturized temperature sensors were developed as a part of this 

study. Diode temperature sensors (DTS) were designed, fabricated, and calibrated. 

Calibration of the steady state response of the DTS was performed simultaneously using 

a wire bead thermocouple as well as using an IR camera.  The feasibility of using the 

DTS for high speed transient measurements of the surface temperature fluctuations for 

heat transfer phenomena in multi-phase flows was demonstrated for droplet 

impingement cooling experiments. The droplet cooling experiments were performed for 

acetone and alcohol. From the droplet cooling experiments it was observed that the 

transient peak in two-phase heat flux was enhanced by ~100-200% for ethanol and 

~200-500% for acetone (over that of single-phase natural convection heat flux values). 
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For both acetone and alcohol, the peak heat flux was found to occur over time-scales that 

lasted for less than ~10-100 ms.  This shows the need for miniaturized high speed 

temperature sensors with high spatial density.  

TFT are comparatively easier to fabricate than the DTS. However, the efforts 

required for packaging of TFT are considerably more laborious than DTS, especially for 

measurements involving a large array of sensors in layout designs involving a potentially 

high spatial density. 

A compact condenser with micropost surface was numerically studied to 

determine the optimal geometry for better heat exchanger performance. The micropost 

surface compact condenser was compared with a flatbed surface to observe the heat 

transfer enhancement. The heat transfer performance was experimentally investigated. 

From the results, the heat transfer coefficient was enhanced by 30% for the micropost 

surface compared to a flatbed surface which was the control experiment for the compact 

condensation experiment. 

B. Future Directions 

The following topics are identified for future explorations as a part of this study:  

The flow boiling studies need to be repeated by varying the experimental 

parameters (wall superheat, flow rate, and liquid sub-cooling) for the various substrates 

considered in this study. Better insulation of the heated copper can extend the range of 

the experimental parameters (wall superheat, het flux, flow rate, etc.). Though the 

existing heater is surrounded by low thermal conductivity 0.25” thick acrylic walls and 

an additional fiber glass insulation pad, heat loss to the bottom of the heater limits the 
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range of wall superheating used in this study. An enhanced insulation pad or even high 

performance electric heating pad can be explored. 

The experiments using the temperature nano-sensors need to be repeated for 

surface temperatures exceeding the saturation temperature of acetone and alcohol. The 

existing fabrication protocol for the temperature nano-sensors (DTS and TFT) can also 

be improved. Ion implantation as well as the diffusion method to form the p and n region 

should be taken into consideration and characterized. The performance of the sensors 

with different fabrication processes need to be compared and optimized. 

Use of DTS for flow boiling studies can also be explored. However, there are a 

large number of challenges in the existing experimental apparatus that need to be 

resolved. A flip chip circuit must be developed for mounting the DTSA in the flow 

boiling apparatus. The sensor itself cannot be integrated directly in the boiling 

experiment yet. An adaptor can be installed in the main test section for providing ease of 

access for the sensor output. Instead of depending on the wire bonding that can fail 

easily, a snap and connect type of flip packaging may be needed for future studies. 

A heated vacuum chuck with a stable electrical ground is required for better 

characterization and calibration of the DTSA. This would help to minimize the electrical 

noise floor of the signal output. In addition to the equipment proposed for developing the 

DTS, an isolated dark box for housing the probe station is needed. An SMU instrument 

such as Keithley 2612a (or similar) can be explored to improve the temporal resolution 

of the sensor data collection. Since, DTS has faster response than the TFT, SMU is 

recommended for characterizing the sensor output. 
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The response of the two different temperature nano-sensors (DTS and TFT) need 

to be compared for similar experiments (e.g., droplet cooling experiments and 

potentially for flow boiling experiments as well). 
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APPENDIX A  

FABRICATION AND ASSEMBLY OF EXPERIMENTAL APPARATUS FOR FLOW 

BOILING STUDIES 

 

Figure A.1 Copper Block prepared for surface attachment. 

 

Figure A.1 shows the copper block with thermocouples inserted.  In order to 

attach various substrates, the copper block needs to be cleaned thoroughly. In the picture, 

orange lines are the thermocouples that are installed at different locations with numbered 

tags on them. On the bottom of the copper block where the largest circular disk is visible, 

eight cartridge heaters are inserted that are connected to the AMREL power supply. 
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Figure A.2 Surface cleaning. 

 

The surface of the copper block needs to be cleaned using Kimwipe©. The wipe 

should partially soaked in Isopropanol before physically wiping the surface of the copper 

block surface. After wiping off the surface couple times with the Isopropanol, repeat the 

step using  Acetone soaked Kimwipe. Redo the Isopropanol and Acetone cleaning 3~4 

times until no debris or dirt is captured on the wipe. While wiping off the surface, try to 

apply pressure on the edges of the surface as well as on the surface itself. 
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Figure A.3 Transparency Mask. 

 

A transparency film cut from a conventional OHP film is used to mask the 

cleaned copper block surface partially before applying the thermal paste. The 

transparency film should be sketched before cutting out the part where the paste should 

be applied. First, draw a circle with the diameter of 2.7~2.8”. Draw a line that crosses 

the center of the circle. Make a perpendicular line that is 2.5 cm away from the center of 

the circle. Another line is sketched on the other side of the center. The final film with the 

sketch should look similar to the copper block surface but a bit smaller. This is to secure 

the outer perimeter to apply the silicone. 
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Figure A.4 Setting the transparency film. 

 

After the sketching on the transparency film, cut the inner part of the 

transparency film with a scissor. The edges need not be sharp. Apply double sided tape 

at the surface that needs to be fixed to the copper block. Press couple times on the 

double sided tape to secure adhesion.  The transparency film after all will be used as a 

stencil while applying the thermal paste. 
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Figure A.5 Pressing the transparency film . 

 

Figure A.5 shows the transparency film pressed onto the copper block. Use your 

fingers to press uniformly along the edges. 
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Figure A.6 Applying thermal paste. 

 

Apply the thermal paste at one end of the copper block top surface. The thermal 

paste may be stored in a can which the user needs to scoop out using a spoon-like utensil 

or in a form of syringe that is shown in the picture. Since the thermal paste is going to be 

spread evenly downstream, it is important not to apply too much at the starting location. 
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Figure A.7 Spreading the thermal paste using joint knife. 

 

Using a joint knife, try to spread the thermal paste in one direction. Do not 

reverse the direction until you have covered the area of interest. One good tip would be 

pressing firmly with one of your finger on the joint knife shown in figure A.7. After the 

first application, wipe of any excessive thermal paste that is sticking on the joint knife. 
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Figure A.8 Thermal paste applied for the first time. 

 

Figure A.8 shows how it might look like after the first application of the thermal 

paste. As seen from the picture, part of the area is not coated with the thermal paste yet 

and needs to be reapplied until the whole surface of interest is covered evenly with the 

thermal paste. If there are insufficient thermal pastes, it is recommended to add some 

more at the same location where the thermal paste was initially applied. However, try to 

spread evenly using the joint knife as before to cover the whole surface. 
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Figure A.9 Reapplying the thermal paste. 

 

Figure A.9 shows the reapplication of the thermal paste using the joint knife. 
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Figure A.10 Thermal paste coated. 

 

Use the joint knife multiple times until the surface of interest is covered 

uniformly as seen in figure A.10. 
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Figure A.11 Peeling off the transparency. 

 

After making sure that the thermal paste is covered fully, start to peel off slowly 

from one end of the transparency film. While peeling off the transparency, it is 

acceptable to have some of the thermal paste smeared into the space between the film 

and the copper block. 
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Figure A.12 Removing the transparency. 

 

Use both of your hands to peel off the transparency as shown in figure A.12. 
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Figure A.13 Thermal paste coated on the copper block. 

 

Figure A.13 shows how it should look like after the thermal paste is applied 

properly on the copper block. 
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Figure A.14 Applying silicon at the edge of the thermal paste coated copper block. 

 

Now, use the premium silicone paste and apply it at the perimeter of the uncoated 

area on the copper block. The reason for using the transparency film is to apply the 

thermal paste with even thickness on the copper block and to secure the perimeter for 

application of the silicone paste. The main reason for the application of the silicone paste 

is to promote the adhesion of the silicon wafer on the copper block. At high heat fluxes 

during the experiment a high temperature region is formed in the center of the copper 

block, causing the wafer to dislodge from the top of the copper block (due to mismatch 
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caused by thermal expansion). This strategy was implemented to enhance the adhesion 

of the silicon wafer to the copper block. 

 

Figure A.15 Applying the silicon around the perimeter. 

 

Apply the silicone paste around the perimeter. In this process, premium 

transparent silicone (Manufacturer: GE) was used. Instead of using the squeezing tool 

for applying large pressures to dispense the silicone paste, this brand of silicone was 

available in a single tube which the user could apply manually. 
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Figure A.16 Spreading the silicon around the perimeter. 

 

After the silicone paste is applied on the perimeter of the copper block, use a 

smaller joint knife to spread it in a thin layer by partially mixing with the thermal paste 

at the boundary. 
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Figure A.17 Final look with the thermal paste and the silicon applied. 

 

Figure A.17 shows the final picture with the thermal paste and the silicone paste 

applied before the silicon wafer is mounted on the copper block. 
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Figure A.18 Wafer to be used for the experiment. 

 

CNT coated silicon wafer needs to be placed on to the heater surface. 

 



153 
 

 

 

Figure A.19 CNT coated wafer seen in the wafer carrier (container). 
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Figure A.20 CNT coated wafer. 
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Figure A.21 CNT coated wafer placed on the heater. 

 

Place the CNT coated wafer on the heater surface contacting from one end and 

slowly let it settle. Do not push or press as the wafer as it may break since it is brittle. 
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Figure A.22 Mesh acting as adapter. 

 

Use the mesh as shown in figure A.22 to apply load onto the CNT coated wafer. 

This is necessary because the wafer needs to be pressed down but at the same time it 

should not be destroyed by the surface. 
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Figure A.23 Adapter before placing load on the wafer. 

 

 

Carefully center the adapter on the wafer and place it as shown in figure A.23. 

Do not move or adjust once the adapter is on the CNT coated wafer as it will destroy or 

smear the coating. 
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Figure A.24 Weight on the adapter. 

Place a weight on the adapter slowly at the center as shown in Figure A.24. After 

the weight has been applied, turn on the power supply to approximately 5V to add a 

small heat flux on the copper block surface in order to let the thermal paste and the 

silicon cure to obtain better quality of adhesion. The CNT coated wafer and the copper 

block needs to me monitored every 5 minutes to avoid the weight from slipping to one 

side or causing the wafer to shift on the copper block. If a shift or movement of the 

wafer is found, adjust it with your hand by pushing it to the original location. The 

monitoring and adjusting should be performed until the thin film between the copper 

block and the wafer is cured fully. The wafer must be placed in proper orientation to 
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avoid interference when the copper block is docking into the main test section by raising 

the mini jack. 
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APPENDIX B  

CONSTRUCTION OF THE FLOW BOILING TEST SECTION 

This section will introduce the design for the main test section used for the flow 

boiling experiments. Raw material that was used for the main test section is 1” thick 

aluminum plate which was machined in the Mechanical Engineering Department Work 

Shop using Bridgeport 3D milling machine. Related images and drawings are included 

for better clarity.  The design is a modified construction of the phase-I model that had 

acrylic windows. At phase-I, since the walls were made out of acrylic frequent leakage 

and bulging of the main test section at higher flow rates was observed. In addition, since 

the cross section was large, the flow in the chamber was not uniform. In addition, due to 

the high heat flux from the halogen lamps, part of the top cover was melted locally. In 

order to overcome these problems, in phase-II the main test section for the flow boiling 

was modified according to the design shown here. 
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Figure B.1 Drawing – Side wall.
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Figure B.2 Assembly diagram of the side wall for the flow boiling test section. 

 

The side wall is made out of 1” thickness aluminum (Blue). As shown in the 

figure above, an O-ring (Black) is fitted within the groove of the wall before attaching 

the acrylic transparent window (Gray). Another O-ring is attached on the outer cover 

(Red). When assembled using the button head bolts the thrust of the bolts will 

automatically compress the O-rings on both sides of the clear window in order to 

achieve proper sealing. The side walls of the flow boiling section are constructed using 

the above design. This enables the mounting and dismounting of the viewing window to 

be easier and without having to disassemble the whole wall from the main test section. 
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APPENDIX C  

HEAT FLUX DATA AND HEAT TRANSFER COEFFICIENT CALCULATION FOR 

DROPLET IMPINGEMENT EXPERIMENTS 

(1) Acetone – 45, Drop #01 
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Drop #02 
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Drop#03 
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2) Acetone – 50, Drop #01 
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3) Acetone – 55, Drop#01 
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4) Ethanol – 45, Drop#01 
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5) Ethanol – 55, Drop#03 
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6) Ethanol – 65, Drop#01 
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Drop#04 
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Drop#06 
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Drop#08 
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APPENDIX D 

DROPLET COOLING EXPERIMENT RESULTS USING TFT 

(1) Hot Plate Indicator: 45°C, Sampling Rate: 6Hz 
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(2) Hot Plate Indicator: 45°C, Sampling Rate: 200Hz 
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(3) Hot Plate Indicator: 60°C, Sampling Rate: 200Hz 
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(4) Hot Plate Indicator: 70°C, Sampling Rate: 6Hz 
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(5) Hot Plate Indicator: 80°C, Sampling Rate: 200Hz 
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(6) Hot Plate Indicator: 90°C, Sampling Rate: 6Hz 
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APPENDIX E 

THE COMPACT CONDENSER EXPERIMENT (P-H DIAGRAM) 

 
Flat Micropost 

 
Average stdev Average stdev 

ΔP [kPa] 11.7 (1.07 psi) 0.15 81.5 (11.82 psi) 0.48 

Tsat4 - T4 [K] 4.40 0.31 5.11 0.60 

T3-T4 [K] 1.38 0.05 1.77 0.30 

h [W/m2K] 2672.6 241.2 3873.2 192.7 

 

• Amount of refrigerant: 28.3 g (1.10 oz. ) 

• 45% enhancement in heat transfer coefficient when micropost is utilized. 
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